rtlanal.c revision 169689
1/* Analyze RTL for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4   Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24#include "config.h"
25#include "system.h"
26#include "coretypes.h"
27#include "tm.h"
28#include "toplev.h"
29#include "rtl.h"
30#include "hard-reg-set.h"
31#include "insn-config.h"
32#include "recog.h"
33#include "target.h"
34#include "output.h"
35#include "tm_p.h"
36#include "flags.h"
37#include "real.h"
38#include "regs.h"
39#include "function.h"
40
41/* Forward declarations */
42static void set_of_1 (rtx, rtx, void *);
43static bool covers_regno_p (rtx, unsigned int);
44static bool covers_regno_no_parallel_p (rtx, unsigned int);
45static int rtx_referenced_p_1 (rtx *, void *);
46static int computed_jump_p_1 (rtx);
47static void parms_set (rtx, rtx, void *);
48
49static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50                                                   rtx, enum machine_mode,
51                                                   unsigned HOST_WIDE_INT);
52static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53                                             enum machine_mode,
54                                             unsigned HOST_WIDE_INT);
55static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56                                                enum machine_mode,
57                                                unsigned int);
58static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59                                          enum machine_mode, unsigned int);
60
61/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62   -1 if a code has no such operand.  */
63static int non_rtx_starting_operands[NUM_RTX_CODE];
64
65/* Bit flags that specify the machine subtype we are compiling for.
66   Bits are tested using macros TARGET_... defined in the tm.h file
67   and set by `-m...' switches.  Must be defined in rtlanal.c.  */
68
69int target_flags;
70
71/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
72   If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
73   SIGN_EXTEND then while narrowing we also have to enforce the
74   representation and sign-extend the value to mode DESTINATION_REP.
75
76   If the value is already sign-extended to DESTINATION_REP mode we
77   can just switch to DESTINATION mode on it.  For each pair of
78   integral modes SOURCE and DESTINATION, when truncating from SOURCE
79   to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
80   contains the number of high-order bits in SOURCE that have to be
81   copies of the sign-bit so that we can do this mode-switch to
82   DESTINATION.  */
83
84static unsigned int
85num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
86
87/* Return 1 if the value of X is unstable
88   (would be different at a different point in the program).
89   The frame pointer, arg pointer, etc. are considered stable
90   (within one function) and so is anything marked `unchanging'.  */
91
92int
93rtx_unstable_p (rtx x)
94{
95  RTX_CODE code = GET_CODE (x);
96  int i;
97  const char *fmt;
98
99  switch (code)
100    {
101    case MEM:
102      return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
103
104    case CONST:
105    case CONST_INT:
106    case CONST_DOUBLE:
107    case CONST_VECTOR:
108    case SYMBOL_REF:
109    case LABEL_REF:
110      return 0;
111
112    case REG:
113      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
114      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
115	  /* The arg pointer varies if it is not a fixed register.  */
116	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
117	return 0;
118#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
119      /* ??? When call-clobbered, the value is stable modulo the restore
120	 that must happen after a call.  This currently screws up local-alloc
121	 into believing that the restore is not needed.  */
122      if (x == pic_offset_table_rtx)
123	return 0;
124#endif
125      return 1;
126
127    case ASM_OPERANDS:
128      if (MEM_VOLATILE_P (x))
129	return 1;
130
131      /* Fall through.  */
132
133    default:
134      break;
135    }
136
137  fmt = GET_RTX_FORMAT (code);
138  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
139    if (fmt[i] == 'e')
140      {
141	if (rtx_unstable_p (XEXP (x, i)))
142	  return 1;
143      }
144    else if (fmt[i] == 'E')
145      {
146	int j;
147	for (j = 0; j < XVECLEN (x, i); j++)
148	  if (rtx_unstable_p (XVECEXP (x, i, j)))
149	    return 1;
150      }
151
152  return 0;
153}
154
155/* Return 1 if X has a value that can vary even between two
156   executions of the program.  0 means X can be compared reliably
157   against certain constants or near-constants.
158   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
159   zero, we are slightly more conservative.
160   The frame pointer and the arg pointer are considered constant.  */
161
162int
163rtx_varies_p (rtx x, int for_alias)
164{
165  RTX_CODE code;
166  int i;
167  const char *fmt;
168
169  if (!x)
170    return 0;
171
172  code = GET_CODE (x);
173  switch (code)
174    {
175    case MEM:
176      return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
177
178    case CONST:
179    case CONST_INT:
180    case CONST_DOUBLE:
181    case CONST_VECTOR:
182    case SYMBOL_REF:
183    case LABEL_REF:
184      return 0;
185
186    case REG:
187      /* Note that we have to test for the actual rtx used for the frame
188	 and arg pointers and not just the register number in case we have
189	 eliminated the frame and/or arg pointer and are using it
190	 for pseudos.  */
191      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
192	  /* The arg pointer varies if it is not a fixed register.  */
193	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
194	return 0;
195      if (x == pic_offset_table_rtx
196#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
197	  /* ??? When call-clobbered, the value is stable modulo the restore
198	     that must happen after a call.  This currently screws up
199	     local-alloc into believing that the restore is not needed, so we
200	     must return 0 only if we are called from alias analysis.  */
201	  && for_alias
202#endif
203	  )
204	return 0;
205      return 1;
206
207    case LO_SUM:
208      /* The operand 0 of a LO_SUM is considered constant
209	 (in fact it is related specifically to operand 1)
210	 during alias analysis.  */
211      return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
212	     || rtx_varies_p (XEXP (x, 1), for_alias);
213
214    case ASM_OPERANDS:
215      if (MEM_VOLATILE_P (x))
216	return 1;
217
218      /* Fall through.  */
219
220    default:
221      break;
222    }
223
224  fmt = GET_RTX_FORMAT (code);
225  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
226    if (fmt[i] == 'e')
227      {
228	if (rtx_varies_p (XEXP (x, i), for_alias))
229	  return 1;
230      }
231    else if (fmt[i] == 'E')
232      {
233	int j;
234	for (j = 0; j < XVECLEN (x, i); j++)
235	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
236	    return 1;
237      }
238
239  return 0;
240}
241
242/* Return nonzero if the use of X as an address in a MEM can cause a trap.
243   MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
244   whether nonzero is returned for unaligned memory accesses on strict
245   alignment machines.  */
246
247static int
248rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
249{
250  enum rtx_code code = GET_CODE (x);
251
252  switch (code)
253    {
254    case SYMBOL_REF:
255      return SYMBOL_REF_WEAK (x);
256
257    case LABEL_REF:
258      return 0;
259
260    case REG:
261      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
262      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
263	  || x == stack_pointer_rtx
264	  /* The arg pointer varies if it is not a fixed register.  */
265	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
266	return 0;
267      /* All of the virtual frame registers are stack references.  */
268      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
269	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
270	return 0;
271      return 1;
272
273    case CONST:
274      return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
275
276    case PLUS:
277      /* An address is assumed not to trap if:
278	 - it is an address that can't trap plus a constant integer,
279	   with the proper remainder modulo the mode size if we are
280	   considering unaligned memory references.  */
281      if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
282	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
283	{
284	  HOST_WIDE_INT offset;
285
286	  if (!STRICT_ALIGNMENT
287	      || !unaligned_mems
288	      || GET_MODE_SIZE (mode) == 0)
289	    return 0;
290
291	  offset = INTVAL (XEXP (x, 1));
292
293#ifdef SPARC_STACK_BOUNDARY_HACK
294	  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
295	     the real alignment of %sp.  However, when it does this, the
296	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
297	  if (SPARC_STACK_BOUNDARY_HACK
298	      && (XEXP (x, 0) == stack_pointer_rtx
299		  || XEXP (x, 0) == hard_frame_pointer_rtx))
300	    offset -= STACK_POINTER_OFFSET;
301#endif
302
303	  return offset % GET_MODE_SIZE (mode) != 0;
304	}
305
306      /* - or it is the pic register plus a constant.  */
307      if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
308	return 0;
309
310      return 1;
311
312    case LO_SUM:
313    case PRE_MODIFY:
314      return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
315
316    case PRE_DEC:
317    case PRE_INC:
318    case POST_DEC:
319    case POST_INC:
320    case POST_MODIFY:
321      return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
322
323    default:
324      break;
325    }
326
327  /* If it isn't one of the case above, it can cause a trap.  */
328  return 1;
329}
330
331/* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
332
333int
334rtx_addr_can_trap_p (rtx x)
335{
336  return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
337}
338
339/* Return true if X is an address that is known to not be zero.  */
340
341bool
342nonzero_address_p (rtx x)
343{
344  enum rtx_code code = GET_CODE (x);
345
346  switch (code)
347    {
348    case SYMBOL_REF:
349      return !SYMBOL_REF_WEAK (x);
350
351    case LABEL_REF:
352      return true;
353
354    case REG:
355      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
356      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
357	  || x == stack_pointer_rtx
358	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
359	return true;
360      /* All of the virtual frame registers are stack references.  */
361      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
362	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
363	return true;
364      return false;
365
366    case CONST:
367      return nonzero_address_p (XEXP (x, 0));
368
369    case PLUS:
370      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
371        return nonzero_address_p (XEXP (x, 0));
372      /* Handle PIC references.  */
373      else if (XEXP (x, 0) == pic_offset_table_rtx
374	       && CONSTANT_P (XEXP (x, 1)))
375	return true;
376      return false;
377
378    case PRE_MODIFY:
379      /* Similar to the above; allow positive offsets.  Further, since
380	 auto-inc is only allowed in memories, the register must be a
381	 pointer.  */
382      if (GET_CODE (XEXP (x, 1)) == CONST_INT
383	  && INTVAL (XEXP (x, 1)) > 0)
384	return true;
385      return nonzero_address_p (XEXP (x, 0));
386
387    case PRE_INC:
388      /* Similarly.  Further, the offset is always positive.  */
389      return true;
390
391    case PRE_DEC:
392    case POST_DEC:
393    case POST_INC:
394    case POST_MODIFY:
395      return nonzero_address_p (XEXP (x, 0));
396
397    case LO_SUM:
398      return nonzero_address_p (XEXP (x, 1));
399
400    default:
401      break;
402    }
403
404  /* If it isn't one of the case above, might be zero.  */
405  return false;
406}
407
408/* Return 1 if X refers to a memory location whose address
409   cannot be compared reliably with constant addresses,
410   or if X refers to a BLKmode memory object.
411   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
412   zero, we are slightly more conservative.  */
413
414int
415rtx_addr_varies_p (rtx x, int for_alias)
416{
417  enum rtx_code code;
418  int i;
419  const char *fmt;
420
421  if (x == 0)
422    return 0;
423
424  code = GET_CODE (x);
425  if (code == MEM)
426    return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
427
428  fmt = GET_RTX_FORMAT (code);
429  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
430    if (fmt[i] == 'e')
431      {
432	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
433	  return 1;
434      }
435    else if (fmt[i] == 'E')
436      {
437	int j;
438	for (j = 0; j < XVECLEN (x, i); j++)
439	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
440	    return 1;
441      }
442  return 0;
443}
444
445/* Return the value of the integer term in X, if one is apparent;
446   otherwise return 0.
447   Only obvious integer terms are detected.
448   This is used in cse.c with the `related_value' field.  */
449
450HOST_WIDE_INT
451get_integer_term (rtx x)
452{
453  if (GET_CODE (x) == CONST)
454    x = XEXP (x, 0);
455
456  if (GET_CODE (x) == MINUS
457      && GET_CODE (XEXP (x, 1)) == CONST_INT)
458    return - INTVAL (XEXP (x, 1));
459  if (GET_CODE (x) == PLUS
460      && GET_CODE (XEXP (x, 1)) == CONST_INT)
461    return INTVAL (XEXP (x, 1));
462  return 0;
463}
464
465/* If X is a constant, return the value sans apparent integer term;
466   otherwise return 0.
467   Only obvious integer terms are detected.  */
468
469rtx
470get_related_value (rtx x)
471{
472  if (GET_CODE (x) != CONST)
473    return 0;
474  x = XEXP (x, 0);
475  if (GET_CODE (x) == PLUS
476      && GET_CODE (XEXP (x, 1)) == CONST_INT)
477    return XEXP (x, 0);
478  else if (GET_CODE (x) == MINUS
479	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
480    return XEXP (x, 0);
481  return 0;
482}
483
484/* Return the number of places FIND appears within X.  If COUNT_DEST is
485   zero, we do not count occurrences inside the destination of a SET.  */
486
487int
488count_occurrences (rtx x, rtx find, int count_dest)
489{
490  int i, j;
491  enum rtx_code code;
492  const char *format_ptr;
493  int count;
494
495  if (x == find)
496    return 1;
497
498  code = GET_CODE (x);
499
500  switch (code)
501    {
502    case REG:
503    case CONST_INT:
504    case CONST_DOUBLE:
505    case CONST_VECTOR:
506    case SYMBOL_REF:
507    case CODE_LABEL:
508    case PC:
509    case CC0:
510      return 0;
511
512    case MEM:
513      if (MEM_P (find) && rtx_equal_p (x, find))
514	return 1;
515      break;
516
517    case SET:
518      if (SET_DEST (x) == find && ! count_dest)
519	return count_occurrences (SET_SRC (x), find, count_dest);
520      break;
521
522    default:
523      break;
524    }
525
526  format_ptr = GET_RTX_FORMAT (code);
527  count = 0;
528
529  for (i = 0; i < GET_RTX_LENGTH (code); i++)
530    {
531      switch (*format_ptr++)
532	{
533	case 'e':
534	  count += count_occurrences (XEXP (x, i), find, count_dest);
535	  break;
536
537	case 'E':
538	  for (j = 0; j < XVECLEN (x, i); j++)
539	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
540	  break;
541	}
542    }
543  return count;
544}
545
546/* Nonzero if register REG appears somewhere within IN.
