MachineFrameInfo.h revision 200581
1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/System/DataTypes.h"
21#include <cassert>
22#include <limits>
23#include <vector>
24
25namespace llvm {
26class raw_ostream;
27class TargetData;
28class TargetRegisterClass;
29class Type;
30class MachineModuleInfo;
31class MachineFunction;
32class MachineBasicBlock;
33class TargetFrameInfo;
34
35/// The CalleeSavedInfo class tracks the information need to locate where a
36/// callee saved register in the current frame.
37class CalleeSavedInfo {
38
39private:
40  unsigned Reg;
41  const TargetRegisterClass *RegClass;
42  int FrameIdx;
43
44public:
45  CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0)
46  : Reg(R)
47  , RegClass(RC)
48  , FrameIdx(FI)
49  {}
50
51  // Accessors.
52  unsigned getReg()                        const { return Reg; }
53  const TargetRegisterClass *getRegClass() const { return RegClass; }
54  int getFrameIdx()                        const { return FrameIdx; }
55  void setFrameIdx(int FI)                       { FrameIdx = FI; }
56};
57
58/// The MachineFrameInfo class represents an abstract stack frame until
59/// prolog/epilog code is inserted.  This class is key to allowing stack frame
60/// representation optimizations, such as frame pointer elimination.  It also
61/// allows more mundane (but still important) optimizations, such as reordering
62/// of abstract objects on the stack frame.
63///
64/// To support this, the class assigns unique integer identifiers to stack
65/// objects requested clients.  These identifiers are negative integers for
66/// fixed stack objects (such as arguments passed on the stack) or nonnegative
67/// for objects that may be reordered.  Instructions which refer to stack
68/// objects use a special MO_FrameIndex operand to represent these frame
69/// indexes.
70///
71/// Because this class keeps track of all references to the stack frame, it
72/// knows when a variable sized object is allocated on the stack.  This is the
73/// sole condition which prevents frame pointer elimination, which is an
74/// important optimization on register-poor architectures.  Because original
75/// variable sized alloca's in the source program are the only source of
76/// variable sized stack objects, it is safe to decide whether there will be
77/// any variable sized objects before all stack objects are known (for
78/// example, register allocator spill code never needs variable sized
79/// objects).
80///
81/// When prolog/epilog code emission is performed, the final stack frame is
82/// built and the machine instructions are modified to refer to the actual
83/// stack offsets of the object, eliminating all MO_FrameIndex operands from
84/// the program.
85///
86/// @brief Abstract Stack Frame Information
87class MachineFrameInfo {
88
89  // StackObject - Represent a single object allocated on the stack.
90  struct StackObject {
91    // SPOffset - The offset of this object from the stack pointer on entry to
92    // the function.  This field has no meaning for a variable sized element.
93    int64_t SPOffset;
94
95    // The size of this object on the stack. 0 means a variable sized object,
96    // ~0ULL means a dead object.
97    uint64_t Size;
98
99    // Alignment - The required alignment of this stack slot.
100    unsigned Alignment;
101
102    // isImmutable - If true, the value of the stack object is set before
103    // entering the function and is not modified inside the function. By
104    // default, fixed objects are immutable unless marked otherwise.
105    bool isImmutable;
106
107    // isSpillSlot - If true, the stack object is used as spill slot. It
108    // cannot alias any other memory objects.
109    bool isSpillSlot;
110
111    StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
112                bool isSS)
113      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
114        isSpillSlot(isSS) {}
115  };
116
117  /// Objects - The list of stack objects allocated...
118  ///
119  std::vector<StackObject> Objects;
120
121  /// NumFixedObjects - This contains the number of fixed objects contained on
122  /// the stack.  Because fixed objects are stored at a negative index in the
123  /// Objects list, this is also the index to the 0th object in the list.
124  ///
125  unsigned NumFixedObjects;
126
127  /// HasVarSizedObjects - This boolean keeps track of whether any variable
128  /// sized objects have been allocated yet.
129  ///
130  bool HasVarSizedObjects;
131
132  /// FrameAddressTaken - This boolean keeps track of whether there is a call
133  /// to builtin \@llvm.frameaddress.
