gdtoaimp.h revision 174693
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 174693 2007-12-17 00:19:49Z das $ */
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to David M. Gay (dmg at acm dot org,
39   with " at " changed at "@" and " dot " changed to ".").
40 */
41
42/* On a machine with IEEE extended-precision registers, it is
43 * necessary to specify double-precision (53-bit) rounding precision
44 * before invoking strtod or dtoa.  If the machine uses (the equivalent
45 * of) Intel 80x87 arithmetic, the call
46 *	_control87(PC_53, MCW_PC);
47 * does this with many compilers.  Whether this or another call is
48 * appropriate depends on the compiler; for this to work, it may be
49 * necessary to #include "float.h" or another system-dependent header
50 * file.
51 */
52
53/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 *
55 * This strtod returns a nearest machine number to the input decimal
56 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57 * broken by the IEEE round-even rule.  Otherwise ties are broken by
58 * biased rounding (add half and chop).
59 *
60 * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 *
63 * Modifications:
64 *
65 *	1. We only require IEEE, IBM, or VAX double-precision
66 *		arithmetic (not IEEE double-extended).
67 *	2. We get by with floating-point arithmetic in a case that
68 *		Clinger missed -- when we're computing d * 10^n
69 *		for a small integer d and the integer n is not too
70 *		much larger than 22 (the maximum integer k for which
71 *		we can represent 10^k exactly), we may be able to
72 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73 *	3. Rather than a bit-at-a-time adjustment of the binary
74 *		result in the hard case, we use floating-point
75 *		arithmetic to determine the adjustment to within
76 *		one bit; only in really hard cases do we need to
77 *		compute a second residual.
78 *	4. Because of 3., we don't need a large table of powers of 10
79 *		for ten-to-e (just some small tables, e.g. of 10^k
80 *		for 0 <= k <= 22).
81 */
82
83/*
84 * #define IEEE_8087 for IEEE-arithmetic machines where the least
85 *	significant byte has the lowest address.
86 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
87 *	significant byte has the lowest address.
88 * #define Long int on machines with 32-bit ints and 64-bit longs.
89 * #define Sudden_Underflow for IEEE-format machines without gradual
90 *	underflow (i.e., that flush to zero on underflow).
91 * #define IBM for IBM mainframe-style floating-point arithmetic.
92 * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 * #define No_leftright to omit left-right logic in fast floating-point
94 *	computation of dtoa.
95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 *	that use extended-precision instructions to compute rounded
98 *	products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding.
100 * #define Inaccurate_Divide for IEEE-format with correctly rounded
101 *	products but inaccurate quotients, e.g., for Intel i860.
102 * #define NO_LONG_LONG on machines that do not have a "long long"
103 *	integer type (of >= 64 bits).  On such machines, you can
104 *	#define Just_16 to store 16 bits per 32-bit Long when doing
105 *	high-precision integer arithmetic.  Whether this speeds things
106 *	up or slows things down depends on the machine and the number
107 *	being converted.  If long long is available and the name is
108 *	something other than "long long", #define Llong to be the name,
109 *	and if "unsigned Llong" does not work as an unsigned version of
110 *	Llong, #define #ULLong to be the corresponding unsigned type.
111 * #define KR_headers for old-style C function headers.
112 * #define Bad_float_h if your system lacks a float.h or if it does not
113 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
114 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
115 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
116 *	if memory is available and otherwise does something you deem
117 *	appropriate.  If MALLOC is undefined, malloc will be invoked
118 *	directly -- and assumed always to succeed.
119 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120 *	memory allocations from a private pool of memory when possible.
121 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122 *	unless #defined to be a different length.  This default length
123 *	suffices to get rid of MALLOC calls except for unusual cases,
124 *	such as decimal-to-binary conversion of a very long string of
125 *	digits.  When converting IEEE double precision values, the
126 *	longest string gdtoa can return is about 751 bytes long.  For
127 *	conversions by strtod of strings of 800 digits and all gdtoa
128 *	conversions of IEEE doubles in single-threaded executions with
129 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
130 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
131 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
132 *	Infinity and NaN (case insensitively).
