SelectionDAGNodes.h revision 194612
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/ilist_node.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include "llvm/Support/DebugLoc.h"
35#include <cassert>
36#include <climits>
37
38namespace llvm {
39
40class SelectionDAG;
41class GlobalValue;
42class MachineBasicBlock;
43class MachineConstantPoolValue;
44class SDNode;
45class Value;
46template <typename T> struct DenseMapInfo;
47template <typename T> struct simplify_type;
48template <typename T> struct ilist_traits;
49
50/// SDVTList - This represents a list of ValueType's that has been intern'd by
51/// a SelectionDAG.  Instances of this simple value class are returned by
52/// SelectionDAG::getVTList(...).
53///
54struct SDVTList {
55  const MVT *VTs;
56  unsigned int NumVTs;
57};
58
59/// ISD namespace - This namespace contains an enum which represents all of the
60/// SelectionDAG node types and value types.
61///
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines the target-independent operators
66  /// for a SelectionDAG.
67  ///
68  /// Targets may also define target-dependent operator codes for SDNodes. For
69  /// example, on x86, these are the enum values in the X86ISD namespace.
70  /// Targets should aim to use target-independent operators to model their
71  /// instruction sets as much as possible, and only use target-dependent
72  /// operators when they have special requirements.
73  ///
74  /// Finally, during and after selection proper, SNodes may use special
75  /// operator codes that correspond directly with MachineInstr opcodes. These
76  /// are used to represent selected instructions. See the isMachineOpcode()
77  /// and getMachineOpcode() member functions of SDNode.
78  ///
79  enum NodeType {
80    // DELETED_NODE - This is an illegal value that is used to catch
81    // errors.  This opcode is not a legal opcode for any node.
82    DELETED_NODE,
83
84    // EntryToken - This is the marker used to indicate the start of the region.
85    EntryToken,
86
87    // TokenFactor - This node takes multiple tokens as input and produces a
88    // single token result.  This is used to represent the fact that the operand
89    // operators are independent of each other.
90    TokenFactor,
91
92    // AssertSext, AssertZext - These nodes record if a register contains a
93    // value that has already been zero or sign extended from a narrower type.
94    // These nodes take two operands.  The first is the node that has already
95    // been extended, and the second is a value type node indicating the width
96    // of the extension
97    AssertSext, AssertZext,
98
99    // Various leaf nodes.
100    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
101    Constant, ConstantFP,
102    GlobalAddress, GlobalTLSAddress, FrameIndex,
103    JumpTable, ConstantPool, ExternalSymbol,
104
105    // The address of the GOT
106    GLOBAL_OFFSET_TABLE,
107
108    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
109    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
110    // of the frame or return address to return.  An index of zero corresponds
111    // to the current function's frame or return address, an index of one to the
112    // parent's frame or return address, and so on.
113    FRAMEADDR, RETURNADDR,
114
115    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
116    // first (possible) on-stack argument. This is needed for correct stack
117    // adjustment during unwind.
118    FRAME_TO_ARGS_OFFSET,
119
120    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
121    // address of the exception block on entry to an landing pad block.
122    EXCEPTIONADDR,
123
124    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
125    // the selection index of the exception thrown.
126    EHSELECTION,
127
128    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
129    // 'eh_return' gcc dwarf builtin, which is used to return from
130    // exception. The general meaning is: adjust stack by OFFSET and pass
131    // execution to HANDLER. Many platform-related details also :)
132    EH_RETURN,
133
134    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
135    // simplification of the constant.
136    TargetConstant,
137    TargetConstantFP,
138
139    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
140    // anything else with this node, and this is valid in the target-specific
141    // dag, turning into a GlobalAddress operand.
142    TargetGlobalAddress,
143    TargetGlobalTLSAddress,
144    TargetFrameIndex,
145    TargetJumpTable,
146    TargetConstantPool,
147    TargetExternalSymbol,
148
149    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
150    /// This node represents a target intrinsic function with no side effects.
151    /// The first operand is the ID number of the intrinsic from the
152    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
153    /// node has returns the result of the intrinsic.
154    INTRINSIC_WO_CHAIN,
155
156    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
157    /// This node represents a target intrinsic function with side effects that
158    /// returns a result.  The first operand is a chain pointer.  The second is
159    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
160    /// operands to the intrinsic follow.  The node has two results, the result
161    /// of the intrinsic and an output chain.
162    INTRINSIC_W_CHAIN,
163
164    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
165    /// This node represents a target intrinsic function with side effects that
166    /// does not return a result.  The first operand is a chain pointer.  The
167    /// second is the ID number of the intrinsic from the llvm::Intrinsic
168    /// namespace.  The operands to the intrinsic follow.
169    INTRINSIC_VOID,
170
171    // CopyToReg - This node has three operands: a chain, a register number to
172    // set to this value, and a value.
173    CopyToReg,
174
175    // CopyFromReg - This node indicates that the input value is a virtual or
176    // physical register that is defined outside of the scope of this
177    // SelectionDAG.  The register is available from the RegisterSDNode object.
178    CopyFromReg,
179
180    // UNDEF - An undefined node
181    UNDEF,
182
183    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
184    /// represents the formal arguments for a function.  CC# is a Constant value
185    /// indicating the calling convention of the function, and ISVARARG is a
186    /// flag that indicates whether the function is varargs or not. This node
187    /// has one result value for each incoming argument, plus one for the output
188    /// chain. It must be custom legalized. See description of CALL node for
189    /// FLAG argument contents explanation.
190    ///
191    FORMAL_ARGUMENTS,
192
193    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
194    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
195    /// This node represents a fully general function call, before the legalizer
196    /// runs.  This has one result value for each argument / flag pair, plus
197    /// a chain result. It must be custom legalized. Flag argument indicates
198    /// misc. argument attributes. Currently:
199    /// Bit 0 - signness
200    /// Bit 1 - 'inreg' attribute
201    /// Bit 2 - 'sret' attribute
202    /// Bit 4 - 'byval' attribute
203    /// Bit 5 - 'nest' attribute
204    /// Bit 6-9 - alignment of byval structures
205    /// Bit 10-26 - size of byval structures
206    /// Bits 31:27 - argument ABI alignment in the first argument piece and
207    /// alignment '1' in other argument pieces.
208    ///
209    /// CALL nodes use the CallSDNode subclass of SDNode, which
210    /// additionally carries information about the calling convention,
211    /// whether the call is varargs, and if it's marked as a tail call.
212    ///
213    CALL,
214
215    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
216    // a Constant, which is required to be operand #1) half of the integer or
217    // float value specified as operand #0.  This is only for use before
218    // legalization, for values that will be broken into multiple registers.
219    EXTRACT_ELEMENT,
220
221    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
222    // two values of the same integer value type, this produces a value twice as
223    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
224    BUILD_PAIR,
225
226    // MERGE_VALUES - This node takes multiple discrete operands and returns
227    // them all as its individual results.  This nodes has exactly the same
228    // number of inputs and outputs, and is only valid before legalization.
229    // This node is useful for some pieces of the code generator that want to
230    // think about a single node with multiple results, not multiple nodes.
231    MERGE_VALUES,
232
233    // Simple integer binary arithmetic operators.
234    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
235
236    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
237    // a signed/unsigned value of type i[2*N], and return the full value as
238    // two results, each of type iN.
239    SMUL_LOHI, UMUL_LOHI,
240
241    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
242    // remainder result.
243    SDIVREM, UDIVREM,
244
245    // CARRY_FALSE - This node is used when folding other nodes,
246    // like ADDC/SUBC, which indicate the carry result is always false.
247    CARRY_FALSE,
248
249    // Carry-setting nodes for multiple precision addition and subtraction.
250    // These nodes take two operands of the same value type, and produce two
251    // results.  The first result is the normal add or sub result, the second
252    // result is the carry flag result.
253    ADDC, SUBC,
254
255    // Carry-using nodes for multiple precision addition and subtraction.  These
256    // nodes take three operands: The first two are the normal lhs and rhs to
257    // the add or sub, and the third is the input carry flag.  These nodes
258    // produce two results; the normal result of the add or sub, and the output
259    // carry flag.  These nodes both read and write a carry flag to allow them
260    // to them to be chained together for add and sub of arbitrarily large
261    // values.
262    ADDE, SUBE,
263
264    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
265    // These nodes take two operands: the normal LHS and RHS to the add. They
266    // produce two results: the normal result of the add, and a boolean that
267    // indicates if an overflow occured (*not* a flag, because it may be stored
268    // to memory, etc.).  If the type of the boolean is not i1 then the high
269    // bits conform to getBooleanContents.
270    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
271    SADDO, UADDO,
272
273    // Same for subtraction
274    SSUBO, USUBO,
275
276    // Same for multiplication
277    SMULO, UMULO,
278
279    // Simple binary floating point operators.
280    FADD, FSUB, FMUL, FDIV, FREM,
281
282    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
283    // DAG node does not require that X and Y have the same type, just that they
284    // are both floating point.  X and the result must have the same type.
285    // FCOPYSIGN(f32, f64) is allowed.
286    FCOPYSIGN,
287
288    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
289    // value as an integer 0/1 value.
290    FGETSIGN,
291
292    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
293    /// specified, possibly variable, elements.  The number of elements is
294    /// required to be a power of two.  The types of the operands must all be
295    /// the same and must match the vector element type, except that integer
296    /// types are allowed to be larger than the element type, in which case
297    /// the operands are implicitly truncated.
298    BUILD_VECTOR,
299
300    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
301    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
302    /// element type then VAL is truncated before replacement.
303    INSERT_VECTOR_ELT,
304
305    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
306    /// identified by the (potentially variable) element number IDX.
307    EXTRACT_VECTOR_ELT,
308
309    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
310    /// vector type with the same length and element type, this produces a
311    /// concatenated vector result value, with length equal to the sum of the
312    /// lengths of the input vectors.
313    CONCAT_VECTORS,
314
315    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
316    /// vector value) starting with the (potentially variable) element number
317    /// IDX, which must be a multiple of the result vector length.
318    EXTRACT_SUBVECTOR,
319
320    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
321    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
322    /// values that indicate which value (or undef) each result element will
323    /// get.  These constant ints are accessible through the
324    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
325    /// 'vperm' instruction, except that the indices must be constants and are
326    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
327    VECTOR_SHUFFLE,
328
329    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
330    /// scalar value into element 0 of the resultant vector type.  The top
331    /// elements 1 to N-1 of the N-element vector are undefined.  The type
332    /// of the operand must match the vector element type, except when they
333    /// are integer types.  In this case the operand is allowed to be wider
334    /// than the vector element type, and is implicitly truncated to it.
