flow.c revision 161651
1/* Data flow analysis for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22/* This file contains the data flow analysis pass of the compiler.  It
23   computes data flow information which tells combine_instructions
24   which insns to consider combining and controls register allocation.
25
26   Additional data flow information that is too bulky to record is
27   generated during the analysis, and is used at that time to create
28   autoincrement and autodecrement addressing.
29
30   The first step is dividing the function into basic blocks.
31   find_basic_blocks does this.  Then life_analysis determines
32   where each register is live and where it is dead.
33
34   ** find_basic_blocks **
35
36   find_basic_blocks divides the current function's rtl into basic
37   blocks and constructs the CFG.  The blocks are recorded in the
38   basic_block_info array; the CFG exists in the edge structures
39   referenced by the blocks.
40
41   find_basic_blocks also finds any unreachable loops and deletes them.
42
43   ** life_analysis **
44
45   life_analysis is called immediately after find_basic_blocks.
46   It uses the basic block information to determine where each
47   hard or pseudo register is live.
48
49   ** live-register info **
50
51   The information about where each register is live is in two parts:
52   the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54   basic_block->global_live_at_start has an element for each basic
55   block, and the element is a bit-vector with a bit for each hard or
56   pseudo register.  The bit is 1 if the register is live at the
57   beginning of the basic block.
58
59   Two types of elements can be added to an insn's REG_NOTES.
60   A REG_DEAD note is added to an insn's REG_NOTES for any register
61   that meets both of two conditions:  The value in the register is not
62   needed in subsequent insns and the insn does not replace the value in
63   the register (in the case of multi-word hard registers, the value in
64   each register must be replaced by the insn to avoid a REG_DEAD note).
65
66   In the vast majority of cases, an object in a REG_DEAD note will be
67   used somewhere in the insn.  The (rare) exception to this is if an
68   insn uses a multi-word hard register and only some of the registers are
69   needed in subsequent insns.  In that case, REG_DEAD notes will be
70   provided for those hard registers that are not subsequently needed.
71   Partial REG_DEAD notes of this type do not occur when an insn sets
72   only some of the hard registers used in such a multi-word operand;
73   omitting REG_DEAD notes for objects stored in an insn is optional and
74   the desire to do so does not justify the complexity of the partial
75   REG_DEAD notes.
76
77   REG_UNUSED notes are added for each register that is set by the insn
78   but is unused subsequently (if every register set by the insn is unused
79   and the insn does not reference memory or have some other side-effect,
80   the insn is deleted instead).  If only part of a multi-word hard
81   register is used in a subsequent insn, REG_UNUSED notes are made for
82   the parts that will not be used.
83
84   To determine which registers are live after any insn, one can
85   start from the beginning of the basic block and scan insns, noting
86   which registers are set by each insn and which die there.
87
88   ** Other actions of life_analysis **
89
90   life_analysis sets up the LOG_LINKS fields of insns because the
91   information needed to do so is readily available.
92
93   life_analysis deletes insns whose only effect is to store a value
94   that is never used.
95
96   life_analysis notices cases where a reference to a register as
97   a memory address can be combined with a preceding or following
98   incrementation or decrementation of the register.  The separate
99   instruction to increment or decrement is deleted and the address
100   is changed to a POST_INC or similar rtx.
101
102   Each time an incrementing or decrementing address is created,
103   a REG_INC element is added to the insn's REG_NOTES list.
104
105   life_analysis fills in certain vectors containing information about
106   register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107   REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109   life_analysis sets current_function_sp_is_unchanging if the function
110   doesn't modify the stack pointer.  */
111
112/* TODO:
113
114   Split out from life_analysis:
115	- local property discovery (bb->local_live, bb->local_set)
116	- global property computation
117	- log links creation
118	- pre/post modify transformation
119*/
120
121#include "config.h"
122#include "system.h"
123#include "coretypes.h"
124#include "tm.h"
125#include "tree.h"
126#include "rtl.h"
127#include "tm_p.h"
128#include "hard-reg-set.h"
129#include "basic-block.h"
130#include "insn-config.h"
131#include "regs.h"
132#include "flags.h"
133#include "output.h"
134#include "function.h"
135#include "except.h"
136#include "toplev.h"
137#include "recog.h"
138#include "expr.h"
139#include "timevar.h"
140
141#include "obstack.h"
142#include "splay-tree.h"
143
144#ifndef HAVE_epilogue
145#define HAVE_epilogue 0
146#endif
147#ifndef HAVE_prologue
148#define HAVE_prologue 0
149#endif
150#ifndef HAVE_sibcall_epilogue
151#define HAVE_sibcall_epilogue 0
152#endif
153
154#ifndef EPILOGUE_USES
155#define EPILOGUE_USES(REGNO)  0
156#endif
157#ifndef EH_USES
158#define EH_USES(REGNO)  0
159#endif
160
161#ifdef HAVE_conditional_execution
162#ifndef REVERSE_CONDEXEC_PREDICATES_P
163#define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164#endif
165#endif
166
167/* Nonzero if the second flow pass has completed.  */
168int flow2_completed;
169
170/* Maximum register number used in this function, plus one.  */
171
172int max_regno;
173
174/* Indexed by n, giving various register information */
175
176varray_type reg_n_info;
177
178/* Size of a regset for the current function,
179   in (1) bytes and (2) elements.  */
180
181int regset_bytes;
182int regset_size;
183
184/* Regset of regs live when calls to `setjmp'-like functions happen.  */
185/* ??? Does this exist only for the setjmp-clobbered warning message?  */
186
187regset regs_live_at_setjmp;
188
189/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190   that have to go in the same hard reg.
191   The first two regs in the list are a pair, and the next two
192   are another pair, etc.  */
193rtx regs_may_share;
194
195/* Callback that determines if it's ok for a function to have no
196   noreturn attribute.  */
197int (*lang_missing_noreturn_ok_p) (tree);
198
199/* Set of registers that may be eliminable.  These are handled specially
200   in updating regs_ever_live.  */
201
202static HARD_REG_SET elim_reg_set;
203
204/* Holds information for tracking conditional register life information.  */
205struct reg_cond_life_info
206{
207  /* A boolean expression of conditions under which a register is dead.  */
208  rtx condition;
209  /* Conditions under which a register is dead at the basic block end.  */
210  rtx orig_condition;
211
212  /* A boolean expression of conditions under which a register has been
213     stored into.  */
214  rtx stores;
215
216  /* ??? Could store mask of bytes that are dead, so that we could finally
217     track lifetimes of multi-word registers accessed via subregs.  */
218};
219
220/* For use in communicating between propagate_block and its subroutines.
221   Holds all information needed to compute life and def-use information.  */
222
223struct propagate_block_info
224{
225  /* The basic block we're considering.  */
226  basic_block bb;
227
228  /* Bit N is set if register N is conditionally or unconditionally live.  */
229  regset reg_live;
230
231  /* Bit N is set if register N is set this insn.  */
232  regset new_set;
233
234  /* Element N is the next insn that uses (hard or pseudo) register N
235     within the current basic block; or zero, if there is no such insn.  */
236  rtx *reg_next_use;
237
238  /* Contains a list of all the MEMs we are tracking for dead store
239     elimination.  */
240  rtx mem_set_list;
241
242  /* If non-null, record the set of registers set unconditionally in the
243     basic block.  */
244  regset local_set;
245
246  /* If non-null, record the set of registers set conditionally in the
247     basic block.  */
248  regset cond_local_set;
249
250#ifdef HAVE_conditional_execution
251  /* Indexed by register number, holds a reg_cond_life_info for each
252     register that is not unconditionally live or dead.  */
253  splay_tree reg_cond_dead;
254
255  /* Bit N is set if register N is in an expression in reg_cond_dead.  */
256  regset reg_cond_reg;
257#endif
258
259  /* The length of mem_set_list.  */
260  int mem_set_list_len;
261
262  /* Nonzero if the value of CC0 is live.  */
263  int cc0_live;
264
265  /* Flags controlling the set of information propagate_block collects.  */
266  int flags;
267};
268
269/* Number of dead insns removed.  */
270static int ndead;
271
272/* Maximum length of pbi->mem_set_list before we start dropping
273   new elements on the floor.  */
274#define MAX_MEM_SET_LIST_LEN	100
275
276/* Forward declarations */
277static int verify_wide_reg_1 (rtx *, void *);
278static void verify_wide_reg (int, basic_block);
279static void verify_local_live_at_start (regset, basic_block);
280static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
281static void notice_stack_pointer_modification (rtx);
282static void mark_reg (rtx, void *);
283static void mark_regs_live_at_end (regset);
284static void calculate_global_regs_live (sbitmap, sbitmap, int);
285static void propagate_block_delete_insn (rtx);
286static rtx propagate_block_delete_libcall (rtx, rtx);
287static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
288static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
289static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
290static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
291			rtx, rtx, int);
292static int find_regno_partial (rtx *, void *);
293
294#ifdef HAVE_conditional_execution
295static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
296static void free_reg_cond_life_info (splay_tree_value);
297static int flush_reg_cond_reg_1 (splay_tree_node, void *);
298static void flush_reg_cond_reg (struct propagate_block_info *, int);
299static rtx elim_reg_cond (rtx, unsigned int);
300static rtx ior_reg_cond (rtx, rtx, int);
301static rtx not_reg_cond (rtx);
302static rtx and_reg_cond (rtx, rtx, int);
303#endif
304#ifdef AUTO_INC_DEC
305static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
306			      rtx, rtx);
307static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
308static int try_pre_increment_1 (struct propagate_block_info *, rtx);
309static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
310#endif
311static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
312static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
313void debug_flow_info (void);
314static void add_to_mem_set_list (struct propagate_block_info *, rtx);
315static int invalidate_mems_from_autoinc (rtx *, void *);
316static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
317static void clear_log_links (sbitmap);
318static int count_or_remove_death_notes_bb (basic_block, int);
319
320
321void
322check_function_return_warnings (void)
323{
324  if (warn_missing_noreturn
325      && !TREE_THIS_VOLATILE (cfun->decl)
326      && EXIT_BLOCK_PTR->pred == NULL
327      && (lang_missing_noreturn_ok_p
328	  && !lang_missing_noreturn_ok_p (cfun->decl)))
329    warning ("function might be possible candidate for attribute `noreturn'");
330
331  /* If we have a path to EXIT, then we do return.  */
332  if (TREE_THIS_VOLATILE (cfun->decl)
333      && EXIT_BLOCK_PTR->pred != NULL)
334    warning ("`noreturn' function does return");
335
336  /* If the clobber_return_insn appears in some basic block, then we
337     do reach the end without returning a value.  */
338  else if (warn_return_type
339	   && cfun->x_clobber_return_insn != NULL
340	   && EXIT_BLOCK_PTR->pred != NULL)
341    {
342      int max_uid = get_max_uid ();
343
344      /* If clobber_return_insn was excised by jump1, then renumber_insns
345	 can make max_uid smaller than the number still recorded in our rtx.
346	 That's fine, since this is a quick way of verifying that the insn
347	 is no longer in the chain.  */
348      if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
349	{
350	  rtx insn;
351
352	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
353	    if (insn == cfun->x_clobber_return_insn)
354	      {
355	        warning ("control reaches end of non-void function");
356		break;
357	      }
358	}
359    }
360}
361
362/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
363   note associated with the BLOCK.  */
364
365rtx
366first_insn_after_basic_block_note (basic_block block)
367{
368  rtx insn;
369
370  /* Get the first instruction in the block.  */
371  insn = BB_HEAD (block);
372
373  if (insn == NULL_RTX)
374    return NULL_RTX;
375  if (GET_CODE (insn) == CODE_LABEL)
376    insn = NEXT_INSN (insn);
377  if (!NOTE_INSN_BASIC_BLOCK_P (insn))
378    abort ();
379
380  return NEXT_INSN (insn);
381}
382
383/* Perform data flow analysis.
384   F is the first insn of the function; FLAGS is a set of PROP_* flags
385   to be used in accumulating flow info.  */
386
387void
388life_analysis (rtx f, FILE *file, int flags)
389{
390#ifdef ELIMINABLE_REGS
391  int i;
392  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
393#endif
394
395  /* Record which registers will be eliminated.  We use this in
396     mark_used_regs.  */
397
398  CLEAR_HARD_REG_SET (elim_reg_set);
399
400#ifdef ELIMINABLE_REGS
401  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
402    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
403#else
404  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
405#endif
406
407
408#ifdef CANNOT_CHANGE_MODE_CLASS
409  if (flags & PROP_REG_INFO)
410    init_subregs_of_mode ();
411#endif
412
413  if (! optimize)
414    flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
415
416  /* The post-reload life analysis have (on a global basis) the same
417     registers live as was computed by reload itself.  elimination
418     Otherwise offsets and such may be incorrect.
419
420     Reload will make some registers as live even though they do not
421     appear in the rtl.
422
423     We don't want to create new auto-incs after reload, since they
424     are unlikely to be useful and can cause problems with shared
425     stack slots.  */
426  if (reload_completed)
427    flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
428
429  /* We want alias analysis information for local dead store elimination.  */
430  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
431    init_alias_analysis ();
432
433  /* Always remove no-op moves.  Do this before other processing so
434     that we don't have to keep re-scanning them.  */
435  delete_noop_moves (f);
436
437  /* Some targets can emit simpler epilogues if they know that sp was
438     not ever modified during the function.  After reload, of course,
439     we've already emitted the epilogue so there's no sense searching.  */
440  if (! reload_completed)
441    notice_stack_pointer_modification (f);
442
443  /* Allocate and zero out data structures that will record the
444     data from lifetime analysis.  */
445  allocate_reg_life_data ();
446  allocate_bb_life_data ();
447
448  /* Find the set of registers live on function exit.  */
449  mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
450
451  /* "Update" life info from zero.  It'd be nice to begin the
452     relaxation with just the exit and noreturn blocks, but that set
453     is not immediately handy.  */
454
455  if (flags & PROP_REG_INFO)
456    {
457      memset (regs_ever_live, 0, sizeof (regs_ever_live));
458      memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
459    }
460  update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
461
462  /* Clean up.  */
463  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
464    end_alias_analysis ();
465
466  if (file)
467    dump_flow_info (file);
468
469  free_basic_block_vars (1);
470
471  /* Removing dead insns should've made jumptables really dead.  */
472  delete_dead_jumptables ();
473}
474
475/* A subroutine of verify_wide_reg, called through for_each_rtx.
476   Search for REGNO.  If found, return 2 if it is not wider than
477   word_mode.  */
478
479static int
480verify_wide_reg_1 (rtx *px, void *pregno)
481{
482  rtx x = *px;
483  unsigned int regno = *(int *) pregno;
484
485  if (GET_CODE (x) == REG && REGNO (x) == regno)
486    {
487      if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
488	return 2;
489      return 1;
490    }
491  return 0;
492}
493
494/* A subroutine of verify_local_live_at_start.  Search through insns
495   of BB looking for register REGNO.  */
496
497static void
498verify_wide_reg (int regno, basic_block bb)
499{
500  rtx head = BB_HEAD (bb), end = BB_END (bb);
501
502  while (1)
503    {
504      if (INSN_P (head))
505	{
506	  int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
507	  if (r == 1)
508	    return;
509	  if (r == 2)
510	    break;
511	}
512      if (head == end)
513	break;
514      head = NEXT_INSN (head);
515    }
516
517  if (rtl_dump_file)
518    {
519      fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
520      dump_bb (bb, rtl_dump_file);
521    }
522  abort ();
523}
524
525/* A subroutine of update_life_info.  Verify that there are no untoward
526   changes in live_at_start during a local update.  */
527
528static void
529verify_local_live_at_start (regset new_live_at_start, basic_block bb)
530{
531  if (reload_completed)
532    {
533      /* After reload, there are no pseudos, nor subregs of multi-word
534	 registers.  The regsets should exactly match.  */
535      if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
536	{
537	  if (rtl_dump_file)
538	    {
539	      fprintf (rtl_dump_file,
540		       "live_at_start mismatch in bb %d, aborting\nNew:\n",
541		       bb->index);
542	      debug_bitmap_file (rtl_dump_file, new_live_at_start);
543	      fputs ("Old:\n", rtl_dump_file);
544	      dump_bb (bb, rtl_dump_file);
545	    }
546	  abort ();
547	}
548    }
549  else
550    {
551      int i;
552
553      /* Find the set of changed registers.  */
554      XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
555
556      EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
557	{
558	  /* No registers should die.  */
559	  if (REGNO_REG_SET_P (bb->global_live_at_start, i))
560	    {
561	      if (rtl_dump_file)
562		{
563		  fprintf (rtl_dump_file,
564			   "Register %d died unexpectedly.\n", i);
565		  dump_bb (bb, rtl_dump_file);
566		}
567	      abort ();
568	    }
569
570	  /* Verify that the now-live register is wider than word_mode.  */
571	  verify_wide_reg (i, bb);
572	});
573    }
574}
575
576/* Updates life information starting with the basic blocks set in BLOCKS.
577   If BLOCKS is null, consider it to be the universal set.
578
579   If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
580   we are only expecting local modifications to basic blocks.  If we find
581   extra registers live at the beginning of a block, then we either killed
582   useful data, or we have a broken split that wants data not provided.
583   If we find registers removed from live_at_start, that means we have
584   a broken peephole that is killing a register it shouldn't.
