gdtoaimp.h revision 219557
1278307Srpaulo/****************************************************************
2278307Srpaulo
3278307SrpauloThe author of this software is David M. Gay.
4278307Srpaulo
5278307SrpauloCopyright (C) 1998-2000 by Lucent Technologies
6278307SrpauloAll Rights Reserved
7278307Srpaulo
8278307SrpauloPermission to use, copy, modify, and distribute this software and
9278307Srpauloits documentation for any purpose and without fee is hereby
10278307Srpaulogranted, provided that the above copyright notice appear in all
11278307Srpaulocopies and that both that the copyright notice and this
12278307Srpaulopermission notice and warranty disclaimer appear in supporting
13278307Srpaulodocumentation, and that the name of Lucent or any of its entities
14278307Srpaulonot be used in advertising or publicity pertaining to
15278307Srpaulodistribution of the software without specific, written prior
16278307Srpaulopermission.
17278307Srpaulo
18278307SrpauloLUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19278307SrpauloINCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20278307SrpauloIN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21278307SrpauloSPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22278307SrpauloWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23278307SrpauloIN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24278307SrpauloARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25278307SrpauloTHIS SOFTWARE.
26278307Srpaulo
27278307Srpaulo****************************************************************/
28278307Srpaulo
29278307Srpaulo/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 219557 2011-03-12 07:03:06Z das $ */
30278307Srpaulo
31278307Srpaulo/* This is a variation on dtoa.c that converts arbitary binary
32278307Srpaulo   floating-point formats to and from decimal notation.  It uses
33278307Srpaulo   double-precision arithmetic internally, so there are still
34278307Srpaulo   various #ifdefs that adapt the calculations to the native
35278307Srpaulo   double-precision arithmetic (any of IEEE, VAX D_floating,
36278307Srpaulo   or IBM mainframe arithmetic).
37278307Srpaulo
38278307Srpaulo   Please send bug reports to David M. Gay (dmg at acm dot org,
39278307Srpaulo   with " at " changed at "@" and " dot " changed to ".").
40278307Srpaulo */
41278307Srpaulo
42278307Srpaulo/* On a machine with IEEE extended-precision registers, it is
43278307Srpaulo * necessary to specify double-precision (53-bit) rounding precision
44278307Srpaulo * before invoking strtod or dtoa.  If the machine uses (the equivalent
45278307Srpaulo * of) Intel 80x87 arithmetic, the call
46278307Srpaulo *	_control87(PC_53, MCW_PC);
47278307Srpaulo * does this with many compilers.  Whether this or another call is
48278307Srpaulo * appropriate depends on the compiler; for this to work, it may be
49278307Srpaulo * necessary to #include "float.h" or another system-dependent header
50278307Srpaulo * file.
51278307Srpaulo */
52278307Srpaulo
53278307Srpaulo/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54278307Srpaulo *
55278307Srpaulo * This strtod returns a nearest machine number to the input decimal
56278307Srpaulo * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57278307Srpaulo * broken by the IEEE round-even rule.  Otherwise ties are broken by
58278307Srpaulo * biased rounding (add half and chop).
59278307Srpaulo *
60278307Srpaulo * Inspired loosely by William D. Clinger's paper "How to Read Floating
61278307Srpaulo * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62278307Srpaulo *
63278307Srpaulo * Modifications:
64278307Srpaulo *
65278307Srpaulo *	1. We only require IEEE, IBM, or VAX double-precision
66278307Srpaulo *		arithmetic (not IEEE double-extended).
67278307Srpaulo *	2. We get by with floating-point arithmetic in a case that
68278307Srpaulo *		Clinger missed -- when we're computing d * 10^n
69278307Srpaulo *		for a small integer d and the integer n is not too
70278307Srpaulo *		much larger than 22 (the maximum integer k for which
71278307Srpaulo *		we can represent 10^k exactly), we may be able to
72278307Srpaulo *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73278307Srpaulo *	3. Rather than a bit-at-a-time adjustment of the binary
74278307Srpaulo *		result in the hard case, we use floating-point
75278307Srpaulo *		arithmetic to determine the adjustment to within
76278307Srpaulo *		one bit; only in really hard cases do we need to
77278307Srpaulo *		compute a second residual.
