tree-inline.c revision 107590
1/* Control and data flow functions for trees.
2   Copyright 2001, 2002 Free Software Foundation, Inc.
3   Contributed by Alexandre Oliva <aoliva@redhat.com>
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "toplev.h"
25#include "tree.h"
26#include "tree-inline.h"
27#include "rtl.h"
28#include "expr.h"
29#include "flags.h"
30#include "params.h"
31#include "input.h"
32#include "insn-config.h"
33#include "integrate.h"
34#include "varray.h"
35#include "hashtab.h"
36#include "splay-tree.h"
37#include "langhooks.h"
38
39/* This should be eventually be generalized to other languages, but
40   this would require a shared function-as-trees infrastructure.  */
41#include "c-common.h"
42
43/* 0 if we should not perform inlining.
44   1 if we should expand functions calls inline at the tree level.
45   2 if we should consider *all* functions to be inline
46   candidates.  */
47
48int flag_inline_trees = 0;
49
50/* To Do:
51
52   o In order to make inlining-on-trees work, we pessimized
53     function-local static constants.  In particular, they are now
54     always output, even when not addressed.  Fix this by treating
55     function-local static constants just like global static
56     constants; the back-end already knows not to output them if they
57     are not needed.
58
59   o Provide heuristics to clamp inlining of recursive template
60     calls?  */
61
62/* Data required for function inlining.  */
63
64typedef struct inline_data
65{
66  /* A stack of the functions we are inlining.  For example, if we are
67     compiling `f', which calls `g', which calls `h', and we are
68     inlining the body of `h', the stack will contain, `h', followed
69     by `g', followed by `f'.  The first few elements of the stack may
70     contain other functions that we know we should not recurse into,
71     even though they are not directly being inlined.  */
72  varray_type fns;
73  /* The index of the first element of FNS that really represents an
74     inlined function.  */
75  unsigned first_inlined_fn;
76  /* The label to jump to when a return statement is encountered.  If
77     this value is NULL, then return statements will simply be
78     remapped as return statements, rather than as jumps.  */
79  tree ret_label;
80  /* The map from local declarations in the inlined function to
81     equivalents in the function into which it is being inlined.  */
82  splay_tree decl_map;
83  /* Nonzero if we are currently within the cleanup for a
84     TARGET_EXPR.  */
85  int in_target_cleanup_p;
86  /* A stack of the TARGET_EXPRs that we are currently processing.  */
87  varray_type target_exprs;
88  /* A list of the functions current function has inlined.  */
89  varray_type inlined_fns;
90  /* The approximate number of statements we have inlined in the
91     current call stack.  */
92  int inlined_stmts;
93  /* We use the same mechanism to build clones that we do to perform
94     inlining.  However, there are a few places where we need to
95     distinguish between those two situations.  This flag is true if
96     we are cloning, rather than inlining.  */
97  bool cloning_p;
98  /* Hash table used to prevent walk_tree from visiting the same node
99     umpteen million times.  */
100  htab_t tree_pruner;
101} inline_data;
102
103/* Prototypes.  */
104
105static tree initialize_inlined_parameters PARAMS ((inline_data *, tree, tree));
106static tree declare_return_variable PARAMS ((inline_data *, tree *));
107static tree copy_body_r PARAMS ((tree *, int *, void *));
108static tree copy_body PARAMS ((inline_data *));
109static tree expand_call_inline PARAMS ((tree *, int *, void *));
110static void expand_calls_inline PARAMS ((tree *, inline_data *));
111static int inlinable_function_p PARAMS ((tree, inline_data *));
112static tree remap_decl PARAMS ((tree, inline_data *));
113static void remap_block PARAMS ((tree, tree, inline_data *));
114static void copy_scope_stmt PARAMS ((tree *, int *, inline_data *));
115
116/* The approximate number of instructions per statement.  This number
117   need not be particularly accurate; it is used only to make
118   decisions about when a function is too big to inline.  */
119#define INSNS_PER_STMT (10)
120
121/* Remap DECL during the copying of the BLOCK tree for the function.  */
122
123static tree
124remap_decl (decl, id)
125     tree decl;
126     inline_data *id;
127{
128  splay_tree_node n;
129  tree fn;
130
131  /* We only remap local variables in the current function.  */
132  fn = VARRAY_TOP_TREE (id->fns);
133  if (! (*lang_hooks.tree_inlining.auto_var_in_fn_p) (decl, fn))
134    return NULL_TREE;
135
136  /* See if we have remapped this declaration.  */
137  n = splay_tree_lookup (id->decl_map, (splay_tree_key) decl);
138  /* If we didn't already have an equivalent for this declaration,
139     create one now.  */
140  if (!n)
141    {
142      tree t;
143
144      /* Make a copy of the variable or label.  */
145      t = copy_decl_for_inlining (decl, fn,
146				  VARRAY_TREE (id->fns, 0));
147
148      /* The decl T could be a dynamic array or other variable size type,
149	 in which case some fields need to be remapped because they may
150	 contain SAVE_EXPRs.  */
151      if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE
152	  && TYPE_DOMAIN (TREE_TYPE (t)))
153	{
154	  TREE_TYPE (t) = copy_node (TREE_TYPE (t));
155	  TYPE_DOMAIN (TREE_TYPE (t))
156	    = copy_node (TYPE_DOMAIN (TREE_TYPE (t)));
157	  walk_tree (&TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (t))),
158		     copy_body_r, id, NULL);
159	}
160
161      if (! DECL_NAME (t) && TREE_TYPE (t)
162	  && (*lang_hooks.tree_inlining.anon_aggr_type_p) (TREE_TYPE (t)))
163	{
164	  /* For a VAR_DECL of anonymous type, we must also copy the
165	     member VAR_DECLS here and rechain the
166	     DECL_ANON_UNION_ELEMS.  */
167	  tree members = NULL;
168	  tree src;
169
170	  for (src = DECL_ANON_UNION_ELEMS (t); src;
171	       src = TREE_CHAIN (src))
172	    {
173	      tree member = remap_decl (TREE_VALUE (src), id);
174
175	      if (TREE_PURPOSE (src))
176		abort ();
177	      members = tree_cons (NULL, member, members);
178	    }
179	  DECL_ANON_UNION_ELEMS (t) = nreverse (members);
180	}
181
182      /* Remember it, so that if we encounter this local entity
