infttrace.c revision 98944
1/* Low level Unix child interface to ttrace, for GDB when running under HP-UX.
2   Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3   1999, 2000, 2001
4   Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330,
21   Boston, MA 02111-1307, USA.  */
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "target.h"
27#include "gdb_string.h"
28#include "gdb_wait.h"
29#include "command.h"
30
31/* We need pstat functionality so that we can get the exec file
32   for a process we attach to.
33
34   According to HP, we should use the 64bit interfaces, so we
35   define _PSTAT64 to achieve this.  */
36#define _PSTAT64
37#include <sys/pstat.h>
38
39/* Some hackery to work around a use of the #define name NO_FLAGS
40 * in both gdb and HPUX (bfd.h and /usr/include/machine/vmparam.h).
41 */
42#ifdef  NO_FLAGS
43#define INFTTRACE_TEMP_HACK NO_FLAGS
44#undef  NO_FLAGS
45#endif
46
47#ifdef USG
48#include <sys/types.h>
49#endif
50
51#include <sys/param.h>
52#include <sys/dir.h>
53#include <signal.h>
54#include <sys/ioctl.h>
55
56#include <sys/ttrace.h>
57#include <sys/mman.h>
58
59#ifndef NO_PTRACE_H
60#ifdef PTRACE_IN_WRONG_PLACE
61#include <ptrace.h>
62#else
63#include <sys/ptrace.h>
64#endif
65#endif /* NO_PTRACE_H */
66
67/* Second half of the hackery above.  Non-ANSI C, so
68 * we can't use "#error", alas.
69 */
70#ifdef NO_FLAGS
71#if (NO_FLAGS != INFTTRACE_TEMP_HACK )
72  /* #error "Hackery to remove warning didn't work right" */
73#else
74  /* Ok, new def'n of NO_FLAGS is same as old one; no action needed. */
75#endif
76#else
77  /* #error "Didn't get expected re-definition of NO_FLAGS" */
78#define NO_FLAGS INFTTRACE_TEMP_HACK
79#endif
80
81#if !defined (PT_SETTRC)
82#define PT_SETTRC	0	/* Make process traceable by parent */
83#endif
84#if !defined (PT_READ_I)
85#define PT_READ_I	1	/* Read word from text space */
86#endif
87#if !defined (PT_READ_D)
88#define	PT_READ_D	2	/* Read word from data space */
89#endif
90#if !defined (PT_READ_U)
91#define PT_READ_U	3	/* Read word from kernel user struct */
92#endif
93#if !defined (PT_WRITE_I)
94#define PT_WRITE_I	4	/* Write word to text space */
95#endif
96#if !defined (PT_WRITE_D)
97#define PT_WRITE_D	5	/* Write word to data space */
98#endif
99#if !defined (PT_WRITE_U)
100#define PT_WRITE_U	6	/* Write word to kernel user struct */
101#endif
102#if !defined (PT_CONTINUE)
103#define PT_CONTINUE	7	/* Continue after signal */
104#endif
105#if !defined (PT_STEP)
106#define PT_STEP		9	/* Set flag for single stepping */
107#endif
108#if !defined (PT_KILL)
109#define PT_KILL		8	/* Send child a SIGKILL signal */
110#endif
111
112#ifndef PT_ATTACH
113#define PT_ATTACH PTRACE_ATTACH
114#endif
115#ifndef PT_DETACH
116#define PT_DETACH PTRACE_DETACH
117#endif
118
119#include "gdbcore.h"
120#ifndef	NO_SYS_FILE
121#include <sys/file.h>
122#endif
123
124/* This semaphore is used to coordinate the child and parent processes
125   after a fork(), and before an exec() by the child.  See parent_attach_all
126   for details.
127 */
128typedef struct
129  {
130    int parent_channel[2];	/* Parent "talks" to [1], child "listens" to [0] */
131    int child_channel[2];	/* Child "talks" to [1], parent "listens" to [0] */
132  }
133startup_semaphore_t;
134
135#define SEM_TALK (1)
136#define SEM_LISTEN (0)
137
138static startup_semaphore_t startup_semaphore;
139
140/* See can_touch_threads_of_process for details. */
141static int vforking_child_pid = 0;
142static int vfork_in_flight = 0;
143
144/* To support PREPARE_TO_PROCEED (hppa_prepare_to_proceed).
145 */
146static pid_t old_gdb_pid = 0;
147static pid_t reported_pid = 0;
148static int reported_bpt = 0;
149
150/* 1 if ok as results of a ttrace or ttrace_wait call, 0 otherwise.
151 */
152#define TT_OK( _status, _errno ) \
153    (((_status) == 1) && ((_errno) == 0))
154
155#define TTRACE_ARG_TYPE uint64_t
156
157/* When supplied as the "addr" operand, ttrace interprets this
158   to mean, "from the current address".
159 */
160#define TT_USE_CURRENT_PC ((TTRACE_ARG_TYPE) TT_NOPC)
161
162/* When supplied as the "addr", "data" or "addr2" operand for most
163   requests, ttrace interprets this to mean, "pay no heed to this
164   argument".
165 */
166#define TT_NIL ((TTRACE_ARG_TYPE) TT_NULLARG)
167
168/* This is capable of holding the value of a 32-bit register.  The
169   value is always left-aligned in the buffer; i.e., [0] contains
170   the most-significant byte of the register's value, and [sizeof(reg)]
171   contains the least-significant value.
172
173   ??rehrauer: Yes, this assumes that an int is 32-bits on HP-UX, and
174   that registers are 32-bits on HP-UX.  The latter assumption changes
175   with PA2.0.
176 */
177typedef int register_value_t;
178
179/********************************************************************
180
181                 How this works:
182
183   1.  Thread numbers
184
185   The rest of GDB sees threads as being things with different
186   "pid" (process id) values.  See "thread.c" for details.  The
187   separate threads will be seen and reacted to if infttrace passes
188   back different pid values (for _events_).  See wait_for_inferior
189   in inftarg.c.
190
191   So infttrace is going to use thread ids externally, pretending
192   they are process ids, and keep track internally so that it can
193   use the real process id (and thread id) when calling ttrace.
194
195   The data structure that supports this is a linked list of the
196   current threads.  Since at some date infttrace will have to
197   deal with multiple processes, each list element records its
198   corresponding pid, rather than having a single global.
199
200   Note that the list is only approximately current; that's ok, as
201   it's up to date when we need it (we hope!).  Also, it can contain
202   dead threads, as there's no harm if it does.
203
204   The approach taken here is to bury the translation from external
205   to internal inside "call_ttrace" and a few other places.
206
207   There are some wrinkles:
208
209   o  When GDB forks itself to create the debug target process,
210      there's only a pid of 0 around in the child, so the
211      TT_PROC_SETTRC operation uses a more direct call to ttrace;
212      Similiarly, the initial setting of the event mask happens
213      early as  well, and so is also special-cased, and an attach
214      uses a real pid;
215
216   o  We define an unthreaded application as having a "pseudo"
217      thread;
218
219   o  To keep from confusing the rest of GDB, we don't switch
220      the PID for the pseudo thread to a TID.  A table will help:
221
222      Rest of GDB sees these PIDs:     pid   tid1  tid2  tid3 ...
223
224      Our thread list stores:          pid   pid   pid   pid  ...
225                                       tid0  tid1  tid2  tid3
226
227      Ttrace sees these TIDS:          tid0  tid1  tid2  tid3 ...
228
229      Both pid and tid0 will map to tid0, as there are infttrace.c-internal
230      calls to ttrace using tid0.
231
232   2. Step and Continue
233
234   Since we're implementing the "stop the world" model, sub-model
235   "other threads run during step", we have some stuff to do:
236
237   o  User steps require continuing all threads other than the
238      one the user is stepping;
239
240   o  Internal debugger steps (such as over a breakpoint or watchpoint,
241      but not out of a library load thunk) require stepping only
242      the selected thread; this means that we have to report the
243      step finish on that thread, which can lead to complications;
244
245   o  When a thread is created, it is created running, rather
246      than stopped--so we have to stop it.
247
248   The OS doesn't guarantee the stopped thread list will be stable,
249   no does it guarantee where on the stopped thread list a thread
250   that is single-stepped will wind up: it's possible that it will
251   be off the list for a while, it's possible the step will complete
252   and it will be re-posted to the end...
253
254   This means we have to scan the stopped thread list, build up
255   a work-list, and then run down the work list; we can't do the
256   step/continue during the scan.
257
258   3. Buffering events
259
260   Then there's the issue of waiting for an event.  We do this by
261   noticing how many events are reported at the end of each wait.
262   From then on, we "fake" all resumes and steps, returning instantly,
263   and don't do another wait.  Once all pending events are reported,
264   we can really resume again.
265
266   To keep this hidden, all the routines which know about tids and
267   pids or real events and simulated ones are static (file-local).
268
269   This code can make lots of calls to ttrace, in particular it
270   can spin down the list of thread states more than once.  If this
271   becomes a performance hit, the spin could be done once and the
272   various "tsp" blocks saved, keeping all later spins in this
273   process.
274
275   The O/S doesn't promise to keep the list straight, and so we must
276   re-scan a lot.  By observation, it looks like a single-step/wait
277   puts the stepped thread at the end of the list but doesn't change
278   it otherwise.
279
280****************************************************************
281*/
282
283/* Uncomment these to turn on various debugging output */
284/* #define THREAD_DEBUG */
285/* #define WAIT_BUFFER_DEBUG */
286/* #define PARANOIA */
287
288
289#define INFTTRACE_ALL_THREADS (-1)
290#define INFTTRACE_STEP        (1)
291#define INFTTRACE_CONTINUE    (0)
292
293/* FIX: this is used in inftarg.c/child_wait, in a hack.
294 */
295extern int not_same_real_pid;
296
297/* This is used to count buffered events.
298 */
299static unsigned int more_events_left = 0;
300
301/* Process state.
302 */
303typedef enum process_state_enum
304  {
305    STOPPED,
306    FAKE_STEPPING,
307    FAKE_CONTINUE,		/* For later use */
308    RUNNING,
309    FORKING,
310    VFORKING
311  }
312process_state_t;
313
314static process_state_t process_state = STOPPED;
315
316/* User-specified stepping modality.
317 */
318typedef enum stepping_mode_enum
319  {
320    DO_DEFAULT,			/* ...which is a continue! */
321    DO_STEP,
322    DO_CONTINUE
323  }
324stepping_mode_t;
325
326/* Action to take on an attach, depends on
327 * what kind (user command, fork, vfork).
328 *
329 * At the moment, this is either:
330 *
331 * o  continue with a SIGTRAP signal, or
332 *
333 * o  leave stopped.
334 */
335typedef enum attach_continue_enum
336  {
337    DO_ATTACH_CONTINUE,
338    DONT_ATTACH_CONTINUE
339  }
340attach_continue_t;
341
342/* This flag is true if we are doing a step-over-bpt
343 * with buffered events.  We will have to be sure to
344 * report the right thread, as otherwise the spaghetti
345 * code in "infrun.c/wait_for_inferior" will get
346 * confused.
347 */
348static int doing_fake_step = 0;
349static lwpid_t fake_step_tid = 0;
350
351
352/****************************************************
353 * Thread information structure routines and types. *
354 ****************************************************
355 */
356typedef
357struct thread_info_struct
358  {
359    int am_pseudo;		/* This is a pseudo-thread for the process. */
360    int pid;			/* Process ID */
361    lwpid_t tid;		/* Thread  ID */
362    int handled;		/* 1 if a buffered event was handled. */
363    int seen;			/* 1 if this thread was seen on a traverse. */
364    int terminated;		/* 1 if thread has terminated. */
365    int have_signal;		/* 1 if signal to be sent */
366    enum target_signal signal_value;	/* Signal to send */
367    int have_start;		/* 1 if alternate starting address */
368    stepping_mode_t stepping_mode;	/* Whether to step or continue */
369    CORE_ADDR start;		/* Where to start */
370    int have_state;		/* 1 if the event state has been set */
371    ttstate_t last_stop_state;	/* The most recently-waited event for this thread. */
372    struct thread_info_struct
373     *next;			/* All threads are linked via this field. */
374    struct thread_info_struct
375     *next_pseudo;		/* All pseudo-threads are linked via this field. */
376  }
377thread_info;
378
379typedef
380struct thread_info_header_struct
381  {
382    int count;
383    thread_info *head;
384    thread_info *head_pseudo;
385
386  }
387thread_info_header;
388
389static thread_info_header thread_head =
390{0, NULL, NULL};
391static thread_info_header deleted_threads =
392{0, NULL, NULL};
393
394static ptid_t saved_real_ptid;
395
396
397/*************************************************
398 *          Debugging support functions          *
399 *************************************************
400 */
401CORE_ADDR
402get_raw_pc (lwpid_t ttid)
403{
404  unsigned long pc_val;
405  int offset;
406  int res;
407
408  offset = register_addr (PC_REGNUM, U_REGS_OFFSET);
409  res = read_from_register_save_state (
410					ttid,
411					(TTRACE_ARG_TYPE) offset,
412					(char *) &pc_val,
413					sizeof (pc_val));
414  if (res <= 0)
415    {
416      return (CORE_ADDR) pc_val;
417    }
418  else
419    {
420      return (CORE_ADDR) 0;
421    }
422}
423
424static char *
425get_printable_name_of_stepping_mode (stepping_mode_t mode)
426{
427  switch (mode)
428    {
429    case DO_DEFAULT:
430      return "DO_DEFAULT";
431    case DO_STEP:
432      return "DO_STEP";
433    case DO_CONTINUE:
434      return "DO_CONTINUE";
435    default:
436      return "?unknown mode?";
437    }
438}
439
440/* This function returns a pointer to a string describing the
441 * ttrace event being reported.
442 */
443char *
444get_printable_name_of_ttrace_event (ttevents_t event)
445{
446  /* This enumeration is "gappy", so don't use a table. */
447  switch (event)
448    {
449
450    case TTEVT_NONE:
451      return "TTEVT_NONE";
452    case TTEVT_SIGNAL:
453      return "TTEVT_SIGNAL";
454    case TTEVT_FORK:
455      return "TTEVT_FORK";
456    case TTEVT_EXEC:
457      return "TTEVT_EXEC";
458    case TTEVT_EXIT:
459      return "TTEVT_EXIT";
460    case TTEVT_VFORK:
461      return "TTEVT_VFORK";
462    case TTEVT_SYSCALL_RETURN:
463      return "TTEVT_SYSCALL_RETURN";
464    case TTEVT_LWP_CREATE:
465      return "TTEVT_LWP_CREATE";
466    case TTEVT_LWP_TERMINATE:
467      return "TTEVT_LWP_TERMINATE";
468    case TTEVT_LWP_EXIT:
469      return "TTEVT_LWP_EXIT";
470    case TTEVT_LWP_ABORT_SYSCALL:
471      return "TTEVT_LWP_ABORT_SYSCALL";
472    case TTEVT_SYSCALL_ENTRY:
473      return "TTEVT_SYSCALL_ENTRY";
474    case TTEVT_SYSCALL_RESTART:
475      return "TTEVT_SYSCALL_RESTART";
476    default:
477      return "?new event?";
478    }
479}
480
481
482/* This function translates the ttrace request enumeration into
483 * a character string that is its printable (aka "human readable")
484 * name.
485 */
486char *
487get_printable_name_of_ttrace_request (ttreq_t request)
488{
489  if (!IS_TTRACE_REQ (request))
490    return "?bad req?";
491
492  /* This enumeration is "gappy", so don't use a table. */
493  switch (request)
494    {
495    case TT_PROC_SETTRC:
496      return "TT_PROC_SETTRC";
497    case TT_PROC_ATTACH:
498      return "TT_PROC_ATTACH";
499    case TT_PROC_DETACH:
500      return "TT_PROC_DETACH";
501    case TT_PROC_RDTEXT:
502      return "TT_PROC_RDTEXT";
503    case TT_PROC_WRTEXT:
504      return "TT_PROC_WRTEXT";
505    case TT_PROC_RDDATA:
506      return "TT_PROC_RDDATA";
507    case TT_PROC_WRDATA:
508      return "TT_PROC_WRDATA";
509    case TT_PROC_STOP:
510      return "TT_PROC_STOP";
511    case TT_PROC_CONTINUE:
512      return "TT_PROC_CONTINUE";
513    case TT_PROC_GET_PATHNAME:
514      return "TT_PROC_GET_PATHNAME";
515    case TT_PROC_GET_EVENT_MASK:
516      return "TT_PROC_GET_EVENT_MASK";
517    case TT_PROC_SET_EVENT_MASK:
518      return "TT_PROC_SET_EVENT_MASK";
519    case TT_PROC_GET_FIRST_LWP_STATE:
520      return "TT_PROC_GET_FIRST_LWP_STATE";
521    case TT_PROC_GET_NEXT_LWP_STATE:
522      return "TT_PROC_GET_NEXT_LWP_STATE";
523    case TT_PROC_EXIT:
524      return "TT_PROC_EXIT";
525    case TT_PROC_GET_MPROTECT:
526      return "TT_PROC_GET_MPROTECT";
527    case TT_PROC_SET_MPROTECT:
528      return "TT_PROC_SET_MPROTECT";
529    case TT_PROC_SET_SCBM:
530      return "TT_PROC_SET_SCBM";
531    case TT_LWP_STOP:
532      return "TT_LWP_STOP";
533    case TT_LWP_CONTINUE:
534      return "TT_LWP_CONTINUE";
535    case TT_LWP_SINGLE:
536      return "TT_LWP_SINGLE";
537    case TT_LWP_RUREGS:
538      return "TT_LWP_RUREGS";
539    case TT_LWP_WUREGS:
540      return "TT_LWP_WUREGS";
541    case TT_LWP_GET_EVENT_MASK:
542      return "TT_LWP_GET_EVENT_MASK";
543    case TT_LWP_SET_EVENT_MASK:
544      return "TT_LWP_SET_EVENT_MASK";
545    case TT_LWP_GET_STATE:
546      return "TT_LWP_GET_STATE";
547    default:
548      return "?new req?";
549    }
550}
551
552
553/* This function translates the process state enumeration into
554 * a character string that is its printable (aka "human readable")
555 * name.
556 */
557static char *
558get_printable_name_of_process_state (process_state_t process_state)
559{
560  switch (process_state)
561    {
562    case STOPPED:
563      return "STOPPED";
564    case FAKE_STEPPING:
565      return "FAKE_STEPPING";
566    case RUNNING:
567      return "RUNNING";
568    case FORKING:
569      return "FORKING";
570    case VFORKING:
571      return "VFORKING";
572    default:
573      return "?some unknown state?";
574    }
575}
576
577/* Set a ttrace thread state to a safe, initial state.
578 */
579static void
580clear_ttstate_t (ttstate_t *tts)
581{
582  tts->tts_pid = 0;
583  tts->tts_lwpid = 0;
584  tts->tts_user_tid = 0;
585  tts->tts_event = TTEVT_NONE;
586}
587
588/* Copy ttrace thread state TTS_FROM into TTS_TO.
589 */
590static void
591copy_ttstate_t (ttstate_t *tts_to, ttstate_t *tts_from)
592{
593  memcpy ((char *) tts_to, (char *) tts_from, sizeof (*tts_to));
594}
595
596/* Are there any live threads we know about?
597 */
598static int
599any_thread_records (void)
600{
601  return (thread_head.count > 0);
602}
603
604/* Create, fill in and link in a thread descriptor.
605 */
606static thread_info *
607create_thread_info (int pid, lwpid_t tid)
608{
609  thread_info *new_p;
610  thread_info *p;
611  int thread_count_of_pid;
612
613  new_p = xmalloc (sizeof (thread_info));
614  new_p->pid = pid;
615  new_p->tid = tid;
616  new_p->have_signal = 0;
617  new_p->have_start = 0;
618  new_p->have_state = 0;
619  clear_ttstate_t (&new_p->last_stop_state);
620  new_p->am_pseudo = 0;
621  new_p->handled = 0;
622  new_p->seen = 0;
623  new_p->terminated = 0;
624  new_p->next = NULL;
625  new_p->next_pseudo = NULL;
626  new_p->stepping_mode = DO_DEFAULT;
627
628  if (0 == thread_head.count)
629    {
630#ifdef THREAD_DEBUG
631      if (debug_on)
632	printf ("First thread, pid %d tid %d!\n", pid, tid);
633#endif
634      saved_real_ptid = inferior_ptid;
635    }
636  else
637    {
638#ifdef THREAD_DEBUG
639      if (debug_on)
640	printf ("Subsequent thread, pid %d tid %d\n", pid, tid);
641#endif
642    }
643
644  /* Another day, another thread...
645   */
646  thread_head.count++;
647
648  /* The new thread always goes at the head of the list.
649   */
650  new_p->next = thread_head.head;
651  thread_head.head = new_p;
652
653  /* Is this the "pseudo" thread of a process?  It is if there's
654   * no other thread for this process on the list.  (Note that this
655   * accomodates multiple processes, such as we see even for simple
656   * cases like forking "non-threaded" programs.)
657   */
658  p = thread_head.head;
659  thread_count_of_pid = 0;
660  while (p)
661    {
662      if (p->pid == new_p->pid)
663	thread_count_of_pid++;
664      p = p->next;
665    }
666
667  /* Did we see any other threads for this pid?  (Recall that we just
668   * added this thread to the list...)
669   */
670  if (thread_count_of_pid == 1)
671    {
672      new_p->am_pseudo = 1;
673      new_p->next_pseudo = thread_head.head_pseudo;
674      thread_head.head_pseudo = new_p;
675    }
676
677  return new_p;
678}
679
680/* Get rid of our thread info.
681 */
682static void
683clear_thread_info (void)
684{
685  thread_info *p;
686  thread_info *q;
687
688#ifdef THREAD_DEBUG
689  if (debug_on)
690    printf ("Clearing all thread info\n");
691#endif
692
693  p = thread_head.head;
694  while (p)
695    {
696      q = p;
697      p = p->next;
698      xfree (q);
699    }
700
701  thread_head.head = NULL;
702  thread_head.head_pseudo = NULL;
703  thread_head.count = 0;
704
705  p = deleted_threads.head;
706  while (p)
707    {
708      q = p;
709      p = p->next;
710      xfree (q);
711    }
712
713  deleted_threads.head = NULL;
714  deleted_threads.head_pseudo = NULL;
715  deleted_threads.count = 0;
716
717  /* No threads, so can't have pending events.
718   */
719  more_events_left = 0;
720}
721
722/* Given a tid, find the thread block for it.