335    SCALAR_TO_VECTOR,
336
337    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
338    // an unsigned/signed value of type i[2*N], then return the top part.
339    MULHU, MULHS,
340
341    // Bitwise operators - logical and, logical or, logical xor, shift left,
342    // shift right algebraic (shift in sign bits), shift right logical (shift in
343    // zeroes), rotate left, rotate right, and byteswap.
344    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
345
346    // Counting operators
347    CTTZ, CTLZ, CTPOP,
348
349    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
350    // i1 then the high bits must conform to getBooleanContents.
351    SELECT,
352
353    // Select with condition operator - This selects between a true value and
354    // a false value (ops #2 and #3) based on the boolean result of comparing
355    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
356    // condition code in op #4, a CondCodeSDNode.
357    SELECT_CC,
358
359    // SetCC operator - This evaluates to a true value iff the condition is
360    // true.  If the result value type is not i1 then the high bits conform
361    // to getBooleanContents.  The operands to this are the left and right
362    // operands to compare (ops #0, and #1) and the condition code to compare
363    // them with (op #2) as a CondCodeSDNode.
364    SETCC,
365
366    // Vector SetCC operator - This evaluates to a vector of integer elements
367    // with the high bit in each element set to true if the comparison is true
368    // and false if the comparison is false.  All other bits in each element
369    // are undefined.  The operands to this are the left and right operands
370    // to compare (ops #0, and #1) and the condition code to compare them with
371    // (op #2) as a CondCodeSDNode.
372    VSETCC,
373
374    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
375    // integer shift operations, just like ADD/SUB_PARTS.  The operation
376    // ordering is:
377    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
378    SHL_PARTS, SRA_PARTS, SRL_PARTS,
379
380    // Conversion operators.  These are all single input single output
381    // operations.  For all of these, the result type must be strictly
382    // wider or narrower (depending on the operation) than the source
383    // type.
384
385    // SIGN_EXTEND - Used for integer types, replicating the sign bit
386    // into new bits.
387    SIGN_EXTEND,
388
389    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
390    ZERO_EXTEND,
391
392    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
393    ANY_EXTEND,
394
395    // TRUNCATE - Completely drop the high bits.
396    TRUNCATE,
397
398    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
399    // depends on the first letter) to floating point.
400    SINT_TO_FP,
401    UINT_TO_FP,
402
403    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
404    // sign extend a small value in a large integer register (e.g. sign
405    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
406    // with the 7th bit).  The size of the smaller type is indicated by the 1th
407    // operand, a ValueType node.
408    SIGN_EXTEND_INREG,
409
410    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
411    /// integer.
412    FP_TO_SINT,
413    FP_TO_UINT,
414
415    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
416    /// down to the precision of the destination VT.  TRUNC is a flag, which is
417    /// always an integer that is zero or one.  If TRUNC is 0, this is a
418    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
419    /// value of Y.
420    ///
421    /// The TRUNC = 1 case is used in cases where we know that the value will
422    /// not be modified by the node, because Y is not using any of the extra
423    /// precision of source type.  This allows certain transformations like
424    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
425    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
426    FP_ROUND,
427
428    // FLT_ROUNDS_ - Returns current rounding mode:
429    // -1 Undefined
430    //  0 Round to 0
431    //  1 Round to nearest
432    //  2 Round to +inf
433    //  3 Round to -inf
434    FLT_ROUNDS_,
435
436    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
437    /// rounds it to a floating point value.  It then promotes it and returns it
438    /// in a register of the same size.  This operation effectively just
439    /// discards excess precision.  The type to round down to is specified by
440    /// the VT operand, a VTSDNode.
441    FP_ROUND_INREG,
442
443    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
444    FP_EXTEND,
445
446    // BIT_CONVERT - Theis operator converts between integer and FP values, as
447    // if one was stored to memory as integer and the other was loaded from the
448    // same address (or equivalently for vector format conversions, etc).  The
449    // source and result are required to have the same bit size (e.g.
450    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
451    // conversions, but that is a noop, deleted by getNode().
452    BIT_CONVERT,
453
454    // CONVERT_RNDSAT - This operator is used to support various conversions
455    // between various types (float, signed, unsigned and vectors of those
456    // types) with rounding and saturation. NOTE: Avoid using this operator as
457    // most target don't support it and the operator might be removed in the
458    // future. It takes the following arguments:
459    //   0) value
460    //   1) dest type (type to convert to)
461    //   2) src type (type to convert from)
462    //   3) rounding imm
463    //   4) saturation imm
464    //   5) ISD::CvtCode indicating the type of conversion to do
465    CONVERT_RNDSAT,
466
467    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
468    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
469    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
470    // point operations. These are inspired by libm.
471    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
472    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
473    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
474
475    // LOAD and STORE have token chains as their first operand, then the same
476    // operands as an LLVM load/store instruction, then an offset node that
477    // is added / subtracted from the base pointer to form the address (for
478    // indexed memory ops).
479    LOAD, STORE,
480
481    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
482    // to a specified boundary.  This node always has two return values: a new
483    // stack pointer value and a chain. The first operand is the token chain,
484    // the second is the number of bytes to allocate, and the third is the
485    // alignment boundary.  The size is guaranteed to be a multiple of the stack
486    // alignment, and the alignment is guaranteed to be bigger than the stack
487    // alignment (if required) or 0 to get standard stack alignment.
488    DYNAMIC_STACKALLOC,
489
490    // Control flow instructions.  These all have token chains.
491
492    // BR - Unconditional branch.  The first operand is the chain
493    // operand, the second is the MBB to branch to.
494    BR,
495
496    // BRIND - Indirect branch.  The first operand is the chain, the second
497    // is the value to branch to, which must be of the same type as the target's
498    // pointer type.
499    BRIND,
500
501    // BR_JT - Jumptable branch. The first operand is the chain, the second
502    // is the jumptable index, the last one is the jumptable entry index.
503    BR_JT,
504
505    // BRCOND - Conditional branch.  The first operand is the chain, the
506    // second is the condition, the third is the block to branch to if the
507    // condition is true.  If the type of the condition is not i1, then the
508    // high bits must conform to getBooleanContents.
509    BRCOND,
510
511    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
512    // that the condition is represented as condition code, and two nodes to
513    // compare, rather than as a combined SetCC node.  The operands in order are
514    // chain, cc, lhs, rhs, block to branch to if condition is true.
515    BR_CC,
516
517    // RET - Return from function.  The first operand is the chain,
518    // and any subsequent operands are pairs of return value and return value
519    // attributes (see CALL for description of attributes) for the function.
520    // This operation can have variable number of operands.
521    RET,
522
523    // INLINEASM - Represents an inline asm block.  This node always has two
524    // return values: a chain and a flag result.  The inputs are as follows:
525    //   Operand #0   : Input chain.
526    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
527    //   Operand #2n+2: A RegisterNode.
528    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
529    //   Operand #last: Optional, an incoming flag.
530    INLINEASM,
531
532    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
533    // locations needed for debug and exception handling tables.  These nodes
534    // take a chain as input and return a chain.
535    DBG_LABEL,
536    EH_LABEL,
537
538    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
539    // local variable declarations for debugging information. First operand is
540    // a chain, while the next two operands are first two arguments (address
541    // and variable) of a llvm.dbg.declare instruction.
542    DECLARE,
543
544    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
545    // value, the same type as the pointer type for the system, and an output
546    // chain.
547    STACKSAVE,
548
549    // STACKRESTORE has two operands, an input chain and a pointer to restore to
550    // it returns an output chain.
551    STACKRESTORE,
552
553    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
554    // a call sequence, and carry arbitrary information that target might want
555    // to know.  The first operand is a chain, the rest are specified by the
556    // target and not touched by the DAG optimizers.
557    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
558    CALLSEQ_START,  // Beginning of a call sequence
559    CALLSEQ_END,    // End of a call sequence
560
561    // VAARG - VAARG has three operands: an input chain, a pointer, and a
562    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
563    VAARG,
564
565    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
566    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
567    // source.
568    VACOPY,
569
570    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
571    // pointer, and a SRCVALUE.
572    VAEND, VASTART,
573
574    // SRCVALUE - This is a node type that holds a Value* that is used to
575    // make reference to a value in the LLVM IR.
576    SRCVALUE,
577
578    // MEMOPERAND - This is a node that contains a MachineMemOperand which
579    // records information about a memory reference. This is used to make
580    // AliasAnalysis queries from the backend.
581    MEMOPERAND,
582
583    // PCMARKER - This corresponds to the pcmarker intrinsic.
584    PCMARKER,
585
586    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
587    // The only operand is a chain and a value and a chain are produced.  The
588    // value is the contents of the architecture specific cycle counter like
589    // register (or other high accuracy low latency clock source)
590    READCYCLECOUNTER,
591
592    // HANDLENODE node - Used as a handle for various purposes.
593    HANDLENODE,
594
595    // DBG_STOPPOINT - This node is used to represent a source location for
596    // debug info.  It takes token chain as input, and carries a line number,
597    // column number, and a pointer to a CompileUnit object identifying
598    // the containing compilation unit.  It produces a token chain as output.
599    DBG_STOPPOINT,
600
601    // DEBUG_LOC - This node is used to represent source line information
602    // embedded in the code.  It takes a token chain as input, then a line
603    // number, then a column then a file id (provided by MachineModuleInfo.) It
604    // produces a token chain as output.
605    DEBUG_LOC,
606
607    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
608    // It takes as input a token chain, the pointer to the trampoline,
609    // the pointer to the nested function, the pointer to pass for the
610    // 'nest' parameter, a SRCVALUE for the trampoline and another for
611    // the nested function (allowing targets to access the original
612    // Function*).  It produces the result of the intrinsic and a token
613    // chain as output.
614    TRAMPOLINE,
615
616    // TRAP - Trapping instruction
617    TRAP,
618
619    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
620    // their first operand. The other operands are the address to prefetch,
621    // read / write specifier, and locality specifier.
622    PREFETCH,
623
624    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
625    //                       store-store, device)
626    // This corresponds to the memory.barrier intrinsic.
627    // it takes an input chain, 4 operands to specify the type of barrier, an
628    // operand specifying if the barrier applies to device and uncached memory
629    // and produces an output chain.
630    MEMBARRIER,
631
632    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
633    // this corresponds to the atomic.lcs intrinsic.
634    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
635    // the return is always the original value in *ptr
636    ATOMIC_CMP_SWAP,
637
638    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
639    // this corresponds to the atomic.swap intrinsic.