547   Also works if REG is not a register; in this case it checks
548   for a subexpression of IN that is Lisp "equal" to REG.  */
549
550int
551reg_mentioned_p (rtx reg, rtx in)
552{
553  const char *fmt;
554  int i;
555  enum rtx_code code;
556
557  if (in == 0)
558    return 0;
559
560  if (reg == in)
561    return 1;
562
563  if (GET_CODE (in) == LABEL_REF)
564    return reg == XEXP (in, 0);
565
566  code = GET_CODE (in);
567
568  switch (code)
569    {
570      /* Compare registers by number.  */
571    case REG:
572      return REG_P (reg) && REGNO (in) == REGNO (reg);
573
574      /* These codes have no constituent expressions
575	 and are unique.  */
576    case SCRATCH:
577    case CC0:
578    case PC:
579      return 0;
580
581    case CONST_INT:
582    case CONST_VECTOR:
583    case CONST_DOUBLE:
584      /* These are kept unique for a given value.  */
585      return 0;
586
587    default:
588      break;
589    }
590
591  if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
592    return 1;
593
594  fmt = GET_RTX_FORMAT (code);
595
596  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597    {
598      if (fmt[i] == 'E')
599	{
600	  int j;
601	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
602	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
603	      return 1;
604	}
605      else if (fmt[i] == 'e'
606	       && reg_mentioned_p (reg, XEXP (in, i)))
607	return 1;
608    }
609  return 0;
610}
611
612/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
613   no CODE_LABEL insn.  */
614
615int
616no_labels_between_p (rtx beg, rtx end)
617{
618  rtx p;
619  if (beg == end)
620    return 0;
621  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
622    if (LABEL_P (p))
623      return 0;
624  return 1;
625}
626
627/* Nonzero if register REG is used in an insn between
628   FROM_INSN and TO_INSN (exclusive of those two).  */
629
630int
631reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
632{
633  rtx insn;
634
635  if (from_insn == to_insn)
636    return 0;
637
638  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
639    if (INSN_P (insn)
640	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
641	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
642      return 1;
643  return 0;
644}
645
646/* Nonzero if the old value of X, a register, is referenced in BODY.  If X
647   is entirely replaced by a new value and the only use is as a SET_DEST,
648   we do not consider it a reference.  */
649
650int
651reg_referenced_p (rtx x, rtx body)
652{
653  int i;
654
655  switch (GET_CODE (body))
656    {
657    case SET:
658      if (reg_overlap_mentioned_p (x, SET_SRC (body)))
659	return 1;
660
661      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
662	 of a REG that occupies all of the REG, the insn references X if
663	 it is mentioned in the destination.  */
664      if (GET_CODE (SET_DEST (body)) != CC0
665	  && GET_CODE (SET_DEST (body)) != PC
666	  && !REG_P (SET_DEST (body))
667	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
668		&& REG_P (SUBREG_REG (SET_DEST (body)))
669		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
670		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
671		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
672			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
673	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
674	return 1;
675      return 0;
676
677    case ASM_OPERANDS:
678      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
679	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
680	  return 1;
681      return 0;
682
683    case CALL:
684    case USE:
685    case IF_THEN_ELSE:
686      return reg_overlap_mentioned_p (x, body);
687
688    case TRAP_IF:
689      return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
690
691    case PREFETCH:
692      return reg_overlap_mentioned_p (x, XEXP (body, 0));
693
694    case UNSPEC:
695    case UNSPEC_VOLATILE:
696      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
698	  return 1;
699      return 0;
700
701    case PARALLEL:
702      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
703	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
704	  return 1;
705      return 0;
706
707    case CLOBBER:
708      if (MEM_P (XEXP (body, 0)))
709	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
710	  return 1;
711      return 0;
712
713    case COND_EXEC:
714      if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
715	return 1;
716      return reg_referenced_p (x, COND_EXEC_CODE (body));
717
718    default:
719      return 0;
720    }
721}
722
723/* Nonzero if register REG is set or clobbered in an insn between
724   FROM_INSN and TO_INSN (exclusive of those two).  */
725
726int
727reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
728{
729  rtx insn;
730
731  if (from_insn == to_insn)
732    return 0;
733
734  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
735    if (INSN_P (insn) && reg_set_p (reg, insn))
736      return 1;
737  return 0;
738}
739
740/* Internals of reg_set_between_p.  */
741int
742reg_set_p (rtx reg, rtx insn)
743{
744  /* We can be passed an insn or part of one.  If we are passed an insn,
745     check if a side-effect of the insn clobbers REG.  */
746  if (INSN_P (insn)
747      && (FIND_REG_INC_NOTE (insn, reg)
748	  || (CALL_P (insn)
749	      && ((REG_P (reg)
750		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
751		   && TEST_HARD_REG_BIT (regs_invalidated_by_call,
752					 REGNO (reg)))
753		  || MEM_P (reg)
754		  || find_reg_fusage (insn, CLOBBER, reg)))))
755    return 1;
756
757  return set_of (reg, insn) != NULL_RTX;
758}
759
760/* Similar to reg_set_between_p, but check all registers in X.  Return 0
761   only if none of them are modified between START and END.  Return 1 if
762   X contains a MEM; this routine does usememory aliasing.  */
763
764int
765modified_between_p (rtx x, rtx start, rtx end)
766{
767  enum rtx_code code = GET_CODE (x);
768  const char *fmt;
769  int i, j;
770  rtx insn;
771
772  if (start == end)
773    return 0;
774
775  switch (code)
776    {
777    case CONST_INT:
778    case CONST_DOUBLE:
779    case CONST_VECTOR:
780    case CONST:
781    case SYMBOL_REF:
782    case LABEL_REF:
783      return 0;
784
785    case PC:
786    case CC0:
787      return 1;
788
789    case MEM:
790      if (modified_between_p (XEXP (x, 0), start, end))
791	return 1;
792      if (MEM_READONLY_P (x))
793	return 0;
794      for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
795	if (memory_modified_in_insn_p (x, insn))
796	  return 1;
797      return 0;
798      break;
799
800    case REG:
801      return reg_set_between_p (x, start, end);
802
803    default:
804      break;
805    }
806
807  fmt = GET_RTX_FORMAT (code);
808  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
809    {
810      if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
811	return 1;
812
813      else if (fmt[i] == 'E')
814	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
815	  if (modified_between_p (XVECEXP (x, i, j), start, end))
816	    return 1;
817    }
818
819  return 0;
820}
821
822/* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
823   of them are modified in INSN.  Return 1 if X contains a MEM; this routine
824   does use memory aliasing.  */
825
826int
827modified_in_p (rtx x, rtx insn)
828{
829  enum rtx_code code = GET_CODE (x);
830  const char *fmt;
831  int i, j;
832
833  switch (code)
834    {
835    case CONST_INT:
836    case CONST_DOUBLE:
837    case CONST_VECTOR:
838    case CONST:
839    case SYMBOL_REF:
840    case LABEL_REF:
841      return 0;
842
843    case PC:
844    case CC0:
845      return 1;
846
847    case MEM:
848      if (modified_in_p (XEXP (x, 0), insn))
849	return 1;
850      if (MEM_READONLY_P (x))
851	return 0;
852      if (memory_modified_in_insn_p (x, insn))
853	return 1;
854      return 0;
855      break;
856
857    case REG:
858      return reg_set_p (x, insn);
859
860    default:
861      break;
862    }
863
864  fmt = GET_RTX_FORMAT (code);
865  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
866    {
867      if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
868	return 1;
869
870      else if (fmt[i] == 'E')
871	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
872	  if (modified_in_p (XVECEXP (x, i, j), insn))
873	    return 1;
874    }
875
876  return 0;
877}
878
879/* Helper function for set_of.  */
880struct set_of_data
881  {
882    rtx found;
883    rtx pat;
884  };
885
886static void
887set_of_1 (rtx x, rtx pat, void *data1)
888{
889   struct set_of_data *data = (struct set_of_data *) (data1);
890   if (rtx_equal_p (x, data->pat)
891       || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
892     data->found = pat;
893}
894
895/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
896   (either directly or via STRICT_LOW_PART and similar modifiers).  */
897rtx
898set_of (rtx pat, rtx insn)
899{
900  struct set_of_data data;
901  data.found = NULL_RTX;
902  data.pat = pat;
903  note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
904  return data.found;
905}
906
907/* Given an INSN, return a SET expression if this insn has only a single SET.
908   It may also have CLOBBERs, USEs, or SET whose output
909   will not be used, which we ignore.  */
910
911rtx
912single_set_2 (rtx insn, rtx pat)
913{
914  rtx set = NULL;
915  int set_verified = 1;
916  int i;
917
918  if (GET_CODE (pat) == PARALLEL)
919    {
920      for (i = 0; i < XVECLEN (pat, 0); i++)
921	{
922	  rtx sub = XVECEXP (pat, 0, i);
923	  switch (GET_CODE (sub))
924	    {
925	    case USE:
926	    case CLOBBER:
927	      break;
928
929	    case SET:
930	      /* We can consider insns having multiple sets, where all
931		 but one are dead as single set insns.  In common case
932		 only single set is present in the pattern so we want
933		 to avoid checking for REG_UNUSED notes unless necessary.
934
935		 When we reach set first time, we just expect this is
936		 the single set we are looking for and only when more
937		 sets are found in the insn, we check them.  */
938	      if (!set_verified)
939		{
940		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
941		      && !side_effects_p (set))
942		    set = NULL;
943		  else
944		    set_verified = 1;
945		}
946	      if (!set)
947		set = sub, set_verified = 0;
948	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
949		       || side_effects_p (sub))
950		return NULL_RTX;
951	      break;
952
953	    default:
954	      return NULL_RTX;
955	    }
956	}
957    }
958  return set;
959}
960
961/* Given an INSN, return nonzero if it has more than one SET, else return
962   zero.  */
963
964int
965multiple_sets (rtx insn)
966{
967  int found;
968  int i;
969
970  /* INSN must be an insn.  */
971  if (! INSN_P (insn))
972    return 0;
973
974  /* Only a PARALLEL can have multiple SETs.  */
975  if (GET_CODE (PATTERN (insn)) == PARALLEL)
976    {
977      for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
978	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
979	  {
980	    /* If we have already found a SET, then return now.  */
981	    if (found)
982	      return 1;
983	    else
984	      found = 1;
985	  }
986    }
987
988  /* Either zero or one SET.  */
989  return 0;
990}
991
992/* Return nonzero if the destination of SET equals the source
993   and there are no side effects.  */
994
995int
996set_noop_p (rtx set)
997{
998  rtx src = SET_SRC (set);
999  rtx dst = SET_DEST (set);
1000
1001  if (dst == pc_rtx && src == pc_rtx)
1002    return 1;
1003
1004  if (MEM_P (dst) && MEM_P (src))
1005    return rtx_equal_p (dst, src) && !side_effects_p (dst);
1006
1007  if (GET_CODE (dst) == ZERO_EXTRACT)
1008    return rtx_equal_p (XEXP (dst, 0), src)
1009	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1010	   && !side_effects_p (src);
1011
1012  if (GET_CODE (dst) == STRICT_LOW_PART)
1013    dst = XEXP (dst, 0);
1014
1015  if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1016    {
1017      if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1018	return 0;
1019      src = SUBREG_REG (src);
1020      dst = SUBREG_REG (dst);
1021    }
1022
1023  return (REG_P (src) && REG_P (dst)
1024	  && REGNO (src) == REGNO (dst));
1025}
1026
1027/* Return nonzero if an insn consists only of SETs, each of which only sets a
1028   value to itself.  */
1029
1030int
1031noop_move_p (rtx insn)
1032{
1033  rtx pat = PATTERN (insn);
1034
1035  if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1036    return 1;
1037
1038  /* Insns carrying these notes are useful later on.  */
1039  if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1040    return 0;
1041
1042  /* For now treat an insn with a REG_RETVAL note as a
1043     a special insn which should not be considered a no-op.  */
1044  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1045    return 0;
1046
1047  if (GET_CODE (pat) == SET && set_noop_p (pat))
1048    return 1;
1049
1050  if (GET_CODE (pat) == PARALLEL)
1051    {
1052      int i;
1053      /* If nothing but SETs of registers to themselves,
1054	 this insn can also be deleted.  */
1055      for (i = 0; i < XVECLEN (pat, 0); i++)
1056	{
1057	  rtx tem = XVECEXP (pat, 0, i);
1058
1059	  if (GET_CODE (tem) == USE
1060	      || GET_CODE (tem) == CLOBBER)
1061	    continue;
1062
1063	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1064	    return 0;
1065	}
1066
1067      return 1;
1068    }
1069  return 0;
1070}
1071
1072
1073/* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1074   is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1075   If the object was modified, if we hit a partial assignment to X, or hit a
1076   CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1077   point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1078   be the src.  */
1079
1080rtx
1081find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1082{
1083  rtx p;
1084
1085  for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1086       p = PREV_INSN (p))
1087    if (INSN_P (p))
1088      {
1089	rtx set = single_set (p);
1090	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1091
1092	if (set && rtx_equal_p (x, SET_DEST (set)))
1093	  {
1094	    rtx src = SET_SRC (set);
1095
1096	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1097	      src = XEXP (note, 0);
1098
1099	    if ((valid_to == NULL_RTX
1100		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1101		/* Reject hard registers because we don't usually want
1102		   to use them; we'd rather use a pseudo.  */
1103		&& (! (REG_P (src)
1104		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1105	      {
1106		*pinsn = p;
1107		return src;
1108	      }
1109	  }
1110
1111	/* If set in non-simple way, we don't have a value.  */
1112	if (reg_set_p (x, p))
1113	  break;
1114      }
1115
1116  return x;
1117}
1118
1119/* Return nonzero if register in range [REGNO, ENDREGNO)
1120   appears either explicitly or implicitly in X
1121   other than being stored into.
1122
1123   References contained within the substructure at LOC do not count.
1124   LOC may be zero, meaning don't ignore anything.  */
1125
1126int
1127refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1128		   rtx *loc)
1129{
1130  int i;
1131  unsigned int x_regno;
1132  RTX_CODE code;
1133  const char *fmt;
1134
1135 repeat:
1136  /* The contents of a REG_NONNEG note is always zero, so we must come here
1137     upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1138  if (x == 0)
1139    return 0;
1140
1141  code = GET_CODE (x);
1142
1143  switch (code)
1144    {
1145    case REG:
1146      x_regno = REGNO (x);
1147
1148      /* If we modifying the stack, frame, or argument pointer, it will
1149	 clobber a virtual register.  In fact, we could be more precise,
1150	 but it isn't worth it.  */
1151      if ((x_regno == STACK_POINTER_REGNUM
1152#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1153	   || x_regno == ARG_POINTER_REGNUM
1154#endif
1155	   || x_regno == FRAME_POINTER_REGNUM)
1156	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1157	return 1;
1158
1159      return (endregno > x_regno
1160	      && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1161				    ? hard_regno_nregs[x_regno][GET_MODE (x)]
1162			      : 1));
1163
1164    case SUBREG:
1165      /* If this is a SUBREG of a hard reg, we can see exactly which
1166	 registers are being modified.  Otherwise, handle normally.  */
1167      if (REG_P (SUBREG_REG (x))
1168	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1169	{
1170	  unsigned int inner_regno = subreg_regno (x);
1171	  unsigned int inner_endregno
1172	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1173			     ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1174
1175	  return endregno > inner_regno && regno < inner_endregno;
1176	}
1177      break;
1178
1179    case CLOBBER:
1180    case SET:
1181      if (&SET_DEST (x) != loc
1182	  /* Note setting a SUBREG counts as referring to the REG it is in for
1183	     a pseudo but not for hard registers since we can
1184	     treat each word individually.  */
1185	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1186	       && loc != &SUBREG_REG (SET_DEST (x))
1187	       && REG_P (SUBREG_REG (SET_DEST (x)))
1188	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1189	       && refers_to_regno_p (regno, endregno,
1190				     SUBREG_REG (SET_DEST (x)), loc))
1191	      || (!REG_P (SET_DEST (x))
1192		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1193	return 1;
1194
1195      if (code == CLOBBER || loc == &SET_SRC (x))
1196	return 0;
1197      x = SET_SRC (x);
1198      goto repeat;
1199
1200    default:
1201      break;
1202    }
1203
1204  /* X does not match, so try its subexpressions.  */
1205
1206  fmt = GET_RTX_FORMAT (code);
1207  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1208    {
1209      if (fmt[i] == 'e' && loc != &XEXP (x, i))
1210	{
1211	  if (i == 0)
1212	    {
1213	      x = XEXP (x, 0);
1214	      goto repeat;
1215	    }
1216	  else
1217	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1218	      return 1;
1219	}
1220      else if (fmt[i] == 'E')
1221	{
1222	  int j;
1223	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1224	    if (loc != &XVECEXP (x, i, j)
1225		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1226	      return 1;
1227	}
1228    }
1229  return 0;
1230}
1231
1232/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1233   we check if any register number in X conflicts with the relevant register
1234   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1235   contains a MEM (we don't bother checking for memory addresses that can't
1236   conflict because we expect this to be a rare case.  */
1237
1238int
1239reg_overlap_mentioned_p (rtx x, rtx in)
1240{
1241  unsigned int regno, endregno;
1242
1243  /* If either argument is a constant, then modifying X can not
1244     affect IN.  Here we look at IN, we can profitably combine
1245     CONSTANT_P (x) with the switch statement below.  */
1246  if (CONSTANT_P (in))
1247    return 0;
1248
1249 recurse:
1250  switch (GET_CODE (x))
1251    {
1252    case STRICT_LOW_PART:
1253    case ZERO_EXTRACT:
1254    case SIGN_EXTRACT:
1255      /* Overly conservative.  */
1256      x = XEXP (x, 0);
1257      goto recurse;
1258
1259    case SUBREG:
1260      regno = REGNO (SUBREG_REG (x));
1261      if (regno < FIRST_PSEUDO_REGISTER)
1262	regno = subreg_regno (x);
1263      goto do_reg;
1264
1265    case REG:
1266      regno = REGNO (x);
1267    do_reg:
1268      endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1269			  ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1270      return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1271
1272    case MEM:
1273      {
1274	const char *fmt;
1275	int i;
1276
1277	if (MEM_P (in))
1278	  return 1;
1279
1280	fmt = GET_RTX_FORMAT (GET_CODE (in));
1281	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1282	  if (fmt[i] == 'e')
1283	    {
1284	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1285		return 1;
1286	    }
1287	  else if (fmt[i] == 'E')
1288	    {
1289	      int j;
1290	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1291		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1292		  return 1;
1293	    }
1294
1295	return 0;
1296      }
1297
1298    case SCRATCH:
1299    case PC:
1300    case CC0:
1301      return reg_mentioned_p (x, in);
1302
1303    case PARALLEL:
1304      {
1305	int i;
1306
1307	/* If any register in here refers to it we return true.  */
1308	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1309	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1310	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1311	    return 1;
1312	return 0;
1313      }
1314
1315    default:
1316      gcc_assert (CONSTANT_P (x));
1317      return 0;
1318    }
1319}
1320
1321/* Call FUN on each register or MEM that is stored into or clobbered by X.
1322   (X would be the pattern of an insn).
1323   FUN receives two arguments:
1324     the REG, MEM, CC0 or PC being stored in or clobbered,
1325     the SET or CLOBBER rtx that does the store.
