flow.c revision 146895
1/* Data flow analysis for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22/* This file contains the data flow analysis pass of the compiler.  It
23   computes data flow information which tells combine_instructions
24   which insns to consider combining and controls register allocation.
25
26   Additional data flow information that is too bulky to record is
27   generated during the analysis, and is used at that time to create
28   autoincrement and autodecrement addressing.
29
30   The first step is dividing the function into basic blocks.
31   find_basic_blocks does this.  Then life_analysis determines
32   where each register is live and where it is dead.
33
34   ** find_basic_blocks **
35
36   find_basic_blocks divides the current function's rtl into basic
37   blocks and constructs the CFG.  The blocks are recorded in the
38   basic_block_info array; the CFG exists in the edge structures
39   referenced by the blocks.
40
41   find_basic_blocks also finds any unreachable loops and deletes them.
42
43   ** life_analysis **
44
45   life_analysis is called immediately after find_basic_blocks.
46   It uses the basic block information to determine where each
47   hard or pseudo register is live.
48
49   ** live-register info **
50
51   The information about where each register is live is in two parts:
52   the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54   basic_block->global_live_at_start has an element for each basic
55   block, and the element is a bit-vector with a bit for each hard or
56   pseudo register.  The bit is 1 if the register is live at the
57   beginning of the basic block.
58
59   Two types of elements can be added to an insn's REG_NOTES.
60   A REG_DEAD note is added to an insn's REG_NOTES for any register
61   that meets both of two conditions:  The value in the register is not
62   needed in subsequent insns and the insn does not replace the value in
63   the register (in the case of multi-word hard registers, the value in
64   each register must be replaced by the insn to avoid a REG_DEAD note).
65
66   In the vast majority of cases, an object in a REG_DEAD note will be
67   used somewhere in the insn.  The (rare) exception to this is if an
68   insn uses a multi-word hard register and only some of the registers are
69   needed in subsequent insns.  In that case, REG_DEAD notes will be
70   provided for those hard registers that are not subsequently needed.
71   Partial REG_DEAD notes of this type do not occur when an insn sets
72   only some of the hard registers used in such a multi-word operand;
73   omitting REG_DEAD notes for objects stored in an insn is optional and
74   the desire to do so does not justify the complexity of the partial
75   REG_DEAD notes.
76
77   REG_UNUSED notes are added for each register that is set by the insn
78   but is unused subsequently (if every register set by the insn is unused
79   and the insn does not reference memory or have some other side-effect,
80   the insn is deleted instead).  If only part of a multi-word hard
81   register is used in a subsequent insn, REG_UNUSED notes are made for
82   the parts that will not be used.
83
84   To determine which registers are live after any insn, one can
85   start from the beginning of the basic block and scan insns, noting
86   which registers are set by each insn and which die there.
87
88   ** Other actions of life_analysis **
89
90   life_analysis sets up the LOG_LINKS fields of insns because the
91   information needed to do so is readily available.
92
93   life_analysis deletes insns whose only effect is to store a value
94   that is never used.
95
96   life_analysis notices cases where a reference to a register as
97   a memory address can be combined with a preceding or following
98   incrementation or decrementation of the register.  The separate
99   instruction to increment or decrement is deleted and the address
100   is changed to a POST_INC or similar rtx.
101
102   Each time an incrementing or decrementing address is created,
103   a REG_INC element is added to the insn's REG_NOTES list.
104
105   life_analysis fills in certain vectors containing information about
106   register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107   REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109   life_analysis sets current_function_sp_is_unchanging if the function
110   doesn't modify the stack pointer.  */
111
112/* TODO:
113
114   Split out from life_analysis:
115	- local property discovery (bb->local_live, bb->local_set)
116	- global property computation
117	- log links creation
118	- pre/post modify transformation
119*/
120
121#include "config.h"
122#include "system.h"
123#include "coretypes.h"
124#include "tm.h"
125#include "tree.h"
126#include "rtl.h"
127#include "tm_p.h"
128#include "hard-reg-set.h"
129#include "basic-block.h"
130#include "insn-config.h"
131#include "regs.h"
132#include "flags.h"
133#include "output.h"
134#include "function.h"
135#include "except.h"
136#include "toplev.h"
137#include "recog.h"
138#include "expr.h"
139#include "timevar.h"
140
141#include "obstack.h"
142#include "splay-tree.h"
143
144#ifndef HAVE_epilogue
145#define HAVE_epilogue 0
146#endif
147#ifndef HAVE_prologue
148#define HAVE_prologue 0
149#endif
150#ifndef HAVE_sibcall_epilogue
151#define HAVE_sibcall_epilogue 0
152#endif
153
154#ifndef EPILOGUE_USES
155#define EPILOGUE_USES(REGNO)  0
156#endif
157#ifndef EH_USES
158#define EH_USES(REGNO)  0
159#endif
160
161#ifdef HAVE_conditional_execution
162#ifndef REVERSE_CONDEXEC_PREDICATES_P
163#define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164#endif
165#endif
166
167/* Nonzero if the second flow pass has completed.  */
168int flow2_completed;
169
170/* Maximum register number used in this function, plus one.  */
171
172int max_regno;
173
174/* Indexed by n, giving various register information */
175
176varray_type reg_n_info;
177
178/* Size of a regset for the current function,
179   in (1) bytes and (2) elements.  */
180
181int regset_bytes;
182int regset_size;
183
184/* Regset of regs live when calls to `setjmp'-like functions happen.  */
185/* ??? Does this exist only for the setjmp-clobbered warning message?  */
186
187regset regs_live_at_setjmp;
188
189/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190   that have to go in the same hard reg.
191   The first two regs in the list are a pair, and the next two
192   are another pair, etc.  */
193rtx regs_may_share;
194
195/* Callback that determines if it's ok for a function to have no
196   noreturn attribute.  */
197int (*lang_missing_noreturn_ok_p) (tree);
198
199/* Set of registers that may be eliminable.  These are handled specially
200   in updating regs_ever_live.  */
201
202static HARD_REG_SET elim_reg_set;
203
204/* Holds information for tracking conditional register life information.  */
205struct reg_cond_life_info
206{
207  /* A boolean expression of conditions under which a register is dead.  */
208  rtx condition;
209  /* Conditions under which a register is dead at the basic block end.  */
210  rtx orig_condition;
211
212  /* A boolean expression of conditions under which a register has been
213     stored into.  */
214  rtx stores;
215
216  /* ??? Could store mask of bytes that are dead, so that we could finally
217     track lifetimes of multi-word registers accessed via subregs.  */
218};
219
220/* For use in communicating between propagate_block and its subroutines.
221   Holds all information needed to compute life and def-use information.  */
222
223struct propagate_block_info
224{
225  /* The basic block we're considering.  */
226  basic_block bb;
227
228  /* Bit N is set if register N is conditionally or unconditionally live.  */
229  regset reg_live;
230
231  /* Bit N is set if register N is set this insn.  */
232  regset new_set;
233
234  /* Element N is the next insn that uses (hard or pseudo) register N
235     within the current basic block; or zero, if there is no such insn.  */
236  rtx *reg_next_use;
237
238  /* Contains a list of all the MEMs we are tracking for dead store
239     elimination.  */
240  rtx mem_set_list;
241
242  /* If non-null, record the set of registers set unconditionally in the
243     basic block.  */
244  regset local_set;
245
246  /* If non-null, record the set of registers set conditionally in the
247     basic block.  */
248  regset cond_local_set;
249
250#ifdef HAVE_conditional_execution
251  /* Indexed by register number, holds a reg_cond_life_info for each
252     register that is not unconditionally live or dead.  */
253  splay_tree reg_cond_dead;
254
255  /* Bit N is set if register N is in an expression in reg_cond_dead.  */
256  regset reg_cond_reg;
257#endif
258
259  /* The length of mem_set_list.  */
260  int mem_set_list_len;
261
262  /* Nonzero if the value of CC0 is live.  */
263  int cc0_live;
264
265  /* Flags controlling the set of information propagate_block collects.  */
266  int flags;
267};
268
269/* Number of dead insns removed.  */
270static int ndead;
271
272/* Maximum length of pbi->mem_set_list before we start dropping
273   new elements on the floor.  */
274#define MAX_MEM_SET_LIST_LEN	100
275
276/* Forward declarations */
277static int verify_wide_reg_1 (rtx *, void *);
278static void verify_wide_reg (int, basic_block);
279static void verify_local_live_at_start (regset, basic_block);
280static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
281static void notice_stack_pointer_modification (rtx);
282static void mark_reg (rtx, void *);
283static void mark_regs_live_at_end (regset);
284static void calculate_global_regs_live (sbitmap, sbitmap, int);
285static void propagate_block_delete_insn (rtx);
286static rtx propagate_block_delete_libcall (rtx, rtx);
287static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
288static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
289static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
290static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
291			rtx, rtx, int);
292static int find_regno_partial (rtx *, void *);
293
294#ifdef HAVE_conditional_execution
295static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
296static void free_reg_cond_life_info (splay_tree_value);
297static int flush_reg_cond_reg_1 (splay_tree_node, void *);
298static void flush_reg_cond_reg (struct propagate_block_info *, int);
299static rtx elim_reg_cond (rtx, unsigned int);
300static rtx ior_reg_cond (rtx, rtx, int);
301static rtx not_reg_cond (rtx);
302static rtx and_reg_cond (rtx, rtx, int);
303#endif
304#ifdef AUTO_INC_DEC
305static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
306			      rtx, rtx);
307static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
308static int try_pre_increment_1 (struct propagate_block_info *, rtx);
309static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
310#endif
311static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
312static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
313void debug_flow_info (void);
314static void add_to_mem_set_list (struct propagate_block_info *, rtx);
315static int invalidate_mems_from_autoinc (rtx *, void *);
316static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
317static void clear_log_links (sbitmap);
318static int count_or_remove_death_notes_bb (basic_block, int);
319
320
321void
322check_function_return_warnings (void)
323{
324  if (warn_missing_noreturn
325      && !TREE_THIS_VOLATILE (cfun->decl)
326      && EXIT_BLOCK_PTR->pred == NULL
327      && (lang_missing_noreturn_ok_p
328	  && !lang_missing_noreturn_ok_p (cfun->decl)))
329    warning ("function might be possible candidate for attribute `noreturn'");
330
331  /* If we have a path to EXIT, then we do return.  */
332  if (TREE_THIS_VOLATILE (cfun->decl)
333      && EXIT_BLOCK_PTR->pred != NULL)
334    warning ("`noreturn' function does return");
335
336  /* If the clobber_return_insn appears in some basic block, then we
337     do reach the end without returning a value.  */
338  else if (warn_return_type
339	   && cfun->x_clobber_return_insn != NULL
340	   && EXIT_BLOCK_PTR->pred != NULL)
341    {
342      int max_uid = get_max_uid ();
343
344      /* If clobber_return_insn was excised by jump1, then renumber_insns
345	 can make max_uid smaller than the number still recorded in our rtx.
