gdtoaimp.h revision 116652
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 116652 2003-06-21 08:20:14Z das $ */
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to
39	David M. Gay
40	Bell Laboratories, Room 2C-463
41	600 Mountain Avenue
42	Murray Hill, NJ 07974-0636
43	U.S.A.
44	dmg@bell-labs.com
45 */
46
47/* On a machine with IEEE extended-precision registers, it is
48 * necessary to specify double-precision (53-bit) rounding precision
49 * before invoking strtod or dtoa.  If the machine uses (the equivalent
50 * of) Intel 80x87 arithmetic, the call
51 *	_control87(PC_53, MCW_PC);
52 * does this with many compilers.  Whether this or another call is
53 * appropriate depends on the compiler; for this to work, it may be
54 * necessary to #include "float.h" or another system-dependent header
55 * file.
56 */
57
58/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
59 *
60 * This strtod returns a nearest machine number to the input decimal
61 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
62 * broken by the IEEE round-even rule.  Otherwise ties are broken by
63 * biased rounding (add half and chop).
64 *
65 * Inspired loosely by William D. Clinger's paper "How to Read Floating
66 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
67 *
68 * Modifications:
69 *
70 *	1. We only require IEEE, IBM, or VAX double-precision
71 *		arithmetic (not IEEE double-extended).
72 *	2. We get by with floating-point arithmetic in a case that
73 *		Clinger missed -- when we're computing d * 10^n
74 *		for a small integer d and the integer n is not too
75 *		much larger than 22 (the maximum integer k for which
76 *		we can represent 10^k exactly), we may be able to
77 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
78 *	3. Rather than a bit-at-a-time adjustment of the binary
79 *		result in the hard case, we use floating-point
80 *		arithmetic to determine the adjustment to within
81 *		one bit; only in really hard cases do we need to
82 *		compute a second residual.
83 *	4. Because of 3., we don't need a large table of powers of 10
84 *		for ten-to-e (just some small tables, e.g. of 10^k
85 *		for 0 <= k <= 22).
86 */
87
88/*
89 * #define IEEE_8087 for IEEE-arithmetic machines where the least
90 *	significant byte has the lowest address.
91 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
92 *	significant byte has the lowest address.
93 * #define Long int on machines with 32-bit ints and 64-bit longs.
94 * #define Sudden_Underflow for IEEE-format machines without gradual
95 *	underflow (i.e., that flush to zero on underflow).
96 * #define IBM for IBM mainframe-style floating-point arithmetic.
97 * #define VAX for VAX-style floating-point arithmetic (D_floating).
98 * #define No_leftright to omit left-right logic in fast floating-point
99 *	computation of dtoa.
100 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
101 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
102 *	that use extended-precision instructions to compute rounded
103 *	products and quotients) with IBM.
104 * #define ROUND_BIASED for IEEE-format with biased rounding.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.
124 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
125 *	memory allocations from a private pool of memory when possible.
126 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
127 *	unless #defined to be a different length.  This default length
128 *	suffices to get rid of MALLOC calls except for unusual cases,
129 *	such as decimal-to-binary conversion of a very long string of
130 *	digits.  When converting IEEE double precision values, the
131 *	longest string gdtoa can return is about 751 bytes long.  For
132 *	conversions by strtod of strings of 800 digits and all gdtoa
133 *	conversions of IEEE doubles in single-threaded executions with
134 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
135 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
136 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
137 *	Infinity and NaN (case insensitively).  On some systems (e.g.,
138 *	some HP systems), it may be necessary to #define NAN_WORD0
139 *	appropriately -- to the most significant word of a quiet NaN.
140 *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
141 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
142 *	strtodg also accepts (case insensitively) strings of the form
143 *	NaN(x), where x is a string of hexadecimal digits and spaces;
144 *	if there is only one string of hexadecimal digits, it is taken
145 *	for the fraction bits of the resulting NaN; if there are two or
146 *	more strings of hexadecimal digits, each string is assigned
147 *	to the next available sequence of 32-bit words of fractions
148 *	bits (starting with the most significant), right-aligned in
149 *	each sequence.
150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151 *	multiple threads.  In this case, you must provide (or suitably
152 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
154 *	in pow5mult, ensures lazy evaluation of only one copy of high
155 *	powers of 5; omitting this lock would introduce a small
156 *	probability of wasting memory, but would otherwise be harmless.)
