gdtoaimp.h revision 112418
1218887Sdim/****************************************************************
2218887Sdim
3218887SdimThe author of this software is David M. Gay.
4218887Sdim
5218887SdimCopyright (C) 1998-2000 by Lucent Technologies
6218887SdimAll Rights Reserved
7218887Sdim
8218887SdimPermission to use, copy, modify, and distribute this software and
9218887Sdimits documentation for any purpose and without fee is hereby
10218887Sdimgranted, provided that the above copyright notice appear in all
11218887Sdimcopies and that both that the copyright notice and this
12218887Sdimpermission notice and warranty disclaimer appear in supporting
13218887Sdimdocumentation, and that the name of Lucent or any of its entities
14218887Sdimnot be used in advertising or publicity pertaining to
15280031Sdimdistribution of the software without specific, written prior
16280031Sdimpermission.
17218887Sdim
18327952SdimLUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19243830SdimINCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20218887SdimIN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21218887SdimSPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22239462SdimWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23218887SdimIN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24218887SdimARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25218887SdimTHIS SOFTWARE.
26280031Sdim
27280031Sdim****************************************************************/
28218887Sdim
29218887Sdim/* $FreeBSD: head/contrib/gdtoa/gdtoaimp.h 112418 2003-03-19 20:25:45Z das $ */
30218887Sdim
31218887Sdim/* This is a variation on dtoa.c that converts arbitary binary
32234353Sdim   floating-point formats to and from decimal notation.  It uses
33234353Sdim   double-precision arithmetic internally, so there are still
34218887Sdim   various #ifdefs that adapt the calculations to the native
35218887Sdim   double-precision arithmetic (any of IEEE, VAX D_floating,
36226633Sdim   or IBM mainframe arithmetic).
37234353Sdim
38239462Sdim   Please send bug reports to
39218887Sdim	David M. Gay
40218887Sdim	Bell Laboratories, Room 2C-463
41218887Sdim	600 Mountain Avenue
42218887Sdim	Murray Hill, NJ 07974-0636
43218887Sdim	U.S.A.
44218887Sdim	dmg@bell-labs.com
45218887Sdim */
46218887Sdim
47243830Sdim/* On a machine with IEEE extended-precision registers, it is
48341825Sdim * necessary to specify double-precision (53-bit) rounding precision
49239462Sdim * before invoking strtod or dtoa.  If the machine uses (the equivalent
50239462Sdim * of) Intel 80x87 arithmetic, the call
51239462Sdim *	_control87(PC_53, MCW_PC);
52218887Sdim * does this with many compilers.  Whether this or another call is
53341825Sdim * appropriate depends on the compiler; for this to work, it may be
54218887Sdim * necessary to #include "float.h" or another system-dependent header
55280031Sdim * file.
56280031Sdim */
57218887Sdim
58288943Sdim/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
59288943Sdim *
60218887Sdim * This strtod returns a nearest machine number to the input decimal
61218887Sdim * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
62218887Sdim * broken by the IEEE round-even rule.  Otherwise ties are broken by
63341825Sdim * biased rounding (add half and chop).
64234353Sdim *
65218887Sdim * Inspired loosely by William D. Clinger's paper "How to Read Floating
66218887Sdim * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
67218887Sdim *
68218887Sdim * Modifications:
69218887Sdim *
70218887Sdim *	1. We only require IEEE, IBM, or VAX double-precision
71276479Sdim *		arithmetic (not IEEE double-extended).
72276479Sdim *	2. We get by with floating-point arithmetic in a case that
73261991Sdim *		Clinger missed -- when we're computing d * 10^n
74261991Sdim *		for a small integer d and the integer n is not too
75218887Sdim *		much larger than 22 (the maximum integer k for which
76218887Sdim *		we can represent 10^k exactly), we may be able to
77218887Sdim *		compute (d*10^k) * 10^(e-k) with just one roundoff.
78218887Sdim *	3. Rather than a bit-at-a-time adjustment of the binary
79218887Sdim *		result in the hard case, we use floating-point
80218887Sdim *		arithmetic to determine the adjustment to within
81218887Sdim *		one bit; only in really hard cases do we need to
82276479Sdim *		compute a second residual.
83218887Sdim *	4. Because of 3., we don't need a large table of powers of 10
84218887Sdim *		for ten-to-e (just some small tables, e.g. of 10^k
85218887Sdim *		for 0 <= k <= 22).