640    // amt is stored to *ptr atomically.
641    // the return is always the original value in *ptr
642    ATOMIC_SWAP,
643
644    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
645    // this corresponds to the atomic.load.[OpName] intrinsic.
646    // op(*ptr, amt) is stored to *ptr atomically.
647    // the return is always the original value in *ptr
648    ATOMIC_LOAD_ADD,
649    ATOMIC_LOAD_SUB,
650    ATOMIC_LOAD_AND,
651    ATOMIC_LOAD_OR,
652    ATOMIC_LOAD_XOR,
653    ATOMIC_LOAD_NAND,
654    ATOMIC_LOAD_MIN,
655    ATOMIC_LOAD_MAX,
656    ATOMIC_LOAD_UMIN,
657    ATOMIC_LOAD_UMAX,
658
659    // BUILTIN_OP_END - This must be the last enum value in this list.
660    BUILTIN_OP_END
661  };
662
663  /// Node predicates
664
665  /// isBuildVectorAllOnes - Return true if the specified node is a
666  /// BUILD_VECTOR where all of the elements are ~0 or undef.
667  bool isBuildVectorAllOnes(const SDNode *N);
668
669  /// isBuildVectorAllZeros - Return true if the specified node is a
670  /// BUILD_VECTOR where all of the elements are 0 or undef.
671  bool isBuildVectorAllZeros(const SDNode *N);
672
673  /// isScalarToVector - Return true if the specified node is a
674  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
675  /// element is not an undef.
676  bool isScalarToVector(const SDNode *N);
677
678  /// isDebugLabel - Return true if the specified node represents a debug
679  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
680  bool isDebugLabel(const SDNode *N);
681
682  //===--------------------------------------------------------------------===//
683  /// MemIndexedMode enum - This enum defines the load / store indexed
684  /// addressing modes.
685  ///
686  /// UNINDEXED    "Normal" load / store. The effective address is already
687  ///              computed and is available in the base pointer. The offset
688  ///              operand is always undefined. In addition to producing a
689  ///              chain, an unindexed load produces one value (result of the
690  ///              load); an unindexed store does not produce a value.
691  ///
692  /// PRE_INC      Similar to the unindexed mode where the effective address is
693  /// PRE_DEC      the value of the base pointer add / subtract the offset.
694  ///              It considers the computation as being folded into the load /
695  ///              store operation (i.e. the load / store does the address
696  ///              computation as well as performing the memory transaction).
697  ///              The base operand is always undefined. In addition to
698  ///              producing a chain, pre-indexed load produces two values
699  ///              (result of the load and the result of the address
700  ///              computation); a pre-indexed store produces one value (result
701  ///              of the address computation).
702  ///
703  /// POST_INC     The effective address is the value of the base pointer. The
704  /// POST_DEC     value of the offset operand is then added to / subtracted
705  ///              from the base after memory transaction. In addition to
706  ///              producing a chain, post-indexed load produces two values
707  ///              (the result of the load and the result of the base +/- offset
708  ///              computation); a post-indexed store produces one value (the
709  ///              the result of the base +/- offset computation).
710  ///
711  enum MemIndexedMode {
712    UNINDEXED = 0,
713    PRE_INC,
714    PRE_DEC,
715    POST_INC,
716    POST_DEC,
717    LAST_INDEXED_MODE
718  };
719
720  //===--------------------------------------------------------------------===//
721  /// LoadExtType enum - This enum defines the three variants of LOADEXT
722  /// (load with extension).
723  ///
724  /// SEXTLOAD loads the integer operand and sign extends it to a larger
725  ///          integer result type.
726  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
727  ///          integer result type.
728  /// EXTLOAD  is used for three things: floating point extending loads,
729  ///          integer extending loads [the top bits are undefined], and vector
730  ///          extending loads [load into low elt].
731  ///
732  enum LoadExtType {
733    NON_EXTLOAD = 0,
734    EXTLOAD,
735    SEXTLOAD,
736    ZEXTLOAD,
737    LAST_LOADEXT_TYPE
738  };
739
740  //===--------------------------------------------------------------------===//
741  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
742  /// below work out, when considering SETFALSE (something that never exists
743  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
744  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
745  /// to.  If the "N" column is 1, the result of the comparison is undefined if
746  /// the input is a NAN.
747  ///
748  /// All of these (except for the 'always folded ops') should be handled for
749  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
750  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
751  ///
752  /// Note that these are laid out in a specific order to allow bit-twiddling
753  /// to transform conditions.
754  enum CondCode {
755    // Opcode          N U L G E       Intuitive operation
756    SETFALSE,      //    0 0 0 0       Always false (always folded)
757    SETOEQ,        //    0 0 0 1       True if ordered and equal
758    SETOGT,        //    0 0 1 0       True if ordered and greater than
759    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
760    SETOLT,        //    0 1 0 0       True if ordered and less than
761    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
762    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
763    SETO,          //    0 1 1 1       True if ordered (no nans)
764    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
765    SETUEQ,        //    1 0 0 1       True if unordered or equal
766    SETUGT,        //    1 0 1 0       True if unordered or greater than
767    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
768    SETULT,        //    1 1 0 0       True if unordered or less than
769    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
770    SETUNE,        //    1 1 1 0       True if unordered or not equal
771    SETTRUE,       //    1 1 1 1       Always true (always folded)
772    // Don't care operations: undefined if the input is a nan.
773    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
774    SETEQ,         //  1 X 0 0 1       True if equal
775    SETGT,         //  1 X 0 1 0       True if greater than
776    SETGE,         //  1 X 0 1 1       True if greater than or equal
777    SETLT,         //  1 X 1 0 0       True if less than
778    SETLE,         //  1 X 1 0 1       True if less than or equal
779    SETNE,         //  1 X 1 1 0       True if not equal
780    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
781
782    SETCC_INVALID       // Marker value.
783  };
784
785  /// isSignedIntSetCC - Return true if this is a setcc instruction that
786  /// performs a signed comparison when used with integer operands.
787  inline bool isSignedIntSetCC(CondCode Code) {
788    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
789  }
790
791  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
792  /// performs an unsigned comparison when used with integer operands.
793  inline bool isUnsignedIntSetCC(CondCode Code) {
794    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
795  }
796
797  /// isTrueWhenEqual - Return true if the specified condition returns true if
798  /// the two operands to the condition are equal.  Note that if one of the two
799  /// operands is a NaN, this value is meaningless.
800  inline bool isTrueWhenEqual(CondCode Cond) {
801    return ((int)Cond & 1) != 0;
802  }
803
804  /// getUnorderedFlavor - This function returns 0 if the condition is always
805  /// false if an operand is a NaN, 1 if the condition is always true if the
806  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
807  /// NaN.
808  inline unsigned getUnorderedFlavor(CondCode Cond) {
809    return ((int)Cond >> 3) & 3;
810  }
811
812  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
813  /// 'op' is a valid SetCC operation.
814  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
815
816  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
817  /// when given the operation for (X op Y).
818  CondCode getSetCCSwappedOperands(CondCode Operation);
819
820  /// getSetCCOrOperation - Return the result of a logical OR between different
821  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
822  /// function returns SETCC_INVALID if it is not possible to represent the
823  /// resultant comparison.
824  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
825
826  /// getSetCCAndOperation - Return the result of a logical AND between
827  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
828  /// function returns SETCC_INVALID if it is not possible to represent the
829  /// resultant comparison.
830  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
831
832  //===--------------------------------------------------------------------===//
833  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
834  /// supports.
835  enum CvtCode {
836    CVT_FF,     // Float from Float
837    CVT_FS,     // Float from Signed
838    CVT_FU,     // Float from Unsigned
839    CVT_SF,     // Signed from Float
840    CVT_UF,     // Unsigned from Float
841    CVT_SS,     // Signed from Signed
842    CVT_SU,     // Signed from Unsigned
843    CVT_US,     // Unsigned from Signed
844    CVT_UU,     // Unsigned from Unsigned
845    CVT_INVALID // Marker - Invalid opcode
846  };
847}  // end llvm::ISD namespace
848
849
850//===----------------------------------------------------------------------===//
851/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
852/// values as the result of a computation.  Many nodes return multiple values,
853/// from loads (which define a token and a return value) to ADDC (which returns
854/// a result and a carry value), to calls (which may return an arbitrary number
855/// of values).
856///
857/// As such, each use of a SelectionDAG computation must indicate the node that
858/// computes it as well as which return value to use from that node.  This pair
859/// of information is represented with the SDValue value type.
860///
861class SDValue {
862  SDNode *Node;       // The node defining the value we are using.
863  unsigned ResNo;     // Which return value of the node we are using.
864public:
865  SDValue() : Node(0), ResNo(0) {}
866  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
867
868  /// get the index which selects a specific result in the SDNode
869  unsigned getResNo() const { return ResNo; }
870
871  /// get the SDNode which holds the desired result
872  SDNode *getNode() const { return Node; }
873
874  /// set the SDNode
875  void setNode(SDNode *N) { Node = N; }
876
877  bool operator==(const SDValue &O) const {
878    return Node == O.Node && ResNo == O.ResNo;
879  }
880  bool operator!=(const SDValue &O) const {
881    return !operator==(O);
882  }
883  bool operator<(const SDValue &O) const {
884    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
885  }
886
887  SDValue getValue(unsigned R) const {
888    return SDValue(Node, R);
889  }
890
891  // isOperandOf - Return true if this node is an operand of N.
892  bool isOperandOf(SDNode *N) const;
893
894  /// getValueType - Return the ValueType of the referenced return value.
895  ///
896  inline MVT getValueType() const;
897
898  /// getValueSizeInBits - Returns the size of the value in bits.
899  ///
900  unsigned getValueSizeInBits() const {
901    return getValueType().getSizeInBits();
902  }
903
904  // Forwarding methods - These forward to the corresponding methods in SDNode.
905  inline unsigned getOpcode() const;
906  inline unsigned getNumOperands() const;
907  inline const SDValue &getOperand(unsigned i) const;
908  inline uint64_t getConstantOperandVal(unsigned i) const;
909  inline bool isTargetOpcode() const;
910  inline bool isMachineOpcode() const;
911  inline unsigned getMachineOpcode() const;
912  inline const DebugLoc getDebugLoc() const;
913
914
915  /// reachesChainWithoutSideEffects - Return true if this operand (which must
916  /// be a chain) reaches the specified operand without crossing any
917  /// side-effecting instructions.  In practice, this looks through token
918  /// factors and non-volatile loads.  In order to remain efficient, this only
919  /// looks a couple of nodes in, it does not do an exhaustive search.