585
586   ??? This is not true in one situation -- when a pre-reload splitter
587   generates subregs of a multi-word pseudo, current life analysis will
588   lose the kill.  So we _can_ have a pseudo go live.  How irritating.
589
590   It is also not true when a peephole decides that it doesn't need one
591   or more of the inputs.
592
593   Including PROP_REG_INFO does not properly refresh regs_ever_live
594   unless the caller resets it to zero.  */
595
596int
597update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
598{
599  regset tmp;
600  regset_head tmp_head;
601  int i;
602  int stabilized_prop_flags = prop_flags;
603  basic_block bb;
604
605  tmp = INITIALIZE_REG_SET (tmp_head);
606  ndead = 0;
607
608  timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
609		? TV_LIFE_UPDATE : TV_LIFE);
610
611  /* Changes to the CFG are only allowed when
612     doing a global update for the entire CFG.  */
613  if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
614      && (extent == UPDATE_LIFE_LOCAL || blocks))
615    abort ();
616
617  /* For a global update, we go through the relaxation process again.  */
618  if (extent != UPDATE_LIFE_LOCAL)
619    {
620      for ( ; ; )
621	{
622	  int changed = 0;
623
624	  calculate_global_regs_live (blocks, blocks,
625				prop_flags & (PROP_SCAN_DEAD_CODE
626					      | PROP_SCAN_DEAD_STORES
627					      | PROP_ALLOW_CFG_CHANGES));
628
629	  if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
630	      != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
631	    break;
632
633	  /* Removing dead code may allow the CFG to be simplified which
634	     in turn may allow for further dead code detection / removal.  */
635	  FOR_EACH_BB_REVERSE (bb)
636	    {
637	      COPY_REG_SET (tmp, bb->global_live_at_end);
638	      changed |= propagate_block (bb, tmp, NULL, NULL,
639				prop_flags & (PROP_SCAN_DEAD_CODE
640					      | PROP_SCAN_DEAD_STORES
641					      | PROP_KILL_DEAD_CODE));
642	    }
643
644	  /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
645	     subsequent propagate_block calls, since removing or acting as
646	     removing dead code can affect global register liveness, which
647	     is supposed to be finalized for this call after this loop.  */
648	  stabilized_prop_flags
649	    &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
650		 | PROP_KILL_DEAD_CODE);
651
652	  if (! changed)
653	    break;
654
655	  /* We repeat regardless of what cleanup_cfg says.  If there were
656	     instructions deleted above, that might have been only a
657	     partial improvement (see MAX_MEM_SET_LIST_LEN usage).
658	     Further improvement may be possible.  */
659	  cleanup_cfg (CLEANUP_EXPENSIVE);
660
661	  /* Zap the life information from the last round.  If we don't
662	     do this, we can wind up with registers that no longer appear
663	     in the code being marked live at entry, which twiggs bogus
664	     warnings from regno_uninitialized.  */
665	  FOR_EACH_BB (bb)
666	    {
667	      CLEAR_REG_SET (bb->global_live_at_start);
668	      CLEAR_REG_SET (bb->global_live_at_end);
669	    }
670	}
671
672      /* If asked, remove notes from the blocks we'll update.  */
673      if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
674	count_or_remove_death_notes (blocks, 1);
675    }
676
677  /* Clear log links in case we are asked to (re)compute them.  */
678  if (prop_flags & PROP_LOG_LINKS)
679    clear_log_links (blocks);
680
681  if (blocks)
682    {
683      EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
684	{
685	  bb = BASIC_BLOCK (i);
686
687	  COPY_REG_SET (tmp, bb->global_live_at_end);
688	  propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
689
690	  if (extent == UPDATE_LIFE_LOCAL)
691	    verify_local_live_at_start (tmp, bb);
692	});
693    }
694  else
695    {
696      FOR_EACH_BB_REVERSE (bb)
697	{
698	  COPY_REG_SET (tmp, bb->global_live_at_end);
699
700	  propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
701
702	  if (extent == UPDATE_LIFE_LOCAL)
703	    verify_local_live_at_start (tmp, bb);
704	}
705    }
706
707  FREE_REG_SET (tmp);
708
709  if (prop_flags & PROP_REG_INFO)
710    {
711      /* The only pseudos that are live at the beginning of the function
712	 are those that were not set anywhere in the function.  local-alloc
713	 doesn't know how to handle these correctly, so mark them as not
714	 local to any one basic block.  */
715      EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
716				 FIRST_PSEUDO_REGISTER, i,
717				 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
718
719      /* We have a problem with any pseudoreg that lives across the setjmp.
720	 ANSI says that if a user variable does not change in value between
721	 the setjmp and the longjmp, then the longjmp preserves it.  This
722	 includes longjmp from a place where the pseudo appears dead.
723	 (In principle, the value still exists if it is in scope.)
724	 If the pseudo goes in a hard reg, some other value may occupy
725	 that hard reg where this pseudo is dead, thus clobbering the pseudo.
726	 Conclusion: such a pseudo must not go in a hard reg.  */
727      EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
728				 FIRST_PSEUDO_REGISTER, i,
729				 {
730				   if (regno_reg_rtx[i] != 0)
731				     {
732				       REG_LIVE_LENGTH (i) = -1;
733				       REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
734				     }
735				 });
736    }
737  timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
738	       ? TV_LIFE_UPDATE : TV_LIFE);
739  if (ndead && rtl_dump_file)
740    fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
741  return ndead;
742}
743
744/* Update life information in all blocks where BB_DIRTY is set.  */
745
746int
747update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
748{
749  sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
750  int n = 0;
751  basic_block bb;
752  int retval = 0;
753
754  sbitmap_zero (update_life_blocks);
755  FOR_EACH_BB (bb)
756    {
757      if (extent == UPDATE_LIFE_LOCAL)
758	{
759	  if (bb->flags & BB_DIRTY)
760	    {
761	      SET_BIT (update_life_blocks, bb->index);
762	      n++;
763	    }
764	}
765      else
766	{
767	  /* ??? Bootstrap with -march=pentium4 fails to terminate
768	     with only a partial life update.  */
769	  SET_BIT (update_life_blocks, bb->index);
770	  if (bb->flags & BB_DIRTY)
771	    n++;
772	}
773    }
774
775  if (n)
776    retval = update_life_info (update_life_blocks, extent, prop_flags);
777
778  sbitmap_free (update_life_blocks);
779  return retval;
780}
781
782/* Free the variables allocated by find_basic_blocks.
783
784   KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed.  */
785
786void
787free_basic_block_vars (int keep_head_end_p)
788{
789  if (! keep_head_end_p)
790    {
791      if (basic_block_info)
792	{
793	  clear_edges ();
794	  VARRAY_FREE (basic_block_info);
795	}
796      n_basic_blocks = 0;
797      last_basic_block = 0;
798
799      ENTRY_BLOCK_PTR->aux = NULL;
800      ENTRY_BLOCK_PTR->global_live_at_end = NULL;
801      EXIT_BLOCK_PTR->aux = NULL;
802      EXIT_BLOCK_PTR->global_live_at_start = NULL;
803    }
804}
805
806/* Delete any insns that copy a register to itself.  */
807
808int
809delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
810{
811  rtx insn, next;
812  basic_block bb;
813  int nnoops = 0;
814
815  FOR_EACH_BB (bb)
816    {
817      for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
818	{
819	  next = NEXT_INSN (insn);
820	  if (INSN_P (insn) && noop_move_p (insn))
821	    {
822	      rtx note;
823
824	      /* If we're about to remove the first insn of a libcall
825		 then move the libcall note to the next real insn and
826		 update the retval note.  */
827	      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
828		       && XEXP (note, 0) != insn)
829		{
830		  rtx new_libcall_insn = next_real_insn (insn);
831		  rtx retval_note = find_reg_note (XEXP (note, 0),
832						   REG_RETVAL, NULL_RTX);
833		  REG_NOTES (new_libcall_insn)
834		    = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
835					 REG_NOTES (new_libcall_insn));
836		  XEXP (retval_note, 0) = new_libcall_insn;
837		}
838
839	      delete_insn_and_edges (insn);
840	      nnoops++;
841	    }
842	}
843    }
844  if (nnoops && rtl_dump_file)
845    fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
846  return nnoops;
847}
848
849/* Delete any jump tables never referenced.  We can't delete them at the
850   time of removing tablejump insn as they are referenced by the preceding
851   insns computing the destination, so we delay deleting and garbagecollect
852   them once life information is computed.  */
853void
854delete_dead_jumptables (void)
855{
856  rtx insn, next;
857  for (insn = get_insns (); insn; insn = next)
858    {
859      next = NEXT_INSN (insn);
860      if (GET_CODE (insn) == CODE_LABEL
861	  && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
862	  && GET_CODE (next) == JUMP_INSN
863	  && (GET_CODE (PATTERN (next)) == ADDR_VEC
864	      || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
865	{
866	  if (rtl_dump_file)
867	    fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
868	  delete_insn (NEXT_INSN (insn));
869	  delete_insn (insn);
870	  next = NEXT_INSN (next);
871	}
872    }
873}
874
875/* Determine if the stack pointer is constant over the life of the function.
876   Only useful before prologues have been emitted.  */
877
878static void
879notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
880				     void *data ATTRIBUTE_UNUSED)
881{
882  if (x == stack_pointer_rtx
883      /* The stack pointer is only modified indirectly as the result
884	 of a push until later in flow.  See the comments in rtl.texi
885	 regarding Embedded Side-Effects on Addresses.  */
886      || (GET_CODE (x) == MEM
887	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
888	  && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
889    current_function_sp_is_unchanging = 0;
890}
891
892static void
893notice_stack_pointer_modification (rtx f)
894{
895  rtx insn;
896
897  /* Assume that the stack pointer is unchanging if alloca hasn't
898     been used.  */
899  current_function_sp_is_unchanging = !current_function_calls_alloca;
900  if (! current_function_sp_is_unchanging)
901    return;
902
903  for (insn = f; insn; insn = NEXT_INSN (insn))
904    {
905      if (INSN_P (insn))
906	{
907	  /* Check if insn modifies the stack pointer.  */
908	  note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
909		       NULL);
910	  if (! current_function_sp_is_unchanging)
911	    return;
912	}
913    }
914}
915
916/* Mark a register in SET.  Hard registers in large modes get all
917   of their component registers set as well.  */
918
919static void
920mark_reg (rtx reg, void *xset)
921{
922  regset set = (regset) xset;
923  int regno = REGNO (reg);
924
925  if (GET_MODE (reg) == BLKmode)
926    abort ();
927
928  SET_REGNO_REG_SET (set, regno);
929  if (regno < FIRST_PSEUDO_REGISTER)
930    {
931      int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
932      while (--n > 0)
933	SET_REGNO_REG_SET (set, regno + n);
934    }
935}
936
937/* Mark those regs which are needed at the end of the function as live
938   at the end of the last basic block.  */
939
940static void
941mark_regs_live_at_end (regset set)
942{
943  unsigned int i;
944
945  /* If exiting needs the right stack value, consider the stack pointer
946     live at the end of the function.  */
947  if ((HAVE_epilogue && epilogue_completed)
948      || ! EXIT_IGNORE_STACK
949      || (! FRAME_POINTER_REQUIRED
950	  && ! current_function_calls_alloca
951	  && flag_omit_frame_pointer)
952      || current_function_sp_is_unchanging)
953    {
954      SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
955    }
956
957  /* Mark the frame pointer if needed at the end of the function.  If
958     we end up eliminating it, it will be removed from the live list
959     of each basic block by reload.  */
960
961  if (! reload_completed || frame_pointer_needed)
962    {
963      SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
964#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
965      /* If they are different, also mark the hard frame pointer as live.  */
966      if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
967	SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
968#endif
969    }
970
971#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
972  /* Many architectures have a GP register even without flag_pic.
973     Assume the pic register is not in use, or will be handled by
974     other means, if it is not fixed.  */
975  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
976      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
977    SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
978#endif
979
980  /* Mark all global registers, and all registers used by the epilogue
981     as being live at the end of the function since they may be
982     referenced by our caller.  */
983  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
984    if (global_regs[i] || EPILOGUE_USES (i))
985      SET_REGNO_REG_SET (set, i);
986
987  if (HAVE_epilogue && epilogue_completed)
988    {
989      /* Mark all call-saved registers that we actually used.  */
990      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
991	if (regs_ever_live[i] && ! LOCAL_REGNO (i)
992	    && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
993	  SET_REGNO_REG_SET (set, i);
994    }
995
996#ifdef EH_RETURN_DATA_REGNO
997  /* Mark the registers that will contain data for the handler.  */
998  if (reload_completed && current_function_calls_eh_return)
999    for (i = 0; ; ++i)
1000      {
1001	unsigned regno = EH_RETURN_DATA_REGNO(i);
1002	if (regno == INVALID_REGNUM)
1003	  break;
1004	SET_REGNO_REG_SET (set, regno);
1005      }
1006#endif
1007#ifdef EH_RETURN_STACKADJ_RTX
1008  if ((! HAVE_epilogue || ! epilogue_completed)
1009      && current_function_calls_eh_return)
1010    {
1011      rtx tmp = EH_RETURN_STACKADJ_RTX;
1012      if (tmp && REG_P (tmp))
1013	mark_reg (tmp, set);
1014    }
1015#endif
1016#ifdef EH_RETURN_HANDLER_RTX
1017  if ((! HAVE_epilogue || ! epilogue_completed)
1018      && current_function_calls_eh_return)
1019    {
1020      rtx tmp = EH_RETURN_HANDLER_RTX;
1021      if (tmp && REG_P (tmp))
1022	mark_reg (tmp, set);
1023    }
1024#endif
1025
1026  /* Mark function return value.  */
1027  diddle_return_value (mark_reg, set);
1028}
1029
1030/* Propagate global life info around the graph of basic blocks.  Begin
1031   considering blocks with their corresponding bit set in BLOCKS_IN.
1032   If BLOCKS_IN is null, consider it the universal set.
1033
1034   BLOCKS_OUT is set for every block that was changed.  */
1035
1036static void
1037calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1038{
1039  basic_block *queue, *qhead, *qtail, *qend, bb;
1040  regset tmp, new_live_at_end, invalidated_by_call;
1041  regset_head tmp_head, invalidated_by_call_head;
1042  regset_head new_live_at_end_head;
1043  int i;
1044
1045  /* Some passes used to forget clear aux field of basic block causing
1046     sick behavior here.  */
1047#ifdef ENABLE_CHECKING
1048  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1049    if (bb->aux)
1050      abort ();
1051#endif
1052
1053  tmp = INITIALIZE_REG_SET (tmp_head);
1054  new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1055  invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1056
1057  /* Inconveniently, this is only readily available in hard reg set form.  */
1058  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1059    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1060      SET_REGNO_REG_SET (invalidated_by_call, i);
1061
1062  /* Create a worklist.  Allocate an extra slot for ENTRY_BLOCK, and one
1063     because the `head == tail' style test for an empty queue doesn't
1064     work with a full queue.  */
1065  queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1066  qtail = queue;
1067  qhead = qend = queue + n_basic_blocks + 2;
1068
1069  /* Queue the blocks set in the initial mask.  Do this in reverse block
1070     number order so that we are more likely for the first round to do
1071     useful work.  We use AUX non-null to flag that the block is queued.  */
1072  if (blocks_in)
1073    {
1074      FOR_EACH_BB (bb)
1075	if (TEST_BIT (blocks_in, bb->index))
1076	  {
1077	    *--qhead = bb;
1078	    bb->aux = bb;
1079	  }
1080    }
1081  else
1082    {
1083      FOR_EACH_BB (bb)
1084	{
1085	  *--qhead = bb;
1086	  bb->aux = bb;
1087	}
1088    }
1089
1090  /* We clean aux when we remove the initially-enqueued bbs, but we
1091     don't enqueue ENTRY and EXIT initially, so clean them upfront and
1092     unconditionally.  */
1093  ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1094
1095  if (blocks_out)
1096    sbitmap_zero (blocks_out);
1097
1098  /* We work through the queue until there are no more blocks.  What
1099     is live at the end of this block is precisely the union of what
1100     is live at the beginning of all its successors.  So, we set its
1101     GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1102     for its successors.  Then, we compute GLOBAL_LIVE_AT_START for
1103     this block by walking through the instructions in this block in
1104     reverse order and updating as we go.  If that changed
1105     GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1106     queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1107
1108     We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1109     never shrinks.  If a register appears in GLOBAL_LIVE_AT_START, it
1110     must either be live at the end of the block, or used within the
1111     block.  In the latter case, it will certainly never disappear
1112     from GLOBAL_LIVE_AT_START.  In the former case, the register
1113     could go away only if it disappeared from GLOBAL_LIVE_AT_START
1114     for one of the successor blocks.  By induction, that cannot
1115     occur.  */
1116  while (qhead != qtail)
1117    {
1118      int rescan, changed;
1119      basic_block bb;
1120      edge e;
1121
1122      bb = *qhead++;
1123      if (qhead == qend)
1124	qhead = queue;
1125      bb->aux = NULL;
1126
1127      /* Begin by propagating live_at_start from the successor blocks.  */
1128      CLEAR_REG_SET (new_live_at_end);
1129
1130      if (bb->succ)
1131	for (e = bb->succ; e; e = e->succ_next)
1132	  {
1133	    basic_block sb = e->dest;
1134
1135	    /* Call-clobbered registers die across exception and
1136	       call edges.  */
1137	    /* ??? Abnormal call edges ignored for the moment, as this gets
1138	       confused by sibling call edges, which crashes reg-stack.  */
1139	    if (e->flags & EDGE_EH)
1140	      {
1141		bitmap_operation (tmp, sb->global_live_at_start,
1142				  invalidated_by_call, BITMAP_AND_COMPL);
1143		IOR_REG_SET (new_live_at_end, tmp);
1144	      }
1145	    else
1146	      IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1147
1148	    /* If a target saves one register in another (instead of on
1149	       the stack) the save register will need to be live for EH.  */
1150	    if (e->flags & EDGE_EH)
1151	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1152		if (EH_USES (i))
1153		  SET_REGNO_REG_SET (new_live_at_end, i);
1154	  }
1155      else
1156	{
1157	  /* This might be a noreturn function that throws.  And
1158	     even if it isn't, getting the unwind info right helps
1159	     debugging.  */
1160	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161	    if (EH_USES (i))
1162	      SET_REGNO_REG_SET (new_live_at_end, i);
1163	}
1164
1165      /* The all-important stack pointer must always be live.  */
1166      SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1167
1168      /* Before reload, there are a few registers that must be forced
1169	 live everywhere -- which might not already be the case for
1170	 blocks within infinite loops.  */
1171      if (! reload_completed)
1172	{
1173	  /* Any reference to any pseudo before reload is a potential
1174	     reference of the frame pointer.  */
1175	  SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1176
1177#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1178	  /* Pseudos with argument area equivalences may require
1179	     reloading via the argument pointer.  */
1180	  if (fixed_regs[ARG_POINTER_REGNUM])
1181	    SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1182#endif
1183
1184	  /* Any constant, or pseudo with constant equivalences, may
1185	     require reloading from memory using the pic register.  */
1186	  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1187	      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1188	    SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1189	}
1190
1191      if (bb == ENTRY_BLOCK_PTR)
1192	{
1193	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1194	  continue;
1195	}
1196
1197      /* On our first pass through this block, we'll go ahead and continue.