346	 That's fine, since this is a quick way of verifying that the insn
347	 is no longer in the chain.  */
348      if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
349	{
350	  rtx insn;
351
352	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
353	    if (insn == cfun->x_clobber_return_insn)
354	      {
355	        warning ("control reaches end of non-void function");
356		break;
357	      }
358	}
359    }
360}
361
362/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
363   note associated with the BLOCK.  */
364
365rtx
366first_insn_after_basic_block_note (basic_block block)
367{
368  rtx insn;
369
370  /* Get the first instruction in the block.  */
371  insn = BB_HEAD (block);
372
373  if (insn == NULL_RTX)
374    return NULL_RTX;
375  if (GET_CODE (insn) == CODE_LABEL)
376    insn = NEXT_INSN (insn);
377  if (!NOTE_INSN_BASIC_BLOCK_P (insn))
378    abort ();
379
380  return NEXT_INSN (insn);
381}
382
383/* Perform data flow analysis.
384   F is the first insn of the function; FLAGS is a set of PROP_* flags
385   to be used in accumulating flow info.  */
386
387void
388life_analysis (rtx f, FILE *file, int flags)
389{
390#ifdef ELIMINABLE_REGS
391  int i;
392  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
393#endif
394
395  /* Record which registers will be eliminated.  We use this in
396     mark_used_regs.  */
397
398  CLEAR_HARD_REG_SET (elim_reg_set);
399
400#ifdef ELIMINABLE_REGS
401  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
402    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
403#else
404  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
405#endif
406
407
408#ifdef CANNOT_CHANGE_MODE_CLASS
409  if (flags & PROP_REG_INFO)
410    init_subregs_of_mode ();
411#endif
412
413  if (! optimize)
414    flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
415
416  /* The post-reload life analysis have (on a global basis) the same
417     registers live as was computed by reload itself.  elimination
418     Otherwise offsets and such may be incorrect.
419
420     Reload will make some registers as live even though they do not
421     appear in the rtl.
422
423     We don't want to create new auto-incs after reload, since they
424     are unlikely to be useful and can cause problems with shared
425     stack slots.  */
426  if (reload_completed)
427    flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
428
429  /* We want alias analysis information for local dead store elimination.  */
430  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
431    init_alias_analysis ();
432
433  /* Always remove no-op moves.  Do this before other processing so
434     that we don't have to keep re-scanning them.  */
435  delete_noop_moves (f);
436
437  /* Some targets can emit simpler epilogues if they know that sp was
438     not ever modified during the function.  After reload, of course,
439     we've already emitted the epilogue so there's no sense searching.  */
440  if (! reload_completed)
441    notice_stack_pointer_modification (f);
442
443  /* Allocate and zero out data structures that will record the
444     data from lifetime analysis.  */
445  allocate_reg_life_data ();
446  allocate_bb_life_data ();
447
448  /* Find the set of registers live on function exit.  */
449  mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
450
451  /* "Update" life info from zero.  It'd be nice to begin the
452     relaxation with just the exit and noreturn blocks, but that set
453     is not immediately handy.  */
454
455  if (flags & PROP_REG_INFO)
456    {
457      memset (regs_ever_live, 0, sizeof (regs_ever_live));
458      memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
459    }
460  update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
461
462  /* Clean up.  */
463  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
464    end_alias_analysis ();
465
466  if (file)
467    dump_flow_info (file);
468
469  free_basic_block_vars (1);
470
471  /* Removing dead insns should've made jumptables really dead.  */
472  delete_dead_jumptables ();
473}
474
475/* A subroutine of verify_wide_reg, called through for_each_rtx.
476   Search for REGNO.  If found, return 2 if it is not wider than
477   word_mode.  */
478
479static int
480verify_wide_reg_1 (rtx *px, void *pregno)
481{
482  rtx x = *px;
483  unsigned int regno = *(int *) pregno;
484
485  if (GET_CODE (x) == REG && REGNO (x) == regno)
486    {
487      if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
488	return 2;
489      return 1;
490    }
491  return 0;
492}
493
494/* A subroutine of verify_local_live_at_start.  Search through insns
495   of BB looking for register REGNO.  */
496
497static void
498verify_wide_reg (int regno, basic_block bb)
499{
500  rtx head = BB_HEAD (bb), end = BB_END (bb);
501
502  while (1)
503    {
504      if (INSN_P (head))
505	{
506	  int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
507	  if (r == 1)
508	    return;
509	  if (r == 2)
510	    break;
511	}
512      if (head == end)
513	break;
514      head = NEXT_INSN (head);
515    }
516
517  if (rtl_dump_file)
518    {
519      fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
520      dump_bb (bb, rtl_dump_file);
521    }
522  abort ();
523}
524
525/* A subroutine of update_life_info.  Verify that there are no untoward
526   changes in live_at_start during a local update.  */
527
528static void
529verify_local_live_at_start (regset new_live_at_start, basic_block bb)
530{
531  if (reload_completed)
532    {
533      /* After reload, there are no pseudos, nor subregs of multi-word
534	 registers.  The regsets should exactly match.  */
535      if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
536	{
537	  if (rtl_dump_file)
538	    {
539	      fprintf (rtl_dump_file,
540		       "live_at_start mismatch in bb %d, aborting\nNew:\n",
541		       bb->index);
542	      debug_bitmap_file (rtl_dump_file, new_live_at_start);
543	      fputs ("Old:\n", rtl_dump_file);
544	      dump_bb (bb, rtl_dump_file);
545	    }
546	  abort ();
547	}
548    }
549  else
550    {
551      int i;
552
553      /* Find the set of changed registers.  */
554      XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
555
556      EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
557	{
558	  /* No registers should die.  */
559	  if (REGNO_REG_SET_P (bb->global_live_at_start, i))
560	    {
561	      if (rtl_dump_file)
562		{
563		  fprintf (rtl_dump_file,
564			   "Register %d died unexpectedly.\n", i);
565		  dump_bb (bb, rtl_dump_file);
566		}
567	      abort ();
568	    }
569
570	  /* Verify that the now-live register is wider than word_mode.  */
571	  verify_wide_reg (i, bb);
572	});
573    }
574}
575
576/* Updates life information starting with the basic blocks set in BLOCKS.
577   If BLOCKS is null, consider it to be the universal set.
578
579   If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
580   we are only expecting local modifications to basic blocks.  If we find
581   extra registers live at the beginning of a block, then we either killed
582   useful data, or we have a broken split that wants data not provided.
583   If we find registers removed from live_at_start, that means we have
584   a broken peephole that is killing a register it shouldn't.
585
586   ??? This is not true in one situation -- when a pre-reload splitter
587   generates subregs of a multi-word pseudo, current life analysis will
588   lose the kill.  So we _can_ have a pseudo go live.  How irritating.
589
590   It is also not true when a peephole decides that it doesn't need one
591   or more of the inputs.