183	 again we can reuse this copy.  */
184      n = splay_tree_insert (id->decl_map,
185			     (splay_tree_key) decl,
186			     (splay_tree_value) t);
187    }
188
189  return (tree) n->value;
190}
191
192/* Copy the SCOPE_STMT_BLOCK associated with SCOPE_STMT to contain
193   remapped versions of the variables therein.  And hook the new block
194   into the block-tree.  If non-NULL, the DECLS are declarations to
195   add to use instead of the BLOCK_VARS in the old block.  */
196
197static void
198remap_block (scope_stmt, decls, id)
199     tree scope_stmt;
200     tree decls;
201     inline_data *id;
202{
203  /* We cannot do this in the cleanup for a TARGET_EXPR since we do
204     not know whether or not expand_expr will actually write out the
205     code we put there.  If it does not, then we'll have more BLOCKs
206     than block-notes, and things will go awry.  At some point, we
207     should make the back-end handle BLOCK notes in a tidier way,
208     without requiring a strict correspondence to the block-tree; then
209     this check can go.  */
210  if (id->in_target_cleanup_p)
211    {
212      SCOPE_STMT_BLOCK (scope_stmt) = NULL_TREE;
213      return;
214    }
215
216  /* If this is the beginning of a scope, remap the associated BLOCK.  */
217  if (SCOPE_BEGIN_P (scope_stmt) && SCOPE_STMT_BLOCK (scope_stmt))
218    {
219      tree old_block;
220      tree new_block;
221      tree old_var;
222      tree fn;
223
224      /* Make the new block.  */
225      old_block = SCOPE_STMT_BLOCK (scope_stmt);
226      new_block = make_node (BLOCK);
227      TREE_USED (new_block) = TREE_USED (old_block);
228      BLOCK_ABSTRACT_ORIGIN (new_block) = old_block;
229      SCOPE_STMT_BLOCK (scope_stmt) = new_block;
230
231      /* Remap its variables.  */
232      for (old_var = decls ? decls : BLOCK_VARS (old_block);
233	   old_var;
234	   old_var = TREE_CHAIN (old_var))
235	{
236	  tree new_var;
237
238	  /* Remap the variable.  */
239	  new_var = remap_decl (old_var, id);
240	  /* If we didn't remap this variable, so we can't mess with
241	     its TREE_CHAIN.  If we remapped this variable to
242	     something other than a declaration (say, if we mapped it
243	     to a constant), then we must similarly omit any mention
244	     of it here.  */
245	  if (!new_var || !DECL_P (new_var))
246	    ;
247	  else
248	    {
249	      TREE_CHAIN (new_var) = BLOCK_VARS (new_block);
250	      BLOCK_VARS (new_block) = new_var;
251	    }
252	}
253      /* We put the BLOCK_VARS in reverse order; fix that now.  */
254      BLOCK_VARS (new_block) = nreverse (BLOCK_VARS (new_block));
255      fn = VARRAY_TREE (id->fns, 0);
256      if (id->cloning_p)
257	/* We're building a clone; DECL_INITIAL is still
258	   error_mark_node, and current_binding_level is the parm
259	   binding level.  */
260	insert_block (new_block);
261      else
262	{
263	  /* Attach this new block after the DECL_INITIAL block for the
264	     function into which this block is being inlined.  In
265	     rest_of_compilation we will straighten out the BLOCK tree.  */
266	  tree *first_block;
267	  if (DECL_INITIAL (fn))
268	    first_block = &BLOCK_CHAIN (DECL_INITIAL (fn));
269	  else
270	    first_block = &DECL_INITIAL (fn);
271	  BLOCK_CHAIN (new_block) = *first_block;
272	  *first_block = new_block;
273	}
274      /* Remember the remapped block.  */
275      splay_tree_insert (id->decl_map,
276			 (splay_tree_key) old_block,
277			 (splay_tree_value) new_block);
278    }
279  /* If this is the end of a scope, set the SCOPE_STMT_BLOCK to be the
280     remapped block.  */
281  else if (SCOPE_END_P (scope_stmt) && SCOPE_STMT_BLOCK (scope_stmt))
282    {
283      splay_tree_node n;
284
285      /* Find this block in the table of remapped things.  */
286      n = splay_tree_lookup (id->decl_map,
287			     (splay_tree_key) SCOPE_STMT_BLOCK (scope_stmt));
288      if (! n)
289	abort ();
290      SCOPE_STMT_BLOCK (scope_stmt) = (tree) n->value;
291    }
292}
293
294/* Copy the SCOPE_STMT pointed to by TP.  */
295
296static void
297copy_scope_stmt (tp, walk_subtrees, id)
298     tree *tp;
299     int *walk_subtrees;
300     inline_data *id;
301{
302  tree block;
303
304  /* Remember whether or not this statement was nullified.  When
305     making a copy, copy_tree_r always sets SCOPE_NULLIFIED_P (and
306     doesn't copy the SCOPE_STMT_BLOCK) to free callers from having to
307     deal with copying BLOCKs if they do not wish to do so.  */
308  block = SCOPE_STMT_BLOCK (*tp);
309  /* Copy (and replace) the statement.  */
310  copy_tree_r (tp, walk_subtrees, NULL);
311  /* Restore the SCOPE_STMT_BLOCK.  */
312  SCOPE_STMT_BLOCK (*tp) = block;
313
314  /* Remap the associated block.  */
315  remap_block (*tp, NULL_TREE, id);
316}
317
318/* Called from copy_body via walk_tree.  DATA is really an
319   `inline_data *'.  */
320
321static tree
322copy_body_r (tp, walk_subtrees, data)
323     tree *tp;
324     int *walk_subtrees;
325     void *data;
326{
327  inline_data* id;
328  tree fn;
329
330  /* Set up.  */
331  id = (inline_data *) data;
332  fn = VARRAY_TOP_TREE (id->fns);
333
334#if 0
335  /* All automatic variables should have a DECL_CONTEXT indicating
336     what function they come from.  */
337  if ((TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == LABEL_DECL)
338      && DECL_NAMESPACE_SCOPE_P (*tp))
339    if (! DECL_EXTERNAL (*tp) && ! TREE_STATIC (*tp))
340      abort ();
341#endif
342
343  /* If this is a RETURN_STMT, change it into an EXPR_STMT and a
344     GOTO_STMT with the RET_LABEL as its target.  */
345  if (TREE_CODE (*tp) == RETURN_STMT && id->ret_label)
346    {
347      tree return_stmt = *tp;
348      tree goto_stmt;
349
350      /* Build the GOTO_STMT.  */
351      goto_stmt = build_stmt (GOTO_STMT, id->ret_label);
352      TREE_CHAIN (goto_stmt) = TREE_CHAIN (return_stmt);
353      GOTO_FAKE_P (goto_stmt) = 1;
354
355      /* If we're returning something, just turn that into an
356	 assignment into the equivalent of the original
357	 RESULT_DECL.  */
358      if (RETURN_EXPR (return_stmt))
359	{
360	  *tp = build_stmt (EXPR_STMT,
361			    RETURN_EXPR (return_stmt));
362	  STMT_IS_FULL_EXPR_P (*tp) = 1;
363	  /* And then jump to the end of the function.  */