86276479Sdim */
87218887Sdim
88218887Sdim/*
89218887Sdim * #define IEEE_8087 for IEEE-arithmetic machines where the least
90276479Sdim *	significant byte has the lowest address.
91218887Sdim * #define IEEE_MC68k for IEEE-arithmetic machines where the most
92218887Sdim *	significant byte has the lowest address.
93218887Sdim * #define Long int on machines with 32-bit ints and 64-bit longs.
94234353Sdim * #define Sudden_Underflow for IEEE-format machines without gradual
95234353Sdim *	underflow (i.e., that flush to zero on underflow).
96218887Sdim * #define IBM for IBM mainframe-style floating-point arithmetic.
97218887Sdim * #define VAX for VAX-style floating-point arithmetic (D_floating).
98276479Sdim * #define No_leftright to omit left-right logic in fast floating-point
99239462Sdim *	computation of dtoa.
100218887Sdim * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
101218887Sdim * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
102239462Sdim *	that use extended-precision instructions to compute rounded
103239462Sdim *	products and quotients) with IBM.
104218887Sdim * #define ROUND_BIASED for IEEE-format with biased rounding.
105243830Sdim * #define Inaccurate_Divide for IEEE-format with correctly rounded
106243830Sdim *	products but inaccurate quotients, e.g., for Intel i860.
107218887Sdim * #define NO_LONG_LONG on machines that do not have a "long long"
108218887Sdim *	integer type (of >= 64 bits).  On such machines, you can
109243830Sdim *	#define Just_16 to store 16 bits per 32-bit Long when doing
110249423Sdim *	high-precision integer arithmetic.  Whether this speeds things
111243830Sdim *	up or slows things down depends on the machine and the number
112218887Sdim *	being converted.  If long long is available and the name is
113218887Sdim *	something other than "long long", #define Llong to be the name,
114218887Sdim *	and if "unsigned Llong" does not work as an unsigned version of
115218887Sdim *	Llong, #define #ULLong to be the corresponding unsigned type.
116218887Sdim * #define KR_headers for old-style C function headers.
117226633Sdim * #define Bad_float_h if your system lacks a float.h or if it does not
118226633Sdim *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119226633Sdim *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120218887Sdim * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121218887Sdim *	if memory is available and otherwise does something you deem
122218887Sdim *	appropriate.  If MALLOC is undefined, malloc will be invoked
123218887Sdim *	directly -- and assumed always to succeed.
124218887Sdim * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
125218887Sdim *	memory allocations from a private pool of memory when possible.
126234353Sdim *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
127218887Sdim *	unless #defined to be a different length.  This default length
128218887Sdim *	suffices to get rid of MALLOC calls except for unusual cases,
129341825Sdim *	such as decimal-to-binary conversion of a very long string of
130341825Sdim *	digits.  When converting IEEE double precision values, the
131341825Sdim *	longest string gdtoa can return is about 751 bytes long.  For
132341825Sdim *	conversions by strtod of strings of 800 digits and all gdtoa
133341825Sdim *	conversions of IEEE doubles in single-threaded executions with
134341825Sdim *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
135341825Sdim *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
136341825Sdim * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
137341825Sdim *	Infinity and NaN (case insensitively).  On some systems (e.g.,
138341825Sdim *	some HP systems), it may be necessary to #define NAN_WORD0
139341825Sdim *	appropriately -- to the most significant word of a quiet NaN.
140341825Sdim *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
141341825Sdim *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
142341825Sdim *	strtodg also accepts (case insensitively) strings of the form
143341825Sdim *	NaN(x), where x is a string of hexadecimal digits and spaces;
144341825Sdim *	if there is only one string of hexadecimal digits, it is taken
145341825Sdim *	for the fraction bits of the resulting NaN; if there are two or
146341825Sdim *	more strings of hexadecimal digits, each string is assigned
147341825Sdim *	to the next available sequence of 32-bit words of fractions
148341825Sdim *	bits (starting with the most significant), right-aligned in
149341825Sdim *	each sequence.
150341825Sdim * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151341825Sdim *	multiple threads.  In this case, you must provide (or suitably
152341825Sdim *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153341825Sdim *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
154341825Sdim *	in pow5mult, ensures lazy evaluation of only one copy of high
155341825Sdim *	powers of 5; omitting this lock would introduce a small
156341825Sdim *	probability of wasting memory, but would otherwise be harmless.)