78278307Srpaulo *	4. Because of 3., we don't need a large table of powers of 10
79278307Srpaulo *		for ten-to-e (just some small tables, e.g. of 10^k
80278307Srpaulo *		for 0 <= k <= 22).
81278307Srpaulo */
82278307Srpaulo
83278307Srpaulo/*
84278307Srpaulo * #define IEEE_8087 for IEEE-arithmetic machines where the least
85278307Srpaulo *	significant byte has the lowest address.
86278307Srpaulo * #define IEEE_MC68k for IEEE-arithmetic machines where the most
87278307Srpaulo *	significant byte has the lowest address.
88278307Srpaulo * #define Long int on machines with 32-bit ints and 64-bit longs.
89278307Srpaulo * #define Sudden_Underflow for IEEE-format machines without gradual
90278307Srpaulo *	underflow (i.e., that flush to zero on underflow).
91278307Srpaulo * #define IBM for IBM mainframe-style floating-point arithmetic.
92278307Srpaulo * #define VAX for VAX-style floating-point arithmetic (D_floating).
93278307Srpaulo * #define No_leftright to omit left-right logic in fast floating-point
94278307Srpaulo *	computation of dtoa.
95278307Srpaulo * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96278307Srpaulo * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97278307Srpaulo *	that use extended-precision instructions to compute rounded
98278307Srpaulo *	products and quotients) with IBM.
99278307Srpaulo * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100278307Srpaulo *	that rounds toward +Infinity.
101278307Srpaulo * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102278307Srpaulo *	rounding when the underlying floating-point arithmetic uses
103278307Srpaulo *	unbiased rounding.  This prevent using ordinary floating-point
104278307Srpaulo *	arithmetic when the result could be computed with one rounding error.
105278307Srpaulo * #define Inaccurate_Divide for IEEE-format with correctly rounded
106278307Srpaulo *	products but inaccurate quotients, e.g., for Intel i860.
107278307Srpaulo * #define NO_LONG_LONG on machines that do not have a "long long"
108278307Srpaulo *	integer type (of >= 64 bits).  On such machines, you can
109278307Srpaulo *	#define Just_16 to store 16 bits per 32-bit Long when doing
110278307Srpaulo *	high-precision integer arithmetic.  Whether this speeds things
111278307Srpaulo *	up or slows things down depends on the machine and the number
112278307Srpaulo *	being converted.  If long long is available and the name is
113278307Srpaulo *	something other than "long long", #define Llong to be the name,
114278307Srpaulo *	and if "unsigned Llong" does not work as an unsigned version of
115278307Srpaulo *	Llong, #define #ULLong to be the corresponding unsigned type.
116278307Srpaulo * #define KR_headers for old-style C function headers.
117278307Srpaulo * #define Bad_float_h if your system lacks a float.h or if it does not
118278307Srpaulo *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119278307Srpaulo *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120278307Srpaulo * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121278307Srpaulo *	if memory is available and otherwise does something you deem
122278307Srpaulo *	appropriate.  If MALLOC is undefined, malloc will be invoked
123278307Srpaulo *	directly -- and assumed always to succeed.  Similarly, if you
124278307Srpaulo *	want something other than the system's free() to be called to
125278307Srpaulo *	recycle memory acquired from MALLOC, #define FREE to be the
126278307Srpaulo *	name of the alternate routine.  (FREE or free is only called in
127278307Srpaulo *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
128278307Srpaulo *	mode 3 with thousands of digits requested.)
129278307Srpaulo * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130278307Srpaulo *	memory allocations from a private pool of memory when possible.