364	  TREE_CHAIN (*tp) = goto_stmt;
365	}
366      /* If we're not returning anything just do the jump.  */
367      else
368	*tp = goto_stmt;
369    }
370  /* Local variables and labels need to be replaced by equivalent
371     variables.  We don't want to copy static variables; there's only
372     one of those, no matter how many times we inline the containing
373     function.  */
374  else if ((*lang_hooks.tree_inlining.auto_var_in_fn_p) (*tp, fn))
375    {
376      tree new_decl;
377
378      /* Remap the declaration.  */
379      new_decl = remap_decl (*tp, id);
380      if (! new_decl)
381	abort ();
382      /* Replace this variable with the copy.  */
383      STRIP_TYPE_NOPS (new_decl);
384      *tp = new_decl;
385    }
386#if 0
387  else if (nonstatic_local_decl_p (*tp)
388	   && DECL_CONTEXT (*tp) != VARRAY_TREE (id->fns, 0))
389    abort ();
390#endif
391  else if (TREE_CODE (*tp) == SAVE_EXPR)
392    remap_save_expr (tp, id->decl_map, VARRAY_TREE (id->fns, 0),
393		     walk_subtrees);
394  else if (TREE_CODE (*tp) == UNSAVE_EXPR)
395    /* UNSAVE_EXPRs should not be generated until expansion time.  */
396    abort ();
397  /* For a SCOPE_STMT, we must copy the associated block so that we
398     can write out debugging information for the inlined variables.  */
399  else if (TREE_CODE (*tp) == SCOPE_STMT && !id->in_target_cleanup_p)
400    copy_scope_stmt (tp, walk_subtrees, id);
401  /* Otherwise, just copy the node.  Note that copy_tree_r already
402     knows not to copy VAR_DECLs, etc., so this is safe.  */
403  else
404    {
405      copy_tree_r (tp, walk_subtrees, NULL);
406
407      /* The copied TARGET_EXPR has never been expanded, even if the
408	 original node was expanded already.  */
409      if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3))
410	{
411	  TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3);
412	  TREE_OPERAND (*tp, 3) = NULL_TREE;
413	}
414      else if (TREE_CODE (*tp) == MODIFY_EXPR
415	       && TREE_OPERAND (*tp, 0) == TREE_OPERAND (*tp, 1)
416	       && ((*lang_hooks.tree_inlining.auto_var_in_fn_p)
417		   (TREE_OPERAND (*tp, 0), fn)))
418	{
419	  /* Some assignments VAR = VAR; don't generate any rtl code
420	     and thus don't count as variable modification.  Avoid
421	     keeping bogosities like 0 = 0.  */
422	  tree decl = TREE_OPERAND (*tp, 0), value;
423	  splay_tree_node n;
424
425	  n = splay_tree_lookup (id->decl_map, (splay_tree_key) decl);
426	  if (n)
427	    {
428	      value = (tree) n->value;
429	      STRIP_TYPE_NOPS (value);
430	      if (TREE_CONSTANT (value) || TREE_READONLY_DECL_P (value))
431		*tp = value;
432	    }
433	}
434    }
435
436  /* Keep iterating.  */
437  return NULL_TREE;
438}
439
440/* Make a copy of the body of FN so that it can be inserted inline in
441   another function.  */
442
443static tree
444copy_body (id)
445     inline_data *id;
446{
447  tree body;
448
449  body = DECL_SAVED_TREE (VARRAY_TOP_TREE (id->fns));
450  walk_tree (&body, copy_body_r, id, NULL);
451
452  return body;
453}
454
455/* Generate code to initialize the parameters of the function at the
456   top of the stack in ID from the ARGS (presented as a TREE_LIST).  */
457
458static tree
459initialize_inlined_parameters (id, args, fn)
460     inline_data *id;
461     tree args;
462     tree fn;
463{
464  tree init_stmts;
465  tree parms;
466  tree a;
467  tree p;
468
469  /* Figure out what the parameters are.  */
470  parms = DECL_ARGUMENTS (fn);
471
472  /* Start with no initializations whatsoever.  */
473  init_stmts = NULL_TREE;
474
475  /* Loop through the parameter declarations, replacing each with an
476     equivalent VAR_DECL, appropriately initialized.  */
477  for (p = parms, a = args; p;
478       a = a ? TREE_CHAIN (a) : a, p = TREE_CHAIN (p))
479    {
480      tree init_stmt;
481      tree var;
482      tree value;
483      tree cleanup;
484
485      /* Find the initializer.  */
486      value = (*lang_hooks.tree_inlining.convert_parm_for_inlining)
487	      (p, a ? TREE_VALUE (a) : NULL_TREE, fn);
488
489      /* If the parameter is never assigned to, we may not need to
490	 create a new variable here at all.  Instead, we may be able
491	 to just use the argument value.  */
492      if (TREE_READONLY (p)
493	  && !TREE_ADDRESSABLE (p)
494	  && value && !TREE_SIDE_EFFECTS (value))
495	{
496	  /* Simplify the value, if possible.  */
497	  value = fold (DECL_P (value) ? decl_constant_value (value) : value);
498
499	  /* We can't risk substituting complex expressions.  They
500	     might contain variables that will be assigned to later.
501	     Theoretically, we could check the expression to see if
502	     all of the variables that determine its value are
503	     read-only, but we don't bother.  */
504	  if (TREE_CONSTANT (value) || TREE_READONLY_DECL_P (value))
505	    {
506	      /* If this is a declaration, wrap it a NOP_EXPR so that
507		 we don't try to put the VALUE on the list of
508		 BLOCK_VARS.  */
509	      if (DECL_P (value))
510		value = build1 (NOP_EXPR, TREE_TYPE (value), value);
511
512	      splay_tree_insert (id->decl_map,
513				 (splay_tree_key) p,
514				 (splay_tree_value) value);
515	      continue;
516	    }
517	}
518
519      /* Make an equivalent VAR_DECL.  */
520      var = copy_decl_for_inlining (p, fn, VARRAY_TREE (id->fns, 0));
521      /* Register the VAR_DECL as the equivalent for the PARM_DECL;
522	 that way, when the PARM_DECL is encountered, it will be
523	 automatically replaced by the VAR_DECL.  */
524      splay_tree_insert (id->decl_map,
525			 (splay_tree_key) p,
526			 (splay_tree_value) var);
527
528      /* Declare this new variable.  */
529      init_stmt = build_stmt (DECL_STMT, var);
530      TREE_CHAIN (init_stmt) = init_stmts;
531      init_stmts = init_stmt;
532
533      /* Initialize this VAR_DECL from the equivalent argument.  If
534	 the argument is an object, created via a constructor or copy,
535	 this will not result in an extra copy: the TARGET_EXPR
536	 representing the argument will be bound to VAR, and the
537	 object will be constructed in VAR.  */
538      if (! TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (p)))
539	DECL_INITIAL (var) = value;
540      else
541	{
542	  /* Even if P was TREE_READONLY, the new VAR should not be.