1326
1327  If the item being stored in or clobbered is a SUBREG of a hard register,
1328  the SUBREG will be passed.  */
1329
1330void
1331note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1332{
1333  int i;
1334
1335  if (GET_CODE (x) == COND_EXEC)
1336    x = COND_EXEC_CODE (x);
1337
1338  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1339    {
1340      rtx dest = SET_DEST (x);
1341
1342      while ((GET_CODE (dest) == SUBREG
1343	      && (!REG_P (SUBREG_REG (dest))
1344		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1345	     || GET_CODE (dest) == ZERO_EXTRACT
1346	     || GET_CODE (dest) == STRICT_LOW_PART)
1347	dest = XEXP (dest, 0);
1348
1349      /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1350	 each of whose first operand is a register.  */
1351      if (GET_CODE (dest) == PARALLEL)
1352	{
1353	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1354	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1355	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1356	}
1357      else
1358	(*fun) (dest, x, data);
1359    }
1360
1361  else if (GET_CODE (x) == PARALLEL)
1362    for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1363      note_stores (XVECEXP (x, 0, i), fun, data);
1364}
1365
1366/* Like notes_stores, but call FUN for each expression that is being
1367   referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1368   FUN for each expression, not any interior subexpressions.  FUN receives a
1369   pointer to the expression and the DATA passed to this function.
1370
1371   Note that this is not quite the same test as that done in reg_referenced_p
1372   since that considers something as being referenced if it is being
1373   partially set, while we do not.  */
1374
1375void
1376note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1377{
1378  rtx body = *pbody;
1379  int i;
1380
1381  switch (GET_CODE (body))
1382    {
1383    case COND_EXEC:
1384      (*fun) (&COND_EXEC_TEST (body), data);
1385      note_uses (&COND_EXEC_CODE (body), fun, data);
1386      return;
1387
1388    case PARALLEL:
1389      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1390	note_uses (&XVECEXP (body, 0, i), fun, data);
1391      return;
1392
1393    case USE:
1394      (*fun) (&XEXP (body, 0), data);
1395      return;
1396
1397    case ASM_OPERANDS:
1398      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1399	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1400      return;
1401
1402    case TRAP_IF:
1403      (*fun) (&TRAP_CONDITION (body), data);
1404      return;
1405
1406    case PREFETCH:
1407      (*fun) (&XEXP (body, 0), data);
1408      return;
1409
1410    case UNSPEC:
1411    case UNSPEC_VOLATILE:
1412      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1413	(*fun) (&XVECEXP (body, 0, i), data);
1414      return;
1415
1416    case CLOBBER:
1417      if (MEM_P (XEXP (body, 0)))
1418	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1419      return;
1420
1421    case SET:
1422      {
1423	rtx dest = SET_DEST (body);
1424
1425	/* For sets we replace everything in source plus registers in memory
1426	   expression in store and operands of a ZERO_EXTRACT.  */
1427	(*fun) (&SET_SRC (body), data);
1428
1429	if (GET_CODE (dest) == ZERO_EXTRACT)
1430	  {
1431	    (*fun) (&XEXP (dest, 1), data);
1432	    (*fun) (&XEXP (dest, 2), data);
1433	  }
1434
1435	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1436	  dest = XEXP (dest, 0);
1437
1438	if (MEM_P (dest))
1439	  (*fun) (&XEXP (dest, 0), data);
1440      }
1441      return;
1442
1443    default:
1444      /* All the other possibilities never store.  */
1445      (*fun) (pbody, data);
1446      return;
1447    }
1448}
1449
1450/* Return nonzero if X's old contents don't survive after INSN.
1451   This will be true if X is (cc0) or if X is a register and
1452   X dies in INSN or because INSN entirely sets X.
1453
1454   "Entirely set" means set directly and not through a SUBREG, or
1455   ZERO_EXTRACT, so no trace of the old contents remains.
1456   Likewise, REG_INC does not count.
1457
1458   REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1459   but for this use that makes no difference, since regs don't overlap
1460   during their lifetimes.  Therefore, this function may be used
1461   at any time after deaths have been computed (in flow.c).
1462
1463   If REG is a hard reg that occupies multiple machine registers, this
1464   function will only return 1 if each of those registers will be replaced
1465   by INSN.  */
1466
1467int
1468dead_or_set_p (rtx insn, rtx x)
1469{
1470  unsigned int regno, last_regno;
1471  unsigned int i;
1472
1473  /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1474  if (GET_CODE (x) == CC0)
1475    return 1;
1476
1477  gcc_assert (REG_P (x));
1478
1479  regno = REGNO (x);
1480  last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1481		: regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1482
1483  for (i = regno; i <= last_regno; i++)
1484    if (! dead_or_set_regno_p (insn, i))
1485      return 0;
1486
1487  return 1;
1488}
1489
1490/* Return TRUE iff DEST is a register or subreg of a register and
1491   doesn't change the number of words of the inner register, and any
1492   part of the register is TEST_REGNO.  */
1493
1494static bool
1495covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1496{
1497  unsigned int regno, endregno;
1498
1499  if (GET_CODE (dest) == SUBREG
1500      && (((GET_MODE_SIZE (GET_MODE (dest))
1501	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1502	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1503	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1504    dest = SUBREG_REG (dest);
1505
1506  if (!REG_P (dest))
1507    return false;
1508
1509  regno = REGNO (dest);
1510  endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1511	      : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1512  return (test_regno >= regno && test_regno < endregno);
1513}
1514
1515/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1516   any member matches the covers_regno_no_parallel_p criteria.  */
1517
1518static bool
1519covers_regno_p (rtx dest, unsigned int test_regno)
1520{
1521  if (GET_CODE (dest) == PARALLEL)
1522    {
1523      /* Some targets place small structures in registers for return
1524	 values of functions, and those registers are wrapped in
1525	 PARALLELs that we may see as the destination of a SET.  */
1526      int i;
1527
1528      for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1529	{
1530	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1531	  if (inner != NULL_RTX
1532	      && covers_regno_no_parallel_p (inner, test_regno))
1533	    return true;
1534	}
1535
1536      return false;
1537    }
1538  else
1539    return covers_regno_no_parallel_p (dest, test_regno);
1540}
1541
1542/* Utility function for dead_or_set_p to check an individual register.  Also
1543   called from flow.c.  */
1544
1545int
1546dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1547{
1548  rtx pattern;
1549
1550  /* See if there is a death note for something that includes TEST_REGNO.  */
1551  if (find_regno_note (insn, REG_DEAD, test_regno))
1552    return 1;
1553
1554  if (CALL_P (insn)
1555      && find_regno_fusage (insn, CLOBBER, test_regno))
1556    return 1;
1557
1558  pattern = PATTERN (insn);
1559
1560  if (GET_CODE (pattern) == COND_EXEC)
1561    pattern = COND_EXEC_CODE (pattern);
1562
1563  if (GET_CODE (pattern) == SET)
1564    return covers_regno_p (SET_DEST (pattern), test_regno);
1565  else if (GET_CODE (pattern) == PARALLEL)
1566    {
1567      int i;
1568
1569      for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1570	{
1571	  rtx body = XVECEXP (pattern, 0, i);
1572
1573	  if (GET_CODE (body) == COND_EXEC)
1574	    body = COND_EXEC_CODE (body);
1575
1576	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1577	      && covers_regno_p (SET_DEST (body), test_regno))
1578	    return 1;
1579	}
1580    }
1581
1582  return 0;
1583}
1584
1585/* Return the reg-note of kind KIND in insn INSN, if there is one.
1586   If DATUM is nonzero, look for one whose datum is DATUM.  */
1587
1588rtx
1589find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1590{
1591  rtx link;
1592
1593  gcc_assert (insn);
1594
1595  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1596  if (! INSN_P (insn))
1597    return 0;
1598  if (datum == 0)
1599    {
1600      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601	if (REG_NOTE_KIND (link) == kind)
1602	  return link;
1603      return 0;
1604    }
1605
1606  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1607    if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1608      return link;
1609  return 0;
1610}
1611
1612/* Return the reg-note of kind KIND in insn INSN which applies to register
1613   number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1614   the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1615   it might be the case that the note overlaps REGNO.  */
1616
1617rtx
1618find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1619{
1620  rtx link;
1621
1622  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1623  if (! INSN_P (insn))
1624    return 0;
1625
1626  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1627    if (REG_NOTE_KIND (link) == kind
1628	/* Verify that it is a register, so that scratch and MEM won't cause a
1629	   problem here.  */
1630	&& REG_P (XEXP (link, 0))
1631	&& REGNO (XEXP (link, 0)) <= regno
1632	&& ((REGNO (XEXP (link, 0))
1633	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1634		: hard_regno_nregs[REGNO (XEXP (link, 0))]
1635				  [GET_MODE (XEXP (link, 0))]))
1636	    > regno))
1637      return link;
1638  return 0;
1639}
1640
1641/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1642   has such a note.  */
1643
1644rtx
1645find_reg_equal_equiv_note (rtx insn)
1646{
1647  rtx link;
1648
1649  if (!INSN_P (insn))
1650    return 0;
1651  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1652    if (REG_NOTE_KIND (link) == REG_EQUAL
1653	|| REG_NOTE_KIND (link) == REG_EQUIV)
1654      {
1655	if (single_set (insn) == 0)
1656	  return 0;
1657	return link;
1658      }
1659  return NULL;
1660}
1661
1662/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1663   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1664
1665int
1666find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1667{
1668  /* If it's not a CALL_INSN, it can't possibly have a
1669     CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1670  if (!CALL_P (insn))
1671    return 0;
1672
1673  gcc_assert (datum);
1674
1675  if (!REG_P (datum))
1676    {
1677      rtx link;
1678
1679      for (link = CALL_INSN_FUNCTION_USAGE (insn);
1680	   link;
1681	   link = XEXP (link, 1))
1682	if (GET_CODE (XEXP (link, 0)) == code
1683	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1684	  return 1;
1685    }
1686  else
1687    {
1688      unsigned int regno = REGNO (datum);
1689
1690      /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1691	 to pseudo registers, so don't bother checking.  */
1692
1693      if (regno < FIRST_PSEUDO_REGISTER)
1694	{
1695	  unsigned int end_regno
1696	    = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1697	  unsigned int i;
1698
1699	  for (i = regno; i < end_regno; i++)
1700	    if (find_regno_fusage (insn, code, i))
1701	      return 1;
1702	}
1703    }
1704
1705  return 0;
1706}
1707
1708/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1709   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1710
1711int
1712find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1713{
1714  rtx link;
1715
1716  /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1717     to pseudo registers, so don't bother checking.  */
1718
1719  if (regno >= FIRST_PSEUDO_REGISTER
1720      || !CALL_P (insn) )
1721    return 0;
1722
1723  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1724    {
1725      unsigned int regnote;
1726      rtx op, reg;
1727
1728      if (GET_CODE (op = XEXP (link, 0)) == code
1729	  && REG_P (reg = XEXP (op, 0))
1730	  && (regnote = REGNO (reg)) <= regno
1731	  && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1732	return 1;
1733    }
1734
1735  return 0;
1736}
1737
1738/* Return true if INSN is a call to a pure function.  */
1739
1740int
1741pure_call_p (rtx insn)
1742{
1743  rtx link;
1744
1745  if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1746    return 0;
1747
1748  /* Look for the note that differentiates const and pure functions.  */
1749  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1750    {
1751      rtx u, m;
1752
1753      if (GET_CODE (u = XEXP (link, 0)) == USE
1754	  && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1755	  && GET_CODE (XEXP (m, 0)) == SCRATCH)
1756	return 1;
1757    }
1758
1759  return 0;
1760}
1761
1762/* Remove register note NOTE from the REG_NOTES of INSN.  */
1763
1764void
1765remove_note (rtx insn, rtx note)
1766{
1767  rtx link;
1768
1769  if (note == NULL_RTX)
1770    return;
1771
1772  if (REG_NOTES (insn) == note)
1773    {
1774      REG_NOTES (insn) = XEXP (note, 1);
1775      return;
1776    }
1777
1778  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1779    if (XEXP (link, 1) == note)
1780      {
1781	XEXP (link, 1) = XEXP (note, 1);
1782	return;
1783      }
1784
1785  gcc_unreachable ();
1786}
1787
1788/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1789   return 1 if it is found.  A simple equality test is used to determine if
1790   NODE matches.  */
1791
1792int
1793in_expr_list_p (rtx listp, rtx node)
1794{
1795  rtx x;
1796
1797  for (x = listp; x; x = XEXP (x, 1))
1798    if (node == XEXP (x, 0))
1799      return 1;
1800
1801  return 0;
1802}
1803
1804/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1805   remove that entry from the list if it is found.
1806
1807   A simple equality test is used to determine if NODE matches.  */
1808
1809void
1810remove_node_from_expr_list (rtx node, rtx *listp)
1811{
1812  rtx temp = *listp;
1813  rtx prev = NULL_RTX;
1814
1815  while (temp)
1816    {
1817      if (node == XEXP (temp, 0))
1818	{
1819	  /* Splice the node out of the list.  */
1820	  if (prev)
1821	    XEXP (prev, 1) = XEXP (temp, 1);
1822	  else
1823	    *listp = XEXP (temp, 1);
1824
1825	  return;
1826	}
1827
1828      prev = temp;
1829      temp = XEXP (temp, 1);
1830    }
1831}
1832
1833/* Nonzero if X contains any volatile instructions.  These are instructions
1834   which may cause unpredictable machine state instructions, and thus no
1835   instructions should be moved or combined across them.  This includes
1836   only volatile asms and UNSPEC_VOLATILE instructions.  */
1837
1838int
1839volatile_insn_p (rtx x)
1840{
1841  RTX_CODE code;
1842
1843  code = GET_CODE (x);
1844  switch (code)
1845    {
1846    case LABEL_REF:
1847    case SYMBOL_REF:
1848    case CONST_INT:
1849    case CONST:
1850    case CONST_DOUBLE:
1851    case CONST_VECTOR:
1852    case CC0:
1853    case PC:
1854    case REG:
1855    case SCRATCH:
1856    case CLOBBER:
1857    case ADDR_VEC:
1858    case ADDR_DIFF_VEC:
1859    case CALL:
1860    case MEM:
1861      return 0;
1862
1863    case UNSPEC_VOLATILE:
1864 /* case TRAP_IF: This isn't clear yet.  */
1865      return 1;
1866
1867    case ASM_INPUT:
1868    case ASM_OPERANDS:
1869      if (MEM_VOLATILE_P (x))
1870	return 1;
1871
1872    default:
1873      break;
1874    }
1875
1876  /* Recursively scan the operands of this expression.  */
1877
1878  {
1879    const char *fmt = GET_RTX_FORMAT (code);
1880    int i;
1881
1882    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1883      {
1884	if (fmt[i] == 'e')
1885	  {
1886	    if (volatile_insn_p (XEXP (x, i)))
1887	      return 1;
1888	  }
1889	else if (fmt[i] == 'E')
1890	  {
1891	    int j;
1892	    for (j = 0; j < XVECLEN (x, i); j++)
1893	      if (volatile_insn_p (XVECEXP (x, i, j)))
1894		return 1;
1895	  }
1896      }
1897  }
1898  return 0;
1899}
1900
1901/* Nonzero if X contains any volatile memory references
1902   UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
1903
1904int
1905volatile_refs_p (rtx x)
1906{
1907  RTX_CODE code;
1908
1909  code = GET_CODE (x);
1910  switch (code)
1911    {
1912    case LABEL_REF:
1913    case SYMBOL_REF:
1914    case CONST_INT:
1915    case CONST:
1916    case CONST_DOUBLE:
1917    case CONST_VECTOR:
1918    case CC0:
1919    case PC:
1920    case REG:
1921    case SCRATCH:
1922    case CLOBBER:
1923    case ADDR_VEC:
1924    case ADDR_DIFF_VEC:
1925      return 0;
1926
1927    case UNSPEC_VOLATILE:
1928      return 1;
1929
1930    case MEM:
1931    case ASM_INPUT:
1932    case ASM_OPERANDS:
1933      if (MEM_VOLATILE_P (x))
1934	return 1;
1935
1936    default:
1937      break;
1938    }
1939
1940  /* Recursively scan the operands of this expression.  */
1941
1942  {
1943    const char *fmt = GET_RTX_FORMAT (code);
1944    int i;
1945
1946    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1947      {
1948	if (fmt[i] == 'e')
1949	  {
1950	    if (volatile_refs_p (XEXP (x, i)))
1951	      return 1;
1952	  }
1953	else if (fmt[i] == 'E')
1954	  {
1955	    int j;
1956	    for (j = 0; j < XVECLEN (x, i); j++)
1957	      if (volatile_refs_p (XVECEXP (x, i, j)))
1958		return 1;
1959	  }
1960      }
1961  }
1962  return 0;
1963}
1964
1965/* Similar to above, except that it also rejects register pre- and post-
1966   incrementing.  */
1967
1968int
1969side_effects_p (rtx x)
1970{
1971  RTX_CODE code;
1972
1973  code = GET_CODE (x);
1974  switch (code)
1975    {
1976    case LABEL_REF:
1977    case SYMBOL_REF:
1978    case CONST_INT:
1979    case CONST:
1980    case CONST_DOUBLE:
1981    case CONST_VECTOR:
1982    case CC0:
1983    case PC:
1984    case REG:
1985    case SCRATCH:
1986    case ADDR_VEC:
1987    case ADDR_DIFF_VEC:
1988      return 0;
1989
1990    case CLOBBER:
1991      /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
1992	 when some combination can't be done.  If we see one, don't think
1993	 that we can simplify the expression.  */
1994      return (GET_MODE (x) != VOIDmode);
1995
1996    case PRE_INC:
1997    case PRE_DEC:
1998    case POST_INC:
1999    case POST_DEC:
2000    case PRE_MODIFY:
2001    case POST_MODIFY:
2002    case CALL:
2003    case UNSPEC_VOLATILE:
2004 /* case TRAP_IF: This isn't clear yet.  */
2005      return 1;
2006
2007    case MEM:
2008    case ASM_INPUT:
2009    case ASM_OPERANDS:
2010      if (MEM_VOLATILE_P (x))
2011	return 1;
2012
2013    default:
2014      break;
2015    }
2016
2017  /* Recursively scan the operands of this expression.  */
2018
2019  {
2020    const char *fmt = GET_RTX_FORMAT (code);
2021    int i;
2022
2023    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2024      {
2025	if (fmt[i] == 'e')
2026	  {
2027	    if (side_effects_p (XEXP (x, i)))
2028	      return 1;
2029	  }
2030	else if (fmt[i] == 'E')
2031	  {
2032	    int j;
2033	    for (j = 0; j < XVECLEN (x, i); j++)
2034	      if (side_effects_p (XVECEXP (x, i, j)))
2035		return 1;
2036	  }
2037      }
2038  }
2039  return 0;
2040}
2041
2042enum may_trap_p_flags
2043{
2044  MTP_UNALIGNED_MEMS = 1,
2045  MTP_AFTER_MOVE = 2
2046};
2047/* Return nonzero if evaluating rtx X might cause a trap.