1198	 Recognize first pass by local_set NULL.  On subsequent passes, we
1199	 get to skip out early if live_at_end wouldn't have changed.  */
1200
1201      if (bb->local_set == NULL)
1202	{
1203	  bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1204	  bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1205	  rescan = 1;
1206	}
1207      else
1208	{
1209	  /* If any bits were removed from live_at_end, we'll have to
1210	     rescan the block.  This wouldn't be necessary if we had
1211	     precalculated local_live, however with PROP_SCAN_DEAD_CODE
1212	     local_live is really dependent on live_at_end.  */
1213	  CLEAR_REG_SET (tmp);
1214	  rescan = bitmap_operation (tmp, bb->global_live_at_end,
1215				     new_live_at_end, BITMAP_AND_COMPL);
1216
1217	  if (! rescan)
1218	    {
1219	      /* If any of the registers in the new live_at_end set are
1220		 conditionally set in this basic block, we must rescan.
1221	         This is because conditional lifetimes at the end of the
1222		 block do not just take the live_at_end set into account,
1223		 but also the liveness at the start of each successor
1224		 block.  We can miss changes in those sets if we only
1225		 compare the new live_at_end against the previous one.  */
1226	      CLEAR_REG_SET (tmp);
1227	      rescan = bitmap_operation (tmp, new_live_at_end,
1228					 bb->cond_local_set, BITMAP_AND);
1229	    }
1230
1231	  if (! rescan)
1232	    {
1233	      /* Find the set of changed bits.  Take this opportunity
1234		 to notice that this set is empty and early out.  */
1235	      CLEAR_REG_SET (tmp);
1236	      changed = bitmap_operation (tmp, bb->global_live_at_end,
1237					  new_live_at_end, BITMAP_XOR);
1238	      if (! changed)
1239		continue;
1240
1241	      /* If any of the changed bits overlap with local_set,
1242		 we'll have to rescan the block.  Detect overlap by
1243		 the AND with ~local_set turning off bits.  */
1244	      rescan = bitmap_operation (tmp, tmp, bb->local_set,
1245					 BITMAP_AND_COMPL);
1246	    }
1247	}
1248
1249      /* Let our caller know that BB changed enough to require its
1250	 death notes updated.  */
1251      if (blocks_out)
1252	SET_BIT (blocks_out, bb->index);
1253
1254      if (! rescan)
1255	{
1256	  /* Add to live_at_start the set of all registers in
1257	     new_live_at_end that aren't in the old live_at_end.  */
1258
1259	  bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1260			    BITMAP_AND_COMPL);
1261	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1262
1263	  changed = bitmap_operation (bb->global_live_at_start,
1264				      bb->global_live_at_start,
1265				      tmp, BITMAP_IOR);
1266	  if (! changed)
1267	    continue;
1268	}
1269      else
1270	{
1271	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1272
1273	  /* Rescan the block insn by insn to turn (a copy of) live_at_end
1274	     into live_at_start.  */
1275	  propagate_block (bb, new_live_at_end, bb->local_set,
1276			   bb->cond_local_set, flags);
1277
1278	  /* If live_at start didn't change, no need to go farther.  */
1279	  if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1280	    continue;
1281
1282	  COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1283	}
1284
1285      /* Queue all predecessors of BB so that we may re-examine
1286	 their live_at_end.  */
1287      for (e = bb->pred; e; e = e->pred_next)
1288	{
1289	  basic_block pb = e->src;
1290	  if (pb->aux == NULL)
1291	    {
1292	      *qtail++ = pb;
1293	      if (qtail == qend)
1294		qtail = queue;
1295	      pb->aux = pb;
1296	    }
1297	}
1298    }
1299
1300  FREE_REG_SET (tmp);
1301  FREE_REG_SET (new_live_at_end);
1302  FREE_REG_SET (invalidated_by_call);
1303
1304  if (blocks_out)
1305    {
1306      EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1307	{
1308	  basic_block bb = BASIC_BLOCK (i);
1309	  FREE_REG_SET (bb->local_set);
1310	  FREE_REG_SET (bb->cond_local_set);
1311	});
1312    }
1313  else
1314    {
1315      FOR_EACH_BB (bb)
1316	{
1317	  FREE_REG_SET (bb->local_set);
1318	  FREE_REG_SET (bb->cond_local_set);
1319	}
1320    }
1321
1322  free (queue);
1323}
1324
1325
1326/* This structure is used to pass parameters to and from the
1327   the function find_regno_partial(). It is used to pass in the
1328   register number we are looking, as well as to return any rtx
1329   we find.  */
1330
1331typedef struct {
1332  unsigned regno_to_find;
1333  rtx retval;
1334} find_regno_partial_param;
1335
1336
1337/* Find the rtx for the reg numbers specified in 'data' if it is
1338   part of an expression which only uses part of the register.  Return
1339   it in the structure passed in.  */
1340static int
1341find_regno_partial (rtx *ptr, void *data)
1342{
1343  find_regno_partial_param *param = (find_regno_partial_param *)data;
1344  unsigned reg = param->regno_to_find;
1345  param->retval = NULL_RTX;
1346
1347  if (*ptr == NULL_RTX)
1348    return 0;
1349
1350  switch (GET_CODE (*ptr))
1351    {
1352    case ZERO_EXTRACT:
1353    case SIGN_EXTRACT:
1354    case STRICT_LOW_PART:
1355      if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1356	{
1357	  param->retval = XEXP (*ptr, 0);
1358	  return 1;
1359	}
1360      break;
1361
1362    case SUBREG:
1363      if (GET_CODE (SUBREG_REG (*ptr)) == REG
1364	  && REGNO (SUBREG_REG (*ptr)) == reg)
1365	{
1366	  param->retval = SUBREG_REG (*ptr);
1367	  return 1;
1368	}
1369      break;
1370
1371    default:
1372      break;
1373    }
1374
1375  return 0;
1376}
1377
1378/* Process all immediate successors of the entry block looking for pseudo
1379   registers which are live on entry. Find all of those whose first
1380   instance is a partial register reference of some kind, and initialize
1381   them to 0 after the entry block.  This will prevent bit sets within
1382   registers whose value is unknown, and may contain some kind of sticky
1383   bits we don't want.  */
1384
1385int
1386initialize_uninitialized_subregs (void)
1387{
1388  rtx insn;
1389  edge e;
1390  int reg, did_something = 0;
1391  find_regno_partial_param param;
1392
1393  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1394    {
1395      basic_block bb = e->dest;
1396      regset map = bb->global_live_at_start;
1397      EXECUTE_IF_SET_IN_REG_SET (map,
1398				 FIRST_PSEUDO_REGISTER, reg,
1399	{
1400	  int uid = REGNO_FIRST_UID (reg);
1401	  rtx i;
1402
1403	  /* Find an insn which mentions the register we are looking for.
1404	     Its preferable to have an instance of the register's rtl since
1405	     there may be various flags set which we need to duplicate.
1406	     If we can't find it, its probably an automatic whose initial
1407	     value doesn't matter, or hopefully something we don't care about.  */
1408	  for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1409	    ;
1410	  if (i != NULL_RTX)
1411	    {
1412	      /* Found the insn, now get the REG rtx, if we can.  */
1413	      param.regno_to_find = reg;
1414	      for_each_rtx (&i, find_regno_partial, &param);
1415	      if (param.retval != NULL_RTX)
1416		{
1417		  start_sequence ();
1418		  emit_move_insn (param.retval,
1419				  CONST0_RTX (GET_MODE (param.retval)));
1420		  insn = get_insns ();
1421		  end_sequence ();
1422		  insert_insn_on_edge (insn, e);
1423		  did_something = 1;
1424		}
1425	    }
1426	});
1427    }
1428
1429  if (did_something)
1430    commit_edge_insertions ();
1431  return did_something;
1432}
1433
1434
1435/* Subroutines of life analysis.  */
1436
1437/* Allocate the permanent data structures that represent the results
1438   of life analysis.  Not static since used also for stupid life analysis.  */
1439
1440void
1441allocate_bb_life_data (void)
1442{
1443  basic_block bb;
1444
1445  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1446    {
1447      bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1448      bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1449    }
1450
1451  regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1452}
1453
1454void
1455allocate_reg_life_data (void)
1456{
1457  int i;
1458
1459  max_regno = max_reg_num ();
1460
1461  /* Recalculate the register space, in case it has grown.  Old style
1462     vector oriented regsets would set regset_{size,bytes} here also.  */
1463  allocate_reg_info (max_regno, FALSE, FALSE);
1464
1465  /* Reset all the data we'll collect in propagate_block and its
1466     subroutines.  */
1467  for (i = 0; i < max_regno; i++)
1468    {
1469      REG_N_SETS (i) = 0;
1470      REG_N_REFS (i) = 0;
1471      REG_N_DEATHS (i) = 0;
1472      REG_N_CALLS_CROSSED (i) = 0;
1473      REG_N_THROWING_CALLS_CROSSED (i) = 0;
1474      REG_LIVE_LENGTH (i) = 0;
1475      REG_FREQ (i) = 0;
1476      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1477    }
1478}
1479
1480/* Delete dead instructions for propagate_block.  */
1481
1482static void
1483propagate_block_delete_insn (rtx insn)
1484{
1485  rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1486
1487  /* If the insn referred to a label, and that label was attached to
1488     an ADDR_VEC, it's safe to delete the ADDR_VEC.  In fact, it's
1489     pretty much mandatory to delete it, because the ADDR_VEC may be
1490     referencing labels that no longer exist.
1491
1492     INSN may reference a deleted label, particularly when a jump
1493     table has been optimized into a direct jump.  There's no
1494     real good way to fix up the reference to the deleted label
1495     when the label is deleted, so we just allow it here.  */
1496
1497  if (inote && GET_CODE (inote) == CODE_LABEL)
1498    {
1499      rtx label = XEXP (inote, 0);
1500      rtx next;
1501
1502      /* The label may be forced if it has been put in the constant
1503	 pool.  If that is the only use we must discard the table
1504	 jump following it, but not the label itself.  */
1505      if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1506	  && (next = next_nonnote_insn (label)) != NULL
1507	  && GET_CODE (next) == JUMP_INSN
1508	  && (GET_CODE (PATTERN (next)) == ADDR_VEC
1509	      || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1510	{
1511	  rtx pat = PATTERN (next);
1512	  int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1513	  int len = XVECLEN (pat, diff_vec_p);
1514	  int i;
1515
1516	  for (i = 0; i < len; i++)
1517	    LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1518
1519	  delete_insn_and_edges (next);
1520	  ndead++;
1521	}
1522    }
1523
1524  delete_insn_and_edges (insn);
1525  ndead++;
1526}
1527
1528/* Delete dead libcalls for propagate_block.  Return the insn
1529   before the libcall.  */
1530
1531static rtx
1532propagate_block_delete_libcall (rtx insn, rtx note)
1533{
1534  rtx first = XEXP (note, 0);
1535  rtx before = PREV_INSN (first);
1536
1537  delete_insn_chain_and_edges (first, insn);
1538  ndead++;
1539  return before;
1540}
1541
1542/* Update the life-status of regs for one insn.  Return the previous insn.  */
1543
1544rtx
1545propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1546{
1547  rtx prev = PREV_INSN (insn);
1548  int flags = pbi->flags;
1549  int insn_is_dead = 0;
1550  int libcall_is_dead = 0;
1551  rtx note;
1552  int i;
1553
1554  if (! INSN_P (insn))
1555    return prev;
1556
1557  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1558  if (flags & PROP_SCAN_DEAD_CODE)
1559    {
1560      insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1561      libcall_is_dead = (insn_is_dead && note != 0
1562			 && libcall_dead_p (pbi, note, insn));
1563    }
1564
1565  /* If an instruction consists of just dead store(s) on final pass,
1566     delete it.  */
1567  if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1568    {
1569      /* If we're trying to delete a prologue or epilogue instruction
1570	 that isn't flagged as possibly being dead, something is wrong.
1571	 But if we are keeping the stack pointer depressed, we might well
1572	 be deleting insns that are used to compute the amount to update
1573	 it by, so they are fine.  */
1574      if (reload_completed
1575	  && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1576		&& (TYPE_RETURNS_STACK_DEPRESSED
1577		    (TREE_TYPE (current_function_decl))))
1578	  && (((HAVE_epilogue || HAVE_prologue)
1579	       && prologue_epilogue_contains (insn))
1580	      || (HAVE_sibcall_epilogue
1581		  && sibcall_epilogue_contains (insn)))
1582	  && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1583	fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1584
1585      /* Record sets.  Do this even for dead instructions, since they
1586	 would have killed the values if they hadn't been deleted.  */
1587      mark_set_regs (pbi, PATTERN (insn), insn);
1588
1589      /* CC0 is now known to be dead.  Either this insn used it,
1590	 in which case it doesn't anymore, or clobbered it,
1591	 so the next insn can't use it.  */
1592      pbi->cc0_live = 0;
1593
1594      if (libcall_is_dead)
1595	prev = propagate_block_delete_libcall (insn, note);
1596      else
1597	{
1598
1599	/* If INSN contains a RETVAL note and is dead, but the libcall
1600	   as a whole is not dead, then we want to remove INSN, but
1601	   not the whole libcall sequence.
1602
1603	   However, we need to also remove the dangling REG_LIBCALL
1604	   note so that we do not have mis-matched LIBCALL/RETVAL
1605	   notes.  In theory we could find a new location for the
1606	   REG_RETVAL note, but it hardly seems worth the effort.
1607
1608	   NOTE at this point will be the RETVAL note if it exists.  */
1609	  if (note)
1610	    {
1611	      rtx libcall_note;
1612
1613	      libcall_note
1614		= find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1615	      remove_note (XEXP (note, 0), libcall_note);
1616	    }
1617
1618	  /* Similarly if INSN contains a LIBCALL note, remove the
1619	     dangling REG_RETVAL note.  */
1620	  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1621	  if (note)
1622	    {
1623	      rtx retval_note;
1624
1625	      retval_note
1626		= find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1627	      remove_note (XEXP (note, 0), retval_note);
1628	    }
1629
1630	  /* Now delete INSN.  */
1631	  propagate_block_delete_insn (insn);
1632	}
1633
1634      return prev;
1635    }
1636
1637  /* See if this is an increment or decrement that can be merged into
1638     a following memory address.  */
1639#ifdef AUTO_INC_DEC
1640  {
1641    rtx x = single_set (insn);
1642
1643    /* Does this instruction increment or decrement a register?  */
1644    if ((flags & PROP_AUTOINC)
1645	&& x != 0
1646	&& GET_CODE (SET_DEST (x)) == REG
1647	&& (GET_CODE (SET_SRC (x)) == PLUS
1648	    || GET_CODE (SET_SRC (x)) == MINUS)
1649	&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
1650	&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1651	/* Ok, look for a following memory ref we can combine with.
1652	   If one is found, change the memory ref to a PRE_INC
1653	   or PRE_DEC, cancel this insn, and return 1.