543	     In the original code, we would have constructed a
544	     temporary, and then the function body would have never
545	     changed the value of P.  However, now, we will be
546	     constructing VAR directly.  The constructor body may
547	     change its value multiple times as it is being
548	     constructed.  Therefore, it must not be TREE_READONLY;
549	     the back-end assumes that TREE_READONLY variable is
550	     assigned to only once.  */
551	  TREE_READONLY (var) = 0;
552
553	  /* Build a run-time initialization.  */
554	  init_stmt = build_stmt (EXPR_STMT,
555				  build (INIT_EXPR, TREE_TYPE (p),
556					 var, value));
557	  /* Add this initialization to the list.  Note that we want the
558	     declaration *after* the initialization because we are going
559	     to reverse all the initialization statements below.  */
560	  TREE_CHAIN (init_stmt) = init_stmts;
561	  init_stmts = init_stmt;
562	}
563
564      /* See if we need to clean up the declaration.  */
565      cleanup = maybe_build_cleanup (var);
566      if (cleanup)
567	{
568	  tree cleanup_stmt;
569	  /* Build the cleanup statement.  */
570	  cleanup_stmt = build_stmt (CLEANUP_STMT, var, cleanup);
571	  /* Add it to the *front* of the list; the list will be
572	     reversed below.  */
573	  TREE_CHAIN (cleanup_stmt) = init_stmts;
574	  init_stmts = cleanup_stmt;
575	}
576    }
577
578  /* Evaluate trailing arguments.  */
579  for (; a; a = TREE_CHAIN (a))
580    {
581      tree init_stmt;
582      tree value = TREE_VALUE (a);
583
584      if (! value || ! TREE_SIDE_EFFECTS (value))
585	continue;
586
587      init_stmt = build_stmt (EXPR_STMT, value);
588      TREE_CHAIN (init_stmt) = init_stmts;
589      init_stmts = init_stmt;
590    }
591
592  /* The initialization statements have been built up in reverse
593     order.  Straighten them out now.  */
594  return nreverse (init_stmts);
595}
596
597/* Declare a return variable to replace the RESULT_DECL for the
598   function we are calling.  An appropriate DECL_STMT is returned.
599   The USE_STMT is filled in to contain a use of the declaration to
600   indicate the return value of the function.  */
601
602static tree
603declare_return_variable (id, use_stmt)
604     struct inline_data *id;
605     tree *use_stmt;
606{
607  tree fn = VARRAY_TOP_TREE (id->fns);
608  tree result = DECL_RESULT (fn);
609  tree var;
610  int need_return_decl = 1;
611
612  /* We don't need to do anything for functions that don't return
613     anything.  */
614  if (!result || VOID_TYPE_P (TREE_TYPE (result)))
615    {
616      *use_stmt = NULL_TREE;
617      return NULL_TREE;
618    }
619
620  var = ((*lang_hooks.tree_inlining.copy_res_decl_for_inlining)
621	 (result, fn, VARRAY_TREE (id->fns, 0), id->decl_map,
622	  &need_return_decl, &id->target_exprs));
623
624  /* Register the VAR_DECL as the equivalent for the RESULT_DECL; that
625     way, when the RESULT_DECL is encountered, it will be
626     automatically replaced by the VAR_DECL.  */
627  splay_tree_insert (id->decl_map,
628		     (splay_tree_key) result,
629		     (splay_tree_value) var);
630
631  /* Build the USE_STMT.  If the return type of the function was
632     promoted, convert it back to the expected type.  */
633  if (TREE_TYPE (var) == TREE_TYPE (TREE_TYPE (fn)))
634    *use_stmt = build_stmt (EXPR_STMT, var);
635  else
636    *use_stmt = build_stmt (EXPR_STMT,
637			    build1 (NOP_EXPR, TREE_TYPE (TREE_TYPE (fn)),
638				    var));
639
640  TREE_ADDRESSABLE (*use_stmt) = 1;
641
642  /* Build the declaration statement if FN does not return an
643     aggregate.  */
644  if (need_return_decl)
645    return build_stmt (DECL_STMT, var);
646  /* If FN does return an aggregate, there's no need to declare the
647     return variable; we're using a variable in our caller's frame.  */
648  else
649    return NULL_TREE;
650}
651
652/* Returns non-zero if a function can be inlined as a tree.  */
653
654int
655tree_inlinable_function_p (fn)
656     tree fn;
657{
658  return inlinable_function_p (fn, NULL);
659}
660
661/* Returns non-zero if FN is a function that can be inlined into the
662   inlining context ID_.  If ID_ is NULL, check whether the function
663   can be inlined at all.  */
664
665static int
666inlinable_function_p (fn, id)
667     tree fn;
668     inline_data *id;
669{
670  int inlinable;
671
672  /* If we've already decided this function shouldn't be inlined,
673     there's no need to check again.  */
674  if (DECL_UNINLINABLE (fn))
675    return 0;
676
677  /* Assume it is not inlinable.  */
678  inlinable = 0;
679
680  /* If we're not inlining things, then nothing is inlinable.  */
681  if (! flag_inline_trees)
682    ;
683  /* If we're not inlining all functions and the function was not
684     declared `inline', we don't inline it.  Don't think of
685     disregarding DECL_INLINE when flag_inline_trees == 2; it's the
686     front-end that must set DECL_INLINE in this case, because
687     dwarf2out loses if a function is inlined that doesn't have
688     DECL_INLINE set.  */
689  else if (! DECL_INLINE (fn))
690    ;
691  /* We can't inline functions that are too big.  Only allow a single
692     function to eat up half of our budget.  Make special allowance
693     for extern inline functions, though.  */
694  else if (! (*lang_hooks.tree_inlining.disregard_inline_limits) (fn)
695	   && DECL_NUM_STMTS (fn) * INSNS_PER_STMT > MAX_INLINE_INSNS / 2)
696    ;
697  /* All is well.  We can inline this function.  Traditionally, GCC
698     has refused to inline functions using alloca, or functions whose
699     values are returned in a PARALLEL, and a few other such obscure
700     conditions.  We are not equally constrained at the tree level.  */
701  else
702    inlinable = 1;
703
704  /* Squirrel away the result so that we don't have to check again.  */
705  DECL_UNINLINABLE (fn) = ! inlinable;
706
707  /* Even if this function is not itself too big to inline, it might
708     be that we've done so much inlining already that we don't want to
709     risk too much inlining any more and thus halve the acceptable
710     size.  */
711  if (! (*lang_hooks.tree_inlining.disregard_inline_limits) (fn)
712      && ((DECL_NUM_STMTS (fn) + (id ? id->inlined_stmts : 0)) * INSNS_PER_STMT
713	  > MAX_INLINE_INSNS)
714      && DECL_NUM_STMTS (fn) * INSNS_PER_STMT > MAX_INLINE_INSNS / 4)
715    inlinable = 0;
716
717  if (inlinable && (*lang_hooks.tree_inlining.cannot_inline_tree_fn) (&fn))
718    inlinable = 0;
719
720  /* If we don't have the function body available, we can't inline
721     it.  */
722  if (! DECL_SAVED_TREE (fn))
723    inlinable = 0;
724
725  /* Check again, language hooks may have modified it.  */
726  if (! inlinable || DECL_UNINLINABLE (fn))