2048   (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2049   unaligned memory accesses on strict alignment machines.  If
2050   (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2051   cannot trap at its current location, but it might become trapping if moved
2052   elsewhere.  */
2053
2054static int
2055may_trap_p_1 (rtx x, unsigned flags)
2056{
2057  int i;
2058  enum rtx_code code;
2059  const char *fmt;
2060  bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2061
2062  if (x == 0)
2063    return 0;
2064  code = GET_CODE (x);
2065  switch (code)
2066    {
2067      /* Handle these cases quickly.  */
2068    case CONST_INT:
2069    case CONST_DOUBLE:
2070    case CONST_VECTOR:
2071    case SYMBOL_REF:
2072    case LABEL_REF:
2073    case CONST:
2074    case PC:
2075    case CC0:
2076    case REG:
2077    case SCRATCH:
2078      return 0;
2079
2080    case ASM_INPUT:
2081    case UNSPEC_VOLATILE:
2082    case TRAP_IF:
2083      return 1;
2084
2085    case ASM_OPERANDS:
2086      return MEM_VOLATILE_P (x);
2087
2088      /* Memory ref can trap unless it's a static var or a stack slot.  */
2089    case MEM:
2090      if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2091	     reference; moving it out of condition might cause its address
2092	     become invalid.  */
2093	  !(flags & MTP_AFTER_MOVE)
2094	  && MEM_NOTRAP_P (x)
2095	  && (!STRICT_ALIGNMENT || !unaligned_mems))
2096	return 0;
2097      return
2098	rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2099
2100      /* Division by a non-constant might trap.  */
2101    case DIV:
2102    case MOD:
2103    case UDIV:
2104    case UMOD:
2105      if (HONOR_SNANS (GET_MODE (x)))
2106	return 1;
2107      if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2108	return flag_trapping_math;
2109      if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2110	return 1;
2111      break;
2112
2113    case EXPR_LIST:
2114      /* An EXPR_LIST is used to represent a function call.  This
2115	 certainly may trap.  */
2116      return 1;
2117
2118    case GE:
2119    case GT:
2120    case LE:
2121    case LT:
2122    case LTGT:
2123    case COMPARE:
2124      /* Some floating point comparisons may trap.  */
2125      if (!flag_trapping_math)
2126	break;
2127      /* ??? There is no machine independent way to check for tests that trap
2128	 when COMPARE is used, though many targets do make this distinction.
2129	 For instance, sparc uses CCFPE for compares which generate exceptions
2130	 and CCFP for compares which do not generate exceptions.  */
2131      if (HONOR_NANS (GET_MODE (x)))
2132	return 1;
2133      /* But often the compare has some CC mode, so check operand
2134	 modes as well.  */
2135      if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2136	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2137	return 1;
2138      break;
2139
2140    case EQ:
2141    case NE:
2142      if (HONOR_SNANS (GET_MODE (x)))
2143	return 1;
2144      /* Often comparison is CC mode, so check operand modes.  */
2145      if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2146	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2147	return 1;
2148      break;
2149
2150    case FIX:
2151      /* Conversion of floating point might trap.  */
2152      if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2153	return 1;
2154      break;
2155
2156    case NEG:
2157    case ABS:
2158    case SUBREG:
2159      /* These operations don't trap even with floating point.  */
2160      break;
2161
2162    default:
2163      /* Any floating arithmetic may trap.  */
2164      if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2165	  && flag_trapping_math)
2166	return 1;
2167    }
2168
2169  fmt = GET_RTX_FORMAT (code);
2170  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2171    {
2172      if (fmt[i] == 'e')
2173	{
2174	  if (may_trap_p_1 (XEXP (x, i), flags))
2175	    return 1;
2176	}
2177      else if (fmt[i] == 'E')
2178	{
2179	  int j;
2180	  for (j = 0; j < XVECLEN (x, i); j++)
2181	    if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2182	      return 1;
2183	}
2184    }
2185  return 0;
2186}
2187
2188/* Return nonzero if evaluating rtx X might cause a trap.  */
2189
2190int
2191may_trap_p (rtx x)
2192{
2193  return may_trap_p_1 (x, 0);
2194}
2195
2196/* Return nonzero if evaluating rtx X might cause a trap, when the expression
2197   is moved from its current location by some optimization.  */
2198
2199int
2200may_trap_after_code_motion_p (rtx x)
2201{
2202  return may_trap_p_1 (x, MTP_AFTER_MOVE);
2203}
2204
2205/* Same as above, but additionally return nonzero if evaluating rtx X might
2206   cause a fault.  We define a fault for the purpose of this function as a
2207   erroneous execution condition that cannot be encountered during the normal
2208   execution of a valid program; the typical example is an unaligned memory
2209   access on a strict alignment machine.  The compiler guarantees that it
2210   doesn't generate code that will fault from a valid program, but this
2211   guarantee doesn't mean anything for individual instructions.  Consider
2212   the following example:
2213
2214      struct S { int d; union { char *cp; int *ip; }; };
2215
2216      int foo(struct S *s)
2217      {
2218	if (s->d == 1)
2219	  return *s->ip;
2220	else
2221	  return *s->cp;
2222      }
2223
2224   on a strict alignment machine.  In a valid program, foo will never be
2225   invoked on a structure for which d is equal to 1 and the underlying
2226   unique field of the union not aligned on a 4-byte boundary, but the
2227   expression *s->ip might cause a fault if considered individually.
2228
2229   At the RTL level, potentially problematic expressions will almost always
2230   verify may_trap_p; for example, the above dereference can be emitted as
2231   (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2232   However, suppose that foo is inlined in a caller that causes s->cp to
2233   point to a local character variable and guarantees that s->d is not set
2234   to 1; foo may have been effectively translated into pseudo-RTL as:
2235
2236      if ((reg:SI) == 1)
2237	(set (reg:SI) (mem:SI (%fp - 7)))
2238      else
2239	(set (reg:QI) (mem:QI (%fp - 7)))
2240
2241   Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2242   memory reference to a stack slot, but it will certainly cause a fault
2243   on a strict alignment machine.  */
2244
2245int
2246may_trap_or_fault_p (rtx x)
2247{
2248  return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2249}
2250
2251/* Return nonzero if X contains a comparison that is not either EQ or NE,
2252   i.e., an inequality.  */
2253
2254int
2255inequality_comparisons_p (rtx x)
2256{
2257  const char *fmt;
2258  int len, i;
2259  enum rtx_code code = GET_CODE (x);
2260
2261  switch (code)
2262    {
2263    case REG:
2264    case SCRATCH:
2265    case PC:
2266    case CC0:
2267    case CONST_INT:
2268    case CONST_DOUBLE:
2269    case CONST_VECTOR:
2270    case CONST:
2271    case LABEL_REF:
2272    case SYMBOL_REF:
2273      return 0;
2274
2275    case LT:
2276    case LTU:
2277    case GT:
2278    case GTU:
2279    case LE:
2280    case LEU:
2281    case GE:
2282    case GEU:
2283      return 1;
2284
2285    default:
2286      break;
2287    }
2288
2289  len = GET_RTX_LENGTH (code);
2290  fmt = GET_RTX_FORMAT (code);
2291
2292  for (i = 0; i < len; i++)
2293    {
2294      if (fmt[i] == 'e')
2295	{
2296	  if (inequality_comparisons_p (XEXP (x, i)))
2297	    return 1;
2298	}
2299      else if (fmt[i] == 'E')
2300	{
2301	  int j;
2302	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2303	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2304	      return 1;
2305	}
2306    }
2307
2308  return 0;
2309}
2310
2311/* Replace any occurrence of FROM in X with TO.  The function does
2312   not enter into CONST_DOUBLE for the replace.
2313
2314   Note that copying is not done so X must not be shared unless all copies
2315   are to be modified.  */
2316
2317rtx
2318replace_rtx (rtx x, rtx from, rtx to)
2319{
2320  int i, j;
2321  const char *fmt;
2322
2323  /* The following prevents loops occurrence when we change MEM in
2324     CONST_DOUBLE onto the same CONST_DOUBLE.  */
2325  if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2326    return x;
2327
2328  if (x == from)
2329    return to;
2330
2331  /* Allow this function to make replacements in EXPR_LISTs.  */
2332  if (x == 0)
2333    return 0;
2334
2335  if (GET_CODE (x) == SUBREG)
2336    {
2337      rtx new = replace_rtx (SUBREG_REG (x), from, to);
2338
2339      if (GET_CODE (new) == CONST_INT)
2340	{
2341	  x = simplify_subreg (GET_MODE (x), new,
2342			       GET_MODE (SUBREG_REG (x)),
2343			       SUBREG_BYTE (x));
2344	  gcc_assert (x);
2345	}
2346      else
2347	SUBREG_REG (x) = new;
2348
2349      return x;
2350    }
2351  else if (GET_CODE (x) == ZERO_EXTEND)
2352    {
2353      rtx new = replace_rtx (XEXP (x, 0), from, to);
2354
2355      if (GET_CODE (new) == CONST_INT)
2356	{
2357	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2358					new, GET_MODE (XEXP (x, 0)));
2359	  gcc_assert (x);
2360	}
2361      else
2362	XEXP (x, 0) = new;
2363
2364      return x;
2365    }
2366
2367  fmt = GET_RTX_FORMAT (GET_CODE (x));
2368  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2369    {
2370      if (fmt[i] == 'e')
2371	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2372      else if (fmt[i] == 'E')
2373	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2374	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2375    }
2376
2377  return x;
2378}
2379
2380/* Replace occurrences of the old label in *X with the new one.
2381   DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2382
2383int
2384replace_label (rtx *x, void *data)
2385{
2386  rtx l = *x;
2387  rtx old_label = ((replace_label_data *) data)->r1;
2388  rtx new_label = ((replace_label_data *) data)->r2;
2389  bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2390
2391  if (l == NULL_RTX)
2392    return 0;
2393
2394  if (GET_CODE (l) == SYMBOL_REF
2395      && CONSTANT_POOL_ADDRESS_P (l))
2396    {
2397      rtx c = get_pool_constant (l);
2398      if (rtx_referenced_p (old_label, c))
2399	{
2400	  rtx new_c, new_l;
2401	  replace_label_data *d = (replace_label_data *) data;
2402
2403	  /* Create a copy of constant C; replace the label inside
2404	     but do not update LABEL_NUSES because uses in constant pool
2405	     are not counted.  */
2406	  new_c = copy_rtx (c);
2407	  d->update_label_nuses = false;
2408	  for_each_rtx (&new_c, replace_label, data);
2409	  d->update_label_nuses = update_label_nuses;
2410
2411	  /* Add the new constant NEW_C to constant pool and replace
2412	     the old reference to constant by new reference.  */
2413	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2414	  *x = replace_rtx (l, l, new_l);
2415	}
2416      return 0;
2417    }
2418
2419  /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2420     field.  This is not handled by for_each_rtx because it doesn't
2421     handle unprinted ('0') fields.  */
2422  if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2423    JUMP_LABEL (l) = new_label;
2424
2425  if ((GET_CODE (l) == LABEL_REF
2426       || GET_CODE (l) == INSN_LIST)
2427      && XEXP (l, 0) == old_label)
2428    {
2429      XEXP (l, 0) = new_label;
2430      if (update_label_nuses)
2431	{
2432	  ++LABEL_NUSES (new_label);
2433	  --LABEL_NUSES (old_label);
2434	}
2435      return 0;
2436    }
2437
2438  return 0;
2439}
2440
2441/* When *BODY is equal to X or X is directly referenced by *BODY
2442   return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2443   too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2444
2445static int
2446rtx_referenced_p_1 (rtx *body, void *x)
2447{
2448  rtx y = (rtx) x;
2449
2450  if (*body == NULL_RTX)
2451    return y == NULL_RTX;
2452
2453  /* Return true if a label_ref *BODY refers to label Y.  */
2454  if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2455    return XEXP (*body, 0) == y;
2456
2457  /* If *BODY is a reference to pool constant traverse the constant.  */
2458  if (GET_CODE (*body) == SYMBOL_REF
2459      && CONSTANT_POOL_ADDRESS_P (*body))
2460    return rtx_referenced_p (y, get_pool_constant (*body));
2461
2462  /* By default, compare the RTL expressions.  */
2463  return rtx_equal_p (*body, y);
2464}
2465
2466/* Return true if X is referenced in BODY.  */
2467
2468int
2469rtx_referenced_p (rtx x, rtx body)
2470{
2471  return for_each_rtx (&body, rtx_referenced_p_1, x);
2472}
2473
2474/* If INSN is a tablejump return true and store the label (before jump table) to
2475   *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2476
2477bool
2478tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2479{
2480  rtx label, table;
2481
2482  if (JUMP_P (insn)
2483      && (label = JUMP_LABEL (insn)) != NULL_RTX
2484      && (table = next_active_insn (label)) != NULL_RTX
2485      && JUMP_P (table)
2486      && (GET_CODE (PATTERN (table)) == ADDR_VEC
2487	  || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2488    {
2489      if (labelp)
2490	*labelp = label;
2491      if (tablep)
2492	*tablep = table;
2493      return true;
2494    }
2495  return false;
2496}
2497
2498/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2499   constant that is not in the constant pool and not in the condition
2500   of an IF_THEN_ELSE.  */
2501
2502static int
2503computed_jump_p_1 (rtx x)
2504{
2505  enum rtx_code code = GET_CODE (x);
2506  int i, j;
2507  const char *fmt;
2508
2509  switch (code)
2510    {
2511    case LABEL_REF:
2512    case PC:
2513      return 0;
2514
2515    case CONST:
2516    case CONST_INT:
2517    case CONST_DOUBLE:
2518    case CONST_VECTOR:
2519    case SYMBOL_REF:
2520    case REG:
2521      return 1;
2522
2523    case MEM:
2524      return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2525		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2526
2527    case IF_THEN_ELSE:
2528      return (computed_jump_p_1 (XEXP (x, 1))
2529	      || computed_jump_p_1 (XEXP (x, 2)));
2530
2531    default:
2532      break;
2533    }
2534
2535  fmt = GET_RTX_FORMAT (code);
2536  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2537    {
2538      if (fmt[i] == 'e'
2539	  && computed_jump_p_1 (XEXP (x, i)))
2540	return 1;
2541
2542      else if (fmt[i] == 'E')
2543	for (j = 0; j < XVECLEN (x, i); j++)
2544	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2545	    return 1;
2546    }
2547
2548  return 0;
2549}
2550
2551/* Return nonzero if INSN is an indirect jump (aka computed jump).