1654	   Return 0 if nothing has been done.  */
1655	&& try_pre_increment_1 (pbi, insn))
1656      return prev;
1657  }
1658#endif /* AUTO_INC_DEC */
1659
1660  CLEAR_REG_SET (pbi->new_set);
1661
1662  /* If this is not the final pass, and this insn is copying the value of
1663     a library call and it's dead, don't scan the insns that perform the
1664     library call, so that the call's arguments are not marked live.  */
1665  if (libcall_is_dead)
1666    {
1667      /* Record the death of the dest reg.  */
1668      mark_set_regs (pbi, PATTERN (insn), insn);
1669
1670      insn = XEXP (note, 0);
1671      return PREV_INSN (insn);
1672    }
1673  else if (GET_CODE (PATTERN (insn)) == SET
1674	   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1675	   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1676	   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1677	   && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1678    /* We have an insn to pop a constant amount off the stack.
1679       (Such insns use PLUS regardless of the direction of the stack,
1680       and any insn to adjust the stack by a constant is always a pop.)
1681       These insns, if not dead stores, have no effect on life, though
1682       they do have an effect on the memory stores we are tracking.  */
1683    invalidate_mems_from_set (pbi, stack_pointer_rtx);
1684  else
1685    {
1686      rtx note;
1687      /* Any regs live at the time of a call instruction must not go
1688	 in a register clobbered by calls.  Find all regs now live and
1689	 record this for them.  */
1690
1691      if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1692	{
1693	  EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1694				     { REG_N_CALLS_CROSSED (i)++; });
1695	  if (can_throw_internal (insn))
1696	    EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1697				     { REG_N_THROWING_CALLS_CROSSED (i)++; });
1698	}
1699
1700      /* Record sets.  Do this even for dead instructions, since they
1701	 would have killed the values if they hadn't been deleted.  */
1702      mark_set_regs (pbi, PATTERN (insn), insn);
1703
1704      if (GET_CODE (insn) == CALL_INSN)
1705	{
1706	  regset live_at_end;
1707	  bool sibcall_p;
1708	  rtx note, cond;
1709	  int i;
1710
1711	  cond = NULL_RTX;
1712	  if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1713	    cond = COND_EXEC_TEST (PATTERN (insn));
1714
1715	  /* Non-constant calls clobber memory, constant calls do not
1716	     clobber memory, though they may clobber outgoing arguments
1717	     on the stack.  */
1718	  if (! CONST_OR_PURE_CALL_P (insn))
1719	    {
1720	      free_EXPR_LIST_list (&pbi->mem_set_list);
1721	      pbi->mem_set_list_len = 0;
1722	    }
1723	  else
1724	    invalidate_mems_from_set (pbi, stack_pointer_rtx);
1725
1726	  /* There may be extra registers to be clobbered.  */
1727	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
1728	       note;
1729	       note = XEXP (note, 1))
1730	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1731	      mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1732			  cond, insn, pbi->flags);
1733
1734	  /* Calls change all call-used and global registers; sibcalls do not
1735	     clobber anything that must be preserved at end-of-function,
1736	     except for return values.  */
1737
1738	  sibcall_p = SIBLING_CALL_P (insn);
1739	  live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1740	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1741	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1742		&& ! (sibcall_p
1743		      && REGNO_REG_SET_P (live_at_end, i)
1744		      && ! refers_to_regno_p (i, i+1,
1745					      current_function_return_rtx,
1746					      (rtx *) 0)))
1747	      {
1748		enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1749		/* We do not want REG_UNUSED notes for these registers.  */
1750		mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1751			    pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1752	      }
1753	}
1754
1755      /* If an insn doesn't use CC0, it becomes dead since we assume
1756	 that every insn clobbers it.  So show it dead here;
1757	 mark_used_regs will set it live if it is referenced.  */
1758      pbi->cc0_live = 0;
1759
1760      /* Record uses.  */
1761      if (! insn_is_dead)
1762	mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1763      if ((flags & PROP_EQUAL_NOTES)
1764	  && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1765	      || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1766	mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1767
1768      /* Sometimes we may have inserted something before INSN (such as a move)
1769	 when we make an auto-inc.  So ensure we will scan those insns.  */
1770#ifdef AUTO_INC_DEC
1771      prev = PREV_INSN (insn);
1772#endif
1773
1774      if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1775	{
1776	  int i;
1777	  rtx note, cond;
1778
1779	  cond = NULL_RTX;
1780	  if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1781	    cond = COND_EXEC_TEST (PATTERN (insn));
1782
1783	  /* Calls use their arguments, and may clobber memory which
1784	     address involves some register.  */
1785	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
1786	       note;
1787	       note = XEXP (note, 1))
1788	    /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1789	       of which mark_used_regs knows how to handle.  */
1790	    mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1791
1792	  /* The stack ptr is used (honorarily) by a CALL insn.  */
1793	  SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1794
1795	  /* Calls may also reference any of the global registers,
1796	     so they are made live.  */
1797	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1798	    if (global_regs[i])
1799	      mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1800	}
1801    }
1802
1803  /* On final pass, update counts of how many insns in which each reg
1804     is live.  */
1805  if (flags & PROP_REG_INFO)
1806    EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1807			       { REG_LIVE_LENGTH (i)++; });
1808
1809  return prev;
1810}
1811
1812/* Initialize a propagate_block_info struct for public consumption.
1813   Note that the structure itself is opaque to this file, but that
1814   the user can use the regsets provided here.  */
1815
1816struct propagate_block_info *
1817init_propagate_block_info (basic_block bb, regset live, regset local_set,
1818			   regset cond_local_set, int flags)
1819{
1820  struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1821
1822  pbi->bb = bb;
1823  pbi->reg_live = live;
1824  pbi->mem_set_list = NULL_RTX;
1825  pbi->mem_set_list_len = 0;
1826  pbi->local_set = local_set;
1827  pbi->cond_local_set = cond_local_set;
1828  pbi->cc0_live = 0;
1829  pbi->flags = flags;
1830
1831  if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1832    pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1833  else
1834    pbi->reg_next_use = NULL;
1835
1836  pbi->new_set = BITMAP_XMALLOC ();
1837
1838#ifdef HAVE_conditional_execution
1839  pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1840				       free_reg_cond_life_info);
1841  pbi->reg_cond_reg = BITMAP_XMALLOC ();
1842
1843  /* If this block ends in a conditional branch, for each register
1844     live from one side of the branch and not the other, record the
1845     register as conditionally dead.  */
1846  if (GET_CODE (BB_END (bb)) == JUMP_INSN
1847      && any_condjump_p (BB_END (bb)))
1848    {
1849      regset_head diff_head;
1850      regset diff = INITIALIZE_REG_SET (diff_head);
1851      basic_block bb_true, bb_false;
1852      int i;
1853
1854      /* Identify the successor blocks.  */
1855      bb_true = bb->succ->dest;
1856      if (bb->succ->succ_next != NULL)
1857	{
1858	  bb_false = bb->succ->succ_next->dest;
1859
1860	  if (bb->succ->flags & EDGE_FALLTHRU)
1861	    {
1862	      basic_block t = bb_false;
1863	      bb_false = bb_true;
1864	      bb_true = t;
1865	    }
1866	  else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1867	    abort ();
1868	}
1869      else
1870	{
1871	  /* This can happen with a conditional jump to the next insn.  */
1872	  if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1873	    abort ();
1874
1875	  /* Simplest way to do nothing.  */
1876	  bb_false = bb_true;
1877	}
1878
1879      /* Compute which register lead different lives in the successors.  */
1880      if (bitmap_operation (diff, bb_true->global_live_at_start,
1881			    bb_false->global_live_at_start, BITMAP_XOR))
1882	{
1883	  /* Extract the condition from the branch.  */
1884	  rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1885	  rtx cond_true = XEXP (set_src, 0);
1886	  rtx reg = XEXP (cond_true, 0);
1887
1888	  if (GET_CODE (reg) == SUBREG)
1889	    reg = SUBREG_REG (reg);
1890
1891	  /* We can only track conditional lifetimes if the condition is
1892	     in the form of a comparison of a register against zero.
1893	     If the condition is more complex than that, then it is safe
1894	     not to record any information.  */
1895	  if (GET_CODE (reg) == REG
1896	      && XEXP (cond_true, 1) == const0_rtx)
1897	    {
1898	      rtx cond_false
1899		= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1900				  GET_MODE (cond_true), XEXP (cond_true, 0),
1901				  XEXP (cond_true, 1));
1902	      if (GET_CODE (XEXP (set_src, 1)) == PC)
1903		{
1904		  rtx t = cond_false;
1905		  cond_false = cond_true;
1906		  cond_true = t;
1907		}
1908
1909	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1910
1911	      /* For each such register, mark it conditionally dead.  */
1912	      EXECUTE_IF_SET_IN_REG_SET
1913		(diff, 0, i,
1914		 {
1915		   struct reg_cond_life_info *rcli;
1916		   rtx cond;
1917
1918		   rcli = xmalloc (sizeof (*rcli));
1919
1920		   if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1921		     cond = cond_false;
1922		   else
1923		     cond = cond_true;
1924		   rcli->condition = cond;
1925		   rcli->stores = const0_rtx;
1926		   rcli->orig_condition = cond;
1927
1928		   splay_tree_insert (pbi->reg_cond_dead, i,
1929				      (splay_tree_value) rcli);
1930		 });
1931	    }
1932	}
1933
1934      FREE_REG_SET (diff);
1935    }
1936#endif
1937
1938  /* If this block has no successors, any stores to the frame that aren't
1939     used later in the block are dead.  So make a pass over the block
1940     recording any such that are made and show them dead at the end.  We do
1941     a very conservative and simple job here.  */
1942  if (optimize
1943      && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1944	    && (TYPE_RETURNS_STACK_DEPRESSED
1945		(TREE_TYPE (current_function_decl))))
1946      && (flags & PROP_SCAN_DEAD_STORES)
1947      && (bb->succ == NULL
1948	  || (bb->succ->succ_next == NULL
1949	      && bb->succ->dest == EXIT_BLOCK_PTR
1950	      && ! current_function_calls_eh_return)))
1951    {
1952      rtx insn, set;
1953      for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1954	if (GET_CODE (insn) == INSN
1955	    && (set = single_set (insn))
1956	    && GET_CODE (SET_DEST (set)) == MEM)
1957	  {
1958	    rtx mem = SET_DEST (set);
1959	    rtx canon_mem = canon_rtx (mem);
1960
1961	    if (XEXP (canon_mem, 0) == frame_pointer_rtx
1962		|| (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1963		    && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1964		    && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1965	      add_to_mem_set_list (pbi, canon_mem);
1966	  }
1967    }
1968
1969  return pbi;
1970}
1971
1972/* Release a propagate_block_info struct.  */
1973
1974void
1975free_propagate_block_info (struct propagate_block_info *pbi)
1976{
1977  free_EXPR_LIST_list (&pbi->mem_set_list);
1978
1979  BITMAP_XFREE (pbi->new_set);
1980
1981#ifdef HAVE_conditional_execution
1982  splay_tree_delete (pbi->reg_cond_dead);
1983  BITMAP_XFREE (pbi->reg_cond_reg);
1984#endif
1985
1986  if (pbi->reg_next_use)
1987    free (pbi->reg_next_use);
1988
1989  free (pbi);
1990}
1991
1992/* Compute the registers live at the beginning of a basic block BB from
1993   those live at the end.
1994
1995   When called, REG_LIVE contains those live at the end.  On return, it
1996   contains those live at the beginning.
1997
1998   LOCAL_SET, if non-null, will be set with all registers killed
1999   unconditionally by this basic block.
2000   Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2001   killed conditionally by this basic block.  If there is any unconditional
2002   set of a register, then the corresponding bit will be set in LOCAL_SET
2003   and cleared in COND_LOCAL_SET.
2004   It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set.  In this
2005   case, the resulting set will be equal to the union of the two sets that
2006   would otherwise be computed.
2007
2008   Return nonzero if an INSN is deleted (i.e. by dead code removal).  */
2009
2010int
2011propagate_block (basic_block bb, regset live, regset local_set,
2012		 regset cond_local_set, int flags)
2013{
2014  struct propagate_block_info *pbi;
2015  rtx insn, prev;
2016  int changed;
2017
2018  pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2019
2020  if (flags & PROP_REG_INFO)
2021    {
2022      int i;
2023
2024      /* Process the regs live at the end of the block.
2025	 Mark them as not local to any one basic block.  */
2026      EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2027				 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2028    }
2029
2030  /* Scan the block an insn at a time from end to beginning.  */
2031
2032  changed = 0;
2033  for (insn = BB_END (bb); ; insn = prev)
2034    {
2035      /* If this is a call to `setjmp' et al, warn if any
2036	 non-volatile datum is live.  */
2037      if ((flags & PROP_REG_INFO)
2038	  && GET_CODE (insn) == CALL_INSN
2039	  && find_reg_note (insn, REG_SETJMP, NULL))
2040	IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2041
2042      prev = propagate_one_insn (pbi, insn);
2043      if (!prev)
2044        changed |= insn != get_insns ();
2045      else
2046        changed |= NEXT_INSN (prev) != insn;
2047
2048      if (insn == BB_HEAD (bb))
2049	break;
2050    }
2051
2052  free_propagate_block_info (pbi);
2053
2054  return changed;
2055}
2056
2057/* Return 1 if X (the body of an insn, or part of it) is just dead stores
2058   (SET expressions whose destinations are registers dead after the insn).
2059   NEEDED is the regset that says which regs are alive after the insn.
2060
2061   Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2062
2063   If X is the entire body of an insn, NOTES contains the reg notes
2064   pertaining to the insn.  */
2065
2066static int
2067insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2068	     rtx notes ATTRIBUTE_UNUSED)
2069{
2070  enum rtx_code code = GET_CODE (x);
2071
2072  /* Don't eliminate insns that may trap.  */
2073  if (flag_non_call_exceptions && may_trap_p (x))
2074    return 0;
2075
2076#ifdef AUTO_INC_DEC
2077  /* As flow is invoked after combine, we must take existing AUTO_INC
2078     expressions into account.  */
2079  for (; notes; notes = XEXP (notes, 1))
2080    {
2081      if (REG_NOTE_KIND (notes) == REG_INC)
2082	{
2083	  int regno = REGNO (XEXP (notes, 0));
2084
2085	  /* Don't delete insns to set global regs.  */
2086	  if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2087	      || REGNO_REG_SET_P (pbi->reg_live, regno))
2088	    return 0;
2089	}
2090    }
2091#endif
2092
2093  /* If setting something that's a reg or part of one,
2094     see if that register's altered value will be live.  */
2095
2096  if (code == SET)
2097    {
2098      rtx r = SET_DEST (x);
2099
2100#ifdef HAVE_cc0
2101      if (GET_CODE (r) == CC0)
2102	return ! pbi->cc0_live;
2103#endif
2104
2105      /* A SET that is a subroutine call cannot be dead.  */
2106      if (GET_CODE (SET_SRC (x)) == CALL)
2107	{
2108	  if (! call_ok)
2109	    return 0;
2110	}
2111
2112      /* Don't eliminate loads from volatile memory or volatile asms.  */
2113      else if (volatile_refs_p (SET_SRC (x)))
2114	return 0;
2115
2116      if (GET_CODE (r) == MEM)
2117	{
2118	  rtx temp, canon_r;
2119
2120	  if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2121	    return 0;
2122
2123	  canon_r = canon_rtx (r);
2124
2125	  /* Walk the set of memory locations we are currently tracking
2126	     and see if one is an identical match to this memory location.