920  bool reachesChainWithoutSideEffects(SDValue Dest,
921                                      unsigned Depth = 2) const;
922
923  /// use_empty - Return true if there are no nodes using value ResNo
924  /// of Node.
925  ///
926  inline bool use_empty() const;
927
928  /// hasOneUse - Return true if there is exactly one node using value
929  /// ResNo of Node.
930  ///
931  inline bool hasOneUse() const;
932};
933
934
935template<> struct DenseMapInfo<SDValue> {
936  static inline SDValue getEmptyKey() {
937    return SDValue((SDNode*)-1, -1U);
938  }
939  static inline SDValue getTombstoneKey() {
940    return SDValue((SDNode*)-1, 0);
941  }
942  static unsigned getHashValue(const SDValue &Val) {
943    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
944            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
945  }
946  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
947    return LHS == RHS;
948  }
949  static bool isPod() { return true; }
950};
951
952/// simplify_type specializations - Allow casting operators to work directly on
953/// SDValues as if they were SDNode*'s.
954template<> struct simplify_type<SDValue> {
955  typedef SDNode* SimpleType;
956  static SimpleType getSimplifiedValue(const SDValue &Val) {
957    return static_cast<SimpleType>(Val.getNode());
958  }
959};
960template<> struct simplify_type<const SDValue> {
961  typedef SDNode* SimpleType;
962  static SimpleType getSimplifiedValue(const SDValue &Val) {
963    return static_cast<SimpleType>(Val.getNode());
964  }
965};
966
967/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
968/// which records the SDNode being used and the result number, a
969/// pointer to the SDNode using the value, and Next and Prev pointers,
970/// which link together all the uses of an SDNode.
971///
972class SDUse {
973  /// Val - The value being used.
974  SDValue Val;
975  /// User - The user of this value.
976  SDNode *User;
977  /// Prev, Next - Pointers to the uses list of the SDNode referred by
978  /// this operand.
979  SDUse **Prev, *Next;
980
981  SDUse(const SDUse &U);          // Do not implement
982  void operator=(const SDUse &U); // Do not implement
983
984public:
985  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
986
987  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
988  operator const SDValue&() const { return Val; }
989
990  /// If implicit conversion to SDValue doesn't work, the get() method returns
991  /// the SDValue.
992  const SDValue &get() const { return Val; }
993
994  /// getUser - This returns the SDNode that contains this Use.
995  SDNode *getUser() { return User; }
996
997  /// getNext - Get the next SDUse in the use list.
998  SDUse *getNext() const { return Next; }
999
1000  /// getNode - Convenience function for get().getNode().
1001  SDNode *getNode() const { return Val.getNode(); }
1002  /// getResNo - Convenience function for get().getResNo().
1003  unsigned getResNo() const { return Val.getResNo(); }
1004  /// getValueType - Convenience function for get().getValueType().
1005  MVT getValueType() const { return Val.getValueType(); }
1006
1007  /// operator== - Convenience function for get().operator==
1008  bool operator==(const SDValue &V) const {
1009    return Val == V;
1010  }
1011
1012  /// operator!= - Convenience function for get().operator!=
1013  bool operator!=(const SDValue &V) const {
1014    return Val != V;
1015  }
1016
1017  /// operator< - Convenience function for get().operator<
1018  bool operator<(const SDValue &V) const {
1019    return Val < V;
1020  }
1021
1022private:
1023  friend class SelectionDAG;
1024  friend class SDNode;
1025
1026  void setUser(SDNode *p) { User = p; }
1027
1028  /// set - Remove this use from its existing use list, assign it the
1029  /// given value, and add it to the new value's node's use list.
1030  inline void set(const SDValue &V);
1031  /// setInitial - like set, but only supports initializing a newly-allocated
1032  /// SDUse with a non-null value.
1033  inline void setInitial(const SDValue &V);
1034  /// setNode - like set, but only sets the Node portion of the value,
1035  /// leaving the ResNo portion unmodified.
1036  inline void setNode(SDNode *N);
1037
1038  void addToList(SDUse **List) {
1039    Next = *List;
1040    if (Next) Next->Prev = &Next;
1041    Prev = List;
1042    *List = this;
1043  }
1044
1045  void removeFromList() {
1046    *Prev = Next;
1047    if (Next) Next->Prev = Prev;
1048  }
1049};
1050
1051/// simplify_type specializations - Allow casting operators to work directly on
1052/// SDValues as if they were SDNode*'s.
1053template<> struct simplify_type<SDUse> {
1054  typedef SDNode* SimpleType;
1055  static SimpleType getSimplifiedValue(const SDUse &Val) {
1056    return static_cast<SimpleType>(Val.getNode());
1057  }
1058};
1059template<> struct simplify_type<const SDUse> {
1060  typedef SDNode* SimpleType;
1061  static SimpleType getSimplifiedValue(const SDUse &Val) {
1062    return static_cast<SimpleType>(Val.getNode());
1063  }
1064};
1065
1066
1067/// SDNode - Represents one node in the SelectionDAG.
1068///
1069class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1070private:
1071  /// NodeType - The operation that this node performs.
1072  ///
1073  short NodeType;
1074
1075  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1076  /// then they will be delete[]'d when the node is destroyed.
1077  unsigned short OperandsNeedDelete : 1;
1078
1079protected:
1080  /// SubclassData - This member is defined by this class, but is not used for
1081  /// anything.  Subclasses can use it to hold whatever state they find useful.
1082  /// This field is initialized to zero by the ctor.
1083  unsigned short SubclassData : 15;
1084
1085private:
1086  /// NodeId - Unique id per SDNode in the DAG.
1087  int NodeId;
1088
1089  /// OperandList - The values that are used by this operation.
1090  ///
1091  SDUse *OperandList;
1092
1093  /// ValueList - The types of the values this node defines.  SDNode's may
1094  /// define multiple values simultaneously.
1095  const MVT *ValueList;
1096
1097  /// UseList - List of uses for this SDNode.
1098  SDUse *UseList;
1099
1100  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1101  unsigned short NumOperands, NumValues;
1102
1103  /// debugLoc - source line information.
1104  DebugLoc debugLoc;
1105
1106  /// getValueTypeList - Return a pointer to the specified value type.
1107  static const MVT *getValueTypeList(MVT VT);
1108
1109  friend class SelectionDAG;
1110  friend struct ilist_traits<SDNode>;
1111
1112public:
1113  //===--------------------------------------------------------------------===//
1114  //  Accessors
1115  //
1116
1117  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1118  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1119  /// are the opcode values in the ISD and <target>ISD namespaces. For
1120  /// post-isel opcodes, see getMachineOpcode.
1121  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1122
1123  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1124  /// \<target\>ISD namespace).
1125  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1126
1127  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1128  /// corresponding to a MachineInstr opcode.
1129  bool isMachineOpcode() const { return NodeType < 0; }
1130
1131  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1132  /// true. It returns the MachineInstr opcode value that the node's opcode
1133  /// corresponds to.
1134  unsigned getMachineOpcode() const {
1135    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1136    return ~NodeType;
1137  }
1138
1139  /// use_empty - Return true if there are no uses of this node.
1140  ///
1141  bool use_empty() const { return UseList == NULL; }
1142
1143  /// hasOneUse - Return true if there is exactly one use of this node.
1144  ///
1145  bool hasOneUse() const {
1146    return !use_empty() && next(use_begin()) == use_end();
1147  }
1148
1149  /// use_size - Return the number of uses of this node. This method takes
1150  /// time proportional to the number of uses.
1151  ///
1152  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1153
1154  /// getNodeId - Return the unique node id.
1155  ///
1156  int getNodeId() const { return NodeId; }
1157
1158  /// setNodeId - Set unique node id.
1159  void setNodeId(int Id) { NodeId = Id; }
1160
1161  /// getDebugLoc - Return the source location info.
1162  const DebugLoc getDebugLoc() const { return debugLoc; }
1163
1164  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1165  /// it in the constructor is preferable.
1166  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1167
1168  /// use_iterator - This class provides iterator support for SDUse
1169  /// operands that use a specific SDNode.
1170  class use_iterator
1171    : public forward_iterator<SDUse, ptrdiff_t> {
1172    SDUse *Op;
1173    explicit use_iterator(SDUse *op) : Op(op) {
1174    }
1175    friend class SDNode;
1176  public:
1177    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1178    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1179
1180    use_iterator(const use_iterator &I) : Op(I.Op) {}
1181    use_iterator() : Op(0) {}
1182
1183    bool operator==(const use_iterator &x) const {
1184      return Op == x.Op;
1185    }
1186    bool operator!=(const use_iterator &x) const {
1187      return !operator==(x);
1188    }
1189
1190    /// atEnd - return true if this iterator is at the end of uses list.
1191    bool atEnd() const { return Op == 0; }
1192
1193    // Iterator traversal: forward iteration only.
1194    use_iterator &operator++() {          // Preincrement
1195      assert(Op && "Cannot increment end iterator!");
1196      Op = Op->getNext();
1197      return *this;
1198    }
1199
1200    use_iterator operator++(int) {        // Postincrement
1201      use_iterator tmp = *this; ++*this; return tmp;
1202    }
1203
1204    /// Retrieve a pointer to the current user node.
1205    SDNode *operator*() const {
1206      assert(Op && "Cannot dereference end iterator!");
1207      return Op->getUser();
1208    }
1209
1210    SDNode *operator->() const { return operator*(); }
1211
1212    SDUse &getUse() const { return *Op; }
1213
1214    /// getOperandNo - Retrieve the operand # of this use in its user.
1215    ///
1216    unsigned getOperandNo() const {
1217      assert(Op && "Cannot dereference end iterator!");
1218      return (unsigned)(Op - Op->getUser()->OperandList);
1219    }
1220  };
1221
1222  /// use_begin/use_end - Provide iteration support to walk over all uses
1223  /// of an SDNode.
1224
1225  use_iterator use_begin() const {
1226    return use_iterator(UseList);
1227  }
1228
1229  static use_iterator use_end() { return use_iterator(0); }
1230
1231
1232  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1233  /// indicated value.  This method ignores uses of other values defined by this
1234  /// operation.
1235  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1236
1237  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1238  /// value. This method ignores uses of other values defined by this operation.
1239  bool hasAnyUseOfValue(unsigned Value) const;
1240
1241  /// isOnlyUserOf - Return true if this node is the only use of N.
1242  ///
1243  bool isOnlyUserOf(SDNode *N) const;
1244
1245  /// isOperandOf - Return true if this node is an operand of N.