2552
2553   Tablejumps and casesi insns are not considered indirect jumps;
2554   we can recognize them by a (use (label_ref)).  */
2555
2556int
2557computed_jump_p (rtx insn)
2558{
2559  int i;
2560  if (JUMP_P (insn))
2561    {
2562      rtx pat = PATTERN (insn);
2563
2564      if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2565	return 0;
2566      else if (GET_CODE (pat) == PARALLEL)
2567	{
2568	  int len = XVECLEN (pat, 0);
2569	  int has_use_labelref = 0;
2570
2571	  for (i = len - 1; i >= 0; i--)
2572	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2573		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2574		    == LABEL_REF))
2575	      has_use_labelref = 1;
2576
2577	  if (! has_use_labelref)
2578	    for (i = len - 1; i >= 0; i--)
2579	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2580		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2581		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2582		return 1;
2583	}
2584      else if (GET_CODE (pat) == SET
2585	       && SET_DEST (pat) == pc_rtx
2586	       && computed_jump_p_1 (SET_SRC (pat)))
2587	return 1;
2588    }
2589  return 0;
2590}
2591
2592/* Optimized loop of for_each_rtx, trying to avoid useless recursive
2593   calls.  Processes the subexpressions of EXP and passes them to F.  */
2594static int
2595for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2596{
2597  int result, i, j;
2598  const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2599  rtx *x;
2600
2601  for (; format[n] != '\0'; n++)
2602    {
2603      switch (format[n])
2604	{
2605	case 'e':
2606	  /* Call F on X.  */
2607	  x = &XEXP (exp, n);
2608	  result = (*f) (x, data);
2609	  if (result == -1)
2610	    /* Do not traverse sub-expressions.  */
2611	    continue;
2612	  else if (result != 0)
2613	    /* Stop the traversal.  */
2614	    return result;
2615
2616	  if (*x == NULL_RTX)
2617	    /* There are no sub-expressions.  */
2618	    continue;
2619
2620	  i = non_rtx_starting_operands[GET_CODE (*x)];
2621	  if (i >= 0)
2622	    {
2623	      result = for_each_rtx_1 (*x, i, f, data);
2624	      if (result != 0)
2625		return result;
2626	    }
2627	  break;
2628
2629	case 'V':
2630	case 'E':
2631	  if (XVEC (exp, n) == 0)
2632	    continue;
2633	  for (j = 0; j < XVECLEN (exp, n); ++j)
2634	    {
2635	      /* Call F on X.  */
2636	      x = &XVECEXP (exp, n, j);
2637	      result = (*f) (x, data);
2638	      if (result == -1)
2639		/* Do not traverse sub-expressions.  */
2640		continue;
2641	      else if (result != 0)
2642		/* Stop the traversal.  */
2643		return result;
2644
2645	      if (*x == NULL_RTX)
2646		/* There are no sub-expressions.  */
2647		continue;
2648
2649	      i = non_rtx_starting_operands[GET_CODE (*x)];
2650	      if (i >= 0)
2651		{
2652		  result = for_each_rtx_1 (*x, i, f, data);
2653		  if (result != 0)
2654		    return result;
2655	        }
2656	    }
2657	  break;
2658
2659	default:
2660	  /* Nothing to do.  */
2661	  break;
2662	}
2663    }
2664
2665  return 0;
2666}
2667
2668/* Traverse X via depth-first search, calling F for each
2669   sub-expression (including X itself).  F is also passed the DATA.
2670   If F returns -1, do not traverse sub-expressions, but continue
2671   traversing the rest of the tree.  If F ever returns any other
2672   nonzero value, stop the traversal, and return the value returned
2673   by F.  Otherwise, return 0.  This function does not traverse inside
2674   tree structure that contains RTX_EXPRs, or into sub-expressions
2675   whose format code is `0' since it is not known whether or not those
2676   codes are actually RTL.
2677
2678   This routine is very general, and could (should?) be used to
2679   implement many of the other routines in this file.  */
2680
2681int
2682for_each_rtx (rtx *x, rtx_function f, void *data)
2683{
2684  int result;
2685  int i;
2686
2687  /* Call F on X.  */
2688  result = (*f) (x, data);
2689  if (result == -1)
2690    /* Do not traverse sub-expressions.  */
2691    return 0;
2692  else if (result != 0)
2693    /* Stop the traversal.  */
2694    return result;
2695
2696  if (*x == NULL_RTX)
2697    /* There are no sub-expressions.  */
2698    return 0;
2699
2700  i = non_rtx_starting_operands[GET_CODE (*x)];
2701  if (i < 0)
2702    return 0;
2703
2704  return for_each_rtx_1 (*x, i, f, data);
2705}
2706
2707
2708/* Searches X for any reference to REGNO, returning the rtx of the
2709   reference found if any.  Otherwise, returns NULL_RTX.  */
2710
2711rtx
2712regno_use_in (unsigned int regno, rtx x)
2713{
2714  const char *fmt;
2715  int i, j;
2716  rtx tem;
2717
2718  if (REG_P (x) && REGNO (x) == regno)
2719    return x;
2720
2721  fmt = GET_RTX_FORMAT (GET_CODE (x));
2722  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2723    {
2724      if (fmt[i] == 'e')
2725	{
2726	  if ((tem = regno_use_in (regno, XEXP (x, i))))
2727	    return tem;
2728	}
2729      else if (fmt[i] == 'E')
2730	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2731	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2732	    return tem;
2733    }
2734
2735  return NULL_RTX;
2736}
2737
2738/* Return a value indicating whether OP, an operand of a commutative
2739   operation, is preferred as the first or second operand.  The higher
2740   the value, the stronger the preference for being the first operand.
2741   We use negative values to indicate a preference for the first operand
2742   and positive values for the second operand.  */
2743
2744int
2745commutative_operand_precedence (rtx op)
2746{
2747  enum rtx_code code = GET_CODE (op);
2748
2749  /* Constants always come the second operand.  Prefer "nice" constants.  */
2750  if (code == CONST_INT)
2751    return -7;
2752  if (code == CONST_DOUBLE)
2753    return -6;
2754  op = avoid_constant_pool_reference (op);
2755  code = GET_CODE (op);
2756
2757  switch (GET_RTX_CLASS (code))
2758    {
2759    case RTX_CONST_OBJ:
2760      if (code == CONST_INT)
2761        return -5;
2762      if (code == CONST_DOUBLE)
2763        return -4;
2764      return -3;
2765
2766    case RTX_EXTRA:
2767      /* SUBREGs of objects should come second.  */
2768      if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2769        return -2;
2770
2771      if (!CONSTANT_P (op))
2772        return 0;
2773      else
2774	/* As for RTX_CONST_OBJ.  */
2775	return -3;
2776
2777    case RTX_OBJ:
2778      /* Complex expressions should be the first, so decrease priority
2779         of objects.  */
2780      return -1;
2781
2782    case RTX_COMM_ARITH:
2783      /* Prefer operands that are themselves commutative to be first.
2784         This helps to make things linear.  In particular,
2785         (and (and (reg) (reg)) (not (reg))) is canonical.  */
2786      return 4;
2787
2788    case RTX_BIN_ARITH:
2789      /* If only one operand is a binary expression, it will be the first
2790         operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
2791         is canonical, although it will usually be further simplified.  */
2792      return 2;
2793
2794    case RTX_UNARY:
2795      /* Then prefer NEG and NOT.  */
2796      if (code == NEG || code == NOT)
2797        return 1;
2798
2799    default:
2800      return 0;
2801    }
2802}
2803
2804/* Return 1 iff it is necessary to swap operands of commutative operation
2805   in order to canonicalize expression.  */
2806
2807int
2808swap_commutative_operands_p (rtx x, rtx y)
2809{
2810  return (commutative_operand_precedence (x)
2811	  < commutative_operand_precedence (y));
2812}
2813
2814/* Return 1 if X is an autoincrement side effect and the register is
2815   not the stack pointer.  */
2816int
2817auto_inc_p (rtx x)
2818{
2819  switch (GET_CODE (x))
2820    {
2821    case PRE_INC:
2822    case POST_INC:
2823    case PRE_DEC:
2824    case POST_DEC:
2825    case PRE_MODIFY:
2826    case POST_MODIFY:
2827      /* There are no REG_INC notes for SP.  */
2828      if (XEXP (x, 0) != stack_pointer_rtx)
2829	return 1;
2830    default:
2831      break;
2832    }
2833  return 0;
2834}
2835
2836/* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
2837int
2838loc_mentioned_in_p (rtx *loc, rtx in)
2839{
2840  enum rtx_code code = GET_CODE (in);
2841  const char *fmt = GET_RTX_FORMAT (code);
2842  int i, j;
2843
2844  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2845    {
2846      if (loc == &in->u.fld[i].rt_rtx)
2847	return 1;
2848      if (fmt[i] == 'e')
2849	{
2850	  if (loc_mentioned_in_p (loc, XEXP (in, i)))
2851	    return 1;
2852	}
2853      else if (fmt[i] == 'E')
2854	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2855	  if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2856	    return 1;
2857    }
2858  return 0;
2859}
2860
2861/* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
2862   and SUBREG_BYTE, return the bit offset where the subreg begins
2863   (counting from the least significant bit of the operand).  */
2864
2865unsigned int
2866subreg_lsb_1 (enum machine_mode outer_mode,
2867	      enum machine_mode inner_mode,
2868	      unsigned int subreg_byte)
2869{
2870  unsigned int bitpos;
2871  unsigned int byte;
2872  unsigned int word;
2873
2874  /* A paradoxical subreg begins at bit position 0.  */
2875  if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2876    return 0;
2877
2878  if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2879    /* If the subreg crosses a word boundary ensure that
2880       it also begins and ends on a word boundary.  */
2881    gcc_assert (!((subreg_byte % UNITS_PER_WORD
2882		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2883		  && (subreg_byte % UNITS_PER_WORD
2884		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2885
2886  if (WORDS_BIG_ENDIAN)
2887    word = (GET_MODE_SIZE (inner_mode)
2888	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2889  else
2890    word = subreg_byte / UNITS_PER_WORD;
2891  bitpos = word * BITS_PER_WORD;
2892
2893  if (BYTES_BIG_ENDIAN)
2894    byte = (GET_MODE_SIZE (inner_mode)
2895	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2896  else
2897    byte = subreg_byte % UNITS_PER_WORD;
2898  bitpos += byte * BITS_PER_UNIT;
2899
2900  return bitpos;
2901}
2902
2903/* Given a subreg X, return the bit offset where the subreg begins
2904   (counting from the least significant bit of the reg).  */
2905
2906unsigned int
2907subreg_lsb (rtx x)
2908{
2909  return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
2910		       SUBREG_BYTE (x));
2911}
2912
2913/* This function returns the regno offset of a subreg expression.
2914   xregno - A regno of an inner hard subreg_reg (or what will become one).
2915   xmode  - The mode of xregno.
2916   offset - The byte offset.
2917   ymode  - The mode of a top level SUBREG (or what may become one).
2918   RETURN - The regno offset which would be used.  */
2919unsigned int
2920subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
2921		     unsigned int offset, enum machine_mode ymode)
2922{
2923  int nregs_xmode, nregs_ymode;
2924  int mode_multiple, nregs_multiple;
2925  int y_offset;
2926
2927  gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2928
2929  /* Adjust nregs_xmode to allow for 'holes'.  */
2930  if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2931    nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2932  else
2933    nregs_xmode = hard_regno_nregs[xregno][xmode];
2934
2935  nregs_ymode = hard_regno_nregs[xregno][ymode];
2936
2937  /* If this is a big endian paradoxical subreg, which uses more actual
2938     hard registers than the original register, we must return a negative
2939     offset so that we find the proper highpart of the register.  */
2940  if (offset == 0
2941      && nregs_ymode > nregs_xmode
2942      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2943	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
2944    return nregs_xmode - nregs_ymode;
2945
2946  if (offset == 0 || nregs_xmode == nregs_ymode)
2947    return 0;
2948
2949  /* Size of ymode must not be greater than the size of xmode.  */
2950  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
2951  gcc_assert (mode_multiple != 0);
2952
2953  y_offset = offset / GET_MODE_SIZE (ymode);
2954  nregs_multiple =  nregs_xmode / nregs_ymode;
2955  return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
2956}
2957
2958/* This function returns true when the offset is representable via
2959   subreg_offset in the given regno.
2960   xregno - A regno of an inner hard subreg_reg (or what will become one).
2961   xmode  - The mode of xregno.
2962   offset - The byte offset.
2963   ymode  - The mode of a top level SUBREG (or what may become one).
2964   RETURN - Whether the offset is representable.  */
2965bool
2966subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
2967			       unsigned int offset, enum machine_mode ymode)
2968{
2969  int nregs_xmode, nregs_ymode;
2970  int mode_multiple, nregs_multiple;
2971  int y_offset;
2972  int regsize_xmode, regsize_ymode;
2973
2974  gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2975
2976  /* If there are holes in a non-scalar mode in registers, we expect
2977     that it is made up of its units concatenated together.  */
2978  if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2979    {
2980      enum machine_mode xmode_unit;
2981
2982      nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2983      if (GET_MODE_INNER (xmode) == VOIDmode)
2984	xmode_unit = xmode;
2985      else
2986	xmode_unit = GET_MODE_INNER (xmode);
2987      gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
2988      gcc_assert (nregs_xmode
2989		  == (GET_MODE_NUNITS (xmode)
2990		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
2991      gcc_assert (hard_regno_nregs[xregno][xmode]
2992		  == (hard_regno_nregs[xregno][xmode_unit]
2993		      * GET_MODE_NUNITS (xmode)));
2994
2995      /* You can only ask for a SUBREG of a value with holes in the middle
2996	 if you don't cross the holes.  (Such a SUBREG should be done by
2997	 picking a different register class, or doing it in memory if
2998	 necessary.)  An example of a value with holes is XCmode on 32-bit
2999	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3000	 3 for each part, but in memory it's two 128-bit parts.
3001	 Padding is assumed to be at the end (not necessarily the 'high part')
3002	 of each unit.  */
3003      if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3004	   < GET_MODE_NUNITS (xmode))
3005	  && (offset / GET_MODE_SIZE (xmode_unit)
3006	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3007		  / GET_MODE_SIZE (xmode_unit))))
3008	return false;
3009    }
3010  else
3011    nregs_xmode = hard_regno_nregs[xregno][xmode];
3012
3013  nregs_ymode = hard_regno_nregs[xregno][ymode];
3014
3015  /* Paradoxical subregs are otherwise valid.  */
3016  if (offset == 0
3017      && nregs_ymode > nregs_xmode
3018      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3019	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3020    return true;
3021
3022  /* If registers store different numbers of bits in the different
3023     modes, we cannot generally form this subreg.  */
3024  regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3025  regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3026  if (regsize_xmode > regsize_ymode && nregs_ymode > 1)
3027    return false;
3028  if (regsize_ymode > regsize_xmode && nregs_xmode > 1)
3029    return false;
3030
3031  /* Lowpart subregs are otherwise valid.  */
3032  if (offset == subreg_lowpart_offset (ymode, xmode))
3033    return true;
3034
3035  /* This should always pass, otherwise we don't know how to verify
3036     the constraint.  These conditions may be relaxed but
3037     subreg_regno_offset would need to be redesigned.  */
3038  gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3039  gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3040
3041  /* The XMODE value can be seen as a vector of NREGS_XMODE
3042     values.  The subreg must represent a lowpart of given field.
3043     Compute what field it is.  */
3044  offset -= subreg_lowpart_offset (ymode,
3045				   mode_for_size (GET_MODE_BITSIZE (xmode)
3046						  / nregs_xmode,
3047						  MODE_INT, 0));
3048
3049  /* Size of ymode must not be greater than the size of xmode.  */
3050  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3051  gcc_assert (mode_multiple != 0);
3052
3053  y_offset = offset / GET_MODE_SIZE (ymode);
3054  nregs_multiple =  nregs_xmode / nregs_ymode;
3055
3056  gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3057  gcc_assert ((mode_multiple % nregs_multiple) == 0);
3058
3059  return (!(y_offset % (mode_multiple / nregs_multiple)));
3060}
3061
3062/* Return the final regno that a subreg expression refers to.  */
3063unsigned int
3064subreg_regno (rtx x)
3065{
3066  unsigned int ret;
3067  rtx subreg = SUBREG_REG (x);
3068  int regno = REGNO (subreg);
3069
3070  ret = regno + subreg_regno_offset (regno,
3071				     GET_MODE (subreg),
3072				     SUBREG_BYTE (x),
3073				     GET_MODE (x));
3074  return ret;
3075
3076}
3077struct parms_set_data
3078{
3079  int nregs;
3080  HARD_REG_SET regs;
3081};
3082
3083/* Helper function for noticing stores to parameter registers.  */
3084static void
3085parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3086{
3087  struct parms_set_data *d = data;
3088  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3089      && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3090    {
3091      CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3092      d->nregs--;
3093    }
3094}
3095
3096/* Look backward for first parameter to be loaded.
3097   Note that loads of all parameters will not necessarily be
3098   found if CSE has eliminated some of them (e.g., an argument
3099   to the outer function is passed down as a parameter).
