gdtoaimp.h revision 140431
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 140431 2005-01-18 18:56:18Z das $ */
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to
39	David M. Gay
40	Bell Laboratories, Room 2C-463
41	600 Mountain Avenue
42	Murray Hill, NJ 07974-0636
43	U.S.A.
44	dmg@bell-labs.com
45 */
46
47/* On a machine with IEEE extended-precision registers, it is
48 * necessary to specify double-precision (53-bit) rounding precision
49 * before invoking strtod or dtoa.  If the machine uses (the equivalent
50 * of) Intel 80x87 arithmetic, the call
51 *	_control87(PC_53, MCW_PC);
52 * does this with many compilers.  Whether this or another call is
53 * appropriate depends on the compiler; for this to work, it may be
54 * necessary to #include "float.h" or another system-dependent header
55 * file.
56 */
57
58/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
59 *
60 * This strtod returns a nearest machine number to the input decimal
61 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
62 * broken by the IEEE round-even rule.  Otherwise ties are broken by
63 * biased rounding (add half and chop).
64 *
65 * Inspired loosely by William D. Clinger's paper "How to Read Floating
66 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
67 *
68 * Modifications:
69 *
70 *	1. We only require IEEE, IBM, or VAX double-precision
71 *		arithmetic (not IEEE double-extended).
72 *	2. We get by with floating-point arithmetic in a case that
73 *		Clinger missed -- when we're computing d * 10^n
74 *		for a small integer d and the integer n is not too
75 *		much larger than 22 (the maximum integer k for which
76 *		we can represent 10^k exactly), we may be able to
77 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
78 *	3. Rather than a bit-at-a-time adjustment of the binary
79 *		result in the hard case, we use floating-point
80 *		arithmetic to determine the adjustment to within
81 *		one bit; only in really hard cases do we need to
82 *		compute a second residual.
83 *	4. Because of 3., we don't need a large table of powers of 10
84 *		for ten-to-e (just some small tables, e.g. of 10^k
85 *		for 0 <= k <= 22).
86 */
87
88/*
89 * #define IEEE_8087 for IEEE-arithmetic machines where the least
90 *	significant byte has the lowest address.
91 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
92 *	significant byte has the lowest address.
93 * #define Long int on machines with 32-bit ints and 64-bit longs.
94 * #define Sudden_Underflow for IEEE-format machines without gradual
95 *	underflow (i.e., that flush to zero on underflow).
96 * #define IBM for IBM mainframe-style floating-point arithmetic.
97 * #define VAX for VAX-style floating-point arithmetic (D_floating).
98 * #define No_leftright to omit left-right logic in fast floating-point
99 *	computation of dtoa.
100 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
101 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
102 *	that use extended-precision instructions to compute rounded
103 *	products and quotients) with IBM.
104 * #define ROUND_BIASED for IEEE-format with biased rounding.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.
124 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
125 *	memory allocations from a private pool of memory when possible.
126 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
127 *	unless #defined to be a different length.  This default length
128 *	suffices to get rid of MALLOC calls except for unusual cases,
129 *	such as decimal-to-binary conversion of a very long string of
130 *	digits.  When converting IEEE double precision values, the
131 *	longest string gdtoa can return is about 751 bytes long.  For
132 *	conversions by strtod of strings of 800 digits and all gdtoa
133 *	conversions of IEEE doubles in single-threaded executions with
134 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
135 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
136 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
137 *	Infinity and NaN (case insensitively).  On some systems (e.g.,
138 *	some HP systems), it may be necessary to #define NAN_WORD0
139 *	appropriately -- to the most significant word of a quiet NaN.
140 *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
141 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
142 *	strtodg also accepts (case insensitively) strings of the form
143 *	NaN(x), where x is a string of hexadecimal digits and spaces;
144 *	if there is only one string of hexadecimal digits, it is taken
145 *	for the fraction bits of the resulting NaN; if there are two or
146 *	more strings of hexadecimal digits, each string is assigned
147 *	to the next available sequence of 32-bit words of fractions
148 *	bits (starting with the most significant), right-aligned in
149 *	each sequence.
150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151 *	multiple threads.  In this case, you must provide (or suitably
152 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
154 *	in pow5mult, ensures lazy evaluation of only one copy of high
155 *	powers of 5; omitting this lock would introduce a small
156 *	probability of wasting memory, but would otherwise be harmless.)