1246  ///
1247  bool isOperandOf(SDNode *N) const;
1248
1249  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1250  /// node is either an operand of N or it can be reached by recursively
1251  /// traversing up the operands.
1252  /// NOTE: this is an expensive method. Use it carefully.
1253  bool isPredecessorOf(SDNode *N) const;
1254
1255  /// getNumOperands - Return the number of values used by this operation.
1256  ///
1257  unsigned getNumOperands() const { return NumOperands; }
1258
1259  /// getConstantOperandVal - Helper method returns the integer value of a
1260  /// ConstantSDNode operand.
1261  uint64_t getConstantOperandVal(unsigned Num) const;
1262
1263  const SDValue &getOperand(unsigned Num) const {
1264    assert(Num < NumOperands && "Invalid child # of SDNode!");
1265    return OperandList[Num];
1266  }
1267
1268  typedef SDUse* op_iterator;
1269  op_iterator op_begin() const { return OperandList; }
1270  op_iterator op_end() const { return OperandList+NumOperands; }
1271
1272  SDVTList getVTList() const {
1273    SDVTList X = { ValueList, NumValues };
1274    return X;
1275  };
1276
1277  /// getFlaggedNode - If this node has a flag operand, return the node
1278  /// to which the flag operand points. Otherwise return NULL.
1279  SDNode *getFlaggedNode() const {
1280    if (getNumOperands() != 0 &&
1281        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1282      return getOperand(getNumOperands()-1).getNode();
1283    return 0;
1284  }
1285
1286  // If this is a pseudo op, like copyfromreg, look to see if there is a
1287  // real target node flagged to it.  If so, return the target node.
1288  const SDNode *getFlaggedMachineNode() const {
1289    const SDNode *FoundNode = this;
1290
1291    // Climb up flag edges until a machine-opcode node is found, or the
1292    // end of the chain is reached.
1293    while (!FoundNode->isMachineOpcode()) {
1294      const SDNode *N = FoundNode->getFlaggedNode();
1295      if (!N) break;
1296      FoundNode = N;
1297    }
1298
1299    return FoundNode;
1300  }
1301
1302  /// getNumValues - Return the number of values defined/returned by this
1303  /// operator.
1304  ///
1305  unsigned getNumValues() const { return NumValues; }
1306
1307  /// getValueType - Return the type of a specified result.
1308  ///
1309  MVT getValueType(unsigned ResNo) const {
1310    assert(ResNo < NumValues && "Illegal result number!");
1311    return ValueList[ResNo];
1312  }
1313
1314  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1315  ///
1316  unsigned getValueSizeInBits(unsigned ResNo) const {
1317    return getValueType(ResNo).getSizeInBits();
1318  }
1319
1320  typedef const MVT* value_iterator;
1321  value_iterator value_begin() const { return ValueList; }
1322  value_iterator value_end() const { return ValueList+NumValues; }
1323
1324  /// getOperationName - Return the opcode of this operation for printing.
1325  ///
1326  std::string getOperationName(const SelectionDAG *G = 0) const;
1327  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1328  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1329  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1330  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1331  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1332  void dump() const;
1333  void dumpr() const;
1334  void dump(const SelectionDAG *G) const;
1335
1336  static bool classof(const SDNode *) { return true; }
1337
1338  /// Profile - Gather unique data for the node.
1339  ///
1340  void Profile(FoldingSetNodeID &ID) const;
1341
1342  /// addUse - This method should only be used by the SDUse class.
1343  ///
1344  void addUse(SDUse &U) { U.addToList(&UseList); }
1345
1346protected:
1347  static SDVTList getSDVTList(MVT VT) {
1348    SDVTList Ret = { getValueTypeList(VT), 1 };
1349    return Ret;
1350  }
1351
1352  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1353         unsigned NumOps)
1354    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1355      NodeId(-1),
1356      OperandList(NumOps ? new SDUse[NumOps] : 0),
1357      ValueList(VTs.VTs), UseList(NULL),
1358      NumOperands(NumOps), NumValues(VTs.NumVTs),
1359      debugLoc(dl) {
1360    for (unsigned i = 0; i != NumOps; ++i) {
1361      OperandList[i].setUser(this);
1362      OperandList[i].setInitial(Ops[i]);
1363    }
1364  }
1365
1366  /// This constructor adds no operands itself; operands can be
1367  /// set later with InitOperands.
1368  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1369    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1370      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1371      NumOperands(0), NumValues(VTs.NumVTs),
1372      debugLoc(dl) {}
1373
1374  /// InitOperands - Initialize the operands list of this with 1 operand.
1375  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1376    Ops[0].setUser(this);
1377    Ops[0].setInitial(Op0);
1378    NumOperands = 1;
1379    OperandList = Ops;
1380  }
1381
1382  /// InitOperands - Initialize the operands list of this with 2 operands.
1383  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1384    Ops[0].setUser(this);
1385    Ops[0].setInitial(Op0);
1386    Ops[1].setUser(this);
1387    Ops[1].setInitial(Op1);
1388    NumOperands = 2;
1389    OperandList = Ops;
1390  }
1391
1392  /// InitOperands - Initialize the operands list of this with 3 operands.
1393  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1394                    const SDValue &Op2) {
1395    Ops[0].setUser(this);
1396    Ops[0].setInitial(Op0);
1397    Ops[1].setUser(this);
1398    Ops[1].setInitial(Op1);
1399    Ops[2].setUser(this);
1400    Ops[2].setInitial(Op2);
1401    NumOperands = 3;
1402    OperandList = Ops;
1403  }
1404
1405  /// InitOperands - Initialize the operands list of this with 4 operands.
1406  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1407                    const SDValue &Op2, const SDValue &Op3) {
1408    Ops[0].setUser(this);
1409    Ops[0].setInitial(Op0);
1410    Ops[1].setUser(this);
1411    Ops[1].setInitial(Op1);
1412    Ops[2].setUser(this);
1413    Ops[2].setInitial(Op2);
1414    Ops[3].setUser(this);
1415    Ops[3].setInitial(Op3);
1416    NumOperands = 4;
1417    OperandList = Ops;
1418  }
1419
1420  /// InitOperands - Initialize the operands list of this with N operands.
1421  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1422    for (unsigned i = 0; i != N; ++i) {
1423      Ops[i].setUser(this);
1424      Ops[i].setInitial(Vals[i]);
1425    }
1426    NumOperands = N;
1427    OperandList = Ops;
1428  }
1429
1430  /// DropOperands - Release the operands and set this node to have
1431  /// zero operands.
1432  void DropOperands();
1433};
1434
1435
1436// Define inline functions from the SDValue class.
1437
1438inline unsigned SDValue::getOpcode() const {
1439  return Node->getOpcode();
1440}
1441inline MVT SDValue::getValueType() const {
1442  return Node->getValueType(ResNo);
1443}
1444inline unsigned SDValue::getNumOperands() const {
1445  return Node->getNumOperands();
1446}
1447inline const SDValue &SDValue::getOperand(unsigned i) const {
1448  return Node->getOperand(i);
1449}
1450inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1451  return Node->getConstantOperandVal(i);
1452}
1453inline bool SDValue::isTargetOpcode() const {
1454  return Node->isTargetOpcode();
1455}
1456inline bool SDValue::isMachineOpcode() const {
1457  return Node->isMachineOpcode();
1458}
1459inline unsigned SDValue::getMachineOpcode() const {
1460  return Node->getMachineOpcode();
1461}
1462inline bool SDValue::use_empty() const {
1463  return !Node->hasAnyUseOfValue(ResNo);
1464}
1465inline bool SDValue::hasOneUse() const {
1466  return Node->hasNUsesOfValue(1, ResNo);
1467}
1468inline const DebugLoc SDValue::getDebugLoc() const {
1469  return Node->getDebugLoc();
1470}
1471
1472// Define inline functions from the SDUse class.
1473
1474inline void SDUse::set(const SDValue &V) {
1475  if (Val.getNode()) removeFromList();
1476  Val = V;
1477  if (V.getNode()) V.getNode()->addUse(*this);
1478}
1479
1480inline void SDUse::setInitial(const SDValue &V) {
1481  Val = V;
1482  V.getNode()->addUse(*this);
1483}
1484
1485inline void SDUse::setNode(SDNode *N) {
1486  if (Val.getNode()) removeFromList();
1487  Val.setNode(N);
1488  if (N) N->addUse(*this);
1489}
1490
1491/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1492/// to allow co-allocation of node operands with the node itself.
1493class UnarySDNode : public SDNode {
1494  SDUse Op;
1495public:
1496  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1497    : SDNode(Opc, dl, VTs) {
1498    InitOperands(&Op, X);
1499  }
1500};
1501
1502/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1503/// to allow co-allocation of node operands with the node itself.
1504class BinarySDNode : public SDNode {
1505  SDUse Ops[2];
1506public:
1507  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1508    : SDNode(Opc, dl, VTs) {
1509    InitOperands(Ops, X, Y);
1510  }
1511};
1512
1513/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1514/// to allow co-allocation of node operands with the node itself.
1515class TernarySDNode : public SDNode {
1516  SDUse Ops[3];
1517public:
1518  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1519                SDValue Z)
1520    : SDNode(Opc, dl, VTs) {
1521    InitOperands(Ops, X, Y, Z);
1522  }
1523};
1524
1525
1526/// HandleSDNode - This class is used to form a handle around another node that
1527/// is persistant and is updated across invocations of replaceAllUsesWith on its
1528/// operand.  This node should be directly created by end-users and not added to
1529/// the AllNodes list.
1530class HandleSDNode : public SDNode {
1531  SDUse Op;
1532public:
1533  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1534  // fixed.
1535#ifdef __GNUC__
1536  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1537#else
1538  explicit HandleSDNode(SDValue X)
1539#endif
1540    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1541             getSDVTList(MVT::Other)) {
1542    InitOperands(&Op, X);
1543  }
1544  ~HandleSDNode();
1545  const SDValue &getValue() const { return Op; }
1546};
1547
1548/// Abstact virtual class for operations for memory operations
1549class MemSDNode : public SDNode {
1550private:
1551  // MemoryVT - VT of in-memory value.
1552  MVT MemoryVT;
1553
1554  //! SrcValue - Memory location for alias analysis.
1555  const Value *SrcValue;
1556
1557  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1558  int SVOffset;
1559
1560public:
1561  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT,
1562            const Value *srcValue, int SVOff,
1563            unsigned alignment, bool isvolatile);
1564
1565  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1566            unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff,
1567            unsigned alignment, bool isvolatile);
1568
1569  /// Returns alignment and volatility of the memory access
1570  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1571  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1572
1573  /// getRawSubclassData - Return the SubclassData value, which contains an
1574  /// encoding of the alignment and volatile information, as well as bits
1575  /// used by subclasses. This function should only be used to compute a
1576  /// FoldingSetNodeID value.
