gdtoaimp.h revision 112161
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 112161 2003-03-12 20:20:22Z das $ */
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to
39	David M. Gay
40	Bell Laboratories, Room 2C-463
41	600 Mountain Avenue
42	Murray Hill, NJ 07974-0636
43	U.S.A.
44	dmg@bell-labs.com
45 */
46
47/* On a machine with IEEE extended-precision registers, it is
48 * necessary to specify double-precision (53-bit) rounding precision
49 * before invoking strtod or dtoa.  If the machine uses (the equivalent
50 * of) Intel 80x87 arithmetic, the call
51 *	_control87(PC_53, MCW_PC);
52 * does this with many compilers.  Whether this or another call is
53 * appropriate depends on the compiler; for this to work, it may be
54 * necessary to #include "float.h" or another system-dependent header
55 * file.
56 */
57
58/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
59 *
60 * This strtod returns a nearest machine number to the input decimal
61 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
62 * broken by the IEEE round-even rule.  Otherwise ties are broken by
63 * biased rounding (add half and chop).
64 *
65 * Inspired loosely by William D. Clinger's paper "How to Read Floating
66 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
67 *
68 * Modifications:
69 *
70 *	1. We only require IEEE, IBM, or VAX double-precision
71 *		arithmetic (not IEEE double-extended).
72 *	2. We get by with floating-point arithmetic in a case that
73 *		Clinger missed -- when we're computing d * 10^n
74 *		for a small integer d and the integer n is not too
75 *		much larger than 22 (the maximum integer k for which
76 *		we can represent 10^k exactly), we may be able to
77 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
78 *	3. Rather than a bit-at-a-time adjustment of the binary
79 *		result in the hard case, we use floating-point
80 *		arithmetic to determine the adjustment to within
81 *		one bit; only in really hard cases do we need to
82 *		compute a second residual.
83 *	4. Because of 3., we don't need a large table of powers of 10
84 *		for ten-to-e (just some small tables, e.g. of 10^k
85 *		for 0 <= k <= 22).
86 */
87
88/*
89 * #define IEEE_8087 for IEEE-arithmetic machines where the least
90 *	significant byte has the lowest address.
91 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
92 *	significant byte has the lowest address.
93 * #define Long int on machines with 32-bit ints and 64-bit longs.
94 * #define Sudden_Underflow for IEEE-format machines without gradual
95 *	underflow (i.e., that flush to zero on underflow).
96 * #define IBM for IBM mainframe-style floating-point arithmetic.
97 * #define VAX for VAX-style floating-point arithmetic (D_floating).
98 * #define No_leftright to omit left-right logic in fast floating-point
99 *	computation of dtoa.
100 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
101 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
102 *	that use extended-precision instructions to compute rounded
103 *	products and quotients) with IBM.
104 * #define ROUND_BIASED for IEEE-format with biased rounding.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.
124 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
125 *	memory allocations from a private pool of memory when possible.
126 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
127 *	unless #defined to be a different length.  This default length
128 *	suffices to get rid of MALLOC calls except for unusual cases,
129 *	such as decimal-to-binary conversion of a very long string of
130 *	digits.  When converting IEEE double precision values, the
131 *	longest string gdtoa can return is about 751 bytes long.  For
132 *	conversions by strtod of strings of 800 digits and all gdtoa
133 *	conversions of IEEE doubles in single-threaded executions with
134 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
135 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
136 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
137 *	Infinity and NaN (case insensitively).  On some systems (e.g.,
138 *	some HP systems), it may be necessary to #define NAN_WORD0
139 *	appropriately -- to the most significant word of a quiet NaN.
140 *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
141 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
142 *	strtodg also accepts (case insensitively) strings of the form
143 *	NaN(x), where x is a string of hexadecimal digits and spaces;
144 *	if there is only one string of hexadecimal digits, it is taken
145 *	for the fraction bits of the resulting NaN; if there are two or
146 *	more strings of hexadecimal digits, each string is assigned
147 *	to the next available sequence of 32-bit words of fractions
148 *	bits (starting with the most significant), right-aligned in
149 *	each sequence.
150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151 *	multiple threads.  In this case, you must provide (or suitably
152 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
154 *	in pow5mult, ensures lazy evaluation of only one copy of high
155 *	powers of 5; omitting this lock would introduce a small
156 *	probability of wasting memory, but would otherwise be harmless.)