157 *	You must also invoke freedtoa(s) to free the value s returned by
158 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
159 * #define IMPRECISE_INEXACT if you do not care about the setting of
160 *	the STRTOG_Inexact bits in the special case of doing IEEE double
161 *	precision conversions (which could also be done by the strtog in
162 *	dtoa.c).
163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164 *	floating-point constants.
165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 *	strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 *	On some K&R systems, it may also be necessary to
169 *	#define DECLARE_SIZE_T in this case.
170 * #define YES_ALIAS to permit aliasing certain double values with
171 *	arrays of ULongs.  This leads to slightly better code with
172 *	some compilers and was always used prior to 19990916, but it
173 *	is not strictly legal and can cause trouble with aggressively
174 *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
175 * #define USE_LOCALE to use the current locale's decimal_point value.
176 */
177
178#ifndef GDTOAIMP_H_INCLUDED
179#define GDTOAIMP_H_INCLUDED
180#include "gdtoa.h"
181
182#ifdef DEBUG
183#include "stdio.h"
184#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
185#endif
186
187#include "limits.h"
188#include "stdlib.h"
189#include "string.h"
190#include "libc_private.h"
191
192#include "namespace.h"
193#include <pthread.h>
194#include "un-namespace.h"
195
196#ifdef KR_headers
197#define Char char
198#else
199#define Char void
200#endif
201
202#ifdef MALLOC
203extern Char *MALLOC ANSI((size_t));
204#else
205#define MALLOC malloc
206#endif
207
208#define INFNAN_CHECK
209#define USE_LOCALE
210#define Honor_FLT_ROUNDS
211
212#undef IEEE_Arith
213#undef Avoid_Underflow
214#ifdef IEEE_MC68k
215#define IEEE_Arith
216#endif
217#ifdef IEEE_8087
218#define IEEE_Arith
219#endif
220
221#include "errno.h"
222#ifdef Bad_float_h
223
224#ifdef IEEE_Arith
225#define DBL_DIG 15
226#define DBL_MAX_10_EXP 308
227#define DBL_MAX_EXP 1024
228#define FLT_RADIX 2
229#define DBL_MAX 1.7976931348623157e+308
230#endif
231
232#ifdef IBM
233#define DBL_DIG 16
234#define DBL_MAX_10_EXP 75
235#define DBL_MAX_EXP 63
236#define FLT_RADIX 16
237#define DBL_MAX 7.2370055773322621e+75
238#endif
239
240#ifdef VAX
241#define DBL_DIG 16
242#define DBL_MAX_10_EXP 38
243#define DBL_MAX_EXP 127
244#define FLT_RADIX 2
245#define DBL_MAX 1.7014118346046923e+38
246#define n_bigtens 2
247#endif
248
249#ifndef LONG_MAX
250#define LONG_MAX 2147483647
251#endif
252
253#else /* ifndef Bad_float_h */
254#include "float.h"
255#endif /* Bad_float_h */
256
257#ifdef IEEE_Arith
258#define Scale_Bit 0x10
259#define n_bigtens 5
260#endif
261
262#ifdef IBM
263#define n_bigtens 3
264#endif
265
266#ifdef VAX
267#define n_bigtens 2
268#endif
269
270#ifndef __MATH_H__
271#include "math.h"
272#endif
273
274#ifdef __cplusplus
275extern "C" {
276#endif
277
278#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
279Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
280#endif
281
282typedef union { double d; ULong L[2]; } U;
283
284#ifdef YES_ALIAS
285#define dval(x) x
286#ifdef IEEE_8087
287#define word0(x) ((ULong *)&x)[1]
288#define word1(x) ((ULong *)&x)[0]
289#else
290#define word0(x) ((ULong *)&x)[0]
291#define word1(x) ((ULong *)&x)[1]
292#endif
293#else /* !YES_ALIAS */
294#ifdef IEEE_8087
295#define word0(x) ((U*)&x)->L[1]
296#define word1(x) ((U*)&x)->L[0]
297#else
298#define word0(x) ((U*)&x)->L[0]
299#define word1(x) ((U*)&x)->L[1]
300#endif
301#define dval(x) ((U*)&x)->d
302#endif /* YES_ALIAS */
303
304/* The following definition of Storeinc is appropriate for MIPS processors.