157 *	You must also invoke freedtoa(s) to free the value s returned by
158 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
159 * #define IMPRECISE_INEXACT if you do not care about the setting of
160 *	the STRTOG_Inexact bits in the special case of doing IEEE double
161 *	precision conversions (which could also be done by the strtog in
162 *	dtoa.c).
163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164 *	floating-point constants.
165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 *	strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 *	On some K&R systems, it may also be necessary to
169 *	#define DECLARE_SIZE_T in this case.
170 * #define YES_ALIAS to permit aliasing certain double values with
171 *	arrays of ULongs.  This leads to slightly better code with
172 *	some compilers and was always used prior to 19990916, but it
173 *	is not strictly legal and can cause trouble with aggressively
174 *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
175 * #define USE_LOCALE to use the current locale's decimal_point value.
176 */
177
178#ifndef GDTOAIMP_H_INCLUDED
179#define GDTOAIMP_H_INCLUDED
180#include "gdtoa.h"
181
182#ifdef DEBUG
183#include "stdio.h"
184#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
185#endif
186
187#include "limits.h"
188#include "stdlib.h"
189#include "string.h"
190#include "libc_private.h"
191
192#include "namespace.h"
193#include <pthread.h>
194#include "un-namespace.h"
195
196#ifdef KR_headers
197#define Char char
198#else
199#define Char void
200#endif
201
202#ifdef MALLOC
203extern Char *MALLOC ANSI((size_t));
204#else
205#define MALLOC malloc
206#endif
207
208#define INFNAN_CHECK
209#define USE_LOCALE
210
211#undef IEEE_Arith
212#undef Avoid_Underflow
213#ifdef IEEE_MC68k
214#define IEEE_Arith
215#endif
216#ifdef IEEE_8087
217#define IEEE_Arith
218#endif
219
220#include "errno.h"
221#ifdef Bad_float_h
222
223#ifdef IEEE_Arith
224#define DBL_DIG 15
225#define DBL_MAX_10_EXP 308
226#define DBL_MAX_EXP 1024
227#define FLT_RADIX 2
228#define DBL_MAX 1.7976931348623157e+308
229#endif
230
231#ifdef IBM
232#define DBL_DIG 16
233#define DBL_MAX_10_EXP 75
234#define DBL_MAX_EXP 63
235#define FLT_RADIX 16
236#define DBL_MAX 7.2370055773322621e+75
237#endif
238
239#ifdef VAX
240#define DBL_DIG 16
241#define DBL_MAX_10_EXP 38
242#define DBL_MAX_EXP 127
243#define FLT_RADIX 2
244#define DBL_MAX 1.7014118346046923e+38
245#define n_bigtens 2
246#endif
247
248#ifndef LONG_MAX
249#define LONG_MAX 2147483647
250#endif
251
252#else /* ifndef Bad_float_h */
253#include "float.h"
254#endif /* Bad_float_h */
255
256#ifdef IEEE_Arith
257#define Scale_Bit 0x10
258#define n_bigtens 5
259#endif
260
261#ifdef IBM
262#define n_bigtens 3
263#endif
264
265#ifdef VAX
266#define n_bigtens 2
267#endif
268
269#ifndef __MATH_H__
270#include "math.h"
271#endif
272
273#ifdef __cplusplus
274extern "C" {
275#endif
276
277#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
278Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
279#endif
280
281typedef union { double d; ULong L[2]; } U;
282
283#ifdef YES_ALIAS
284#define dval(x) x
285#ifdef IEEE_8087
286#define word0(x) ((ULong *)&x)[1]
287#define word1(x) ((ULong *)&x)[0]
288#else
289#define word0(x) ((ULong *)&x)[0]
290#define word1(x) ((ULong *)&x)[1]
291#endif
292#else /* !YES_ALIAS */
293#ifdef IEEE_8087
294#define word0(x) ((U*)&x)->L[1]
295#define word1(x) ((U*)&x)->L[0]
296#else
297#define word0(x) ((U*)&x)->L[0]
298#define word1(x) ((U*)&x)->L[1]
299#endif
300#define dval(x) ((U*)&x)->d
301#endif /* YES_ALIAS */
302
303/* The following definition of Storeinc is appropriate for MIPS processors.