157 *	You must also invoke freedtoa(s) to free the value s returned by
158 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
159 * #define IMPRECISE_INEXACT if you do not care about the setting of
160 *	the STRTOG_Inexact bits in the special case of doing IEEE double
161 *	precision conversions (which could also be done by the strtog in
162 *	dtoa.c).
163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164 *	floating-point constants.
165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 *	strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 *	On some K&R systems, it may also be necessary to
169 *	#define DECLARE_SIZE_T in this case.
170 * #define YES_ALIAS to permit aliasing certain double values with
171 *	arrays of ULongs.  This leads to slightly better code with
172 *	some compilers and was always used prior to 19990916, but it
173 *	is not strictly legal and can cause trouble with aggressively
174 *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
175 * #define USE_LOCALE to use the current locale's decimal_point value.
176 */
177
178#ifndef GDTOAIMP_H_INCLUDED
179#define GDTOAIMP_H_INCLUDED
180#include "gdtoa.h"
181
182#ifdef DEBUG
183#include "stdio.h"
184#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
185#endif
186
187#include "limits.h"
188#include "stdlib.h"
189#include "string.h"
190#include "libc_private.h"
191#include "spinlock.h"
192
193#ifdef KR_headers
194#define Char char
195#else
196#define Char void
197#endif
198
199#ifdef MALLOC
200extern Char *MALLOC ANSI((size_t));
201#else
202#define MALLOC malloc
203#endif
204
205#define INFNAN_CHECK
206
207#undef IEEE_Arith
208#undef Avoid_Underflow
209#ifdef IEEE_MC68k
210#define IEEE_Arith
211#endif
212#ifdef IEEE_8087
213#define IEEE_Arith
214#endif
215
216#include "errno.h"
217#ifdef Bad_float_h
218
219#ifdef IEEE_Arith
220#define DBL_DIG 15
221#define DBL_MAX_10_EXP 308
222#define DBL_MAX_EXP 1024
223#define FLT_RADIX 2
224#define DBL_MAX 1.7976931348623157e+308
225#endif
226
227#ifdef IBM
228#define DBL_DIG 16
229#define DBL_MAX_10_EXP 75
230#define DBL_MAX_EXP 63
231#define FLT_RADIX 16
232#define DBL_MAX 7.2370055773322621e+75
233#endif
234
235#ifdef VAX
236#define DBL_DIG 16
237#define DBL_MAX_10_EXP 38
238#define DBL_MAX_EXP 127
239#define FLT_RADIX 2
240#define DBL_MAX 1.7014118346046923e+38
241#define n_bigtens 2
242#endif
243
244#ifndef LONG_MAX
245#define LONG_MAX 2147483647
246#endif
247
248#else /* ifndef Bad_float_h */
249#include "float.h"
250#endif /* Bad_float_h */
251
252#ifdef IEEE_Arith
253#define Scale_Bit 0x10
254#define n_bigtens 5
255#endif
256
257#ifdef IBM
258#define n_bigtens 3
259#endif
260
261#ifdef VAX
262#define n_bigtens 2
263#endif
264
265#ifndef __MATH_H__
266#include "math.h"
267#endif
268
269#ifdef __cplusplus
270extern "C" {
271#endif
272
273#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
274Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
275#endif
276
277typedef union { double d; ULong L[2]; } U;
278
279#ifdef YES_ALIAS
280#define dval(x) x
281#ifdef IEEE_8087
282#define word0(x) ((ULong *)&x)[1]
283#define word1(x) ((ULong *)&x)[0]
284#else
285#define word0(x) ((ULong *)&x)[0]
286#define word1(x) ((ULong *)&x)[1]
287#endif
288#else /* !YES_ALIAS */
289#ifdef IEEE_8087
290#define word0(x) ((U*)&x)->L[1]
291#define word1(x) ((U*)&x)->L[0]
292#else
293#define word0(x) ((U*)&x)->L[0]
294#define word1(x) ((U*)&x)->L[1]
295#endif
296#define dval(x) ((U*)&x)->d
297#endif /* YES_ALIAS */
298
299/* The following definition of Storeinc is appropriate for MIPS processors.