305 * An alternative that might be better on some machines is
306 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
307 */
308#if defined(IEEE_8087) + defined(VAX)
309#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
310((unsigned short *)a)[0] = (unsigned short)c, a++)
311#else
312#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
313((unsigned short *)a)[1] = (unsigned short)c, a++)
314#endif
315
316/* #define P DBL_MANT_DIG */
317/* Ten_pmax = floor(P*log(2)/log(5)) */
318/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
319/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
320/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
321
322#ifdef IEEE_Arith
323#define Exp_shift  20
324#define Exp_shift1 20
325#define Exp_msk1    0x100000
326#define Exp_msk11   0x100000
327#define Exp_mask  0x7ff00000
328#define P 53
329#define Bias 1023
330#define Emin (-1022)
331#define Exp_1  0x3ff00000
332#define Exp_11 0x3ff00000
333#define Ebits 11
334#define Frac_mask  0xfffff
335#define Frac_mask1 0xfffff
336#define Ten_pmax 22
337#define Bletch 0x10
338#define Bndry_mask  0xfffff
339#define Bndry_mask1 0xfffff
340#define LSB 1
341#define Sign_bit 0x80000000
342#define Log2P 1
343#define Tiny0 0
344#define Tiny1 1
345#define Quick_max 14
346#define Int_max 14
347
348#ifndef Flt_Rounds
349#ifdef FLT_ROUNDS
350#define Flt_Rounds FLT_ROUNDS
351#else
352#define Flt_Rounds 1
353#endif
354#endif /*Flt_Rounds*/
355
356#else /* ifndef IEEE_Arith */
357#undef  Sudden_Underflow
358#define Sudden_Underflow
359#ifdef IBM
360#undef Flt_Rounds
361#define Flt_Rounds 0
362#define Exp_shift  24
363#define Exp_shift1 24
364#define Exp_msk1   0x1000000
365#define Exp_msk11  0x1000000
366#define Exp_mask  0x7f000000
367#define P 14
368#define Bias 65
369#define Exp_1  0x41000000
370#define Exp_11 0x41000000
371#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
372#define Frac_mask  0xffffff
373#define Frac_mask1 0xffffff
374#define Bletch 4
375#define Ten_pmax 22
376#define Bndry_mask  0xefffff
377#define Bndry_mask1 0xffffff
378#define LSB 1
379#define Sign_bit 0x80000000
380#define Log2P 4
381#define Tiny0 0x100000
382#define Tiny1 0
383#define Quick_max 14
384#define Int_max 15
385#else /* VAX */
386#undef Flt_Rounds
387#define Flt_Rounds 1
388#define Exp_shift  23
389#define Exp_shift1 7
390#define Exp_msk1    0x80
391#define Exp_msk11   0x800000
392#define Exp_mask  0x7f80
393#define P 56
394#define Bias 129
395#define Exp_1  0x40800000
396#define Exp_11 0x4080
397#define Ebits 8
398#define Frac_mask  0x7fffff
399#define Frac_mask1 0xffff007f
400#define Ten_pmax 24
401#define Bletch 2
402#define Bndry_mask  0xffff007f
403#define Bndry_mask1 0xffff007f
404#define LSB 0x10000
405#define Sign_bit 0x8000
406#define Log2P 1
407#define Tiny0 0x80
408#define Tiny1 0
409#define Quick_max 15
410#define Int_max 15
411#endif /* IBM, VAX */
412#endif /* IEEE_Arith */
413
414#ifndef IEEE_Arith
415#define ROUND_BIASED
416#endif
417
418#ifdef RND_PRODQUOT
419#define rounded_product(a,b) a = rnd_prod(a, b)
420#define rounded_quotient(a,b) a = rnd_quot(a, b)
421#ifdef KR_headers
422extern double rnd_prod(), rnd_quot();
423#else
424extern double rnd_prod(double, double), rnd_quot(double, double);
425#endif
426#else
427#define rounded_product(a,b) a *= b
428#define rounded_quotient(a,b) a /= b
429#endif
430
431#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
432#define Big1 0xffffffff
433
434#undef  Pack_16
435#ifndef Pack_32
436#define Pack_32
437#endif
438
439#ifdef NO_LONG_LONG
440#undef ULLong
441#ifdef Just_16
442#undef Pack_32
443#define Pack_16
444/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
445 * This makes some inner loops simpler and sometimes saves work
446 * during multiplications, but it often seems to make things slightly
447 * slower.  Hence the default is now to store 32 bits per Long.