131278307Srpaulo *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
132278307Srpaulo *	unless #defined to be a different length.  This default length
133278307Srpaulo *	suffices to get rid of MALLOC calls except for unusual cases,
134278307Srpaulo *	such as decimal-to-binary conversion of a very long string of
135278307Srpaulo *	digits.  When converting IEEE double precision values, the
136278307Srpaulo *	longest string gdtoa can return is about 751 bytes long.  For
137278307Srpaulo *	conversions by strtod of strings of 800 digits and all gdtoa
138278307Srpaulo *	conversions of IEEE doubles in single-threaded executions with
139278307Srpaulo *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140278307Srpaulo *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141278307Srpaulo * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142278307Srpaulo *	#defined automatically on IEEE systems.  On such systems,
143278307Srpaulo *	when INFNAN_CHECK is #defined, strtod checks
144278307Srpaulo *	for Infinity and NaN (case insensitively).
145278307Srpaulo *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146278307Srpaulo *	strtodg also accepts (case insensitively) strings of the form
147278307Srpaulo *	NaN(x), where x is a string of hexadecimal digits (optionally
148278307Srpaulo *	preceded by 0x or 0X) and spaces; if there is only one string
149278307Srpaulo *	of hexadecimal digits, it is taken for the fraction bits of the
150278307Srpaulo *	resulting NaN; if there are two or more strings of hexadecimal
151278307Srpaulo *	digits, each string is assigned to the next available sequence
152278307Srpaulo *	of 32-bit words of fractions bits (starting with the most
153278307Srpaulo *	significant), right-aligned in each sequence.
154278307Srpaulo *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155278307Srpaulo *	is consumed even when ... has the wrong form (in which case the
156278307Srpaulo *	"(...)" is consumed but ignored).
157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158 *	multiple threads.  In this case, you must provide (or suitably
159 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
161 *	in pow5mult, ensures lazy evaluation of only one copy of high
162 *	powers of 5; omitting this lock would introduce a small
163 *	probability of wasting memory, but would otherwise be harmless.)
164 *	You must also invoke freedtoa(s) to free the value s returned by
165 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
166 * #define IMPRECISE_INEXACT if you do not care about the setting of
167 *	the STRTOG_Inexact bits in the special case of doing IEEE double
168 *	precision conversions (which could also be done by the strtod in
169 *	dtoa.c).
170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171 *	floating-point constants.
172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173 *	strtodg.c).
174 * #define NO_STRING_H to use private versions of memcpy.
175 *	On some K&R systems, it may also be necessary to
176 *	#define DECLARE_SIZE_T in this case.
177 * #define USE_LOCALE to use the current locale's decimal_point value.
178 */
179
180#ifndef GDTOAIMP_H_INCLUDED
181#define GDTOAIMP_H_INCLUDED
182
183#define	Long	int
184
185#include "gdtoa.h"
186#include "gd_qnan.h"
187#ifdef Honor_FLT_ROUNDS
188#include <fenv.h>
189#endif
190
191#ifdef DEBUG
192#include "stdio.h"
193#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
194#endif
195
196#include "limits.h"
197#include "stdlib.h"
198#include "string.h"
199#include "libc_private.h"
200
201#include "namespace.h"
202#include <pthread.h>
203#include "un-namespace.h"
204
205#ifdef KR_headers
206#define Char char
207#else