133 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134 *	strtodg also accepts (case insensitively) strings of the form
135 *	NaN(x), where x is a string of hexadecimal digits and spaces;
136 *	if there is only one string of hexadecimal digits, it is taken
137 *	for the fraction bits of the resulting NaN; if there are two or
138 *	more strings of hexadecimal digits, each string is assigned
139 *	to the next available sequence of 32-bit words of fractions
140 *	bits (starting with the most significant), right-aligned in
141 *	each sequence.
142 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
143 *	multiple threads.  In this case, you must provide (or suitably
144 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
145 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
146 *	in pow5mult, ensures lazy evaluation of only one copy of high
147 *	powers of 5; omitting this lock would introduce a small
148 *	probability of wasting memory, but would otherwise be harmless.)
149 *	You must also invoke freedtoa(s) to free the value s returned by
150 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
151 * #define IMPRECISE_INEXACT if you do not care about the setting of
152 *	the STRTOG_Inexact bits in the special case of doing IEEE double
153 *	precision conversions (which could also be done by the strtog in
154 *	dtoa.c).
155 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
156 *	floating-point constants.
157 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
158 *	strtodg.c).
159 * #define NO_STRING_H to use private versions of memcpy.
160 *	On some K&R systems, it may also be necessary to
161 *	#define DECLARE_SIZE_T in this case.
162 * #define YES_ALIAS to permit aliasing certain double values with
163 *	arrays of ULongs.  This leads to slightly better code with
164 *	some compilers and was always used prior to 19990916, but it
165 *	is not strictly legal and can cause trouble with aggressively
166 *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
167 * #define USE_LOCALE to use the current locale's decimal_point value.
168 */
169
170#ifndef GDTOAIMP_H_INCLUDED
171#define GDTOAIMP_H_INCLUDED
172
173#define	Long	int
174
175#include "gdtoa.h"
176#include "gd_qnan.h"
177
178#ifdef DEBUG
179#include "stdio.h"
180#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
181#endif
182
183#include "limits.h"
184#include "stdlib.h"
185#include "string.h"
186#include "libc_private.h"
187
188#include "namespace.h"
189#include <pthread.h>
190#include "un-namespace.h"
191
192#ifdef KR_headers
193#define Char char
194#else
195#define Char void
196#endif
197
198#ifdef MALLOC
199extern Char *MALLOC ANSI((size_t));
200#else
201#define MALLOC malloc
202#endif
203
204#define INFNAN_CHECK
205#define USE_LOCALE
206#define Honor_FLT_ROUNDS
207
208#undef IEEE_Arith
209#undef Avoid_Underflow
210#ifdef IEEE_MC68k
211#define IEEE_Arith
212#endif
213#ifdef IEEE_8087
214#define IEEE_Arith
215#endif
216
217#include "errno.h"
218#ifdef Bad_float_h
219
220#ifdef IEEE_Arith
221#define DBL_DIG 15
222#define DBL_MAX_10_EXP 308
223#define DBL_MAX_EXP 1024
224#define FLT_RADIX 2
225#define DBL_MAX 1.7976931348623157e+308
226#endif
227
228#ifdef IBM
229#define DBL_DIG 16
230#define DBL_MAX_10_EXP 75
231#define DBL_MAX_EXP 63
232#define FLT_RADIX 16
233#define DBL_MAX 7.2370055773322621e+75