727    return 0;
728
729  /* Don't do recursive inlining, either.  We don't record this in
730     DECL_UNINLINABLE; we may be able to inline this function later.  */
731  if (id)
732    {
733      size_t i;
734
735      for (i = 0; i < VARRAY_ACTIVE_SIZE (id->fns); ++i)
736	if (VARRAY_TREE (id->fns, i) == fn)
737	  return 0;
738
739      if (DECL_INLINED_FNS (fn))
740	{
741	  int j;
742	  tree inlined_fns = DECL_INLINED_FNS (fn);
743
744	  for (j = 0; j < TREE_VEC_LENGTH (inlined_fns); ++j)
745	    if (TREE_VEC_ELT (inlined_fns, j) == VARRAY_TREE (id->fns, 0))
746	      return 0;
747	}
748    }
749
750  /* Return the result.  */
751  return inlinable;
752}
753
754/* If *TP is a CALL_EXPR, replace it with its inline expansion.  */
755
756static tree
757expand_call_inline (tp, walk_subtrees, data)
758     tree *tp;
759     int *walk_subtrees;
760     void *data;
761{
762  inline_data *id;
763  tree t;
764  tree expr;
765  tree stmt;
766  tree chain;
767  tree fn;
768  tree scope_stmt;
769  tree use_stmt;
770  tree arg_inits;
771  tree *inlined_body;
772  splay_tree st;
773
774  /* See what we've got.  */
775  id = (inline_data *) data;
776  t = *tp;
777
778  /* Recurse, but letting recursive invocations know that we are
779     inside the body of a TARGET_EXPR.  */
780  if (TREE_CODE (*tp) == TARGET_EXPR)
781    {
782      int i, len = first_rtl_op (TARGET_EXPR);
783
784      /* We're walking our own subtrees.  */
785      *walk_subtrees = 0;
786
787      /* Push *TP on the stack of pending TARGET_EXPRs.  */
788      VARRAY_PUSH_TREE (id->target_exprs, *tp);
789
790      /* Actually walk over them.  This loop is the body of
791	 walk_trees, omitting the case where the TARGET_EXPR
792	 itself is handled.  */
793      for (i = 0; i < len; ++i)
794	{
795	  if (i == 2)
796	    ++id->in_target_cleanup_p;
797	  walk_tree (&TREE_OPERAND (*tp, i), expand_call_inline, data,
798		     id->tree_pruner);
799	  if (i == 2)
800	    --id->in_target_cleanup_p;
801	}
802
803      /* We're done with this TARGET_EXPR now.  */
804      VARRAY_POP (id->target_exprs);
805
806      return NULL_TREE;
807    }
808
809  if (TYPE_P (t))
810    /* Because types were not copied in copy_body, CALL_EXPRs beneath
811       them should not be expanded.  This can happen if the type is a
812       dynamic array type, for example.  */
813    *walk_subtrees = 0;
814
815  /* From here on, we're only interested in CALL_EXPRs.  */
816  if (TREE_CODE (t) != CALL_EXPR)
817    return NULL_TREE;
818
819  /* First, see if we can figure out what function is being called.
820     If we cannot, then there is no hope of inlining the function.  */
821  fn = get_callee_fndecl (t);
822  if (!fn)
823    return NULL_TREE;
824
825  /* If fn is a declaration of a function in a nested scope that was
826     globally declared inline, we don't set its DECL_INITIAL.
827     However, we can't blindly follow DECL_ABSTRACT_ORIGIN because the
828     C++ front-end uses it for cdtors to refer to their internal
829     declarations, that are not real functions.  Fortunately those
830     don't have trees to be saved, so we can tell by checking their
831     DECL_SAVED_TREE.  */
832  if (! DECL_INITIAL (fn)
833      && DECL_ABSTRACT_ORIGIN (fn)
834      && DECL_SAVED_TREE (DECL_ABSTRACT_ORIGIN (fn)))
835    fn = DECL_ABSTRACT_ORIGIN (fn);
836
837  /* Don't try to inline functions that are not well-suited to
838     inlining.  */
839  if (!inlinable_function_p (fn, id))
840    return NULL_TREE;
841
842  if (! (*lang_hooks.tree_inlining.start_inlining) (fn))
843    return NULL_TREE;
844
845  /* Set the current filename and line number to the function we are
846     inlining so that when we create new _STMT nodes here they get
847     line numbers corresponding to the function we are calling.  We
848     wrap the whole inlined body in an EXPR_WITH_FILE_AND_LINE as well
849     because individual statements don't record the filename.  */
850  push_srcloc (fn->decl.filename, fn->decl.linenum);
851
852  /* Build a statement-expression containing code to initialize the
853     arguments, the actual inline expansion of the body, and a label
854     for the return statements within the function to jump to.  The
855     type of the statement expression is the return type of the
856     function call.  */
857  expr = build1 (STMT_EXPR, TREE_TYPE (TREE_TYPE (fn)), make_node (COMPOUND_STMT));
858  /* There is no scope associated with the statement-expression.  */
859  STMT_EXPR_NO_SCOPE (expr) = 1;
860  stmt = STMT_EXPR_STMT (expr);
861  /* Local declarations will be replaced by their equivalents in this
862     map.  */
863  st = id->decl_map;
864  id->decl_map = splay_tree_new (splay_tree_compare_pointers,
865				 NULL, NULL);
866
867  /* Initialize the parameters.  */
868  arg_inits = initialize_inlined_parameters (id, TREE_OPERAND (t, 1), fn);
869  /* Expand any inlined calls in the initializers.  Do this before we
870     push FN on the stack of functions we are inlining; we want to
871     inline calls to FN that appear in the initializers for the
872     parameters.  */
873  expand_calls_inline (&arg_inits, id);
874  /* And add them to the tree.  */
875  COMPOUND_BODY (stmt) = chainon (COMPOUND_BODY (stmt), arg_inits);
876
877  /* Record the function we are about to inline so that we can avoid
878     recursing into it.  */
879  VARRAY_PUSH_TREE (id->fns, fn);
880
881  /* Record the function we are about to inline if optimize_function
882     has not been called on it yet and we don't have it in the list.  */
883  if (! DECL_INLINED_FNS (fn))
884    {
885      int i;
886
887      for (i = VARRAY_ACTIVE_SIZE (id->inlined_fns) - 1; i >= 0; i--)
888	if (VARRAY_TREE (id->inlined_fns, i) == fn)
889	  break;
890      if (i < 0)
891	VARRAY_PUSH_TREE (id->inlined_fns, fn);
892    }
893
894  /* Return statements in the function body will be replaced by jumps
895     to the RET_LABEL.  */
896  id->ret_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
897  DECL_CONTEXT (id->ret_label) = VARRAY_TREE (id->fns, 0);
898
899  if (! DECL_INITIAL (fn)
900      || TREE_CODE (DECL_INITIAL (fn)) != BLOCK)
901    abort ();
902
903  /* Create a block to put the parameters in.  We have to do this
904     after the parameters have been remapped because remapping
905     parameters is different from remapping ordinary variables.  */
906  scope_stmt = build_stmt (SCOPE_STMT, DECL_INITIAL (fn));
907  SCOPE_BEGIN_P (scope_stmt) = 1;
908  SCOPE_NO_CLEANUPS_P (scope_stmt) = 1;
909  remap_block (scope_stmt, DECL_ARGUMENTS (fn), id);
910  TREE_CHAIN (scope_stmt) = COMPOUND_BODY (stmt);
911  COMPOUND_BODY (stmt) = scope_stmt;
912
913  /* Tell the debugging backends that this block represents the