208#define Char void
209#endif
210
211#ifdef MALLOC
212extern Char *MALLOC ANSI((size_t));
213#else
214#define MALLOC malloc
215#endif
216
217#define INFNAN_CHECK
218#define USE_LOCALE
219#define NO_LOCALE_CACHE
220#define Honor_FLT_ROUNDS
221#define Trust_FLT_ROUNDS
222
223#undef IEEE_Arith
224#undef Avoid_Underflow
225#ifdef IEEE_MC68k
226#define IEEE_Arith
227#endif
228#ifdef IEEE_8087
229#define IEEE_Arith
230#endif
231
232#include "errno.h"
233#ifdef Bad_float_h
234
235#ifdef IEEE_Arith
236#define DBL_DIG 15
237#define DBL_MAX_10_EXP 308
238#define DBL_MAX_EXP 1024
239#define FLT_RADIX 2
240#define DBL_MAX 1.7976931348623157e+308
241#endif
242
243#ifdef IBM
244#define DBL_DIG 16
245#define DBL_MAX_10_EXP 75
246#define DBL_MAX_EXP 63
247#define FLT_RADIX 16
248#define DBL_MAX 7.2370055773322621e+75
249#endif
250
251#ifdef VAX
252#define DBL_DIG 16
253#define DBL_MAX_10_EXP 38
254#define DBL_MAX_EXP 127
255#define FLT_RADIX 2
256#define DBL_MAX 1.7014118346046923e+38
257#define n_bigtens 2
258#endif
259
260#ifndef LONG_MAX
261#define LONG_MAX 2147483647
262#endif
263
264#else /* ifndef Bad_float_h */
265#include "float.h"
266#endif /* Bad_float_h */
267
268#ifdef IEEE_Arith
269#define Scale_Bit 0x10
270#define n_bigtens 5
271#endif
272
273#ifdef IBM
274#define n_bigtens 3
275#endif
276
277#ifdef VAX
278#define n_bigtens 2
279#endif
280
281#ifndef __MATH_H__
282#include "math.h"
283#endif
284
285#ifdef __cplusplus
286extern "C" {
287#endif
288
289#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
290Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
291#endif
292
293typedef union { double d; ULong L[2]; } U;
294
295#ifdef IEEE_8087
296#define word0(x) (x)->L[1]
297#define word1(x) (x)->L[0]
298#else
299#define word0(x) (x)->L[0]
300#define word1(x) (x)->L[1]
301#endif
302#define dval(x) (x)->d
303
304/* The following definition of Storeinc is appropriate for MIPS processors.
305 * An alternative that might be better on some machines is
306 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
307 */
308#if defined(IEEE_8087) + defined(VAX)
309#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
310((unsigned short *)a)[0] = (unsigned short)c, a++)
311#else
312#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
313((unsigned short *)a)[1] = (unsigned short)c, a++)
314#endif
315
316/* #define P DBL_MANT_DIG */
317/* Ten_pmax = floor(P*log(2)/log(5)) */
318/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
319/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
320/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
321
322#ifdef IEEE_Arith
323#define Exp_shift  20
324#define Exp_shift1 20
325#define Exp_msk1    0x100000
326#define Exp_msk11   0x100000
327#define Exp_mask  0x7ff00000
328#define P 53
329#define Bias 1023
330#define Emin (-1022)
331#define Exp_1  0x3ff00000
332#define Exp_11 0x3ff00000
333#define Ebits 11
334#define Frac_mask  0xfffff
335#define Frac_mask1 0xfffff
336#define Ten_pmax 22
337#define Bletch 0x10
338#define Bndry_mask  0xfffff
339#define Bndry_mask1 0xfffff
340#define LSB 1
341#define Sign_bit 0x80000000
342#define Log2P 1
343#define Tiny0 0
344#define Tiny1 1
345#define Quick_max 14
346#define Int_max 14
347
348#ifndef Flt_Rounds
349#ifdef FLT_ROUNDS
350#define Flt_Rounds FLT_ROUNDS
351#else
352#define Flt_Rounds 1
353#endif
354#endif /*Flt_Rounds*/
355
356#else /* ifndef IEEE_Arith */
357#undef  Sudden_Underflow
358#define Sudden_Underflow
359#ifdef IBM
360#undef Flt_Rounds
361#define Flt_Rounds 0
362#define Exp_shift  24
363#define Exp_shift1 24
364#define Exp_msk1   0x1000000
365#define Exp_msk11  0x1000000
366#define Exp_mask  0x7f000000