157341825Sdim *	You must also invoke freedtoa(s) to free the value s returned by
158341825Sdim *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
159218887Sdim * #define IMPRECISE_INEXACT if you do not care about the setting of
160218887Sdim *	the STRTOG_Inexact bits in the special case of doing IEEE double
161234353Sdim *	precision conversions (which could also be done by the strtog in
162218887Sdim *	dtoa.c).
163218887Sdim * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164218887Sdim *	floating-point constants.
165218887Sdim * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 *	strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 *	On some K&R systems, it may also be necessary to
169 *	#define DECLARE_SIZE_T in this case.
170 * #define YES_ALIAS to permit aliasing certain double values with
171 *	arrays of ULongs.  This leads to slightly better code with
172 *	some compilers and was always used prior to 19990916, but it
173 *	is not strictly legal and can cause trouble with aggressively
174 *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
175 * #define USE_LOCALE to use the current locale's decimal_point value.
176 */
177
178#ifndef GDTOAIMP_H_INCLUDED
179#define GDTOAIMP_H_INCLUDED
180#include "gdtoa.h"
181
182#ifdef DEBUG
183#include "stdio.h"
184#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
185#endif
186
187#include "limits.h"
188#include "stdlib.h"
189#include "string.h"
190#include "libc_private.h"
191#include "spinlock.h"
192
193#ifdef KR_headers
194#define Char char
195#else
196#define Char void
197#endif
198
199#ifdef MALLOC
200extern Char *MALLOC ANSI((size_t));
201#else
202#define MALLOC malloc
203#endif
204
205#define INFNAN_CHECK
206#define USE_LOCALE
207
208#undef IEEE_Arith
209#undef Avoid_Underflow
210#ifdef IEEE_MC68k
211#define IEEE_Arith
212#endif
213#ifdef IEEE_8087
214#define IEEE_Arith
215#endif
216
217#include "errno.h"
218#ifdef Bad_float_h
219
220#ifdef IEEE_Arith
221#define DBL_DIG 15
222#define DBL_MAX_10_EXP 308
223#define DBL_MAX_EXP 1024
224#define FLT_RADIX 2
225#define DBL_MAX 1.7976931348623157e+308
226#endif
227
228#ifdef IBM
229#define DBL_DIG 16
230#define DBL_MAX_10_EXP 75
231#define DBL_MAX_EXP 63
232#define FLT_RADIX 16
233#define DBL_MAX 7.2370055773322621e+75
234#endif
235
236#ifdef VAX
237#define DBL_DIG 16
238#define DBL_MAX_10_EXP 38
239#define DBL_MAX_EXP 127
240#define FLT_RADIX 2
241#define DBL_MAX 1.7014118346046923e+38
242#define n_bigtens 2
243#endif
244
245#ifndef LONG_MAX
246#define LONG_MAX 2147483647
247#endif
248
249#else /* ifndef Bad_float_h */
250#include "float.h"
251#endif /* Bad_float_h */
252
253#ifdef IEEE_Arith
254#define Scale_Bit 0x10
255#define n_bigtens 5
256#endif
257
258#ifdef IBM
259#define n_bigtens 3
260#endif
261
262#ifdef VAX
263#define n_bigtens 2
264#endif
265
266#ifndef __MATH_H__
267#include "math.h"
268#endif
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
275Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
276#endif
277
278typedef union { double d; ULong L[2]; } U;
279
280#ifdef YES_ALIAS
281#define dval(x) x
282#ifdef IEEE_8087
283#define word0(x) ((ULong *)&x)[1]
284#define word1(x) ((ULong *)&x)[0]
285#else
286#define word0(x) ((ULong *)&x)[0]
287#define word1(x) ((ULong *)&x)[1]
288#endif
289#else /* !YES_ALIAS */
290#ifdef IEEE_8087
291#define word0(x) ((U*)&x)->L[1]
292#define word1(x) ((U*)&x)->L[0]
293#else
294#define word0(x) ((U*)&x)->L[0]
295#define word1(x) ((U*)&x)->L[1]
296#endif
297#define dval(x) ((U*)&x)->d
298#endif /* YES_ALIAS */
299
300/* The following definition of Storeinc is appropriate for MIPS processors.