234#endif
235
236#ifdef VAX
237#define DBL_DIG 16
238#define DBL_MAX_10_EXP 38
239#define DBL_MAX_EXP 127
240#define FLT_RADIX 2
241#define DBL_MAX 1.7014118346046923e+38
242#define n_bigtens 2
243#endif
244
245#ifndef LONG_MAX
246#define LONG_MAX 2147483647
247#endif
248
249#else /* ifndef Bad_float_h */
250#include "float.h"
251#endif /* Bad_float_h */
252
253#ifdef IEEE_Arith
254#define Scale_Bit 0x10
255#define n_bigtens 5
256#endif
257
258#ifdef IBM
259#define n_bigtens 3
260#endif
261
262#ifdef VAX
263#define n_bigtens 2
264#endif
265
266#ifndef __MATH_H__
267#include "math.h"
268#endif
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
275Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
276#endif
277
278typedef union { double d; ULong L[2]; } U;
279
280#ifdef YES_ALIAS
281#define dval(x) x
282#ifdef IEEE_8087
283#define word0(x) ((ULong *)&x)[1]
284#define word1(x) ((ULong *)&x)[0]
285#else
286#define word0(x) ((ULong *)&x)[0]
287#define word1(x) ((ULong *)&x)[1]
288#endif
289#else /* !YES_ALIAS */
290#ifdef IEEE_8087
291#define word0(x) ((U*)&x)->L[1]
292#define word1(x) ((U*)&x)->L[0]
293#else
294#define word0(x) ((U*)&x)->L[0]
295#define word1(x) ((U*)&x)->L[1]
296#endif
297#define dval(x) ((U*)&x)->d
298#endif /* YES_ALIAS */
299
300/* The following definition of Storeinc is appropriate for MIPS processors.
301 * An alternative that might be better on some machines is
302 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
303 */
304#if defined(IEEE_8087) + defined(VAX)
305#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
306((unsigned short *)a)[0] = (unsigned short)c, a++)
307#else
308#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
309((unsigned short *)a)[1] = (unsigned short)c, a++)
310#endif
311
312/* #define P DBL_MANT_DIG */
313/* Ten_pmax = floor(P*log(2)/log(5)) */
314/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
315/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
316/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
317
318#ifdef IEEE_Arith
319#define Exp_shift  20
320#define Exp_shift1 20
321#define Exp_msk1    0x100000
322#define Exp_msk11   0x100000
323#define Exp_mask  0x7ff00000
324#define P 53
325#define Bias 1023
326#define Emin (-1022)
327#define Exp_1  0x3ff00000
328#define Exp_11 0x3ff00000
329#define Ebits 11
330#define Frac_mask  0xfffff
331#define Frac_mask1 0xfffff
332#define Ten_pmax 22
333#define Bletch 0x10
334#define Bndry_mask  0xfffff
335#define Bndry_mask1 0xfffff
336#define LSB 1
337#define Sign_bit 0x80000000
338#define Log2P 1
339#define Tiny0 0
340#define Tiny1 1
341#define Quick_max 14
342#define Int_max 14
343
344#ifndef Flt_Rounds
345#ifdef FLT_ROUNDS
346#define Flt_Rounds FLT_ROUNDS
347#else
348#define Flt_Rounds 1
349#endif
350#endif /*Flt_Rounds*/
351
352#else /* ifndef IEEE_Arith */
353#undef  Sudden_Underflow
354#define Sudden_Underflow
355#ifdef IBM
356#undef Flt_Rounds
357#define Flt_Rounds 0
358#define Exp_shift  24
359#define Exp_shift1 24
360#define Exp_msk1   0x1000000
361#define Exp_msk11  0x1000000
362#define Exp_mask  0x7f000000
363#define P 14
364#define Bias 65
365#define Exp_1  0x41000000
366#define Exp_11 0x41000000
367#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
368#define Frac_mask  0xffffff
369#define Frac_mask1 0xffffff
370#define Bletch 4