134  bool FrameAddressTaken;
135
136  /// StackSize - The prolog/epilog code inserter calculates the final stack
137  /// offsets for all of the fixed size objects, updating the Objects list
138  /// above.  It then updates StackSize to contain the number of bytes that need
139  /// to be allocated on entry to the function.
140  ///
141  uint64_t StackSize;
142
143  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
144  /// have the actual offset from the stack/frame pointer.  The exact usage of
145  /// this is target-dependent, but it is typically used to adjust between
146  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
147  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
148  /// to the distance between the initial SP and the value in FP.  For many
149  /// targets, this value is only used when generating debug info (via
150  /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
151  /// corresponding adjustments are performed directly.
152  int OffsetAdjustment;
153
154  /// MaxAlignment - The prolog/epilog code inserter may process objects
155  /// that require greater alignment than the default alignment the target
156  /// provides. To handle this, MaxAlignment is set to the maximum alignment
157  /// needed by the objects on the current frame.  If this is greater than the
158  /// native alignment maintained by the compiler, dynamic alignment code will
159  /// be needed.
160  ///
161  unsigned MaxAlignment;
162
163  /// HasCalls - Set to true if this function has any function calls.  This is
164  /// only valid during and after prolog/epilog code insertion.
165  bool HasCalls;
166
167  /// StackProtectorIdx - The frame index for the stack protector.
168  int StackProtectorIdx;
169
170  /// MaxCallFrameSize - This contains the size of the largest call frame if the
171  /// target uses frame setup/destroy pseudo instructions (as defined in the
172  /// TargetFrameInfo class).  This information is important for frame pointer
173  /// elimination.  If is only valid during and after prolog/epilog code
174  /// insertion.
175  ///
176  unsigned MaxCallFrameSize;
177
178  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
179  /// callee saved register saved in the frame.  Beyond its use by the prolog/
180  /// epilog code inserter, this data used for debug info and exception
181  /// handling.
182  std::vector<CalleeSavedInfo> CSInfo;
183
184  /// CSIValid - Has CSInfo been set yet?
185  bool CSIValid;
186
187  /// SpillObjects - A vector indicating which frame indices refer to
188  /// spill slots.
189  SmallVector<bool, 8> SpillObjects;
190
191  /// MMI - This field is set (via setMachineModuleInfo) by a module info
192  /// consumer (ex. DwarfWriter) to indicate that frame layout information
193  /// should be acquired.  Typically, it's the responsibility of the target's
194  /// TargetRegisterInfo prologue/epilogue emitting code to inform
195  /// MachineModuleInfo of frame layouts.
196  MachineModuleInfo *MMI;
197
198  /// TargetFrameInfo - Target information about frame layout.
199  ///
200  const TargetFrameInfo &TFI;
201
202public:
203  explicit MachineFrameInfo(const TargetFrameInfo &tfi) : TFI(tfi) {
204    StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
205    HasVarSizedObjects = false;
206    FrameAddressTaken = false;
207    HasCalls = false;
208    StackProtectorIdx = -1;
209    MaxCallFrameSize = 0;
210    CSIValid = false;
211    MMI = 0;
212  }
213
214  /// hasStackObjects - Return true if there are any stack objects in this
215  /// function.
216  ///
217  bool hasStackObjects() const { return !Objects.empty(); }
218
219  /// hasVarSizedObjects - This method may be called any time after instruction
220  /// selection is complete to determine if the stack frame for this function
221  /// contains any variable sized objects.
222  ///
223  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
224
225  /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
226  /// stack protector object.
227  ///
228  int getStackProtectorIndex() const { return StackProtectorIdx; }
229  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
230
231  /// isFrameAddressTaken - This method may be called any time after instruction
232  /// selection is complete to determine if there is a call to
233  /// \@llvm.frameaddress in this function.
234  bool isFrameAddressTaken() const { return FrameAddressTaken; }
235  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
236
237  /// getObjectIndexBegin - Return the minimum frame object index.