592
593   Including PROP_REG_INFO does not properly refresh regs_ever_live
594   unless the caller resets it to zero.  */
595
596int
597update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
598{
599  regset tmp;
600  regset_head tmp_head;
601  int i;
602  int stabilized_prop_flags = prop_flags;
603  basic_block bb;
604
605  tmp = INITIALIZE_REG_SET (tmp_head);
606  ndead = 0;
607
608  timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
609		? TV_LIFE_UPDATE : TV_LIFE);
610
611  /* Changes to the CFG are only allowed when
612     doing a global update for the entire CFG.  */
613  if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
614      && (extent == UPDATE_LIFE_LOCAL || blocks))
615    abort ();
616
617  /* For a global update, we go through the relaxation process again.  */
618  if (extent != UPDATE_LIFE_LOCAL)
619    {
620      for ( ; ; )
621	{
622	  int changed = 0;
623
624	  calculate_global_regs_live (blocks, blocks,
625				prop_flags & (PROP_SCAN_DEAD_CODE
626					      | PROP_SCAN_DEAD_STORES
627					      | PROP_ALLOW_CFG_CHANGES));
628
629	  if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
630	      != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
631	    break;
632
633	  /* Removing dead code may allow the CFG to be simplified which
634	     in turn may allow for further dead code detection / removal.  */
635	  FOR_EACH_BB_REVERSE (bb)
636	    {
637	      COPY_REG_SET (tmp, bb->global_live_at_end);
638	      changed |= propagate_block (bb, tmp, NULL, NULL,
639				prop_flags & (PROP_SCAN_DEAD_CODE
640					      | PROP_SCAN_DEAD_STORES
641					      | PROP_KILL_DEAD_CODE));
642	    }
643
644	  /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
645	     subsequent propagate_block calls, since removing or acting as
646	     removing dead code can affect global register liveness, which
647	     is supposed to be finalized for this call after this loop.  */
648	  stabilized_prop_flags
649	    &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
650		 | PROP_KILL_DEAD_CODE);
651
652	  if (! changed)
653	    break;
654
655	  /* We repeat regardless of what cleanup_cfg says.  If there were
656	     instructions deleted above, that might have been only a
657	     partial improvement (see MAX_MEM_SET_LIST_LEN usage).
658	     Further improvement may be possible.  */
659	  cleanup_cfg (CLEANUP_EXPENSIVE);
660
661	  /* Zap the life information from the last round.  If we don't
662	     do this, we can wind up with registers that no longer appear
663	     in the code being marked live at entry, which twiggs bogus
664	     warnings from regno_uninitialized.  */
665	  FOR_EACH_BB (bb)
666	    {
667	      CLEAR_REG_SET (bb->global_live_at_start);
668	      CLEAR_REG_SET (bb->global_live_at_end);
669	    }
670	}
671
672      /* If asked, remove notes from the blocks we'll update.  */
673      if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
674	count_or_remove_death_notes (blocks, 1);
675    }
676
677  /* Clear log links in case we are asked to (re)compute them.  */
678  if (prop_flags & PROP_LOG_LINKS)
679    clear_log_links (blocks);
680
681  if (blocks)
682    {
683      EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
684	{
685	  bb = BASIC_BLOCK (i);
686
687	  COPY_REG_SET (tmp, bb->global_live_at_end);
688	  propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
689
690	  if (extent == UPDATE_LIFE_LOCAL)
691	    verify_local_live_at_start (tmp, bb);
692	});
693    }
694  else
695    {
696      FOR_EACH_BB_REVERSE (bb)
697	{
698	  COPY_REG_SET (tmp, bb->global_live_at_end);
699
700	  propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
701
702	  if (extent == UPDATE_LIFE_LOCAL)
703	    verify_local_live_at_start (tmp, bb);
704	}
705    }
706
707  FREE_REG_SET (tmp);
708
709  if (prop_flags & PROP_REG_INFO)
710    {
711      /* The only pseudos that are live at the beginning of the function
712	 are those that were not set anywhere in the function.  local-alloc
713	 doesn't know how to handle these correctly, so mark them as not
714	 local to any one basic block.  */
715      EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
716				 FIRST_PSEUDO_REGISTER, i,
717				 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
718
719      /* We have a problem with any pseudoreg that lives across the setjmp.
720	 ANSI says that if a user variable does not change in value between
721	 the setjmp and the longjmp, then the longjmp preserves it.  This
722	 includes longjmp from a place where the pseudo appears dead.
723	 (In principle, the value still exists if it is in scope.)
724	 If the pseudo goes in a hard reg, some other value may occupy
725	 that hard reg where this pseudo is dead, thus clobbering the pseudo.
726	 Conclusion: such a pseudo must not go in a hard reg.  */
727      EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
728				 FIRST_PSEUDO_REGISTER, i,
729				 {
730				   if (regno_reg_rtx[i] != 0)
731				     {
732				       REG_LIVE_LENGTH (i) = -1;
733				       REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
734				     }
735				 });
736    }
737  timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
738	       ? TV_LIFE_UPDATE : TV_LIFE);
739  if (ndead && rtl_dump_file)
740    fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
741  return ndead;
742}
743
744/* Update life information in all blocks where BB_DIRTY is set.  */
745
746int
747update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
748{
749  sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
750  int n = 0;
751  basic_block bb;
752  int retval = 0;
753
754  sbitmap_zero (update_life_blocks);
755  FOR_EACH_BB (bb)
756    {
757      if (extent == UPDATE_LIFE_LOCAL)
758	{
759	  if (bb->flags & BB_DIRTY)
760	    {
761	      SET_BIT (update_life_blocks, bb->index);
762	      n++;
763	    }
764	}
765      else
766	{
767	  /* ??? Bootstrap with -march=pentium4 fails to terminate
768	     with only a partial life update.  */
769	  SET_BIT (update_life_blocks, bb->index);
770	  if (bb->flags & BB_DIRTY)
771	    n++;
772	}
773    }
774
775  if (n)
776    retval = update_life_info (update_life_blocks, extent, prop_flags);
777
778  sbitmap_free (update_life_blocks);
779  return retval;
780}
781
782/* Free the variables allocated by find_basic_blocks.
783
784   KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed.  */
785
786void
787free_basic_block_vars (int keep_head_end_p)
788{
789  if (! keep_head_end_p)
790    {
791      if (basic_block_info)
792	{
793	  clear_edges ();
794	  VARRAY_FREE (basic_block_info);
795	}
796      n_basic_blocks = 0;
797      last_basic_block = 0;
798
799      ENTRY_BLOCK_PTR->aux = NULL;
800      ENTRY_BLOCK_PTR->global_live_at_end = NULL;
801      EXIT_BLOCK_PTR->aux = NULL;
802      EXIT_BLOCK_PTR->global_live_at_start = NULL;
803    }
804}
805
806/* Delete any insns that copy a register to itself.  */
807
808int
809delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
810{
811  rtx insn, next;
812  basic_block bb;
813  int nnoops = 0;
814
815  FOR_EACH_BB (bb)
816    {
817      for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
818	{
819	  next = NEXT_INSN (insn);
820	  if (INSN_P (insn) && noop_move_p (insn))
821	    {
822	      rtx note;
823
824	      /* If we're about to remove the first insn of a libcall
825		 then move the libcall note to the next real insn and
826		 update the retval note.  */
827	      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
828		       && XEXP (note, 0) != insn)
829		{
830		  rtx new_libcall_insn = next_real_insn (insn);
831		  rtx retval_note = find_reg_note (XEXP (note, 0),
832						   REG_RETVAL, NULL_RTX);
833		  REG_NOTES (new_libcall_insn)
834		    = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
835					 REG_NOTES (new_libcall_insn));
836		  XEXP (retval_note, 0) = new_libcall_insn;
837		}
838
839	      delete_insn_and_edges (insn);
840	      nnoops++;
841	    }
842	}
843    }
844  if (nnoops && rtl_dump_file)
845    fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
846  return nnoops;
847}
848
849/* Delete any jump tables never referenced.  We can't delete them at the
850   time of removing tablejump insn as they are referenced by the preceding
851   insns computing the destination, so we delay deleting and garbagecollect
852   them once life information is computed.  */
853void
854delete_dead_jumptables (void)
855{
856  rtx insn, next;
857  for (insn = get_insns (); insn; insn = next)
858    {
859      next = NEXT_INSN (insn);
860      if (GET_CODE (insn) == CODE_LABEL
861	  && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
862	  && GET_CODE (next) == JUMP_INSN
863	  && (GET_CODE (PATTERN (next)) == ADDR_VEC
864	      || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
865	{
866	  if (rtl_dump_file)
867	    fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
868	  delete_insn (NEXT_INSN (insn));
869	  delete_insn (insn);
870	  next = NEXT_INSN (next);
871	}
872    }
873}
874
875/* Determine if the stack pointer is constant over the life of the function.