2127	     If so, this memory write is dead (remember, we're walking
2128	     backwards from the end of the block to the start).  Since
2129	     rtx_equal_p does not check the alias set or flags, we also
2130	     must have the potential for them to conflict (anti_dependence).  */
2131	  for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2132	    if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2133	      {
2134		rtx mem = XEXP (temp, 0);
2135
2136		if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2137		    && (GET_MODE_SIZE (GET_MODE (canon_r))
2138			<= GET_MODE_SIZE (GET_MODE (mem))))
2139		  return 1;
2140
2141#ifdef AUTO_INC_DEC
2142		/* Check if memory reference matches an auto increment. Only
2143		   post increment/decrement or modify are valid.  */
2144		if (GET_MODE (mem) == GET_MODE (r)
2145		    && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2146			|| GET_CODE (XEXP (mem, 0)) == POST_INC
2147			|| GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2148		    && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2149		    && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2150		  return 1;
2151#endif
2152	      }
2153	}
2154      else
2155	{
2156	  while (GET_CODE (r) == SUBREG
2157		 || GET_CODE (r) == STRICT_LOW_PART
2158		 || GET_CODE (r) == ZERO_EXTRACT)
2159	    r = XEXP (r, 0);
2160
2161	  if (GET_CODE (r) == REG)
2162	    {
2163	      int regno = REGNO (r);
2164
2165	      /* Obvious.  */
2166	      if (REGNO_REG_SET_P (pbi->reg_live, regno))
2167		return 0;
2168
2169	      /* If this is a hard register, verify that subsequent
2170		 words are not needed.  */
2171	      if (regno < FIRST_PSEUDO_REGISTER)
2172		{
2173		  int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2174
2175		  while (--n > 0)
2176		    if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2177		      return 0;
2178		}
2179
2180	      /* Don't delete insns to set global regs.  */
2181	      if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2182		return 0;
2183
2184	      /* Make sure insns to set the stack pointer aren't deleted.  */
2185	      if (regno == STACK_POINTER_REGNUM)
2186		return 0;
2187
2188	      /* ??? These bits might be redundant with the force live bits
2189		 in calculate_global_regs_live.  We would delete from
2190		 sequential sets; whether this actually affects real code
2191		 for anything but the stack pointer I don't know.  */
2192	      /* Make sure insns to set the frame pointer aren't deleted.  */
2193	      if (regno == FRAME_POINTER_REGNUM
2194		  && (! reload_completed || frame_pointer_needed))
2195		return 0;
2196#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2197	      if (regno == HARD_FRAME_POINTER_REGNUM
2198		  && (! reload_completed || frame_pointer_needed))
2199		return 0;
2200#endif
2201
2202#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2203	      /* Make sure insns to set arg pointer are never deleted
2204		 (if the arg pointer isn't fixed, there will be a USE
2205		 for it, so we can treat it normally).  */
2206	      if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2207		return 0;
2208#endif
2209
2210	      /* Otherwise, the set is dead.  */
2211	      return 1;
2212	    }
2213	}
2214    }
2215
2216  /* If performing several activities, insn is dead if each activity
2217     is individually dead.  Also, CLOBBERs and USEs can be ignored; a
2218     CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2219     worth keeping.  */
2220  else if (code == PARALLEL)
2221    {
2222      int i = XVECLEN (x, 0);
2223
2224      for (i--; i >= 0; i--)
2225	if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2226	    && GET_CODE (XVECEXP (x, 0, i)) != USE
2227	    && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2228	  return 0;
2229
2230      return 1;
2231    }
2232
2233  /* A CLOBBER of a pseudo-register that is dead serves no purpose.  That
2234     is not necessarily true for hard registers until after reload.  */
2235  else if (code == CLOBBER)
2236    {
2237      if (GET_CODE (XEXP (x, 0)) == REG
2238	  && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2239	      || reload_completed)
2240	  && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2241	return 1;
2242    }
2243
2244  /* ??? A base USE is a historical relic.  It ought not be needed anymore.
2245     Instances where it is still used are either (1) temporary and the USE
2246     escaped the pass, (2) cruft and the USE need not be emitted anymore,
2247     or (3) hiding bugs elsewhere that are not properly representing data
2248     flow.  */
2249
2250  return 0;
2251}
2252
2253/* If INSN is the last insn in a libcall, and assuming INSN is dead,
2254   return 1 if the entire library call is dead.
2255   This is true if INSN copies a register (hard or pseudo)
2256   and if the hard return reg of the call insn is dead.
2257   (The caller should have tested the destination of the SET inside
2258   INSN already for death.)
2259
2260   If this insn doesn't just copy a register, then we don't
2261   have an ordinary libcall.  In that case, cse could not have
2262   managed to substitute the source for the dest later on,
2263   so we can assume the libcall is dead.
2264
2265   PBI is the block info giving pseudoregs live before this insn.
2266   NOTE is the REG_RETVAL note of the insn.  */
2267
2268static int
2269libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2270{
2271  rtx x = single_set (insn);
2272
2273  if (x)
2274    {
2275      rtx r = SET_SRC (x);
2276
2277      if (GET_CODE (r) == REG || GET_CODE (r) == SUBREG)
2278	{
2279	  rtx call = XEXP (note, 0);
2280	  rtx call_pat;
2281	  int i;
2282
2283	  /* Find the call insn.  */
2284	  while (call != insn && GET_CODE (call) != CALL_INSN)
2285	    call = NEXT_INSN (call);
2286
2287	  /* If there is none, do nothing special,
2288	     since ordinary death handling can understand these insns.  */
2289	  if (call == insn)
2290	    return 0;
2291
2292	  /* See if the hard reg holding the value is dead.
2293	     If this is a PARALLEL, find the call within it.  */
2294	  call_pat = PATTERN (call);
2295	  if (GET_CODE (call_pat) == PARALLEL)
2296	    {
2297	      for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2298		if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2299		    && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2300		  break;
2301
2302	      /* This may be a library call that is returning a value
2303		 via invisible pointer.  Do nothing special, since
2304		 ordinary death handling can understand these insns.  */
2305	      if (i < 0)
2306		return 0;
2307
2308	      call_pat = XVECEXP (call_pat, 0, i);
2309	    }
2310
2311	  if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2312	    return 0;
2313
2314	  while ((insn = PREV_INSN (insn)) != call)
2315	    {
2316	      if (! INSN_P (insn))
2317		continue;
2318	      if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2319		return 0;
2320	    }
2321	  return 1;
2322	}
2323    }
2324  return 0;
2325}
2326
2327/* Return 1 if register REGNO was used before it was set, i.e. if it is
2328   live at function entry.  Don't count global register variables, variables
2329   in registers that can be used for function arg passing, or variables in
2330   fixed hard registers.  */
2331
2332int
2333regno_uninitialized (unsigned int regno)
2334{
2335  if (n_basic_blocks == 0
2336      || (regno < FIRST_PSEUDO_REGISTER
2337	  && (global_regs[regno]
2338	      || fixed_regs[regno]
2339	      || FUNCTION_ARG_REGNO_P (regno))))
2340    return 0;
2341
2342  return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2343}
2344
2345/* 1 if register REGNO was alive at a place where `setjmp' was called
2346   and was set more than once or is an argument.
2347   Such regs may be clobbered by `longjmp'.  */
2348
2349int
2350regno_clobbered_at_setjmp (int regno)
2351{
2352  if (n_basic_blocks == 0)
2353    return 0;
2354
2355  return ((REG_N_SETS (regno) > 1
2356	   || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2357	  && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2358}
2359
2360/* Add MEM to PBI->MEM_SET_LIST.  MEM should be canonical.  Respect the
2361   maximal list size; look for overlaps in mode and select the largest.  */
2362static void
2363add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2364{
2365  rtx i;
2366
2367  /* We don't know how large a BLKmode store is, so we must not
2368     take them into consideration.  */
2369  if (GET_MODE (mem) == BLKmode)
2370    return;
2371
2372  for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2373    {
2374      rtx e = XEXP (i, 0);
2375      if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2376	{
2377	  if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2378	    {
2379#ifdef AUTO_INC_DEC
2380	      /* If we must store a copy of the mem, we can just modify
2381		 the mode of the stored copy.  */
2382	      if (pbi->flags & PROP_AUTOINC)
2383	        PUT_MODE (e, GET_MODE (mem));
2384	      else
2385#endif
2386	        XEXP (i, 0) = mem;
2387	    }
2388	  return;
2389	}
2390    }
2391
2392  if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2393    {
2394#ifdef AUTO_INC_DEC
2395      /* Store a copy of mem, otherwise the address may be
2396	 scrogged by find_auto_inc.  */
2397      if (pbi->flags & PROP_AUTOINC)
2398	mem = shallow_copy_rtx (mem);
2399#endif
2400      pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2401      pbi->mem_set_list_len++;
2402    }
2403}
2404
2405/* INSN references memory, possibly using autoincrement addressing modes.
2406   Find any entries on the mem_set_list that need to be invalidated due
2407   to an address change.  */
2408
2409static int
2410invalidate_mems_from_autoinc (rtx *px, void *data)
2411{
2412  rtx x = *px;
2413  struct propagate_block_info *pbi = data;
2414
2415  if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2416    {
2417      invalidate_mems_from_set (pbi, XEXP (x, 0));
2418      return -1;
2419    }
2420
2421  return 0;
2422}
2423
2424/* EXP is a REG.  Remove any dependent entries from pbi->mem_set_list.  */
2425
2426static void
2427invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2428{
2429  rtx temp = pbi->mem_set_list;
2430  rtx prev = NULL_RTX;
2431  rtx next;
2432
2433  while (temp)
2434    {
2435      next = XEXP (temp, 1);
2436      if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2437	{
2438	  /* Splice this entry out of the list.  */
2439	  if (prev)
2440	    XEXP (prev, 1) = next;
2441	  else
2442	    pbi->mem_set_list = next;
2443	  free_EXPR_LIST_node (temp);
2444	  pbi->mem_set_list_len--;
2445	}
2446      else
2447	prev = temp;
2448      temp = next;
2449    }
2450}
2451
2452/* Process the registers that are set within X.  Their bits are set to
2453   1 in the regset DEAD, because they are dead prior to this insn.
2454
2455   If INSN is nonzero, it is the insn being processed.
2456
2457   FLAGS is the set of operations to perform.  */
2458
2459static void
2460mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2461{
2462  rtx cond = NULL_RTX;
2463  rtx link;
2464  enum rtx_code code;
2465  int flags = pbi->flags;
2466
2467  if (insn)
2468    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2469      {
2470	if (REG_NOTE_KIND (link) == REG_INC)
2471	  mark_set_1 (pbi, SET, XEXP (link, 0),
2472		      (GET_CODE (x) == COND_EXEC
2473		       ? COND_EXEC_TEST (x) : NULL_RTX),
2474		      insn, flags);
2475      }
2476 retry:
2477  switch (code = GET_CODE (x))
2478    {
2479    case SET:
2480      if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2481	flags |= PROP_ASM_SCAN;
2482      /* Fall through */
2483    case CLOBBER:
2484      mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2485      return;
2486
2487    case COND_EXEC:
2488      cond = COND_EXEC_TEST (x);
2489      x = COND_EXEC_CODE (x);
2490      goto retry;
2491
2492    case PARALLEL:
2493      {
2494	int i;
2495
2496	/* We must scan forwards.  If we have an asm, we need to set
2497	   the PROP_ASM_SCAN flag before scanning the clobbers.  */
2498	for (i = 0; i < XVECLEN (x, 0); i++)
2499	  {
2500	    rtx sub = XVECEXP (x, 0, i);
2501	    switch (code = GET_CODE (sub))
2502	      {
2503	      case COND_EXEC:
2504		if (cond != NULL_RTX)
2505		  abort ();
2506
2507		cond = COND_EXEC_TEST (sub);
2508		sub = COND_EXEC_CODE (sub);
2509		if (GET_CODE (sub) == SET)
2510		  goto mark_set;
2511		if (GET_CODE (sub) == CLOBBER)
2512		  goto mark_clob;
2513		break;
2514
2515	      case SET:
2516	      mark_set:
2517		if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2518		  flags |= PROP_ASM_SCAN;
2519		/* Fall through */
2520	      case CLOBBER:
2521	      mark_clob:
2522		mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2523		break;
2524
2525	      case ASM_OPERANDS:
2526		flags |= PROP_ASM_SCAN;
2527		break;
2528
2529	      default:
2530		break;
2531	      }
2532	  }
2533	break;
2534      }
2535
2536    default:
2537      break;
2538    }
2539}
2540
2541/* Process a single set, which appears in INSN.  REG (which may not
2542   actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2543   being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2544   If the set is conditional (because it appear in a COND_EXEC), COND
2545   will be the condition.  */
2546
2547static void
2548mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2549{
2550  int regno_first = -1, regno_last = -1;
2551  unsigned long not_dead = 0;
2552  int i;
2553
2554  /* Modifying just one hardware register of a multi-reg value or just a
2555     byte field of a register does not mean the value from before this insn
2556     is now dead.  Of course, if it was dead after it's unused now.  */
2557
2558  switch (GET_CODE (reg))
2559    {
2560    case PARALLEL:
2561      /* Some targets place small structures in registers for return values of
2562	 functions.  We have to detect this case specially here to get correct
2563	 flow information.  */
2564      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2565	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2566	  mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2567		      flags);
2568      return;
2569
2570    case ZERO_EXTRACT:
2571    case SIGN_EXTRACT:
2572    case STRICT_LOW_PART:
2573      /* ??? Assumes STRICT_LOW_PART not used on multi-word registers.  */
2574      do
2575	reg = XEXP (reg, 0);
2576      while (GET_CODE (reg) == SUBREG
2577	     || GET_CODE (reg) == ZERO_EXTRACT
2578	     || GET_CODE (reg) == SIGN_EXTRACT
2579	     || GET_CODE (reg) == STRICT_LOW_PART);
2580      if (GET_CODE (reg) == MEM)
2581	break;
2582      not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2583      /* Fall through.  */
2584
2585    case REG:
2586      regno_last = regno_first = REGNO (reg);
2587      if (regno_first < FIRST_PSEUDO_REGISTER)
2588	regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2589      break;
2590
2591    case SUBREG:
2592      if (GET_CODE (SUBREG_REG (reg)) == REG)
2593	{
2594	  enum machine_mode outer_mode = GET_MODE (reg);
2595	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2596
2597	  /* Identify the range of registers affected.  This is moderately
2598	     tricky for hard registers.  See alter_subreg.  */
2599
2600	  regno_last = regno_first = REGNO (SUBREG_REG (reg));
2601	  if (regno_first < FIRST_PSEUDO_REGISTER)
2602	    {
2603	      regno_first += subreg_regno_offset (regno_first, inner_mode,
2604						  SUBREG_BYTE (reg),
2605						  outer_mode);
2606	      regno_last = (regno_first
2607			    + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2608
2609	      /* Since we've just adjusted the register number ranges, make
2610		 sure REG matches.  Otherwise some_was_live will be clear
2611		 when it shouldn't have been, and we'll create incorrect
2612		 REG_UNUSED notes.  */
2613	      reg = gen_rtx_REG (outer_mode, regno_first);
2614	    }
2615	  else
2616	    {
2617	      /* If the number of words in the subreg is less than the number
2618		 of words in the full register, we have a well-defined partial
2619		 set.  Otherwise the high bits are undefined.
2620
2621		 This is only really applicable to pseudos, since we just took
2622		 care of multi-word hard registers.  */
2623	      if (((GET_MODE_SIZE (outer_mode)
2624		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2625		  < ((GET_MODE_SIZE (inner_mode)
2626		      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2627		not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2628							    regno_first);
2629
2630	      reg = SUBREG_REG (reg);
2631	    }
2632	}
2633      else
2634	reg = SUBREG_REG (reg);
2635      break;
2636
2637    default:
2638      break;
2639    }
2640
2641  /* If this set is a MEM, then it kills any aliased writes.
2642     If this set is a REG, then it kills any MEMs which use the reg.  */
2643  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2644    {
2645      if (GET_CODE (reg) == REG)
2646	invalidate_mems_from_set (pbi, reg);
2647
2648      /* If the memory reference had embedded side effects (autoincrement
2649	 address modes.  Then we may need to kill some entries on the
2650	 memory set list.  */
2651      if (insn && GET_CODE (reg) == MEM)
2652	for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2653
2654      if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2655	  /* ??? With more effort we could track conditional memory life.  */
2656	  && ! cond)
2657	add_to_mem_set_list (pbi, canon_rtx (reg));
2658    }
2659
2660  if (GET_CODE (reg) == REG
2661      && ! (regno_first == FRAME_POINTER_REGNUM
2662	    && (! reload_completed || frame_pointer_needed))
2663#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2664      && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2665	    && (! reload_completed || frame_pointer_needed))
2666#endif
2667#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2668      && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2669#endif
2670      )
2671    {
2672      int some_was_live = 0, some_was_dead = 0;
2673
2674      for (i = regno_first; i <= regno_last; ++i)
2675	{
2676	  int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2677	  if (pbi->local_set)
2678	    {
2679	      /* Order of the set operation matters here since both
2680		 sets may be the same.  */
2681	      CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2682	      if (cond != NULL_RTX
2683		  && ! REGNO_REG_SET_P (pbi->local_set, i))
2684		SET_REGNO_REG_SET (pbi->cond_local_set, i);
2685	      else
2686		SET_REGNO_REG_SET (pbi->local_set, i);
2687	    }
2688	  if (code != CLOBBER)
2689	    SET_REGNO_REG_SET (pbi->new_set, i);
2690
2691	  some_was_live |= needed_regno;
2692	  some_was_dead |= ! needed_regno;
2693	}
2694
2695#ifdef HAVE_conditional_execution
2696      /* Consider conditional death in deciding that the register needs
2697	 a death note.  */
2698      if (some_was_live && ! not_dead
2699	  /* The stack pointer is never dead.  Well, not strictly true,
2700	     but it's very difficult to tell from here.  Hopefully
2701	     combine_stack_adjustments will fix up the most egregious
2702	     errors.  */
2703	  && regno_first != STACK_POINTER_REGNUM)
2704	{
2705	  for (i = regno_first; i <= regno_last; ++i)
2706	    if (! mark_regno_cond_dead (pbi, i, cond))
2707	      not_dead |= ((unsigned long) 1) << (i - regno_first);
2708	}
2709#endif
2710
2711      /* Additional data to record if this is the final pass.  */
2712      if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2713		   | PROP_DEATH_NOTES | PROP_AUTOINC))
2714	{
2715	  rtx y;
2716	  int blocknum = pbi->bb->index;
2717
2718	  y = NULL_RTX;
2719	  if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2720	    {
2721	      y = pbi->reg_next_use[regno_first];
2722
2723	      /* The next use is no longer next, since a store intervenes.  */
2724	      for (i = regno_first; i <= regno_last; ++i)
2725		pbi->reg_next_use[i] = 0;
2726	    }
2727
2728	  if (flags & PROP_REG_INFO)
2729	    {
2730	      for (i = regno_first; i <= regno_last; ++i)
2731		{
2732		  /* Count (weighted) references, stores, etc.  This counts a
2733		     register twice if it is modified, but that is correct.  */
2734		  REG_N_SETS (i) += 1;
2735		  REG_N_REFS (i) += 1;
2736		  REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2737
2738	          /* The insns where a reg is live are normally counted
2739		     elsewhere, but we want the count to include the insn
2740		     where the reg is set, and the normal counting mechanism
2741		     would not count it.  */
2742		  REG_LIVE_LENGTH (i) += 1;
2743		}
2744
2745	      /* If this is a hard reg, record this function uses the reg.  */
2746	      if (regno_first < FIRST_PSEUDO_REGISTER)
2747		{
2748		  for (i = regno_first; i <= regno_last; i++)
2749		    regs_ever_live[i] = 1;
2750		  if (flags & PROP_ASM_SCAN)
2751		    for (i = regno_first; i <= regno_last; i++)
2752		      regs_asm_clobbered[i] = 1;
2753		}
2754	      else
2755		{
2756		  /* Keep track of which basic blocks each reg appears in.  */
2757		  if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2758		    REG_BASIC_BLOCK (regno_first) = blocknum;
2759		  else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2760		    REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2761		}
2762	    }
2763
2764	  if (! some_was_dead)
2765	    {
2766	      if (flags & PROP_LOG_LINKS)
2767		{
2768		  /* Make a logical link from the next following insn
2769		     that uses this register, back to this insn.