300 * An alternative that might be better on some machines is
301 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
302 */
303#if defined(IEEE_8087) + defined(VAX)
304#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
305((unsigned short *)a)[0] = (unsigned short)c, a++)
306#else
307#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
308((unsigned short *)a)[1] = (unsigned short)c, a++)
309#endif
310
311/* #define P DBL_MANT_DIG */
312/* Ten_pmax = floor(P*log(2)/log(5)) */
313/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
314/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
315/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
316
317#ifdef IEEE_Arith
318#define Exp_shift  20
319#define Exp_shift1 20
320#define Exp_msk1    0x100000
321#define Exp_msk11   0x100000
322#define Exp_mask  0x7ff00000
323#define P 53
324#define Bias 1023
325#define Emin (-1022)
326#define Exp_1  0x3ff00000
327#define Exp_11 0x3ff00000
328#define Ebits 11
329#define Frac_mask  0xfffff
330#define Frac_mask1 0xfffff
331#define Ten_pmax 22
332#define Bletch 0x10
333#define Bndry_mask  0xfffff
334#define Bndry_mask1 0xfffff
335#define LSB 1
336#define Sign_bit 0x80000000
337#define Log2P 1
338#define Tiny0 0
339#define Tiny1 1
340#define Quick_max 14
341#define Int_max 14
342
343#ifndef Flt_Rounds
344#ifdef FLT_ROUNDS
345#define Flt_Rounds FLT_ROUNDS
346#else
347#define Flt_Rounds 1
348#endif
349#endif /*Flt_Rounds*/
350
351#else /* ifndef IEEE_Arith */
352#undef  Sudden_Underflow
353#define Sudden_Underflow
354#ifdef IBM
355#undef Flt_Rounds
356#define Flt_Rounds 0
357#define Exp_shift  24
358#define Exp_shift1 24
359#define Exp_msk1   0x1000000
360#define Exp_msk11  0x1000000
361#define Exp_mask  0x7f000000
362#define P 14
363#define Bias 65
364#define Exp_1  0x41000000
365#define Exp_11 0x41000000
366#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
367#define Frac_mask  0xffffff
368#define Frac_mask1 0xffffff
369#define Bletch 4
370#define Ten_pmax 22
371#define Bndry_mask  0xefffff
372#define Bndry_mask1 0xffffff
373#define LSB 1
374#define Sign_bit 0x80000000
375#define Log2P 4
376#define Tiny0 0x100000
377#define Tiny1 0
378#define Quick_max 14
379#define Int_max 15
380#else /* VAX */
381#undef Flt_Rounds
382#define Flt_Rounds 1
383#define Exp_shift  23
384#define Exp_shift1 7
385#define Exp_msk1    0x80
386#define Exp_msk11   0x800000
387#define Exp_mask  0x7f80
388#define P 56
389#define Bias 129
390#define Exp_1  0x40800000
391#define Exp_11 0x4080
392#define Ebits 8
393#define Frac_mask  0x7fffff
394#define Frac_mask1 0xffff007f
395#define Ten_pmax 24
396#define Bletch 2
397#define Bndry_mask  0xffff007f
398#define Bndry_mask1 0xffff007f
399#define LSB 0x10000
400#define Sign_bit 0x8000
401#define Log2P 1
402#define Tiny0 0x80
403#define Tiny1 0
404#define Quick_max 15
405#define Int_max 15
406#endif /* IBM, VAX */
407#endif /* IEEE_Arith */
408
409#ifndef IEEE_Arith
410#define ROUND_BIASED
411#endif
412
413#ifdef RND_PRODQUOT
414#define rounded_product(a,b) a = rnd_prod(a, b)
415#define rounded_quotient(a,b) a = rnd_quot(a, b)
416#ifdef KR_headers
417extern double rnd_prod(), rnd_quot();
418#else
419extern double rnd_prod(double, double), rnd_quot(double, double);
420#endif
421#else
422#define rounded_product(a,b) a *= b
423#define rounded_quotient(a,b) a /= b
424#endif
425
426#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
427#define Big1 0xffffffff
428
429#undef  Pack_16
430#ifndef Pack_32
431#define Pack_32
432#endif
433
434#ifdef NO_LONG_LONG
435#undef ULLong
436#ifdef Just_16
437#undef Pack_32
438#define Pack_16
439/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
440 * This makes some inner loops simpler and sometimes saves work
441 * during multiplications, but it often seems to make things slightly
442 * slower.  Hence the default is now to store 32 bits per Long.