304 * An alternative that might be better on some machines is
305 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
306 */
307#if defined(IEEE_8087) + defined(VAX)
308#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
309((unsigned short *)a)[0] = (unsigned short)c, a++)
310#else
311#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
312((unsigned short *)a)[1] = (unsigned short)c, a++)
313#endif
314
315/* #define P DBL_MANT_DIG */
316/* Ten_pmax = floor(P*log(2)/log(5)) */
317/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
318/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
319/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
320
321#ifdef IEEE_Arith
322#define Exp_shift  20
323#define Exp_shift1 20
324#define Exp_msk1    0x100000
325#define Exp_msk11   0x100000
326#define Exp_mask  0x7ff00000
327#define P 53
328#define Bias 1023
329#define Emin (-1022)
330#define Exp_1  0x3ff00000
331#define Exp_11 0x3ff00000
332#define Ebits 11
333#define Frac_mask  0xfffff
334#define Frac_mask1 0xfffff
335#define Ten_pmax 22
336#define Bletch 0x10
337#define Bndry_mask  0xfffff
338#define Bndry_mask1 0xfffff
339#define LSB 1
340#define Sign_bit 0x80000000
341#define Log2P 1
342#define Tiny0 0
343#define Tiny1 1
344#define Quick_max 14
345#define Int_max 14
346
347#ifndef Flt_Rounds
348#ifdef FLT_ROUNDS
349#define Flt_Rounds FLT_ROUNDS
350#else
351#define Flt_Rounds 1
352#endif
353#endif /*Flt_Rounds*/
354
355#else /* ifndef IEEE_Arith */
356#undef  Sudden_Underflow
357#define Sudden_Underflow
358#ifdef IBM
359#undef Flt_Rounds
360#define Flt_Rounds 0
361#define Exp_shift  24
362#define Exp_shift1 24
363#define Exp_msk1   0x1000000
364#define Exp_msk11  0x1000000
365#define Exp_mask  0x7f000000
366#define P 14
367#define Bias 65
368#define Exp_1  0x41000000
369#define Exp_11 0x41000000
370#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
371#define Frac_mask  0xffffff
372#define Frac_mask1 0xffffff
373#define Bletch 4
374#define Ten_pmax 22
375#define Bndry_mask  0xefffff
376#define Bndry_mask1 0xffffff
377#define LSB 1
378#define Sign_bit 0x80000000
379#define Log2P 4
380#define Tiny0 0x100000
381#define Tiny1 0
382#define Quick_max 14
383#define Int_max 15
384#else /* VAX */
385#undef Flt_Rounds
386#define Flt_Rounds 1
387#define Exp_shift  23
388#define Exp_shift1 7
389#define Exp_msk1    0x80
390#define Exp_msk11   0x800000
391#define Exp_mask  0x7f80
392#define P 56
393#define Bias 129
394#define Exp_1  0x40800000
395#define Exp_11 0x4080
396#define Ebits 8
397#define Frac_mask  0x7fffff
398#define Frac_mask1 0xffff007f
399#define Ten_pmax 24
400#define Bletch 2
401#define Bndry_mask  0xffff007f
402#define Bndry_mask1 0xffff007f
403#define LSB 0x10000
404#define Sign_bit 0x8000
405#define Log2P 1
406#define Tiny0 0x80
407#define Tiny1 0
408#define Quick_max 15
409#define Int_max 15
410#endif /* IBM, VAX */
411#endif /* IEEE_Arith */
412
413#ifndef IEEE_Arith
414#define ROUND_BIASED
415#endif
416
417#ifdef RND_PRODQUOT
418#define rounded_product(a,b) a = rnd_prod(a, b)
419#define rounded_quotient(a,b) a = rnd_quot(a, b)
420#ifdef KR_headers
421extern double rnd_prod(), rnd_quot();
422#else
423extern double rnd_prod(double, double), rnd_quot(double, double);
424#endif
425#else
426#define rounded_product(a,b) a *= b
427#define rounded_quotient(a,b) a /= b
428#endif
429
430#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
431#define Big1 0xffffffff
432
433#undef  Pack_16
434#ifndef Pack_32
435#define Pack_32
436#endif
437
438#ifdef NO_LONG_LONG
439#undef ULLong
440#ifdef Just_16
441#undef Pack_32
442#define Pack_16
443/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
444 * This makes some inner loops simpler and sometimes saves work
445 * during multiplications, but it often seems to make things slightly
446 * slower.  Hence the default is now to store 32 bits per Long.