723 */
724static thread_info *
725find_thread_info (lwpid_t tid)
726{
727  thread_info *p;
728
729  for (p = thread_head.head; p; p = p->next)
730    {
731      if (p->tid == tid)
732	{
733	  return p;
734	}
735    }
736
737  for (p = deleted_threads.head; p; p = p->next)
738    {
739      if (p->tid == tid)
740	{
741	  return p;
742	}
743    }
744
745  return NULL;
746}
747
748/* For any but the pseudo thread, this maps to the
749 * thread ID.  For the pseudo thread, if you pass either
750 * the thread id or the PID, you get the pseudo thread ID.
751 *
752 * We have to be prepared for core gdb to ask about
753 * deleted threads.  We do the map, but we don't like it.
754 */
755static lwpid_t
756map_from_gdb_tid (lwpid_t gdb_tid)
757{
758  thread_info *p;
759
760  /* First assume gdb_tid really is a tid, and try to find a
761   * matching entry on the threads list.
762   */
763  for (p = thread_head.head; p; p = p->next)
764    {
765      if (p->tid == gdb_tid)
766	return gdb_tid;
767    }
768
769  /* It doesn't appear to be a tid; perhaps it's really a pid?
770   * Try to find a "pseudo" thread entry on the threads list.
771   */
772  for (p = thread_head.head_pseudo; p != NULL; p = p->next_pseudo)
773    {
774      if (p->pid == gdb_tid)
775	return p->tid;
776    }
777
778  /* Perhaps it's the tid of a deleted thread we may still
779   * have some knowledge of?
780   */
781  for (p = deleted_threads.head; p; p = p->next)
782    {
783      if (p->tid == gdb_tid)
784	return gdb_tid;
785    }
786
787  /* Or perhaps it's the pid of a deleted process we may still
788   * have knowledge of?
789   */
790  for (p = deleted_threads.head_pseudo; p != NULL; p = p->next_pseudo)
791    {
792      if (p->pid == gdb_tid)
793	return p->tid;
794    }
795
796  return 0;			/* Error? */
797}
798
799/* Map the other way: from a real tid to the
800 * "pid" known by core gdb.  This tid may be
801 * for a thread that just got deleted, so we
802 * also need to consider deleted threads.
803 */
804static lwpid_t
805map_to_gdb_tid (lwpid_t real_tid)
806{
807  thread_info *p;
808
809  for (p = thread_head.head; p; p = p->next)
810    {
811      if (p->tid == real_tid)
812	{
813	  if (p->am_pseudo)
814	    return p->pid;
815	  else
816	    return real_tid;
817	}
818    }
819
820  for (p = deleted_threads.head; p; p = p->next)
821    {
822      if (p->tid == real_tid)
823	if (p->am_pseudo)
824	  return p->pid;	/* Error? */
825	else
826	  return real_tid;
827    }
828
829  return 0;			/* Error?  Never heard of this thread! */
830}
831
832/* Do any threads have saved signals?
833 */
834static int
835saved_signals_exist (void)
836{
837  thread_info *p;
838
839  for (p = thread_head.head; p; p = p->next)
840    {
841      if (p->have_signal)
842	{
843	  return 1;
844	}
845    }
846
847  return 0;
848}
849
850/* Is this the tid for the zero-th thread?
851 */
852static int
853is_pseudo_thread (lwpid_t tid)
854{
855  thread_info *p = find_thread_info (tid);
856  if (NULL == p || p->terminated)
857    return 0;
858  else
859    return p->am_pseudo;
860}
861
862/* Is this thread terminated?
863 */
864static int
865is_terminated (lwpid_t tid)
866{
867  thread_info *p = find_thread_info (tid);
868
869  if (NULL != p)
870    return p->terminated;
871
872  return 0;
873}
874
875/* Is this pid a real PID or a TID?
876 */
877static int
878is_process_id (int pid)
879{
880  lwpid_t tid;
881  thread_info *tinfo;
882  pid_t this_pid;
883  int this_pid_count;
884
885  /* What does PID really represent?
886   */
887  tid = map_from_gdb_tid (pid);
888  if (tid <= 0)
889    return 0;			/* Actually, is probably an error... */
890
891  tinfo = find_thread_info (tid);
892
893  /* Does it appear to be a true thread?
894   */
895  if (!tinfo->am_pseudo)
896    return 0;
897
898  /* Else, it looks like it may be a process.  See if there's any other
899   * threads with the same process ID, though.  If there are, then TID
900   * just happens to be the first thread of several for this process.
901   */
902  this_pid = tinfo->pid;
903  this_pid_count = 0;
904  for (tinfo = thread_head.head; tinfo; tinfo = tinfo->next)
905    {
906      if (tinfo->pid == this_pid)
907	this_pid_count++;
908    }
909
910  return (this_pid_count == 1);
911}
912
913
914/* Add a thread to our info.  Prevent duplicate entries.
915 */
916static thread_info *
917add_tthread (int pid, lwpid_t tid)
918{
919  thread_info *p;
920
921  p = find_thread_info (tid);
922  if (NULL == p)
923    p = create_thread_info (pid, tid);
924
925  return p;
926}
927
928/* Notice that a thread was deleted.
929 */
930static void
931del_tthread (lwpid_t tid)
932{
933  thread_info *p;
934  thread_info *chase;
935
936  if (thread_head.count <= 0)
937    {
938      error ("Internal error in thread database.");
939      return;
940    }
941
942  chase = NULL;
943  for (p = thread_head.head; p; p = p->next)
944    {
945      if (p->tid == tid)
946	{
947
948#ifdef THREAD_DEBUG
949	  if (debug_on)
950	    printf ("Delete here: %d \n", tid);
951#endif
952
953	  if (p->am_pseudo)
954	    {
955	      /*
956	       * Deleting a main thread is ok if we're doing
957	       * a parent-follow on a child; this is odd but
958	       * not wrong.  It apparently _doesn't_ happen
959	       * on the child-follow, as we don't just delete
960	       * the pseudo while keeping the rest of the
961	       * threads around--instead, we clear out the whole
962	       * thread list at once.
963	       */
964	      thread_info *q;
965	      thread_info *q_chase;
966
967	      q_chase = NULL;
968	      for (q = thread_head.head_pseudo; q; q = q->next)
969		{
970		  if (q == p)
971		    {
972		      /* Remove from pseudo list.
973		       */
974		      if (q_chase == NULL)
975			thread_head.head_pseudo = p->next_pseudo;
976		      else
977			q_chase->next = p->next_pseudo;
978		    }
979		  else
980		    q_chase = q;
981		}
982	    }
983
984	  /* Remove from live list.
985	   */
986	  thread_head.count--;
987
988	  if (NULL == chase)
989	    thread_head.head = p->next;
990	  else
991	    chase->next = p->next;
992
993	  /* Add to deleted thread list.
994	   */
995	  p->next = deleted_threads.head;
996	  deleted_threads.head = p;
997	  deleted_threads.count++;
998	  if (p->am_pseudo)
999	    {
1000	      p->next_pseudo = deleted_threads.head_pseudo;
1001	      deleted_threads.head_pseudo = p;
1002	    }
1003	  p->terminated = 1;
1004
1005	  return;
1006	}
1007
1008      else
1009	chase = p;
1010    }
1011}
1012
1013/* Get the pid for this tid. (Has to be a real TID!).
1014 */
1015static int
1016get_pid_for (lwpid_t tid)
1017{
1018  thread_info *p;
1019
1020  for (p = thread_head.head; p; p = p->next)
1021    {
1022      if (p->tid == tid)
1023	{
1024	  return p->pid;
1025	}
1026    }
1027
1028  for (p = deleted_threads.head; p; p = p->next)
1029    {
1030      if (p->tid == tid)
1031	{
1032	  return p->pid;
1033	}
1034    }
1035
1036  return 0;
1037}
1038
1039/* Note that this thread's current event has been handled.
1040 */
1041static void
1042set_handled (int pid, lwpid_t tid)
1043{
1044  thread_info *p;
1045
1046  p = find_thread_info (tid);
1047  if (NULL == p)
1048    p = add_tthread (pid, tid);
1049
1050  p->handled = 1;
1051}
1052
1053/* Was this thread's current event handled?
1054 */
1055static int
1056was_handled (lwpid_t tid)
1057{
1058  thread_info *p;
1059
1060  p = find_thread_info (tid);
1061  if (NULL != p)
1062    return p->handled;
1063
1064  return 0;			/* New threads have not been handled */
1065}
1066
1067/* Set this thread to unhandled.
1068 */
1069static void
1070clear_handled (lwpid_t tid)
1071{
1072  thread_info *p;
1073
1074#ifdef WAIT_BUFFER_DEBUG
1075  if (debug_on)
1076    printf ("clear_handled %d\n", (int) tid);
1077#endif
1078
1079  p = find_thread_info (tid);
1080  if (p == NULL)
1081    error ("Internal error: No thread state to clear?");
1082
1083  p->handled = 0;
1084}
1085
1086/* Set all threads to unhandled.
1087 */
1088static void
1089clear_all_handled (void)
1090{
1091  thread_info *p;
1092
1093#ifdef WAIT_BUFFER_DEBUG
1094  if (debug_on)
1095    printf ("clear_all_handled\n");
1096#endif
1097
1098  for (p = thread_head.head; p; p = p->next)
1099    {
1100      p->handled = 0;
1101    }
1102
1103  for (p = deleted_threads.head; p; p = p->next)
1104    {
1105      p->handled = 0;
1106    }
1107}
1108
1109/* Set this thread to default stepping mode.
1110 */
1111static void
1112clear_stepping_mode (lwpid_t tid)
1113{
1114  thread_info *p;
1115
1116#ifdef WAIT_BUFFER_DEBUG
1117  if (debug_on)
1118    printf ("clear_stepping_mode %d\n", (int) tid);
1119#endif
1120
1121  p = find_thread_info (tid);
1122  if (p == NULL)
1123    error ("Internal error: No thread state to clear?");
1124
1125  p->stepping_mode = DO_DEFAULT;
1126}
1127
1128/* Set all threads to do default continue on resume.
1129 */
1130static void
1131clear_all_stepping_mode (void)
1132{
1133  thread_info *p;
1134
1135#ifdef WAIT_BUFFER_DEBUG
1136  if (debug_on)
1137    printf ("clear_all_stepping_mode\n");
1138#endif
1139
1140  for (p = thread_head.head; p; p = p->next)
1141    {
1142      p->stepping_mode = DO_DEFAULT;
1143    }
1144
1145  for (p = deleted_threads.head; p; p = p->next)
1146    {
1147      p->stepping_mode = DO_DEFAULT;
1148    }
1149}
1150
1151/* Set all threads to unseen on this pass.
1152 */
1153static void
1154set_all_unseen (void)
1155{
1156  thread_info *p;
1157
1158  for (p = thread_head.head; p; p = p->next)
1159    {
1160      p->seen = 0;
1161    }
1162}
1163
1164#if (defined( THREAD_DEBUG ) || defined( PARANOIA ))
1165/* debugging routine.
1166 */
1167static void
1168print_tthread (thread_info *p)
1169{
1170  printf (" Thread pid %d, tid %d", p->pid, p->tid);
1171  if (p->have_state)
1172    printf (", event is %s",
1173	 get_printable_name_of_ttrace_event (p->last_stop_state.tts_event));
1174
1175  if (p->am_pseudo)
1176    printf (", pseudo thread");
1177
1178  if (p->have_signal)
1179    printf (", have signal 0x%x", p->signal_value);
1180
1181  if (p->have_start)
1182    printf (", have start at 0x%x", p->start);
1183
1184  printf (", step is %s", get_printable_name_of_stepping_mode (p->stepping_mode));
1185
1186  if (p->handled)
1187    printf (", handled");
1188  else
1189    printf (", not handled");
1190
1191  if (p->seen)
1192    printf (", seen");
1193  else
1194    printf (", not seen");
1195
1196  printf ("\n");
1197}
1198
1199static void
1200print_tthreads (void)
1201{
1202  thread_info *p;
1203
1204  if (thread_head.count == 0)
1205    printf ("Thread list is empty\n");
1206  else
1207    {
1208      printf ("Thread list has ");
1209      if (thread_head.count == 1)
1210	printf ("1 entry:\n");
1211      else
1212	printf ("%d entries:\n", thread_head.count);
1213      for (p = thread_head.head; p; p = p->next)
1214	{
1215	  print_tthread (p);
1216	}
1217    }
1218
1219  if (deleted_threads.count == 0)
1220    printf ("Deleted thread list is empty\n");
1221  else
1222    {
1223      printf ("Deleted thread list has ");
1224      if (deleted_threads.count == 1)
1225	printf ("1 entry:\n");
1226      else
1227	printf ("%d entries:\n", deleted_threads.count);
1228
1229      for (p = deleted_threads.head; p; p = p->next)
1230	{
1231	  print_tthread (p);
1232	}
1233    }
1234}
1235#endif
1236
1237/* Update the thread list based on the "seen" bits.
1238 */
1239static void
1240update_thread_list (void)
1241{
1242  thread_info *p;
1243  thread_info *chase;
1244
1245  chase = NULL;
1246  for (p = thread_head.head; p; p = p->next)
1247    {
1248      /* Is this an "unseen" thread which really happens to be a process?
1249         If so, is it inferior_ptid and is a vfork in flight?  If yes to
1250         all, then DON'T REMOVE IT!  We're in the midst of moving a vfork
1251         operation, which is a multiple step thing, to the point where we
1252         can touch the parent again.  We've most likely stopped to examine
1253         the child at a late stage in the vfork, and if we're not following
1254         the child, we'd best not treat the parent as a dead "thread"...
1255       */
1256      if ((!p->seen) && p->am_pseudo && vfork_in_flight
1257	  && (p->pid != vforking_child_pid))
1258	p->seen = 1;
1259
1260      if (!p->seen)
1261	{
1262	  /* Remove this one
1263	   */
1264
1265#ifdef THREAD_DEBUG
1266	  if (debug_on)
1267	    printf ("Delete unseen thread: %d \n", p->tid);
1268#endif
1269	  del_tthread (p->tid);
1270	}
1271    }
1272}
1273
1274
1275
1276/************************************************
1277 *            O/S call wrappers                 *
1278 ************************************************
1279 */
1280
1281/* This function simply calls ttrace with the given arguments.
1282 * It exists so that all calls to ttrace are isolated.  All
1283 * parameters should be as specified by "man 2 ttrace".
1284 *
1285 * No other "raw" calls to ttrace should exist in this module.
1286 */
1287static int
1288call_real_ttrace (ttreq_t request, pid_t pid, lwpid_t tid, TTRACE_ARG_TYPE addr,
1289		  TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1290{
1291  int tt_status;
1292
1293  errno = 0;
1294  tt_status = ttrace (request, pid, tid, addr, data, addr2);
1295
1296#ifdef THREAD_DEBUG
1297  if (errno)
1298    {
1299      /* Don't bother for a known benign error: if you ask for the
1300       * first thread state, but there is only one thread and it's
1301       * not stopped, ttrace complains.
1302       *
1303       * We have this inside the #ifdef because our caller will do
1304       * this check for real.
1305       */
1306      if (request != TT_PROC_GET_FIRST_LWP_STATE
1307	  || errno != EPROTO)
1308	{
1309	  if (debug_on)
1310	    printf ("TT fail for %s, with pid %d, tid %d, status %d \n",
1311		    get_printable_name_of_ttrace_request (request),
1312		    pid, tid, tt_status);
1313	}
1314    }
1315#endif
1316
1317#if 0
1318  /* ??rehrauer: It would probably be most robust to catch and report
1319   * failed requests here.  However, some clients of this interface
1320   * seem to expect to catch & deal with them, so we'd best not.
1321   */
1322  if (errno)
1323    {
1324      strcpy (reason_for_failure, "ttrace (");
1325      strcat (reason_for_failure, get_printable_name_of_ttrace_request (request));
1326      strcat (reason_for_failure, ")");
1327      printf ("ttrace error, errno = %d\n", errno);
1328      perror_with_name (reason_for_failure);
1329    }
1330#endif
1331
1332  return tt_status;
1333}
1334
1335
1336/* This function simply calls ttrace_wait with the given arguments.
1337 * It exists so that all calls to ttrace_wait are isolated.
1338 *
1339 * No "raw" calls to ttrace_wait should exist elsewhere.
1340 */
1341static int
1342call_real_ttrace_wait (int pid, lwpid_t tid, ttwopt_t option, ttstate_t *tsp,
1343		       size_t tsp_size)
1344{
1345  int ttw_status;
1346  thread_info *tinfo = NULL;
1347
1348  errno = 0;
1349  ttw_status = ttrace_wait (pid, tid, option, tsp, tsp_size);
1350
1351  if (errno)
1352    {
1353#ifdef THREAD_DEBUG
1354      if (debug_on)
1355	printf ("TW fail with pid %d, tid %d \n", pid, tid);
1356#endif
1357
1358      perror_with_name ("ttrace wait");
1359    }
1360
1361  return ttw_status;
1362}
1363
1364
1365/* A process may have one or more kernel threads, of which all or
1366   none may be stopped.  This function returns the ID of the first
1367   kernel thread in a stopped state, or 0 if none are stopped.
1368
1369   This function can be used with get_process_next_stopped_thread_id
1370   to iterate over the IDs of all stopped threads of this process.
1371 */
1372static lwpid_t
1373get_process_first_stopped_thread_id (int pid, ttstate_t *thread_state)
1374{
1375  int tt_status;
1376
1377  tt_status = call_real_ttrace (TT_PROC_GET_FIRST_LWP_STATE,
1378				(pid_t) pid,
1379				(lwpid_t) TT_NIL,
1380				(TTRACE_ARG_TYPE) thread_state,
1381				(TTRACE_ARG_TYPE) sizeof (*thread_state),
1382				TT_NIL);
1383
1384  if (errno)
1385    {
1386      if (errno == EPROTO)
1387	{
1388	  /* This is an error we can handle: there isn't any stopped
1389	   * thread.  This happens when we're re-starting the application
1390	   * and it has only one thread.  GET_NEXT handles the case of
1391	   * no more stopped threads well; GET_FIRST doesn't.  (A ttrace
1392	   * "feature".)
1393	   */
1394	  tt_status = 1;
1395	  errno = 0;
1396	  return 0;
1397	}
1398      else
1399	perror_with_name ("ttrace");
1400    }
1401
1402  if (tt_status < 0)
1403    /* Failed somehow.
1404     */
1405    return 0;
1406
1407  return thread_state->tts_lwpid;
1408}
1409
1410
1411/* This function returns the ID of the "next" kernel thread in a
1412   stopped state, or 0 if there are none.  "Next" refers to the
1413   thread following that of the last successful call to this
1414   function or to get_process_first_stopped_thread_id, using
1415   the value of thread_state returned by that call.
1416
1417   This function can be used with get_process_first_stopped_thread_id
1418   to iterate over the IDs of all stopped threads of this process.
1419 */
1420static lwpid_t
1421get_process_next_stopped_thread_id (int pid, ttstate_t *thread_state)
1422{
1423  int tt_status;
1424
1425  tt_status = call_real_ttrace (
1426				 TT_PROC_GET_NEXT_LWP_STATE,
1427				 (pid_t) pid,
1428				 (lwpid_t) TT_NIL,
1429				 (TTRACE_ARG_TYPE) thread_state,
1430				 (TTRACE_ARG_TYPE) sizeof (*thread_state),
1431				 TT_NIL);
1432  if (errno)
1433    perror_with_name ("ttrace");
1434
1435  if (tt_status < 0)
1436    /* Failed
1437     */
1438    return 0;
1439
1440  else if (tt_status == 0)
1441    {
1442      /* End of list, no next state.  Don't return the
1443       * tts_lwpid, as it's a meaningless "240".
1444       *
1445       * This is an HPUX "feature".
1446       */
1447      return 0;
1448    }
1449
1450  return thread_state->tts_lwpid;
1451}
1452
1453/* ??rehrauer: Eventually this function perhaps should be calling
1454   pid_to_thread_id.  However, that function currently does nothing
1455   for HP-UX.  Even then, I'm not clear whether that function
1456   will return a "kernel" thread ID, or a "user" thread ID.  If
1457   the former, we can just call it here.  If the latter, we must
1458   map from the "user" tid to a "kernel" tid.
1459
1460   NOTE: currently not called.
1461 */
1462static lwpid_t
1463get_active_tid_of_pid (int pid)
1464{
1465  ttstate_t thread_state;
1466
1467  return get_process_first_stopped_thread_id (pid, &thread_state);
1468}
1469
1470/* This function returns 1 if tt_request is a ttrace request that
1471 * operates upon all threads of a (i.e., the entire) process.
1472 */
1473int
1474is_process_ttrace_request (ttreq_t tt_request)
1475{
1476  return IS_TTRACE_PROCREQ (tt_request);
1477}
1478
1479
1480/* This function translates a thread ttrace request into
1481 * the equivalent process request for a one-thread process.
1482 */
1483static ttreq_t
1484make_process_version (ttreq_t request)
1485{
1486  if (!IS_TTRACE_REQ (request))
1487    {
1488      error ("Internal error, bad ttrace request made\n");
1489      return -1;
1490    }
1491
1492  switch (request)
1493    {
1494    case TT_LWP_STOP:
1495      return TT_PROC_STOP;
1496
1497    case TT_LWP_CONTINUE:
1498      return TT_PROC_CONTINUE;
1499
1500    case TT_LWP_GET_EVENT_MASK:
1501      return TT_PROC_GET_EVENT_MASK;
1502
1503    case TT_LWP_SET_EVENT_MASK:
1504      return TT_PROC_SET_EVENT_MASK;
1505
1506    case TT_LWP_SINGLE:
1507    case TT_LWP_RUREGS:
1508    case TT_LWP_WUREGS:
1509    case TT_LWP_GET_STATE:
1510      return -1;		/* No equivalent */
1511
1512    default:
1513      return request;
1514    }
1515}
1516
1517
1518/* This function translates the "pid" used by the rest of
1519 * gdb to a real pid and a tid.  It then calls "call_real_ttrace"
1520 * with the given arguments.
1521 *
1522 * In general, other parts of this module should call this
1523 * function when they are dealing with external users, who only
1524 * have tids to pass (but they call it "pid" for historical
1525 * reasons).
