gdtoaimp.h revision 235785
1112158Sdas/****************************************************************
2112158Sdas
3112158SdasThe author of this software is David M. Gay.
4112158Sdas
5112158SdasCopyright (C) 1998-2000 by Lucent Technologies
6112158SdasAll Rights Reserved
7112158Sdas
8112158SdasPermission to use, copy, modify, and distribute this software and
9112158Sdasits documentation for any purpose and without fee is hereby
10112158Sdasgranted, provided that the above copyright notice appear in all
11112158Sdascopies and that both that the copyright notice and this
12112158Sdaspermission notice and warranty disclaimer appear in supporting
13112158Sdasdocumentation, and that the name of Lucent or any of its entities
14112158Sdasnot be used in advertising or publicity pertaining to
15112158Sdasdistribution of the software without specific, written prior
16112158Sdaspermission.
17112158Sdas
18112158SdasLUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19112158SdasINCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20112158SdasIN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21112158SdasSPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22112158SdasWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23112158SdasIN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24112158SdasARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25112158SdasTHIS SOFTWARE.
26112158Sdas
27112158Sdas****************************************************************/
28112158Sdas
29165743Sdas/* $FreeBSD: stable/9/contrib/gdtoa/gdtoaimp.h 235785 2012-05-22 14:40:39Z theraven $ */
30165743Sdas
31112158Sdas/* This is a variation on dtoa.c that converts arbitary binary
32112158Sdas   floating-point formats to and from decimal notation.  It uses
33112158Sdas   double-precision arithmetic internally, so there are still
34112158Sdas   various #ifdefs that adapt the calculations to the native
35112158Sdas   double-precision arithmetic (any of IEEE, VAX D_floating,
36112158Sdas   or IBM mainframe arithmetic).
37112158Sdas
38112158Sdas   Please send bug reports to David M. Gay (dmg at acm dot org,
39112158Sdas   with " at " changed at "@" and " dot " changed to ".").
40112158Sdas */
41112158Sdas
42112158Sdas/* On a machine with IEEE extended-precision registers, it is
43112158Sdas * necessary to specify double-precision (53-bit) rounding precision
44112158Sdas * before invoking strtod or dtoa.  If the machine uses (the equivalent
45112158Sdas * of) Intel 80x87 arithmetic, the call
46112158Sdas *	_control87(PC_53, MCW_PC);
47112158Sdas * does this with many compilers.  Whether this or another call is
48112158Sdas * appropriate depends on the compiler; for this to work, it may be
49112158Sdas * necessary to #include "float.h" or another system-dependent header
50112158Sdas * file.
51112158Sdas */
52112158Sdas
53112158Sdas/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54112158Sdas *
55112158Sdas * This strtod returns a nearest machine number to the input decimal
56112158Sdas * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57112158Sdas * broken by the IEEE round-even rule.  Otherwise ties are broken by
58112158Sdas * biased rounding (add half and chop).
59112158Sdas *
60112158Sdas * Inspired loosely by William D. Clinger's paper "How to Read Floating
61112158Sdas * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62112158Sdas *
63112158Sdas * Modifications:
64112158Sdas *
65112158Sdas *	1. We only require IEEE, IBM, or VAX double-precision
66112158Sdas *		arithmetic (not IEEE double-extended).
67112158Sdas *	2. We get by with floating-point arithmetic in a case that
68112158Sdas *		Clinger missed -- when we're computing d * 10^n
69112158Sdas *		for a small integer d and the integer n is not too
70112158Sdas *		much larger than 22 (the maximum integer k for which
71112158Sdas *		we can represent 10^k exactly), we may be able to
72112158Sdas *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73112158Sdas *	3. Rather than a bit-at-a-time adjustment of the binary
74112158Sdas *		result in the hard case, we use floating-point
75112158Sdas *		arithmetic to determine the adjustment to within
76112158Sdas *		one bit; only in really hard cases do we need to
77112158Sdas *		compute a second residual.
78112158Sdas *	4. Because of 3., we don't need a large table of powers of 10
79112158Sdas *		for ten-to-e (just some small tables, e.g. of 10^k
80112158Sdas *		for 0 <= k <= 22).
81112158Sdas */
82112158Sdas
83112158Sdas/*
84112158Sdas * #define IEEE_8087 for IEEE-arithmetic machines where the least
85112158Sdas *	significant byte has the lowest address.