3100   Do not skip BOUNDARY.  */
3101rtx
3102find_first_parameter_load (rtx call_insn, rtx boundary)
3103{
3104  struct parms_set_data parm;
3105  rtx p, before, first_set;
3106
3107  /* Since different machines initialize their parameter registers
3108     in different orders, assume nothing.  Collect the set of all
3109     parameter registers.  */
3110  CLEAR_HARD_REG_SET (parm.regs);
3111  parm.nregs = 0;
3112  for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3113    if (GET_CODE (XEXP (p, 0)) == USE
3114	&& REG_P (XEXP (XEXP (p, 0), 0)))
3115      {
3116	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3117
3118	/* We only care about registers which can hold function
3119	   arguments.  */
3120	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3121	  continue;
3122
3123	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3124	parm.nregs++;
3125      }
3126  before = call_insn;
3127  first_set = call_insn;
3128
3129  /* Search backward for the first set of a register in this set.  */
3130  while (parm.nregs && before != boundary)
3131    {
3132      before = PREV_INSN (before);
3133
3134      /* It is possible that some loads got CSEed from one call to
3135         another.  Stop in that case.  */
3136      if (CALL_P (before))
3137	break;
3138
3139      /* Our caller needs either ensure that we will find all sets
3140         (in case code has not been optimized yet), or take care
3141         for possible labels in a way by setting boundary to preceding
3142         CODE_LABEL.  */
3143      if (LABEL_P (before))
3144	{
3145	  gcc_assert (before == boundary);
3146	  break;
3147	}
3148
3149      if (INSN_P (before))
3150	{
3151	  int nregs_old = parm.nregs;
3152	  note_stores (PATTERN (before), parms_set, &parm);
3153	  /* If we found something that did not set a parameter reg,
3154	     we're done.  Do not keep going, as that might result
3155	     in hoisting an insn before the setting of a pseudo
3156	     that is used by the hoisted insn. */
3157	  if (nregs_old != parm.nregs)
3158	    first_set = before;
3159	  else
3160	    break;
3161	}
3162    }
3163  return first_set;
3164}
3165
3166/* Return true if we should avoid inserting code between INSN and preceding
3167   call instruction.  */
3168
3169bool
3170keep_with_call_p (rtx insn)
3171{
3172  rtx set;
3173
3174  if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3175    {
3176      if (REG_P (SET_DEST (set))
3177	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3178	  && fixed_regs[REGNO (SET_DEST (set))]
3179	  && general_operand (SET_SRC (set), VOIDmode))
3180	return true;
3181      if (REG_P (SET_SRC (set))
3182	  && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3183	  && REG_P (SET_DEST (set))
3184	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3185	return true;
3186      /* There may be a stack pop just after the call and before the store
3187	 of the return register.  Search for the actual store when deciding
3188	 if we can break or not.  */
3189      if (SET_DEST (set) == stack_pointer_rtx)
3190	{
3191	  rtx i2 = next_nonnote_insn (insn);
3192	  if (i2 && keep_with_call_p (i2))
3193	    return true;
3194	}
3195    }
3196  return false;
3197}
3198
3199/* Return true if LABEL is a target of JUMP_INSN.  This applies only
3200   to non-complex jumps.  That is, direct unconditional, conditional,
3201   and tablejumps, but not computed jumps or returns.  It also does
3202   not apply to the fallthru case of a conditional jump.  */
3203
3204bool
3205label_is_jump_target_p (rtx label, rtx jump_insn)
3206{
3207  rtx tmp = JUMP_LABEL (jump_insn);
3208
3209  if (label == tmp)
3210    return true;
3211
3212  if (tablejump_p (jump_insn, NULL, &tmp))
3213    {
3214      rtvec vec = XVEC (PATTERN (tmp),
3215			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3216      int i, veclen = GET_NUM_ELEM (vec);
3217
3218      for (i = 0; i < veclen; ++i)
3219	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3220	  return true;
3221    }
3222
3223  return false;
3224}
3225
3226
3227/* Return an estimate of the cost of computing rtx X.
3228   One use is in cse, to decide which expression to keep in the hash table.
3229   Another is in rtl generation, to pick the cheapest way to multiply.
3230   Other uses like the latter are expected in the future.  */
3231
3232int
3233rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3234{
3235  int i, j;
3236  enum rtx_code code;
3237  const char *fmt;
3238  int total;
3239
3240  if (x == 0)
3241    return 0;
3242
3243  /* Compute the default costs of certain things.
3244     Note that targetm.rtx_costs can override the defaults.  */
3245
3246  code = GET_CODE (x);
3247  switch (code)
3248    {
3249    case MULT:
3250      total = COSTS_N_INSNS (5);
3251      break;
3252    case DIV:
3253    case UDIV:
3254    case MOD:
3255    case UMOD:
3256      total = COSTS_N_INSNS (7);
3257      break;
3258    case USE:
3259      /* Used in combine.c as a marker.  */
3260      total = 0;
3261      break;
3262    default:
3263      total = COSTS_N_INSNS (1);
3264    }
3265
3266  switch (code)
3267    {
3268    case REG:
3269      return 0;
3270
3271    case SUBREG:
3272      total = 0;
3273      /* If we can't tie these modes, make this expensive.  The larger
3274	 the mode, the more expensive it is.  */
3275      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3276	return COSTS_N_INSNS (2
3277			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3278      break;
3279
3280    default:
3281      if (targetm.rtx_costs (x, code, outer_code, &total))
3282	return total;
3283      break;
3284    }
3285
3286  /* Sum the costs of the sub-rtx's, plus cost of this operation,
3287     which is already in total.  */
3288
3289  fmt = GET_RTX_FORMAT (code);
3290  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3291    if (fmt[i] == 'e')
3292      total += rtx_cost (XEXP (x, i), code);
3293    else if (fmt[i] == 'E')
3294      for (j = 0; j < XVECLEN (x, i); j++)
3295	total += rtx_cost (XVECEXP (x, i, j), code);
3296
3297  return total;
3298}
3299
3300/* Return cost of address expression X.
3301   Expect that X is properly formed address reference.  */
3302
3303int
3304address_cost (rtx x, enum machine_mode mode)
3305{
3306  /* We may be asked for cost of various unusual addresses, such as operands
3307     of push instruction.  It is not worthwhile to complicate writing
3308     of the target hook by such cases.  */
3309
3310  if (!memory_address_p (mode, x))
3311    return 1000;
3312
3313  return targetm.address_cost (x);
3314}
3315
3316/* If the target doesn't override, compute the cost as with arithmetic.  */
3317
3318int
3319default_address_cost (rtx x)
3320{
3321  return rtx_cost (x, MEM);
3322}
3323
3324
3325unsigned HOST_WIDE_INT
3326nonzero_bits (rtx x, enum machine_mode mode)
3327{
3328  return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3329}
3330
3331unsigned int
3332num_sign_bit_copies (rtx x, enum machine_mode mode)
3333{
3334  return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3335}
3336
3337/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3338   It avoids exponential behavior in nonzero_bits1 when X has
3339   identical subexpressions on the first or the second level.  */
3340
3341static unsigned HOST_WIDE_INT
3342cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3343		     enum machine_mode known_mode,
3344		     unsigned HOST_WIDE_INT known_ret)
3345{
3346  if (x == known_x && mode == known_mode)
3347    return known_ret;
3348
3349  /* Try to find identical subexpressions.  If found call
3350     nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3351     precomputed value for the subexpression as KNOWN_RET.  */
3352
3353  if (ARITHMETIC_P (x))
3354    {
3355      rtx x0 = XEXP (x, 0);
3356      rtx x1 = XEXP (x, 1);
3357
3358      /* Check the first level.  */
3359      if (x0 == x1)
3360	return nonzero_bits1 (x, mode, x0, mode,
3361			      cached_nonzero_bits (x0, mode, known_x,
3362						   known_mode, known_ret));
3363
3364      /* Check the second level.  */
3365      if (ARITHMETIC_P (x0)
3366	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3367	return nonzero_bits1 (x, mode, x1, mode,
3368			      cached_nonzero_bits (x1, mode, known_x,
3369						   known_mode, known_ret));
3370
3371      if (ARITHMETIC_P (x1)
3372	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3373	return nonzero_bits1 (x, mode, x0, mode,
3374			      cached_nonzero_bits (x0, mode, known_x,
3375						   known_mode, known_ret));
3376    }
3377
3378  return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3379}
3380
3381/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3382   We don't let nonzero_bits recur into num_sign_bit_copies, because that
3383   is less useful.  We can't allow both, because that results in exponential
3384   run time recursion.  There is a nullstone testcase that triggered
3385   this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3386#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3387
3388/* Given an expression, X, compute which bits in X can be nonzero.
3389   We don't care about bits outside of those defined in MODE.
3390
3391   For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3392   an arithmetic operation, we can do better.  */
3393
3394static unsigned HOST_WIDE_INT
3395nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3396	       enum machine_mode known_mode,
3397	       unsigned HOST_WIDE_INT known_ret)
3398{
3399  unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3400  unsigned HOST_WIDE_INT inner_nz;
3401  enum rtx_code code;
3402  unsigned int mode_width = GET_MODE_BITSIZE (mode);
3403
3404  /* For floating-point values, assume all bits are needed.  */
3405  if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3406    return nonzero;
3407
3408  /* If X is wider than MODE, use its mode instead.  */
3409  if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3410    {
3411      mode = GET_MODE (x);
3412      nonzero = GET_MODE_MASK (mode);
3413      mode_width = GET_MODE_BITSIZE (mode);
3414    }
3415
3416  if (mode_width > HOST_BITS_PER_WIDE_INT)
3417    /* Our only callers in this case look for single bit values.  So
3418       just return the mode mask.  Those tests will then be false.  */
3419    return nonzero;
3420
3421#ifndef WORD_REGISTER_OPERATIONS
3422  /* If MODE is wider than X, but both are a single word for both the host
3423     and target machines, we can compute this from which bits of the
3424     object might be nonzero in its own mode, taking into account the fact
3425     that on many CISC machines, accessing an object in a wider mode
3426     causes the high-order bits to become undefined.  So they are
3427     not known to be zero.  */
3428
3429  if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3430      && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3431      && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3432      && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3433    {
3434      nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3435				      known_x, known_mode, known_ret);
3436      nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3437      return nonzero;
3438    }
3439#endif
3440
3441  code = GET_CODE (x);
3442  switch (code)
3443    {
3444    case REG:
3445#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3446      /* If pointers extend unsigned and this is a pointer in Pmode, say that
3447	 all the bits above ptr_mode are known to be zero.  */
3448      if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3449	  && REG_POINTER (x))
3450	nonzero &= GET_MODE_MASK (ptr_mode);
3451#endif
3452
3453      /* Include declared information about alignment of pointers.  */
3454      /* ??? We don't properly preserve REG_POINTER changes across
3455	 pointer-to-integer casts, so we can't trust it except for
3456	 things that we know must be pointers.  See execute/960116-1.c.  */
3457      if ((x == stack_pointer_rtx
3458	   || x == frame_pointer_rtx
3459	   || x == arg_pointer_rtx)
3460	  && REGNO_POINTER_ALIGN (REGNO (x)))
3461	{
3462	  unsigned HOST_WIDE_INT alignment
3463	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3464
3465#ifdef PUSH_ROUNDING
3466	  /* If PUSH_ROUNDING is defined, it is possible for the
3467	     stack to be momentarily aligned only to that amount,
3468	     so we pick the least alignment.  */
3469	  if (x == stack_pointer_rtx && PUSH_ARGS)
3470	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3471			     alignment);
3472#endif
3473
3474	  nonzero &= ~(alignment - 1);
3475	}
3476
3477      {
3478	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3479	rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3480					      known_mode, known_ret,
3481					      &nonzero_for_hook);
3482
3483	if (new)
3484	  nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3485						   known_mode, known_ret);
3486
3487	return nonzero_for_hook;
3488      }
3489
3490    case CONST_INT:
3491#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3492      /* If X is negative in MODE, sign-extend the value.  */
3493      if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3494	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3495	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3496#endif
3497
3498      return INTVAL (x);
3499
3500    case MEM:
3501#ifdef LOAD_EXTEND_OP
3502      /* In many, if not most, RISC machines, reading a byte from memory
3503	 zeros the rest of the register.  Noticing that fact saves a lot
3504	 of extra zero-extends.  */
3505      if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3506	nonzero &= GET_MODE_MASK (GET_MODE (x));
3507#endif
3508      break;
3509
3510    case EQ:  case NE:
3511    case UNEQ:  case LTGT:
3512    case GT:  case GTU:  case UNGT:
3513    case LT:  case LTU:  case UNLT:
3514    case GE:  case GEU:  case UNGE:
3515    case LE:  case LEU:  case UNLE:
3516    case UNORDERED: case ORDERED:
3517      /* If this produces an integer result, we know which bits are set.