1526 */
1527static int
1528call_ttrace (ttreq_t request, int gdb_tid, TTRACE_ARG_TYPE addr,
1529	     TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1530{
1531  lwpid_t real_tid;
1532  int real_pid;
1533  ttreq_t new_request;
1534  int tt_status;
1535  char reason_for_failure[100];	/* Arbitrary size, should be big enough. */
1536
1537#ifdef THREAD_DEBUG
1538  int is_interesting = 0;
1539
1540  if (TT_LWP_RUREGS == request)
1541    {
1542      is_interesting = 1;	/* Adjust code here as desired */
1543    }
1544
1545  if (is_interesting && 0 && debug_on)
1546    {
1547      if (!is_process_ttrace_request (request))
1548	{
1549	  printf ("TT: Thread request, tid is %d", gdb_tid);
1550	  printf ("== SINGLE at %x", addr);
1551	}
1552      else
1553	{
1554	  printf ("TT: Process request, tid is %d\n", gdb_tid);
1555	  printf ("==! SINGLE at %x", addr);
1556	}
1557    }
1558#endif
1559
1560  /* The initial SETTRC and SET_EVENT_MASK calls (and all others
1561   * which happen before any threads get set up) should go
1562   * directly to "call_real_ttrace", so they don't happen here.
1563   *
1564   * But hardware watchpoints do a SET_EVENT_MASK, so we can't
1565   * rule them out....
1566   */
1567#ifdef THREAD_DEBUG
1568  if (request == TT_PROC_SETTRC && debug_on)
1569    printf ("Unexpected call for TT_PROC_SETTRC\n");
1570#endif
1571
1572  /* Sometimes we get called with a bogus tid (e.g., if a
1573   * thread has terminated, we return 0; inftarg later asks
1574   * whether the thread has exited/forked/vforked).
1575   */
1576  if (gdb_tid == 0)
1577    {
1578      errno = ESRCH;		/* ttrace's response would probably be "No such process". */
1579      return -1;
1580    }
1581
1582  /* All other cases should be able to expect that there are
1583   * thread records.
1584   */
1585  if (!any_thread_records ())
1586    {
1587#ifdef THREAD_DEBUG
1588      if (debug_on)
1589	warning ("No thread records for ttrace call");
1590#endif
1591      errno = ESRCH;		/* ttrace's response would be "No such process". */
1592      return -1;
1593    }
1594
1595  /* OK, now the task is to translate the incoming tid into
1596   * a pid/tid pair.
1597   */
1598  real_tid = map_from_gdb_tid (gdb_tid);
1599  real_pid = get_pid_for (real_tid);
1600
1601  /* Now check the result.  "Real_pid" is NULL if our list
1602   * didn't find it.  We have some tricks we can play to fix
1603   * this, however.
1604   */
1605  if (0 == real_pid)
1606    {
1607      ttstate_t thread_state;
1608
1609#ifdef THREAD_DEBUG
1610      if (debug_on)
1611	printf ("No saved pid for tid %d\n", gdb_tid);
1612#endif
1613
1614      if (is_process_ttrace_request (request))
1615	{
1616
1617	  /* Ok, we couldn't get a tid.  Try to translate to
1618	   * the equivalent process operation.  We expect this
1619	   * NOT to happen, so this is a desparation-type
1620	   * move.  It can happen if there is an internal
1621	   * error and so no "wait()" call is ever done.
1622	   */
1623	  new_request = make_process_version (request);
1624	  if (new_request == -1)
1625	    {
1626
1627#ifdef THREAD_DEBUG
1628	      if (debug_on)
1629		printf ("...and couldn't make process version of thread operation\n");
1630#endif
1631
1632	      /* Use hacky saved pid, which won't always be correct
1633	       * in the multi-process future.  Use tid as thread,
1634	       * probably dooming this to failure.  FIX!
1635	       */
1636	      if (! ptid_equal (saved_real_ptid, null_ptid))
1637		{
1638#ifdef THREAD_DEBUG
1639		  if (debug_on)
1640		    printf ("...using saved pid %d\n",
1641		            PIDGET (saved_real_ptid));
1642#endif
1643
1644		  real_pid = PIDGET (saved_real_ptid);
1645		  real_tid = gdb_tid;
1646		}
1647
1648	      else
1649		error ("Unable to perform thread operation");
1650	    }
1651
1652	  else
1653	    {
1654	      /* Sucessfully translated this to a process request,
1655	       * which needs no thread value.
1656	       */
1657	      real_pid = gdb_tid;
1658	      real_tid = 0;
1659	      request = new_request;
1660
1661#ifdef THREAD_DEBUG
1662	      if (debug_on)
1663		{
1664		  printf ("Translated thread request to process request\n");
1665		  if (ptid_equal (saved_real_ptid, null_ptid))
1666		    printf ("...but there's no saved pid\n");
1667
1668		  else
1669		    {
1670		      if (gdb_tid != PIDGET (saved_real_ptid))
1671			printf ("...but have the wrong pid (%d rather than %d)\n",
1672				gdb_tid, PIDGET (saved_real_ptid));
1673		    }
1674		}
1675#endif
1676	    }			/* Translated to a process request */
1677	}			/* Is a process request */
1678
1679      else
1680	{
1681	  /* We have to have a thread.  Ooops.
1682	   */
1683	  error ("Thread request with no threads (%s)",
1684		 get_printable_name_of_ttrace_request (request));
1685	}
1686    }
1687
1688  /* Ttrace doesn't like to see tid values on process requests,
1689   * even if we have the right one.
1690   */
1691  if (is_process_ttrace_request (request))
1692    {
1693      real_tid = 0;
1694    }
1695
1696#ifdef THREAD_DEBUG
1697  if (is_interesting && 0 && debug_on)
1698    {
1699      printf ("    now tid %d, pid %d\n", real_tid, real_pid);
1700      printf ("    request is %s\n", get_printable_name_of_ttrace_request (request));
1701    }
1702#endif
1703
1704  /* Finally, the (almost) real call.
1705   */
1706  tt_status = call_real_ttrace (request, real_pid, real_tid, addr, data, addr2);
1707
1708#ifdef THREAD_DEBUG
1709  if (is_interesting && debug_on)
1710    {
1711      if (!TT_OK (tt_status, errno)
1712	  && !(tt_status == 0 & errno == 0))
1713	printf (" got error (errno==%d, status==%d)\n", errno, tt_status);
1714    }
1715#endif
1716
1717  return tt_status;
1718}
1719
1720
1721/* Stop all the threads of a process.
1722
1723 * NOTE: use of TT_PROC_STOP can cause a thread with a real event
1724 *       to get a TTEVT_NONE event, discarding the old event.  Be
1725 *       very careful, and only call TT_PROC_STOP when you mean it!
1726 */
1727static void
1728stop_all_threads_of_process (pid_t real_pid)
1729{
1730  int ttw_status;
1731
1732  ttw_status = call_real_ttrace (TT_PROC_STOP,
1733				 (pid_t) real_pid,
1734				 (lwpid_t) TT_NIL,
1735				 (TTRACE_ARG_TYPE) TT_NIL,
1736				 (TTRACE_ARG_TYPE) TT_NIL,
1737				 TT_NIL);
1738  if (errno)
1739    perror_with_name ("ttrace stop of other threads");
1740}
1741
1742
1743/* Under some circumstances, it's unsafe to attempt to stop, or even
1744   query the state of, a process' threads.
1745
1746   In ttrace-based HP-UX, an example is a vforking child process.  The
1747   vforking parent and child are somewhat fragile, w/r/t what we can do
1748   what we can do to them with ttrace, until after the child exits or
1749   execs, or until the parent's vfork event is delivered.  Until that
1750   time, we must not try to stop the process' threads, or inquire how
1751   many there are, or even alter its data segments, or it typically dies
1752   with a SIGILL.  Sigh.
1753
1754   This function returns 1 if this stopped process, and the event that
1755   we're told was responsible for its current stopped state, cannot safely
1756   have its threads examined.
1757 */
1758#define CHILD_VFORKED(evt,pid) \
1759  (((evt) == TTEVT_VFORK) && ((pid) != PIDGET (inferior_ptid)))
1760#define CHILD_URPED(evt,pid) \
1761  ((((evt) == TTEVT_EXEC) || ((evt) == TTEVT_EXIT)) && ((pid) != vforking_child_pid))
1762#define PARENT_VFORKED(evt,pid) \
1763  (((evt) == TTEVT_VFORK) && ((pid) == PIDGET (inferior_ptid)))
1764
1765static int
1766can_touch_threads_of_process (int pid, ttevents_t stopping_event)
1767{
1768  if (CHILD_VFORKED (stopping_event, pid))
1769    {
1770      vforking_child_pid = pid;
1771      vfork_in_flight = 1;
1772    }
1773
1774  else if (vfork_in_flight &&
1775	   (PARENT_VFORKED (stopping_event, pid) ||
1776	    CHILD_URPED (stopping_event, pid)))
1777    {
1778      vfork_in_flight = 0;
1779      vforking_child_pid = 0;
1780    }
1781
1782  return !vfork_in_flight;
1783}
1784
1785
1786/* If we can find an as-yet-unhandled thread state of a
1787 * stopped thread of this process return 1 and set "tsp".
1788 * Return 0 if we can't.
1789 *
1790 * If this function is used when the threads of PIS haven't
1791 * been stopped, undefined behaviour is guaranteed!
1792 */
1793static int
1794select_stopped_thread_of_process (int pid, ttstate_t *tsp)
1795{
1796  lwpid_t candidate_tid, tid;
1797  ttstate_t candidate_tstate, tstate;
1798
1799  /* If we're not allowed to touch the process now, then just
1800   * return the current value of *TSP.
1801   *
1802   * This supports "vfork".  It's ok, really, to double the
1803   * current event (the child EXEC, we hope!).
1804   */
1805  if (!can_touch_threads_of_process (pid, tsp->tts_event))
1806    return 1;
1807
1808  /* Decide which of (possibly more than one) events to
1809   * return as the first one.  We scan them all so that
1810   * we always return the result of a fake-step first.
1811   */
1812  candidate_tid = 0;
1813  for (tid = get_process_first_stopped_thread_id (pid, &tstate);
1814       tid != 0;
1815       tid = get_process_next_stopped_thread_id (pid, &tstate))
1816    {
1817      /* TTEVT_NONE events are uninteresting to our clients.  They're
1818       * an artifact of our "stop the world" model--the thread is
1819       * stopped because we stopped it.
1820       */
1821      if (tstate.tts_event == TTEVT_NONE)
1822	{
1823	  set_handled (pid, tstate.tts_lwpid);
1824	}
1825
1826      /* Did we just single-step a single thread, without letting any
1827       * of the others run?  Is this an event for that thread?
1828       *
1829       * If so, we believe our client would prefer to see this event
1830       * over any others.  (Typically the client wants to just push
1831       * one thread a little farther forward, and then go around
1832       * checking for what all threads are doing.)
1833       */
1834      else if (doing_fake_step && (tstate.tts_lwpid == fake_step_tid))
1835	{
1836#ifdef WAIT_BUFFER_DEBUG
1837	  /* It's possible here to see either a SIGTRAP (due to
1838	   * successful completion of a step) or a SYSCALL_ENTRY
1839	   * (due to a step completion with active hardware
1840	   * watchpoints).
1841	   */
1842	  if (debug_on)
1843	    printf ("Ending fake step with tid %d, state %s\n",
1844		    tstate.tts_lwpid,
1845		    get_printable_name_of_ttrace_event (tstate.tts_event));
1846#endif
1847
1848	  /* Remember this one, and throw away any previous
1849	   * candidate.
1850	   */
1851	  candidate_tid = tstate.tts_lwpid;
1852	  candidate_tstate = tstate;
1853	}
1854
1855#ifdef FORGET_DELETED_BPTS
1856
1857      /* We can't just do this, as if we do, and then wind
1858       * up the loop with no unhandled events, we need to
1859       * handle that case--the appropriate reaction is to
1860       * just continue, but there's no easy way to do that.
1861       *
1862       * Better to put this in the ttrace_wait call--if, when
1863       * we fake a wait, we update our events based on the
1864       * breakpoint_here_pc call and find there are no more events,
1865       * then we better continue and so on.
1866       *
1867       * Or we could put it in the next/continue fake.
1868       * But it has to go in the buffering code, not in the
1869       * real go/wait code.
1870       */
1871      else if ((TTEVT_SIGNAL == tstate.tts_event)
1872	       && (5 == tstate.tts_u.tts_signal.tts_signo)
1873	       && (0 != get_raw_pc (tstate.tts_lwpid))
1874	       && !breakpoint_here_p (get_raw_pc (tstate.tts_lwpid)))
1875	{
1876	  /*
1877	   * If the user deleted a breakpoint while this
1878	   * breakpoint-hit event was buffered, we can forget
1879	   * it now.
1880	   */
1881#ifdef WAIT_BUFFER_DEBUG
1882	  if (debug_on)
1883	    printf ("Forgetting deleted bp hit for thread %d\n",
1884		    tstate.tts_lwpid);
1885#endif
1886
1887	  set_handled (pid, tstate.tts_lwpid);
1888	}
1889#endif
1890
1891      /* Else, is this the first "unhandled" event?  If so,
1892       * we believe our client wants to see it (if we don't
1893       * see a fake-step later on in the scan).
1894       */
1895      else if (!was_handled (tstate.tts_lwpid) && candidate_tid == 0)
1896	{
1897	  candidate_tid = tstate.tts_lwpid;
1898	  candidate_tstate = tstate;
1899	}
1900
1901      /* This is either an event that has already been "handled",
1902       * and thus we believe is uninteresting to our client, or we
1903       * already have a candidate event.  Ignore it...
1904       */
1905    }
1906
1907  /* What do we report?
1908   */
1909  if (doing_fake_step)
1910    {
1911      if (candidate_tid == fake_step_tid)
1912	{
1913	  /* Fake step.
1914	   */
1915	  tstate = candidate_tstate;
1916	}
1917      else
1918	{
1919	  warning ("Internal error: fake-step failed to complete.");
1920	  return 0;
1921	}
1922    }
1923  else if (candidate_tid != 0)
1924    {
1925      /* Found a candidate unhandled event.
1926       */
1927      tstate = candidate_tstate;
1928    }
1929  else if (tid != 0)
1930    {
1931      warning ("Internal error in call of ttrace_wait.");
1932      return 0;
1933    }
1934  else
1935    {
1936      warning ("Internal error: no unhandled thread event to select");
1937      return 0;
1938    }
1939
1940  copy_ttstate_t (tsp, &tstate);
1941  return 1;
1942}				/* End of select_stopped_thread_of_process */
1943
1944#ifdef PARANOIA
1945/* Check our internal thread data against the real thing.
1946 */
1947static void
1948check_thread_consistency (pid_t real_pid)
1949{
1950  int tid;			/* really lwpid_t */
1951  ttstate_t tstate;
1952  thread_info *p;
1953
1954  /* Spin down the O/S list of threads, checking that they
1955   * match what we've got.
1956   */
1957  for (tid = get_process_first_stopped_thread_id (real_pid, &tstate);
1958       tid != 0;
1959       tid = get_process_next_stopped_thread_id (real_pid, &tstate))
1960    {
1961
1962      p = find_thread_info (tid);
1963
1964      if (NULL == p)
1965	{
1966	  warning ("No internal thread data for thread %d.", tid);
1967	  continue;
1968	}
1969
1970      if (!p->seen)
1971	{
1972	  warning ("Inconsistent internal thread data for thread %d.", tid);
1973	}
1974
1975      if (p->terminated)
1976	{
1977	  warning ("Thread %d is not terminated, internal error.", tid);
1978	  continue;
1979	}
1980
1981
1982#define TT_COMPARE( fld ) \
1983            tstate.fld != p->last_stop_state.fld
1984
1985      if (p->have_state)
1986	{
1987	  if (TT_COMPARE (tts_pid)
1988	      || TT_COMPARE (tts_lwpid)
1989	      || TT_COMPARE (tts_user_tid)
1990	      || TT_COMPARE (tts_event)
1991	      || TT_COMPARE (tts_flags)
1992	      || TT_COMPARE (tts_scno)
1993	      || TT_COMPARE (tts_scnargs))
1994	    {
1995	      warning ("Internal thread data for thread %d is wrong.", tid);
1996	      continue;
1997	    }
1998	}
1999    }
2000}
2001#endif /* PARANOIA */
2002
2003
2004/* This function wraps calls to "call_real_ttrace_wait" so
2005 * that a actual wait is only done when all pending events
2006 * have been reported.
2007 *
2008 * Note that typically it is called with a pid of "0", i.e.
2009 * the "don't care" value.
2010 *
2011 * Return value is the status of the pseudo wait.
2012 */
2013static int
2014call_ttrace_wait (int pid, ttwopt_t option, ttstate_t *tsp, size_t tsp_size)
2015{
2016  /* This holds the actual, for-real, true process ID.
2017   */
2018  static int real_pid;
2019
2020  /* As an argument to ttrace_wait, zero pid
2021   * means "Any process", and zero tid means
2022   * "Any thread of the specified process".
2023   */
2024  int wait_pid = 0;
2025  lwpid_t wait_tid = 0;
2026  lwpid_t real_tid;
2027
2028  int ttw_status = 0;		/* To be returned */
2029
2030  thread_info *tinfo = NULL;
2031
2032  if (pid != 0)
2033    {
2034      /* Unexpected case.
2035       */
2036#ifdef THREAD_DEBUG
2037      if (debug_on)
2038	printf ("TW: Pid to wait on is %d\n", pid);
2039#endif
2040
2041      if (!any_thread_records ())
2042	error ("No thread records for ttrace call w. specific pid");
2043
2044      /* OK, now the task is to translate the incoming tid into
2045       * a pid/tid pair.
2046       */
2047      real_tid = map_from_gdb_tid (pid);
2048      real_pid = get_pid_for (real_tid);
2049#ifdef THREAD_DEBUG
2050      if (debug_on)
2051	printf ("==TW: real pid %d, real tid %d\n", real_pid, real_tid);
2052#endif
2053    }
2054
2055
2056  /* Sanity checks and set-up.
2057   *                             Process State
2058   *
2059   *                        Stopped   Running    Fake-step  (v)Fork
2060   *                      \________________________________________
2061   *                      |
2062   *  No buffered events  |  error     wait       wait      wait
2063   *                      |
2064   *  Buffered events     |  debuffer  error      wait      debuffer (?)
2065   *
2066   */
2067  if (more_events_left == 0)
2068    {
2069
2070      if (process_state == RUNNING)
2071	{
2072	  /* OK--normal call of ttrace_wait with no buffered events.
2073	   */
2074	  ;
2075	}
2076      else if (process_state == FAKE_STEPPING)
2077	{
2078	  /* Ok--call of ttrace_wait to support
2079	   * fake stepping with no buffered events.
2080	   *
2081	   * But we better be fake-stepping!
2082	   */
2083	  if (!doing_fake_step)
2084	    {
2085	      warning ("Inconsistent thread state.");
2086	    }
2087	}
2088      else if ((process_state == FORKING)
2089	       || (process_state == VFORKING))
2090	{
2091	  /* Ok--there are two processes, so waiting
2092	   * for the second while the first is stopped
2093	   * is ok.  Handled bits stay as they were.
2094	   */
2095	  ;
2096	}
2097      else if (process_state == STOPPED)
2098	{
2099	  warning ("Process not running at wait call.");
2100	}
2101      else
2102	/* No known state.
2103	 */
2104	warning ("Inconsistent process state.");
2105    }
2106
2107  else
2108    {
2109      /* More events left
2110       */
2111      if (process_state == STOPPED)
2112	{
2113	  /* OK--buffered events being unbuffered.
2114	   */
2115	  ;
2116	}
2117      else if (process_state == RUNNING)
2118	{
2119	  /* An error--shouldn't have buffered events
2120	   * when running.
2121	   */
2122	  warning ("Trying to continue with buffered events:");
2123	}
2124      else if (process_state == FAKE_STEPPING)
2125	{
2126	  /*
2127	   * Better be fake-stepping!
2128	   */
2129	  if (!doing_fake_step)
2130	    {
2131	      warning ("Losing buffered thread events!\n");
2132	    }
2133	}
2134      else if ((process_state == FORKING)
2135	       || (process_state == VFORKING))
2136	{
2137	  /* Ok--there are two processes, so waiting
2138	   * for the second while the first is stopped
2139	   * is ok.  Handled bits stay as they were.
2140	   */
2141	  ;
2142	}
2143      else
2144	warning ("Process in unknown state with buffered events.");
2145    }
2146
2147  /* Sometimes we have to wait for a particular thread
2148   * (if we're stepping over a bpt).  In that case, we
2149   * _know_ it's going to complete the single-step we
2150   * asked for (because we're only doing the step under
2151   * certain very well-understood circumstances), so it
2152   * can't block.
2153   */
2154  if (doing_fake_step)
2155    {
2156      wait_tid = fake_step_tid;
2157      wait_pid = get_pid_for (fake_step_tid);
2158
2159#ifdef WAIT_BUFFER_DEBUG
2160      if (debug_on)
2161	printf ("Doing a wait after a fake-step for %d, pid %d\n",
2162		wait_tid, wait_pid);
2163#endif
2164    }
2165
2166  if (more_events_left == 0	/* No buffered events, need real ones. */
2167      || process_state != STOPPED)
2168    {
2169      /* If there are no buffered events, and so we need
2170       * real ones, or if we are FORKING, VFORKING,
2171       * FAKE_STEPPING or RUNNING, and thus have to do
2172       * a real wait, then do a real wait.
2173       */
2174
2175#ifdef WAIT_BUFFER_DEBUG
2176      /* Normal case... */
2177      if (debug_on)
2178	printf ("TW: do it for real; pid %d, tid %d\n", wait_pid, wait_tid);
2179#endif
2180
2181      /* The actual wait call.
2182       */
2183      ttw_status = call_real_ttrace_wait (wait_pid, wait_tid, option, tsp, tsp_size);
2184
2185      /* Note that the routines we'll call will be using "call_real_ttrace",
2186       * not "call_ttrace", and thus need the real pid rather than the pseudo-tid
2187       * the rest of the world uses (which is actually the tid).
2188       */
2189      real_pid = tsp->tts_pid;
2190
2191      /* For most events: Stop the world!
2192
2193       * It's sometimes not safe to stop all threads of a process.
2194       * Sometimes it's not even safe to ask for the thread state
2195       * of a process!
2196       */
2197      if (can_touch_threads_of_process (real_pid, tsp->tts_event))
2198	{
2199	  /* If we're really only stepping a single thread, then don't
2200	   * try to stop all the others -- we only do this single-stepping
2201	   * business when all others were already stopped...and the stop
2202	   * would mess up other threads' events.
2203	   *
2204	   * Similiarly, if there are other threads with events,
2205	   * don't do the stop.