876   Only useful before prologues have been emitted.  */
877
878static void
879notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
880				     void *data ATTRIBUTE_UNUSED)
881{
882  if (x == stack_pointer_rtx
883      /* The stack pointer is only modified indirectly as the result
884	 of a push until later in flow.  See the comments in rtl.texi
885	 regarding Embedded Side-Effects on Addresses.  */
886      || (GET_CODE (x) == MEM
887	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
888	  && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
889    current_function_sp_is_unchanging = 0;
890}
891
892static void
893notice_stack_pointer_modification (rtx f)
894{
895  rtx insn;
896
897  /* Assume that the stack pointer is unchanging if alloca hasn't
898     been used.  */
899  current_function_sp_is_unchanging = !current_function_calls_alloca;
900  if (! current_function_sp_is_unchanging)
901    return;
902
903  for (insn = f; insn; insn = NEXT_INSN (insn))
904    {
905      if (INSN_P (insn))
906	{
907	  /* Check if insn modifies the stack pointer.  */
908	  note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
909		       NULL);
910	  if (! current_function_sp_is_unchanging)
911	    return;
912	}
913    }
914}
915
916/* Mark a register in SET.  Hard registers in large modes get all
917   of their component registers set as well.  */
918
919static void
920mark_reg (rtx reg, void *xset)
921{
922  regset set = (regset) xset;
923  int regno = REGNO (reg);
924
925  if (GET_MODE (reg) == BLKmode)
926    abort ();
927
928  SET_REGNO_REG_SET (set, regno);
929  if (regno < FIRST_PSEUDO_REGISTER)
930    {
931      int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
932      while (--n > 0)
933	SET_REGNO_REG_SET (set, regno + n);
934    }
935}
936
937/* Mark those regs which are needed at the end of the function as live
938   at the end of the last basic block.  */
939
940static void
941mark_regs_live_at_end (regset set)
942{
943  unsigned int i;
944
945  /* If exiting needs the right stack value, consider the stack pointer
946     live at the end of the function.  */
947  if ((HAVE_epilogue && epilogue_completed)
948      || ! EXIT_IGNORE_STACK
949      || (! FRAME_POINTER_REQUIRED
950	  && ! current_function_calls_alloca
951	  && flag_omit_frame_pointer)
952      || current_function_sp_is_unchanging)
953    {
954      SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
955    }
956
957  /* Mark the frame pointer if needed at the end of the function.  If
958     we end up eliminating it, it will be removed from the live list
959     of each basic block by reload.  */
960
961  if (! reload_completed || frame_pointer_needed)
962    {
963      SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
964#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
965      /* If they are different, also mark the hard frame pointer as live.  */
966      if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
967	SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
968#endif
969    }
970
971#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
972  /* Many architectures have a GP register even without flag_pic.
973     Assume the pic register is not in use, or will be handled by
974     other means, if it is not fixed.  */
975  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
976      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
977    SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
978#endif
979
980  /* Mark all global registers, and all registers used by the epilogue
981     as being live at the end of the function since they may be
982     referenced by our caller.  */
983  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
984    if (global_regs[i] || EPILOGUE_USES (i))
985      SET_REGNO_REG_SET (set, i);
986
987  if (HAVE_epilogue && epilogue_completed)
988    {
989      /* Mark all call-saved registers that we actually used.  */
990      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
991	if (regs_ever_live[i] && ! LOCAL_REGNO (i)
992	    && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
993	  SET_REGNO_REG_SET (set, i);
994    }
995
996#ifdef EH_RETURN_DATA_REGNO
997  /* Mark the registers that will contain data for the handler.  */
998  if (reload_completed && current_function_calls_eh_return)
999    for (i = 0; ; ++i)
1000      {
1001	unsigned regno = EH_RETURN_DATA_REGNO(i);
1002	if (regno == INVALID_REGNUM)
1003	  break;
1004	SET_REGNO_REG_SET (set, regno);
1005      }
1006#endif
1007#ifdef EH_RETURN_STACKADJ_RTX
1008  if ((! HAVE_epilogue || ! epilogue_completed)
1009      && current_function_calls_eh_return)
1010    {
1011      rtx tmp = EH_RETURN_STACKADJ_RTX;
1012      if (tmp && REG_P (tmp))
1013	mark_reg (tmp, set);
1014    }
1015#endif
1016#ifdef EH_RETURN_HANDLER_RTX
1017  if ((! HAVE_epilogue || ! epilogue_completed)
1018      && current_function_calls_eh_return)
1019    {
1020      rtx tmp = EH_RETURN_HANDLER_RTX;
1021      if (tmp && REG_P (tmp))
1022	mark_reg (tmp, set);
1023    }
1024#endif
1025
1026  /* Mark function return value.  */
1027  diddle_return_value (mark_reg, set);
1028}
1029
1030/* Propagate global life info around the graph of basic blocks.  Begin
1031   considering blocks with their corresponding bit set in BLOCKS_IN.
1032   If BLOCKS_IN is null, consider it the universal set.
1033
1034   BLOCKS_OUT is set for every block that was changed.  */
1035
1036static void
1037calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1038{
1039  basic_block *queue, *qhead, *qtail, *qend, bb;
1040  regset tmp, new_live_at_end, invalidated_by_call;
1041  regset_head tmp_head, invalidated_by_call_head;
1042  regset_head new_live_at_end_head;
1043  int i;
1044
1045  /* Some passes used to forget clear aux field of basic block causing
1046     sick behavior here.  */
1047#ifdef ENABLE_CHECKING
1048  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1049    if (bb->aux)
1050      abort ();
1051#endif
1052
1053  tmp = INITIALIZE_REG_SET (tmp_head);
1054  new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1055  invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1056
1057  /* Inconveniently, this is only readily available in hard reg set form.  */
1058  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1059    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1060      SET_REGNO_REG_SET (invalidated_by_call, i);
1061
1062  /* Create a worklist.  Allocate an extra slot for ENTRY_BLOCK, and one
1063     because the `head == tail' style test for an empty queue doesn't
1064     work with a full queue.  */
1065  queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1066  qtail = queue;
1067  qhead = qend = queue + n_basic_blocks + 2;
1068
1069  /* Queue the blocks set in the initial mask.  Do this in reverse block
1070     number order so that we are more likely for the first round to do
1071     useful work.  We use AUX non-null to flag that the block is queued.  */
1072  if (blocks_in)
1073    {
1074      FOR_EACH_BB (bb)
1075	if (TEST_BIT (blocks_in, bb->index))
1076	  {
1077	    *--qhead = bb;
1078	    bb->aux = bb;
1079	  }
1080    }
1081  else
1082    {
1083      FOR_EACH_BB (bb)
1084	{
1085	  *--qhead = bb;
1086	  bb->aux = bb;
1087	}
1088    }
1089
1090  /* We clean aux when we remove the initially-enqueued bbs, but we
1091     don't enqueue ENTRY and EXIT initially, so clean them upfront and
1092     unconditionally.  */
1093  ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1094
1095  if (blocks_out)
1096    sbitmap_zero (blocks_out);
1097
1098  /* We work through the queue until there are no more blocks.  What
1099     is live at the end of this block is precisely the union of what
1100     is live at the beginning of all its successors.  So, we set its
1101     GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1102     for its successors.  Then, we compute GLOBAL_LIVE_AT_START for
1103     this block by walking through the instructions in this block in
1104     reverse order and updating as we go.  If that changed
1105     GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1106     queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1107
1108     We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1109     never shrinks.  If a register appears in GLOBAL_LIVE_AT_START, it
1110     must either be live at the end of the block, or used within the
1111     block.  In the latter case, it will certainly never disappear
1112     from GLOBAL_LIVE_AT_START.  In the former case, the register
1113     could go away only if it disappeared from GLOBAL_LIVE_AT_START
1114     for one of the successor blocks.  By induction, that cannot
1115     occur.  */
1116  while (qhead != qtail)
1117    {
1118      int rescan, changed;
1119      basic_block bb;
1120      edge e;
1121
1122      bb = *qhead++;
1123      if (qhead == qend)
1124	qhead = queue;
1125      bb->aux = NULL;
1126
1127      /* Begin by propagating live_at_start from the successor blocks.  */
1128      CLEAR_REG_SET (new_live_at_end);
1129
1130      if (bb->succ)
1131	for (e = bb->succ; e; e = e->succ_next)
1132	  {
1133	    basic_block sb = e->dest;
1134
1135	    /* Call-clobbered registers die across exception and
1136	       call edges.  */
1137	    /* ??? Abnormal call edges ignored for the moment, as this gets
1138	       confused by sibling call edges, which crashes reg-stack.  */
1139	    if (e->flags & EDGE_EH)
1140	      {
1141		bitmap_operation (tmp, sb->global_live_at_start,
1142				  invalidated_by_call, BITMAP_AND_COMPL);
1143		IOR_REG_SET (new_live_at_end, tmp);
1144	      }
1145	    else
1146	      IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1147
1148	    /* If a target saves one register in another (instead of on
1149	       the stack) the save register will need to be live for EH.  */
1150	    if (e->flags & EDGE_EH)
1151	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1152		if (EH_USES (i))
1153		  SET_REGNO_REG_SET (new_live_at_end, i);
1154	  }
1155      else
1156	{
1157	  /* This might be a noreturn function that throws.  And
1158	     even if it isn't, getting the unwind info right helps
1159	     debugging.  */
1160	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161	    if (EH_USES (i))
1162	      SET_REGNO_REG_SET (new_live_at_end, i);
1163	}
1164
1165      /* The all-important stack pointer must always be live.  */
1166      SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1167
1168      /* Before reload, there are a few registers that must be forced
1169	 live everywhere -- which might not already be the case for
1170	 blocks within infinite loops.  */
1171      if (! reload_completed)
1172	{
1173	  /* Any reference to any pseudo before reload is a potential
1174	     reference of the frame pointer.  */
1175	  SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1176
1177#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1178	  /* Pseudos with argument area equivalences may require
1179	     reloading via the argument pointer.  */
1180	  if (fixed_regs[ARG_POINTER_REGNUM])
1181	    SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1182#endif
1183
1184	  /* Any constant, or pseudo with constant equivalences, may
1185	     require reloading from memory using the pic register.  */
1186	  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1187	      && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1188	    SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1189	}
1190
1191      if (bb == ENTRY_BLOCK_PTR)
1192	{
1193	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1194	  continue;
1195	}
1196
1197      /* On our first pass through this block, we'll go ahead and continue.