3518	 Code here used to clear bits outside the mode of X, but that is
3519	 now done above.  */
3520      /* Mind that MODE is the mode the caller wants to look at this
3521	 operation in, and not the actual operation mode.  We can wind
3522	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3523	 that describes the results of a vector compare.  */
3524      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3525	  && mode_width <= HOST_BITS_PER_WIDE_INT)
3526	nonzero = STORE_FLAG_VALUE;
3527      break;
3528
3529    case NEG:
3530#if 0
3531      /* Disabled to avoid exponential mutual recursion between nonzero_bits
3532	 and num_sign_bit_copies.  */
3533      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3534	  == GET_MODE_BITSIZE (GET_MODE (x)))
3535	nonzero = 1;
3536#endif
3537
3538      if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3539	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3540      break;
3541
3542    case ABS:
3543#if 0
3544      /* Disabled to avoid exponential mutual recursion between nonzero_bits
3545	 and num_sign_bit_copies.  */
3546      if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3547	  == GET_MODE_BITSIZE (GET_MODE (x)))
3548	nonzero = 1;
3549#endif
3550      break;
3551
3552    case TRUNCATE:
3553      nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3554				       known_x, known_mode, known_ret)
3555		  & GET_MODE_MASK (mode));
3556      break;
3557
3558    case ZERO_EXTEND:
3559      nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3560				      known_x, known_mode, known_ret);
3561      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3562	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3563      break;
3564
3565    case SIGN_EXTEND:
3566      /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3567	 Otherwise, show all the bits in the outer mode but not the inner
3568	 may be nonzero.  */
3569      inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3570				      known_x, known_mode, known_ret);
3571      if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3572	{
3573	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3574	  if (inner_nz
3575	      & (((HOST_WIDE_INT) 1
3576		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3577	    inner_nz |= (GET_MODE_MASK (mode)
3578			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3579	}
3580
3581      nonzero &= inner_nz;
3582      break;
3583
3584    case AND:
3585      nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3586				       known_x, known_mode, known_ret)
3587      		 & cached_nonzero_bits (XEXP (x, 1), mode,
3588					known_x, known_mode, known_ret);
3589      break;
3590
3591    case XOR:   case IOR:
3592    case UMIN:  case UMAX:  case SMIN:  case SMAX:
3593      {
3594	unsigned HOST_WIDE_INT nonzero0 =
3595	  cached_nonzero_bits (XEXP (x, 0), mode,
3596			       known_x, known_mode, known_ret);
3597
3598	/* Don't call nonzero_bits for the second time if it cannot change
3599	   anything.  */
3600	if ((nonzero & nonzero0) != nonzero)
3601	  nonzero &= nonzero0
3602      		     | cached_nonzero_bits (XEXP (x, 1), mode,
3603					    known_x, known_mode, known_ret);
3604      }
3605      break;
3606
3607    case PLUS:  case MINUS:
3608    case MULT:
3609    case DIV:   case UDIV:
3610    case MOD:   case UMOD:
3611      /* We can apply the rules of arithmetic to compute the number of
3612	 high- and low-order zero bits of these operations.  We start by
3613	 computing the width (position of the highest-order nonzero bit)
3614	 and the number of low-order zero bits for each value.  */
3615      {
3616	unsigned HOST_WIDE_INT nz0 =
3617	  cached_nonzero_bits (XEXP (x, 0), mode,
3618			       known_x, known_mode, known_ret);
3619	unsigned HOST_WIDE_INT nz1 =
3620	  cached_nonzero_bits (XEXP (x, 1), mode,
3621			       known_x, known_mode, known_ret);
3622	int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3623	int width0 = floor_log2 (nz0) + 1;
3624	int width1 = floor_log2 (nz1) + 1;
3625	int low0 = floor_log2 (nz0 & -nz0);
3626	int low1 = floor_log2 (nz1 & -nz1);
3627	HOST_WIDE_INT op0_maybe_minusp
3628	  = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3629	HOST_WIDE_INT op1_maybe_minusp
3630	  = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3631	unsigned int result_width = mode_width;
3632	int result_low = 0;
3633
3634	switch (code)
3635	  {
3636	  case PLUS:
3637	    result_width = MAX (width0, width1) + 1;
3638	    result_low = MIN (low0, low1);
3639	    break;
3640	  case MINUS:
3641	    result_low = MIN (low0, low1);
3642	    break;
3643	  case MULT:
3644	    result_width = width0 + width1;
3645	    result_low = low0 + low1;
3646	    break;
3647	  case DIV:
3648	    if (width1 == 0)
3649	      break;
3650	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3651	      result_width = width0;
3652	    break;
3653	  case UDIV:
3654	    if (width1 == 0)
3655	      break;
3656	    result_width = width0;
3657	    break;
3658	  case MOD:
3659	    if (width1 == 0)
3660	      break;
3661	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3662	      result_width = MIN (width0, width1);
3663	    result_low = MIN (low0, low1);
3664	    break;
3665	  case UMOD:
3666	    if (width1 == 0)
3667	      break;
3668	    result_width = MIN (width0, width1);
3669	    result_low = MIN (low0, low1);
3670	    break;
3671	  default:
3672	    gcc_unreachable ();
3673	  }
3674
3675	if (result_width < mode_width)
3676	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3677
3678	if (result_low > 0)
3679	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3680
3681#ifdef POINTERS_EXTEND_UNSIGNED
3682	/* If pointers extend unsigned and this is an addition or subtraction
3683	   to a pointer in Pmode, all the bits above ptr_mode are known to be
3684	   zero.  */
3685	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3686	    && (code == PLUS || code == MINUS)
3687	    && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3688	  nonzero &= GET_MODE_MASK (ptr_mode);
3689#endif
3690      }
3691      break;
3692
3693    case ZERO_EXTRACT:
3694      if (GET_CODE (XEXP (x, 1)) == CONST_INT
3695	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3696	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3697      break;
3698
3699    case SUBREG:
3700      /* If this is a SUBREG formed for a promoted variable that has
3701	 been zero-extended, we know that at least the high-order bits
3702	 are zero, though others might be too.  */
3703
3704      if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3705	nonzero = GET_MODE_MASK (GET_MODE (x))
3706		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3707					 known_x, known_mode, known_ret);
3708
3709      /* If the inner mode is a single word for both the host and target
3710	 machines, we can compute this from which bits of the inner
3711	 object might be nonzero.  */
3712      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3713	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3714	      <= HOST_BITS_PER_WIDE_INT))
3715	{
3716	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3717					  known_x, known_mode, known_ret);
3718
3719#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3720	  /* If this is a typical RISC machine, we only have to worry
3721	     about the way loads are extended.  */
3722	  if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3723	       ? (((nonzero
3724		    & (((unsigned HOST_WIDE_INT) 1
3725			<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3726		   != 0))
3727	       : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3728	      || !MEM_P (SUBREG_REG (x)))
3729#endif
3730	    {
3731	      /* On many CISC machines, accessing an object in a wider mode
3732		 causes the high-order bits to become undefined.  So they are
3733		 not known to be zero.  */
3734	      if (GET_MODE_SIZE (GET_MODE (x))
3735		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3736		nonzero |= (GET_MODE_MASK (GET_MODE (x))
3737			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3738	    }
3739	}
3740      break;
3741
3742    case ASHIFTRT:
3743    case LSHIFTRT:
3744    case ASHIFT:
3745    case ROTATE:
3746      /* The nonzero bits are in two classes: any bits within MODE
3747	 that aren't in GET_MODE (x) are always significant.  The rest of the
3748	 nonzero bits are those that are significant in the operand of
3749	 the shift when shifted the appropriate number of bits.  This
3750	 shows that high-order bits are cleared by the right shift and
3751	 low-order bits by left shifts.  */
3752      if (GET_CODE (XEXP (x, 1)) == CONST_INT
3753	  && INTVAL (XEXP (x, 1)) >= 0
3754	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3755	{
3756	  enum machine_mode inner_mode = GET_MODE (x);
3757	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
3758	  int count = INTVAL (XEXP (x, 1));
3759	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3760	  unsigned HOST_WIDE_INT op_nonzero =
3761	    cached_nonzero_bits (XEXP (x, 0), mode,
3762				 known_x, known_mode, known_ret);
3763	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3764	  unsigned HOST_WIDE_INT outer = 0;
3765
3766	  if (mode_width > width)
3767	    outer = (op_nonzero & nonzero & ~mode_mask);
3768
3769	  if (code == LSHIFTRT)
3770	    inner >>= count;
3771	  else if (code == ASHIFTRT)
3772	    {
3773	      inner >>= count;
3774
3775	      /* If the sign bit may have been nonzero before the shift, we
3776		 need to mark all the places it could have been copied to
3777		 by the shift as possibly nonzero.  */
3778	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3779		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3780	    }
3781	  else if (code == ASHIFT)
3782	    inner <<= count;
3783	  else
3784	    inner = ((inner << (count % width)
3785		      | (inner >> (width - (count % width)))) & mode_mask);
3786
3787	  nonzero &= (outer | inner);
3788	}
3789      break;
3790
3791    case FFS:
3792    case POPCOUNT:
3793      /* This is at most the number of bits in the mode.  */
3794      nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3795      break;
3796
3797    case CLZ:
3798      /* If CLZ has a known value at zero, then the nonzero bits are
3799	 that value, plus the number of bits in the mode minus one.  */
3800      if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3801	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3802      else
3803	nonzero = -1;
3804      break;
3805
3806    case CTZ:
3807      /* If CTZ has a known value at zero, then the nonzero bits are
3808	 that value, plus the number of bits in the mode minus one.  */
3809      if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3810	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3811      else
3812	nonzero = -1;
3813      break;
3814
3815    case PARITY:
3816      nonzero = 1;
3817      break;
3818
3819    case IF_THEN_ELSE:
3820      {
3821	unsigned HOST_WIDE_INT nonzero_true =
3822	  cached_nonzero_bits (XEXP (x, 1), mode,
3823			       known_x, known_mode, known_ret);
3824
3825	/* Don't call nonzero_bits for the second time if it cannot change
3826	   anything.  */
3827	if ((nonzero & nonzero_true) != nonzero)
3828	  nonzero &= nonzero_true
3829      		     | cached_nonzero_bits (XEXP (x, 2), mode,
3830					    known_x, known_mode, known_ret);
3831      }
3832      break;
3833
3834    default:
3835      break;
3836    }
3837
3838  return nonzero;
3839}
3840
3841/* See the macro definition above.  */
3842#undef cached_num_sign_bit_copies
3843
3844
3845/* The function cached_num_sign_bit_copies is a wrapper around
3846   num_sign_bit_copies1.  It avoids exponential behavior in
3847   num_sign_bit_copies1 when X has identical subexpressions on the
3848   first or the second level.  */
3849
3850static unsigned int
3851cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3852			    enum machine_mode known_mode,
3853			    unsigned int known_ret)
3854{
3855  if (x == known_x && mode == known_mode)
3856    return known_ret;
3857
3858  /* Try to find identical subexpressions.  If found call
3859     num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3860     the precomputed value for the subexpression as KNOWN_RET.  */
3861
3862  if (ARITHMETIC_P (x))
3863    {
3864      rtx x0 = XEXP (x, 0);
3865      rtx x1 = XEXP (x, 1);
3866
3867      /* Check the first level.  */
3868      if (x0 == x1)
3869	return
3870	  num_sign_bit_copies1 (x, mode, x0, mode,
3871				cached_num_sign_bit_copies (x0, mode, known_x,
3872							    known_mode,
3873							    known_ret));
3874
3875      /* Check the second level.  */
3876      if (ARITHMETIC_P (x0)
3877	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3878	return
3879	  num_sign_bit_copies1 (x, mode, x1, mode,
3880				cached_num_sign_bit_copies (x1, mode, known_x,
3881							    known_mode,
3882							    known_ret));
3883
3884      if (ARITHMETIC_P (x1)
3885	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3886	return
3887	  num_sign_bit_copies1 (x, mode, x0, mode,
3888				cached_num_sign_bit_copies (x0, mode, known_x,
3889							    known_mode,
3890							    known_ret));
3891    }
3892
3893  return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3894}
3895
3896/* Return the number of bits at the high-order end of X that are known to
3897   be equal to the sign bit.  X will be used in mode MODE; if MODE is
3898   VOIDmode, X will be used in its own mode.  The returned value  will always
3899   be between 1 and the number of bits in MODE.  */
3900
3901static unsigned int
3902num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3903		      enum machine_mode known_mode,
3904		      unsigned int known_ret)
3905{
3906  enum rtx_code code = GET_CODE (x);
3907  unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3908  int num0, num1, result;
3909  unsigned HOST_WIDE_INT nonzero;
3910
3911  /* If we weren't given a mode, use the mode of X.  If the mode is still
3912     VOIDmode, we don't know anything.  Likewise if one of the modes is
3913     floating-point.  */
3914
3915  if (mode == VOIDmode)
3916    mode = GET_MODE (x);
3917
3918  if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
3919    return 1;
3920
3921  /* For a smaller object, just ignore the high bits.  */
3922  if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
3923    {
3924      num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
3925					 known_x, known_mode, known_ret);
3926      return MAX (1,
3927		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
3928    }
3929
3930  if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
3931    {
3932#ifndef WORD_REGISTER_OPERATIONS
3933  /* If this machine does not do all register operations on the entire
3934     register and MODE is wider than the mode of X, we can say nothing
3935     at all about the high-order bits.  */
3936      return 1;
3937#else
3938      /* Likewise on machines that do, if the mode of the object is smaller
3939	 than a word and loads of that size don't sign extend, we can say
3940	 nothing about the high order bits.  */
3941      if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
3942#ifdef LOAD_EXTEND_OP
3943	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
3944#endif
3945	  )
3946	return 1;
3947#endif
3948    }
3949
3950  switch (code)
3951    {
3952    case REG:
3953
3954#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3955      /* If pointers extend signed and this is a pointer in Pmode, say that
3956	 all the bits above ptr_mode are known to be sign bit copies.  */
3957      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
3958	  && REG_POINTER (x))
3959	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
3960#endif
3961
3962      {
3963	unsigned int copies_for_hook = 1, copies = 1;
3964	rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
3965						     known_mode, known_ret,
3966						     &copies_for_hook);
3967
3968	if (new)
3969	  copies = cached_num_sign_bit_copies (new, mode, known_x,
3970					       known_mode, known_ret);
3971
3972	if (copies > 1 || copies_for_hook > 1)
3973	  return MAX (copies, copies_for_hook);
3974
3975	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
3976      }
3977      break;
3978
3979    case MEM:
3980#ifdef LOAD_EXTEND_OP
3981      /* Some RISC machines sign-extend all loads of smaller than a word.  */
3982      if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
3983	return MAX (1, ((int) bitwidth
3984			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
3985#endif
3986      break;
3987
3988    case CONST_INT:
3989      /* If the constant is negative, take its 1's complement and remask.
3990	 Then see how many zero bits we have.  */
3991      nonzero = INTVAL (x) & GET_MODE_MASK (mode);
3992      if (bitwidth <= HOST_BITS_PER_WIDE_INT
3993	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
3994	nonzero = (~nonzero) & GET_MODE_MASK (mode);
3995
3996      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
3997
3998    case SUBREG:
3999      /* If this is a SUBREG for a promoted object that is sign-extended
4000	 and we are looking at it in a wider mode, we know that at least the
4001	 high-order bits are known to be sign bit copies.  */
4002
4003      if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4004	{
4005	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4006					     known_x, known_mode, known_ret);
4007	  return MAX ((int) bitwidth
4008		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4009		      num0);
4010	}
4011
4012      /* For a smaller object, just ignore the high bits.  */
4013      if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4014	{
4015	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4016					     known_x, known_mode, known_ret);
4017	  return MAX (1, (num0
4018			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4019				   - bitwidth)));
4020	}
4021
4022#ifdef WORD_REGISTER_OPERATIONS
4023#ifdef LOAD_EXTEND_OP
4024      /* For paradoxical SUBREGs on machines where all register operations
4025	 affect the entire register, just look inside.  Note that we are
4026	 passing MODE to the recursive call, so the number of sign bit copies
4027	 will remain relative to that mode, not the inner mode.  */
4028
4029      /* This works only if loads sign extend.  Otherwise, if we get a
4030	 reload for the inner part, it may be loaded from the stack, and
4031	 then we lose all sign bit copies that existed before the store
4032	 to the stack.  */
4033
4034      if ((GET_MODE_SIZE (GET_MODE (x))
4035	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4036	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4037	  && MEM_P (SUBREG_REG (x)))
4038	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4039					   known_x, known_mode, known_ret);
4040#endif
4041#endif
4042      break;
4043
4044    case SIGN_EXTRACT:
4045      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4046	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4047      break;
4048
4049    case SIGN_EXTEND:
4050      return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4051	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4052					    known_x, known_mode, known_ret));
4053
4054    case TRUNCATE:
4055      /* For a smaller object, just ignore the high bits.  */
4056      num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4057					 known_x, known_mode, known_ret);
4058      return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4059				    - bitwidth)));
4060
4061    case NOT:
4062      return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4063					 known_x, known_mode, known_ret);
4064
4065    case ROTATE:       case ROTATERT:
4066      /* If we are rotating left by a number of bits less than the number
4067	 of sign bit copies, we can just subtract that amount from the
4068	 number.  */
4069      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4070	  && INTVAL (XEXP (x, 1)) >= 0
4071	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4072	{
4073	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4074					     known_x, known_mode, known_ret);
4075	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4076				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4077	}
4078      break;
4079
4080    case NEG:
4081      /* In general, this subtracts one sign bit copy.  But if the value
4082	 is known to be positive, the number of sign bit copies is the
4083	 same as that of the input.  Finally, if the input has just one bit
4084	 that might be nonzero, all the bits are copies of the sign bit.  */
4085      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4086					 known_x, known_mode, known_ret);
4087      if (bitwidth > HOST_BITS_PER_WIDE_INT)
4088	return num0 > 1 ? num0 - 1 : 1;
4089
4090      nonzero = nonzero_bits (XEXP (x, 0), mode);
4091      if (nonzero == 1)
4092	return bitwidth;
4093
4094      if (num0 > 1
4095	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4096	num0--;
4097
4098      return num0;
4099
4100    case IOR:   case AND:   case XOR:
4101    case SMIN:  case SMAX:  case UMIN:  case UMAX:
4102      /* Logical operations will preserve the number of sign-bit copies.
4103	 MIN and MAX operations always return one of the operands.  */
4104      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4105					 known_x, known_mode, known_ret);
4106      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4107					 known_x, known_mode, known_ret);
4108      return MIN (num0, num1);
4109
4110    case PLUS:  case MINUS:
4111      /* For addition and subtraction, we can have a 1-bit carry.  However,
4112	 if we are subtracting 1 from a positive number, there will not
4113	 be such a carry.  Furthermore, if the positive number is known to
4114	 be 0 or 1, we know the result is either -1 or 0.  */
4115
4116      if (code == PLUS && XEXP (x, 1) == constm1_rtx
4117	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4118	{
4119	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4120	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4121	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4122		    : bitwidth - floor_log2 (nonzero) - 1);
4123	}
4124
4125      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4126					 known_x, known_mode, known_ret);
4127      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4128					 known_x, known_mode, known_ret);
4129      result = MAX (1, MIN (num0, num1) - 1);
4130
4131#ifdef POINTERS_EXTEND_UNSIGNED
4132      /* If pointers extend signed and this is an addition or subtraction
4133	 to a pointer in Pmode, all the bits above ptr_mode are known to be
4134	 sign bit copies.  */
4135      if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4136	  && (code == PLUS || code == MINUS)
4137	  && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4138	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4139			     - GET_MODE_BITSIZE (ptr_mode) + 1),
4140		      result);
4141#endif
4142      return result;
4143
4144    case MULT:
4145      /* The number of bits of the product is the sum of the number of
4146	 bits of both terms.  However, unless one of the terms if known
4147	 to be positive, we must allow for an additional bit since negating
4148	 a negative number can remove one sign bit copy.  */
4149
4150      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4151					 known_x, known_mode, known_ret);
4152      num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4153					 known_x, known_mode, known_ret);
4154
4155      result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4156      if (result > 0
4157	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4158	      || (((nonzero_bits (XEXP (x, 0), mode)
4159		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4160		  && ((nonzero_bits (XEXP (x, 1), mode)
4161		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4162	result--;
4163
4164      return MAX (1, result);
4165
4166    case UDIV:
4167      /* The result must be <= the first operand.  If the first operand
4168	 has the high bit set, we know nothing about the number of sign
4169	 bit copies.  */
4170      if (bitwidth > HOST_BITS_PER_WIDE_INT)
4171	return 1;
4172      else if ((nonzero_bits (XEXP (x, 0), mode)
4173		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4174	return 1;
4175      else
4176	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4177					   known_x, known_mode, known_ret);
4178
4179    case UMOD:
4180      /* The result must be <= the second operand.  */
4181      return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4182					   known_x, known_mode, known_ret);
4183
4184    case DIV:
4185      /* Similar to unsigned division, except that we have to worry about
4186	 the case where the divisor is negative, in which case we have
4187	 to add 1.  */
4188      result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4189					   known_x, known_mode, known_ret);
4190      if (result > 1
4191	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4192	      || (nonzero_bits (XEXP (x, 1), mode)
4193		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4194	result--;
4195
4196      return result;
4197
4198    case MOD:
4199      result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4200					   known_x, known_mode, known_ret);
4201      if (result > 1
4202	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4203	      || (nonzero_bits (XEXP (x, 1), mode)
4204		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4205	result--;
4206
4207      return result;
4208
4209    case ASHIFTRT:
4210      /* Shifts by a constant add to the number of bits equal to the
4211	 sign bit.  */
4212      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4213					 known_x, known_mode, known_ret);
4214      if (GET_CODE (XEXP (x, 1)) == CONST_INT
4215	  && INTVAL (XEXP (x, 1)) > 0)
4216	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4217
4218      return num0;
4219
4220    case ASHIFT:
4221      /* Left shifts destroy copies.  */
4222      if (GET_CODE (XEXP (x, 1)) != CONST_INT
4223	  || INTVAL (XEXP (x, 1)) < 0
4224	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4225	return 1;
4226
4227      num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4228					 known_x, known_mode, known_ret);
4229      return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4230
4231    case IF_THEN_ELSE:
4232      num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4233					 known_x, known_mode, known_ret);
4234      num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4235					 known_x, known_mode, known_ret);
4236      return MIN (num0, num1);
4237
4238    case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4239    case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4240    case GEU: case GTU: case LEU: case LTU:
4241    case UNORDERED: case ORDERED:
4242      /* If the constant is negative, take its 1's complement and remask.