2206	   */
2207	  if (!doing_fake_step)
2208	    {
2209	      if (more_events_left > 0)
2210		warning ("Internal error in stopping process");
2211
2212	      stop_all_threads_of_process (real_pid);
2213
2214	      /* At this point, we could scan and update_thread_list(),
2215	       * and only use the local list for the rest of the
2216	       * module! We'd get rid of the scans in the various
2217	       * continue routines (adding one in attach).  It'd
2218	       * be great--UPGRADE ME!
2219	       */
2220	    }
2221	}
2222
2223#ifdef PARANOIA
2224      else if (debug_on)
2225	{
2226	  if (more_events_left > 0)
2227	    printf ("== Can't stop process; more events!\n");
2228	  else
2229	    printf ("== Can't stop process!\n");
2230	}
2231#endif
2232
2233      process_state = STOPPED;
2234
2235#ifdef WAIT_BUFFER_DEBUG
2236      if (debug_on)
2237	printf ("Process set to STOPPED\n");
2238#endif
2239    }
2240
2241  else
2242    {
2243      /* Fake a call to ttrace_wait.  The process must be
2244       * STOPPED, as we aren't going to do any wait.
2245       */
2246#ifdef WAIT_BUFFER_DEBUG
2247      if (debug_on)
2248	printf ("TW: fake it\n");
2249#endif
2250
2251      if (process_state != STOPPED)
2252	{
2253	  warning ("Process not stopped at wait call, in state '%s'.\n",
2254		   get_printable_name_of_process_state (process_state));
2255	}
2256
2257      if (doing_fake_step)
2258	error ("Internal error in stepping over breakpoint");
2259
2260      ttw_status = 0;		/* Faking it is always successful! */
2261    }				/* End of fake or not? if */
2262
2263  /* Pick an event to pass to our caller.  Be paranoid.
2264   */
2265  if (!select_stopped_thread_of_process (real_pid, tsp))
2266    warning ("Can't find event, using previous event.");
2267
2268  else if (tsp->tts_event == TTEVT_NONE)
2269    warning ("Internal error: no thread has a real event.");
2270
2271  else if (doing_fake_step)
2272    {
2273      if (fake_step_tid != tsp->tts_lwpid)
2274	warning ("Internal error in stepping over breakpoint.");
2275
2276      /* This wait clears the (current) fake-step if there was one.
2277       */
2278      doing_fake_step = 0;
2279      fake_step_tid = 0;
2280    }
2281
2282  /* We now have a correct tsp and ttw_status for the thread
2283   * which we want to report.  So it's "handled"!  This call
2284   * will add it to our list if it's not there already.
2285   */
2286  set_handled (real_pid, tsp->tts_lwpid);
2287
2288  /* Save a copy of the ttrace state of this thread, in our local
2289     thread descriptor.
2290
2291     This caches the state.  The implementation of queries like
2292     target_has_execd can then use this cached state, rather than
2293     be forced to make an explicit ttrace call to get it.
2294
2295     (Guard against the condition that this is the first time we've
2296     waited on, i.e., seen this thread, and so haven't yet entered
2297     it into our list of threads.)
2298   */
2299  tinfo = find_thread_info (tsp->tts_lwpid);
2300  if (tinfo != NULL)
2301    {
2302      copy_ttstate_t (&tinfo->last_stop_state, tsp);
2303      tinfo->have_state = 1;
2304    }
2305
2306  return ttw_status;
2307}				/* call_ttrace_wait */
2308
2309#if defined(CHILD_REPORTED_EXEC_EVENTS_PER_EXEC_CALL)
2310int
2311child_reported_exec_events_per_exec_call (void)
2312{
2313  return 1;			/* ttrace reports the event once per call. */
2314}
2315#endif
2316
2317
2318
2319/* Our implementation of hardware watchpoints involves making memory
2320   pages write-protected.  We must remember a page's original permissions,
2321   and we must also know when it is appropriate to restore a page's
2322   permissions to its original state.
2323
2324   We use a "dictionary" of hardware-watched pages to do this.  Each
2325   hardware-watched page is recorded in the dictionary.  Each page's
2326   dictionary entry contains the original permissions and a reference
2327   count.  Pages are hashed into the dictionary by their start address.
2328
2329   When hardware watchpoint is set on page X for the first time, page X
2330   is added to the dictionary with a reference count of 1.  If other
2331   hardware watchpoints are subsequently set on page X, its reference
2332   count is incremented.  When hardware watchpoints are removed from
2333   page X, its reference count is decremented.  If a page's reference
2334   count drops to 0, it's permissions are restored and the page's entry
2335   is thrown out of the dictionary.
2336 */
2337typedef struct memory_page
2338{
2339  CORE_ADDR page_start;
2340  int reference_count;
2341  int original_permissions;
2342  struct memory_page *next;
2343  struct memory_page *previous;
2344}
2345memory_page_t;
2346
2347#define MEMORY_PAGE_DICTIONARY_BUCKET_COUNT  128
2348
2349static struct
2350  {
2351    LONGEST page_count;
2352    int page_size;
2353    int page_protections_allowed;
2354    /* These are just the heads of chains of actual page descriptors. */
2355    memory_page_t buckets[MEMORY_PAGE_DICTIONARY_BUCKET_COUNT];
2356  }
2357memory_page_dictionary;
2358
2359
2360static void
2361require_memory_page_dictionary (void)
2362{
2363  int i;
2364
2365  /* Is the memory page dictionary ready for use?  If so, we're done. */
2366  if (memory_page_dictionary.page_count >= (LONGEST) 0)
2367    return;
2368
2369  /* Else, initialize it. */
2370  memory_page_dictionary.page_count = (LONGEST) 0;
2371
2372  for (i = 0; i < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; i++)
2373    {
2374      memory_page_dictionary.buckets[i].page_start = (CORE_ADDR) 0;
2375      memory_page_dictionary.buckets[i].reference_count = 0;
2376      memory_page_dictionary.buckets[i].next = NULL;
2377      memory_page_dictionary.buckets[i].previous = NULL;
2378    }
2379}
2380
2381
2382static void
2383retire_memory_page_dictionary (void)
2384{
2385  memory_page_dictionary.page_count = (LONGEST) - 1;
2386}
2387
2388
2389/* Write-protect the memory page that starts at this address.
2390
2391   Returns the original permissions of the page.
2392 */
2393static int
2394write_protect_page (int pid, CORE_ADDR page_start)
2395{
2396  int tt_status;
2397  int original_permissions;
2398  int new_permissions;
2399
2400  tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
2401			   pid,
2402			   (TTRACE_ARG_TYPE) page_start,
2403			   TT_NIL,
2404			   (TTRACE_ARG_TYPE) & original_permissions);
2405  if (errno || (tt_status < 0))
2406    {
2407      return 0;			/* What else can we do? */
2408    }
2409
2410  /* We'll also write-protect the page now, if that's allowed. */
2411  if (memory_page_dictionary.page_protections_allowed)
2412    {
2413      new_permissions = original_permissions & ~PROT_WRITE;
2414      tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2415			       pid,
2416			       (TTRACE_ARG_TYPE) page_start,
2417			 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2418			       (TTRACE_ARG_TYPE) new_permissions);
2419      if (errno || (tt_status < 0))
2420	{
2421	  return 0;		/* What else can we do? */
2422	}
2423    }
2424
2425  return original_permissions;
2426}
2427
2428
2429/* Unwrite-protect the memory page that starts at this address, restoring
2430   (what we must assume are) its original permissions.
2431 */
2432static void
2433unwrite_protect_page (int pid, CORE_ADDR page_start, int original_permissions)
2434{
2435  int tt_status;
2436
2437  tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2438			   pid,
2439			   (TTRACE_ARG_TYPE) page_start,
2440			 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2441			   (TTRACE_ARG_TYPE) original_permissions);
2442  if (errno || (tt_status < 0))
2443    {
2444      return;			/* What else can we do? */
2445    }
2446}
2447
2448
2449/* Memory page-protections are used to implement "hardware" watchpoints
2450   on HP-UX.
2451
2452   For every memory page that is currently being watched (i.e., that
2453   presently should be write-protected), write-protect it.
2454 */
2455void
2456hppa_enable_page_protection_events (int pid)
2457{
2458  int bucket;
2459
2460  memory_page_dictionary.page_protections_allowed = 1;
2461
2462  for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2463    {
2464      memory_page_t *page;
2465
2466      page = memory_page_dictionary.buckets[bucket].next;
2467      while (page != NULL)
2468	{
2469	  page->original_permissions = write_protect_page (pid, page->page_start);
2470	  page = page->next;
2471	}
2472    }
2473}
2474
2475
2476/* Memory page-protections are used to implement "hardware" watchpoints
2477   on HP-UX.
2478
2479   For every memory page that is currently being watched (i.e., that
2480   presently is or should be write-protected), un-write-protect it.
2481 */
2482void
2483hppa_disable_page_protection_events (int pid)
2484{
2485  int bucket;
2486
2487  for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2488    {
2489      memory_page_t *page;
2490
2491      page = memory_page_dictionary.buckets[bucket].next;
2492      while (page != NULL)
2493	{
2494	  unwrite_protect_page (pid, page->page_start, page->original_permissions);
2495	  page = page->next;
2496	}
2497    }
2498
2499  memory_page_dictionary.page_protections_allowed = 0;
2500}
2501
2502/* Count the number of outstanding events.  At this
2503 * point, we have selected one thread and its event
2504 * as the one to be "reported" upwards to core gdb.
2505 * That thread is already marked as "handled".
2506 *
2507 * Note: we could just scan our own thread list.  FIXME!
2508 */
2509static int
2510count_unhandled_events (int real_pid, lwpid_t real_tid)
2511{
2512  ttstate_t tstate;
2513  lwpid_t ttid;
2514  int events_left;
2515
2516  /* Ok, find out how many threads have real events to report.
2517   */
2518  events_left = 0;
2519  ttid = get_process_first_stopped_thread_id (real_pid, &tstate);
2520
2521#ifdef THREAD_DEBUG
2522  if (debug_on)
2523    {
2524      if (ttid == 0)
2525	printf ("Process %d has no threads\n", real_pid);
2526      else
2527	printf ("Process %d has these threads:\n", real_pid);
2528    }
2529#endif
2530
2531  while (ttid > 0)
2532    {
2533      if (tstate.tts_event != TTEVT_NONE
2534	  && !was_handled (ttid))
2535	{
2536	  /* TTEVT_NONE implies we just stopped it ourselves
2537	   * because we're the stop-the-world guys, so it's
2538	   * not an event from our point of view.
2539	   *
2540	   * If "was_handled" is true, this is an event we
2541	   * already handled, so don't count it.
2542	   *
2543	   * Note that we don't count the thread with the
2544	   * currently-reported event, as it's already marked
2545	   * as handled.
2546	   */
2547	  events_left++;
2548	}
2549
2550#if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2551      if (debug_on)
2552	{
2553	  if (ttid == real_tid)
2554	    printf ("*");	/* Thread we're reporting */
2555	  else
2556	    printf (" ");
2557
2558	  if (tstate.tts_event != TTEVT_NONE)
2559	    printf ("+");	/* Thread with a real event */
2560	  else
2561	    printf (" ");
2562
2563	  if (was_handled (ttid))
2564	    printf ("h");	/* Thread has been handled */
2565	  else
2566	    printf (" ");
2567
2568	  printf (" %d, with event %s", ttid,
2569		  get_printable_name_of_ttrace_event (tstate.tts_event));
2570
2571	  if (tstate.tts_event == TTEVT_SIGNAL
2572	      && 5 == tstate.tts_u.tts_signal.tts_signo)
2573	    {
2574	      CORE_ADDR pc_val;
2575
2576	      pc_val = get_raw_pc (ttid);
2577
2578	      if (pc_val > 0)
2579		printf (" breakpoint at 0x%x\n", pc_val);
2580	      else
2581		printf (" bpt, can't fetch pc.\n");
2582	    }
2583	  else
2584	    printf ("\n");
2585	}
2586#endif
2587
2588      ttid = get_process_next_stopped_thread_id (real_pid, &tstate);
2589    }
2590
2591#if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2592  if (debug_on)
2593    if (events_left > 0)
2594      printf ("There are thus %d pending events\n", events_left);
2595#endif
2596
2597  return events_left;
2598}
2599
2600/* This function is provided as a sop to clients that are calling
2601 * ptrace_wait to wait for a process to stop.  (see the
2602 * implementation of child_wait.)  Return value is the pid for
2603 * the event that ended the wait.
2604 *
2605 * Note: used by core gdb and so uses the pseudo-pid (really tid).
2606 */
2607int
2608ptrace_wait (ptid_t ptid, int *status)
2609{
2610  ttstate_t tsp;
2611  int ttwait_return;
2612  int real_pid;
2613  ttstate_t state;
2614  lwpid_t real_tid;
2615  int return_pid;
2616
2617  /* The ptrace implementation of this also ignores pid.
2618   */
2619  *status = 0;
2620
2621  ttwait_return = call_ttrace_wait (0, TTRACE_WAITOK, &tsp, sizeof (tsp));
2622  if (ttwait_return < 0)
2623    {
2624      /* ??rehrauer: It appears that if our inferior exits and we
2625         haven't asked for exit events, that we're not getting any
2626         indication save a negative return from ttrace_wait and an
2627         errno set to ESRCH?
2628       */
2629      if (errno == ESRCH)
2630	{
2631	  *status = 0;		/* WIFEXITED */
2632	  return PIDGET (inferior_ptid);
2633	}
2634
2635      warning ("Call of ttrace_wait returned with errno %d.",
2636	       errno);
2637      *status = ttwait_return;
2638      return PIDGET (inferior_ptid);
2639    }
2640
2641  real_pid = tsp.tts_pid;
2642  real_tid = tsp.tts_lwpid;
2643
2644  /* One complication is that the "tts_event" structure has
2645   * a set of flags, and more than one can be set.  So we
2646   * either have to force an order (as we do here), or handle
2647   * more than one flag at a time.
2648   */
2649  if (tsp.tts_event & TTEVT_LWP_CREATE)
2650    {
2651
2652      /* Unlike what you might expect, this event is reported in
2653       * the _creating_ thread, and the _created_ thread (whose tid
2654       * we have) is still running.  So we have to stop it.  This
2655       * has already been done in "call_ttrace_wait", but should we
2656       * ever abandon the "stop-the-world" model, here's the command
2657       * to use:
2658       *
2659       *    call_ttrace( TT_LWP_STOP, real_tid, TT_NIL, TT_NIL, TT_NIL );
2660       *
2661       * Note that this would depend on being called _after_ "add_tthread"
2662       * below for the tid-to-pid translation to be done in "call_ttrace".
2663       */
2664
2665#ifdef THREAD_DEBUG
2666      if (debug_on)
2667	printf ("New thread: pid %d, tid %d, creator tid %d\n",
2668		real_pid, tsp.tts_u.tts_thread.tts_target_lwpid,
2669		real_tid);
2670#endif
2671
2672      /* Now we have to return the tid of the created thread, not
2673       * the creating thread, or "wait_for_inferior" won't know we
2674       * have a new "process" (thread).  Plus we should record it
2675       * right, too.
2676       */
2677      real_tid = tsp.tts_u.tts_thread.tts_target_lwpid;
2678
2679      add_tthread (real_pid, real_tid);
2680    }
2681
2682  else if ((tsp.tts_event & TTEVT_LWP_TERMINATE)
2683	   || (tsp.tts_event & TTEVT_LWP_EXIT))
2684    {
2685
2686#ifdef THREAD_DEBUG
2687      if (debug_on)
2688	printf ("Thread dies: %d\n", real_tid);
2689#endif
2690
2691      del_tthread (real_tid);
2692    }
2693
2694  else if (tsp.tts_event & TTEVT_EXEC)
2695    {
2696
2697#ifdef THREAD_DEBUG
2698      if (debug_on)
2699	printf ("Pid %d has zero'th thread %d; inferior pid is %d\n",
2700		real_pid, real_tid, PIDGET (inferior_ptid));
2701#endif
2702
2703      add_tthread (real_pid, real_tid);
2704    }
2705
2706#ifdef THREAD_DEBUG
2707  else if (debug_on)
2708    {
2709      printf ("Process-level event %s, using tid %d\n",
2710	      get_printable_name_of_ttrace_event (tsp.tts_event),
2711	      real_tid);
2712
2713      /* OK to do this, as "add_tthread" won't add
2714       * duplicate entries.  Also OK not to do it,
2715       * as this event isn't one which can change the
2716       * thread state.
2717       */
2718      add_tthread (real_pid, real_tid);
2719    }
2720#endif
2721
2722
2723  /* How many events are left to report later?
2724   * In a non-stop-the-world model, this isn't needed.
2725   *
2726   * Note that it's not always safe to query the thread state of a process,
2727   * which is what count_unhandled_events does.  (If unsafe, we're left with
2728   * no other resort than to assume that no more events remain...)
2729   */
2730  if (can_touch_threads_of_process (real_pid, tsp.tts_event))
2731    more_events_left = count_unhandled_events (real_pid, real_tid);
2732
2733  else
2734    {
2735      if (more_events_left > 0)
2736	warning ("Vfork or fork causing loss of %d buffered events.",
2737		 more_events_left);
2738
2739      more_events_left = 0;
2740    }
2741
2742  /* Attempt to translate the ttrace_wait-returned status into the
2743     ptrace equivalent.
2744
2745     ??rehrauer: This is somewhat fragile.  We really ought to rewrite
2746     clients that expect to pick apart a ptrace wait status, to use
2747     something a little more abstract.
2748   */
2749  if ((tsp.tts_event & TTEVT_EXEC)
2750      || (tsp.tts_event & TTEVT_FORK)
2751      || (tsp.tts_event & TTEVT_VFORK))
2752    {
2753      /* Forks come in pairs (parent and child), so core gdb
2754       * will do two waits.  Be ready to notice this.
2755       */
2756      if (tsp.tts_event & TTEVT_FORK)
2757	{
2758	  process_state = FORKING;
2759
2760#ifdef WAIT_BUFFER_DEBUG
2761	  if (debug_on)
2762	    printf ("Process set to FORKING\n");
2763#endif
2764	}
2765      else if (tsp.tts_event & TTEVT_VFORK)
2766	{
2767	  process_state = VFORKING;
2768
2769#ifdef WAIT_BUFFER_DEBUG
2770	  if (debug_on)
2771	    printf ("Process set to VFORKING\n");
2772#endif
2773	}
2774
2775      /* Make an exec or fork look like a breakpoint.  Definitely a hack,
2776         but I don't think non HP-UX-specific clients really carefully
2777         inspect the first events they get after inferior startup, so
2778         it probably almost doesn't matter what we claim this is.
2779       */
2780
2781#ifdef THREAD_DEBUG
2782      if (debug_on)
2783	printf ("..a process 'event'\n");
2784#endif
2785
2786      /* Also make fork and exec events look like bpts, so they can be caught.
2787       */
2788      *status = 0177 | (_SIGTRAP << 8);
2789    }
2790
2791  /* Special-cases: We ask for syscall entry and exit events to implement
2792     "fast" (aka "hardware") watchpoints.
2793
2794     When we get a syscall entry, we want to disable page-protections,
2795     and resume the inferior; this isn't an event we wish for
2796     wait_for_inferior to see.  Note that we must resume ONLY the
2797     thread that reported the syscall entry; we don't want to allow
2798     other threads to run with the page protections off, as they might
2799     then be able to write to watch memory without it being caught.
2800
2801     When we get a syscall exit, we want to reenable page-protections,
2802     but we don't want to resume the inferior; this is an event we wish
2803     wait_for_inferior to see.  Make it look like the signal we normally
2804     get for a single-step completion.  This should cause wait_for_inferior
2805     to evaluate whether any watchpoint triggered.
2806
2807     Or rather, that's what we'd LIKE to do for syscall exit; we can't,
2808     due to some HP-UX "features".  Some syscalls have problems with
2809     write-protections on some pages, and some syscalls seem to have
2810     pending writes to those pages at the time we're getting the return
2811     event.  So, we'll single-step the inferior to get out of the syscall,
2812     and then reenable protections.
2813
2814     Note that we're intentionally allowing the syscall exit case to
2815     fall through into the succeeding cases, as sometimes we single-
2816     step out of one syscall only to immediately enter another...
2817   */
2818  else if ((tsp.tts_event & TTEVT_SYSCALL_ENTRY)
2819	   || (tsp.tts_event & TTEVT_SYSCALL_RETURN))
2820    {
2821      /* Make a syscall event look like a breakpoint.  Same comments
2822         as for exec & fork events.
2823       */
2824#ifdef THREAD_DEBUG
2825      if (debug_on)
2826	printf ("..a syscall 'event'\n");
2827#endif
2828
2829      /* Also make syscall events look like bpts, so they can be caught.
2830       */
2831      *status = 0177 | (_SIGTRAP << 8);
2832    }
2833
2834  else if ((tsp.tts_event & TTEVT_LWP_CREATE)
2835	   || (tsp.tts_event & TTEVT_LWP_TERMINATE)
2836	   || (tsp.tts_event & TTEVT_LWP_EXIT))
2837    {
2838      /* Make a thread event look like a breakpoint.  Same comments
2839       * as for exec & fork events.
2840       */
2841#ifdef THREAD_DEBUG
2842      if (debug_on)
2843	printf ("..a thread 'event'\n");
2844#endif
2845
2846      /* Also make thread events look like bpts, so they can be caught.
2847       */
2848      *status = 0177 | (_SIGTRAP << 8);
2849    }
2850
2851  else if ((tsp.tts_event & TTEVT_EXIT))
2852    {				/* WIFEXITED */
2853
2854#ifdef THREAD_DEBUG
2855      if (debug_on)
2856	printf ("..an exit\n");
2857#endif
2858
2859      /* Prevent rest of gdb from thinking this is
2860       * a new thread if for some reason it's never
2861       * seen the main thread before.
2862       */
2863      inferior_ptid = pid_to_ptid (map_to_gdb_tid (real_tid));	/* HACK, FIX */
2864
2865      *status = 0 | (tsp.tts_u.tts_exit.tts_exitcode);
2866    }
2867
2868  else if (tsp.tts_event & TTEVT_SIGNAL)
2869    {				/* WIFSTOPPED */
2870#ifdef THREAD_DEBUG
2871      if (debug_on)
2872	printf ("..a signal, %d\n", tsp.tts_u.tts_signal.tts_signo);
2873#endif
2874
2875      *status = 0177 | (tsp.tts_u.tts_signal.tts_signo << 8);
2876    }
2877
2878  else
2879    {				/* !WIFSTOPPED */
2880
2881      /* This means the process or thread terminated.  But we should've
2882         caught an explicit exit/termination above.  So warn (this is
2883         really an internal error) and claim the process or thread
2884         terminated with a SIGTRAP.