2770		     The following insns have already been processed.
2771
2772		     We don't build a LOG_LINK for hard registers containing
2773		     in ASM_OPERANDs.  If these registers get replaced,
2774		     we might wind up changing the semantics of the insn,
2775		     even if reload can make what appear to be valid
2776		     assignments later.
2777
2778		     We don't build a LOG_LINK for global registers to
2779		     or from a function call.  We don't want to let
2780		     combine think that it knows what is going on with
2781		     global registers.  */
2782		  if (y && (BLOCK_NUM (y) == blocknum)
2783		      && (regno_first >= FIRST_PSEUDO_REGISTER
2784			  || (asm_noperands (PATTERN (y)) < 0
2785			      && ! ((GET_CODE (insn) == CALL_INSN
2786				     || GET_CODE (y) == CALL_INSN)
2787				    && global_regs[regno_first]))))
2788		    LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2789		}
2790	    }
2791	  else if (not_dead)
2792	    ;
2793	  else if (! some_was_live)
2794	    {
2795	      if (flags & PROP_REG_INFO)
2796		REG_N_DEATHS (regno_first) += 1;
2797
2798	      if (flags & PROP_DEATH_NOTES)
2799		{
2800		  /* Note that dead stores have already been deleted
2801		     when possible.  If we get here, we have found a
2802		     dead store that cannot be eliminated (because the
2803		     same insn does something useful).  Indicate this
2804		     by marking the reg being set as dying here.  */
2805		  REG_NOTES (insn)
2806		    = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2807		}
2808	    }
2809	  else
2810	    {
2811	      if (flags & PROP_DEATH_NOTES)
2812		{
2813		  /* This is a case where we have a multi-word hard register
2814		     and some, but not all, of the words of the register are
2815		     needed in subsequent insns.  Write REG_UNUSED notes
2816		     for those parts that were not needed.  This case should
2817		     be rare.  */
2818
2819		  for (i = regno_first; i <= regno_last; ++i)
2820		    if (! REGNO_REG_SET_P (pbi->reg_live, i))
2821		      REG_NOTES (insn)
2822			= alloc_EXPR_LIST (REG_UNUSED,
2823					   regno_reg_rtx[i],
2824					   REG_NOTES (insn));
2825		}
2826	    }
2827	}
2828
2829      /* Mark the register as being dead.  */
2830      if (some_was_live
2831	  /* The stack pointer is never dead.  Well, not strictly true,
2832	     but it's very difficult to tell from here.  Hopefully
2833	     combine_stack_adjustments will fix up the most egregious
2834	     errors.  */
2835	  && regno_first != STACK_POINTER_REGNUM)
2836	{
2837	  for (i = regno_first; i <= regno_last; ++i)
2838	    if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2839	      CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2840	}
2841    }
2842  else if (GET_CODE (reg) == REG)
2843    {
2844      if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2845	pbi->reg_next_use[regno_first] = 0;
2846
2847      if ((flags & PROP_REG_INFO) != 0
2848	  && (flags & PROP_ASM_SCAN) != 0
2849	  &&  regno_first < FIRST_PSEUDO_REGISTER)
2850	{
2851	  for (i = regno_first; i <= regno_last; i++)
2852	    regs_asm_clobbered[i] = 1;
2853	}
2854    }
2855
2856  /* If this is the last pass and this is a SCRATCH, show it will be dying
2857     here and count it.  */
2858  else if (GET_CODE (reg) == SCRATCH)
2859    {
2860      if (flags & PROP_DEATH_NOTES)
2861	REG_NOTES (insn)
2862	  = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2863    }
2864}
2865
2866#ifdef HAVE_conditional_execution
2867/* Mark REGNO conditionally dead.
2868   Return true if the register is now unconditionally dead.  */
2869
2870static int
2871mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2872{
2873  /* If this is a store to a predicate register, the value of the
2874     predicate is changing, we don't know that the predicate as seen
2875     before is the same as that seen after.  Flush all dependent
2876     conditions from reg_cond_dead.  This will make all such
2877     conditionally live registers unconditionally live.  */
2878  if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2879    flush_reg_cond_reg (pbi, regno);
2880
2881  /* If this is an unconditional store, remove any conditional
2882     life that may have existed.  */
2883  if (cond == NULL_RTX)
2884    splay_tree_remove (pbi->reg_cond_dead, regno);
2885  else
2886    {
2887      splay_tree_node node;
2888      struct reg_cond_life_info *rcli;
2889      rtx ncond;
2890
2891      /* Otherwise this is a conditional set.  Record that fact.
2892	 It may have been conditionally used, or there may be a
2893	 subsequent set with a complimentary condition.  */
2894
2895      node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2896      if (node == NULL)
2897	{
2898	  /* The register was unconditionally live previously.
2899	     Record the current condition as the condition under
2900	     which it is dead.  */
2901	  rcli = xmalloc (sizeof (*rcli));
2902	  rcli->condition = cond;
2903	  rcli->stores = cond;
2904	  rcli->orig_condition = const0_rtx;
2905	  splay_tree_insert (pbi->reg_cond_dead, regno,
2906			     (splay_tree_value) rcli);
2907
2908	  SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2909
2910	  /* Not unconditionally dead.  */
2911	  return 0;
2912	}
2913      else
2914	{
2915	  /* The register was conditionally live previously.
2916	     Add the new condition to the old.  */
2917	  rcli = (struct reg_cond_life_info *) node->value;
2918	  ncond = rcli->condition;
2919	  ncond = ior_reg_cond (ncond, cond, 1);
2920	  if (rcli->stores == const0_rtx)
2921	    rcli->stores = cond;
2922	  else if (rcli->stores != const1_rtx)
2923	    rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2924
2925	  /* If the register is now unconditionally dead, remove the entry
2926	     in the splay_tree.  A register is unconditionally dead if the
2927	     dead condition ncond is true.  A register is also unconditionally
2928	     dead if the sum of all conditional stores is an unconditional
2929	     store (stores is true), and the dead condition is identically the
2930	     same as the original dead condition initialized at the end of
2931	     the block.  This is a pointer compare, not an rtx_equal_p
2932	     compare.  */
2933	  if (ncond == const1_rtx
2934	      || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2935	    splay_tree_remove (pbi->reg_cond_dead, regno);
2936	  else
2937	    {
2938	      rcli->condition = ncond;
2939
2940	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2941
2942	      /* Not unconditionally dead.  */
2943	      return 0;
2944	    }
2945	}
2946    }
2947
2948  return 1;
2949}
2950
2951/* Called from splay_tree_delete for pbi->reg_cond_life.  */
2952
2953static void
2954free_reg_cond_life_info (splay_tree_value value)
2955{
2956  struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2957  free (rcli);
2958}
2959
2960/* Helper function for flush_reg_cond_reg.  */
2961
2962static int
2963flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2964{
2965  struct reg_cond_life_info *rcli;
2966  int *xdata = (int *) data;
2967  unsigned int regno = xdata[0];
2968
2969  /* Don't need to search if last flushed value was farther on in
2970     the in-order traversal.  */
2971  if (xdata[1] >= (int) node->key)
2972    return 0;
2973
2974  /* Splice out portions of the expression that refer to regno.  */
2975  rcli = (struct reg_cond_life_info *) node->value;
2976  rcli->condition = elim_reg_cond (rcli->condition, regno);
2977  if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2978    rcli->stores = elim_reg_cond (rcli->stores, regno);
2979
2980  /* If the entire condition is now false, signal the node to be removed.  */
2981  if (rcli->condition == const0_rtx)
2982    {
2983      xdata[1] = node->key;
2984      return -1;
2985    }
2986  else if (rcli->condition == const1_rtx)
2987    abort ();
2988
2989  return 0;
2990}
2991
2992/* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE.  */
2993
2994static void
2995flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2996{
2997  int pair[2];
2998
2999  pair[0] = regno;
3000  pair[1] = -1;
3001  while (splay_tree_foreach (pbi->reg_cond_dead,
3002			     flush_reg_cond_reg_1, pair) == -1)
3003    splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3004
3005  CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3006}
3007
3008/* Logical arithmetic on predicate conditions.  IOR, NOT and AND.
3009   For ior/and, the ADD flag determines whether we want to add the new
3010   condition X to the old one unconditionally.  If it is zero, we will
3011   only return a new expression if X allows us to simplify part of
3012   OLD, otherwise we return NULL to the caller.
3013   If ADD is nonzero, we will return a new condition in all cases.  The
3014   toplevel caller of one of these functions should always pass 1 for
3015   ADD.  */
3016
3017static rtx
3018ior_reg_cond (rtx old, rtx x, int add)
3019{
3020  rtx op0, op1;
3021
3022  if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3023    {
3024      if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3025	  && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3026	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3027	return const1_rtx;
3028      if (GET_CODE (x) == GET_CODE (old)
3029	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3030	return old;
3031      if (! add)
3032	return NULL;
3033      return gen_rtx_IOR (0, old, x);
3034    }
3035
3036  switch (GET_CODE (old))
3037    {
3038    case IOR:
3039      op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3040      op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3041      if (op0 != NULL || op1 != NULL)
3042	{
3043	  if (op0 == const0_rtx)
3044	    return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3045	  if (op1 == const0_rtx)
3046	    return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3047	  if (op0 == const1_rtx || op1 == const1_rtx)
3048	    return const1_rtx;
3049	  if (op0 == NULL)
3050	    op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3051	  else if (rtx_equal_p (x, op0))
3052	    /* (x | A) | x ~ (x | A).  */
3053	    return old;
3054	  if (op1 == NULL)
3055	    op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3056	  else if (rtx_equal_p (x, op1))
3057	    /* (A | x) | x ~ (A | x).  */
3058	    return old;
3059	  return gen_rtx_IOR (0, op0, op1);
3060	}
3061      if (! add)
3062	return NULL;
3063      return gen_rtx_IOR (0, old, x);
3064
3065    case AND:
3066      op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3067      op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3068      if (op0 != NULL || op1 != NULL)
3069	{
3070	  if (op0 == const1_rtx)
3071	    return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3072	  if (op1 == const1_rtx)
3073	    return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3074	  if (op0 == const0_rtx || op1 == const0_rtx)
3075	    return const0_rtx;
3076	  if (op0 == NULL)
3077	    op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3078	  else if (rtx_equal_p (x, op0))
3079	    /* (x & A) | x ~ x.  */
3080	    return op0;
3081	  if (op1 == NULL)
3082	    op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3083	  else if (rtx_equal_p (x, op1))
3084	    /* (A & x) | x ~ x.  */
3085	    return op1;
3086	  return gen_rtx_AND (0, op0, op1);
3087	}
3088      if (! add)
3089	return NULL;
3090      return gen_rtx_IOR (0, old, x);
3091
3092    case NOT:
3093      op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3094      if (op0 != NULL)
3095	return not_reg_cond (op0);
3096      if (! add)
3097	return NULL;
3098      return gen_rtx_IOR (0, old, x);
3099
3100    default:
3101      abort ();
3102    }
3103}
3104
3105static rtx
3106not_reg_cond (rtx x)
3107{
3108  enum rtx_code x_code;
3109
3110  if (x == const0_rtx)
3111    return const1_rtx;
3112  else if (x == const1_rtx)
3113    return const0_rtx;
3114  x_code = GET_CODE (x);
3115  if (x_code == NOT)
3116    return XEXP (x, 0);
3117  if (GET_RTX_CLASS (x_code) == '<'
3118      && GET_CODE (XEXP (x, 0)) == REG)
3119    {
3120      if (XEXP (x, 1) != const0_rtx)
3121	abort ();
3122
3123      return gen_rtx_fmt_ee (reverse_condition (x_code),
3124			     VOIDmode, XEXP (x, 0), const0_rtx);
3125    }
3126  return gen_rtx_NOT (0, x);
3127}
3128
3129static rtx
3130and_reg_cond (rtx old, rtx x, int add)
3131{
3132  rtx op0, op1;
3133
3134  if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3135    {
3136      if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3137	  && GET_CODE (x) == reverse_condition (GET_CODE (old))
3138	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3139	return const0_rtx;
3140      if (GET_CODE (x) == GET_CODE (old)
3141	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3142	return old;
3143      if (! add)
3144	return NULL;
3145      return gen_rtx_AND (0, old, x);
3146    }
3147
3148  switch (GET_CODE (old))
3149    {
3150    case IOR:
3151      op0 = and_reg_cond (XEXP (old, 0), x, 0);
3152      op1 = and_reg_cond (XEXP (old, 1), x, 0);
3153      if (op0 != NULL || op1 != NULL)
3154	{
3155	  if (op0 == const0_rtx)
3156	    return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3157	  if (op1 == const0_rtx)
3158	    return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3159	  if (op0 == const1_rtx || op1 == const1_rtx)
3160	    return const1_rtx;
3161	  if (op0 == NULL)
3162	    op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3163	  else if (rtx_equal_p (x, op0))
3164	    /* (x | A) & x ~ x.  */
3165	    return op0;
3166	  if (op1 == NULL)
3167	    op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3168	  else if (rtx_equal_p (x, op1))
3169	    /* (A | x) & x ~ x.  */
3170	    return op1;
3171	  return gen_rtx_IOR (0, op0, op1);
3172	}
3173      if (! add)
3174	return NULL;
3175      return gen_rtx_AND (0, old, x);
3176
3177    case AND:
3178      op0 = and_reg_cond (XEXP (old, 0), x, 0);
3179      op1 = and_reg_cond (XEXP (old, 1), x, 0);
3180      if (op0 != NULL || op1 != NULL)
3181	{
3182	  if (op0 == const1_rtx)
3183	    return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3184	  if (op1 == const1_rtx)
3185	    return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3186	  if (op0 == const0_rtx || op1 == const0_rtx)
3187	    return const0_rtx;
3188	  if (op0 == NULL)
3189	    op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3190	  else if (rtx_equal_p (x, op0))
3191	    /* (x & A) & x ~ (x & A).  */
3192	    return old;
3193	  if (op1 == NULL)
3194	    op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3195	  else if (rtx_equal_p (x, op1))
3196	    /* (A & x) & x ~ (A & x).  */
3197	    return old;
3198	  return gen_rtx_AND (0, op0, op1);
3199	}
3200      if (! add)
3201	return NULL;
3202      return gen_rtx_AND (0, old, x);
3203
3204    case NOT:
3205      op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3206      if (op0 != NULL)
3207	return not_reg_cond (op0);
3208      if (! add)
3209	return NULL;
3210      return gen_rtx_AND (0, old, x);
3211
3212    default:
3213      abort ();
3214    }
3215}
3216
3217/* Given a condition X, remove references to reg REGNO and return the
3218   new condition.  The removal will be done so that all conditions
3219   involving REGNO are considered to evaluate to false.  This function
3220   is used when the value of REGNO changes.  */
3221
3222static rtx
3223elim_reg_cond (rtx x, unsigned int regno)
3224{
3225  rtx op0, op1;
3226
3227  if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3228    {
3229      if (REGNO (XEXP (x, 0)) == regno)
3230	return const0_rtx;
3231      return x;
3232    }
3233
3234  switch (GET_CODE (x))
3235    {
3236    case AND:
3237      op0 = elim_reg_cond (XEXP (x, 0), regno);
3238      op1 = elim_reg_cond (XEXP (x, 1), regno);
3239      if (op0 == const0_rtx || op1 == const0_rtx)
3240	return const0_rtx;
3241      if (op0 == const1_rtx)
3242	return op1;
3243      if (op1 == const1_rtx)
3244	return op0;
3245      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3246	return x;
3247      return gen_rtx_AND (0, op0, op1);
3248
3249    case IOR:
3250      op0 = elim_reg_cond (XEXP (x, 0), regno);
3251      op1 = elim_reg_cond (XEXP (x, 1), regno);
3252      if (op0 == const1_rtx || op1 == const1_rtx)
3253	return const1_rtx;
3254      if (op0 == const0_rtx)
3255	return op1;
3256      if (op1 == const0_rtx)
3257	return op0;
3258      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3259	return x;
3260      return gen_rtx_IOR (0, op0, op1);
3261
3262    case NOT:
3263      op0 = elim_reg_cond (XEXP (x, 0), regno);
3264      if (op0 == const0_rtx)
3265	return const1_rtx;
3266      if (op0 == const1_rtx)
3267	return const0_rtx;
3268      if (op0 != XEXP (x, 0))
3269	return not_reg_cond (op0);
3270      return x;
3271
3272    default:
3273      abort ();
3274    }
3275}
3276#endif /* HAVE_conditional_execution */
3277
3278#ifdef AUTO_INC_DEC
3279
3280/* Try to substitute the auto-inc expression INC as the address inside
3281   MEM which occurs in INSN.  Currently, the address of MEM is an expression
3282   involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3283   that has a single set whose source is a PLUS of INCR_REG and something
3284   else.  */
3285
3286static void
3287attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3288		  rtx mem, rtx incr, rtx incr_reg)
3289{
3290  int regno = REGNO (incr_reg);
3291  rtx set = single_set (incr);
3292  rtx q = SET_DEST (set);
3293  rtx y = SET_SRC (set);
3294  int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3295
3296  /* Make sure this reg appears only once in this insn.  */
3297  if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3298    return;
3299
3300  if (dead_or_set_p (incr, incr_reg)
3301      /* Mustn't autoinc an eliminable register.  */
3302      && (regno >= FIRST_PSEUDO_REGISTER
3303	  || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3304    {
3305      /* This is the simple case.  Try to make the auto-inc.  If
3306	 we can't, we are done.  Otherwise, we will do any
3307	 needed updates below.  */
3308      if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3309	return;
3310    }
3311  else if (GET_CODE (q) == REG
3312	   /* PREV_INSN used here to check the semi-open interval
3313	      [insn,incr).  */
3314	   && ! reg_used_between_p (q,  PREV_INSN (insn), incr)
3315	   /* We must also check for sets of q as q may be
3316	      a call clobbered hard register and there may
3317	      be a call between PREV_INSN (insn) and incr.  */
3318	   && ! reg_set_between_p (q,  PREV_INSN (insn), incr))
3319    {
3320      /* We have *p followed sometime later by q = p+size.