86112158Sdas * #define IEEE_MC68k for IEEE-arithmetic machines where the most
87112158Sdas *	significant byte has the lowest address.
88112158Sdas * #define Long int on machines with 32-bit ints and 64-bit longs.
89112158Sdas * #define Sudden_Underflow for IEEE-format machines without gradual
90112158Sdas *	underflow (i.e., that flush to zero on underflow).
91112158Sdas * #define IBM for IBM mainframe-style floating-point arithmetic.
92112158Sdas * #define VAX for VAX-style floating-point arithmetic (D_floating).
93112158Sdas * #define No_leftright to omit left-right logic in fast floating-point
94112158Sdas *	computation of dtoa.
95112158Sdas * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96112158Sdas * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97112158Sdas *	that use extended-precision instructions to compute rounded
98112158Sdas *	products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100 *	that rounds toward +Infinity.
101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102 *	rounding when the underlying floating-point arithmetic uses
103 *	unbiased rounding.  This prevent using ordinary floating-point
104 *	arithmetic when the result could be computed with one rounding error.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.  Similarly, if you
124 *	want something other than the system's free() to be called to
125 *	recycle memory acquired from MALLOC, #define FREE to be the
126 *	name of the alternate routine.  (FREE or free is only called in
127 *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
128 *	mode 3 with thousands of digits requested.)
129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130 *	memory allocations from a private pool of memory when possible.
131 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
132 *	unless #defined to be a different length.  This default length
133 *	suffices to get rid of MALLOC calls except for unusual cases,
134 *	such as decimal-to-binary conversion of a very long string of
135 *	digits.  When converting IEEE double precision values, the
136 *	longest string gdtoa can return is about 751 bytes long.  For
137 *	conversions by strtod of strings of 800 digits and all gdtoa
138 *	conversions of IEEE doubles in single-threaded executions with
139 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142 *	#defined automatically on IEEE systems.  On such systems,
143 *	when INFNAN_CHECK is #defined, strtod checks
144 *	for Infinity and NaN (case insensitively).
145 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146 *	strtodg also accepts (case insensitively) strings of the form
147 *	NaN(x), where x is a string of hexadecimal digits (optionally
148 *	preceded by 0x or 0X) and spaces; if there is only one string
149 *	of hexadecimal digits, it is taken for the fraction bits of the
150 *	resulting NaN; if there are two or more strings of hexadecimal
151 *	digits, each string is assigned to the next available sequence
152 *	of 32-bit words of fractions bits (starting with the most
153 *	significant), right-aligned in each sequence.
154 *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155 *	is consumed even when ... has the wrong form (in which case the
156 *	"(...)" is consumed but ignored).
157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158 *	multiple threads.  In this case, you must provide (or suitably
159 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
161 *	in pow5mult, ensures lazy evaluation of only one copy of high
162 *	powers of 5; omitting this lock would introduce a small
163 *	probability of wasting memory, but would otherwise be harmless.)
164 *	You must also invoke freedtoa(s) to free the value s returned by
165 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
166 * #define IMPRECISE_INEXACT if you do not care about the setting of
167 *	the STRTOG_Inexact bits in the special case of doing IEEE double
168 *	precision conversions (which could also be done by the strtod in
169 *	dtoa.c).
170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171 *	floating-point constants.
172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173 *	strtodg.c).
174 * #define NO_STRING_H to use private versions of memcpy.
175 *	On some K&R systems, it may also be necessary to
176 *	#define DECLARE_SIZE_T in this case.
177 * #define USE_LOCALE to use the current locale's decimal_point value.