301 * An alternative that might be better on some machines is
302 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
303 */
304#if defined(IEEE_8087) + defined(VAX)
305#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
306((unsigned short *)a)[0] = (unsigned short)c, a++)
307#else
308#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
309((unsigned short *)a)[1] = (unsigned short)c, a++)
310#endif
311
312/* #define P DBL_MANT_DIG */
313/* Ten_pmax = floor(P*log(2)/log(5)) */
314/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
315/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
316/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
317
318#ifdef IEEE_Arith
319#define Exp_shift  20
320#define Exp_shift1 20
321#define Exp_msk1    0x100000
322#define Exp_msk11   0x100000
323#define Exp_mask  0x7ff00000
324#define P 53
325#define Bias 1023
326#define Emin (-1022)
327#define Exp_1  0x3ff00000
328#define Exp_11 0x3ff00000
329#define Ebits 11
330#define Frac_mask  0xfffff
331#define Frac_mask1 0xfffff
332#define Ten_pmax 22
333#define Bletch 0x10
334#define Bndry_mask  0xfffff
335#define Bndry_mask1 0xfffff
336#define LSB 1
337#define Sign_bit 0x80000000
338#define Log2P 1
339#define Tiny0 0
340#define Tiny1 1
341#define Quick_max 14
342#define Int_max 14
343
344#ifndef Flt_Rounds
345#ifdef FLT_ROUNDS
346#define Flt_Rounds FLT_ROUNDS
347#else
348#define Flt_Rounds 1
349#endif
350#endif /*Flt_Rounds*/
351
352#else /* ifndef IEEE_Arith */
353#undef  Sudden_Underflow
354#define Sudden_Underflow
355#ifdef IBM
356#undef Flt_Rounds
357#define Flt_Rounds 0
358#define Exp_shift  24
359#define Exp_shift1 24
360#define Exp_msk1   0x1000000
361#define Exp_msk11  0x1000000
362#define Exp_mask  0x7f000000
363#define P 14
364#define Bias 65
365#define Exp_1  0x41000000
366#define Exp_11 0x41000000
367#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
368#define Frac_mask  0xffffff
369#define Frac_mask1 0xffffff
370#define Bletch 4
371#define Ten_pmax 22
372#define Bndry_mask  0xefffff
373#define Bndry_mask1 0xffffff
374#define LSB 1
375#define Sign_bit 0x80000000
376#define Log2P 4
377#define Tiny0 0x100000
378#define Tiny1 0
379#define Quick_max 14
380#define Int_max 15
381#else /* VAX */
382#undef Flt_Rounds
383#define Flt_Rounds 1
384#define Exp_shift  23
385#define Exp_shift1 7
386#define Exp_msk1    0x80
387#define Exp_msk11   0x800000
388#define Exp_mask  0x7f80
389#define P 56
390#define Bias 129
391#define Exp_1  0x40800000
392#define Exp_11 0x4080
393#define Ebits 8
394#define Frac_mask  0x7fffff
395#define Frac_mask1 0xffff007f
396#define Ten_pmax 24
397#define Bletch 2
398#define Bndry_mask  0xffff007f
399#define Bndry_mask1 0xffff007f
400#define LSB 0x10000
401#define Sign_bit 0x8000
402#define Log2P 1
403#define Tiny0 0x80
404#define Tiny1 0
405#define Quick_max 15
406#define Int_max 15
407#endif /* IBM, VAX */
408#endif /* IEEE_Arith */
409
410#ifndef IEEE_Arith
411#define ROUND_BIASED
412#endif
413
414#ifdef RND_PRODQUOT
415#define rounded_product(a,b) a = rnd_prod(a, b)
416#define rounded_quotient(a,b) a = rnd_quot(a, b)
417#ifdef KR_headers
418extern double rnd_prod(), rnd_quot();
419#else
420extern double rnd_prod(double, double), rnd_quot(double, double);
421#endif
422#else
423#define rounded_product(a,b) a *= b
424#define rounded_quotient(a,b) a /= b
425#endif
426
427#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
428#define Big1 0xffffffff
429
430#undef  Pack_16
431#ifndef Pack_32
432#define Pack_32
433#endif
434
435#ifdef NO_LONG_LONG
436#undef ULLong
437#ifdef Just_16
438#undef Pack_32
439#define Pack_16
440/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
441 * This makes some inner loops simpler and sometimes saves work
442 * during multiplications, but it often seems to make things slightly
443 * slower.  Hence the default is now to store 32 bits per Long.