3321	 Both p and q must be live afterward,
3322	 and q is not used between INSN and its assignment.
3323	 Change it to q = p, ...*q..., q = q+size.
3324	 Then fall into the usual case.  */
3325      rtx insns, temp;
3326
3327      start_sequence ();
3328      emit_move_insn (q, incr_reg);
3329      insns = get_insns ();
3330      end_sequence ();
3331
3332      /* If we can't make the auto-inc, or can't make the
3333	 replacement into Y, exit.  There's no point in making
3334	 the change below if we can't do the auto-inc and doing
3335	 so is not correct in the pre-inc case.  */
3336
3337      XEXP (inc, 0) = q;
3338      validate_change (insn, &XEXP (mem, 0), inc, 1);
3339      validate_change (incr, &XEXP (y, opnum), q, 1);
3340      if (! apply_change_group ())
3341	return;
3342
3343      /* We now know we'll be doing this change, so emit the
3344	 new insn(s) and do the updates.  */
3345      emit_insn_before (insns, insn);
3346
3347      if (BB_HEAD (pbi->bb) == insn)
3348	BB_HEAD (pbi->bb) = insns;
3349
3350      /* INCR will become a NOTE and INSN won't contain a
3351	 use of INCR_REG.  If a use of INCR_REG was just placed in
3352	 the insn before INSN, make that the next use.
3353	 Otherwise, invalidate it.  */
3354      if (GET_CODE (PREV_INSN (insn)) == INSN
3355	  && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3356	  && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3357	pbi->reg_next_use[regno] = PREV_INSN (insn);
3358      else
3359	pbi->reg_next_use[regno] = 0;
3360
3361      incr_reg = q;
3362      regno = REGNO (q);
3363
3364      /* REGNO is now used in INCR which is below INSN, but
3365	 it previously wasn't live here.  If we don't mark
3366	 it as live, we'll put a REG_DEAD note for it
3367	 on this insn, which is incorrect.  */
3368      SET_REGNO_REG_SET (pbi->reg_live, regno);
3369
3370      /* If there are any calls between INSN and INCR, show
3371	 that REGNO now crosses them.  */
3372      for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3373	if (GET_CODE (temp) == CALL_INSN)
3374	  {
3375	    REG_N_CALLS_CROSSED (regno)++;
3376	    if (can_throw_internal (temp))
3377	      REG_N_THROWING_CALLS_CROSSED (regno)++;
3378	  }
3379
3380      /* Invalidate alias info for Q since we just changed its value.  */
3381      clear_reg_alias_info (q);
3382    }
3383  else
3384    return;
3385
3386  /* If we haven't returned, it means we were able to make the
3387     auto-inc, so update the status.  First, record that this insn
3388     has an implicit side effect.  */
3389
3390  REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3391
3392  /* Modify the old increment-insn to simply copy
3393     the already-incremented value of our register.  */
3394  if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3395    abort ();
3396
3397  /* If that makes it a no-op (copying the register into itself) delete
3398     it so it won't appear to be a "use" and a "set" of this
3399     register.  */
3400  if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3401    {
3402      /* If the original source was dead, it's dead now.  */
3403      rtx note;
3404
3405      while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3406	{
3407	  remove_note (incr, note);
3408	  if (XEXP (note, 0) != incr_reg)
3409	    CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3410	}
3411
3412      PUT_CODE (incr, NOTE);
3413      NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3414      NOTE_SOURCE_FILE (incr) = 0;
3415    }
3416
3417  if (regno >= FIRST_PSEUDO_REGISTER)
3418    {
3419      /* Count an extra reference to the reg.  When a reg is
3420	 incremented, spilling it is worse, so we want to make
3421	 that less likely.  */
3422      REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3423
3424      /* Count the increment as a setting of the register,
3425	 even though it isn't a SET in rtl.  */
3426      REG_N_SETS (regno)++;
3427    }
3428}
3429
3430/* X is a MEM found in INSN.  See if we can convert it into an auto-increment
3431   reference.  */
3432
3433static void
3434find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3435{
3436  rtx addr = XEXP (x, 0);
3437  HOST_WIDE_INT offset = 0;
3438  rtx set, y, incr, inc_val;
3439  int regno;
3440  int size = GET_MODE_SIZE (GET_MODE (x));
3441
3442  if (GET_CODE (insn) == JUMP_INSN)
3443    return;
3444
3445  /* Here we detect use of an index register which might be good for
3446     postincrement, postdecrement, preincrement, or predecrement.  */
3447
3448  if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3449    offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3450
3451  if (GET_CODE (addr) != REG)
3452    return;
3453
3454  regno = REGNO (addr);
3455
3456  /* Is the next use an increment that might make auto-increment? */
3457  incr = pbi->reg_next_use[regno];
3458  if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3459    return;
3460  set = single_set (incr);
3461  if (set == 0 || GET_CODE (set) != SET)
3462    return;
3463  y = SET_SRC (set);
3464
3465  if (GET_CODE (y) != PLUS)
3466    return;
3467
3468  if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3469    inc_val = XEXP (y, 1);
3470  else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3471    inc_val = XEXP (y, 0);
3472  else
3473    return;
3474
3475  if (GET_CODE (inc_val) == CONST_INT)
3476    {
3477      if (HAVE_POST_INCREMENT
3478	  && (INTVAL (inc_val) == size && offset == 0))
3479	attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3480			  incr, addr);
3481      else if (HAVE_POST_DECREMENT
3482	       && (INTVAL (inc_val) == -size && offset == 0))
3483	attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3484			  incr, addr);
3485      else if (HAVE_PRE_INCREMENT
3486	       && (INTVAL (inc_val) == size && offset == size))
3487	attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3488			  incr, addr);
3489      else if (HAVE_PRE_DECREMENT
3490	       && (INTVAL (inc_val) == -size && offset == -size))
3491	attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3492			  incr, addr);
3493      else if (HAVE_POST_MODIFY_DISP && offset == 0)
3494	attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3495						    gen_rtx_PLUS (Pmode,
3496								  addr,
3497								  inc_val)),
3498			  insn, x, incr, addr);
3499      else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3500	attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3501						    gen_rtx_PLUS (Pmode,
3502								  addr,
3503								  inc_val)),
3504			  insn, x, incr, addr);
3505    }
3506  else if (GET_CODE (inc_val) == REG
3507	   && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3508				   NEXT_INSN (incr)))
3509
3510    {
3511      if (HAVE_POST_MODIFY_REG && offset == 0)
3512	attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3513						    gen_rtx_PLUS (Pmode,
3514								  addr,
3515								  inc_val)),
3516			  insn, x, incr, addr);
3517    }
3518}
3519
3520#endif /* AUTO_INC_DEC */
3521
3522static void
3523mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3524	       rtx cond ATTRIBUTE_UNUSED, rtx insn)
3525{
3526  unsigned int regno_first, regno_last, i;
3527  int some_was_live, some_was_dead, some_not_set;
3528
3529  regno_last = regno_first = REGNO (reg);
3530  if (regno_first < FIRST_PSEUDO_REGISTER)
3531    regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3532
3533  /* Find out if any of this register is live after this instruction.  */
3534  some_was_live = some_was_dead = 0;
3535  for (i = regno_first; i <= regno_last; ++i)
3536    {
3537      int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3538      some_was_live |= needed_regno;
3539      some_was_dead |= ! needed_regno;
3540    }
3541
3542  /* Find out if any of the register was set this insn.  */
3543  some_not_set = 0;
3544  for (i = regno_first; i <= regno_last; ++i)
3545    some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3546
3547  if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3548    {
3549      /* Record where each reg is used, so when the reg is set we know
3550	 the next insn that uses it.  */
3551      pbi->reg_next_use[regno_first] = insn;
3552    }
3553
3554  if (pbi->flags & PROP_REG_INFO)
3555    {
3556      if (regno_first < FIRST_PSEUDO_REGISTER)
3557	{
3558	  /* If this is a register we are going to try to eliminate,
3559	     don't mark it live here.  If we are successful in
3560	     eliminating it, it need not be live unless it is used for
3561	     pseudos, in which case it will have been set live when it
3562	     was allocated to the pseudos.  If the register will not
3563	     be eliminated, reload will set it live at that point.
3564
3565	     Otherwise, record that this function uses this register.  */
3566	  /* ??? The PPC backend tries to "eliminate" on the pic
3567	     register to itself.  This should be fixed.  In the mean
3568	     time, hack around it.  */
3569
3570	  if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3571	         && (regno_first == FRAME_POINTER_REGNUM
3572		     || regno_first == ARG_POINTER_REGNUM)))
3573	    for (i = regno_first; i <= regno_last; ++i)
3574	      regs_ever_live[i] = 1;
3575	}
3576      else
3577	{
3578	  /* Keep track of which basic block each reg appears in.  */
3579
3580	  int blocknum = pbi->bb->index;
3581	  if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3582	    REG_BASIC_BLOCK (regno_first) = blocknum;
3583	  else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3584	    REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3585
3586	  /* Count (weighted) number of uses of each reg.  */
3587	  REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3588	  REG_N_REFS (regno_first)++;
3589	}
3590    }
3591
3592  /* Record and count the insns in which a reg dies.  If it is used in
3593     this insn and was dead below the insn then it dies in this insn.
3594     If it was set in this insn, we do not make a REG_DEAD note;
3595     likewise if we already made such a note.  */
3596  if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3597      && some_was_dead
3598      && some_not_set)
3599    {
3600      /* Check for the case where the register dying partially
3601	 overlaps the register set by this insn.  */
3602      if (regno_first != regno_last)
3603	for (i = regno_first; i <= regno_last; ++i)
3604	  some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3605
3606      /* If none of the words in X is needed, make a REG_DEAD note.
3607	 Otherwise, we must make partial REG_DEAD notes.  */
3608      if (! some_was_live)
3609	{
3610	  if ((pbi->flags & PROP_DEATH_NOTES)
3611	      && ! find_regno_note (insn, REG_DEAD, regno_first))
3612	    REG_NOTES (insn)
3613	      = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3614
3615	  if (pbi->flags & PROP_REG_INFO)
3616	    REG_N_DEATHS (regno_first)++;
3617	}
3618      else
3619	{
3620	  /* Don't make a REG_DEAD note for a part of a register
3621	     that is set in the insn.  */
3622	  for (i = regno_first; i <= regno_last; ++i)
3623	    if (! REGNO_REG_SET_P (pbi->reg_live, i)
3624		&& ! dead_or_set_regno_p (insn, i))
3625	      REG_NOTES (insn)
3626		= alloc_EXPR_LIST (REG_DEAD,
3627				   regno_reg_rtx[i],
3628				   REG_NOTES (insn));
3629	}
3630    }
3631
3632  /* Mark the register as being live.  */
3633  for (i = regno_first; i <= regno_last; ++i)
3634    {
3635#ifdef HAVE_conditional_execution
3636      int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3637#endif
3638
3639      SET_REGNO_REG_SET (pbi->reg_live, i);
3640
3641#ifdef HAVE_conditional_execution
3642      /* If this is a conditional use, record that fact.  If it is later
3643	 conditionally set, we'll know to kill the register.  */
3644      if (cond != NULL_RTX)
3645	{
3646	  splay_tree_node node;
3647	  struct reg_cond_life_info *rcli;
3648	  rtx ncond;
3649
3650	  if (this_was_live)
3651	    {
3652	      node = splay_tree_lookup (pbi->reg_cond_dead, i);
3653	      if (node == NULL)
3654		{
3655		  /* The register was unconditionally live previously.
3656		     No need to do anything.  */
3657		}
3658	      else
3659		{
3660		  /* The register was conditionally live previously.
3661		     Subtract the new life cond from the old death cond.  */
3662		  rcli = (struct reg_cond_life_info *) node->value;
3663		  ncond = rcli->condition;
3664		  ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3665
3666		  /* If the register is now unconditionally live,
3667		     remove the entry in the splay_tree.  */
3668		  if (ncond == const0_rtx)
3669		    splay_tree_remove (pbi->reg_cond_dead, i);
3670		  else
3671		    {
3672		      rcli->condition = ncond;
3673		      SET_REGNO_REG_SET (pbi->reg_cond_reg,
3674					 REGNO (XEXP (cond, 0)));
3675		    }
3676		}
3677	    }
3678	  else
3679	    {
3680	      /* The register was not previously live at all.  Record
3681		 the condition under which it is still dead.  */
3682	      rcli = xmalloc (sizeof (*rcli));
3683	      rcli->condition = not_reg_cond (cond);
3684	      rcli->stores = const0_rtx;
3685	      rcli->orig_condition = const0_rtx;
3686	      splay_tree_insert (pbi->reg_cond_dead, i,
3687				 (splay_tree_value) rcli);
3688
3689	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3690	    }
3691	}
3692      else if (this_was_live)
3693	{
3694	  /* The register may have been conditionally live previously, but
3695	     is now unconditionally live.  Remove it from the conditionally
3696	     dead list, so that a conditional set won't cause us to think
3697	     it dead.  */
3698	  splay_tree_remove (pbi->reg_cond_dead, i);
3699	}
3700#endif
3701    }
3702}
3703
3704/* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3705   This is done assuming the registers needed from X are those that
3706   have 1-bits in PBI->REG_LIVE.