238  ///
239  int getObjectIndexBegin() const { return -NumFixedObjects; }
240
241  /// getObjectIndexEnd - Return one past the maximum frame object index.
242  ///
243  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
244
245  /// getNumFixedObjects() - Return the number of fixed objects.
246  unsigned getNumFixedObjects() const { return NumFixedObjects; }
247
248  /// getNumObjects() - Return the number of objects.
249  ///
250  unsigned getNumObjects() const { return Objects.size(); }
251
252  /// getObjectSize - Return the size of the specified object.
253  ///
254  int64_t getObjectSize(int ObjectIdx) const {
255    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
256           "Invalid Object Idx!");
257    return Objects[ObjectIdx+NumFixedObjects].Size;
258  }
259
260  /// setObjectSize - Change the size of the specified stack object.
261  void setObjectSize(int ObjectIdx, int64_t Size) {
262    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
263           "Invalid Object Idx!");
264    Objects[ObjectIdx+NumFixedObjects].Size = Size;
265  }
266
267  /// getObjectAlignment - Return the alignment of the specified stack object.
268  unsigned getObjectAlignment(int ObjectIdx) const {
269    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
270           "Invalid Object Idx!");
271    return Objects[ObjectIdx+NumFixedObjects].Alignment;
272  }
273
274  /// setObjectAlignment - Change the alignment of the specified stack object.
275  void setObjectAlignment(int ObjectIdx, unsigned Align) {
276    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
277           "Invalid Object Idx!");
278    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
279  }
280
281  /// getObjectOffset - Return the assigned stack offset of the specified object
282  /// from the incoming stack pointer.
283  ///
284  int64_t getObjectOffset(int ObjectIdx) const {
285    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
286           "Invalid Object Idx!");
287    assert(!isDeadObjectIndex(ObjectIdx) &&
288           "Getting frame offset for a dead object?");
289    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
290  }
291
292  /// setObjectOffset - Set the stack frame offset of the specified object.  The
293  /// offset is relative to the stack pointer on entry to the function.
294  ///
295  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
296    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
297           "Invalid Object Idx!");
298    assert(!isDeadObjectIndex(ObjectIdx) &&
299           "Setting frame offset for a dead object?");
300    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
301  }
302
303  /// getStackSize - Return the number of bytes that must be allocated to hold
304  /// all of the fixed size frame objects.  This is only valid after
305  /// Prolog/Epilog code insertion has finalized the stack frame layout.
306  ///
307  uint64_t getStackSize() const { return StackSize; }
308
309  /// setStackSize - Set the size of the stack...
310  ///
311  void setStackSize(uint64_t Size) { StackSize = Size; }
312
313  /// getOffsetAdjustment - Return the correction for frame offsets.
314  ///
315  int getOffsetAdjustment() const { return OffsetAdjustment; }
316
317  /// setOffsetAdjustment - Set the correction for frame offsets.
318  ///
319  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
320
321  /// getMaxAlignment - Return the alignment in bytes that this function must be
322  /// aligned to, which is greater than the default stack alignment provided by
323  /// the target.
324  ///
325  unsigned getMaxAlignment() const { return MaxAlignment; }
326
327  /// setMaxAlignment - Set the preferred alignment.
328  ///
329  void setMaxAlignment(unsigned Align) { MaxAlignment = Align; }
330
331  /// calculateMaxStackAlignment() - If there is a local object which requires
332  /// greater alignment than the current max alignment, adjust accordingly.
333  void calculateMaxStackAlignment() {
334    for (int i = getObjectIndexBegin(),
335         e = getObjectIndexEnd(); i != e; ++i) {
336      if (isDeadObjectIndex(i))
337        continue;
338
339      unsigned Align = getObjectAlignment(i);
340      MaxAlignment = std::max(MaxAlignment, Align);
341    }
342  }
343
344  /// hasCalls - Return true if the current function has no function calls.
345  /// This is only valid during or after prolog/epilog code emission.
346  ///
347  bool hasCalls() const { return HasCalls; }
348  void setHasCalls(bool V) { HasCalls = V; }
349
350  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
351  /// allocated for an outgoing function call.  This is only available if
352  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
353  /// then only during or after prolog/epilog code insertion.