444 */
445#endif
446#else	/* long long available */
447#ifndef Llong
448#define Llong long long
449#endif
450#ifndef ULLong
451#define ULLong unsigned Llong
452#endif
453#endif /* NO_LONG_LONG */
454
455#ifdef Pack_32
456#define ULbits 32
457#define kshift 5
458#define kmask 31
459#define ALL_ON 0xffffffff
460#else
461#define ULbits 16
462#define kshift 4
463#define kmask 15
464#define ALL_ON 0xffff
465#endif
466
467#define MULTIPLE_THREADS
468extern spinlock_t __gdtoa_locks[2];
469#define ACQUIRE_DTOA_LOCK(n)	do {		\
470	if (__isthreaded)			\
471		_SPINLOCK(&__gdtoa_locks[n]);	\
472} while(0)
473#define FREE_DTOA_LOCK(n)	do {		\
474	if (__isthreaded)			\
475		_SPINUNLOCK(&__gdtoa_locks[n]);	\
476} while(0)
477
478#define Kmax 15
479
480 struct
481Bigint {
482	struct Bigint *next;
483	int k, maxwds, sign, wds;
484	ULong x[1];
485	};
486
487 typedef struct Bigint Bigint;
488
489#ifdef NO_STRING_H
490#ifdef DECLARE_SIZE_T
491typedef unsigned int size_t;
492#endif
493extern void memcpy_D2A ANSI((void*, const void*, size_t));
494#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
495#else /* !NO_STRING_H */
496#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
497#endif /* NO_STRING_H */
498
499/*
500 * Paranoia: Protect exported symbols, including ones in files we don't
501 * compile right now.  The standard strtof and strtod survive.
502 */
503#define	dtoa		__dtoa
504#define	gdtoa		__gdtoa
505#define	freedtoa	__freedtoa
506#define	strtodg		__strtodg
507#define	g_ddfmt		__g_ddfmt
508#define	g_dfmt		__g_dfmt
509#define	g_ffmt		__g_ffmt
510#define	g_Qfmt		__g_Qfmt
511#define	g_xfmt		__g_xfmt
512#define	g_xLfmt		__g_xLfmt
513#define	strtoId		__strtoId
514#define	strtoIdd	__strtoIdd
515#define	strtoIf		__strtoIf
516#define	strtoIQ		__strtoIQ
517#define	strtoIx		__strtoIx
518#define	strtoIxL	__strtoIxL
519#define	strtord		__strtord
520#define	strtordd	__strtordd
521#define	strtorf		__strtorf
522#define	strtorQ		__strtorQ
523#define	strtorx		__strtorx
524#define	strtorxL	__strtorxL
525#define	strtodI		__strtodI
526#define	strtopd		__strtopd
527#define	strtopdd	__strtopdd
528#define	strtopf		__strtopf
529#define	strtopQ		__strtopQ
530#define	strtopx		__strtopx
531#define	strtopxL	__strtopxL
532
533/* Protect gdtoa-internal symbols */
534#define	Balloc		__Balloc_D2A
535#define	Bfree		__Bfree_D2A
536#define	ULtoQ		__ULtoQ_D2A
537#define	ULtof		__ULtof_D2A
538#define	ULtod		__ULtod_D2A
539#define	ULtodd		__ULtodd_D2A
540#define	ULtox		__ULtox_D2A
541#define	ULtoxL		__ULtoxL_D2A
542#define	any_on		__any_on_D2A
543#define	b2d		__b2d_D2A
544#define	bigtens		__bigtens_D2A
545#define	cmp		__cmp_D2A
546#define	copybits	__copybits_D2A
547#define	d2b		__d2b_D2A
548#define	decrement	__decrement_D2A
549#define	diff		__diff_D2A
550#define	dtoa_result	__dtoa_result_D2A
551#define	g__fmt		__g__fmt_D2A
552#define	gethex		__gethex_D2A
553#define	hexdig		__hexdig_D2A
554#define	hexdig_init_D2A	__hexdig_init_D2A
555#define	hexnan		__hexnan_D2A
556#define	hi0bits		__hi0bits_D2A
557#define	i2b		__i2b_D2A
558#define	increment	__increment_D2A
559#define	lo0bits		__lo0bits_D2A
560#define	lshift		__lshift_D2A
561#define	match		__match_D2A
562#define	mult		__mult_D2A
563#define	multadd		__multadd_D2A
564#define	nrv_alloc	__nrv_alloc_D2A