2885       */
2886
2887      warning ("process_wait: unknown process state");
2888
2889#ifdef THREAD_DEBUG
2890      if (debug_on)
2891	printf ("Process-level event %s, using tid %d\n",
2892		get_printable_name_of_ttrace_event (tsp.tts_event),
2893		real_tid);
2894#endif
2895
2896      *status = _SIGTRAP;
2897    }
2898
2899  target_post_wait (pid_to_ptid (tsp.tts_pid), *status);
2900
2901
2902#ifdef THREAD_DEBUG
2903  if (debug_on)
2904    printf ("Done waiting, pid is %d, tid %d\n", real_pid, real_tid);
2905#endif
2906
2907  /* All code external to this module uses the tid, but calls
2908   * it "pid".  There's some tweaking so that the outside sees
2909   * the first thread as having the same number as the starting
2910   * pid.
2911   */
2912  return_pid = map_to_gdb_tid (real_tid);
2913
2914  /* Remember this for later use in "hppa_prepare_to_proceed".
2915   */
2916  old_gdb_pid = PIDGET (inferior_ptid);
2917  reported_pid = return_pid;
2918  reported_bpt = ((tsp.tts_event & TTEVT_SIGNAL) && (5 == tsp.tts_u.tts_signal.tts_signo));
2919
2920  if (real_tid == 0 || return_pid == 0)
2921    {
2922      warning ("Internal error: process-wait failed.");
2923    }
2924
2925  return return_pid;
2926}
2927
2928
2929/* This function causes the caller's process to be traced by its
2930   parent.  This is intended to be called after GDB forks itself,
2931   and before the child execs the target.  Despite the name, it
2932   is called by the child.
2933
2934   Note that HP-UX ttrace is rather funky in how this is done.
2935   If the parent wants to get the initial exec event of a child,
2936   it must set the ttrace event mask of the child to include execs.
2937   (The child cannot do this itself.)  This must be done after the
2938   child is forked, but before it execs.
2939
2940   To coordinate the parent and child, we implement a semaphore using
2941   pipes.  After SETTRC'ing itself, the child tells the parent that
2942   it is now traceable by the parent, and waits for the parent's
2943   acknowledgement.  The parent can then set the child's event mask,
2944   and notify the child that it can now exec.
2945
2946   (The acknowledgement by parent happens as a result of a call to
2947   child_acknowledge_created_inferior.)
2948 */
2949int
2950parent_attach_all (void)
2951{
2952  int tt_status;
2953
2954  /* We need a memory home for a constant, to pass it to ttrace.
2955     The value of the constant is arbitrary, so long as both
2956     parent and child use the same value.  Might as well use the
2957     "magic" constant provided by ttrace...
2958   */
2959  uint64_t tc_magic_child = TT_VERSION;
2960  uint64_t tc_magic_parent = 0;
2961
2962  tt_status = call_real_ttrace (
2963				 TT_PROC_SETTRC,
2964				 (int) TT_NIL,
2965				 (lwpid_t) TT_NIL,
2966				 TT_NIL,
2967				 (TTRACE_ARG_TYPE) TT_VERSION,
2968				 TT_NIL);
2969
2970  if (tt_status < 0)
2971    return tt_status;
2972
2973  /* Notify the parent that we're potentially ready to exec(). */
2974  write (startup_semaphore.child_channel[SEM_TALK],
2975	 &tc_magic_child,
2976	 sizeof (tc_magic_child));
2977
2978  /* Wait for acknowledgement from the parent. */
2979  read (startup_semaphore.parent_channel[SEM_LISTEN],
2980	&tc_magic_parent,
2981	sizeof (tc_magic_parent));
2982
2983  if (tc_magic_child != tc_magic_parent)
2984    warning ("mismatched semaphore magic");
2985
2986  /* Discard our copy of the semaphore. */
2987  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
2988  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
2989  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
2990  (void) close (startup_semaphore.child_channel[SEM_TALK]);
2991
2992  return tt_status;
2993}
2994
2995/* Despite being file-local, this routine is dealing with
2996 * actual process IDs, not thread ids.  That's because it's
2997 * called before the first "wait" call, and there's no map
2998 * yet from tids to pids.
2999 *
3000 * When it is called, a forked child is running, but waiting on
3001 * the semaphore.  If you stop the child and re-start it,
3002 * things get confused, so don't do that!  An attached child is
3003 * stopped.
3004 *
3005 * Since this is called after either attach or run, we
3006 * have to be the common part of both.
3007 */
3008static void
3009require_notification_of_events (int real_pid)
3010{
3011  int tt_status;
3012  ttevent_t notifiable_events;
3013
3014  lwpid_t tid;
3015  ttstate_t thread_state;
3016
3017#ifdef THREAD_DEBUG
3018  if (debug_on)
3019    printf ("Require notif, pid is %d\n", real_pid);
3020#endif
3021
3022  /* Temporary HACK: tell inftarg.c/child_wait to not
3023   * loop until pids are the same.
3024   */
3025  not_same_real_pid = 0;
3026
3027  sigemptyset (&notifiable_events.tte_signals);
3028  notifiable_events.tte_opts = TTEO_NONE;
3029
3030  /* This ensures that forked children inherit their parent's
3031   * event mask, which we're setting here.
3032   *
3033   * NOTE: if you debug gdb with itself, then the ultimate
3034   *       debuggee gets flags set by the outermost gdb, as
3035   *       a child of a child will still inherit.
3036   */
3037  notifiable_events.tte_opts |= TTEO_PROC_INHERIT;
3038
3039  notifiable_events.tte_events = TTEVT_DEFAULT;
3040  notifiable_events.tte_events |= TTEVT_SIGNAL;
3041  notifiable_events.tte_events |= TTEVT_EXEC;
3042  notifiable_events.tte_events |= TTEVT_EXIT;
3043  notifiable_events.tte_events |= TTEVT_FORK;
3044  notifiable_events.tte_events |= TTEVT_VFORK;
3045  notifiable_events.tte_events |= TTEVT_LWP_CREATE;
3046  notifiable_events.tte_events |= TTEVT_LWP_EXIT;
3047  notifiable_events.tte_events |= TTEVT_LWP_TERMINATE;
3048
3049  tt_status = call_real_ttrace (
3050				 TT_PROC_SET_EVENT_MASK,
3051				 real_pid,
3052				 (lwpid_t) TT_NIL,
3053				 (TTRACE_ARG_TYPE) & notifiable_events,
3054			       (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3055				 TT_NIL);
3056}
3057
3058static void
3059require_notification_of_exec_events (int real_pid)
3060{
3061  int tt_status;
3062  ttevent_t notifiable_events;
3063
3064  lwpid_t tid;
3065  ttstate_t thread_state;
3066
3067#ifdef THREAD_DEBUG
3068  if (debug_on)
3069    printf ("Require notif, pid is %d\n", real_pid);
3070#endif
3071
3072  /* Temporary HACK: tell inftarg.c/child_wait to not
3073   * loop until pids are the same.
3074   */
3075  not_same_real_pid = 0;
3076
3077  sigemptyset (&notifiable_events.tte_signals);
3078  notifiable_events.tte_opts = TTEO_NOSTRCCHLD;
3079
3080  /* This ensures that forked children don't inherit their parent's
3081   * event mask, which we're setting here.
3082   */
3083  notifiable_events.tte_opts &= ~TTEO_PROC_INHERIT;
3084
3085  notifiable_events.tte_events = TTEVT_DEFAULT;
3086  notifiable_events.tte_events |= TTEVT_EXEC;
3087  notifiable_events.tte_events |= TTEVT_EXIT;
3088
3089  tt_status = call_real_ttrace (
3090				 TT_PROC_SET_EVENT_MASK,
3091				 real_pid,
3092				 (lwpid_t) TT_NIL,
3093				 (TTRACE_ARG_TYPE) & notifiable_events,
3094			       (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3095				 TT_NIL);
3096}
3097
3098
3099/* This function is called by the parent process, with pid being the
3100 * ID of the child process, after the debugger has forked.
3101 */
3102void
3103child_acknowledge_created_inferior (int pid)
3104{
3105  /* We need a memory home for a constant, to pass it to ttrace.
3106     The value of the constant is arbitrary, so long as both
3107     parent and child use the same value.  Might as well use the
3108     "magic" constant provided by ttrace...
3109   */
3110  uint64_t tc_magic_parent = TT_VERSION;
3111  uint64_t tc_magic_child = 0;
3112
3113  /* Wait for the child to tell us that it has forked. */
3114  read (startup_semaphore.child_channel[SEM_LISTEN],
3115	&tc_magic_child,
3116	sizeof (tc_magic_child));
3117
3118  /* Clear thread info now.  We'd like to do this in
3119   * "require...", but that messes up attach.
3120   */
3121  clear_thread_info ();
3122
3123  /* Tell the "rest of gdb" that the initial thread exists.
3124   * This isn't really a hack.  Other thread-based versions
3125   * of gdb (e.g. gnu-nat.c) seem to do the same thing.
3126   *
3127   * Q: Why don't we also add this thread to the local
3128   *    list via "add_tthread"?
3129   *
3130   * A: Because we don't know the tid, and can't stop the
3131   *    the process safely to ask what it is.  Anyway, we'll
3132   *    add it when it gets the EXEC event.
3133   */
3134  add_thread (pid_to_ptid (pid));		/* in thread.c */
3135
3136  /* We can now set the child's ttrace event mask.
3137   */
3138  require_notification_of_exec_events (pid);
3139
3140  /* Tell ourselves that the process is running.
3141   */
3142  process_state = RUNNING;
3143
3144  /* Notify the child that it can exec. */
3145  write (startup_semaphore.parent_channel[SEM_TALK],
3146	 &tc_magic_parent,
3147	 sizeof (tc_magic_parent));
3148
3149  /* Discard our copy of the semaphore. */
3150  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
3151  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
3152  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
3153  (void) close (startup_semaphore.child_channel[SEM_TALK]);
3154}
3155
3156
3157/*
3158 * arrange for notification of all events by
3159 * calling require_notification_of_events.
3160 */
3161void
3162child_post_startup_inferior (ptid_t ptid)
3163{
3164  require_notification_of_events (PIDGET (ptid));
3165}
3166
3167/* From here on, we should expect tids rather than pids.
3168 */
3169static void
3170hppa_enable_catch_fork (int tid)
3171{
3172  int tt_status;
3173  ttevent_t ttrace_events;
3174
3175  /* Get the set of events that are currently enabled.
3176   */
3177  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3178			   tid,
3179			   (TTRACE_ARG_TYPE) & ttrace_events,
3180			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3181			   TT_NIL);
3182  if (errno)
3183    perror_with_name ("ttrace");
3184
3185  /* Add forks to that set. */
3186  ttrace_events.tte_events |= TTEVT_FORK;
3187
3188#ifdef THREAD_DEBUG
3189  if (debug_on)
3190    printf ("enable fork, tid is %d\n", tid);
3191#endif
3192
3193  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3194			   tid,
3195			   (TTRACE_ARG_TYPE) & ttrace_events,
3196			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3197			   TT_NIL);
3198  if (errno)
3199    perror_with_name ("ttrace");
3200}
3201
3202
3203static void
3204hppa_disable_catch_fork (int tid)
3205{
3206  int tt_status;
3207  ttevent_t ttrace_events;
3208
3209  /* Get the set of events that are currently enabled.
3210   */
3211  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3212			   tid,
3213			   (TTRACE_ARG_TYPE) & ttrace_events,
3214			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3215			   TT_NIL);
3216
3217  if (errno)
3218    perror_with_name ("ttrace");
3219
3220  /* Remove forks from that set. */
3221  ttrace_events.tte_events &= ~TTEVT_FORK;
3222
3223#ifdef THREAD_DEBUG
3224  if (debug_on)
3225    printf ("disable fork, tid is %d\n", tid);
3226#endif
3227
3228  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3229			   tid,
3230			   (TTRACE_ARG_TYPE) & ttrace_events,
3231			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3232			   TT_NIL);
3233
3234  if (errno)
3235    perror_with_name ("ttrace");
3236}
3237
3238
3239#if defined(CHILD_INSERT_FORK_CATCHPOINT)
3240int
3241child_insert_fork_catchpoint (int tid)
3242{
3243  /* Enable reporting of fork events from the kernel. */
3244  /* ??rehrauer: For the moment, we're always enabling these events,
3245     and just ignoring them if there's no catchpoint to catch them.
3246   */
3247  return 0;
3248}
3249#endif
3250
3251
3252#if defined(CHILD_REMOVE_FORK_CATCHPOINT)
3253int
3254child_remove_fork_catchpoint (int tid)
3255{
3256  /* Disable reporting of fork events from the kernel. */
3257  /* ??rehrauer: For the moment, we're always enabling these events,
3258     and just ignoring them if there's no catchpoint to catch them.
3259   */
3260  return 0;
3261}
3262#endif
3263
3264
3265static void
3266hppa_enable_catch_vfork (int tid)
3267{
3268  int tt_status;
3269  ttevent_t ttrace_events;
3270
3271  /* Get the set of events that are currently enabled.
3272   */
3273  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3274			   tid,
3275			   (TTRACE_ARG_TYPE) & ttrace_events,
3276			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3277			   TT_NIL);
3278
3279  if (errno)
3280    perror_with_name ("ttrace");
3281
3282  /* Add vforks to that set. */
3283  ttrace_events.tte_events |= TTEVT_VFORK;
3284
3285#ifdef THREAD_DEBUG
3286  if (debug_on)
3287    printf ("enable vfork, tid is %d\n", tid);
3288#endif
3289
3290  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3291			   tid,
3292			   (TTRACE_ARG_TYPE) & ttrace_events,
3293			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3294			   TT_NIL);
3295
3296  if (errno)
3297    perror_with_name ("ttrace");
3298}
3299
3300
3301static void
3302hppa_disable_catch_vfork (int tid)
3303{
3304  int tt_status;
3305  ttevent_t ttrace_events;
3306
3307  /* Get the set of events that are currently enabled. */
3308  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3309			   tid,
3310			   (TTRACE_ARG_TYPE) & ttrace_events,
3311			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3312			   TT_NIL);
3313
3314  if (errno)
3315    perror_with_name ("ttrace");
3316
3317  /* Remove vforks from that set. */
3318  ttrace_events.tte_events &= ~TTEVT_VFORK;
3319
3320#ifdef THREAD_DEBUG
3321  if (debug_on)
3322    printf ("disable vfork, tid is %d\n", tid);
3323#endif
3324  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3325			   tid,
3326			   (TTRACE_ARG_TYPE) & ttrace_events,
3327			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3328			   TT_NIL);
3329
3330  if (errno)
3331    perror_with_name ("ttrace");
3332}
3333
3334
3335#if defined(CHILD_INSERT_VFORK_CATCHPOINT)
3336int
3337child_insert_vfork_catchpoint (int tid)
3338{
3339  /* Enable reporting of vfork events from the kernel. */
3340  /* ??rehrauer: For the moment, we're always enabling these events,
3341     and just ignoring them if there's no catchpoint to catch them.
3342   */
3343  return 0;
3344}
3345#endif
3346
3347
3348#if defined(CHILD_REMOVE_VFORK_CATCHPOINT)
3349int
3350child_remove_vfork_catchpoint (int tid)
3351{
3352  /* Disable reporting of vfork events from the kernel. */
3353  /* ??rehrauer: For the moment, we're always enabling these events,
3354     and just ignoring them if there's no catchpoint to catch them.
3355   */
3356  return 0;
3357}
3358#endif
3359
3360#if defined(CHILD_HAS_FORKED)
3361
3362/* Q: Do we need to map the returned process ID to a thread ID?
3363
3364 * A: I don't think so--here we want a _real_ pid.  Any later
3365 *    operations will call "require_notification_of_events" and
3366 *    start the mapping.
3367 */
3368int
3369child_has_forked (int tid, int *childpid)
3370{
3371  int tt_status;
3372  ttstate_t ttrace_state;
3373  thread_info *tinfo;
3374
3375  /* Do we have cached thread state that we can consult?  If so, use it. */
3376  tinfo = find_thread_info (map_from_gdb_tid (tid));
3377  if (tinfo != NULL)
3378    {
3379      copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3380    }
3381
3382  /* Nope, must read the thread's current state */
3383  else
3384    {
3385      tt_status = call_ttrace (TT_LWP_GET_STATE,
3386			       tid,
3387			       (TTRACE_ARG_TYPE) & ttrace_state,
3388			       (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3389			       TT_NIL);
3390
3391      if (errno)
3392	perror_with_name ("ttrace");
3393
3394      if (tt_status < 0)
3395	return 0;
3396    }
3397
3398  if (ttrace_state.tts_event & TTEVT_FORK)
3399    {
3400      *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3401      return 1;
3402    }
3403
3404  return 0;
3405}
3406#endif
3407
3408
3409#if defined(CHILD_HAS_VFORKED)
3410
3411/* See child_has_forked for pid discussion.
3412 */
3413int
3414child_has_vforked (int tid, int *childpid)
3415{
3416  int tt_status;
3417  ttstate_t ttrace_state;
3418  thread_info *tinfo;
3419
3420  /* Do we have cached thread state that we can consult?  If so, use it. */
3421  tinfo = find_thread_info (map_from_gdb_tid (tid));
3422  if (tinfo != NULL)
3423    copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3424
3425  /* Nope, must read the thread's current state */
3426  else
3427    {
3428      tt_status = call_ttrace (TT_LWP_GET_STATE,
3429			       tid,
3430			       (TTRACE_ARG_TYPE) & ttrace_state,
3431			       (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3432			       TT_NIL);
3433
3434      if (errno)
3435	perror_with_name ("ttrace");
3436
3437      if (tt_status < 0)
3438	return 0;
3439    }
3440
3441  if (ttrace_state.tts_event & TTEVT_VFORK)
3442    {
3443      *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3444      return 1;
3445    }
3446
3447  return 0;
3448}
3449#endif
3450
3451
3452#if defined(CHILD_CAN_FOLLOW_VFORK_PRIOR_TO_EXEC)
3453int
3454child_can_follow_vfork_prior_to_exec (void)
3455{
3456  /* ttrace does allow this.
3457
3458     ??rehrauer: However, I had major-league problems trying to
3459     convince wait_for_inferior to handle that case.  Perhaps when
3460     it is rewritten to grok multiple processes in an explicit way...
3461   */
3462  return 0;
3463}
3464#endif
3465
3466
3467#if defined(CHILD_INSERT_EXEC_CATCHPOINT)
3468int
3469child_insert_exec_catchpoint (int tid)
3470{
3471  /* Enable reporting of exec events from the kernel. */
3472  /* ??rehrauer: For the moment, we're always enabling these events,
3473     and just ignoring them if there's no catchpoint to catch them.
3474   */
3475  return 0;
3476}
3477#endif
3478
3479
3480#if defined(CHILD_REMOVE_EXEC_CATCHPOINT)
3481int
3482child_remove_exec_catchpoint (int tid)
3483{
3484  /* Disable reporting of execevents from the kernel. */
3485  /* ??rehrauer: For the moment, we're always enabling these events,
3486     and just ignoring them if there's no catchpoint to catch them.
3487   */
3488  return 0;
3489}
3490#endif
3491
3492
3493#if defined(CHILD_HAS_EXECD)
3494int
3495child_has_execd (int tid, char **execd_pathname)
3496{
3497  int tt_status;
3498  ttstate_t ttrace_state;
3499  thread_info *tinfo;
3500
3501  /* Do we have cached thread state that we can consult?  If so, use it. */
3502  tinfo = find_thread_info (map_from_gdb_tid (tid));
3503  if (tinfo != NULL)
3504    copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3505
3506  /* Nope, must read the thread's current state */
3507  else
3508    {
3509      tt_status = call_ttrace (TT_LWP_GET_STATE,
3510			       tid,
3511			       (TTRACE_ARG_TYPE) & ttrace_state,
3512			       (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3513			       TT_NIL);
3514
3515      if (errno)
3516	perror_with_name ("ttrace");
3517
3518      if (tt_status < 0)
3519	return 0;
3520    }
3521
3522  if (ttrace_state.tts_event & TTEVT_EXEC)
3523    {
3524      /* See child_pid_to_exec_file in this file: this is a macro.
3525       */
3526      char *exec_file = target_pid_to_exec_file (tid);
3527
3528      *execd_pathname = savestring (exec_file, strlen (exec_file));
3529      return 1;
3530    }
3531
3532  return 0;
3533}
3534#endif
3535
3536
3537#if defined(CHILD_HAS_SYSCALL_EVENT)
3538int
3539child_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
3540{
3541  int tt_status;
3542  ttstate_t ttrace_state;
3543  thread_info *tinfo;
3544
3545  /* Do we have cached thread state that we can consult?  If so, use it. */
3546  tinfo = find_thread_info (map_from_gdb_tid (pid));
3547  if (tinfo != NULL)
3548    copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3549
3550  /* Nope, must read the thread's current state */
3551  else
3552    {
3553      tt_status = call_ttrace (TT_LWP_GET_STATE,
3554			       pid,
3555			       (TTRACE_ARG_TYPE) & ttrace_state,
3556			       (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3557			       TT_NIL);
3558
3559      if (errno)
3560	perror_with_name ("ttrace");
3561
3562      if (tt_status < 0)
3563	return 0;
3564    }
3565
3566  *kind = TARGET_WAITKIND_SPURIOUS;	/* Until proven otherwise... */
3567  *syscall_id = -1;
3568
3569  if (ttrace_state.tts_event & TTEVT_SYSCALL_ENTRY)
3570    *kind = TARGET_WAITKIND_SYSCALL_ENTRY;
3571  else if (ttrace_state.tts_event & TTEVT_SYSCALL_RETURN)
3572    *kind = TARGET_WAITKIND_SYSCALL_RETURN;
3573  else
3574    return 0;
3575
3576  *syscall_id = ttrace_state.tts_scno;
3577  return 1;
3578}
3579#endif
3580
3581
3582
3583#if defined(CHILD_THREAD_ALIVE)
3584
3585/* Check to see if the given thread is alive.
3586
3587 * We'll trust the thread list, as the more correct
3588 * approach of stopping the process and spinning down
3589 * the OS's thread list is _very_ expensive.
3590 *
3591 * May need a FIXME for that reason.
3592 */
3593int
3594child_thread_alive (ptid_t ptid)
3595{
3596  lwpid_t gdb_tid = PIDGET (ptid);
3597  lwpid_t tid;
3598
3599  /* This spins down the lists twice.
3600   * Possible peformance improvement here!