1577  unsigned getRawSubclassData() const {
1578    return SubclassData;
1579  }
1580
1581  /// Returns the SrcValue and offset that describes the location of the access
1582  const Value *getSrcValue() const { return SrcValue; }
1583  int getSrcValueOffset() const { return SVOffset; }
1584
1585  /// getMemoryVT - Return the type of the in-memory value.
1586  MVT getMemoryVT() const { return MemoryVT; }
1587
1588  /// getMemOperand - Return a MachineMemOperand object describing the memory
1589  /// reference performed by operation.
1590  MachineMemOperand getMemOperand() const;
1591
1592  const SDValue &getChain() const { return getOperand(0); }
1593  const SDValue &getBasePtr() const {
1594    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1595  }
1596
1597  // Methods to support isa and dyn_cast
1598  static bool classof(const MemSDNode *) { return true; }
1599  static bool classof(const SDNode *N) {
1600    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1601    // with either an intrinsic or a target opcode.
1602    return N->getOpcode() == ISD::LOAD                ||
1603           N->getOpcode() == ISD::STORE               ||
1604           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1605           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1606           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1607           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1608           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1609           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1610           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1611           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1612           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1613           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1615           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1616           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1617           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1618           N->isTargetOpcode();
1619  }
1620};
1621
1622/// AtomicSDNode - A SDNode reprenting atomic operations.
1623///
1624class AtomicSDNode : public MemSDNode {
1625  SDUse Ops[4];
1626
1627public:
1628  // Opc:   opcode for atomic
1629  // VTL:    value type list
1630  // Chain:  memory chain for operaand
1631  // Ptr:    address to update as a SDValue
1632  // Cmp:    compare value
1633  // Swp:    swap value
1634  // SrcVal: address to update as a Value (used for MemOperand)
1635  // Align:  alignment of memory
1636  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1637               SDValue Chain, SDValue Ptr,
1638               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1639               unsigned Align=0)
1640    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1641                Align, /*isVolatile=*/true) {
1642    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1643  }
1644  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1645               SDValue Chain, SDValue Ptr,
1646               SDValue Val, const Value* SrcVal, unsigned Align=0)
1647    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1648                Align, /*isVolatile=*/true) {
1649    InitOperands(Ops, Chain, Ptr, Val);
1650  }
1651
1652  const SDValue &getBasePtr() const { return getOperand(1); }
1653  const SDValue &getVal() const { return getOperand(2); }
1654
1655  bool isCompareAndSwap() const {
1656    unsigned Op = getOpcode();
1657    return Op == ISD::ATOMIC_CMP_SWAP;
1658  }
1659
1660  // Methods to support isa and dyn_cast
1661  static bool classof(const AtomicSDNode *) { return true; }
1662  static bool classof(const SDNode *N) {
1663    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1664           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1665           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1666           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1667           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1668           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1669           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1670           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1671           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1672           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1673           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1674           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1675  }
1676};
1677
1678/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1679/// memory and need an associated memory operand.
1680///
1681class MemIntrinsicSDNode : public MemSDNode {
1682  bool ReadMem;  // Intrinsic reads memory
1683  bool WriteMem; // Intrinsic writes memory
1684public:
1685  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1686                     const SDValue *Ops, unsigned NumOps,
1687                     MVT MemoryVT, const Value *srcValue, int SVO,
1688                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1689    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1690      ReadMem(ReadMem), WriteMem(WriteMem) {
1691  }
1692
1693  bool readMem() const { return ReadMem; }
1694  bool writeMem() const { return WriteMem; }
1695
1696  // Methods to support isa and dyn_cast
1697  static bool classof(const MemIntrinsicSDNode *) { return true; }
1698  static bool classof(const SDNode *N) {
1699    // We lower some target intrinsics to their target opcode
1700    // early a node with a target opcode can be of this class
1701    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1702           N->getOpcode() == ISD::INTRINSIC_VOID ||
1703           N->isTargetOpcode();
1704  }
1705};
1706
1707/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1708/// support for the llvm IR shufflevector instruction.  It combines elements
1709/// from two input vectors into a new input vector, with the selection and
1710/// ordering of elements determined by an array of integers, referred to as
1711/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1712/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1713/// An index of -1 is treated as undef, such that the code generator may put
1714/// any value in the corresponding element of the result.
1715class ShuffleVectorSDNode : public SDNode {
1716  SDUse Ops[2];
1717
1718  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1719  // is freed when the SelectionDAG object is destroyed.
1720  const int *Mask;
1721protected:
1722  friend class SelectionDAG;
1723  ShuffleVectorSDNode(MVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1724                      const int *M)
1725    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1726    InitOperands(Ops, N1, N2);
1727  }
1728public:
1729
1730  void getMask(SmallVectorImpl<int> &M) const {
1731    MVT VT = getValueType(0);
1732    M.clear();
1733    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1734      M.push_back(Mask[i]);
1735  }
1736  int getMaskElt(unsigned Idx) const {
1737    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1738    return Mask[Idx];
1739  }
1740
1741  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1742  int  getSplatIndex() const {
1743    assert(isSplat() && "Cannot get splat index for non-splat!");
1744    return Mask[0];
1745  }
1746  static bool isSplatMask(const int *Mask, MVT VT);
1747
1748  static bool classof(const ShuffleVectorSDNode *) { return true; }
1749  static bool classof(const SDNode *N) {
1750    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1751  }
1752};
1753
1754class ConstantSDNode : public SDNode {
1755  const ConstantInt *Value;
1756  friend class SelectionDAG;
1757  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1758    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1759             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1760  }
1761public:
1762
1763  const ConstantInt *getConstantIntValue() const { return Value; }
1764  const APInt &getAPIntValue() const { return Value->getValue(); }
1765  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1766  int64_t getSExtValue() const { return Value->getSExtValue(); }
1767
1768  bool isNullValue() const { return Value->isNullValue(); }
1769  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1770
1771  static bool classof(const ConstantSDNode *) { return true; }
1772  static bool classof(const SDNode *N) {
1773    return N->getOpcode() == ISD::Constant ||
1774           N->getOpcode() == ISD::TargetConstant;
1775  }
1776};
1777
1778class ConstantFPSDNode : public SDNode {
1779  const ConstantFP *Value;
1780  friend class SelectionDAG;
1781  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1782    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1783             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1784  }
1785public:
1786
1787  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1788  const ConstantFP *getConstantFPValue() const { return Value; }
1789
1790  /// isExactlyValue - We don't rely on operator== working on double values, as
1791  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1792  /// As such, this method can be used to do an exact bit-for-bit comparison of
1793  /// two floating point values.
1794
1795  /// We leave the version with the double argument here because it's just so
1796  /// convenient to write "2.0" and the like.  Without this function we'd
1797  /// have to duplicate its logic everywhere it's called.
1798  bool isExactlyValue(double V) const {
1799    bool ignored;
1800    // convert is not supported on this type
1801    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1802      return false;
1803    APFloat Tmp(V);
1804    Tmp.convert(Value->getValueAPF().getSemantics(),
1805                APFloat::rmNearestTiesToEven, &ignored);
1806    return isExactlyValue(Tmp);
1807  }
1808  bool isExactlyValue(const APFloat& V) const;
1809
1810  bool isValueValidForType(MVT VT, const APFloat& Val);
1811
1812  static bool classof(const ConstantFPSDNode *) { return true; }
1813  static bool classof(const SDNode *N) {
1814    return N->getOpcode() == ISD::ConstantFP ||
1815           N->getOpcode() == ISD::TargetConstantFP;
1816  }
1817};
1818
1819class GlobalAddressSDNode : public SDNode {
1820  GlobalValue *TheGlobal;
1821  int64_t Offset;
1822  friend class SelectionDAG;
1823  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1824                      int64_t o = 0);
1825public:
1826
1827  GlobalValue *getGlobal() const { return TheGlobal; }
1828  int64_t getOffset() const { return Offset; }
1829  // Return the address space this GlobalAddress belongs to.
1830  unsigned getAddressSpace() const;
1831
1832  static bool classof(const GlobalAddressSDNode *) { return true; }
1833  static bool classof(const SDNode *N) {
1834    return N->getOpcode() == ISD::GlobalAddress ||
1835           N->getOpcode() == ISD::TargetGlobalAddress ||
1836           N->getOpcode() == ISD::GlobalTLSAddress ||
1837           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1838  }
1839};
1840
1841class FrameIndexSDNode : public SDNode {
1842  int FI;
1843  friend class SelectionDAG;
1844  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1845    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1846      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1847  }
1848public:
1849
1850  int getIndex() const { return FI; }
1851
1852  static bool classof(const FrameIndexSDNode *) { return true; }
1853  static bool classof(const SDNode *N) {
1854    return N->getOpcode() == ISD::FrameIndex ||
1855           N->getOpcode() == ISD::TargetFrameIndex;
1856  }
1857};
1858
1859class JumpTableSDNode : public SDNode {
1860  int JTI;
1861  friend class SelectionDAG;
1862  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1863    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1864      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti) {
1865  }
1866public:
1867
1868  int getIndex() const { return JTI; }
1869
1870  static bool classof(const JumpTableSDNode *) { return true; }
1871  static bool classof(const SDNode *N) {
1872    return N->getOpcode() == ISD::JumpTable ||
1873           N->getOpcode() == ISD::TargetJumpTable;
1874  }
1875};
1876
1877class ConstantPoolSDNode : public SDNode {
1878  union {
1879    Constant *ConstVal;
1880    MachineConstantPoolValue *MachineCPVal;
1881  } Val;
1882  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1883  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1884  friend class SelectionDAG;
1885  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1886    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1887             DebugLoc::getUnknownLoc(),
1888             getSDVTList(VT)), Offset(o), Alignment(0) {
1889    assert((int)Offset >= 0 && "Offset is too large");
1890    Val.ConstVal = c;
1891  }
1892  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1893    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1894             DebugLoc::getUnknownLoc(),
1895             getSDVTList(VT)), Offset(o), Alignment(Align) {
1896    assert((int)Offset >= 0 && "Offset is too large");
1897    Val.ConstVal = c;
1898  }
1899  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1900                     MVT VT, int o=0)
1901    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1902             DebugLoc::getUnknownLoc(),
1903             getSDVTList(VT)), Offset(o), Alignment(0) {
1904    assert((int)Offset >= 0 && "Offset is too large");
1905    Val.MachineCPVal = v;
1906    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1907  }
1908  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1909                     MVT VT, int o, unsigned Align)
1910    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1911             DebugLoc::getUnknownLoc(),
1912             getSDVTList(VT)), Offset(o), Alignment(Align) {
1913    assert((int)Offset >= 0 && "Offset is too large");
1914    Val.MachineCPVal = v;
1915    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1916  }
1917public:
1918
1919  bool isMachineConstantPoolEntry() const {
1920    return (int)Offset < 0;
1921  }
1922
1923  Constant *getConstVal() const {
1924    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1925    return Val.ConstVal;
1926  }
1927
1928  MachineConstantPoolValue *getMachineCPVal() const {
1929    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1930    return Val.MachineCPVal;
1931  }
1932
1933  int getOffset() const {
1934    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1935  }
1936
1937  // Return the alignment of this constant pool object, which is either 0 (for
1938  // default alignment) or the desired value.