178 */
179
180#ifndef GDTOAIMP_H_INCLUDED
181#define GDTOAIMP_H_INCLUDED
182
183#define	Long	int
184
185#include "gdtoa.h"
186#include "gd_qnan.h"
187#ifdef Honor_FLT_ROUNDS
188#include <fenv.h>
189#endif
190
191#ifdef DEBUG
192#include "stdio.h"
193#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
194#endif
195
196#include "limits.h"
197#include "stdlib.h"
198#include "string.h"
199#include "libc_private.h"
200
201#include "namespace.h"
202#include <pthread.h>
203#include "un-namespace.h"
204#include "xlocale_private.h"
205
206#ifdef KR_headers
207#define Char char
208#else
209#define Char void
210#endif
211
212#ifdef MALLOC
213extern Char *MALLOC ANSI((size_t));
214#else
215#define MALLOC malloc
216#endif
217
218#define INFNAN_CHECK
219#define USE_LOCALE
220#define NO_LOCALE_CACHE
221#define Honor_FLT_ROUNDS
222#define Trust_FLT_ROUNDS
223
224#undef IEEE_Arith
225#undef Avoid_Underflow
226#ifdef IEEE_MC68k
227#define IEEE_Arith
228#endif
229#ifdef IEEE_8087
230#define IEEE_Arith
231#endif
232
233#include "errno.h"
234#ifdef Bad_float_h
235
236#ifdef IEEE_Arith
237#define DBL_DIG 15
238#define DBL_MAX_10_EXP 308
239#define DBL_MAX_EXP 1024
240#define FLT_RADIX 2
241#define DBL_MAX 1.7976931348623157e+308
242#endif
243
244#ifdef IBM
245#define DBL_DIG 16
246#define DBL_MAX_10_EXP 75
247#define DBL_MAX_EXP 63
248#define FLT_RADIX 16
249#define DBL_MAX 7.2370055773322621e+75
250#endif
251
252#ifdef VAX
253#define DBL_DIG 16
254#define DBL_MAX_10_EXP 38
255#define DBL_MAX_EXP 127
256#define FLT_RADIX 2
257#define DBL_MAX 1.7014118346046923e+38
258#define n_bigtens 2
259#endif
260
261#ifndef LONG_MAX
262#define LONG_MAX 2147483647
263#endif
264
265#else /* ifndef Bad_float_h */
266#include "float.h"
267#endif /* Bad_float_h */
268
269#ifdef IEEE_Arith
270#define Scale_Bit 0x10
271#define n_bigtens 5
272#endif
273
274#ifdef IBM
275#define n_bigtens 3
276#endif
277
278#ifdef VAX
279#define n_bigtens 2
280#endif
281
282#ifndef __MATH_H__
283#include "math.h"
284#endif
285
286#ifdef __cplusplus
287extern "C" {
288#endif
289
290#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
291Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
292#endif
293
294typedef union { double d; ULong L[2]; } U;
295
296#ifdef IEEE_8087
297#define word0(x) (x)->L[1]
298#define word1(x) (x)->L[0]
299#else
300#define word0(x) (x)->L[0]
301#define word1(x) (x)->L[1]
302#endif
303#define dval(x) (x)->d
304
305/* The following definition of Storeinc is appropriate for MIPS processors.
306 * An alternative that might be better on some machines is
307 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
308 */
309#if defined(IEEE_8087) + defined(VAX)
310#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
311((unsigned short *)a)[0] = (unsigned short)c, a++)
312#else
313#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
314((unsigned short *)a)[1] = (unsigned short)c, a++)
315#endif
316
317/* #define P DBL_MANT_DIG */
318/* Ten_pmax = floor(P*log(2)/log(5)) */
319/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
320/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
321/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
322
323#ifdef IEEE_Arith
324#define Exp_shift  20
325#define Exp_shift1 20
326#define Exp_msk1    0x100000
327#define Exp_msk11   0x100000
328#define Exp_mask  0x7ff00000
329#define P 53
330#define Bias 1023
331#define Emin (-1022)
332#define Exp_1  0x3ff00000
333#define Exp_11 0x3ff00000
334#define Ebits 11
335#define Frac_mask  0xfffff
336#define Frac_mask1 0xfffff
337#define Ten_pmax 22
338#define Bletch 0x10
339#define Bndry_mask  0xfffff
340#define Bndry_mask1 0xfffff
341#define LSB 1
342#define Sign_bit 0x80000000
343#define Log2P 1
344#define Tiny0 0
345#define Tiny1 1
346#define Quick_max 14
347#define Int_max 14
348
349#ifndef Flt_Rounds
350#ifdef FLT_ROUNDS
351#define Flt_Rounds FLT_ROUNDS
352#else
353#define Flt_Rounds 1
354#endif
355#endif /*Flt_Rounds*/
356