1198	 Recognize first pass by local_set NULL.  On subsequent passes, we
1199	 get to skip out early if live_at_end wouldn't have changed.  */
1200
1201      if (bb->local_set == NULL)
1202	{
1203	  bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1204	  bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1205	  rescan = 1;
1206	}
1207      else
1208	{
1209	  /* If any bits were removed from live_at_end, we'll have to
1210	     rescan the block.  This wouldn't be necessary if we had
1211	     precalculated local_live, however with PROP_SCAN_DEAD_CODE
1212	     local_live is really dependent on live_at_end.  */
1213	  CLEAR_REG_SET (tmp);
1214	  rescan = bitmap_operation (tmp, bb->global_live_at_end,
1215				     new_live_at_end, BITMAP_AND_COMPL);
1216
1217	  if (! rescan)
1218	    {
1219	      /* If any of the registers in the new live_at_end set are
1220		 conditionally set in this basic block, we must rescan.
1221	         This is because conditional lifetimes at the end of the
1222		 block do not just take the live_at_end set into account,
1223		 but also the liveness at the start of each successor
1224		 block.  We can miss changes in those sets if we only
1225		 compare the new live_at_end against the previous one.  */
1226	      CLEAR_REG_SET (tmp);
1227	      rescan = bitmap_operation (tmp, new_live_at_end,
1228					 bb->cond_local_set, BITMAP_AND);
1229	    }
1230
1231	  if (! rescan)
1232	    {
1233	      /* Find the set of changed bits.  Take this opportunity
1234		 to notice that this set is empty and early out.  */
1235	      CLEAR_REG_SET (tmp);
1236	      changed = bitmap_operation (tmp, bb->global_live_at_end,
1237					  new_live_at_end, BITMAP_XOR);
1238	      if (! changed)
1239		continue;
1240
1241	      /* If any of the changed bits overlap with local_set,
1242		 we'll have to rescan the block.  Detect overlap by
1243		 the AND with ~local_set turning off bits.  */
1244	      rescan = bitmap_operation (tmp, tmp, bb->local_set,
1245					 BITMAP_AND_COMPL);
1246	    }
1247	}
1248
1249      /* Let our caller know that BB changed enough to require its
1250	 death notes updated.  */
1251      if (blocks_out)
1252	SET_BIT (blocks_out, bb->index);
1253
1254      if (! rescan)
1255	{
1256	  /* Add to live_at_start the set of all registers in
1257	     new_live_at_end that aren't in the old live_at_end.  */
1258
1259	  bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1260			    BITMAP_AND_COMPL);
1261	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1262
1263	  changed = bitmap_operation (bb->global_live_at_start,
1264				      bb->global_live_at_start,
1265				      tmp, BITMAP_IOR);
1266	  if (! changed)
1267	    continue;
1268	}
1269      else
1270	{
1271	  COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1272
1273	  /* Rescan the block insn by insn to turn (a copy of) live_at_end
1274	     into live_at_start.  */
1275	  propagate_block (bb, new_live_at_end, bb->local_set,
1276			   bb->cond_local_set, flags);
1277
1278	  /* If live_at start didn't change, no need to go farther.  */
1279	  if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1280	    continue;
1281
1282	  COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1283	}
1284
1285      /* Queue all predecessors of BB so that we may re-examine
1286	 their live_at_end.  */
1287      for (e = bb->pred; e; e = e->pred_next)
1288	{
1289	  basic_block pb = e->src;
1290	  if (pb->aux == NULL)
1291	    {
1292	      *qtail++ = pb;
1293	      if (qtail == qend)
1294		qtail = queue;
1295	      pb->aux = pb;
1296	    }
1297	}
1298    }
1299
1300  FREE_REG_SET (tmp);
1301  FREE_REG_SET (new_live_at_end);
1302  FREE_REG_SET (invalidated_by_call);
1303
1304  if (blocks_out)
1305    {
1306      EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1307	{
1308	  basic_block bb = BASIC_BLOCK (i);
1309	  FREE_REG_SET (bb->local_set);
1310	  FREE_REG_SET (bb->cond_local_set);
1311	});
1312    }
1313  else
1314    {
1315      FOR_EACH_BB (bb)
1316	{
1317	  FREE_REG_SET (bb->local_set);
1318	  FREE_REG_SET (bb->cond_local_set);
1319	}
1320    }
1321
1322  free (queue);
1323}
1324
1325
1326/* This structure is used to pass parameters to and from the
1327   the function find_regno_partial(). It is used to pass in the
1328   register number we are looking, as well as to return any rtx
1329   we find.  */
1330
1331typedef struct {
1332  unsigned regno_to_find;
1333  rtx retval;
1334} find_regno_partial_param;
1335
1336
1337/* Find the rtx for the reg numbers specified in 'data' if it is
1338   part of an expression which only uses part of the register.  Return
1339   it in the structure passed in.  */
1340static int
1341find_regno_partial (rtx *ptr, void *data)
1342{
1343  find_regno_partial_param *param = (find_regno_partial_param *)data;
1344  unsigned reg = param->regno_to_find;
1345  param->retval = NULL_RTX;
1346
1347  if (*ptr == NULL_RTX)
1348    return 0;
1349
1350  switch (GET_CODE (*ptr))
1351    {
1352    case ZERO_EXTRACT:
1353    case SIGN_EXTRACT:
1354    case STRICT_LOW_PART:
1355      if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1356	{
1357	  param->retval = XEXP (*ptr, 0);
1358	  return 1;
1359	}
1360      break;
1361
1362    case SUBREG:
1363      if (GET_CODE (SUBREG_REG (*ptr)) == REG
1364	  && REGNO (SUBREG_REG (*ptr)) == reg)
1365	{
1366	  param->retval = SUBREG_REG (*ptr);
1367	  return 1;
1368	}
1369      break;
1370
1371    default:
1372      break;
1373    }
1374
1375  return 0;
1376}
1377
1378/* Process all immediate successors of the entry block looking for pseudo
1379   registers which are live on entry. Find all of those whose first
1380   instance is a partial register reference of some kind, and initialize
1381   them to 0 after the entry block.  This will prevent bit sets within
1382   registers whose value is unknown, and may contain some kind of sticky
1383   bits we don't want.  */
1384
1385int
1386initialize_uninitialized_subregs (void)
1387{
1388  rtx insn;
1389  edge e;
1390  int reg, did_something = 0;
1391  find_regno_partial_param param;
1392
1393  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1394    {
1395      basic_block bb = e->dest;
1396      regset map = bb->global_live_at_start;
1397      EXECUTE_IF_SET_IN_REG_SET (map,
1398				 FIRST_PSEUDO_REGISTER, reg,
1399	{
1400	  int uid = REGNO_FIRST_UID (reg);
1401	  rtx i;
1402
1403	  /* Find an insn which mentions the register we are looking for.
1404	     Its preferable to have an instance of the register's rtl since
1405	     there may be various flags set which we need to duplicate.
1406	     If we can't find it, its probably an automatic whose initial
1407	     value doesn't matter, or hopefully something we don't care about.  */
1408	  for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1409	    ;
1410	  if (i != NULL_RTX)
1411	    {
1412	      /* Found the insn, now get the REG rtx, if we can.  */
1413	      param.regno_to_find = reg;
1414	      for_each_rtx (&i, find_regno_partial, &param);
1415	      if (param.retval != NULL_RTX)
1416		{
1417		  start_sequence ();
1418		  emit_move_insn (param.retval,
1419				  CONST0_RTX (GET_MODE (param.retval)));
1420		  insn = get_insns ();
1421		  end_sequence ();
1422		  insert_insn_on_edge (insn, e);
1423		  did_something = 1;
1424		}
1425	    }
1426	});
1427    }
1428
1429  if (did_something)
1430    commit_edge_insertions ();
1431  return did_something;
1432}
1433
1434
1435/* Subroutines of life analysis.  */
1436
1437/* Allocate the permanent data structures that represent the results
1438   of life analysis.  Not static since used also for stupid life analysis.  */
1439
1440void
1441allocate_bb_life_data (void)
1442{
1443  basic_block bb;
1444
1445  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1446    {
1447      bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1448      bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1449    }
1450
1451  regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1452}
1453
1454void
1455allocate_reg_life_data (void)
1456{
1457  int i;
1458
1459  max_regno = max_reg_num ();
1460
1461  /* Recalculate the register space, in case it has grown.  Old style
1462     vector oriented regsets would set regset_{size,bytes} here also.  */
1463  allocate_reg_info (max_regno, FALSE, FALSE);
1464
1465  /* Reset all the data we'll collect in propagate_block and its
1466     subroutines.  */
1467  for (i = 0; i < max_regno; i++)
1468    {
1469      REG_N_SETS (i) = 0;
1470      REG_N_REFS (i) = 0;
1471      REG_N_DEATHS (i) = 0;
1472      REG_N_CALLS_CROSSED (i) = 0;
1473      REG_LIVE_LENGTH (i) = 0;
1474      REG_FREQ (i) = 0;
1475      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1476    }
1477}
1478
1479/* Delete dead instructions for propagate_block.  */
1480
1481static void
1482propagate_block_delete_insn (rtx insn)
1483{
1484  rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1485
1486  /* If the insn referred to a label, and that label was attached to
1487     an ADDR_VEC, it's safe to delete the ADDR_VEC.  In fact, it's
1488     pretty much mandatory to delete it, because the ADDR_VEC may be
1489     referencing labels that no longer exist.