371#define Ten_pmax 22
372#define Bndry_mask  0xefffff
373#define Bndry_mask1 0xffffff
374#define LSB 1
375#define Sign_bit 0x80000000
376#define Log2P 4
377#define Tiny0 0x100000
378#define Tiny1 0
379#define Quick_max 14
380#define Int_max 15
381#else /* VAX */
382#undef Flt_Rounds
383#define Flt_Rounds 1
384#define Exp_shift  23
385#define Exp_shift1 7
386#define Exp_msk1    0x80
387#define Exp_msk11   0x800000
388#define Exp_mask  0x7f80
389#define P 56
390#define Bias 129
391#define Exp_1  0x40800000
392#define Exp_11 0x4080
393#define Ebits 8
394#define Frac_mask  0x7fffff
395#define Frac_mask1 0xffff007f
396#define Ten_pmax 24
397#define Bletch 2
398#define Bndry_mask  0xffff007f
399#define Bndry_mask1 0xffff007f
400#define LSB 0x10000
401#define Sign_bit 0x8000
402#define Log2P 1
403#define Tiny0 0x80
404#define Tiny1 0
405#define Quick_max 15
406#define Int_max 15
407#endif /* IBM, VAX */
408#endif /* IEEE_Arith */
409
410#ifndef IEEE_Arith
411#define ROUND_BIASED
412#endif
413
414#ifdef RND_PRODQUOT
415#define rounded_product(a,b) a = rnd_prod(a, b)
416#define rounded_quotient(a,b) a = rnd_quot(a, b)
417#ifdef KR_headers
418extern double rnd_prod(), rnd_quot();
419#else
420extern double rnd_prod(double, double), rnd_quot(double, double);
421#endif
422#else
423#define rounded_product(a,b) a *= b
424#define rounded_quotient(a,b) a /= b
425#endif
426
427#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
428#define Big1 0xffffffff
429
430#undef  Pack_16
431#ifndef Pack_32
432#define Pack_32
433#endif
434
435#ifdef NO_LONG_LONG
436#undef ULLong
437#ifdef Just_16
438#undef Pack_32
439#define Pack_16
440/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
441 * This makes some inner loops simpler and sometimes saves work
442 * during multiplications, but it often seems to make things slightly
443 * slower.  Hence the default is now to store 32 bits per Long.
444 */
445#endif
446#else	/* long long available */
447#ifndef Llong
448#define Llong long long
449#endif
450#ifndef ULLong
451#define ULLong unsigned Llong
452#endif
453#endif /* NO_LONG_LONG */
454
455#ifdef Pack_32
456#define ULbits 32
457#define kshift 5
458#define kmask 31
459#define ALL_ON 0xffffffff
460#else
461#define ULbits 16
462#define kshift 4
463#define kmask 15
464#define ALL_ON 0xffff
465#endif
466
467#define MULTIPLE_THREADS
468extern pthread_mutex_t __gdtoa_locks[2];
469#define ACQUIRE_DTOA_LOCK(n)	do {				\
470	if (__isthreaded)					\
471		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
472} while(0)
473#define FREE_DTOA_LOCK(n)	do {				\
474	if (__isthreaded)					\
475		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
476} while(0)
477
478#define Kmax 15
479
480 struct
481Bigint {
482	struct Bigint *next;
483	int k, maxwds, sign, wds;
484	ULong x[1];
485	};
486
487 typedef struct Bigint Bigint;
488
489#ifdef NO_STRING_H
490#ifdef DECLARE_SIZE_T
491typedef unsigned int size_t;
492#endif
493extern void memcpy_D2A ANSI((void*, const void*, size_t));
494#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
495#else /* !NO_STRING_H */
496#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
497#endif /* NO_STRING_H */
498
499/*
500 * Paranoia: Protect exported symbols, including ones in files we don't
501 * compile right now.  The standard strtof and strtod survive.