565#define	pow5mult	__pow5mult_D2A
566#define	quorem		__quorem_D2A
567#define	ratio		__ratio_D2A
568#define	rshift		__rshift_D2A
569#define	rv_alloc	__rv_alloc_D2A
570#define	s2b		__s2b_D2A
571#define	set_ones	__set_ones_D2A
572#define	strcp		__strcp_D2A
573#define	strcp_D2A      	__strcp_D2A
574#define	strtoIg		__strtoIg_D2A
575#define	sum		__sum_D2A
576#define	tens		__tens_D2A
577#define	tinytens	__tinytens_D2A
578#define	tinytens	__tinytens_D2A
579#define	trailz		__trailz_D2A
580#define	ulp		__ulp_D2A
581
582 extern char *dtoa_result;
583 extern CONST double bigtens[], tens[], tinytens[];
584 extern unsigned char hexdig[];
585
586 extern Bigint *Balloc ANSI((int));
587 extern void Bfree ANSI((Bigint*));
588 extern void ULtof ANSI((ULong*, ULong*, Long, int));
589 extern void ULtod ANSI((ULong*, ULong*, Long, int));
590 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
591 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
592 extern void ULtox ANSI((UShort*, ULong*, Long, int));
593 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
594 extern ULong any_on ANSI((Bigint*, int));
595 extern double b2d ANSI((Bigint*, int*));
596 extern int cmp ANSI((Bigint*, Bigint*));
597 extern void copybits ANSI((ULong*, int, Bigint*));
598 extern Bigint *d2b ANSI((double, int*, int*));
599 extern int decrement ANSI((Bigint*));
600 extern Bigint *diff ANSI((Bigint*, Bigint*));
601 extern char *dtoa ANSI((double d, int mode, int ndigits,
602			int *decpt, int *sign, char **rve));
603 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
604 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
605 extern void hexdig_init_D2A(Void);
606 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
607 extern int hi0bits ANSI((ULong));
608 extern Bigint *i2b ANSI((int));
609 extern Bigint *increment ANSI((Bigint*));
610 extern int lo0bits ANSI((ULong*));
611 extern Bigint *lshift ANSI((Bigint*, int));
612 extern int match ANSI((CONST char**, char*));
613 extern Bigint *mult ANSI((Bigint*, Bigint*));
614 extern Bigint *multadd ANSI((Bigint*, int, int));
615 extern char *nrv_alloc ANSI((char*, char **, int));
616 extern Bigint *pow5mult ANSI((Bigint*, int));
617 extern int quorem ANSI((Bigint*, Bigint*));
618 extern double ratio ANSI((Bigint*, Bigint*));
619 extern void rshift ANSI((Bigint*, int));
620 extern char *rv_alloc ANSI((int));
621 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
622 extern Bigint *set_ones ANSI((Bigint*, int));
623 extern char *strcp ANSI((char*, const char*));
624 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
625 extern double strtod ANSI((const char *s00, char **se));
626 extern Bigint *sum ANSI((Bigint*, Bigint*));
627 extern int trailz ANSI((Bigint*));
628 extern double ulp ANSI((double));
629
630#ifdef __cplusplus
631}
632#endif
633
634
635#ifdef IEEE_Arith
636#ifdef IEEE_MC68k
637#define _0 0
638#define _1 1
639#else
640#define _0 1
641#define _1 0
642#endif
643#else
644#undef INFNAN_CHECK
645#endif
646
647#ifdef INFNAN_CHECK
648
649#ifndef NAN_WORD0
650#define NAN_WORD0 0x7ff80000
651#endif
652
653#ifndef NAN_WORD1
654#define NAN_WORD1 0
655#endif
656#endif	/* INFNAN_CHECK */
657
658#undef SI
659#ifdef Sudden_Underflow
660#define SI 1
661#else
662#define SI 0
663#endif
664
665#endif /* GDTOAIMP_H_INCLUDED */
666