447 */
448#endif
449#else	/* long long available */
450#ifndef Llong
451#define Llong long long
452#endif
453#ifndef ULLong
454#define ULLong unsigned Llong
455#endif
456#endif /* NO_LONG_LONG */
457
458#ifdef Pack_32
459#define ULbits 32
460#define kshift 5
461#define kmask 31
462#define ALL_ON 0xffffffff
463#else
464#define ULbits 16
465#define kshift 4
466#define kmask 15
467#define ALL_ON 0xffff
468#endif
469
470#define MULTIPLE_THREADS
471extern pthread_mutex_t __gdtoa_locks[2];
472#define ACQUIRE_DTOA_LOCK(n)	do {				\
473	if (__isthreaded)					\
474		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
475} while(0)
476#define FREE_DTOA_LOCK(n)	do {				\
477	if (__isthreaded)					\
478		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
479} while(0)
480
481#define Kmax 15
482
483 struct
484Bigint {
485	struct Bigint *next;
486	int k, maxwds, sign, wds;
487	ULong x[1];
488	};
489
490 typedef struct Bigint Bigint;
491
492#ifdef NO_STRING_H
493#ifdef DECLARE_SIZE_T
494typedef unsigned int size_t;
495#endif
496extern void memcpy_D2A ANSI((void*, const void*, size_t));
497#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
498#else /* !NO_STRING_H */
499#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
500#endif /* NO_STRING_H */
501
502/*
503 * Paranoia: Protect exported symbols, including ones in files we don't
504 * compile right now.  The standard strtof and strtod survive.
505 */
506#define	dtoa		__dtoa
507#define	gdtoa		__gdtoa
508#define	freedtoa	__freedtoa
509#define	strtodg		__strtodg
510#define	g_ddfmt		__g_ddfmt
511#define	g_dfmt		__g_dfmt
512#define	g_ffmt		__g_ffmt
513#define	g_Qfmt		__g_Qfmt
514#define	g_xfmt		__g_xfmt
515#define	g_xLfmt		__g_xLfmt
516#define	strtoId		__strtoId
517#define	strtoIdd	__strtoIdd
518#define	strtoIf		__strtoIf
519#define	strtoIQ		__strtoIQ
520#define	strtoIx		__strtoIx
521#define	strtoIxL	__strtoIxL
522#define	strtord		__strtord
523#define	strtordd	__strtordd
524#define	strtorf		__strtorf
525#define	strtorQ		__strtorQ
526#define	strtorx		__strtorx
527#define	strtorxL	__strtorxL
528#define	strtodI		__strtodI
529#define	strtopd		__strtopd
530#define	strtopdd	__strtopdd
531#define	strtopf		__strtopf
532#define	strtopQ		__strtopQ
533#define	strtopx		__strtopx
534#define	strtopxL	__strtopxL
535
536/* Protect gdtoa-internal symbols */
537#define	Balloc		__Balloc_D2A
538#define	Bfree		__Bfree_D2A
539#define	ULtoQ		__ULtoQ_D2A
540#define	ULtof		__ULtof_D2A
541#define	ULtod		__ULtod_D2A
542#define	ULtodd		__ULtodd_D2A
543#define	ULtox		__ULtox_D2A
544#define	ULtoxL		__ULtoxL_D2A
545#define	any_on		__any_on_D2A
546#define	b2d		__b2d_D2A
547#define	bigtens		__bigtens_D2A
548#define	cmp		__cmp_D2A
549#define	copybits	__copybits_D2A
550#define	d2b		__d2b_D2A
551#define	decrement	__decrement_D2A
552#define	diff		__diff_D2A
553#define	dtoa_result	__dtoa_result_D2A
554#define	g__fmt		__g__fmt_D2A
555#define	gethex		__gethex_D2A
556#define	hexdig		__hexdig_D2A
557#define	hexdig_init_D2A	__hexdig_init_D2A
558#define	hexnan		__hexnan_D2A
559#define	hi0bits		__hi0bits_D2A
560#define	i2b		__i2b_D2A
561#define	increment	__increment_D2A
562#define	lo0bits		__lo0bits_D2A
563#define	lshift		__lshift_D2A
564#define	match		__match_D2A
565#define	mult		__mult_D2A
566#define	multadd		__multadd_D2A
567#define	nrv_alloc	__nrv_alloc_D2A
568#define	pow5mult	__pow5mult_D2A
569#define	quorem		__quorem_D2A
570#define	ratio		__ratio_D2A
571#define	rshift		__rshift_D2A
572#define	rv_alloc	__rv_alloc_D2A
573#define	s2b		__s2b_D2A
574#define	set_ones	__set_ones_D2A
575#define	strcp		__strcp_D2A
576#define	strcp_D2A      	__strcp_D2A
577#define	strtoIg		__strtoIg_D2A
578#define	sum		__sum_D2A
579#define	tens		__tens_D2A
580#define	tinytens	__tinytens_D2A
581#define	tinytens	__tinytens_D2A
582#define	trailz		__trailz_D2A
583#define	ulp		__ulp_D2A
584
585 extern char *dtoa_result;
586 extern CONST double bigtens[], tens[], tinytens[];
587 extern unsigned char hexdig[];
588
589 extern Bigint *Balloc ANSI((int));