4243	 Then see how many zero bits we have.  */
4244      nonzero = STORE_FLAG_VALUE;
4245      if (bitwidth <= HOST_BITS_PER_WIDE_INT
4246	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4247	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4248
4249      return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4250
4251    default:
4252      break;
4253    }
4254
4255  /* If we haven't been able to figure it out by one of the above rules,
4256     see if some of the high-order bits are known to be zero.  If so,
4257     count those bits and return one less than that amount.  If we can't
4258     safely compute the mask for this mode, always return BITWIDTH.  */
4259
4260  bitwidth = GET_MODE_BITSIZE (mode);
4261  if (bitwidth > HOST_BITS_PER_WIDE_INT)
4262    return 1;
4263
4264  nonzero = nonzero_bits (x, mode);
4265  return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4266	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4267}
4268
4269/* Calculate the rtx_cost of a single instruction.  A return value of
4270   zero indicates an instruction pattern without a known cost.  */
4271
4272int
4273insn_rtx_cost (rtx pat)
4274{
4275  int i, cost;
4276  rtx set;
4277
4278  /* Extract the single set rtx from the instruction pattern.
4279     We can't use single_set since we only have the pattern.  */
4280  if (GET_CODE (pat) == SET)
4281    set = pat;
4282  else if (GET_CODE (pat) == PARALLEL)
4283    {
4284      set = NULL_RTX;
4285      for (i = 0; i < XVECLEN (pat, 0); i++)
4286	{
4287	  rtx x = XVECEXP (pat, 0, i);
4288	  if (GET_CODE (x) == SET)
4289	    {
4290	      if (set)
4291		return 0;
4292	      set = x;
4293	    }
4294	}
4295      if (!set)
4296	return 0;
4297    }
4298  else
4299    return 0;
4300
4301  cost = rtx_cost (SET_SRC (set), SET);
4302  return cost > 0 ? cost : COSTS_N_INSNS (1);
4303}
4304
4305/* Given an insn INSN and condition COND, return the condition in a
4306   canonical form to simplify testing by callers.  Specifically:
4307
4308   (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4309   (2) Both operands will be machine operands; (cc0) will have been replaced.
4310   (3) If an operand is a constant, it will be the second operand.
4311   (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4312       for GE, GEU, and LEU.
4313
4314   If the condition cannot be understood, or is an inequality floating-point
4315   comparison which needs to be reversed, 0 will be returned.
4316
4317   If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4318
4319   If EARLIEST is nonzero, it is a pointer to a place where the earliest
4320   insn used in locating the condition was found.  If a replacement test
4321   of the condition is desired, it should be placed in front of that
4322   insn and we will be sure that the inputs are still valid.
4323
4324   If WANT_REG is nonzero, we wish the condition to be relative to that
4325   register, if possible.  Therefore, do not canonicalize the condition
4326   further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4327   to be a compare to a CC mode register.
4328
4329   If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4330   and at INSN.  */
4331
4332rtx
4333canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4334			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4335{
4336  enum rtx_code code;
4337  rtx prev = insn;
4338  rtx set;
4339  rtx tem;
4340  rtx op0, op1;
4341  int reverse_code = 0;
4342  enum machine_mode mode;
4343  basic_block bb = BLOCK_FOR_INSN (insn);
4344
4345  code = GET_CODE (cond);
4346  mode = GET_MODE (cond);
4347  op0 = XEXP (cond, 0);
4348  op1 = XEXP (cond, 1);
4349
4350  if (reverse)
4351    code = reversed_comparison_code (cond, insn);
4352  if (code == UNKNOWN)
4353    return 0;
4354
4355  if (earliest)
4356    *earliest = insn;
4357
4358  /* If we are comparing a register with zero, see if the register is set
4359     in the previous insn to a COMPARE or a comparison operation.  Perform
4360     the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4361     in cse.c  */
4362
4363  while ((GET_RTX_CLASS (code) == RTX_COMPARE
4364	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4365	 && op1 == CONST0_RTX (GET_MODE (op0))
4366	 && op0 != want_reg)
4367    {
4368      /* Set nonzero when we find something of interest.  */
4369      rtx x = 0;
4370
4371#ifdef HAVE_cc0
4372      /* If comparison with cc0, import actual comparison from compare
4373	 insn.  */
4374      if (op0 == cc0_rtx)
4375	{
4376	  if ((prev = prev_nonnote_insn (prev)) == 0
4377	      || !NONJUMP_INSN_P (prev)
4378	      || (set = single_set (prev)) == 0
4379	      || SET_DEST (set) != cc0_rtx)
4380	    return 0;
4381
4382	  op0 = SET_SRC (set);
4383	  op1 = CONST0_RTX (GET_MODE (op0));
4384	  if (earliest)
4385	    *earliest = prev;
4386	}
4387#endif
4388
4389      /* If this is a COMPARE, pick up the two things being compared.  */
4390      if (GET_CODE (op0) == COMPARE)
4391	{
4392	  op1 = XEXP (op0, 1);
4393	  op0 = XEXP (op0, 0);
4394	  continue;
4395	}
4396      else if (!REG_P (op0))
4397	break;
4398
4399      /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4400	 stop if it isn't a single set or if it has a REG_INC note because
4401	 we don't want to bother dealing with it.  */
4402
4403      if ((prev = prev_nonnote_insn (prev)) == 0
4404	  || !NONJUMP_INSN_P (prev)
4405	  || FIND_REG_INC_NOTE (prev, NULL_RTX)
4406	  /* In cfglayout mode, there do not have to be labels at the
4407	     beginning of a block, or jumps at the end, so the previous
4408	     conditions would not stop us when we reach bb boundary.  */
4409	  || BLOCK_FOR_INSN (prev) != bb)
4410	break;
4411
4412      set = set_of (op0, prev);
4413
4414      if (set
4415	  && (GET_CODE (set) != SET
4416	      || !rtx_equal_p (SET_DEST (set), op0)))
4417	break;
4418
4419      /* If this is setting OP0, get what it sets it to if it looks
4420	 relevant.  */
4421      if (set)
4422	{
4423	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4424#ifdef FLOAT_STORE_FLAG_VALUE
4425	  REAL_VALUE_TYPE fsfv;
4426#endif
4427
4428	  /* ??? We may not combine comparisons done in a CCmode with
4429	     comparisons not done in a CCmode.  This is to aid targets
4430	     like Alpha that have an IEEE compliant EQ instruction, and
4431	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
4432	     actually artificial, simply to prevent the combination, but
4433	     should not affect other platforms.
4434
4435	     However, we must allow VOIDmode comparisons to match either
4436	     CCmode or non-CCmode comparison, because some ports have
4437	     modeless comparisons inside branch patterns.
4438
4439	     ??? This mode check should perhaps look more like the mode check
4440	     in simplify_comparison in combine.  */
4441
4442	  if ((GET_CODE (SET_SRC (set)) == COMPARE
4443	       || (((code == NE
4444		     || (code == LT
4445			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4446			 && (GET_MODE_BITSIZE (inner_mode)
4447			     <= HOST_BITS_PER_WIDE_INT)
4448			 && (STORE_FLAG_VALUE
4449			     & ((HOST_WIDE_INT) 1
4450				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4451#ifdef FLOAT_STORE_FLAG_VALUE
4452		     || (code == LT
4453			 && SCALAR_FLOAT_MODE_P (inner_mode)
4454			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4455			     REAL_VALUE_NEGATIVE (fsfv)))
4456#endif
4457		     ))
4458		   && COMPARISON_P (SET_SRC (set))))
4459	      && (((GET_MODE_CLASS (mode) == MODE_CC)
4460		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4461		  || mode == VOIDmode || inner_mode == VOIDmode))
4462	    x = SET_SRC (set);
4463	  else if (((code == EQ
4464		     || (code == GE
4465			 && (GET_MODE_BITSIZE (inner_mode)
4466			     <= HOST_BITS_PER_WIDE_INT)
4467			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4468			 && (STORE_FLAG_VALUE
4469			     & ((HOST_WIDE_INT) 1
4470				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4471#ifdef FLOAT_STORE_FLAG_VALUE
4472		     || (code == GE
4473			 && SCALAR_FLOAT_MODE_P (inner_mode)
4474			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4475			     REAL_VALUE_NEGATIVE (fsfv)))
4476#endif
4477		     ))
4478		   && COMPARISON_P (SET_SRC (set))
4479		   && (((GET_MODE_CLASS (mode) == MODE_CC)
4480			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
4481		       || mode == VOIDmode || inner_mode == VOIDmode))
4482
4483	    {
4484	      reverse_code = 1;
4485	      x = SET_SRC (set);
4486	    }
4487	  else
4488	    break;
4489	}
4490
4491      else if (reg_set_p (op0, prev))
4492	/* If this sets OP0, but not directly, we have to give up.  */
4493	break;
4494
4495      if (x)
4496	{
4497	  /* If the caller is expecting the condition to be valid at INSN,
4498	     make sure X doesn't change before INSN.  */
4499	  if (valid_at_insn_p)
4500	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4501	      break;
4502	  if (COMPARISON_P (x))
4503	    code = GET_CODE (x);
4504	  if (reverse_code)
4505	    {
4506	      code = reversed_comparison_code (x, prev);
4507	      if (code == UNKNOWN)
4508		return 0;
4509	      reverse_code = 0;
4510	    }
4511
4512	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4513	  if (earliest)
4514	    *earliest = prev;
4515	}
4516    }
4517
4518  /* If constant is first, put it last.  */
4519  if (CONSTANT_P (op0))
4520    code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4521
4522  /* If OP0 is the result of a comparison, we weren't able to find what
4523     was really being compared, so fail.  */
4524  if (!allow_cc_mode
4525      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4526    return 0;
4527
4528  /* Canonicalize any ordered comparison with integers involving equality
4529     if we can do computations in the relevant mode and we do not
4530     overflow.  */
4531
4532  if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4533      && GET_CODE (op1) == CONST_INT
4534      && GET_MODE (op0) != VOIDmode
4535      && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4536    {
4537      HOST_WIDE_INT const_val = INTVAL (op1);
4538      unsigned HOST_WIDE_INT uconst_val = const_val;
4539      unsigned HOST_WIDE_INT max_val
4540	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4541
4542      switch (code)
4543	{
4544	case LE:
4545	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4546	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4547	  break;
4548
4549	/* When cross-compiling, const_val might be sign-extended from
4550	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4551	case GE:
4552	  if ((HOST_WIDE_INT) (const_val & max_val)
4553	      != (((HOST_WIDE_INT) 1
4554		   << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4555	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4556	  break;
4557
4558	case LEU:
4559	  if (uconst_val < max_val)
4560	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4561	  break;
4562
4563	case GEU:
4564	  if (uconst_val != 0)
4565	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4566	  break;
4567
4568	default:
4569	  break;
4570	}
4571    }
4572
4573  /* Never return CC0; return zero instead.  */
4574  if (CC0_P (op0))
4575    return 0;
4576
4577  return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4578}
4579
4580/* Given a jump insn JUMP, return the condition that will cause it to branch
4581   to its JUMP_LABEL.  If the condition cannot be understood, or is an
4582   inequality floating-point comparison which needs to be reversed, 0 will
4583   be returned.
4584
4585   If EARLIEST is nonzero, it is a pointer to a place where the earliest
4586   insn used in locating the condition was found.  If a replacement test
4587   of the condition is desired, it should be placed in front of that
4588   insn and we will be sure that the inputs are still valid.  If EARLIEST
4589   is null, the returned condition will be valid at INSN.
4590
4591   If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4592   compare CC mode register.
4593
4594   VALID_AT_INSN_P is the same as for canonicalize_condition.  */
4595
4596rtx
4597get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4598{
4599  rtx cond;
4600  int reverse;
4601  rtx set;
4602
4603  /* If this is not a standard conditional jump, we can't parse it.  */
4604  if (!JUMP_P (jump)
4605      || ! any_condjump_p (jump))
4606    return 0;
4607  set = pc_set (jump);
4608
4609  cond = XEXP (SET_SRC (set), 0);
4610
4611  /* If this branches to JUMP_LABEL when the condition is false, reverse
4612     the condition.  */
4613  reverse
4614    = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4615      && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4616
4617  return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4618				 allow_cc_mode, valid_at_insn_p);
4619}
4620
4621/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4622   TARGET_MODE_REP_EXTENDED.
4623
4624   Note that we assume that the property of
4625   TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4626   narrower than mode B.  I.e., if A is a mode narrower than B then in
4627   order to be able to operate on it in mode B, mode A needs to
4628   satisfy the requirements set by the representation of mode B.  */
4629
4630static void
4631init_num_sign_bit_copies_in_rep (void)
4632{
4633  enum machine_mode mode, in_mode;
4634
4635  for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4636       in_mode = GET_MODE_WIDER_MODE (mode))
4637    for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4638	 mode = GET_MODE_WIDER_MODE (mode))
4639      {
4640	enum machine_mode i;
4641
4642	/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4643	   extends to the next widest mode.  */
4644	gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4645		    || GET_MODE_WIDER_MODE (mode) == in_mode);
4646
4647	/* We are in in_mode.  Count how many bits outside of mode
4648	   have to be copies of the sign-bit.  */
4649	for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4650	  {
4651	    enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4652
4653	    if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4654		/* We can only check sign-bit copies starting from the
4655		   top-bit.  In order to be able to check the bits we
4656		   have already seen we pretend that subsequent bits
4657		   have to be sign-bit copies too.  */
4658		|| num_sign_bit_copies_in_rep [in_mode][mode])
4659	      num_sign_bit_copies_in_rep [in_mode][mode]
4660		+= GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4661	  }
4662      }
4663}
4664
4665/* Suppose that truncation from the machine mode of X to MODE is not a
4666   no-op.  See if there is anything special about X so that we can
4667   assume it already contains a truncated value of MODE.  */
4668
4669bool
4670truncated_to_mode (enum machine_mode mode, rtx x)
4671{
4672  /* This register has already been used in MODE without explicit
4673     truncation.  */
4674  if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4675    return true;
4676
4677  /* See if we already satisfy the requirements of MODE.  If yes we
4678     can just switch to MODE.  */
4679  if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4680      && (num_sign_bit_copies (x, GET_MODE (x))
4681	  >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4682    return true;
4683
4684  return false;
4685}
4686
4687/* Initialize non_rtx_starting_operands, which is used to speed up
4688   for_each_rtx.  */
4689void
4690init_rtlanal (void)
4691{
4692  int i;
4693  for (i = 0; i < NUM_RTX_CODE; i++)
4694    {
4695      const char *format = GET_RTX_FORMAT (i);
4696      const char *first = strpbrk (format, "eEV");
4697      non_rtx_starting_operands[i] = first ? first - format : -1;
4698    }
4699
4700  init_num_sign_bit_copies_in_rep ();
4701}
4702
4703/* Check whether this is a constant pool constant.  */
4704bool
4705constant_pool_constant_p (rtx x)
4706{
4707  x = avoid_constant_pool_reference (x);
4708  return GET_CODE (x) == CONST_DOUBLE;
4709}
4710
4711