1490
1491     INSN may reference a deleted label, particularly when a jump
1492     table has been optimized into a direct jump.  There's no
1493     real good way to fix up the reference to the deleted label
1494     when the label is deleted, so we just allow it here.  */
1495
1496  if (inote && GET_CODE (inote) == CODE_LABEL)
1497    {
1498      rtx label = XEXP (inote, 0);
1499      rtx next;
1500
1501      /* The label may be forced if it has been put in the constant
1502	 pool.  If that is the only use we must discard the table
1503	 jump following it, but not the label itself.  */
1504      if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1505	  && (next = next_nonnote_insn (label)) != NULL
1506	  && GET_CODE (next) == JUMP_INSN
1507	  && (GET_CODE (PATTERN (next)) == ADDR_VEC
1508	      || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1509	{
1510	  rtx pat = PATTERN (next);
1511	  int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1512	  int len = XVECLEN (pat, diff_vec_p);
1513	  int i;
1514
1515	  for (i = 0; i < len; i++)
1516	    LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1517
1518	  delete_insn_and_edges (next);
1519	  ndead++;
1520	}
1521    }
1522
1523  delete_insn_and_edges (insn);
1524  ndead++;
1525}
1526
1527/* Delete dead libcalls for propagate_block.  Return the insn
1528   before the libcall.  */
1529
1530static rtx
1531propagate_block_delete_libcall (rtx insn, rtx note)
1532{
1533  rtx first = XEXP (note, 0);
1534  rtx before = PREV_INSN (first);
1535
1536  delete_insn_chain_and_edges (first, insn);
1537  ndead++;
1538  return before;
1539}
1540
1541/* Update the life-status of regs for one insn.  Return the previous insn.  */
1542
1543rtx
1544propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1545{
1546  rtx prev = PREV_INSN (insn);
1547  int flags = pbi->flags;
1548  int insn_is_dead = 0;
1549  int libcall_is_dead = 0;
1550  rtx note;
1551  int i;
1552
1553  if (! INSN_P (insn))
1554    return prev;
1555
1556  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1557  if (flags & PROP_SCAN_DEAD_CODE)
1558    {
1559      insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1560      libcall_is_dead = (insn_is_dead && note != 0
1561			 && libcall_dead_p (pbi, note, insn));
1562    }
1563
1564  /* If an instruction consists of just dead store(s) on final pass,
1565     delete it.  */
1566  if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1567    {
1568      /* If we're trying to delete a prologue or epilogue instruction
1569	 that isn't flagged as possibly being dead, something is wrong.
1570	 But if we are keeping the stack pointer depressed, we might well
1571	 be deleting insns that are used to compute the amount to update
1572	 it by, so they are fine.  */
1573      if (reload_completed
1574	  && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1575		&& (TYPE_RETURNS_STACK_DEPRESSED
1576		    (TREE_TYPE (current_function_decl))))
1577	  && (((HAVE_epilogue || HAVE_prologue)
1578	       && prologue_epilogue_contains (insn))
1579	      || (HAVE_sibcall_epilogue
1580		  && sibcall_epilogue_contains (insn)))
1581	  && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1582	fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1583
1584      /* Record sets.  Do this even for dead instructions, since they
1585	 would have killed the values if they hadn't been deleted.  */
1586      mark_set_regs (pbi, PATTERN (insn), insn);
1587
1588      /* CC0 is now known to be dead.  Either this insn used it,
1589	 in which case it doesn't anymore, or clobbered it,
1590	 so the next insn can't use it.  */
1591      pbi->cc0_live = 0;
1592
1593      if (libcall_is_dead)
1594	prev = propagate_block_delete_libcall (insn, note);
1595      else
1596	{
1597
1598	/* If INSN contains a RETVAL note and is dead, but the libcall
1599	   as a whole is not dead, then we want to remove INSN, but
1600	   not the whole libcall sequence.
1601
1602	   However, we need to also remove the dangling REG_LIBCALL
1603	   note so that we do not have mis-matched LIBCALL/RETVAL
1604	   notes.  In theory we could find a new location for the
1605	   REG_RETVAL note, but it hardly seems worth the effort.
1606
1607	   NOTE at this point will be the RETVAL note if it exists.  */
1608	  if (note)
1609	    {
1610	      rtx libcall_note;
1611
1612	      libcall_note
1613		= find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1614	      remove_note (XEXP (note, 0), libcall_note);
1615	    }
1616
1617	  /* Similarly if INSN contains a LIBCALL note, remove the
1618	     dangling REG_RETVAL note.  */
1619	  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1620	  if (note)
1621	    {
1622	      rtx retval_note;
1623
1624	      retval_note
1625		= find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1626	      remove_note (XEXP (note, 0), retval_note);
1627	    }
1628
1629	  /* Now delete INSN.  */
1630	  propagate_block_delete_insn (insn);
1631	}
1632
1633      return prev;
1634    }
1635
1636  /* See if this is an increment or decrement that can be merged into
1637     a following memory address.  */
1638#ifdef AUTO_INC_DEC
1639  {
1640    rtx x = single_set (insn);
1641
1642    /* Does this instruction increment or decrement a register?  */
1643    if ((flags & PROP_AUTOINC)
1644	&& x != 0
1645	&& GET_CODE (SET_DEST (x)) == REG
1646	&& (GET_CODE (SET_SRC (x)) == PLUS
1647	    || GET_CODE (SET_SRC (x)) == MINUS)
1648	&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
1649	&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1650	/* Ok, look for a following memory ref we can combine with.
1651	   If one is found, change the memory ref to a PRE_INC
1652	   or PRE_DEC, cancel this insn, and return 1.
1653	   Return 0 if nothing has been done.  */
1654	&& try_pre_increment_1 (pbi, insn))
1655      return prev;
1656  }
1657#endif /* AUTO_INC_DEC */
1658
1659  CLEAR_REG_SET (pbi->new_set);
1660
1661  /* If this is not the final pass, and this insn is copying the value of
1662     a library call and it's dead, don't scan the insns that perform the
1663     library call, so that the call's arguments are not marked live.  */
1664  if (libcall_is_dead)
1665    {
1666      /* Record the death of the dest reg.  */
1667      mark_set_regs (pbi, PATTERN (insn), insn);
1668
1669      insn = XEXP (note, 0);
1670      return PREV_INSN (insn);
1671    }
1672  else if (GET_CODE (PATTERN (insn)) == SET
1673	   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1674	   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1675	   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1676	   && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1677    /* We have an insn to pop a constant amount off the stack.
1678       (Such insns use PLUS regardless of the direction of the stack,
1679       and any insn to adjust the stack by a constant is always a pop.)
1680       These insns, if not dead stores, have no effect on life, though
1681       they do have an effect on the memory stores we are tracking.  */
1682    invalidate_mems_from_set (pbi, stack_pointer_rtx);
1683  else
1684    {
1685      rtx note;
1686      /* Any regs live at the time of a call instruction must not go
1687	 in a register clobbered by calls.  Find all regs now live and
1688	 record this for them.  */
1689
1690      if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1691	EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1692				   { REG_N_CALLS_CROSSED (i)++; });
1693
1694      /* Record sets.  Do this even for dead instructions, since they
1695	 would have killed the values if they hadn't been deleted.  */
1696      mark_set_regs (pbi, PATTERN (insn), insn);
1697
1698      if (GET_CODE (insn) == CALL_INSN)
1699	{
1700	  regset live_at_end;
1701	  bool sibcall_p;
1702	  rtx note, cond;
1703	  int i;
1704
1705	  cond = NULL_RTX;
1706	  if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1707	    cond = COND_EXEC_TEST (PATTERN (insn));
1708
1709	  /* Non-constant calls clobber memory, constant calls do not
1710	     clobber memory, though they may clobber outgoing arguments
1711	     on the stack.  */
1712	  if (! CONST_OR_PURE_CALL_P (insn))
1713	    {
1714	      free_EXPR_LIST_list (&pbi->mem_set_list);
1715	      pbi->mem_set_list_len = 0;
1716	    }
1717	  else
1718	    invalidate_mems_from_set (pbi, stack_pointer_rtx);
1719
1720	  /* There may be extra registers to be clobbered.  */
1721	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
1722	       note;
1723	       note = XEXP (note, 1))
1724	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1725	      mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1726			  cond, insn, pbi->flags);
1727
1728	  /* Calls change all call-used and global registers; sibcalls do not
1729	     clobber anything that must be preserved at end-of-function,
1730	     except for return values.  */
1731
1732	  sibcall_p = SIBLING_CALL_P (insn);
1733	  live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1734	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1735	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1736		&& ! (sibcall_p
1737		      && REGNO_REG_SET_P (live_at_end, i)
1738		      && ! refers_to_regno_p (i, i+1,
1739					      current_function_return_rtx,
1740					      (rtx *) 0)))
1741	      {
1742		enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1743		/* We do not want REG_UNUSED notes for these registers.  */
1744		mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1745			    pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1746	      }
1747	}
1748
1749      /* If an insn doesn't use CC0, it becomes dead since we assume
1750	 that every insn clobbers it.  So show it dead here;
1751	 mark_used_regs will set it live if it is referenced.  */
1752      pbi->cc0_live = 0;
1753
1754      /* Record uses.  */
1755      if (! insn_is_dead)
1756	mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1757      if ((flags & PROP_EQUAL_NOTES)
1758	  && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1759	      || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1760	mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1761
1762      /* Sometimes we may have inserted something before INSN (such as a move)
1763	 when we make an auto-inc.  So ensure we will scan those insns.  */
1764#ifdef AUTO_INC_DEC
1765      prev = PREV_INSN (insn);
1766#endif
1767
1768      if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1769	{
1770	  int i;
1771	  rtx note, cond;
1772
1773	  cond = NULL_RTX;
1774	  if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1775	    cond = COND_EXEC_TEST (PATTERN (insn));
1776
1777	  /* Calls use their arguments, and may clobber memory which
1778	     address involves some register.  */
1779	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
1780	       note;
1781	       note = XEXP (note, 1))
1782	    /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1783	       of which mark_used_regs knows how to handle.  */
1784	    mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1785
1786	  /* The stack ptr is used (honorarily) by a CALL insn.  */
1787	  SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1788
1789	  /* Calls may also reference any of the global registers,
1790	     so they are made live.  */
1791	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1792	    if (global_regs[i])
1793	      mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1794	}
1795    }
1796
1797  /* On final pass, update counts of how many insns in which each reg
1798     is live.  */
1799  if (flags & PROP_REG_INFO)
1800    EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1801			       { REG_LIVE_LENGTH (i)++; });
1802
1803  return prev;
1804}
1805
1806/* Initialize a propagate_block_info struct for public consumption.