367#define P 14
368#define Bias 65
369#define Exp_1  0x41000000
370#define Exp_11 0x41000000
371#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
372#define Frac_mask  0xffffff
373#define Frac_mask1 0xffffff
374#define Bletch 4
375#define Ten_pmax 22
376#define Bndry_mask  0xefffff
377#define Bndry_mask1 0xffffff
378#define LSB 1
379#define Sign_bit 0x80000000
380#define Log2P 4
381#define Tiny0 0x100000
382#define Tiny1 0
383#define Quick_max 14
384#define Int_max 15
385#else /* VAX */
386#undef Flt_Rounds
387#define Flt_Rounds 1
388#define Exp_shift  23
389#define Exp_shift1 7
390#define Exp_msk1    0x80
391#define Exp_msk11   0x800000
392#define Exp_mask  0x7f80
393#define P 56
394#define Bias 129
395#define Exp_1  0x40800000
396#define Exp_11 0x4080
397#define Ebits 8
398#define Frac_mask  0x7fffff
399#define Frac_mask1 0xffff007f
400#define Ten_pmax 24
401#define Bletch 2
402#define Bndry_mask  0xffff007f
403#define Bndry_mask1 0xffff007f
404#define LSB 0x10000
405#define Sign_bit 0x8000
406#define Log2P 1
407#define Tiny0 0x80
408#define Tiny1 0
409#define Quick_max 15
410#define Int_max 15
411#endif /* IBM, VAX */
412#endif /* IEEE_Arith */
413
414#ifndef IEEE_Arith
415#define ROUND_BIASED
416#else
417#ifdef ROUND_BIASED_without_Round_Up
418#undef  ROUND_BIASED
419#define ROUND_BIASED
420#endif
421#endif
422
423#ifdef RND_PRODQUOT
424#define rounded_product(a,b) a = rnd_prod(a, b)
425#define rounded_quotient(a,b) a = rnd_quot(a, b)
426#ifdef KR_headers
427extern double rnd_prod(), rnd_quot();
428#else
429extern double rnd_prod(double, double), rnd_quot(double, double);
430#endif
431#else
432#define rounded_product(a,b) a *= b
433#define rounded_quotient(a,b) a /= b
434#endif
435
436#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
437#define Big1 0xffffffff
438
439#undef  Pack_16
440#ifndef Pack_32
441#define Pack_32
442#endif
443
444#ifdef NO_LONG_LONG
445#undef ULLong
446#ifdef Just_16
447#undef Pack_32
448#define Pack_16
449/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
450 * This makes some inner loops simpler and sometimes saves work
451 * during multiplications, but it often seems to make things slightly
452 * slower.  Hence the default is now to store 32 bits per Long.
453 */
454#endif
455#else	/* long long available */
456#ifndef Llong
457#define Llong long long
458#endif
459#ifndef ULLong
460#define ULLong unsigned Llong
461#endif
462#endif /* NO_LONG_LONG */
463
464#ifdef Pack_32
465#define ULbits 32
466#define kshift 5
467#define kmask 31
468#define ALL_ON 0xffffffff
469#else
470#define ULbits 16
471#define kshift 4
472#define kmask 15
473#define ALL_ON 0xffff
474#endif
475
476#define MULTIPLE_THREADS
477extern pthread_mutex_t __gdtoa_locks[2];
478#define ACQUIRE_DTOA_LOCK(n)	do {				\
479	if (__isthreaded)					\
480		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
481} while(0)
482#define FREE_DTOA_LOCK(n)	do {				\
483	if (__isthreaded)					\
484		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
485} while(0)
486
487#define Kmax 9
488
489 struct
490Bigint {
491	struct Bigint *next;
492	int k, maxwds, sign, wds;
493	ULong x[1];
494	};
495
496 typedef struct Bigint Bigint;
497
498#ifdef NO_STRING_H
499#ifdef DECLARE_SIZE_T
500typedef unsigned int size_t;
501#endif
502extern void memcpy_D2A ANSI((void*, const void*, size_t));
503#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
504#else /* !NO_STRING_H */
505#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
506#endif /* NO_STRING_H */
507
508/*
509 * Paranoia: Protect exported symbols, including ones in files we don't
510 * compile right now.  The standard strtof and strtod survive.