1939  unsigned getAlignment() const { return Alignment; }
1940
1941  const Type *getType() const;
1942
1943  static bool classof(const ConstantPoolSDNode *) { return true; }
1944  static bool classof(const SDNode *N) {
1945    return N->getOpcode() == ISD::ConstantPool ||
1946           N->getOpcode() == ISD::TargetConstantPool;
1947  }
1948};
1949
1950class BasicBlockSDNode : public SDNode {
1951  MachineBasicBlock *MBB;
1952  friend class SelectionDAG;
1953  /// Debug info is meaningful and potentially useful here, but we create
1954  /// blocks out of order when they're jumped to, which makes it a bit
1955  /// harder.  Let's see if we need it first.
1956  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1957    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1958             getSDVTList(MVT::Other)), MBB(mbb) {
1959  }
1960public:
1961
1962  MachineBasicBlock *getBasicBlock() const { return MBB; }
1963
1964  static bool classof(const BasicBlockSDNode *) { return true; }
1965  static bool classof(const SDNode *N) {
1966    return N->getOpcode() == ISD::BasicBlock;
1967  }
1968};
1969
1970/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1971/// BUILD_VECTORs.
1972class BuildVectorSDNode : public SDNode {
1973  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1974  explicit BuildVectorSDNode();        // Do not implement
1975public:
1976  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1977  /// smallest element size that splats the vector.  If MinSplatBits is
1978  /// nonzero, the element size must be at least that large.  Note that the
1979  /// splat element may be the entire vector (i.e., a one element vector).
1980  /// Returns the splat element value in SplatValue.  Any undefined bits in
1981  /// that value are zero, and the corresponding bits in the SplatUndef mask
1982  /// are set.  The SplatBitSize value is set to the splat element size in
1983  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1984  /// undefined.
1985  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1986                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1987                       unsigned MinSplatBits = 0);
1988
1989  static inline bool classof(const BuildVectorSDNode *) { return true; }
1990  static inline bool classof(const SDNode *N) {
1991    return N->getOpcode() == ISD::BUILD_VECTOR;
1992  }
1993};
1994
1995/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1996/// used when the SelectionDAG needs to make a simple reference to something
1997/// in the LLVM IR representation.
1998///
1999/// Note that this is not used for carrying alias information; that is done
2000/// with MemOperandSDNode, which includes a Value which is required to be a
2001/// pointer, and several other fields specific to memory references.
2002///
2003class SrcValueSDNode : public SDNode {
2004  const Value *V;
2005  friend class SelectionDAG;
2006  /// Create a SrcValue for a general value.
2007  explicit SrcValueSDNode(const Value *v)
2008    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
2009             getSDVTList(MVT::Other)), V(v) {}
2010
2011public:
2012  /// getValue - return the contained Value.
2013  const Value *getValue() const { return V; }
2014
2015  static bool classof(const SrcValueSDNode *) { return true; }
2016  static bool classof(const SDNode *N) {
2017    return N->getOpcode() == ISD::SRCVALUE;
2018  }
2019};
2020
2021
2022/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2023/// used to represent a reference to memory after ISD::LOAD
2024/// and ISD::STORE have been lowered.
2025///
2026class MemOperandSDNode : public SDNode {
2027  friend class SelectionDAG;
2028  /// Create a MachineMemOperand node
2029  explicit MemOperandSDNode(const MachineMemOperand &mo)
2030    : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
2031             getSDVTList(MVT::Other)), MO(mo) {}
2032
2033public:
2034  /// MO - The contained MachineMemOperand.
2035  const MachineMemOperand MO;
2036
2037  static bool classof(const MemOperandSDNode *) { return true; }
2038  static bool classof(const SDNode *N) {
2039    return N->getOpcode() == ISD::MEMOPERAND;
2040  }
2041};
2042
2043
2044class RegisterSDNode : public SDNode {
2045  unsigned Reg;
2046  friend class SelectionDAG;
2047  RegisterSDNode(unsigned reg, MVT VT)
2048    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2049             getSDVTList(VT)), Reg(reg) {
2050  }
2051public:
2052
2053  unsigned getReg() const { return Reg; }
2054
2055  static bool classof(const RegisterSDNode *) { return true; }
2056  static bool classof(const SDNode *N) {
2057    return N->getOpcode() == ISD::Register;
2058  }
2059};
2060
2061class DbgStopPointSDNode : public SDNode {
2062  SDUse Chain;
2063  unsigned Line;
2064  unsigned Column;
2065  Value *CU;
2066  friend class SelectionDAG;
2067  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2068                     Value *cu)
2069    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2070      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2071    InitOperands(&Chain, ch);
2072  }
2073public:
2074  unsigned getLine() const { return Line; }
2075  unsigned getColumn() const { return Column; }
2076  Value *getCompileUnit() const { return CU; }
2077
2078  static bool classof(const DbgStopPointSDNode *) { return true; }
2079  static bool classof(const SDNode *N) {
2080    return N->getOpcode() == ISD::DBG_STOPPOINT;
2081  }
2082};
2083
2084class LabelSDNode : public SDNode {
2085  SDUse Chain;
2086  unsigned LabelID;
2087  friend class SelectionDAG;
2088LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2089    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2090    InitOperands(&Chain, ch);
2091  }
2092public:
2093  unsigned getLabelID() const { return LabelID; }
2094
2095  static bool classof(const LabelSDNode *) { return true; }
2096  static bool classof(const SDNode *N) {
2097    return N->getOpcode() == ISD::DBG_LABEL ||
2098           N->getOpcode() == ISD::EH_LABEL;
2099  }
2100};
2101
2102class ExternalSymbolSDNode : public SDNode {
2103  const char *Symbol;
2104  friend class SelectionDAG;
2105  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2106    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2107             DebugLoc::getUnknownLoc(),
2108             getSDVTList(VT)), Symbol(Sym) {
2109  }
2110public:
2111
2112  const char *getSymbol() const { return Symbol; }
2113
2114  static bool classof(const ExternalSymbolSDNode *) { return true; }
2115  static bool classof(const SDNode *N) {
2116    return N->getOpcode() == ISD::ExternalSymbol ||
2117           N->getOpcode() == ISD::TargetExternalSymbol;
2118  }
2119};
2120
2121class CondCodeSDNode : public SDNode {
2122  ISD::CondCode Condition;
2123  friend class SelectionDAG;
2124  explicit CondCodeSDNode(ISD::CondCode Cond)
2125    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2126             getSDVTList(MVT::Other)), Condition(Cond) {
2127  }
2128public:
2129
2130  ISD::CondCode get() const { return Condition; }
2131
2132  static bool classof(const CondCodeSDNode *) { return true; }
2133  static bool classof(const SDNode *N) {
2134    return N->getOpcode() == ISD::CONDCODE;
2135  }
2136};
2137
2138/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2139/// future and most targets don't support it.
2140class CvtRndSatSDNode : public SDNode {
2141  ISD::CvtCode CvtCode;
2142  friend class SelectionDAG;
2143  explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops,
2144                           unsigned NumOps, ISD::CvtCode Code)
2145    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2146      CvtCode(Code) {
2147    assert(NumOps == 5 && "wrong number of operations");
2148  }
2149public:
2150  ISD::CvtCode getCvtCode() const { return CvtCode; }
2151
2152  static bool classof(const CvtRndSatSDNode *) { return true; }
2153  static bool classof(const SDNode *N) {
2154    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2155  }
2156};
2157
2158namespace ISD {
2159  struct ArgFlagsTy {
2160  private:
2161    static const uint64_t NoFlagSet      = 0ULL;
2162    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2163    static const uint64_t ZExtOffs       = 0;
2164    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2165    static const uint64_t SExtOffs       = 1;
2166    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2167    static const uint64_t InRegOffs      = 2;
2168    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2169    static const uint64_t SRetOffs       = 3;
2170    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2171    static const uint64_t ByValOffs      = 4;
2172    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2173    static const uint64_t NestOffs       = 5;
2174    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2175    static const uint64_t ByValAlignOffs = 6;
2176    static const uint64_t Split          = 1ULL << 10;
2177    static const uint64_t SplitOffs      = 10;
2178    static const uint64_t OrigAlign      = 0x1FULL<<27;
2179    static const uint64_t OrigAlignOffs  = 27;
2180    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2181    static const uint64_t ByValSizeOffs  = 32;
2182
2183    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2184
2185    uint64_t Flags;
2186  public:
2187    ArgFlagsTy() : Flags(0) { }
2188
2189    bool isZExt()   const { return Flags & ZExt; }
2190    void setZExt()  { Flags |= One << ZExtOffs; }
2191
2192    bool isSExt()   const { return Flags & SExt; }
2193    void setSExt()  { Flags |= One << SExtOffs; }
2194
2195    bool isInReg()  const { return Flags & InReg; }
2196    void setInReg() { Flags |= One << InRegOffs; }
2197
2198    bool isSRet()   const { return Flags & SRet; }
2199    void setSRet()  { Flags |= One << SRetOffs; }
2200
2201    bool isByVal()  const { return Flags & ByVal; }
2202    void setByVal() { Flags |= One << ByValOffs; }
2203
2204    bool isNest()   const { return Flags & Nest; }
2205    void setNest()  { Flags |= One << NestOffs; }
2206
2207    unsigned getByValAlign() const {
2208      return (unsigned)
2209        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2210    }
2211    void setByValAlign(unsigned A) {
2212      Flags = (Flags & ~ByValAlign) |
2213        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2214    }
2215
2216    bool isSplit()   const { return Flags & Split; }
2217    void setSplit()  { Flags |= One << SplitOffs; }
2218
2219    unsigned getOrigAlign() const {
2220      return (unsigned)
2221        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2222    }
2223    void setOrigAlign(unsigned A) {
2224      Flags = (Flags & ~OrigAlign) |
2225        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2226    }
2227
2228    unsigned getByValSize() const {
2229      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2230    }
2231    void setByValSize(unsigned S) {
2232      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2233    }
2234
2235    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2236    std::string getArgFlagsString();
2237
2238    /// getRawBits - Represent the flags as a bunch of bits.