448 */
449#endif
450#else	/* long long available */
451#ifndef Llong
452#define Llong long long
453#endif
454#ifndef ULLong
455#define ULLong unsigned Llong
456#endif
457#endif /* NO_LONG_LONG */
458
459#ifdef Pack_32
460#define ULbits 32
461#define kshift 5
462#define kmask 31
463#define ALL_ON 0xffffffff
464#else
465#define ULbits 16
466#define kshift 4
467#define kmask 15
468#define ALL_ON 0xffff
469#endif
470
471#define MULTIPLE_THREADS
472extern pthread_mutex_t __gdtoa_locks[2];
473#define ACQUIRE_DTOA_LOCK(n)	do {				\
474	if (__isthreaded)					\
475		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
476} while(0)
477#define FREE_DTOA_LOCK(n)	do {				\
478	if (__isthreaded)					\
479		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
480} while(0)
481
482#define Kmax 15
483
484 struct
485Bigint {
486	struct Bigint *next;
487	int k, maxwds, sign, wds;
488	ULong x[1];
489	};
490
491 typedef struct Bigint Bigint;
492
493#ifdef NO_STRING_H
494#ifdef DECLARE_SIZE_T
495typedef unsigned int size_t;
496#endif
497extern void memcpy_D2A ANSI((void*, const void*, size_t));
498#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
499#else /* !NO_STRING_H */
500#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
501#endif /* NO_STRING_H */
502
503/*
504 * Paranoia: Protect exported symbols, including ones in files we don't
505 * compile right now.  The standard strtof and strtod survive.
506 */
507#define	dtoa		__dtoa
508#define	gdtoa		__gdtoa
509#define	freedtoa	__freedtoa
510#define	strtodg		__strtodg
511#define	g_ddfmt		__g_ddfmt
512#define	g_dfmt		__g_dfmt
513#define	g_ffmt		__g_ffmt
514#define	g_Qfmt		__g_Qfmt
515#define	g_xfmt		__g_xfmt
516#define	g_xLfmt		__g_xLfmt
517#define	strtoId		__strtoId
518#define	strtoIdd	__strtoIdd
519#define	strtoIf		__strtoIf
520#define	strtoIQ		__strtoIQ
521#define	strtoIx		__strtoIx
522#define	strtoIxL	__strtoIxL
523#define	strtord		__strtord
524#define	strtordd	__strtordd
525#define	strtorf		__strtorf
526#define	strtorQ		__strtorQ
527#define	strtorx		__strtorx
528#define	strtorxL	__strtorxL
529#define	strtodI		__strtodI
530#define	strtopd		__strtopd
531#define	strtopdd	__strtopdd
532#define	strtopf		__strtopf
533#define	strtopQ		__strtopQ
534#define	strtopx		__strtopx
535#define	strtopxL	__strtopxL
536
537/* Protect gdtoa-internal symbols */
538#define	Balloc		__Balloc_D2A
539#define	Bfree		__Bfree_D2A
540#define	ULtoQ		__ULtoQ_D2A
541#define	ULtof		__ULtof_D2A
542#define	ULtod		__ULtod_D2A
543#define	ULtodd		__ULtodd_D2A
544#define	ULtox		__ULtox_D2A
545#define	ULtoxL		__ULtoxL_D2A
546#define	any_on		__any_on_D2A
547#define	b2d		__b2d_D2A
548#define	bigtens		__bigtens_D2A
549#define	cmp		__cmp_D2A
550#define	copybits	__copybits_D2A
551#define	d2b		__d2b_D2A
552#define	decrement	__decrement_D2A
553#define	diff		__diff_D2A
554#define	dtoa_result	__dtoa_result_D2A
555#define	g__fmt		__g__fmt_D2A
556#define	gethex		__gethex_D2A
557#define	hexdig		__hexdig_D2A
558#define	hexdig_init_D2A	__hexdig_init_D2A
559#define	hexnan		__hexnan_D2A
560#define	hi0bits		__hi0bits_D2A
561#define	i2b		__i2b_D2A
562#define	increment	__increment_D2A
563#define	lo0bits		__lo0bits_D2A
564#define	lshift		__lshift_D2A
565#define	match		__match_D2A
566#define	mult		__mult_D2A
567#define	multadd		__multadd_D2A
568#define	nrv_alloc	__nrv_alloc_D2A
569#define	pow5mult	__pow5mult_D2A
570#define	quorem		__quorem_D2A
571#define	ratio		__ratio_D2A
572#define	rshift		__rshift_D2A
573#define	rv_alloc	__rv_alloc_D2A
574#define	s2b		__s2b_D2A
575#define	set_ones	__set_ones_D2A
576#define	strcp		__strcp_D2A
577#define	strcp_D2A      	__strcp_D2A
578#define	strtoIg		__strtoIg_D2A
579#define	sum		__sum_D2A
580#define	tens		__tens_D2A
581#define	tinytens	__tinytens_D2A
582#define	tinytens	__tinytens_D2A
583#define	trailz		__trailz_D2A
584#define	ulp		__ulp_D2A
585
586 extern char *dtoa_result;
587 extern CONST double bigtens[], tens[], tinytens[];
588 extern unsigned char hexdig[];
589
590 extern Bigint *Balloc ANSI((int));