914     outermost scope of the inlined function.  */
915  if (SCOPE_STMT_BLOCK (scope_stmt))
916    BLOCK_ABSTRACT_ORIGIN (SCOPE_STMT_BLOCK (scope_stmt)) = DECL_ORIGIN (fn);
917
918  /* Declare the return variable for the function.  */
919  COMPOUND_BODY (stmt)
920    = chainon (COMPOUND_BODY (stmt),
921	       declare_return_variable (id, &use_stmt));
922
923  /* After we've initialized the parameters, we insert the body of the
924     function itself.  */
925  inlined_body = &COMPOUND_BODY (stmt);
926  while (*inlined_body)
927    inlined_body = &TREE_CHAIN (*inlined_body);
928  *inlined_body = copy_body (id);
929
930  /* After the body of the function comes the RET_LABEL.  This must come
931     before we evaluate the returned value below, because that evalulation
932     may cause RTL to be generated.  */
933  COMPOUND_BODY (stmt)
934    = chainon (COMPOUND_BODY (stmt),
935	       build_stmt (LABEL_STMT, id->ret_label));
936
937  /* Finally, mention the returned value so that the value of the
938     statement-expression is the returned value of the function.  */
939  COMPOUND_BODY (stmt) = chainon (COMPOUND_BODY (stmt), use_stmt);
940
941  /* Close the block for the parameters.  */
942  scope_stmt = build_stmt (SCOPE_STMT, DECL_INITIAL (fn));
943  SCOPE_NO_CLEANUPS_P (scope_stmt) = 1;
944  remap_block (scope_stmt, NULL_TREE, id);
945  COMPOUND_BODY (stmt)
946    = chainon (COMPOUND_BODY (stmt), scope_stmt);
947
948  /* Clean up.  */
949  splay_tree_delete (id->decl_map);
950  id->decl_map = st;
951
952  /* The new expression has side-effects if the old one did.  */
953  TREE_SIDE_EFFECTS (expr) = TREE_SIDE_EFFECTS (t);
954
955  /* Replace the call by the inlined body.  Wrap it in an
956     EXPR_WITH_FILE_LOCATION so that we'll get debugging line notes
957     pointing to the right place.  */
958  chain = TREE_CHAIN (*tp);
959  *tp = build_expr_wfl (expr, DECL_SOURCE_FILE (fn), DECL_SOURCE_LINE (fn),
960			/*col=*/0);
961  EXPR_WFL_EMIT_LINE_NOTE (*tp) = 1;
962  TREE_CHAIN (*tp) = chain;
963  pop_srcloc ();
964
965  /* If the value of the new expression is ignored, that's OK.  We
966     don't warn about this for CALL_EXPRs, so we shouldn't warn about
967     the equivalent inlined version either.  */
968  TREE_USED (*tp) = 1;
969
970  /* Our function now has more statements than it did before.  */
971  DECL_NUM_STMTS (VARRAY_TREE (id->fns, 0)) += DECL_NUM_STMTS (fn);
972  id->inlined_stmts += DECL_NUM_STMTS (fn);
973
974  /* Recurse into the body of the just inlined function.  */
975  expand_calls_inline (inlined_body, id);
976  VARRAY_POP (id->fns);
977
978  /* If we've returned to the top level, clear out the record of how
979     much inlining has been done.  */
980  if (VARRAY_ACTIVE_SIZE (id->fns) == id->first_inlined_fn)
981    id->inlined_stmts = 0;
982
983  /* Don't walk into subtrees.  We've already handled them above.  */
984  *walk_subtrees = 0;
985
986  (*lang_hooks.tree_inlining.end_inlining) (fn);
987
988  /* Keep iterating.  */
989  return NULL_TREE;
990}
991
992/* Walk over the entire tree *TP, replacing CALL_EXPRs with inline
993   expansions as appropriate.  */
994
995static void
996expand_calls_inline (tp, id)
997     tree *tp;
998     inline_data *id;
999{
1000  /* Search through *TP, replacing all calls to inline functions by
1001     appropriate equivalents.  Use walk_tree in no-duplicates mode
1002     to avoid exponential time complexity.  (We can't just use
1003     walk_tree_without_duplicates, because of the special TARGET_EXPR
1004     handling in expand_calls.  The hash table is set up in
1005     optimize_function.  */
1006  walk_tree (tp, expand_call_inline, id, id->tree_pruner);
1007}
1008
1009/* Expand calls to inline functions in the body of FN.  */
1010
1011void
1012optimize_inline_calls (fn)
1013     tree fn;
1014{
1015  inline_data id;
1016  tree prev_fn;
1017
1018  /* Clear out ID.  */
1019  memset (&id, 0, sizeof (id));
1020
1021  /* Don't allow recursion into FN.  */
1022  VARRAY_TREE_INIT (id.fns, 32, "fns");
1023  VARRAY_PUSH_TREE (id.fns, fn);
1024  /* Or any functions that aren't finished yet.  */
1025  prev_fn = NULL_TREE;
1026  if (current_function_decl)
1027    {
1028      VARRAY_PUSH_TREE (id.fns, current_function_decl);
1029      prev_fn = current_function_decl;
1030    }
1031
1032  prev_fn = ((*lang_hooks.tree_inlining.add_pending_fn_decls)
1033	     (&id.fns, prev_fn));
1034
1035  /* Create the stack of TARGET_EXPRs.  */
1036  VARRAY_TREE_INIT (id.target_exprs, 32, "target_exprs");
1037
1038  /* Create the list of functions this call will inline.  */
1039  VARRAY_TREE_INIT (id.inlined_fns, 32, "inlined_fns");
1040
1041  /* Keep track of the low-water mark, i.e., the point where the first
1042     real inlining is represented in ID.FNS.  */
1043  id.first_inlined_fn = VARRAY_ACTIVE_SIZE (id.fns);
1044
1045  /* Replace all calls to inline functions with the bodies of those
1046     functions.  */
1047  id.tree_pruner = htab_create (37, htab_hash_pointer,
1048				htab_eq_pointer, NULL);
1049  expand_calls_inline (&DECL_SAVED_TREE (fn), &id);
1050
1051  /* Clean up.  */
1052  htab_delete (id.tree_pruner);
1053  VARRAY_FREE (id.fns);
1054  VARRAY_FREE (id.target_exprs);
1055  if (DECL_LANG_SPECIFIC (fn))
1056    {
1057      tree ifn = make_tree_vec (VARRAY_ACTIVE_SIZE (id.inlined_fns));
1058
1059      memcpy (&TREE_VEC_ELT (ifn, 0), &VARRAY_TREE (id.inlined_fns, 0),
1060	      VARRAY_ACTIVE_SIZE (id.inlined_fns) * sizeof (tree));
1061      DECL_INLINED_FNS (fn) = ifn;
1062    }
1063  VARRAY_FREE (id.inlined_fns);
1064}
1065
1066/* FN is a function that has a complete body, and CLONE is a function
1067   whose body is to be set to a copy of FN, mapping argument
1068   declarations according to the ARG_MAP splay_tree.  */
1069
1070void
1071clone_body (clone, fn, arg_map)
1072     tree clone, fn;
1073     void *arg_map;
1074{
1075  inline_data id;
1076
1077  /* Clone the body, as if we were making an inline call.  But, remap
1078     the parameters in the callee to the parameters of caller.  If
1079     there's an in-charge parameter, map it to an appropriate
1080     constant.  */
1081  memset (&id, 0, sizeof (id));
1082  VARRAY_TREE_INIT (id.fns, 2, "fns");
1083  VARRAY_PUSH_TREE (id.fns, clone);
1084  VARRAY_PUSH_TREE (id.fns, fn);
1085  id.decl_map = (splay_tree)arg_map;
1086
1087  /* Cloning is treated slightly differently from inlining.  Set
1088     CLONING_P so that it's clear which operation we're performing.  */
1089  id.cloning_p = true;
1090
1091  /* Actually copy the body.  */
1092  TREE_CHAIN (DECL_SAVED_TREE (clone)) = copy_body (&id);
1093
1094  /* Clean up.  */
1095  VARRAY_FREE (id.fns);
1096}
1097
1098/* Apply FUNC to all the sub-trees of TP in a pre-order traversal.