3601   */
3602  tid = map_from_gdb_tid (gdb_tid);
3603  return !is_terminated (tid);
3604}
3605
3606#endif
3607
3608
3609
3610/* This function attempts to read the specified number of bytes from the
3611   save_state_t that is our view into the hardware registers, starting at
3612   ss_offset, and ending at ss_offset + sizeof_buf - 1
3613
3614   If this function succeeds, it deposits the fetched bytes into buf,
3615   and returns 0.
3616
3617   If it fails, it returns a negative result.  The contents of buf are
3618   undefined it this function fails.
3619 */
3620int
3621read_from_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3622			       int sizeof_buf)
3623{
3624  int tt_status;
3625  register_value_t register_value = 0;
3626
3627  tt_status = call_ttrace (TT_LWP_RUREGS,
3628			   tid,
3629			   ss_offset,
3630			   (TTRACE_ARG_TYPE) sizeof_buf,
3631			   (TTRACE_ARG_TYPE) buf);
3632
3633  if (tt_status == 1)
3634    /* Map ttrace's version of success to our version.
3635     * Sometime ttrace returns 0, but that's ok here.
3636     */
3637    return 0;
3638
3639  return tt_status;
3640}
3641
3642
3643/* This function attempts to write the specified number of bytes to the
3644   save_state_t that is our view into the hardware registers, starting at
3645   ss_offset, and ending at ss_offset + sizeof_buf - 1
3646
3647   If this function succeeds, it deposits the bytes in buf, and returns 0.
3648
3649   If it fails, it returns a negative result.  The contents of the save_state_t
3650   are undefined it this function fails.
3651 */
3652int
3653write_to_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3654			      int sizeof_buf)
3655{
3656  int tt_status;
3657  register_value_t register_value = 0;
3658
3659  tt_status = call_ttrace (TT_LWP_WUREGS,
3660			   tid,
3661			   ss_offset,
3662			   (TTRACE_ARG_TYPE) sizeof_buf,
3663			   (TTRACE_ARG_TYPE) buf);
3664  return tt_status;
3665}
3666
3667
3668/* This function is a sop to the largeish number of direct calls
3669   to call_ptrace that exist in other files.  Rather than create
3670   functions whose name abstracts away from ptrace, and change all
3671   the present callers of call_ptrace, we'll do the expedient (and
3672   perhaps only practical) thing.
3673
3674   Note HP-UX explicitly disallows a mix of ptrace & ttrace on a traced
3675   process.  Thus, we must translate all ptrace requests into their
3676   process-specific, ttrace equivalents.
3677 */
3678int
3679call_ptrace (int pt_request, int gdb_tid, PTRACE_ARG3_TYPE addr, int data)
3680{
3681  ttreq_t tt_request;
3682  TTRACE_ARG_TYPE tt_addr = (TTRACE_ARG_TYPE) addr;
3683  TTRACE_ARG_TYPE tt_data = (TTRACE_ARG_TYPE) data;
3684  TTRACE_ARG_TYPE tt_addr2 = TT_NIL;
3685  int tt_status;
3686  register_value_t register_value;
3687  int read_buf;
3688
3689  /* Perform the necessary argument translation.  Note that some
3690     cases are funky enough in the ttrace realm that we handle them
3691     very specially.
3692   */
3693  switch (pt_request)
3694    {
3695      /* The following cases cannot conveniently be handled conveniently
3696         by merely adjusting the ptrace arguments and feeding into the
3697         generic call to ttrace at the bottom of this function.
3698
3699         Note that because all branches of this switch end in "return",
3700         there's no need for any "break" statements.
3701       */
3702    case PT_SETTRC:
3703      return parent_attach_all ();
3704
3705    case PT_RUREGS:
3706      tt_status = read_from_register_save_state (gdb_tid,
3707						 tt_addr,
3708						 &register_value,
3709						 sizeof (register_value));
3710      if (tt_status < 0)
3711	return tt_status;
3712      return register_value;
3713
3714    case PT_WUREGS:
3715      register_value = (int) tt_data;
3716      tt_status = write_to_register_save_state (gdb_tid,
3717						tt_addr,
3718						&register_value,
3719						sizeof (register_value));
3720      return tt_status;
3721      break;
3722
3723    case PT_READ_I:
3724      tt_status = call_ttrace (TT_PROC_RDTEXT,	/* Implicit 4-byte xfer becomes block-xfer. */
3725			       gdb_tid,
3726			       tt_addr,
3727			       (TTRACE_ARG_TYPE) 4,
3728			       (TTRACE_ARG_TYPE) & read_buf);
3729      if (tt_status < 0)
3730	return tt_status;
3731      return read_buf;
3732
3733    case PT_READ_D:
3734      tt_status = call_ttrace (TT_PROC_RDDATA,	/* Implicit 4-byte xfer becomes block-xfer. */
3735			       gdb_tid,
3736			       tt_addr,
3737			       (TTRACE_ARG_TYPE) 4,
3738			       (TTRACE_ARG_TYPE) & read_buf);
3739      if (tt_status < 0)
3740	return tt_status;
3741      return read_buf;
3742
3743    case PT_ATTACH:
3744      tt_status = call_real_ttrace (TT_PROC_ATTACH,
3745				    map_from_gdb_tid (gdb_tid),
3746				    (lwpid_t) TT_NIL,
3747				    tt_addr,
3748				    (TTRACE_ARG_TYPE) TT_VERSION,
3749				    tt_addr2);
3750      if (tt_status < 0)
3751	return tt_status;
3752      return tt_status;
3753
3754      /* The following cases are handled by merely adjusting the ptrace
3755         arguments and feeding into the generic call to ttrace.
3756       */
3757    case PT_DETACH:
3758      tt_request = TT_PROC_DETACH;
3759      break;
3760
3761    case PT_WRITE_I:
3762      tt_request = TT_PROC_WRTEXT;	/* Translates 4-byte xfer to block-xfer. */
3763      tt_data = 4;		/* This many bytes. */
3764      tt_addr2 = (TTRACE_ARG_TYPE) & data;	/* Address of xfer source. */
3765      break;
3766
3767    case PT_WRITE_D:
3768      tt_request = TT_PROC_WRDATA;	/* Translates 4-byte xfer to block-xfer. */
3769      tt_data = 4;		/* This many bytes. */
3770      tt_addr2 = (TTRACE_ARG_TYPE) & data;	/* Address of xfer source. */
3771      break;
3772
3773    case PT_RDTEXT:
3774      tt_request = TT_PROC_RDTEXT;
3775      break;
3776
3777    case PT_RDDATA:
3778      tt_request = TT_PROC_RDDATA;
3779      break;
3780
3781    case PT_WRTEXT:
3782      tt_request = TT_PROC_WRTEXT;
3783      break;
3784
3785    case PT_WRDATA:
3786      tt_request = TT_PROC_WRDATA;
3787      break;
3788
3789    case PT_CONTINUE:
3790      tt_request = TT_PROC_CONTINUE;
3791      break;
3792
3793    case PT_STEP:
3794      tt_request = TT_LWP_SINGLE;	/* Should not be making this request? */
3795      break;
3796
3797    case PT_KILL:
3798      tt_request = TT_PROC_EXIT;
3799      break;
3800
3801    case PT_GET_PROCESS_PATHNAME:
3802      tt_request = TT_PROC_GET_PATHNAME;
3803      break;
3804
3805    default:
3806      tt_request = pt_request;	/* Let ttrace be the one to complain. */
3807      break;
3808    }
3809
3810  return call_ttrace (tt_request,
3811		      gdb_tid,
3812		      tt_addr,
3813		      tt_data,
3814		      tt_addr2);
3815}
3816
3817/* Kill that pesky process!
3818 */
3819void
3820kill_inferior (void)
3821{
3822  int tid;
3823  int wait_status;
3824  thread_info *t;
3825  thread_info **paranoia;
3826  int para_count, i;
3827
3828  if (PIDGET (inferior_ptid) == 0)
3829    return;
3830
3831  /* Walk the list of "threads", some of which are "pseudo threads",
3832     aka "processes".  For each that is NOT inferior_ptid, stop it,
3833     and detach it.
3834
3835     You see, we may not have just a single process to kill.  If we're
3836     restarting or quitting or detaching just after the inferior has
3837     forked, then we've actually two processes to clean up.
3838
3839     But we can't just call target_mourn_inferior() for each, since that
3840     zaps the target vector.
3841   */
3842
3843  paranoia = (thread_info **) xmalloc (thread_head.count *
3844				       sizeof (thread_info *));
3845  para_count = 0;
3846
3847  t = thread_head.head;
3848  while (t)
3849    {
3850
3851      paranoia[para_count] = t;
3852      for (i = 0; i < para_count; i++)
3853	{
3854	  if (t->next == paranoia[i])
3855	    {
3856	      warning ("Bad data in gdb's thread data; repairing.");
3857	      t->next = 0;
3858	    }
3859	}
3860      para_count++;
3861
3862      if (t->am_pseudo && (t->pid != PIDGET (inferior_ptid)))
3863	{
3864	  call_ttrace (TT_PROC_EXIT,
3865		       t->pid,
3866		       TT_NIL,
3867		       TT_NIL,
3868		       TT_NIL);
3869	}
3870      t = t->next;
3871    }
3872
3873  xfree (paranoia);
3874
3875  call_ttrace (TT_PROC_EXIT,
3876	       PIDGET (inferior_ptid),
3877	       TT_NIL,
3878	       TT_NIL,
3879	       TT_NIL);
3880  target_mourn_inferior ();
3881  clear_thread_info ();
3882}
3883
3884
3885#ifndef CHILD_RESUME
3886
3887/* Sanity check a thread about to be continued.
3888 */
3889static void
3890thread_dropping_event_check (thread_info *p)
3891{
3892  if (!p->handled)
3893    {
3894      /*
3895       * This seems to happen when we "next" over a
3896       * "fork()" while following the parent.  If it's
3897       * the FORK event, that's ok.  If it's a SIGNAL
3898       * in the unfollowed child, that's ok to--but
3899       * how can we know that's what's going on?
3900       *
3901       * FIXME!
3902       */
3903      if (p->have_state)
3904	{
3905	  if (p->last_stop_state.tts_event == TTEVT_FORK)
3906	    {
3907	      /* Ok */
3908	      ;
3909	    }
3910	  else if (p->last_stop_state.tts_event == TTEVT_SIGNAL)
3911	    {
3912	      /* Ok, close eyes and let it happen.
3913	       */
3914	      ;
3915	    }
3916	  else
3917	    {
3918	      /* This shouldn't happen--we're dropping a
3919	       * real event.
3920	       */
3921	      warning ("About to continue process %d, thread %d with unhandled event %s.",
3922		       p->pid, p->tid,
3923		       get_printable_name_of_ttrace_event (
3924					     p->last_stop_state.tts_event));
3925
3926#ifdef PARANOIA
3927	      if (debug_on)
3928		print_tthread (p);
3929#endif
3930	    }
3931	}
3932      else
3933	{
3934	  /* No saved state, have to assume it failed.
3935	   */
3936	  warning ("About to continue process %d, thread %d with unhandled event.",
3937		   p->pid, p->tid);
3938#ifdef PARANOIA
3939	  if (debug_on)
3940	    print_tthread (p);
3941#endif
3942	}
3943    }
3944
3945}				/* thread_dropping_event_check */
3946
3947/* Use a loop over the threads to continue all the threads but
3948 * the one specified, which is to be stepped.
3949 */
3950static void
3951threads_continue_all_but_one (lwpid_t gdb_tid, int signal)
3952{
3953  thread_info *p;
3954  int thread_signal;
3955  lwpid_t real_tid;
3956  lwpid_t scan_tid;
3957  ttstate_t state;
3958  int real_pid;
3959
3960#ifdef THREAD_DEBUG
3961  if (debug_on)
3962    printf ("Using loop over threads to step/resume with signals\n");
3963#endif
3964
3965  /* First update the thread list.
3966   */
3967  set_all_unseen ();
3968  real_tid = map_from_gdb_tid (gdb_tid);
3969  real_pid = get_pid_for (real_tid);
3970
3971  scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
3972  while (0 != scan_tid)
3973    {
3974
3975#ifdef THREAD_DEBUG
3976      /* FIX: later should check state is stopped;
3977       * state.tts_flags & TTS_STATEMASK == TTS_WASSUSPENDED
3978       */
3979      if (debug_on)
3980	if (state.tts_flags & TTS_STATEMASK != TTS_WASSUSPENDED)
3981	  printf ("About to continue non-stopped thread %d\n", scan_tid);
3982#endif
3983
3984      p = find_thread_info (scan_tid);
3985      if (NULL == p)
3986	{
3987	  add_tthread (real_pid, scan_tid);
3988	  p = find_thread_info (scan_tid);
3989
3990	  /* This is either a newly-created thread or the
3991	   * result of a fork; in either case there's no
3992	   * actual event to worry about.
3993	   */
3994	  p->handled = 1;
3995
3996	  if (state.tts_event != TTEVT_NONE)
3997	    {
3998	      /* Oops, do need to worry!
3999	       */
4000	      warning ("Unexpected thread with \"%s\" event.",
4001		       get_printable_name_of_ttrace_event (state.tts_event));
4002	    }
4003	}
4004      else if (scan_tid != p->tid)
4005	error ("Bad data in thread database.");
4006
4007#ifdef THREAD_DEBUG
4008      if (debug_on)
4009	if (p->terminated)
4010	  printf ("Why are we continuing a dead thread?\n");
4011#endif
4012
4013      p->seen = 1;
4014
4015      scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
4016    }
4017
4018  /* Remove unseen threads.
4019   */
4020  update_thread_list ();
4021
4022  /* Now run down the thread list and continue or step.
4023   */
4024  for (p = thread_head.head; p; p = p->next)
4025    {
4026
4027      /* Sanity check.
4028       */
4029      thread_dropping_event_check (p);
4030
4031      /* Pass the correct signals along.
4032       */
4033      if (p->have_signal)
4034	{
4035	  thread_signal = p->signal_value;
4036	  p->have_signal = 0;
4037	}
4038      else
4039	thread_signal = 0;
4040
4041      if (p->tid != real_tid)
4042	{
4043	  /*
4044	   * Not the thread of interest, so continue it
4045	   * as the user expects.
4046	   */
4047	  if (p->stepping_mode == DO_STEP)
4048	    {
4049	      /* Just step this thread.
4050	       */
4051	      call_ttrace (
4052			    TT_LWP_SINGLE,
4053			    p->tid,
4054			    TT_USE_CURRENT_PC,
4055			    (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4056			    TT_NIL);
4057	    }
4058	  else
4059	    {
4060	      /* Regular continue (default case).
4061	       */
4062	      call_ttrace (
4063			    TT_LWP_CONTINUE,
4064			    p->tid,
4065			    TT_USE_CURRENT_PC,
4066		    (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4067			    TT_NIL);
4068	    }
4069	}
4070      else
4071	{
4072	  /* Step the thread of interest.
4073	   */
4074	  call_ttrace (
4075			TT_LWP_SINGLE,
4076			real_tid,
4077			TT_USE_CURRENT_PC,
4078			(TTRACE_ARG_TYPE) target_signal_to_host (signal),
4079			TT_NIL);
4080	}
4081    }				/* Loop over threads */
4082}				/* End threads_continue_all_but_one */
4083
4084/* Use a loop over the threads to continue all the threads.
4085 * This is done when a signal must be sent to any of the threads.
4086 */
4087static void
4088threads_continue_all_with_signals (lwpid_t gdb_tid, int signal)
4089{
4090  thread_info *p;
4091  int thread_signal;
4092  lwpid_t real_tid;
4093  lwpid_t scan_tid;
4094  ttstate_t state;
4095  int real_pid;
4096
4097#ifdef THREAD_DEBUG
4098  if (debug_on)
4099    printf ("Using loop over threads to resume with signals\n");
4100#endif
4101
4102  /* Scan and update thread list.
4103   */
4104  set_all_unseen ();
4105  real_tid = map_from_gdb_tid (gdb_tid);
4106  real_pid = get_pid_for (real_tid);
4107
4108  scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
4109  while (0 != scan_tid)
4110    {
4111
4112#ifdef THREAD_DEBUG
4113      if (debug_on)
4114	if (state.tts_flags & TTS_STATEMASK != TTS_WASSUSPENDED)
4115	  warning ("About to continue non-stopped thread %d\n", scan_tid);
4116#endif
4117
4118      p = find_thread_info (scan_tid);
4119      if (NULL == p)
4120	{
4121	  add_tthread (real_pid, scan_tid);
4122	  p = find_thread_info (scan_tid);
4123
4124	  /* This is either a newly-created thread or the
4125	   * result of a fork; in either case there's no
4126	   * actual event to worry about.
4127	   */
4128	  p->handled = 1;
4129
4130	  if (state.tts_event != TTEVT_NONE)
4131	    {
4132	      /* Oops, do need to worry!
4133	       */
4134	      warning ("Unexpected thread with \"%s\" event.",
4135		       get_printable_name_of_ttrace_event (state.tts_event));
4136	    }
4137	}
4138
4139#ifdef THREAD_DEBUG
4140      if (debug_on)
4141	if (p->terminated)
4142	  printf ("Why are we continuing a dead thread? (1)\n");
4143#endif
4144
4145      p->seen = 1;
4146
4147      scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
4148    }
4149
4150  /* Remove unseen threads from our list.
4151   */
4152  update_thread_list ();
4153
4154  /* Continue the threads.
4155   */
4156  for (p = thread_head.head; p; p = p->next)
4157    {
4158
4159      /* Sanity check.
4160       */
4161      thread_dropping_event_check (p);
4162
4163      /* Pass the correct signals along.
4164       */
4165      if (p->tid == real_tid)
4166	{
4167	  thread_signal = signal;
4168	  p->have_signal = 0;
4169	}
4170      else if (p->have_signal)
4171	{
4172	  thread_signal = p->signal_value;
4173	  p->have_signal = 0;
4174	}
4175      else
4176	thread_signal = 0;
4177
4178      if (p->stepping_mode == DO_STEP)
4179	{
4180	  call_ttrace (
4181			TT_LWP_SINGLE,
4182			p->tid,
4183			TT_USE_CURRENT_PC,
4184			(TTRACE_ARG_TYPE) target_signal_to_host (signal),
4185			TT_NIL);
4186	}
4187      else
4188	{
4189	  /* Continue this thread (default case).
4190	   */
4191	  call_ttrace (
4192			TT_LWP_CONTINUE,
4193			p->tid,
4194			TT_USE_CURRENT_PC,
4195		    (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4196			TT_NIL);
4197	}
4198    }
4199}				/* End threads_continue_all_with_signals */
4200
4201/* Step one thread only.
4202 */
4203static void
4204thread_fake_step (lwpid_t tid, enum target_signal signal)
4205{
4206  thread_info *p;
4207
4208#ifdef THREAD_DEBUG
4209  if (debug_on)
4210    {
4211      printf ("Doing a fake-step over a bpt, etc. for %d\n", tid);
4212
4213      if (is_terminated (tid))
4214	printf ("Why are we continuing a dead thread? (4)\n");
4215    }
4216#endif
4217
4218  if (doing_fake_step)
4219    warning ("Step while step already in progress.");
4220
4221  /* See if there's a saved signal value for this
4222   * thread to be passed on, but no current signal.
4223   */
4224  p = find_thread_info (tid);
4225  if (p != NULL)
4226    {
4227      if (p->have_signal && signal == TARGET_SIGNAL_0)
4228	{
4229	  /* Pass on a saved signal.
4230	   */
4231	  signal = p->signal_value;
4232	}
4233
4234      p->have_signal = 0;
4235    }
4236
4237  if (!p->handled)
4238    warning ("Internal error: continuing unhandled thread.");
4239
4240  call_ttrace (TT_LWP_SINGLE,
4241	       tid,
4242	       TT_USE_CURRENT_PC,
4243	       (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4244	       TT_NIL);
4245
4246  /* Do bookkeeping so "call_ttrace_wait" knows it has to wait
4247   * for this thread only, and clear any saved signal info.
4248   */
4249  doing_fake_step = 1;
4250  fake_step_tid = tid;
4251
4252}				/* End thread_fake_step */
4253
4254/* Continue one thread when a signal must be sent to it.
4255 */
4256static void
4257threads_continue_one_with_signal (lwpid_t gdb_tid, int signal)
4258{
4259  thread_info *p;
4260  lwpid_t real_tid;
4261  int real_pid;
4262
4263#ifdef THREAD_DEBUG
4264  if (debug_on)
4265    printf ("Continuing one thread with a signal\n");
4266#endif
4267
4268  real_tid = map_from_gdb_tid (gdb_tid);
4269  real_pid = get_pid_for (real_tid);
4270
4271  p = find_thread_info (real_tid);
4272  if (NULL == p)
4273    {
4274      add_tthread (real_pid, real_tid);
4275    }
4276
4277#ifdef THREAD_DEBUG
4278  if (debug_on)
4279    if (p->terminated)
4280      printf ("Why are we continuing a dead thread? (2)\n");
4281#endif
4282
4283  if (!p->handled)
4284    warning ("Internal error: continuing unhandled thread.");
4285
4286  p->have_signal = 0;
4287
4288  call_ttrace (TT_LWP_CONTINUE,
4289	       gdb_tid,
4290	       TT_USE_CURRENT_PC,
4291	       (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4292	       TT_NIL);
4293}
4294#endif
4295
4296#ifndef CHILD_RESUME
4297
4298/* Resume execution of the inferior process.
4299
4300 * This routine is in charge of setting the "handled" bits.
4301 *
4302 *   If STEP is zero,      continue it.
4303 *   If STEP is nonzero,   single-step it.
4304 *
4305 *   If SIGNAL is nonzero, give it that signal.
4306 *
4307 *   If TID is -1,         apply to all threads.
4308 *   If TID is not -1,     apply to specified thread.
4309 *
4310 *           STEP
4311 *      \      !0                        0
4312 *  TID  \________________________________________________
4313 *       |
4314 *   -1  |   Step current            Continue all threads
4315 *       |   thread and              (but which gets any
4316 *       |   continue others         signal?--We look at
4317 *       |                           "inferior_ptid")
4318 *       |
4319 *    N  |   Step _this_ thread      Continue _this_ thread
4320 *       |   and leave others        and leave others
4321 *       |   stopped; internally     stopped; used only for
4322 *       |   used by gdb, never      hardware watchpoints
4323 *       |   a user command.         and attach, never a
4324 *       |                           user command.