1807   Note that the structure itself is opaque to this file, but that
1808   the user can use the regsets provided here.  */
1809
1810struct propagate_block_info *
1811init_propagate_block_info (basic_block bb, regset live, regset local_set,
1812			   regset cond_local_set, int flags)
1813{
1814  struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1815
1816  pbi->bb = bb;
1817  pbi->reg_live = live;
1818  pbi->mem_set_list = NULL_RTX;
1819  pbi->mem_set_list_len = 0;
1820  pbi->local_set = local_set;
1821  pbi->cond_local_set = cond_local_set;
1822  pbi->cc0_live = 0;
1823  pbi->flags = flags;
1824
1825  if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1826    pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1827  else
1828    pbi->reg_next_use = NULL;
1829
1830  pbi->new_set = BITMAP_XMALLOC ();
1831
1832#ifdef HAVE_conditional_execution
1833  pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1834				       free_reg_cond_life_info);
1835  pbi->reg_cond_reg = BITMAP_XMALLOC ();
1836
1837  /* If this block ends in a conditional branch, for each register
1838     live from one side of the branch and not the other, record the
1839     register as conditionally dead.  */
1840  if (GET_CODE (BB_END (bb)) == JUMP_INSN
1841      && any_condjump_p (BB_END (bb)))
1842    {
1843      regset_head diff_head;
1844      regset diff = INITIALIZE_REG_SET (diff_head);
1845      basic_block bb_true, bb_false;
1846      int i;
1847
1848      /* Identify the successor blocks.  */
1849      bb_true = bb->succ->dest;
1850      if (bb->succ->succ_next != NULL)
1851	{
1852	  bb_false = bb->succ->succ_next->dest;
1853
1854	  if (bb->succ->flags & EDGE_FALLTHRU)
1855	    {
1856	      basic_block t = bb_false;
1857	      bb_false = bb_true;
1858	      bb_true = t;
1859	    }
1860	  else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1861	    abort ();
1862	}
1863      else
1864	{
1865	  /* This can happen with a conditional jump to the next insn.  */
1866	  if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1867	    abort ();
1868
1869	  /* Simplest way to do nothing.  */
1870	  bb_false = bb_true;
1871	}
1872
1873      /* Compute which register lead different lives in the successors.  */
1874      if (bitmap_operation (diff, bb_true->global_live_at_start,
1875			    bb_false->global_live_at_start, BITMAP_XOR))
1876	{
1877	  /* Extract the condition from the branch.  */
1878	  rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1879	  rtx cond_true = XEXP (set_src, 0);
1880	  rtx reg = XEXP (cond_true, 0);
1881
1882	  if (GET_CODE (reg) == SUBREG)
1883	    reg = SUBREG_REG (reg);
1884
1885	  /* We can only track conditional lifetimes if the condition is
1886	     in the form of a comparison of a register against zero.
1887	     If the condition is more complex than that, then it is safe
1888	     not to record any information.  */
1889	  if (GET_CODE (reg) == REG
1890	      && XEXP (cond_true, 1) == const0_rtx)
1891	    {
1892	      rtx cond_false
1893		= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1894				  GET_MODE (cond_true), XEXP (cond_true, 0),
1895				  XEXP (cond_true, 1));
1896	      if (GET_CODE (XEXP (set_src, 1)) == PC)
1897		{
1898		  rtx t = cond_false;
1899		  cond_false = cond_true;
1900		  cond_true = t;
1901		}
1902
1903	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1904
1905	      /* For each such register, mark it conditionally dead.  */
1906	      EXECUTE_IF_SET_IN_REG_SET
1907		(diff, 0, i,
1908		 {
1909		   struct reg_cond_life_info *rcli;
1910		   rtx cond;
1911
1912		   rcli = xmalloc (sizeof (*rcli));
1913
1914		   if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1915		     cond = cond_false;
1916		   else
1917		     cond = cond_true;
1918		   rcli->condition = cond;
1919		   rcli->stores = const0_rtx;
1920		   rcli->orig_condition = cond;
1921
1922		   splay_tree_insert (pbi->reg_cond_dead, i,
1923				      (splay_tree_value) rcli);
1924		 });
1925	    }
1926	}
1927
1928      FREE_REG_SET (diff);
1929    }
1930#endif
1931
1932  /* If this block has no successors, any stores to the frame that aren't
1933     used later in the block are dead.  So make a pass over the block
1934     recording any such that are made and show them dead at the end.  We do
1935     a very conservative and simple job here.  */
1936  if (optimize
1937      && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1938	    && (TYPE_RETURNS_STACK_DEPRESSED
1939		(TREE_TYPE (current_function_decl))))
1940      && (flags & PROP_SCAN_DEAD_STORES)
1941      && (bb->succ == NULL
1942	  || (bb->succ->succ_next == NULL
1943	      && bb->succ->dest == EXIT_BLOCK_PTR
1944	      && ! current_function_calls_eh_return)))
1945    {
1946      rtx insn, set;
1947      for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1948	if (GET_CODE (insn) == INSN
1949	    && (set = single_set (insn))
1950	    && GET_CODE (SET_DEST (set)) == MEM)
1951	  {
1952	    rtx mem = SET_DEST (set);
1953	    rtx canon_mem = canon_rtx (mem);
1954
1955	    if (XEXP (canon_mem, 0) == frame_pointer_rtx
1956		|| (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1957		    && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1958		    && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1959	      add_to_mem_set_list (pbi, canon_mem);
1960	  }
1961    }
1962
1963  return pbi;
1964}
1965
1966/* Release a propagate_block_info struct.  */
1967
1968void
1969free_propagate_block_info (struct propagate_block_info *pbi)
1970{
1971  free_EXPR_LIST_list (&pbi->mem_set_list);
1972
1973  BITMAP_XFREE (pbi->new_set);
1974
1975#ifdef HAVE_conditional_execution
1976  splay_tree_delete (pbi->reg_cond_dead);
1977  BITMAP_XFREE (pbi->reg_cond_reg);
1978#endif
1979
1980  if (pbi->reg_next_use)
1981    free (pbi->reg_next_use);
1982
1983  free (pbi);
1984}
1985
1986/* Compute the registers live at the beginning of a basic block BB from
1987   those live at the end.
1988
1989   When called, REG_LIVE contains those live at the end.  On return, it
1990   contains those live at the beginning.
1991
1992   LOCAL_SET, if non-null, will be set with all registers killed
1993   unconditionally by this basic block.
1994   Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1995   killed conditionally by this basic block.  If there is any unconditional
1996   set of a register, then the corresponding bit will be set in LOCAL_SET
1997   and cleared in COND_LOCAL_SET.
1998   It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set.  In this
1999   case, the resulting set will be equal to the union of the two sets that
2000   would otherwise be computed.
2001
2002   Return nonzero if an INSN is deleted (i.e. by dead code removal).  */
2003
2004int
2005propagate_block (basic_block bb, regset live, regset local_set,
2006		 regset cond_local_set, int flags)
2007{
2008  struct propagate_block_info *pbi;
2009  rtx insn, prev;
2010  int changed;
2011
2012  pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2013
2014  if (flags & PROP_REG_INFO)
2015    {
2016      int i;
2017
2018      /* Process the regs live at the end of the block.