1099   FUNC is called with the DATA and the address of each sub-tree.  If
1100   FUNC returns a non-NULL value, the traversal is aborted, and the
1101   value returned by FUNC is returned.  If HTAB is non-NULL it is used
1102   to record the nodes visited, and to avoid visiting a node more than
1103   once.  */
1104
1105tree
1106walk_tree (tp, func, data, htab_)
1107     tree *tp;
1108     walk_tree_fn func;
1109     void *data;
1110     void *htab_;
1111{
1112  htab_t htab = (htab_t) htab_;
1113  enum tree_code code;
1114  int walk_subtrees;
1115  tree result;
1116
1117#define WALK_SUBTREE(NODE)				\
1118  do							\
1119    {							\
1120      result = walk_tree (&(NODE), func, data, htab);	\
1121      if (result)					\
1122	return result;					\
1123    }							\
1124  while (0)
1125
1126#define WALK_SUBTREE_TAIL(NODE)				\
1127  do							\
1128    {							\
1129       tp = & (NODE);					\
1130       goto tail_recurse;				\
1131    }							\
1132  while (0)
1133
1134 tail_recurse:
1135  /* Skip empty subtrees.  */
1136  if (!*tp)
1137    return NULL_TREE;
1138
1139  if (htab)
1140    {
1141      void **slot;
1142
1143      /* Don't walk the same tree twice, if the user has requested
1144         that we avoid doing so.  */
1145      if (htab_find (htab, *tp))
1146	return NULL_TREE;
1147      /* If we haven't already seen this node, add it to the table.  */
1148      slot = htab_find_slot (htab, *tp, INSERT);
1149      *slot = *tp;
1150    }
1151
1152  /* Call the function.  */
1153  walk_subtrees = 1;
1154  result = (*func) (tp, &walk_subtrees, data);
1155
1156  /* If we found something, return it.  */
1157  if (result)
1158    return result;
1159
1160  code = TREE_CODE (*tp);
1161
1162  /* Even if we didn't, FUNC may have decided that there was nothing
1163     interesting below this point in the tree.  */
1164  if (!walk_subtrees)
1165    {
1166      if (statement_code_p (code) || code == TREE_LIST
1167	  || (*lang_hooks.tree_inlining.tree_chain_matters_p) (*tp))
1168	/* But we still need to check our siblings.  */
1169	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
1170      else
1171	return NULL_TREE;
1172    }
1173
1174  /* Handle common cases up front.  */
1175  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
1176      || TREE_CODE_CLASS (code) == 'r'
1177      || TREE_CODE_CLASS (code) == 's')
1178    {
1179      int i, len;
1180
1181      /* Set lineno here so we get the right instantiation context
1182	 if we call instantiate_decl from inlinable_function_p.  */
1183      if (statement_code_p (code) && !STMT_LINENO_FOR_FN_P (*tp))
1184	lineno = STMT_LINENO (*tp);
1185
1186      /* Walk over all the sub-trees of this operand.  */
1187      len = first_rtl_op (code);
1188      /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
1189	 But, we only want to walk once.  */
1190      if (code == TARGET_EXPR
1191	  && TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1))
1192	--len;
1193      /* Go through the subtrees.  We need to do this in forward order so
1194         that the scope of a FOR_EXPR is handled properly.  */
1195      for (i = 0; i < len; ++i)
1196	WALK_SUBTREE (TREE_OPERAND (*tp, i));
1197
1198      /* For statements, we also walk the chain so that we cover the
1199	 entire statement tree.  */
1200      if (statement_code_p (code))
1201	{
1202	  if (code == DECL_STMT
1203	      && DECL_STMT_DECL (*tp)
1204	      && DECL_P (DECL_STMT_DECL (*tp)))
1205	    {
1206	      /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
1207		 into declarations that are just mentioned, rather than
1208		 declared; they don't really belong to this part of the tree.