4325 */
4326void
4327child_resume (ptid_t ptid, int step, enum target_signal signal)
4328{
4329  int resume_all_threads;
4330  lwpid_t tid;
4331  process_state_t new_process_state;
4332  lwpid_t gdb_tid = PIDGET (ptid);
4333
4334  resume_all_threads =
4335    (gdb_tid == INFTTRACE_ALL_THREADS) ||
4336    (vfork_in_flight);
4337
4338  if (resume_all_threads)
4339    {
4340      /* Resume all threads, but first pick a tid value
4341       * so we can get the pid when in call_ttrace doing
4342       * the map.
4343       */
4344      if (vfork_in_flight)
4345	tid = vforking_child_pid;
4346      else
4347	tid = map_from_gdb_tid (PIDGET (inferior_ptid));
4348    }
4349  else
4350    tid = map_from_gdb_tid (gdb_tid);
4351
4352#ifdef THREAD_DEBUG
4353  if (debug_on)
4354    {
4355      if (more_events_left)
4356	printf ("More events; ");
4357
4358      if (signal != 0)
4359	printf ("Sending signal %d; ", signal);
4360
4361      if (resume_all_threads)
4362	{
4363	  if (step == 0)
4364	    printf ("Continue process %d\n", tid);
4365	  else
4366	    printf ("Step/continue thread %d\n", tid);
4367	}
4368      else
4369	{
4370	  if (step == 0)
4371	    printf ("Continue thread %d\n", tid);
4372	  else
4373	    printf ("Step just thread %d\n", tid);
4374	}
4375
4376      if (vfork_in_flight)
4377	printf ("Vfork in flight\n");
4378    }
4379#endif
4380
4381  if (process_state == RUNNING)
4382    warning ("Internal error in resume logic; doing resume or step anyway.");
4383
4384  if (!step			/* Asked to continue...       */
4385      && resume_all_threads	/* whole process..            */
4386      && signal != 0		/* with a signal...           */
4387      && more_events_left > 0)
4388    {				/* but we can't yet--save it! */
4389
4390      /* Continue with signal means we have to set the pending
4391       * signal value for this thread.
4392       */
4393      thread_info *k;
4394
4395#ifdef THREAD_DEBUG
4396      if (debug_on)
4397	printf ("Saving signal %d for thread %d\n", signal, tid);
4398#endif
4399
4400      k = find_thread_info (tid);
4401      if (k != NULL)
4402	{
4403	  k->have_signal = 1;
4404	  k->signal_value = signal;
4405
4406#ifdef THREAD_DEBUG
4407	  if (debug_on)
4408	    if (k->terminated)
4409	      printf ("Why are we continuing a dead thread? (3)\n");
4410#endif
4411
4412	}
4413
4414#ifdef THREAD_DEBUG
4415      else if (debug_on)
4416	{
4417	  printf ("No thread info for tid %d\n", tid);
4418	}
4419#endif
4420    }
4421
4422  /* Are we faking this "continue" or "step"?
4423
4424   * We used to do steps by continuing all the threads for
4425   * which the events had been handled already.  While
4426   * conceptually nicer (hides it all in a lower level), this
4427   * can lead to starvation and a hang (e.g. all but one thread
4428   * are unhandled at a breakpoint just before a "join" operation,
4429   * and one thread is in the join, and the user wants to step that
4430   * thread).
4431   */
4432  if (resume_all_threads	/* Whole process, therefore user command */
4433      && more_events_left > 0)
4434    {				/* But we can't do this yet--fake it! */
4435      thread_info *p;
4436
4437      if (!step)
4438	{
4439	  /* No need to do any notes on a per-thread
4440	   * basis--we're done!
4441	   */
4442#ifdef WAIT_BUFFER_DEBUG
4443	  if (debug_on)
4444	    printf ("Faking a process resume.\n");
4445#endif
4446
4447	  return;
4448	}
4449      else
4450	{
4451
4452#ifdef WAIT_BUFFER_DEBUG
4453	  if (debug_on)
4454	    printf ("Faking a process step.\n");
4455#endif
4456
4457	}
4458
4459      p = find_thread_info (tid);
4460      if (p == NULL)
4461	{
4462	  warning ("No thread information for tid %d, 'next' command ignored.\n", tid);
4463	  return;
4464	}
4465      else
4466	{
4467
4468#ifdef THREAD_DEBUG
4469	  if (debug_on)
4470	    if (p->terminated)
4471	      printf ("Why are we continuing a dead thread? (3.5)\n");
4472#endif
4473
4474	  if (p->stepping_mode != DO_DEFAULT)
4475	    {
4476	      warning ("Step or continue command applied to thread which is already stepping or continuing; command ignored.");
4477
4478	      return;
4479	    }
4480
4481	  if (step)
4482	    p->stepping_mode = DO_STEP;
4483	  else
4484	    p->stepping_mode = DO_CONTINUE;
4485
4486	  return;
4487	}			/* Have thread info */
4488    }				/* Must fake step or go */
4489
4490  /* Execept for fake-steps, from here on we know we are
4491   * going to wind up with a running process which will
4492   * need a real wait.
4493   */
4494  new_process_state = RUNNING;
4495
4496  /* An address of TT_USE_CURRENT_PC tells ttrace to continue from where
4497   * it was.  (If GDB wanted it to start some other way, we have already
4498   * written a new PC value to the child.)
4499   *
4500   * If this system does not support PT_STEP, a higher level function will
4501   * have called single_step() to transmute the step request into a
4502   * continue request (by setting breakpoints on all possible successor
4503   * instructions), so we don't have to worry about that here.
4504   */
4505  if (step)
4506    {
4507      if (resume_all_threads)
4508	{
4509	  /*
4510	   * Regular user step: other threads get a "continue".
4511	   */
4512	  threads_continue_all_but_one (tid, signal);
4513	  clear_all_handled ();
4514	  clear_all_stepping_mode ();
4515	}
4516
4517      else
4518	{
4519	  /* "Fake step": gdb is stepping one thread over a
4520	   * breakpoint, watchpoint, or out of a library load
4521	   * event, etc.  The rest just stay where they are.
4522	   *
4523	   * Also used when there are pending events: we really
4524	   * step the current thread, but leave the rest stopped.
4525	   * Users can't request this, but "wait_for_inferior"
4526	   * does--a lot!
4527	   */
4528	  thread_fake_step (tid, signal);
4529
4530	  /* Clear the "handled" state of this thread, because
4531	   * we'll soon get a new event for it.  Other events
4532	   * stay as they were.
4533	   */
4534	  clear_handled (tid);
4535	  clear_stepping_mode (tid);
4536	  new_process_state = FAKE_STEPPING;
4537	}
4538    }
4539
4540  else
4541    {
4542      /* TT_LWP_CONTINUE can pass signals to threads,
4543       * TT_PROC_CONTINUE can't.  So if there are any
4544       * signals to pass, we have to use the (slower)
4545       * loop over the stopped threads.
4546       *
4547       * Equally, if we have to not continue some threads,
4548       * due to saved events, we have to use the loop.
4549       */
4550      if ((signal != 0) || saved_signals_exist ())
4551	{
4552	  if (resume_all_threads)
4553	    {
4554
4555#ifdef THREAD_DEBUG
4556	      if (debug_on)
4557		printf ("Doing a continue by loop of all threads\n");
4558#endif
4559
4560	      threads_continue_all_with_signals (tid, signal);
4561
4562	      clear_all_handled ();
4563	      clear_all_stepping_mode ();
4564	    }
4565
4566	  else
4567	    {
4568#ifdef THREAD_DEBUG
4569	      printf ("Doing a continue w/signal of just thread %d\n", tid);
4570#endif
4571
4572	      threads_continue_one_with_signal (tid, signal);
4573
4574	      /* Clear the "handled" state of this thread, because
4575	       * we'll soon get a new event for it.  Other events
4576	       * can stay as they were.
4577	       */
4578	      clear_handled (tid);
4579	      clear_stepping_mode (tid);
4580	    }
4581	}
4582
4583      else
4584	{
4585	  /* No signals to send.
4586	   */
4587	  if (resume_all_threads)
4588	    {
4589#ifdef THREAD_DEBUG
4590	      if (debug_on)
4591		printf ("Doing a continue by process of process %d\n", tid);
4592#endif
4593
4594	      if (more_events_left > 0)
4595		{
4596		  warning ("Losing buffered events on continue.");
4597		  more_events_left = 0;
4598		}
4599
4600	      call_ttrace (TT_PROC_CONTINUE,
4601			   tid,
4602			   TT_NIL,
4603			   TT_NIL,
4604			   TT_NIL);
4605
4606	      clear_all_handled ();
4607	      clear_all_stepping_mode ();
4608	    }
4609
4610	  else
4611	    {
4612#ifdef THREAD_DEBUG
4613	      if (debug_on)
4614		{
4615		  printf ("Doing a continue of just thread %d\n", tid);
4616		  if (is_terminated (tid))
4617		    printf ("Why are we continuing a dead thread? (5)\n");
4618		}
4619#endif
4620
4621	      call_ttrace (TT_LWP_CONTINUE,
4622			   tid,
4623			   TT_NIL,
4624			   TT_NIL,
4625			   TT_NIL);
4626
4627	      /* Clear the "handled" state of this thread, because
4628	       * we'll soon get a new event for it.  Other events
4629	       * can stay as they were.
4630	       */
4631	      clear_handled (tid);
4632	      clear_stepping_mode (tid);
4633	    }
4634	}
4635    }
4636
4637  process_state = new_process_state;
4638
4639#ifdef WAIT_BUFFER_DEBUG
4640  if (debug_on)
4641    printf ("Process set to %s\n",
4642	    get_printable_name_of_process_state (process_state));
4643#endif
4644
4645}
4646#endif /* CHILD_RESUME */
4647
4648
4649#ifdef ATTACH_DETACH
4650/*
4651 * Like it says.
4652 *
4653 * One worry is that we may not be attaching to "inferior_ptid"
4654 * and thus may not want to clear out our data.  FIXME?
4655 *
4656 */
4657static void
4658update_thread_state_after_attach (int pid, attach_continue_t kind_of_go)
4659{
4660  int tt_status;
4661  ttstate_t thread_state;
4662  lwpid_t a_thread;
4663  lwpid_t tid;
4664
4665  /* The process better be stopped.
4666   */
4667  if (process_state != STOPPED
4668      && process_state != VFORKING)
4669    warning ("Internal error attaching.");
4670
4671  /* Clear out old tthread info and start over.  This has the
4672   * side effect of ensuring that the TRAP is reported as being
4673   * in the right thread (re-mapped from tid to pid).
4674   *
4675   * It's because we need to add the tthread _now_ that we
4676   * need to call "clear_thread_info" _now_, and that's why
4677   * "require_notification_of_events" doesn't clear the thread
4678   * info (it's called later than this routine).
4679   */
4680  clear_thread_info ();
4681  a_thread = 0;
4682
4683  for (tid = get_process_first_stopped_thread_id (pid, &thread_state);
4684       tid != 0;
4685       tid = get_process_next_stopped_thread_id (pid, &thread_state))
4686    {
4687      thread_info *p;
4688
4689      if (a_thread == 0)
4690	{
4691	  a_thread = tid;
4692#ifdef THREAD_DEBUG
4693	  if (debug_on)
4694	    printf ("Attaching to process %d, thread %d\n",
4695		    pid, a_thread);
4696#endif
4697	}
4698
4699      /* Tell ourselves and the "rest of gdb" that this thread
4700       * exists.
4701       *
4702       * This isn't really a hack.  Other thread-based versions
4703       * of gdb (e.g. gnu-nat.c) seem to do the same thing.
4704       *
4705       * We don't need to do mapping here, as we know this
4706       * is the first thread and thus gets the real pid
4707       * (and is "inferior_ptid").
4708       *
4709       * NOTE: it probably isn't the originating thread,
4710       *       but that doesn't matter (we hope!).
4711       */
4712      add_tthread (pid, tid);
4713      p = find_thread_info (tid);
4714      if (NULL == p)		/* ?We just added it! */
4715	error ("Internal error adding a thread on attach.");
4716
4717      copy_ttstate_t (&p->last_stop_state, &thread_state);
4718      p->have_state = 1;
4719
4720      if (DO_ATTACH_CONTINUE == kind_of_go)
4721	{
4722	  /*
4723	   * If we are going to CONTINUE afterwards,
4724	   * raising a SIGTRAP, don't bother trying to
4725	   * handle this event.  But check first!
4726	   */
4727	  switch (p->last_stop_state.tts_event)
4728	    {
4729
4730	    case TTEVT_NONE:
4731	      /* Ok to set this handled.
4732	       */
4733	      break;
4734
4735	    default:
4736	      warning ("Internal error; skipping event %s on process %d, thread %d.",
4737		       get_printable_name_of_ttrace_event (
4738					      p->last_stop_state.tts_event),
4739		       p->pid, p->tid);
4740	    }
4741
4742	  set_handled (pid, tid);
4743
4744	}
4745      else
4746	{
4747	  /* There will be no "continue" opertion, so the
4748	   * process remains stopped.  Don't set any events
4749	   * handled except the "gimmies".
4750	   */
4751	  switch (p->last_stop_state.tts_event)
4752	    {
4753
4754	    case TTEVT_NONE:
4755	      /* Ok to ignore this.
4756	       */
4757	      set_handled (pid, tid);
4758	      break;
4759
4760	    case TTEVT_EXEC:
4761	    case TTEVT_FORK:
4762	      /* Expected "other" FORK or EXEC event from a
4763	       * fork or vfork.
4764	       */
4765	      break;
4766
4767	    default:
4768	      printf ("Internal error: failed to handle event %s on process %d, thread %d.",
4769		      get_printable_name_of_ttrace_event (
4770					      p->last_stop_state.tts_event),
4771		      p->pid, p->tid);
4772	    }
4773	}
4774
4775      add_thread (pid_to_ptid (pid));		/* in thread.c */
4776    }
4777
4778#ifdef PARANOIA
4779  if (debug_on)
4780    print_tthreads ();
4781#endif
4782
4783  /* One mustn't call ttrace_wait() after attaching via ttrace,
4784     'cause the process is stopped already.
4785
4786     However, the upper layers of gdb's execution control will
4787     want to wait after attaching (but not after forks, in
4788     which case they will be doing a "target_resume", anticipating
4789     a later TTEVT_EXEC or TTEVT_FORK event).
4790
4791     To make this attach() implementation more compatible with
4792     others, we'll make the attached-to process raise a SIGTRAP.
4793
4794     Issue: this continues only one thread.  That could be
4795     dangerous if the thread is blocked--the process won't run
4796     and no trap will be raised.  FIX! (check state.tts_flags?
4797     need one that's either TTS_WASRUNNING--but we've stopped
4798     it and made it TTS_WASSUSPENDED.  Hum...FIXME!)
4799   */
4800  if (DO_ATTACH_CONTINUE == kind_of_go)
4801    {
4802      tt_status = call_real_ttrace (
4803				     TT_LWP_CONTINUE,
4804				     pid,
4805				     a_thread,
4806				     TT_USE_CURRENT_PC,
4807	       (TTRACE_ARG_TYPE) target_signal_to_host (TARGET_SIGNAL_TRAP),
4808				     TT_NIL);
4809      if (errno)
4810	perror_with_name ("ttrace");
4811
4812      clear_handled (a_thread);	/* So TRAP will be reported. */
4813
4814      /* Now running.
4815       */
4816      process_state = RUNNING;
4817    }
4818
4819  attach_flag = 1;
4820}
4821#endif /* ATTACH_DETACH */
4822
4823
4824#ifdef ATTACH_DETACH
4825/* Start debugging the process whose number is PID.
4826 * (A _real_ pid).
4827 */
4828int
4829attach (int pid)
4830{
4831  int tt_status;
4832
4833  tt_status = call_real_ttrace (
4834				 TT_PROC_ATTACH,
4835				 pid,
4836				 (lwpid_t) TT_NIL,
4837				 TT_NIL,
4838				 (TTRACE_ARG_TYPE) TT_VERSION,
4839				 TT_NIL);
4840  if (errno)
4841    perror_with_name ("ttrace attach");
4842
4843  /* If successful, the process is now stopped.
4844   */
4845  process_state = STOPPED;
4846
4847  /* Our caller ("attach_command" in "infcmd.c")
4848   * expects to do a "wait_for_inferior" after
4849   * the attach, so make sure the inferior is
4850   * running when we're done.
4851   */
4852  update_thread_state_after_attach (pid, DO_ATTACH_CONTINUE);
4853
4854  return pid;
4855}
4856
4857
4858#if defined(CHILD_POST_ATTACH)
4859void
4860child_post_attach (int pid)
4861{
4862#ifdef THREAD_DEBUG
4863  if (debug_on)
4864    printf ("child-post-attach call\n");
4865#endif
4866
4867  require_notification_of_events (pid);
4868}
4869#endif
4870
4871
4872/* Stop debugging the process whose number is PID
4873   and continue it with signal number SIGNAL.
4874   SIGNAL = 0 means just continue it.
4875 */
4876void
4877detach (int signal)
4878{
4879  errno = 0;
4880  call_ttrace (TT_PROC_DETACH,
4881	       PIDGET (inferior_ptid),
4882	       TT_NIL,
4883	       (TTRACE_ARG_TYPE) signal,
4884	       TT_NIL);
4885  attach_flag = 0;
4886
4887  clear_thread_info ();
4888
4889  /* Process-state? */
4890}
4891#endif /* ATTACH_DETACH */
4892
4893
4894/* Default the type of the ttrace transfer to int.  */
4895#ifndef TTRACE_XFER_TYPE
4896#define TTRACE_XFER_TYPE int
4897#endif
4898
4899void
4900_initialize_kernel_u_addr (void)
4901{
4902}
4903
4904#if !defined (CHILD_XFER_MEMORY)
4905/* NOTE! I tried using TTRACE_READDATA, etc., to read and write memory
4906   in the NEW_SUN_TTRACE case.
4907   It ought to be straightforward.  But it appears that writing did
4908   not write the data that I specified.  I cannot understand where
4909   it got the data that it actually did write.  */
4910
4911/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
4912   to debugger memory starting at MYADDR.   Copy to inferior if
4913   WRITE is nonzero.  TARGET is ignored.
4914
4915   Returns the length copied, which is either the LEN argument or zero.
4916   This xfer function does not do partial moves, since child_ops
4917   doesn't allow memory operations to cross below us in the target stack
4918   anyway.  */
4919
4920int
4921child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
4922		   struct mem_attrib *attrib,
4923		   struct target_ops *target)
4924{
4925  register int i;
4926  /* Round starting address down to longword boundary.  */
4927  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (TTRACE_XFER_TYPE);
4928  /* Round ending address up; get number of longwords that makes.  */
4929  register int count
4930  = (((memaddr + len) - addr) + sizeof (TTRACE_XFER_TYPE) - 1)
4931  / sizeof (TTRACE_XFER_TYPE);
4932  /* Allocate buffer of that many longwords.  */
4933  /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
4934     because it uses alloca to allocate a buffer of arbitrary size.
4935     For very large xfers, this could crash GDB's stack.  */
4936  register TTRACE_XFER_TYPE *buffer
4937    = (TTRACE_XFER_TYPE *) alloca (count * sizeof (TTRACE_XFER_TYPE));
4938
4939  if (write)
4940    {
4941      /* Fill start and end extra bytes of buffer with existing memory data.  */
4942
4943      if (addr != memaddr || len < (int) sizeof (TTRACE_XFER_TYPE))
4944	{
4945	  /* Need part of initial word -- fetch it.  */
4946	  buffer[0] = call_ttrace (TT_LWP_RDTEXT,
4947				   PIDGET (inferior_ptid),
4948				   (TTRACE_ARG_TYPE) addr,
4949				   TT_NIL,
4950				   TT_NIL);
4951	}
4952
4953      if (count > 1)		/* FIXME, avoid if even boundary */
4954	{
4955	  buffer[count - 1] = call_ttrace (TT_LWP_RDTEXT,
4956					   PIDGET (inferior_ptid),
4957					   ((TTRACE_ARG_TYPE)
4958			  (addr + (count - 1) * sizeof (TTRACE_XFER_TYPE))),
4959					   TT_NIL,
4960					   TT_NIL);
4961	}
4962
4963      /* Copy data to be written over corresponding part of buffer */
4964
4965      memcpy ((char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
4966	      myaddr,
4967	      len);
4968
4969      /* Write the entire buffer.  */
4970
4971      for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4972	{
4973	  errno = 0;
4974	  call_ttrace (TT_LWP_WRDATA,
4975		       PIDGET (inferior_ptid),
4976		       (TTRACE_ARG_TYPE) addr,
4977		       (TTRACE_ARG_TYPE) buffer[i],
4978		       TT_NIL);
4979	  if (errno)
4980	    {
4981	      /* Using the appropriate one (I or D) is necessary for
4982	         Gould NP1, at least.  */
4983	      errno = 0;
4984	      call_ttrace (TT_LWP_WRTEXT,
4985			   PIDGET (inferior_ptid),
4986			   (TTRACE_ARG_TYPE) addr,
4987			   (TTRACE_ARG_TYPE) buffer[i],
4988			   TT_NIL);
4989	    }
4990	  if (errno)
4991	    return 0;
4992	}
4993    }
4994  else
4995    {
4996      /* Read all the longwords */
4997      for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4998	{
4999	  errno = 0;
5000	  buffer[i] = call_ttrace (TT_LWP_RDTEXT,
5001				   PIDGET (inferior_ptid),
5002				   (TTRACE_ARG_TYPE) addr,
5003				   TT_NIL,
5004				   TT_NIL);
5005	  if (errno)
5006	    return 0;
5007	  QUIT;
5008	}
5009
5010      /* Copy appropriate bytes out of the buffer.  */
5011      memcpy (myaddr,
5012	      (char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
5013	      len);
5014    }
5015  return len;
5016}
5017
5018
5019static void
5020udot_info (void)
5021{
5022  int udot_off;			/* Offset into user struct */
5023  int udot_val;			/* Value from user struct at udot_off */
5024  char mess[128];		/* For messages */
5025
5026  if (!target_has_execution)
5027    {
5028      error ("The program is not being run.");
5029    }
5030
5031#if !defined (KERNEL_U_SIZE)
5032
5033  /* Adding support for this command is easy.  Typically you just add a
5034     routine, called "kernel_u_size" that returns the size of the user
5035     struct, to the appropriate *-nat.c file and then add to the native
5036     config file "#define KERNEL_U_SIZE kernel_u_size()" */
5037  error ("Don't know how large ``struct user'' is in this version of gdb.");
5038
5039#else
5040
5041  for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
5042    {
5043      if ((udot_off % 24) == 0)
5044	{
5045	  if (udot_off > 0)
5046	    {
5047	      printf_filtered ("\n");
5048	    }
5049	  printf_filtered ("%04x:", udot_off);
5050	}
5051      udot_val = call_ttrace (TT_LWP_RUREGS,
5052			      PIDGET (inferior_ptid),
5053			      (TTRACE_ARG_TYPE) udot_off,
5054			      TT_NIL,
5055			      TT_NIL);
5056      if (errno != 0)
5057	{
5058	  sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
5059	  perror_with_name (mess);
5060	}
5061      /* Avoid using nonportable (?) "*" in print specs */
5062      printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
5063    }
5064  printf_filtered ("\n");
5065
5066#endif
5067}
5068#endif /* !defined (CHILD_XFER_MEMORY).  */
5069
5070
5071/* TTrace version of "target_pid_to_exec_file"
5072 */
5073char *
5074child_pid_to_exec_file (int tid)
5075{
5076  int tt_status;
5077  static char exec_file_buffer[1024];
5078  pid_t pid;
5079  static struct pst_status buf;
5080
5081  /* On various versions of hpux11, this may fail due to a supposed
5082     kernel bug.  We have alternate methods to get this information
5083     (ie pstat).  */
5084  tt_status = call_ttrace (TT_PROC_GET_PATHNAME,
5085			   tid,
5086			   (uint64_t) exec_file_buffer,
5087			   sizeof (exec_file_buffer) - 1,
5088			   0);
5089  if (tt_status >= 0)
5090    return exec_file_buffer;
5091
5092  /* Try to get process information via pstat and extract the filename
5093     from the pst_cmd field within the pst_status structure.  */
5094  if (pstat_getproc (&buf, sizeof (struct pst_status), 0, tid) != -1)
5095    {
5096      char *p = buf.pst_cmd;
5097
5098      while (*p && *p != ' ')
5099	p++;
5100      *p = 0;
5101
5102      return (buf.pst_cmd);
5103    }
5104
5105  return (NULL);
5106}
5107
5108void
5109pre_fork_inferior (void)
5110{
5111  int status;
5112
5113  status = pipe (startup_semaphore.parent_channel);
5114  if (status < 0)
5115    {
5116      warning ("error getting parent pipe for startup semaphore");
5117      return;
5118    }
5119
5120  status = pipe (startup_semaphore.child_channel);
5121  if (status < 0)
5122    {
5123      warning ("error getting child pipe for startup semaphore");
5124      return;
5125    }
5126}
5127
5128/* Called via #define REQUIRE_ATTACH from inftarg.c,
5129 * ultimately from "follow_inferior_fork" in infrun.c,
5130 * itself called from "resume".