357#else /* ifndef IEEE_Arith */
358#undef  Sudden_Underflow
359#define Sudden_Underflow
360#ifdef IBM
361#undef Flt_Rounds
362#define Flt_Rounds 0
363#define Exp_shift  24
364#define Exp_shift1 24
365#define Exp_msk1   0x1000000
366#define Exp_msk11  0x1000000
367#define Exp_mask  0x7f000000
368#define P 14
369#define Bias 65
370#define Exp_1  0x41000000
371#define Exp_11 0x41000000
372#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
373#define Frac_mask  0xffffff
374#define Frac_mask1 0xffffff
375#define Bletch 4
376#define Ten_pmax 22
377#define Bndry_mask  0xefffff
378#define Bndry_mask1 0xffffff
379#define LSB 1
380#define Sign_bit 0x80000000
381#define Log2P 4
382#define Tiny0 0x100000
383#define Tiny1 0
384#define Quick_max 14
385#define Int_max 15
386#else /* VAX */
387#undef Flt_Rounds
388#define Flt_Rounds 1
389#define Exp_shift  23
390#define Exp_shift1 7
391#define Exp_msk1    0x80
392#define Exp_msk11   0x800000
393#define Exp_mask  0x7f80
394#define P 56
395#define Bias 129
396#define Exp_1  0x40800000
397#define Exp_11 0x4080
398#define Ebits 8
399#define Frac_mask  0x7fffff
400#define Frac_mask1 0xffff007f
401#define Ten_pmax 24
402#define Bletch 2
403#define Bndry_mask  0xffff007f
404#define Bndry_mask1 0xffff007f
405#define LSB 0x10000
406#define Sign_bit 0x8000
407#define Log2P 1
408#define Tiny0 0x80
409#define Tiny1 0
410#define Quick_max 15
411#define Int_max 15
412#endif /* IBM, VAX */
413#endif /* IEEE_Arith */
414
415#ifndef IEEE_Arith
416#define ROUND_BIASED
417#else
418#ifdef ROUND_BIASED_without_Round_Up
419#undef  ROUND_BIASED
420#define ROUND_BIASED
421#endif
422#endif
423
424#ifdef RND_PRODQUOT
425#define rounded_product(a,b) a = rnd_prod(a, b)
426#define rounded_quotient(a,b) a = rnd_quot(a, b)
427#ifdef KR_headers
428extern double rnd_prod(), rnd_quot();
429#else
430extern double rnd_prod(double, double), rnd_quot(double, double);
431#endif
432#else
433#define rounded_product(a,b) a *= b
434#define rounded_quotient(a,b) a /= b
435#endif
436
437#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
438#define Big1 0xffffffff
439
440#undef  Pack_16
441#ifndef Pack_32
442#define Pack_32
443#endif
444
445#ifdef NO_LONG_LONG
446#undef ULLong
447#ifdef Just_16
448#undef Pack_32
449#define Pack_16
450/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
451 * This makes some inner loops simpler and sometimes saves work
452 * during multiplications, but it often seems to make things slightly
453 * slower.  Hence the default is now to store 32 bits per Long.
454 */
455#endif
456#else	/* long long available */
457#ifndef Llong
458#define Llong long long
459#endif
460#ifndef ULLong
461#define ULLong unsigned Llong
462#endif
463#endif /* NO_LONG_LONG */
464
465#ifdef Pack_32
466#define ULbits 32
467#define kshift 5
468#define kmask 31
469#define ALL_ON 0xffffffff
470#else
471#define ULbits 16
472#define kshift 4
473#define kmask 15
474#define ALL_ON 0xffff
475#endif
476
477#define MULTIPLE_THREADS
478extern pthread_mutex_t __gdtoa_locks[2];
479#define ACQUIRE_DTOA_LOCK(n)	do {				\
480	if (__isthreaded)					\
481		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
482} while(0)
483#define FREE_DTOA_LOCK(n)	do {				\
484	if (__isthreaded)					\
485		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
486} while(0)
487
488#define Kmax 9
489
490 struct
491Bigint {
492	struct Bigint *next;
493	int k, maxwds, sign, wds;
494	ULong x[1];
495	};
496
497 typedef struct Bigint Bigint;
498
499#ifdef NO_STRING_H
500#ifdef DECLARE_SIZE_T
501typedef unsigned int size_t;
502#endif
503extern void memcpy_D2A ANSI((void*, const void*, size_t));
504#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
505#else /* !NO_STRING_H */
506#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
507#endif /* NO_STRING_H */
508
509/*
510 * Paranoia: Protect exported symbols, including ones in files we don't
511 * compile right now.  The standard strtof and strtod survive.