1209		 And, we can see cycles: the initializer for a declaration can
1210		 refer to the declaration itself.  */
1211	      WALK_SUBTREE (DECL_INITIAL (DECL_STMT_DECL (*tp)));
1212	      WALK_SUBTREE (DECL_SIZE (DECL_STMT_DECL (*tp)));
1213	      WALK_SUBTREE (DECL_SIZE_UNIT (DECL_STMT_DECL (*tp)));
1214	    }
1215
1216	  /* This can be tail-recursion optimized if we write it this way.  */
1217	  WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
1218	}
1219
1220      /* We didn't find what we were looking for.  */
1221      return NULL_TREE;
1222    }
1223  else if (TREE_CODE_CLASS (code) == 'd')
1224    {
1225      WALK_SUBTREE_TAIL (TREE_TYPE (*tp));
1226    }
1227  else if (TREE_CODE_CLASS (code) == 't')
1228    {
1229      WALK_SUBTREE (TYPE_SIZE (*tp));
1230      WALK_SUBTREE (TYPE_SIZE_UNIT (*tp));
1231      /* Also examine various special fields, below.  */
1232    }
1233
1234  result = (*lang_hooks.tree_inlining.walk_subtrees) (tp, &walk_subtrees, func,
1235						      data, htab);
1236  if (result || ! walk_subtrees)
1237    return result;
1238
1239  /* Not one of the easy cases.  We must explicitly go through the
1240     children.  */
1241  switch (code)
1242    {
1243    case ERROR_MARK:
1244    case IDENTIFIER_NODE:
1245    case INTEGER_CST:
1246    case REAL_CST:
1247    case VECTOR_CST:
1248    case STRING_CST:
1249    case REAL_TYPE:
1250    case COMPLEX_TYPE:
1251    case VECTOR_TYPE:
1252    case VOID_TYPE:
1253    case BOOLEAN_TYPE:
1254    case UNION_TYPE:
1255    case ENUMERAL_TYPE:
1256    case BLOCK:
1257    case RECORD_TYPE:
1258      /* None of thse have subtrees other than those already walked
1259         above.  */
1260      break;
1261
1262    case POINTER_TYPE:
1263    case REFERENCE_TYPE:
1264      WALK_SUBTREE_TAIL (TREE_TYPE (*tp));
1265      break;
1266
1267    case TREE_LIST:
1268      WALK_SUBTREE (TREE_VALUE (*tp));
1269      WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
1270      break;
1271
1272    case TREE_VEC:
1273      {
1274	int len = TREE_VEC_LENGTH (*tp);
1275
1276	if (len == 0)
1277	  break;
1278
1279	/* Walk all elements but the first.  */
1280	while (--len)
1281	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
1282
1283	/* Now walk the first one as a tail call.  */
1284	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
1285      }
1286
1287    case COMPLEX_CST:
1288      WALK_SUBTREE (TREE_REALPART (*tp));
1289      WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
1290
1291    case CONSTRUCTOR:
1292      WALK_SUBTREE_TAIL (CONSTRUCTOR_ELTS (*tp));
1293
1294    case METHOD_TYPE:
1295      WALK_SUBTREE (TYPE_METHOD_BASETYPE (*tp));
1296      /* Fall through.  */
1297
1298    case FUNCTION_TYPE:
1299      WALK_SUBTREE (TREE_TYPE (*tp));
1300      {
1301	tree arg = TYPE_ARG_TYPES (*tp);
1302
1303	/* We never want to walk into default arguments.  */
1304	for (; arg; arg = TREE_CHAIN (arg))
1305	  WALK_SUBTREE (TREE_VALUE (arg));
1306      }
1307      break;
1308
1309    case ARRAY_TYPE:
1310      WALK_SUBTREE (TREE_TYPE (*tp));
1311      WALK_SUBTREE_TAIL (TYPE_DOMAIN (*tp));
1312
1313    case INTEGER_TYPE:
1314      WALK_SUBTREE (TYPE_MIN_VALUE (*tp));
1315      WALK_SUBTREE_TAIL (TYPE_MAX_VALUE (*tp));
1316
1317    case OFFSET_TYPE:
1318      WALK_SUBTREE (TREE_TYPE (*tp));
1319      WALK_SUBTREE_TAIL (TYPE_OFFSET_BASETYPE (*tp));
1320
1321    default:
1322      abort ();
1323    }
1324
1325  /* We didn't find what we were looking for.  */
1326  return NULL_TREE;
1327
1328#undef WALK_SUBTREE
1329#undef WALK_SUBTREE_TAIL
1330}
1331
1332/* Like walk_tree, but does not walk duplicate nodes more than
1333   once.  */
1334
1335tree
1336walk_tree_without_duplicates (tp, func, data)
1337     tree *tp;
1338     walk_tree_fn func;
1339     void *data;
1340{
1341  tree result;
1342  htab_t htab;
1343
1344  htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
1345  result = walk_tree (tp, func, data, htab);
1346  htab_delete (htab);
1347  return result;
1348}
1349
1350/* Passed to walk_tree.  Copies the node pointed to, if appropriate.  */
1351
1352tree
1353copy_tree_r (tp, walk_subtrees, data)
1354     tree *tp;
1355     int *walk_subtrees;
1356     void *data ATTRIBUTE_UNUSED;
1357{
1358  enum tree_code code = TREE_CODE (*tp);
1359
1360  /* We make copies of most nodes.  */
1361  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
1362      || TREE_CODE_CLASS (code) == 'r'
1363      || TREE_CODE_CLASS (code) == 'c'
1364      || TREE_CODE_CLASS (code) == 's'
1365      || code == TREE_LIST
1366      || code == TREE_VEC
1367      || (*lang_hooks.tree_inlining.tree_chain_matters_p) (*tp))
1368    {
1369      /* Because the chain gets clobbered when we make a copy, we save it
1370	 here.  */
1371      tree chain = TREE_CHAIN (*tp);
1372
1373      /* Copy the node.  */
1374      *tp = copy_node (*tp);
1375
1376      /* Now, restore the chain, if appropriate.  That will cause
1377	 walk_tree to walk into the chain as well.  */
1378      if (code == PARM_DECL || code == TREE_LIST
1379	  || (*lang_hooks.tree_inlining.tree_chain_matters_p) (*tp)
1380	  || statement_code_p (code))
1381	TREE_CHAIN (*tp) = chain;
1382
1383      /* For now, we don't update BLOCKs when we make copies.  So, we
1384	 have to nullify all scope-statements.  */
1385      if (TREE_CODE (*tp) == SCOPE_STMT)
1386	SCOPE_STMT_BLOCK (*tp) = NULL_TREE;
1387    }
1388  else if (TREE_CODE_CLASS (code) == 't' && !variably_modified_type_p (*tp))
1389    /* Types only need to be copied if they are variably modified.  */
1390    *walk_subtrees = 0;
1391
1392  return NULL_TREE;
1393}
1394
1395/* The SAVE_EXPR pointed to by TP is being copied.  If ST contains
1396   information indicating to what new SAVE_EXPR this one should be
1397   mapped, use that one.  Otherwise, create a new node and enter it in
1398   ST.  FN is the function into which the copy will be placed.  */
1399
1400void
1401remap_save_expr (tp, st_, fn, walk_subtrees)
1402     tree *tp;
1403     void *st_;
1404     tree fn;
1405     int *walk_subtrees;
1406{
1407  splay_tree st = (splay_tree) st_;
1408  splay_tree_node n;
1409
1410  /* See if we already encountered this SAVE_EXPR.  */
1411  n = splay_tree_lookup (st, (splay_tree_key) *tp);
1412
1413  /* If we didn't already remap this SAVE_EXPR, do so now.  */
1414  if (!n)
1415    {
1416      tree t = copy_node (*tp);
1417
1418      /* The SAVE_EXPR is now part of the function into which we
1419	 are inlining this body.  */
1420      SAVE_EXPR_CONTEXT (t) = fn;
1421      /* And we haven't evaluated it yet.  */
1422      SAVE_EXPR_RTL (t) = NULL_RTX;
1423      /* Remember this SAVE_EXPR.  */
1424      n = splay_tree_insert (st,
1425			     (splay_tree_key) *tp,
1426			     (splay_tree_value) t);
1427      /* Make sure we don't remap an already-remapped SAVE_EXPR.  */
1428      splay_tree_insert (st, (splay_tree_key) t,
1429			 (splay_tree_value) error_mark_node);
1430    }
1431  else
1432    /* We've already walked into this SAVE_EXPR, so we needn't do it
1433       again.  */
1434    *walk_subtrees = 0;
1435
1436  /* Replace this SAVE_EXPR with the copy.  */
1437  *tp = (tree) n->value;
1438}
1439