502 */
503#define	dtoa		__dtoa
504#define	gdtoa		__gdtoa
505#define	freedtoa	__freedtoa
506#define	strtodg		__strtodg
507#define	g_ddfmt		__g_ddfmt
508#define	g_dfmt		__g_dfmt
509#define	g_ffmt		__g_ffmt
510#define	g_Qfmt		__g_Qfmt
511#define	g_xfmt		__g_xfmt
512#define	g_xLfmt		__g_xLfmt
513#define	strtoId		__strtoId
514#define	strtoIdd	__strtoIdd
515#define	strtoIf		__strtoIf
516#define	strtoIQ		__strtoIQ
517#define	strtoIx		__strtoIx
518#define	strtoIxL	__strtoIxL
519#define	strtord		__strtord
520#define	strtordd	__strtordd
521#define	strtorf		__strtorf
522#define	strtorQ		__strtorQ
523#define	strtorx		__strtorx
524#define	strtorxL	__strtorxL
525#define	strtodI		__strtodI
526#define	strtopd		__strtopd
527#define	strtopdd	__strtopdd
528#define	strtopf		__strtopf
529#define	strtopQ		__strtopQ
530#define	strtopx		__strtopx
531#define	strtopxL	__strtopxL
532
533/* Protect gdtoa-internal symbols */
534#define	Balloc		__Balloc_D2A
535#define	Bfree		__Bfree_D2A
536#define	ULtoQ		__ULtoQ_D2A
537#define	ULtof		__ULtof_D2A
538#define	ULtod		__ULtod_D2A
539#define	ULtodd		__ULtodd_D2A
540#define	ULtox		__ULtox_D2A
541#define	ULtoxL		__ULtoxL_D2A
542#define	any_on		__any_on_D2A
543#define	b2d		__b2d_D2A
544#define	bigtens		__bigtens_D2A
545#define	cmp		__cmp_D2A
546#define	copybits	__copybits_D2A
547#define	d2b		__d2b_D2A
548#define	decrement	__decrement_D2A
549#define	diff		__diff_D2A
550#define	dtoa_result	__dtoa_result_D2A
551#define	g__fmt		__g__fmt_D2A
552#define	gethex		__gethex_D2A
553#define	hexdig		__hexdig_D2A
554#define	hexdig_init_D2A	__hexdig_init_D2A
555#define	hexnan		__hexnan_D2A
556#define	hi0bits		__hi0bits_D2A
557#define	hi0bits_D2A	__hi0bits_D2A
558#define	i2b		__i2b_D2A
559#define	increment	__increment_D2A
560#define	lo0bits		__lo0bits_D2A
561#define	lshift		__lshift_D2A
562#define	match		__match_D2A
563#define	mult		__mult_D2A
564#define	multadd		__multadd_D2A
565#define	nrv_alloc	__nrv_alloc_D2A
566#define	pow5mult	__pow5mult_D2A
567#define	quorem		__quorem_D2A
568#define	ratio		__ratio_D2A
569#define	rshift		__rshift_D2A
570#define	rv_alloc	__rv_alloc_D2A
571#define	s2b		__s2b_D2A
572#define	set_ones	__set_ones_D2A
573#define	strcp		__strcp_D2A
574#define	strcp_D2A      	__strcp_D2A
575#define	strtoIg		__strtoIg_D2A
576#define	sum		__sum_D2A
577#define	tens		__tens_D2A
578#define	tinytens	__tinytens_D2A
579#define	tinytens	__tinytens_D2A
580#define	trailz		__trailz_D2A
581#define	ulp		__ulp_D2A
582
583 extern char *dtoa_result;
584 extern CONST double bigtens[], tens[], tinytens[];
585 extern unsigned char hexdig[];
586
587 extern Bigint *Balloc ANSI((int));
588 extern void Bfree ANSI((Bigint*));
589 extern void ULtof ANSI((ULong*, ULong*, Long, int));
590 extern void ULtod ANSI((ULong*, ULong*, Long, int));
591 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
592 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
593 extern void ULtox ANSI((UShort*, ULong*, Long, int));
594 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
595 extern ULong any_on ANSI((Bigint*, int));
596 extern double b2d ANSI((Bigint*, int*));
597 extern int cmp ANSI((Bigint*, Bigint*));
598 extern void copybits ANSI((ULong*, int, Bigint*));
599 extern Bigint *d2b ANSI((double, int*, int*));
600 extern int decrement ANSI((Bigint*));
601 extern Bigint *diff ANSI((Bigint*, Bigint*));
602 extern char *dtoa ANSI((double d, int mode, int ndigits,
603			int *decpt, int *sign, char **rve));
604 extern void freedtoa ANSI((char*));
605 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