590 extern void Bfree ANSI((Bigint*));
591 extern void ULtof ANSI((ULong*, ULong*, Long, int));
592 extern void ULtod ANSI((ULong*, ULong*, Long, int));
593 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
594 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
595 extern void ULtox ANSI((UShort*, ULong*, Long, int));
596 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
597 extern ULong any_on ANSI((Bigint*, int));
598 extern double b2d ANSI((Bigint*, int*));
599 extern int cmp ANSI((Bigint*, Bigint*));
600 extern void copybits ANSI((ULong*, int, Bigint*));
601 extern Bigint *d2b ANSI((double, int*, int*));
602 extern int decrement ANSI((Bigint*));
603 extern Bigint *diff ANSI((Bigint*, Bigint*));
604 extern char *dtoa ANSI((double d, int mode, int ndigits,
605			int *decpt, int *sign, char **rve));
606 extern void freedtoa ANSI((char*));
607 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
608			  int mode, int ndigits, int *decpt, char **rve));
609 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
610 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
611 extern void hexdig_init_D2A(Void);
612 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
613 extern int hi0bits ANSI((ULong));
614 extern Bigint *i2b ANSI((int));
615 extern Bigint *increment ANSI((Bigint*));
616 extern int lo0bits ANSI((ULong*));
617 extern Bigint *lshift ANSI((Bigint*, int));
618 extern int match ANSI((CONST char**, char*));
619 extern Bigint *mult ANSI((Bigint*, Bigint*));
620 extern Bigint *multadd ANSI((Bigint*, int, int));
621 extern char *nrv_alloc ANSI((char*, char **, int));
622 extern Bigint *pow5mult ANSI((Bigint*, int));
623 extern int quorem ANSI((Bigint*, Bigint*));
624 extern double ratio ANSI((Bigint*, Bigint*));
625 extern void rshift ANSI((Bigint*, int));
626 extern char *rv_alloc ANSI((int));
627 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
628 extern Bigint *set_ones ANSI((Bigint*, int));
629 extern char *strcp ANSI((char*, const char*));
630 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*));
631
632 extern int strtoId ANSI((CONST char *, char **, double *, double *));
633 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
634 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
635 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
636 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
637 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
638 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
639 extern double strtod ANSI((const char *s00, char **se));
640 extern int strtopQ ANSI((CONST char *, char **, Void *));
641 extern int strtopf ANSI((CONST char *, char **, float *));
642 extern int strtopd ANSI((CONST char *, char **, double *));
643 extern int strtopdd ANSI((CONST char *, char **, double *));
644 extern int strtopx ANSI((CONST char *, char **, Void *));
645 extern int strtopxL ANSI((CONST char *, char **, Void *));
646 extern int strtord ANSI((CONST char *, char **, int, double *));
647 extern int strtordd ANSI((CONST char *, char **, int, double *));
648 extern int strtorf ANSI((CONST char *, char **, int, float *));
649 extern int strtorQ ANSI((CONST char *, char **, int, void *));
650 extern int strtorx ANSI((CONST char *, char **, int, void *));
651 extern int strtorxL ANSI((CONST char *, char **, int, void *));
652 extern Bigint *sum ANSI((Bigint*, Bigint*));
653 extern int trailz ANSI((Bigint*));
654 extern double ulp ANSI((double));
655
656#ifdef __cplusplus
657}
658#endif
659
660
661#ifdef IEEE_Arith
662#ifdef IEEE_MC68k
663#define _0 0
664#define _1 1
665#else
666#define _0 1
667#define _1 0
668#endif
669#else
670#undef INFNAN_CHECK
671#endif
672
673#ifdef INFNAN_CHECK
674
675#ifndef NAN_WORD0
676#define NAN_WORD0 0x7ff80000
677#endif
678
679#ifndef NAN_WORD1
680#define NAN_WORD1 0
681#endif
682#endif	/* INFNAN_CHECK */
683
684#undef SI
685#ifdef Sudden_Underflow
686#define SI 1
687#else
688#define SI 0
689#endif
690
691#endif /* GDTOAIMP_H_INCLUDED */
692