443 */
444#endif
445#else	/* long long available */
446#ifndef Llong
447#define Llong long long
448#endif
449#ifndef ULLong
450#define ULLong unsigned Llong
451#endif
452#endif /* NO_LONG_LONG */
453
454#ifdef Pack_32
455#define ULbits 32
456#define kshift 5
457#define kmask 31
458#define ALL_ON 0xffffffff
459#else
460#define ULbits 16
461#define kshift 4
462#define kmask 15
463#define ALL_ON 0xffff
464#endif
465
466#define MULTIPLE_THREADS
467extern spinlock_t __gdtoa_locks[2];
468#define ACQUIRE_DTOA_LOCK(n)	do {		\
469	if (__isthreaded)			\
470		_SPINLOCK(&__gdtoa_locks[n]);	\
471} while(0)
472#define FREE_DTOA_LOCK(n)	do {		\
473	if (__isthreaded)			\
474		_SPINUNLOCK(&__gdtoa_locks[n]);	\
475} while(0)
476
477#define Kmax 15
478
479 struct
480Bigint {
481	struct Bigint *next;
482	int k, maxwds, sign, wds;
483	ULong x[1];
484	};
485
486 typedef struct Bigint Bigint;
487
488#ifdef NO_STRING_H
489#ifdef DECLARE_SIZE_T
490typedef unsigned int size_t;
491#endif
492extern void memcpy_D2A ANSI((void*, const void*, size_t));
493#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
494#else /* !NO_STRING_H */
495#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
496#endif /* NO_STRING_H */
497
498/*
499 * Paranoia: Protect exported symbols, including ones in files we don't
500 * compile right now.  The standard strtof and strtod survive.
501 */
502#define	dtoa		__dtoa
503#define	gdtoa		__gdtoa
504#define	freedtoa	__freedtoa
505#define	strtodg		__strtodg
506#define	g_ddfmt		__g_ddfmt
507#define	g_dfmt		__g_dfmt
508#define	g_ffmt		__g_ffmt
509#define	g_Qfmt		__g_Qfmt
510#define	g_xfmt		__g_xfmt
511#define	g_xLfmt		__g_xLfmt
512#define	strtoId		__strtoId
513#define	strtoIdd	__strtoIdd
514#define	strtoIf		__strtoIf
515#define	strtoIQ		__strtoIQ
516#define	strtoIx		__strtoIx
517#define	strtoIxL	__strtoIxL
518#define	strtord		__strtord
519#define	strtordd	__strtordd
520#define	strtorf		__strtorf
521#define	strtorQ		__strtorQ
522#define	strtorx		__strtorx
523#define	strtorxL	__strtorxL
524#define	strtodI		__strtodI
525#define	strtopd		__strtopd
526#define	strtopdd	__strtopdd
527#define	strtopf		__strtopf
528#define	strtopQ		__strtopQ
529#define	strtopx		__strtopx
530#define	strtopxL	__strtopxL
531
532/* Protect gdtoa-internal symbols */
533#define	Balloc		__Balloc_D2A
534#define	Bfree		__Bfree_D2A
535#define	ULtoQ		__ULtoQ_D2A
536#define	ULtof		__ULtof_D2A
537#define	ULtod		__ULtod_D2A
538#define	ULtodd		__ULtodd_D2A
539#define	ULtox		__ULtox_D2A
540#define	ULtoxL		__ULtoxL_D2A
541#define	any_on		__any_on_D2A
542#define	b2d		__b2d_D2A
543#define	bigtens		__bigtens_D2A
544#define	cmp		__cmp_D2A
545#define	copybits	__copybits_D2A
546#define	d2b		__d2b_D2A
547#define	decrement	__decrement_D2A
548#define	diff		__diff_D2A
549#define	dtoa_result	__dtoa_result_D2A
550#define	g__fmt		__g__fmt_D2A
551#define	gethex		__gethex_D2A
552#define	hexdig		__hexdig_D2A
553#define	hexdig_init_D2A	__hexdig_init_D2A
554#define	hexnan		__hexnan_D2A
555#define	hi0bits		__hi0bits_D2A
556#define	i2b		__i2b_D2A
557#define	increment	__increment_D2A
558#define	lo0bits		__lo0bits_D2A
559#define	lshift		__lshift_D2A
560#define	match		__match_D2A
561#define	mult		__mult_D2A
562#define	multadd		__multadd_D2A
563#define	nrv_alloc	__nrv_alloc_D2A