354  ///
355  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
356  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
357
358  /// CreateFixedObject - Create a new object at a fixed location on the stack.
359  /// All fixed objects should be created before other objects are created for
360  /// efficiency. By default, fixed objects are immutable. This returns an
361  /// index with a negative value.
362  ///
363  int CreateFixedObject(uint64_t Size, int64_t SPOffset,
364                        bool Immutable, bool isSS);
365
366
367  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
368  /// fixed stack object.
369  bool isFixedObjectIndex(int ObjectIdx) const {
370    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
371  }
372
373  /// isImmutableObjectIndex - Returns true if the specified index corresponds
374  /// to an immutable object.
375  bool isImmutableObjectIndex(int ObjectIdx) const {
376    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
377           "Invalid Object Idx!");
378    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
379  }
380
381  /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
382  /// to a spill slot..
383  bool isSpillSlotObjectIndex(int ObjectIdx) const {
384    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
385           "Invalid Object Idx!");
386    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;;
387  }
388
389  /// isDeadObjectIndex - Returns true if the specified index corresponds to
390  /// a dead object.
391  bool isDeadObjectIndex(int ObjectIdx) const {
392    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
393           "Invalid Object Idx!");
394    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
395  }
396
397  /// CreateStackObject - Create a new statically sized stack object,
398  /// returning a nonnegative identifier to represent it.
399  ///
400  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS) {
401    assert(Size != 0 && "Cannot allocate zero size stack objects!");
402    Objects.push_back(StackObject(Size, Alignment, 0, false, isSS));
403    int Index = (int)Objects.size()-NumFixedObjects-1;
404    assert(Index >= 0 && "Bad frame index!");
405    return Index;
406  }
407
408  /// CreateSpillStackObject - Create a new statically sized stack
409  /// object that represents a spill slot, returning a nonnegative
410  /// identifier to represent it.
411  ///
412  int CreateSpillStackObject(uint64_t Size, unsigned Alignment) {
413    CreateStackObject(Size, Alignment, true);
414    int Index = (int)Objects.size()-NumFixedObjects-1;
415    return Index;
416  }
417
418  /// RemoveStackObject - Remove or mark dead a statically sized stack object.
419  ///
420  void RemoveStackObject(int ObjectIdx) {
421    // Mark it dead.
422    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
423  }
424
425  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
426  /// variable sized object has been created.  This must be created whenever a
427  /// variable sized object is created, whether or not the index returned is
428  /// actually used.
429  ///
430  int CreateVariableSizedObject() {
431    HasVarSizedObjects = true;
432    Objects.push_back(StackObject(0, 1, 0, false, false));
433    return (int)Objects.size()-NumFixedObjects-1;
434  }
435
436  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
437  /// current function.
438  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
439    return CSInfo;
440  }
441
442  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
443  /// callee saved information.
444  void  setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
445    CSInfo = CSI;
446  }
447
448  /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
449  bool isCalleeSavedInfoValid() const { return CSIValid; }
450
451  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
452
453  /// getPristineRegs - Return a set of physical registers that are pristine on
454  /// entry to the MBB.
455  ///
456  /// Pristine registers hold a value that is useless to the current function,
457  /// but that must be preserved - they are callee saved registers that have not
458  /// been saved yet.
459  ///
460  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
461  /// method always returns an empty set.
462  BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
463
464  /// getMachineModuleInfo - Used by a prologue/epilogue
465  /// emitter (TargetRegisterInfo) to provide frame layout information.
466  MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
467
468  /// setMachineModuleInfo - Used by a meta info consumer (DwarfWriter) to
469  /// indicate that frame layout information should be gathered.
470  void setMachineModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; }
471
472  /// print - Used by the MachineFunction printer to print information about
473  /// stack objects.  Implemented in MachineFunction.cpp
474  ///
475  void print(const MachineFunction &MF, raw_ostream &OS) const;
476
477  /// dump - Print the function to stderr.
478  void dump(const MachineFunction &MF) const;
479};
480
481} // End llvm namespace
482
483#endif
484