591 extern void Bfree ANSI((Bigint*));
592 extern void ULtof ANSI((ULong*, ULong*, Long, int));
593 extern void ULtod ANSI((ULong*, ULong*, Long, int));
594 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
595 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
596 extern void ULtox ANSI((UShort*, ULong*, Long, int));
597 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
598 extern ULong any_on ANSI((Bigint*, int));
599 extern double b2d ANSI((Bigint*, int*));
600 extern int cmp ANSI((Bigint*, Bigint*));
601 extern void copybits ANSI((ULong*, int, Bigint*));
602 extern Bigint *d2b ANSI((double, int*, int*));
603 extern int decrement ANSI((Bigint*));
604 extern Bigint *diff ANSI((Bigint*, Bigint*));
605 extern char *dtoa ANSI((double d, int mode, int ndigits,
606			int *decpt, int *sign, char **rve));
607 extern void freedtoa ANSI((char*));
608 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
609			  int mode, int ndigits, int *decpt, char **rve));
610 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
611 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
612 extern void hexdig_init_D2A(Void);
613 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
614 extern int hi0bits ANSI((ULong));
615 extern Bigint *i2b ANSI((int));
616 extern Bigint *increment ANSI((Bigint*));
617 extern int lo0bits ANSI((ULong*));
618 extern Bigint *lshift ANSI((Bigint*, int));
619 extern int match ANSI((CONST char**, char*));
620 extern Bigint *mult ANSI((Bigint*, Bigint*));
621 extern Bigint *multadd ANSI((Bigint*, int, int));
622 extern char *nrv_alloc ANSI((char*, char **, int));
623 extern Bigint *pow5mult ANSI((Bigint*, int));
624 extern int quorem ANSI((Bigint*, Bigint*));
625 extern double ratio ANSI((Bigint*, Bigint*));
626 extern void rshift ANSI((Bigint*, int));
627 extern char *rv_alloc ANSI((int));
628 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
629 extern Bigint *set_ones ANSI((Bigint*, int));
630 extern char *strcp ANSI((char*, const char*));
631 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*));
632
633 extern int strtoId ANSI((CONST char *, char **, double *, double *));
634 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
635 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
636 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
637 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
638 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
639 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
640 extern double strtod ANSI((const char *s00, char **se));
641 extern int strtopQ ANSI((CONST char *, char **, Void *));
642 extern int strtopf ANSI((CONST char *, char **, float *));
643 extern int strtopd ANSI((CONST char *, char **, double *));
644 extern int strtopdd ANSI((CONST char *, char **, double *));
645 extern int strtopx ANSI((CONST char *, char **, Void *));
646 extern int strtopxL ANSI((CONST char *, char **, Void *));
647 extern int strtord ANSI((CONST char *, char **, int, double *));
648 extern int strtordd ANSI((CONST char *, char **, int, double *));
649 extern int strtorf ANSI((CONST char *, char **, int, float *));
650 extern int strtorQ ANSI((CONST char *, char **, int, void *));
651 extern int strtorx ANSI((CONST char *, char **, int, void *));
652 extern int strtorxL ANSI((CONST char *, char **, int, void *));
653 extern Bigint *sum ANSI((Bigint*, Bigint*));
654 extern int trailz ANSI((Bigint*));
655 extern double ulp ANSI((double));
656
657#ifdef __cplusplus
658}
659#endif
660
661
662#ifdef IEEE_Arith
663#ifdef IEEE_MC68k
664#define _0 0
665#define _1 1
666#else
667#define _0 1
668#define _1 0
669#endif
670#else
671#undef INFNAN_CHECK
672#endif
673
674#ifdef INFNAN_CHECK
675
676#ifndef NAN_WORD0
677#define NAN_WORD0 0x7ff80000
678#endif
679
680#ifndef NAN_WORD1
681#define NAN_WORD1 0
682#endif
683#endif	/* INFNAN_CHECK */
684
685#undef SI
686#ifdef Sudden_Underflow
687#define SI 1
688#else
689#define SI 0
690#endif
691
692#endif /* GDTOAIMP_H_INCLUDED */
693