512 */
513#define	dtoa		__dtoa
514#define	gdtoa		__gdtoa
515#define	freedtoa	__freedtoa
516#define	strtodg		__strtodg
517#define	g_ddfmt		__g_ddfmt
518#define	g_dfmt		__g_dfmt
519#define	g_ffmt		__g_ffmt
520#define	g_Qfmt		__g_Qfmt
521#define	g_xfmt		__g_xfmt
522#define	g_xLfmt		__g_xLfmt
523#define	strtoId		__strtoId
524#define	strtoIdd	__strtoIdd
525#define	strtoIf		__strtoIf
526#define	strtoIQ		__strtoIQ
527#define	strtoIx		__strtoIx
528#define	strtoIxL	__strtoIxL
529#define	strtord_l		__strtord_l
530#define	strtordd	__strtordd
531#define	strtorf		__strtorf
532#define	strtorQ_l		__strtorQ_l
533#define	strtorx_l		__strtorx_l
534#define	strtorxL	__strtorxL
535#define	strtodI		__strtodI
536#define	strtopd		__strtopd
537#define	strtopdd	__strtopdd
538#define	strtopf		__strtopf
539#define	strtopQ		__strtopQ
540#define	strtopx		__strtopx
541#define	strtopxL	__strtopxL
542
543/* Protect gdtoa-internal symbols */
544#define	Balloc		__Balloc_D2A
545#define	Bfree		__Bfree_D2A
546#define	ULtoQ		__ULtoQ_D2A
547#define	ULtof		__ULtof_D2A
548#define	ULtod		__ULtod_D2A
549#define	ULtodd		__ULtodd_D2A
550#define	ULtox		__ULtox_D2A
551#define	ULtoxL		__ULtoxL_D2A
552#define	any_on		__any_on_D2A
553#define	b2d		__b2d_D2A
554#define	bigtens		__bigtens_D2A
555#define	cmp		__cmp_D2A
556#define	copybits	__copybits_D2A
557#define	d2b		__d2b_D2A
558#define	decrement	__decrement_D2A
559#define	diff		__diff_D2A
560#define	dtoa_result	__dtoa_result_D2A
561#define	g__fmt		__g__fmt_D2A
562#define	gethex		__gethex_D2A
563#define	hexdig		__hexdig_D2A
564#define	hexdig_init_D2A	__hexdig_init_D2A
565#define	hexnan		__hexnan_D2A
566#define	hi0bits		__hi0bits_D2A
567#define	hi0bits_D2A	__hi0bits_D2A
568#define	i2b		__i2b_D2A
569#define	increment	__increment_D2A
570#define	lo0bits		__lo0bits_D2A
571#define	lshift		__lshift_D2A
572#define	match		__match_D2A
573#define	mult		__mult_D2A
574#define	multadd		__multadd_D2A
575#define	nrv_alloc	__nrv_alloc_D2A
576#define	pow5mult	__pow5mult_D2A
577#define	quorem		__quorem_D2A
578#define	ratio		__ratio_D2A
579#define	rshift		__rshift_D2A
580#define	rv_alloc	__rv_alloc_D2A
581#define	s2b		__s2b_D2A
582#define	set_ones	__set_ones_D2A
583#define	strcp		__strcp_D2A
584#define	strcp_D2A      	__strcp_D2A
585#define	strtoIg		__strtoIg_D2A
586#define	sum		__sum_D2A
587#define	tens		__tens_D2A
588#define	tinytens	__tinytens_D2A
589#define	tinytens	__tinytens_D2A
590#define	trailz		__trailz_D2A
591#define	ulp		__ulp_D2A
592
593 extern char *dtoa_result;
594 extern CONST double bigtens[], tens[], tinytens[];
595 extern unsigned char hexdig[];
596
597 extern Bigint *Balloc ANSI((int));
598 extern void Bfree ANSI((Bigint*));
599 extern void ULtof ANSI((ULong*, ULong*, Long, int));
600 extern void ULtod ANSI((ULong*, ULong*, Long, int));
601 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
602 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
603 extern void ULtox ANSI((UShort*, ULong*, Long, int));
604 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
605 extern ULong any_on ANSI((Bigint*, int));
606 extern double b2d ANSI((Bigint*, int*));
607 extern int cmp ANSI((Bigint*, Bigint*));
608 extern void copybits ANSI((ULong*, int, Bigint*));
609 extern Bigint *d2b ANSI((double, int*, int*));
610 extern void decrement ANSI((Bigint*));
611 extern Bigint *diff ANSI((Bigint*, Bigint*));
612 extern char *dtoa ANSI((double d, int mode, int ndigits,
613			int *decpt, int *sign, char **rve));
614 extern void freedtoa ANSI((char*));
615 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
616			  int mode, int ndigits, int *decpt, char **rve));
617 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