3707
3708   INSN is the containing instruction.  If INSN is dead, this function
3709   is not called.  */
3710
3711static void
3712mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3713{
3714  RTX_CODE code;
3715  int regno;
3716  int flags = pbi->flags;
3717
3718 retry:
3719  if (!x)
3720    return;
3721  code = GET_CODE (x);
3722  switch (code)
3723    {
3724    case LABEL_REF:
3725    case SYMBOL_REF:
3726    case CONST_INT:
3727    case CONST:
3728    case CONST_DOUBLE:
3729    case CONST_VECTOR:
3730    case PC:
3731    case ADDR_VEC:
3732    case ADDR_DIFF_VEC:
3733      return;
3734
3735#ifdef HAVE_cc0
3736    case CC0:
3737      pbi->cc0_live = 1;
3738      return;
3739#endif
3740
3741    case CLOBBER:
3742      /* If we are clobbering a MEM, mark any registers inside the address
3743	 as being used.  */
3744      if (GET_CODE (XEXP (x, 0)) == MEM)
3745	mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3746      return;
3747
3748    case MEM:
3749      /* Don't bother watching stores to mems if this is not the
3750	 final pass.  We'll not be deleting dead stores this round.  */
3751      if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3752	{
3753	  /* Invalidate the data for the last MEM stored, but only if MEM is
3754	     something that can be stored into.  */
3755	  if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3756	      && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3757	    /* Needn't clear the memory set list.  */
3758	    ;
3759	  else
3760	    {
3761	      rtx temp = pbi->mem_set_list;
3762	      rtx prev = NULL_RTX;
3763	      rtx next;
3764
3765	      while (temp)
3766		{
3767		  next = XEXP (temp, 1);
3768		  if (unchanging_anti_dependence (XEXP (temp, 0), x))
3769		    {
3770		      /* Splice temp out of the list.  */
3771		      if (prev)
3772			XEXP (prev, 1) = next;
3773		      else
3774			pbi->mem_set_list = next;
3775		      free_EXPR_LIST_node (temp);
3776		      pbi->mem_set_list_len--;
3777		    }
3778		  else
3779		    prev = temp;
3780		  temp = next;
3781		}
3782	    }
3783
3784	  /* If the memory reference had embedded side effects (autoincrement
3785	     address modes.  Then we may need to kill some entries on the
3786	     memory set list.  */
3787	  if (insn)
3788	    for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3789	}
3790
3791#ifdef AUTO_INC_DEC
3792      if (flags & PROP_AUTOINC)
3793	find_auto_inc (pbi, x, insn);
3794#endif
3795      break;
3796
3797    case SUBREG:
3798#ifdef CANNOT_CHANGE_MODE_CLASS
3799      if (flags & PROP_REG_INFO)
3800	record_subregs_of_mode (x);
3801#endif
3802
3803      /* While we're here, optimize this case.  */
3804      x = SUBREG_REG (x);
3805      if (GET_CODE (x) != REG)
3806	goto retry;
3807      /* Fall through.  */
3808
3809    case REG:
3810      /* See a register other than being set => mark it as needed.  */
3811      mark_used_reg (pbi, x, cond, insn);
3812      return;
3813
3814    case SET:
3815      {
3816	rtx testreg = SET_DEST (x);
3817	int mark_dest = 0;
3818
3819	/* If storing into MEM, don't show it as being used.  But do
3820	   show the address as being used.  */
3821	if (GET_CODE (testreg) == MEM)
3822	  {
3823#ifdef AUTO_INC_DEC
3824	    if (flags & PROP_AUTOINC)
3825	      find_auto_inc (pbi, testreg, insn);
3826#endif
3827	    mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3828	    mark_used_regs (pbi, SET_SRC (x), cond, insn);
3829	    return;
3830	  }
3831
3832	/* Storing in STRICT_LOW_PART is like storing in a reg
3833	   in that this SET might be dead, so ignore it in TESTREG.
3834	   but in some other ways it is like using the reg.
3835
3836	   Storing in a SUBREG or a bit field is like storing the entire
3837	   register in that if the register's value is not used
3838	   then this SET is not needed.  */
3839	while (GET_CODE (testreg) == STRICT_LOW_PART
3840	       || GET_CODE (testreg) == ZERO_EXTRACT
3841	       || GET_CODE (testreg) == SIGN_EXTRACT
3842	       || GET_CODE (testreg) == SUBREG)
3843	  {
3844#ifdef CANNOT_CHANGE_MODE_CLASS
3845	    if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3846	      record_subregs_of_mode (testreg);
3847#endif
3848
3849	    /* Modifying a single register in an alternate mode
3850	       does not use any of the old value.  But these other
3851	       ways of storing in a register do use the old value.  */
3852	    if (GET_CODE (testreg) == SUBREG
3853		&& !((REG_BYTES (SUBREG_REG (testreg))
3854		      + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3855		     > (REG_BYTES (testreg)
3856			+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3857	      ;
3858	    else
3859	      mark_dest = 1;
3860
3861	    testreg = XEXP (testreg, 0);
3862	  }
3863
3864	/* If this is a store into a register or group of registers,
3865	   recursively scan the value being stored.  */
3866
3867	if ((GET_CODE (testreg) == PARALLEL
3868	     && GET_MODE (testreg) == BLKmode)
3869	    || (GET_CODE (testreg) == REG
3870		&& (regno = REGNO (testreg),
3871		    ! (regno == FRAME_POINTER_REGNUM
3872		       && (! reload_completed || frame_pointer_needed)))
3873#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3874		&& ! (regno == HARD_FRAME_POINTER_REGNUM
3875		      && (! reload_completed || frame_pointer_needed))
3876#endif
3877#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3878		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3879#endif
3880		))
3881	  {
3882	    if (mark_dest)
3883	      mark_used_regs (pbi, SET_DEST (x), cond, insn);
3884	    mark_used_regs (pbi, SET_SRC (x), cond, insn);
3885	    return;
3886	  }
3887      }
3888      break;
3889
3890    case ASM_OPERANDS:
3891    case UNSPEC_VOLATILE:
3892    case TRAP_IF:
3893    case ASM_INPUT:
3894      {
3895	/* Traditional and volatile asm instructions must be considered to use
3896	   and clobber all hard registers, all pseudo-registers and all of
3897	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.
3898
3899	   Consider for instance a volatile asm that changes the fpu rounding
3900	   mode.  An insn should not be moved across this even if it only uses
3901	   pseudo-regs because it might give an incorrectly rounded result.
3902
3903	   ?!? Unfortunately, marking all hard registers as live causes massive
3904	   problems for the register allocator and marking all pseudos as live
3905	   creates mountains of uninitialized variable warnings.
3906
3907	   So for now, just clear the memory set list and mark any regs
3908	   we can find in ASM_OPERANDS as used.  */
3909	if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3910	  {
3911	    free_EXPR_LIST_list (&pbi->mem_set_list);
3912	    pbi->mem_set_list_len = 0;
3913	  }
3914
3915	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
3916	   We can not just fall through here since then we would be confused
3917	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3918	   traditional asms unlike their normal usage.  */
3919	if (code == ASM_OPERANDS)
3920	  {
3921	    int j;
3922
3923	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3924	      mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3925	  }
3926	break;
3927      }
3928
3929    case COND_EXEC:
3930      if (cond != NULL_RTX)
3931	abort ();
3932
3933      mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3934
3935      cond = COND_EXEC_TEST (x);
3936      x = COND_EXEC_CODE (x);
3937      goto retry;
3938
3939    default:
3940      break;
3941    }
3942
3943  /* Recursively scan the operands of this expression.  */
3944
3945  {
3946    const char * const fmt = GET_RTX_FORMAT (code);
3947    int i;
3948
3949    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3950      {
3951	if (fmt[i] == 'e')
3952	  {
3953	    /* Tail recursive case: save a function call level.  */
3954	    if (i == 0)
3955	      {
3956		x = XEXP (x, 0);
3957		goto retry;
3958	      }
3959	    mark_used_regs (pbi, XEXP (x, i), cond, insn);
3960	  }
3961	else if (fmt[i] == 'E')
3962	  {
3963	    int j;
3964	    for (j = 0; j < XVECLEN (x, i); j++)
3965	      mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3966	  }
3967      }
3968  }
3969}
3970
3971#ifdef AUTO_INC_DEC
3972
3973static int
3974try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3975{
3976  /* Find the next use of this reg.  If in same basic block,
3977     make it do pre-increment or pre-decrement if appropriate.  */
3978  rtx x = single_set (insn);
3979  HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3980			  * INTVAL (XEXP (SET_SRC (x), 1)));
3981  int regno = REGNO (SET_DEST (x));
3982  rtx y = pbi->reg_next_use[regno];
3983  if (y != 0
3984      && SET_DEST (x) != stack_pointer_rtx
3985      && BLOCK_NUM (y) == BLOCK_NUM (insn)
3986      /* Don't do this if the reg dies, or gets set in y; a standard addressing
3987	 mode would be better.  */
3988      && ! dead_or_set_p (y, SET_DEST (x))
3989      && try_pre_increment (y, SET_DEST (x), amount))
3990    {
3991      /* We have found a suitable auto-increment and already changed
3992	 insn Y to do it.  So flush this increment instruction.  */
3993      propagate_block_delete_insn (insn);
3994
3995      /* Count a reference to this reg for the increment insn we are
3996	 deleting.  When a reg is incremented, spilling it is worse,
3997	 so we want to make that less likely.  */
3998      if (regno >= FIRST_PSEUDO_REGISTER)
3999	{
4000	  REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4001	  REG_N_SETS (regno)++;
4002	}
4003
4004      /* Flush any remembered memories depending on the value of
4005	 the incremented register.  */
4006      invalidate_mems_from_set (pbi, SET_DEST (x));
4007
4008      return 1;
4009    }
4010  return 0;
4011}
4012
4013/* Try to change INSN so that it does pre-increment or pre-decrement
4014   addressing on register REG in order to add AMOUNT to REG.
4015   AMOUNT is negative for pre-decrement.
4016   Returns 1 if the change could be made.
4017   This checks all about the validity of the result of modifying INSN.  */
4018
4019static int
4020try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4021{
4022  rtx use;
4023
4024  /* Nonzero if we can try to make a pre-increment or pre-decrement.
4025     For example, addl $4,r1; movl (r1),... can become movl +(r1),...  */
4026  int pre_ok = 0;
4027  /* Nonzero if we can try to make a post-increment or post-decrement.
4028     For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4029     It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4030     supports both pre-inc and post-inc, or both pre-dec and post-dec.  */
4031  int post_ok = 0;
4032
4033  /* Nonzero if the opportunity actually requires post-inc or post-dec.  */
4034  int do_post = 0;
4035
4036  /* From the sign of increment, see which possibilities are conceivable
4037     on this target machine.  */
4038  if (HAVE_PRE_INCREMENT && amount > 0)
4039    pre_ok = 1;
4040  if (HAVE_POST_INCREMENT && amount > 0)
4041    post_ok = 1;
4042
4043  if (HAVE_PRE_DECREMENT && amount < 0)
4044    pre_ok = 1;
4045  if (HAVE_POST_DECREMENT && amount < 0)
4046    post_ok = 1;
4047
4048  if (! (pre_ok || post_ok))
4049    return 0;
4050
4051  /* It is not safe to add a side effect to a jump insn
4052     because if the incremented register is spilled and must be reloaded
4053     there would be no way to store the incremented value back in memory.  */
4054
4055  if (GET_CODE (insn) == JUMP_INSN)
4056    return 0;
4057
4058  use = 0;
4059  if (pre_ok)
4060    use = find_use_as_address (PATTERN (insn), reg, 0);
4061  if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4062    {
4063      use = find_use_as_address (PATTERN (insn), reg, -amount);
4064      do_post = 1;
4065    }
4066
4067  if (use == 0 || use == (rtx) (size_t) 1)
4068    return 0;
4069
4070  if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4071    return 0;
4072
4073  /* See if this combination of instruction and addressing mode exists.  */
4074  if (! validate_change (insn, &XEXP (use, 0),
4075			 gen_rtx_fmt_e (amount > 0
4076					? (do_post ? POST_INC : PRE_INC)
4077					: (do_post ? POST_DEC : PRE_DEC),
4078					Pmode, reg), 0))
4079    return 0;
4080
4081  /* Record that this insn now has an implicit side effect on X.  */
4082  REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4083  return 1;
4084}
4085
4086#endif /* AUTO_INC_DEC */
4087
4088/* Find the place in the rtx X where REG is used as a memory address.
4089   Return the MEM rtx that so uses it.
4090   If PLUSCONST is nonzero, search instead for a memory address equivalent to
4091   (plus REG (const_int PLUSCONST)).
4092
4093   If such an address does not appear, return 0.
4094   If REG appears more than once, or is used other than in such an address,
4095   return (rtx) 1.  */
4096
4097rtx
4098find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4099{
4100  enum rtx_code code = GET_CODE (x);
4101  const char * const fmt = GET_RTX_FORMAT (code);
4102  int i;
4103  rtx value = 0;
4104  rtx tem;
4105
4106  if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4107    return x;
4108
4109  if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4110      && XEXP (XEXP (x, 0), 0) == reg
4111      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4112      && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4113    return x;
4114
4115  if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4116    {
4117      /* If REG occurs inside a MEM used in a bit-field reference,
4118	 that is unacceptable.  */
4119      if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4120	return (rtx) (size_t) 1;
4121    }
4122
4123  if (x == reg)
4124    return (rtx) (size_t) 1;
4125
4126  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4127    {
4128      if (fmt[i] == 'e')
4129	{
4130	  tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4131	  if (value == 0)
4132	    value = tem;
4133	  else if (tem != 0)
4134	    return (rtx) (size_t) 1;
4135	}
4136      else if (fmt[i] == 'E')
4137	{
4138	  int j;
4139	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4140	    {
4141	      tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4142	      if (value == 0)
4143		value = tem;
4144	      else if (tem != 0)
4145		return (rtx) (size_t) 1;
4146	    }
4147	}
4148    }
4149
4150  return value;
4151}
4152
4153/* Write information about registers and basic blocks into FILE.
4154   This is part of making a debugging dump.  */
4155
4156void
4157dump_regset (regset r, FILE *outf)
4158{
4159  int i;
4160  if (r == NULL)
4161    {
4162      fputs (" (nil)", outf);
4163      return;
4164    }
4165
4166  EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4167    {
4168      fprintf (outf, " %d", i);
4169      if (i < FIRST_PSEUDO_REGISTER)
4170	fprintf (outf, " [%s]",
4171		 reg_names[i]);
4172    });
4173}
4174
4175/* Print a human-readable representation of R on the standard error
4176   stream.  This function is designed to be used from within the
4177   debugger.  */
4178
4179void
4180debug_regset (regset r)
4181{
4182  dump_regset (r, stderr);
4183  putc ('\n', stderr);
4184}
4185
4186/* Recompute register set/reference counts immediately prior to register
4187   allocation.
4188
4189   This avoids problems with set/reference counts changing to/from values
4190   which have special meanings to the register allocators.
4191
4192   Additionally, the reference counts are the primary component used by the
4193   register allocators to prioritize pseudos for allocation to hard regs.
4194   More accurate reference counts generally lead to better register allocation.
4195
4196   F is the first insn to be scanned.
4197
4198   LOOP_STEP denotes how much loop_depth should be incremented per
4199   loop nesting level in order to increase the ref count more for
4200   references in a loop.
4201
4202   It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4203   possibly other information which is used by the register allocators.  */
4204
4205void
4206recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4207{
4208  allocate_reg_life_data ();
4209  update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4210}
4211
4212/* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4213   blocks.  If BLOCKS is NULL, assume the universal set.  Returns a count
4214   of the number of registers that died.  */
4215
4216int
4217count_or_remove_death_notes (sbitmap blocks, int kill)
4218{
4219  int count = 0;
4220  int i;
4221  basic_block bb;
4222
4223
4224  /* This used to be a loop over all the blocks with a membership test
4225     inside the loop.  That can be amazingly expensive on a large CFG
4226     when only a small number of bits are set in BLOCKs (for example,
4227     the calls from the scheduler typically have very few bits set).
4228
4229     For extra credit, someone should convert BLOCKS to a bitmap rather
4230     than an sbitmap.  */
4231  if (blocks)
4232    {
4233      EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4234	{
4235	  count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4236	});
4237    }
4238  else
4239    {
4240      FOR_EACH_BB (bb)
4241	{
4242	  count += count_or_remove_death_notes_bb (bb, kill);
4243	}
4244    }
4245
4246  return count;
4247}
4248
4249/* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4250   block BB.  Returns a count of the number of registers that died.  */
4251
4252static int
4253count_or_remove_death_notes_bb (basic_block bb, int kill)
4254{
4255  int count = 0;
4256  rtx insn;
4257
4258  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4259    {
4260      if (INSN_P (insn))
4261	{
4262	  rtx *pprev = &REG_NOTES (insn);
4263	  rtx link = *pprev;
4264
4265	  while (link)
4266	    {
4267	      switch (REG_NOTE_KIND (link))
4268		{
4269		case REG_DEAD:
4270		  if (GET_CODE (XEXP (link, 0)) == REG)
4271		    {
4272		      rtx reg = XEXP (link, 0);
4273		      int n;
4274
4275		      if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4276		        n = 1;
4277		      else
4278		        n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4279		      count += n;
4280		    }
4281
4282		  /* Fall through.  */
4283
4284		case REG_UNUSED:
4285		  if (kill)
4286		    {
4287		      rtx next = XEXP (link, 1);
4288		      free_EXPR_LIST_node (link);
4289		      *pprev = link = next;
4290		      break;
4291		    }
4292		  /* Fall through.  */
4293
4294		default:
4295		  pprev = &XEXP (link, 1);
4296		  link = *pprev;
4297		  break;
4298		}
4299	    }
4300	}
4301
4302      if (insn == BB_END (bb))
4303	break;
4304    }
4305
4306  return count;
4307}
4308
4309/* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4310   if blocks is NULL.  */
4311
4312static void
4313clear_log_links (sbitmap blocks)
4314{
4315  rtx insn;
4316  int i;
4317
4318  if (!blocks)
4319    {
4320      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4321	if (INSN_P (insn))
4322	  free_INSN_LIST_list (&LOG_LINKS (insn));
4323    }
4324  else
4325    EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4326      {
4327	basic_block bb = BASIC_BLOCK (i);
4328
4329	for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4330	     insn = NEXT_INSN (insn))
4331	  if (INSN_P (insn))
4332	    free_INSN_LIST_list (&LOG_LINKS (insn));
4333      });
4334}
4335
4336/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4337   correspond to the hard registers, if any, set in that map.  This
4338   could be done far more efficiently by having all sorts of special-cases
4339   with moving single words, but probably isn't worth the trouble.  */
4340
4341void
4342reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4343{
4344  int i;
4345
4346  EXECUTE_IF_SET_IN_BITMAP
4347    (from, 0, i,
4348     {
4349       if (i >= FIRST_PSEUDO_REGISTER)
4350	 return;
4351       SET_HARD_REG_BIT (*to, i);
4352     });
4353}
4354