511 */
512#define	dtoa		__dtoa
513#define	gdtoa		__gdtoa
514#define	freedtoa	__freedtoa
515#define	strtodg		__strtodg
516#define	g_ddfmt		__g_ddfmt
517#define	g_dfmt		__g_dfmt
518#define	g_ffmt		__g_ffmt
519#define	g_Qfmt		__g_Qfmt
520#define	g_xfmt		__g_xfmt
521#define	g_xLfmt		__g_xLfmt
522#define	strtoId		__strtoId
523#define	strtoIdd	__strtoIdd
524#define	strtoIf		__strtoIf
525#define	strtoIQ		__strtoIQ
526#define	strtoIx		__strtoIx
527#define	strtoIxL	__strtoIxL
528#define	strtord		__strtord
529#define	strtordd	__strtordd
530#define	strtorf		__strtorf
531#define	strtorQ		__strtorQ
532#define	strtorx		__strtorx
533#define	strtorxL	__strtorxL
534#define	strtodI		__strtodI
535#define	strtopd		__strtopd
536#define	strtopdd	__strtopdd
537#define	strtopf		__strtopf
538#define	strtopQ		__strtopQ
539#define	strtopx		__strtopx
540#define	strtopxL	__strtopxL
541
542/* Protect gdtoa-internal symbols */
543#define	Balloc		__Balloc_D2A
544#define	Bfree		__Bfree_D2A
545#define	ULtoQ		__ULtoQ_D2A
546#define	ULtof		__ULtof_D2A
547#define	ULtod		__ULtod_D2A
548#define	ULtodd		__ULtodd_D2A
549#define	ULtox		__ULtox_D2A
550#define	ULtoxL		__ULtoxL_D2A
551#define	any_on		__any_on_D2A
552#define	b2d		__b2d_D2A
553#define	bigtens		__bigtens_D2A
554#define	cmp		__cmp_D2A
555#define	copybits	__copybits_D2A
556#define	d2b		__d2b_D2A
557#define	decrement	__decrement_D2A
558#define	diff		__diff_D2A
559#define	dtoa_result	__dtoa_result_D2A
560#define	g__fmt		__g__fmt_D2A
561#define	gethex		__gethex_D2A
562#define	hexdig		__hexdig_D2A
563#define	hexdig_init_D2A	__hexdig_init_D2A
564#define	hexnan		__hexnan_D2A
565#define	hi0bits		__hi0bits_D2A
566#define	hi0bits_D2A	__hi0bits_D2A
567#define	i2b		__i2b_D2A
568#define	increment	__increment_D2A
569#define	lo0bits		__lo0bits_D2A
570#define	lshift		__lshift_D2A
571#define	match		__match_D2A
572#define	mult		__mult_D2A
573#define	multadd		__multadd_D2A
574#define	nrv_alloc	__nrv_alloc_D2A
575#define	pow5mult	__pow5mult_D2A
576#define	quorem		__quorem_D2A
577#define	ratio		__ratio_D2A
578#define	rshift		__rshift_D2A
579#define	rv_alloc	__rv_alloc_D2A
580#define	s2b		__s2b_D2A
581#define	set_ones	__set_ones_D2A
582#define	strcp		__strcp_D2A
583#define	strcp_D2A      	__strcp_D2A
584#define	strtoIg		__strtoIg_D2A
585#define	sum		__sum_D2A
586#define	tens		__tens_D2A
587#define	tinytens	__tinytens_D2A
588#define	tinytens	__tinytens_D2A
589#define	trailz		__trailz_D2A
590#define	ulp		__ulp_D2A
591
592 extern char *dtoa_result;
593 extern CONST double bigtens[], tens[], tinytens[];
594 extern unsigned char hexdig[];
595
596 extern Bigint *Balloc ANSI((int));
597 extern void Bfree ANSI((Bigint*));
598 extern void ULtof ANSI((ULong*, ULong*, Long, int));
599 extern void ULtod ANSI((ULong*, ULong*, Long, int));
600 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
601 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
602 extern void ULtox ANSI((UShort*, ULong*, Long, int));
603 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
604 extern ULong any_on ANSI((Bigint*, int));
605 extern double b2d ANSI((Bigint*, int*));
606 extern int cmp ANSI((Bigint*, Bigint*));
607 extern void copybits ANSI((ULong*, int, Bigint*));
608 extern Bigint *d2b ANSI((double, int*, int*));
609 extern void decrement ANSI((Bigint*));
610 extern Bigint *diff ANSI((Bigint*, Bigint*));
611 extern char *dtoa ANSI((double d, int mode, int ndigits,
612			int *decpt, int *sign, char **rve));
613 extern void freedtoa ANSI((char*));
614 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
615			  int mode, int ndigits, int *decpt, char **rve));