564#define	pow5mult	__pow5mult_D2A
565#define	quorem		__quorem_D2A
566#define	ratio		__ratio_D2A
567#define	rshift		__rshift_D2A
568#define	rv_alloc	__rv_alloc_D2A
569#define	s2b		__s2b_D2A
570#define	set_ones	__set_ones_D2A
571#define	strcp		__strcp_D2A
572#define	strcp_D2A      	__strcp_D2A
573#define	strtoIg		__strtoIg_D2A
574#define	sum		__sum_D2A
575#define	tens		__tens_D2A
576#define	tinytens	__tinytens_D2A
577#define	tinytens	__tinytens_D2A
578#define	trailz		__trailz_D2A
579#define	ulp		__ulp_D2A
580
581 extern char *dtoa_result;
582 extern CONST double bigtens[], tens[], tinytens[];
583 extern unsigned char hexdig[];
584
585 extern Bigint *Balloc ANSI((int));
586 extern void Bfree ANSI((Bigint*));
587 extern void ULtof ANSI((ULong*, ULong*, Long, int));
588 extern void ULtod ANSI((ULong*, ULong*, Long, int));
589 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
590 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
591 extern void ULtox ANSI((UShort*, ULong*, Long, int));
592 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
593 extern ULong any_on ANSI((Bigint*, int));
594 extern double b2d ANSI((Bigint*, int*));
595 extern int cmp ANSI((Bigint*, Bigint*));
596 extern void copybits ANSI((ULong*, int, Bigint*));
597 extern Bigint *d2b ANSI((double, int*, int*));
598 extern int decrement ANSI((Bigint*));
599 extern Bigint *diff ANSI((Bigint*, Bigint*));
600 extern char *dtoa ANSI((double d, int mode, int ndigits,
601			int *decpt, int *sign, char **rve));
602 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
603 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
604 extern void hexdig_init_D2A(Void);
605 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
606 extern int hi0bits ANSI((ULong));
607 extern Bigint *i2b ANSI((int));
608 extern Bigint *increment ANSI((Bigint*));
609 extern int lo0bits ANSI((ULong*));
610 extern Bigint *lshift ANSI((Bigint*, int));
611 extern int match ANSI((CONST char**, char*));
612 extern Bigint *mult ANSI((Bigint*, Bigint*));
613 extern Bigint *multadd ANSI((Bigint*, int, int));
614 extern char *nrv_alloc ANSI((char*, char **, int));
615 extern Bigint *pow5mult ANSI((Bigint*, int));
616 extern int quorem ANSI((Bigint*, Bigint*));
617 extern double ratio ANSI((Bigint*, Bigint*));
618 extern void rshift ANSI((Bigint*, int));
619 extern char *rv_alloc ANSI((int));
620 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
621 extern Bigint *set_ones ANSI((Bigint*, int));
622 extern char *strcp ANSI((char*, const char*));
623 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
624 extern double strtod ANSI((const char *s00, char **se));
625 extern Bigint *sum ANSI((Bigint*, Bigint*));
626 extern int trailz ANSI((Bigint*));
627 extern double ulp ANSI((double));
628
629#ifdef __cplusplus
630}
631#endif
632
633
634#ifdef IEEE_Arith
635#ifdef IEEE_MC68k
636#define _0 0
637#define _1 1
638#else
639#define _0 1
640#define _1 0
641#endif
642#else
643#undef INFNAN_CHECK
644#endif
645
646#ifdef INFNAN_CHECK
647
648#ifndef NAN_WORD0
649#define NAN_WORD0 0x7ff80000
650#endif
651
652#ifndef NAN_WORD1
653#define NAN_WORD1 0
654#endif
655#endif	/* INFNAN_CHECK */
656
657#undef SI
658#ifdef Sudden_Underflow
659#define SI 1
660#else
661#define SI 0
662#endif
663
664#endif /* GDTOAIMP_H_INCLUDED */
665