5131 *
5132 * This seems to be intended to attach after a fork or
5133 * vfork, while "attach" is used to attach to a pid
5134 * given by the user.  The check for an existing attach
5135 * seems odd--it always fails in our test system.
5136 */
5137int
5138hppa_require_attach (int pid)
5139{
5140  int tt_status;
5141  CORE_ADDR pc;
5142  CORE_ADDR pc_addr;
5143  unsigned int regs_offset;
5144  process_state_t old_process_state = process_state;
5145
5146  /* Are we already attached?  There appears to be no explicit
5147   * way to answer this via ttrace, so we try something which
5148   * should be innocuous if we are attached.  If that fails,
5149   * then we assume we're not attached, and so attempt to make
5150   * it so.
5151   */
5152  errno = 0;
5153  tt_status = call_real_ttrace (TT_PROC_STOP,
5154				pid,
5155				(lwpid_t) TT_NIL,
5156				(TTRACE_ARG_TYPE) TT_NIL,
5157				(TTRACE_ARG_TYPE) TT_NIL,
5158				TT_NIL);
5159
5160  if (errno)
5161    {
5162      /* No change to process-state!
5163       */
5164      errno = 0;
5165      pid = attach (pid);
5166    }
5167  else
5168    {
5169      /* If successful, the process is now stopped.  But if
5170       * we're VFORKING, the parent is still running, so don't
5171       * change the process state.
5172       */
5173      if (process_state != VFORKING)
5174	process_state = STOPPED;
5175
5176      /* If we were already attached, you'd think that we
5177       * would need to start going again--but you'd be wrong,
5178       * as the fork-following code is actually in the middle
5179       * of the "resume" routine in in "infrun.c" and so
5180       * will (almost) immediately do a resume.
5181       *
5182       * On the other hand, if we are VFORKING, which means
5183       * that the child and the parent share a process for a
5184       * while, we know that "resume" won't be resuming
5185       * until the child EXEC event is seen.  But we still
5186       * don't want to continue, as the event is already
5187       * there waiting.
5188       */
5189      update_thread_state_after_attach (pid, DONT_ATTACH_CONTINUE);
5190    }				/* STOP succeeded */
5191
5192  return pid;
5193}
5194
5195int
5196hppa_require_detach (int pid, int signal)
5197{
5198  int tt_status;
5199
5200  /* If signal is non-zero, we must pass the signal on to the active
5201     thread prior to detaching.  We do this by continuing the threads
5202     with the signal.
5203   */
5204  if (signal != 0)
5205    {
5206      errno = 0;
5207      threads_continue_all_with_signals (pid, signal);
5208    }
5209
5210  errno = 0;
5211  tt_status = call_ttrace (TT_PROC_DETACH,
5212			   pid,
5213			   TT_NIL,
5214			   TT_NIL,
5215			   TT_NIL);
5216
5217  errno = 0;			/* Ignore any errors. */
5218
5219  /* process_state? */
5220
5221  return pid;
5222}
5223
5224/* Given the starting address of a memory page, hash it to a bucket in
5225   the memory page dictionary.
5226 */
5227static int
5228get_dictionary_bucket_of_page (CORE_ADDR page_start)
5229{
5230  int hash;
5231
5232  hash = (page_start / memory_page_dictionary.page_size);
5233  hash = hash % MEMORY_PAGE_DICTIONARY_BUCKET_COUNT;
5234
5235  return hash;
5236}
5237
5238
5239/* Given a memory page's starting address, get (i.e., find an existing
5240   or create a new) dictionary entry for the page.  The page will be
5241   write-protected when this function returns, but may have a reference
5242   count of 0 (if the page was newly-added to the dictionary).
5243 */
5244static memory_page_t *
5245get_dictionary_entry_of_page (int pid, CORE_ADDR page_start)
5246{
5247  int bucket;
5248  memory_page_t *page = NULL;
5249  memory_page_t *previous_page = NULL;
5250
5251  /* We're going to be using the dictionary now, than-kew. */
5252  require_memory_page_dictionary ();
5253
5254  /* Try to find an existing dictionary entry for this page.  Hash
5255     on the page's starting address.
5256   */
5257  bucket = get_dictionary_bucket_of_page (page_start);
5258  page = &memory_page_dictionary.buckets[bucket];
5259  while (page != NULL)
5260    {
5261      if (page->page_start == page_start)
5262	break;
5263      previous_page = page;
5264      page = page->next;
5265    }
5266
5267  /* Did we find a dictionary entry for this page?  If not, then
5268     add it to the dictionary now.
5269   */
5270  if (page == NULL)
5271    {
5272      /* Create a new entry. */
5273      page = (memory_page_t *) xmalloc (sizeof (memory_page_t));
5274      page->page_start = page_start;
5275      page->reference_count = 0;
5276      page->next = NULL;
5277      page->previous = NULL;
5278
5279      /* We'll write-protect the page now, if that's allowed. */
5280      page->original_permissions = write_protect_page (pid, page_start);
5281
5282      /* Add the new entry to the dictionary. */
5283      page->previous = previous_page;
5284      previous_page->next = page;
5285
5286      memory_page_dictionary.page_count++;
5287    }
5288
5289  return page;
5290}
5291
5292
5293static void
5294remove_dictionary_entry_of_page (int pid, memory_page_t *page)
5295{
5296  /* Restore the page's original permissions. */
5297  unwrite_protect_page (pid, page->page_start, page->original_permissions);
5298
5299  /* Kick the page out of the dictionary. */
5300  if (page->previous != NULL)
5301    page->previous->next = page->next;
5302  if (page->next != NULL)
5303    page->next->previous = page->previous;
5304
5305  /* Just in case someone retains a handle to this after it's freed. */
5306  page->page_start = (CORE_ADDR) 0;
5307
5308  memory_page_dictionary.page_count--;
5309
5310  xfree (page);
5311}
5312
5313
5314static void
5315hppa_enable_syscall_events (int pid)
5316{
5317  int tt_status;
5318  ttevent_t ttrace_events;
5319
5320  /* Get the set of events that are currently enabled. */
5321  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5322			   pid,
5323			   (TTRACE_ARG_TYPE) & ttrace_events,
5324			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5325			   TT_NIL);
5326  if (errno)
5327    perror_with_name ("ttrace");
5328
5329  /* Add syscall events to that set. */
5330  ttrace_events.tte_events |= TTEVT_SYSCALL_ENTRY;
5331  ttrace_events.tte_events |= TTEVT_SYSCALL_RETURN;
5332
5333  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5334			   pid,
5335			   (TTRACE_ARG_TYPE) & ttrace_events,
5336			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5337			   TT_NIL);
5338  if (errno)
5339    perror_with_name ("ttrace");
5340}
5341
5342
5343static void
5344hppa_disable_syscall_events (int pid)
5345{
5346  int tt_status;
5347  ttevent_t ttrace_events;
5348
5349  /* Get the set of events that are currently enabled. */
5350  tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5351			   pid,
5352			   (TTRACE_ARG_TYPE) & ttrace_events,
5353			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5354			   TT_NIL);
5355  if (errno)
5356    perror_with_name ("ttrace");
5357
5358  /* Remove syscall events from that set. */
5359  ttrace_events.tte_events &= ~TTEVT_SYSCALL_ENTRY;
5360  ttrace_events.tte_events &= ~TTEVT_SYSCALL_RETURN;
5361
5362  tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5363			   pid,
5364			   (TTRACE_ARG_TYPE) & ttrace_events,
5365			   (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5366			   TT_NIL);
5367  if (errno)
5368    perror_with_name ("ttrace");
5369}
5370
5371
5372/* The address range beginning with START and ending with START+LEN-1
5373   (inclusive) is to be watched via page-protection by a new watchpoint.
5374   Set protection for all pages that overlap that range.
5375
5376   Note that our caller sets TYPE to:
5377   0 for a bp_hardware_watchpoint,
5378   1 for a bp_read_watchpoint,
5379   2 for a bp_access_watchpoint
5380
5381   (Yes, this is intentionally (though lord only knows why) different
5382   from the TYPE that is passed to hppa_remove_hw_watchpoint.)
5383 */
5384int
5385hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
5386{
5387  CORE_ADDR page_start;
5388  int dictionary_was_empty;
5389  int page_size;
5390  int page_id;
5391  LONGEST range_size_in_pages;
5392
5393  if (type != 0)
5394    error ("read or access hardware watchpoints not supported on HP-UX");
5395
5396  /* Examine all pages in the address range. */
5397  require_memory_page_dictionary ();
5398
5399  dictionary_was_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5400
5401  page_size = memory_page_dictionary.page_size;
5402  page_start = (start / page_size) * page_size;
5403  range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5404
5405  for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5406    {
5407      memory_page_t *page;
5408
5409      /* This gets the page entered into the dictionary if it was
5410         not already entered.
5411       */
5412      page = get_dictionary_entry_of_page (pid, page_start);
5413      page->reference_count++;
5414    }
5415
5416  /* Our implementation depends on seeing calls to kernel code, for the
5417     following reason.  Here we ask to be notified of syscalls.
5418
5419     When a protected page is accessed by user code, HP-UX raises a SIGBUS.
5420     Fine.
5421
5422     But when kernel code accesses the page, it doesn't give a SIGBUS.
5423     Rather, the system call that touched the page fails, with errno=EFAULT.
5424     Not good for us.
5425
5426     We could accomodate this "feature" by asking to be notified of syscall
5427     entries & exits; upon getting an entry event, disabling page-protections;
5428     upon getting an exit event, reenabling page-protections and then checking
5429     if any watchpoints triggered.
5430
5431     However, this turns out to be a real performance loser.  syscalls are
5432     usually a frequent occurrence.  Having to unprotect-reprotect all watched
5433     pages, and also to then read all watched memory locations and compare for
5434     triggers, can be quite expensive.
5435
5436     Instead, we'll only ask to be notified of syscall exits.  When we get
5437     one, we'll check whether errno is set.  If not, or if it's not EFAULT,
5438     we can just continue the inferior.
5439
5440     If errno is set upon syscall exit to EFAULT, we must perform some fairly
5441     hackish stuff to determine whether the failure really was due to a
5442     page-protect trap on a watched location.
5443   */
5444  if (dictionary_was_empty)
5445    hppa_enable_syscall_events (pid);
5446
5447  return 1;
5448}
5449
5450
5451/* The address range beginning with START and ending with START+LEN-1
5452   (inclusive) was being watched via page-protection by a watchpoint
5453   which has been removed.  Remove protection for all pages that
5454   overlap that range, which are not also being watched by other
5455   watchpoints.
5456 */
5457int
5458hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
5459			   enum bptype type)
5460{
5461  CORE_ADDR page_start;
5462  int dictionary_is_empty;
5463  int page_size;
5464  int page_id;
5465  LONGEST range_size_in_pages;
5466
5467  if (type != 0)
5468    error ("read or access hardware watchpoints not supported on HP-UX");
5469
5470  /* Examine all pages in the address range. */
5471  require_memory_page_dictionary ();
5472
5473  page_size = memory_page_dictionary.page_size;
5474  page_start = (start / page_size) * page_size;
5475  range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5476
5477  for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5478    {
5479      memory_page_t *page;
5480
5481      page = get_dictionary_entry_of_page (pid, page_start);
5482      page->reference_count--;
5483
5484      /* Was this the last reference of this page?  If so, then we
5485         must scrub the entry from the dictionary, and also restore
5486         the page's original permissions.
5487       */
5488      if (page->reference_count == 0)
5489	remove_dictionary_entry_of_page (pid, page);
5490    }
5491
5492  dictionary_is_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5493
5494  /* If write protections are currently disallowed, then that implies that
5495     wait_for_inferior believes that the inferior is within a system call.
5496     Since we want to see both syscall entry and return, it's clearly not
5497     good to disable syscall events in this state!
5498
5499     ??rehrauer: Yeah, it'd be better if we had a specific flag that said,
5500     "inferior is between syscall events now".  Oh well.
5501   */
5502  if (dictionary_is_empty && memory_page_dictionary.page_protections_allowed)
5503    hppa_disable_syscall_events (pid);
5504
5505  return 1;
5506}
5507
5508
5509/* Could we implement a watchpoint of this type via our available
5510   hardware support?
5511
5512   This query does not consider whether a particular address range
5513   could be so watched, but just whether support is generally available
5514   for such things.  See hppa_range_profitable_for_hw_watchpoint for a
5515   query that answers whether a particular range should be watched via
5516   hardware support.
5517 */
5518int
5519hppa_can_use_hw_watchpoint (enum bptype type, int cnt, enum bptype ot)
5520{
5521  return (type == bp_hardware_watchpoint);
5522}
5523
5524
5525/* Assuming we could set a hardware watchpoint on this address, do
5526   we think it would be profitable ("a good idea") to do so?  If not,
5527   we can always set a regular (aka single-step & test) watchpoint
5528   on the address...
5529 */
5530int
5531hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
5532{
5533  int range_is_stack_based;
5534  int range_is_accessible;
5535  CORE_ADDR page_start;
5536  int page_size;
5537  int page;
5538  LONGEST range_size_in_pages;
5539
5540  /* ??rehrauer: For now, say that all addresses are potentially
5541     profitable.  Possibly later we'll want to test the address
5542     for "stackness"?
5543   */
5544  range_is_stack_based = 0;
5545
5546  /* If any page in the range is inaccessible, then we cannot
5547     really use hardware watchpointing, even though our client
5548     thinks we can.  In that case, it's actually an error to
5549     attempt to use hw watchpoints, so we'll tell our client
5550     that the range is "unprofitable", and hope that they listen...
5551   */
5552  range_is_accessible = 1;	/* Until proven otherwise. */
5553
5554  /* Examine all pages in the address range. */
5555  errno = 0;
5556  page_size = sysconf (_SC_PAGE_SIZE);
5557
5558  /* If we can't determine page size, we're hosed.  Tell our
5559     client it's unprofitable to use hw watchpoints for this
5560     range.
5561   */
5562  if (errno || (page_size <= 0))
5563    {
5564      errno = 0;
5565      return 0;
5566    }
5567
5568  page_start = (start / page_size) * page_size;
5569  range_size_in_pages = len / (LONGEST) page_size;
5570
5571  for (page = 0; page < range_size_in_pages; page++, page_start += page_size)
5572    {
5573      int tt_status;
5574      int page_permissions;
5575
5576      /* Is this page accessible? */
5577      errno = 0;
5578      tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
5579			       pid,
5580			       (TTRACE_ARG_TYPE) page_start,
5581			       TT_NIL,
5582			       (TTRACE_ARG_TYPE) & page_permissions);
5583      if (errno || (tt_status < 0))
5584	{
5585	  errno = 0;
5586	  range_is_accessible = 0;
5587	  break;
5588	}
5589
5590      /* Yes, go for another... */
5591    }
5592
5593  return (!range_is_stack_based && range_is_accessible);
5594}
5595
5596
5597char *
5598hppa_pid_or_tid_to_str (ptid_t ptid)
5599{
5600  static char buf[100];		/* Static because address returned. */
5601  pid_t id = PIDGET (ptid);
5602
5603  /* Does this appear to be a process?  If so, print it that way. */
5604  if (is_process_id (id))
5605    return child_pid_to_str (ptid);
5606
5607  /* Else, print both the GDB thread number and the system thread id. */
5608  sprintf (buf, "thread %d (", pid_to_thread_id (ptid));
5609  strcat (buf, hppa_tid_to_str (ptid));
5610  strcat (buf, ")\0");
5611
5612  return buf;
5613}
5614
5615
5616/* If the current pid is not the pid this module reported
5617 * from "ptrace_wait" with the most recent event, then the
5618 * user has switched threads.
5619 *
5620 * If the last reported event was a breakpoint, then return
5621 * the old thread id, else return 0.
5622 */
5623pid_t
5624hppa_switched_threads (pid_t gdb_pid)
5625{
5626  if (gdb_pid == old_gdb_pid)
5627    {
5628      /*
5629       * Core gdb is working with the same pid that it
5630       * was before we reported the last event.  This
5631       * is ok: e.g. we reported hitting a thread-specific
5632       * breakpoint, but we were reporting the wrong
5633       * thread, so the core just ignored the event.
5634       *
5635       * No thread switch has happened.
5636       */
5637      return (pid_t) 0;
5638    }
5639  else if (gdb_pid == reported_pid)
5640    {
5641      /*
5642       * Core gdb is working with the pid we reported, so
5643       * any continue or step will be able to figure out
5644       * that it needs to step over any hit breakpoints
5645       * without our (i.e. PREPARE_TO_PROCEED's) help.
5646       */
5647      return (pid_t) 0;
5648    }
5649  else if (!reported_bpt)
5650    {
5651      /*
5652       * The core switched, but we didn't just report a
5653       * breakpoint, so there's no just-hit breakpoint
5654       * instruction at "reported_pid"'s PC, and thus there
5655       * is no need to step over it.
5656       */
5657      return (pid_t) 0;
5658    }
5659  else
5660    {
5661      /* There's been a real switch, and we reported
5662       * a hit breakpoint.  Let "hppa_prepare_to_proceed"
5663       * know, so it can see whether the breakpoint is
5664       * still active.
5665       */
5666      return reported_pid;
5667    }
5668
5669  /* Keep compiler happy with an obvious return at the end.
5670   */
5671  return (pid_t) 0;
5672}
5673
5674void
5675hppa_ensure_vforking_parent_remains_stopped (int pid)
5676{
5677  /* Nothing to do when using ttrace.  Only the ptrace-based implementation
5678     must do real work.
5679   */
5680}
5681
5682
5683int
5684hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
5685{
5686  return 0;			/* No, the parent vfork is available now. */
5687}
5688
5689
5690/* Write a register as a 64bit value.  This may be necessary if the
5691   native OS is too braindamaged to allow some (or all) registers to
5692   be written in 32bit hunks such as hpux11 and the PC queue registers.
5693
5694   This is horribly gross and disgusting.  */
5695
5696int
5697ttrace_write_reg_64 (int gdb_tid, CORE_ADDR dest_addr, CORE_ADDR src_addr)
5698{
5699  pid_t 	pid;
5700  lwpid_t 	tid;
5701  int  		tt_status;
5702
5703  tid = map_from_gdb_tid (gdb_tid);
5704  pid = get_pid_for (tid);
5705
5706  errno = 0;
5707  tt_status = ttrace (TT_LWP_WUREGS,
5708		      pid,
5709		      tid,
5710		      (TTRACE_ARG_TYPE) dest_addr,
5711		      8,
5712		      (TTRACE_ARG_TYPE) src_addr );
5713
5714#ifdef THREAD_DEBUG
5715  if (errno)
5716    {
5717      /* Don't bother for a known benign error: if you ask for the
5718         first thread state, but there is only one thread and it's
5719         not stopped, ttrace complains.
5720
5721         We have this inside the #ifdef because our caller will do
5722         this check for real.  */
5723      if( request != TT_PROC_GET_FIRST_LWP_STATE
5724          ||  errno   != EPROTO )
5725        {
5726          if( debug_on )
5727            printf( "TT fail for %s, with pid %d, tid %d, status %d \n",
5728                    get_printable_name_of_ttrace_request (TT_LWP_WUREGS),
5729                    pid, tid, tt_status );
5730        }
5731    }
5732#endif
5733
5734  return tt_status;
5735}
5736
5737void
5738_initialize_infttrace (void)
5739{
5740  /* Initialize the ttrace-based hardware watchpoint implementation. */
5741  memory_page_dictionary.page_count = (LONGEST) - 1;
5742  memory_page_dictionary.page_protections_allowed = 1;
5743
5744  errno = 0;
5745  memory_page_dictionary.page_size = sysconf (_SC_PAGE_SIZE);
5746
5747  /* We do a lot of casts from pointers to TTRACE_ARG_TYPE; make sure
5748     this is okay.  */
5749  if (sizeof (TTRACE_ARG_TYPE) < sizeof (void *))
5750    internal_error (__FILE__, __LINE__, "failed internal consistency check");
5751
5752  if (errno || (memory_page_dictionary.page_size <= 0))
5753    perror_with_name ("sysconf");
5754}
5755