616 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
617 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
618 extern void hexdig_init_D2A(Void);
619 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
620 extern int hi0bits ANSI((ULong));
621 extern Bigint *i2b ANSI((int));
622 extern Bigint *increment ANSI((Bigint*));
623 extern int lo0bits ANSI((ULong*));
624 extern Bigint *lshift ANSI((Bigint*, int));
625 extern int match ANSI((CONST char**, char*));
626 extern Bigint *mult ANSI((Bigint*, Bigint*));
627 extern Bigint *multadd ANSI((Bigint*, int, int));
628 extern char *nrv_alloc ANSI((char*, char **, int));
629 extern Bigint *pow5mult ANSI((Bigint*, int));
630 extern int quorem ANSI((Bigint*, Bigint*));
631 extern double ratio ANSI((Bigint*, Bigint*));
632 extern void rshift ANSI((Bigint*, int));
633 extern char *rv_alloc ANSI((int));
634 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
635 extern Bigint *set_ones ANSI((Bigint*, int));
636 extern char *strcp ANSI((char*, const char*));
637 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*));
638
639 extern int strtoId ANSI((CONST char *, char **, double *, double *));
640 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
641 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
642 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
643 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
644 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
645 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
646 extern double strtod ANSI((const char *s00, char **se));
647 extern int strtopQ ANSI((CONST char *, char **, Void *));
648 extern int strtopf ANSI((CONST char *, char **, float *));
649 extern int strtopd ANSI((CONST char *, char **, double *));
650 extern int strtopdd ANSI((CONST char *, char **, double *));
651 extern int strtopx ANSI((CONST char *, char **, Void *));
652 extern int strtopxL ANSI((CONST char *, char **, Void *));
653 extern int strtord ANSI((CONST char *, char **, int, double *));
654 extern int strtordd ANSI((CONST char *, char **, int, double *));
655 extern int strtorf ANSI((CONST char *, char **, int, float *));
656 extern int strtorQ ANSI((CONST char *, char **, int, void *));
657 extern int strtorx ANSI((CONST char *, char **, int, void *));
658 extern int strtorxL ANSI((CONST char *, char **, int, void *));
659 extern Bigint *sum ANSI((Bigint*, Bigint*));
660 extern int trailz ANSI((Bigint*));
661 extern double ulp ANSI((U*));
662
663#ifdef __cplusplus
664}
665#endif
666/*
667 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
668 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
669 * respectively), but now are determined by compiling and running
670 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
671 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
672 * and -DNAN_WORD1=...  values if necessary.  This should still work.
673 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
674 */
675#ifdef IEEE_Arith
676#ifndef NO_INFNAN_CHECK
677#undef INFNAN_CHECK
678#define INFNAN_CHECK
679#endif
680#ifdef IEEE_MC68k
681#define _0 0
682#define _1 1
683#ifndef NAN_WORD0
684#define NAN_WORD0 d_QNAN0
685#endif
686#ifndef NAN_WORD1
687#define NAN_WORD1 d_QNAN1
688#endif
689#else
690#define _0 1
691#define _1 0
692#ifndef NAN_WORD0
693#define NAN_WORD0 d_QNAN1
694#endif
695#ifndef NAN_WORD1
696#define NAN_WORD1 d_QNAN0
697#endif
698#endif
699#else
700#undef INFNAN_CHECK
701#endif
702
703#undef SI
704#ifdef Sudden_Underflow
705#define SI 1
706#else
707#define SI 0
708#endif
709
710#endif /* GDTOAIMP_H_INCLUDED */
711