618 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
619 extern void hexdig_init_D2A(Void);
620 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
621 extern int hi0bits ANSI((ULong));
622 extern Bigint *i2b ANSI((int));
623 extern Bigint *increment ANSI((Bigint*));
624 extern int lo0bits ANSI((ULong*));
625 extern Bigint *lshift ANSI((Bigint*, int));
626 extern int match ANSI((CONST char**, char*));
627 extern Bigint *mult ANSI((Bigint*, Bigint*));
628 extern Bigint *multadd ANSI((Bigint*, int, int));
629 extern char *nrv_alloc ANSI((char*, char **, int));
630 extern Bigint *pow5mult ANSI((Bigint*, int));
631 extern int quorem ANSI((Bigint*, Bigint*));
632 extern double ratio ANSI((Bigint*, Bigint*));
633 extern void rshift ANSI((Bigint*, int));
634 extern char *rv_alloc ANSI((int));
635 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
636 extern Bigint *set_ones ANSI((Bigint*, int));
637 extern char *strcp ANSI((char*, const char*));
638 extern int strtodg_l ANSI((CONST char*, char**, FPI*, Long*, ULong*, locale_t));
639
640 extern int strtoId ANSI((CONST char *, char **, double *, double *));
641 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
642 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
643 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
644 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
645 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
646 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
647 extern double strtod ANSI((const char *s00, char **se));
648 extern double strtod_l ANSI((const char *s00, char **se, locale_t));
649 extern int strtopQ ANSI((CONST char *, char **, Void *));
650 extern int strtopf ANSI((CONST char *, char **, float *));
651 extern int strtopd ANSI((CONST char *, char **, double *));
652 extern int strtopdd ANSI((CONST char *, char **, double *));
653 extern int strtopx ANSI((CONST char *, char **, Void *));
654 extern int strtopxL ANSI((CONST char *, char **, Void *));
655 extern int strtord_l ANSI((CONST char *, char **, int, double *, locale_t));
656 extern int strtordd ANSI((CONST char *, char **, int, double *));
657 extern int strtorf ANSI((CONST char *, char **, int, float *));
658 extern int strtorQ_l ANSI((CONST char *, char **, int, void *, locale_t));
659 extern int strtorx_l ANSI((CONST char *, char **, int, void *, locale_t));
660 extern int strtorxL ANSI((CONST char *, char **, int, void *));
661 extern Bigint *sum ANSI((Bigint*, Bigint*));
662 extern int trailz ANSI((Bigint*));
663 extern double ulp ANSI((U*));
664
665#ifdef __cplusplus
666}
667#endif
668/*
669 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
670 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
671 * respectively), but now are determined by compiling and running
672 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
673 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
674 * and -DNAN_WORD1=...  values if necessary.  This should still work.
675 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
676 */
677#ifdef IEEE_Arith
678#ifndef NO_INFNAN_CHECK
679#undef INFNAN_CHECK
680#define INFNAN_CHECK
681#endif
682#ifdef IEEE_MC68k
683#define _0 0
684#define _1 1
685#ifndef NAN_WORD0
686#define NAN_WORD0 d_QNAN0
687#endif
688#ifndef NAN_WORD1
689#define NAN_WORD1 d_QNAN1
690#endif
691#else
692#define _0 1
693#define _1 0
694#ifndef NAN_WORD0
695#define NAN_WORD0 d_QNAN1
696#endif
697#ifndef NAN_WORD1
698#define NAN_WORD1 d_QNAN0
699#endif
700#endif
701#else
702#undef INFNAN_CHECK
703#endif
704
705#undef SI
706#ifdef Sudden_Underflow
707#define SI 1
708#else
709#define SI 0
710#endif
711
712#endif /* GDTOAIMP_H_INCLUDED */
713