606			  int mode, int ndigits, int *decpt, char **rve));
607 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
608 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
609 extern void hexdig_init_D2A(Void);
610 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
611 extern int hi0bits ANSI((ULong));
612 extern Bigint *i2b ANSI((int));
613 extern Bigint *increment ANSI((Bigint*));
614 extern int lo0bits ANSI((ULong*));
615 extern Bigint *lshift ANSI((Bigint*, int));
616 extern int match ANSI((CONST char**, char*));
617 extern Bigint *mult ANSI((Bigint*, Bigint*));
618 extern Bigint *multadd ANSI((Bigint*, int, int));
619 extern char *nrv_alloc ANSI((char*, char **, int));
620 extern Bigint *pow5mult ANSI((Bigint*, int));
621 extern int quorem ANSI((Bigint*, Bigint*));
622 extern double ratio ANSI((Bigint*, Bigint*));
623 extern void rshift ANSI((Bigint*, int));
624 extern char *rv_alloc ANSI((int));
625 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
626 extern Bigint *set_ones ANSI((Bigint*, int));
627 extern char *strcp ANSI((char*, const char*));
628 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*));
629
630 extern int strtoId ANSI((CONST char *, char **, double *, double *));
631 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
632 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
633 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
634 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
635 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
636 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
637 extern double strtod ANSI((const char *s00, char **se));
638 extern int strtopQ ANSI((CONST char *, char **, Void *));
639 extern int strtopf ANSI((CONST char *, char **, float *));
640 extern int strtopd ANSI((CONST char *, char **, double *));
641 extern int strtopdd ANSI((CONST char *, char **, double *));
642 extern int strtopx ANSI((CONST char *, char **, Void *));
643 extern int strtopxL ANSI((CONST char *, char **, Void *));
644 extern int strtord ANSI((CONST char *, char **, int, double *));
645 extern int strtordd ANSI((CONST char *, char **, int, double *));
646 extern int strtorf ANSI((CONST char *, char **, int, float *));
647 extern int strtorQ ANSI((CONST char *, char **, int, void *));
648 extern int strtorx ANSI((CONST char *, char **, int, void *));
649 extern int strtorxL ANSI((CONST char *, char **, int, void *));
650 extern Bigint *sum ANSI((Bigint*, Bigint*));
651 extern int trailz ANSI((Bigint*));
652 extern double ulp ANSI((double));
653
654#ifdef __cplusplus
655}
656#endif
657/*
658 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
659 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
660 * respectively), but now are determined by compiling and running
661 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
662 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
663 * and -DNAN_WORD1=...  values if necessary.  This should still work.
664 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
665 */
666#ifdef IEEE_Arith
667#ifdef IEEE_MC68k
668#define _0 0
669#define _1 1
670#ifndef NAN_WORD0
671#define NAN_WORD0 d_QNAN0
672#endif
673#ifndef NAN_WORD1
674#define NAN_WORD1 d_QNAN1
675#endif
676#else
677#define _0 1
678#define _1 0
679#ifndef NAN_WORD0
680#define NAN_WORD0 d_QNAN1
681#endif
682#ifndef NAN_WORD1
683#define NAN_WORD1 d_QNAN0
684#endif
685#endif
686#else
687#undef INFNAN_CHECK
688#endif
689
690#undef SI
691#ifdef Sudden_Underflow
692#define SI 1
693#else
694#define SI 0
695#endif
696
697#endif /* GDTOAIMP_H_INCLUDED */
698