2239    uint64_t getRawBits() const { return Flags; }
2240  };
2241}
2242
2243/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2244class ARG_FLAGSSDNode : public SDNode {
2245  ISD::ArgFlagsTy TheFlags;
2246  friend class SelectionDAG;
2247  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2248    : SDNode(ISD::ARG_FLAGS, DebugLoc::getUnknownLoc(),
2249             getSDVTList(MVT::Other)), TheFlags(Flags) {
2250  }
2251public:
2252  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2253
2254  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2255  static bool classof(const SDNode *N) {
2256    return N->getOpcode() == ISD::ARG_FLAGS;
2257  }
2258};
2259
2260/// CallSDNode - Node for calls -- ISD::CALL.
2261class CallSDNode : public SDNode {
2262  unsigned CallingConv;
2263  bool IsVarArg;
2264  bool IsTailCall;
2265  // We might eventually want a full-blown Attributes for the result; that
2266  // will expand the size of the representation.  At the moment we only
2267  // need Inreg.
2268  bool Inreg;
2269  friend class SelectionDAG;
2270  CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall,
2271             bool isinreg, SDVTList VTs, const SDValue *Operands,
2272             unsigned numOperands)
2273    : SDNode(ISD::CALL, dl, VTs, Operands, numOperands),
2274      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2275      Inreg(isinreg) {}
2276public:
2277  unsigned getCallingConv() const { return CallingConv; }
2278  unsigned isVarArg() const { return IsVarArg; }
2279  unsigned isTailCall() const { return IsTailCall; }
2280  unsigned isInreg() const { return Inreg; }
2281
2282  /// Set this call to not be marked as a tail call. Normally setter
2283  /// methods in SDNodes are unsafe because it breaks the CSE map,
2284  /// but we don't include the tail call flag for calls so it's ok
2285  /// in this case.
2286  void setNotTailCall() { IsTailCall = false; }
2287
2288  SDValue getChain() const { return getOperand(0); }
2289  SDValue getCallee() const { return getOperand(1); }
2290
2291  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2292  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2293  SDValue getArgFlagsVal(unsigned i) const {
2294    return getOperand(3+2*i);
2295  }
2296  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2297    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2298  }
2299
2300  unsigned getNumRetVals() const { return getNumValues() - 1; }
2301  MVT getRetValType(unsigned i) const { return getValueType(i); }
2302
2303  static bool classof(const CallSDNode *) { return true; }
2304  static bool classof(const SDNode *N) {
2305    return N->getOpcode() == ISD::CALL;
2306  }
2307};
2308
2309/// VTSDNode - This class is used to represent MVT's, which are used
2310/// to parameterize some operations.
2311class VTSDNode : public SDNode {
2312  MVT ValueType;
2313  friend class SelectionDAG;
2314  explicit VTSDNode(MVT VT)
2315    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2316             getSDVTList(MVT::Other)), ValueType(VT) {
2317  }
2318public:
2319
2320  MVT getVT() const { return ValueType; }
2321
2322  static bool classof(const VTSDNode *) { return true; }
2323  static bool classof(const SDNode *N) {
2324    return N->getOpcode() == ISD::VALUETYPE;
2325  }
2326};
2327
2328/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2329///
2330class LSBaseSDNode : public MemSDNode {
2331  //! Operand array for load and store
2332  /*!
2333    \note Moving this array to the base class captures more
2334    common functionality shared between LoadSDNode and
2335    StoreSDNode
2336   */
2337  SDUse Ops[4];
2338public:
2339  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2340               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2341               MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2342    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2343    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2344    SubclassData |= AM << 2;
2345    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2346    InitOperands(Ops, Operands, numOperands);
2347    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2348           "Only indexed loads and stores have a non-undef offset operand");
2349  }
2350
2351  const SDValue &getOffset() const {
2352    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2353  }
2354
2355  /// getAddressingMode - Return the addressing mode for this load or store:
2356  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2357  ISD::MemIndexedMode getAddressingMode() const {
2358    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2359  }
2360
2361  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2362  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2363
2364  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2365  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2366
2367  static bool classof(const LSBaseSDNode *) { return true; }
2368  static bool classof(const SDNode *N) {
2369    return N->getOpcode() == ISD::LOAD ||
2370           N->getOpcode() == ISD::STORE;
2371  }
2372};
2373
2374/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2375///
2376class LoadSDNode : public LSBaseSDNode {
2377  friend class SelectionDAG;
2378  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2379             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2380             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2381    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2382                   VTs, AM, LVT, SV, O, Align, Vol) {
2383    SubclassData |= (unsigned short)ETy;
2384    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2385  }
2386public:
2387
2388  /// getExtensionType - Return whether this is a plain node,
2389  /// or one of the varieties of value-extending loads.
2390  ISD::LoadExtType getExtensionType() const {
2391    return ISD::LoadExtType(SubclassData & 3);
2392  }
2393
2394  const SDValue &getBasePtr() const { return getOperand(1); }
2395  const SDValue &getOffset() const { return getOperand(2); }
2396
2397  static bool classof(const LoadSDNode *) { return true; }
2398  static bool classof(const SDNode *N) {
2399    return N->getOpcode() == ISD::LOAD;
2400  }
2401};
2402
2403/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2404///
2405class StoreSDNode : public LSBaseSDNode {
2406  friend class SelectionDAG;
2407  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2408              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2409              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2410    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2411                   VTs, AM, SVT, SV, O, Align, Vol) {
2412    SubclassData |= (unsigned short)isTrunc;
2413    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2414  }
2415public:
2416
2417  /// isTruncatingStore - Return true if the op does a truncation before store.
2418  /// For integers this is the same as doing a TRUNCATE and storing the result.
2419  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2420  bool isTruncatingStore() const { return SubclassData & 1; }
2421
2422  const SDValue &getValue() const { return getOperand(1); }
2423  const SDValue &getBasePtr() const { return getOperand(2); }
2424  const SDValue &getOffset() const { return getOperand(3); }
2425
2426  static bool classof(const StoreSDNode *) { return true; }
2427  static bool classof(const SDNode *N) {
2428    return N->getOpcode() == ISD::STORE;
2429  }
2430};
2431
2432
2433class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2434  SDNode *Node;
2435  unsigned Operand;
2436
2437  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2438public:
2439  bool operator==(const SDNodeIterator& x) const {
2440    return Operand == x.Operand;
2441  }
2442  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2443
2444  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2445    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2446    Operand = I.Operand;
2447    return *this;
2448  }
2449
2450  pointer operator*() const {
2451    return Node->getOperand(Operand).getNode();
2452  }
2453  pointer operator->() const { return operator*(); }
2454
2455  SDNodeIterator& operator++() {                // Preincrement
2456    ++Operand;
2457    return *this;
2458  }
2459  SDNodeIterator operator++(int) { // Postincrement
2460    SDNodeIterator tmp = *this; ++*this; return tmp;
2461  }
2462
2463  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2464  static SDNodeIterator end  (SDNode *N) {
2465    return SDNodeIterator(N, N->getNumOperands());
2466  }
2467
2468  unsigned getOperand() const { return Operand; }
2469  const SDNode *getNode() const { return Node; }
2470};
2471
2472template <> struct GraphTraits<SDNode*> {
2473  typedef SDNode NodeType;
2474  typedef SDNodeIterator ChildIteratorType;
2475  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2476  static inline ChildIteratorType child_begin(NodeType *N) {
2477    return SDNodeIterator::begin(N);
2478  }
2479  static inline ChildIteratorType child_end(NodeType *N) {
2480    return SDNodeIterator::end(N);
2481  }
2482};
2483
2484/// LargestSDNode - The largest SDNode class.
2485///
2486typedef LoadSDNode LargestSDNode;
2487
2488/// MostAlignedSDNode - The SDNode class with the greatest alignment
2489/// requirement.
2490///
2491typedef ARG_FLAGSSDNode MostAlignedSDNode;
2492
2493namespace ISD {
2494  /// isNormalLoad - Returns true if the specified node is a non-extending
2495  /// and unindexed load.
2496  inline bool isNormalLoad(const SDNode *N) {
2497    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2498    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2499      Ld->getAddressingMode() == ISD::UNINDEXED;
2500  }
2501
2502  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2503  /// load.
2504  inline bool isNON_EXTLoad(const SDNode *N) {
2505    return isa<LoadSDNode>(N) &&
2506      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2507  }
2508
2509  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2510  ///
2511  inline bool isEXTLoad(const SDNode *N) {
2512    return isa<LoadSDNode>(N) &&
2513      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2514  }
2515
2516  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2517  ///
2518  inline bool isSEXTLoad(const SDNode *N) {
2519    return isa<LoadSDNode>(N) &&
2520      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2521  }
2522
2523  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2524  ///
2525  inline bool isZEXTLoad(const SDNode *N) {
2526    return isa<LoadSDNode>(N) &&
2527      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2528  }
2529
2530  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2531  ///
2532  inline bool isUNINDEXEDLoad(const SDNode *N) {
2533    return isa<LoadSDNode>(N) &&
2534      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2535  }
2536
2537  /// isNormalStore - Returns true if the specified node is a non-truncating
2538  /// and unindexed store.
2539  inline bool isNormalStore(const SDNode *N) {
2540    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2541    return St && !St->isTruncatingStore() &&
2542      St->getAddressingMode() == ISD::UNINDEXED;
2543  }
2544
2545  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2546  /// store.
2547  inline bool isNON_TRUNCStore(const SDNode *N) {
2548    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2549  }
2550
2551  /// isTRUNCStore - Returns true if the specified node is a truncating
2552  /// store.
2553  inline bool isTRUNCStore(const SDNode *N) {
2554    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2555  }
2556
2557  /// isUNINDEXEDStore - Returns true if the specified node is an
2558  /// unindexed store.
2559  inline bool isUNINDEXEDStore(const SDNode *N) {
2560    return isa<StoreSDNode>(N) &&
2561      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2562  }
2563}
2564
2565
2566} // end llvm namespace
2567
2568#endif
2569