2019	 Mark them as not local to any one basic block.  */
2020      EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2021				 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2022    }
2023
2024  /* Scan the block an insn at a time from end to beginning.  */
2025
2026  changed = 0;
2027  for (insn = BB_END (bb); ; insn = prev)
2028    {
2029      /* If this is a call to `setjmp' et al, warn if any
2030	 non-volatile datum is live.  */
2031      if ((flags & PROP_REG_INFO)
2032	  && GET_CODE (insn) == CALL_INSN
2033	  && find_reg_note (insn, REG_SETJMP, NULL))
2034	IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2035
2036      prev = propagate_one_insn (pbi, insn);
2037      if (!prev)
2038        changed |= insn != get_insns ();
2039      else
2040        changed |= NEXT_INSN (prev) != insn;
2041
2042      if (insn == BB_HEAD (bb))
2043	break;
2044    }
2045
2046  free_propagate_block_info (pbi);
2047
2048  return changed;
2049}
2050
2051/* Return 1 if X (the body of an insn, or part of it) is just dead stores
2052   (SET expressions whose destinations are registers dead after the insn).
2053   NEEDED is the regset that says which regs are alive after the insn.
2054
2055   Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2056
2057   If X is the entire body of an insn, NOTES contains the reg notes
2058   pertaining to the insn.  */
2059
2060static int
2061insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2062	     rtx notes ATTRIBUTE_UNUSED)
2063{
2064  enum rtx_code code = GET_CODE (x);
2065
2066  /* Don't eliminate insns that may trap.  */
2067  if (flag_non_call_exceptions && may_trap_p (x))
2068    return 0;
2069
2070#ifdef AUTO_INC_DEC
2071  /* As flow is invoked after combine, we must take existing AUTO_INC
2072     expressions into account.  */
2073  for (; notes; notes = XEXP (notes, 1))
2074    {
2075      if (REG_NOTE_KIND (notes) == REG_INC)
2076	{
2077	  int regno = REGNO (XEXP (notes, 0));
2078
2079	  /* Don't delete insns to set global regs.  */
2080	  if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2081	      || REGNO_REG_SET_P (pbi->reg_live, regno))
2082	    return 0;
2083	}
2084    }
2085#endif
2086
2087  /* If setting something that's a reg or part of one,
2088     see if that register's altered value will be live.  */
2089
2090  if (code == SET)
2091    {
2092      rtx r = SET_DEST (x);
2093
2094#ifdef HAVE_cc0
2095      if (GET_CODE (r) == CC0)
2096	return ! pbi->cc0_live;
2097#endif
2098
2099      /* A SET that is a subroutine call cannot be dead.  */
2100      if (GET_CODE (SET_SRC (x)) == CALL)
2101	{
2102	  if (! call_ok)
2103	    return 0;
2104	}
2105
2106      /* Don't eliminate loads from volatile memory or volatile asms.  */
2107      else if (volatile_refs_p (SET_SRC (x)))
2108	return 0;
2109
2110      if (GET_CODE (r) == MEM)
2111	{
2112	  rtx temp, canon_r;
2113
2114	  if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2115	    return 0;
2116
2117	  canon_r = canon_rtx (r);
2118
2119	  /* Walk the set of memory locations we are currently tracking
2120	     and see if one is an identical match to this memory location.
2121	     If so, this memory write is dead (remember, we're walking
2122	     backwards from the end of the block to the start).  Since
2123	     rtx_equal_p does not check the alias set or flags, we also
2124	     must have the potential for them to conflict (anti_dependence).  */
2125	  for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2126	    if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2127	      {
2128		rtx mem = XEXP (temp, 0);
2129
2130		if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2131		    && (GET_MODE_SIZE (GET_MODE (canon_r))
2132			<= GET_MODE_SIZE (GET_MODE (mem))))
2133		  return 1;
2134
2135#ifdef AUTO_INC_DEC
2136		/* Check if memory reference matches an auto increment. Only
2137		   post increment/decrement or modify are valid.  */
2138		if (GET_MODE (mem) == GET_MODE (r)
2139		    && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2140			|| GET_CODE (XEXP (mem, 0)) == POST_INC
2141			|| GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2142		    && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2143		    && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2144		  return 1;
2145#endif
2146	      }
2147	}
2148      else
2149	{
2150	  while (GET_CODE (r) == SUBREG
2151		 || GET_CODE (r) == STRICT_LOW_PART
2152		 || GET_CODE (r) == ZERO_EXTRACT)
2153	    r = XEXP (r, 0);
2154
2155	  if (GET_CODE (r) == REG)
2156	    {
2157	      int regno = REGNO (r);
2158
2159	      /* Obvious.  */
2160	      if (REGNO_REG_SET_P (pbi->reg_live, regno))
2161		return 0;
2162
2163	      /* If this is a hard register, verify that subsequent
2164		 words are not needed.  */
2165	      if (regno < FIRST_PSEUDO_REGISTER)
2166		{
2167		  int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2168
2169		  while (--n > 0)
2170		    if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2171		      return 0;
2172		}
2173
2174	      /* Don't delete insns to set global regs.  */
2175	      if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2176		return 0;
2177
2178	      /* Make sure insns to set the stack pointer aren't deleted.  */
2179	      if (regno == STACK_POINTER_REGNUM)
2180		return 0;
2181
2182	      /* ??? These bits might be redundant with the force live bits
2183		 in calculate_global_regs_live.  We would delete from
2184		 sequential sets; whether this actually affects real code
2185		 for anything but the stack pointer I don't know.  */
2186	      /* Make sure insns to set the frame pointer aren't deleted.  */
2187	      if (regno == FRAME_POINTER_REGNUM
2188		  && (! reload_completed || frame_pointer_needed))
2189		return 0;
2190#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2191	      if (regno == HARD_FRAME_POINTER_REGNUM
2192		  && (! reload_completed || frame_pointer_needed))
2193		return 0;
2194#endif
2195
2196#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2197	      /* Make sure insns to set arg pointer are never deleted
2198		 (if the arg pointer isn't fixed, there will be a USE
2199		 for it, so we can treat it normally).  */
2200	      if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2201		return 0;
2202#endif
2203
2204	      /* Otherwise, the set is dead.  */
2205	      return 1;
2206	    }
2207	}
2208    }
2209
2210  /* If performing several activities, insn is dead if each activity
2211     is individually dead.  Also, CLOBBERs and USEs can be ignored; a
2212     CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2213     worth keeping.  */
2214  else if (code == PARALLEL)
2215    {
2216      int i = XVECLEN (x, 0);
2217
2218      for (i--; i >= 0; i--)
2219	if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2220	    && GET_CODE (XVECEXP (x, 0, i)) != USE
2221	    && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2222	  return 0;
2223
2224      return 1;
2225    }
2226
2227  /* A CLOBBER of a pseudo-register that is dead serves no purpose.  That
2228     is not necessarily true for hard registers until after reload.  */
2229  else if (code == CLOBBER)
2230    {
2231      if (GET_CODE (XEXP (x, 0)) == REG
2232	  && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2233	      || reload_completed)
2234	  && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2235	return 1;
2236    }
2237
2238  /* ??? A base USE is a historical relic.  It ought not be needed anymore.
2239     Instances where it is still used are either (1) temporary and the USE
2240     escaped the pass, (2) cruft and the USE need not be emitted anymore,
2241     or (3) hiding bugs elsewhere that are not properly representing data
2242     flow.  */
2243
2244  return 0;
2245}
2246
2247/* If INSN is the last insn in a libcall, and assuming INSN is dead,
2248   return 1 if the entire library call is dead.
2249   This is true if INSN copies a register (hard or pseudo)
2250   and if the hard return reg of the call insn is dead.
2251   (The caller should have tested the destination of the SET inside
2252   INSN already for death.)
2253
2254   If this insn doesn't just copy a register, then we don't
2255   have an ordinary libcall.  In that case, cse could not have
2256   managed to substitute the source for the dest later on,
2257   so we can assume the libcall is dead.
2258
2259   PBI is the block info giving pseudoregs live before this insn.
2260   NOTE is the REG_RETVAL note of the insn.  */
2261
2262static int
2263libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2264{
2265  rtx x = single_set (insn);
2266
2267  if (x)
2268    {
2269      rtx r = SET_SRC (x);
2270
2271      if (GET_CODE (r) == REG || GET_CODE (r) == SUBREG)
2272	{
2273	  rtx call = XEXP (note, 0);
2274	  rtx call_pat;
2275	  int i;
2276
2277	  /* Find the call insn.  */
2278	  while (call != insn && GET_CODE (call) != CALL_INSN)
2279	    call = NEXT_INSN (call);
2280
2281	  /* If there is none, do nothing special,
2282	     since ordinary death handling can understand these insns.  */
2283	  if (call == insn)
2284	    return 0;
2285
2286	  /* See if the hard reg holding the value is dead.
2287	     If this is a PARALLEL, find the call within it.  */
2288	  call_pat = PATTERN (call);
2289	  if (GET_CODE (call_pat) == PARALLEL)
2290	    {
2291	      for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2292		if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2293		    && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2294		  break;
2295
2296	      /* This may be a library call that is returning a value
2297		 via invisible pointer.  Do nothing special, since
2298		 ordinary death handling can understand these insns.  */
2299	      if (i < 0)
2300		return 0;
2301
2302	      call_pat = XVECEXP (call_pat, 0, i);
2303	    }
2304
2305	  if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2306	    return 0;
2307
2308	  while ((insn = PREV_INSN (insn)) != call)
2309	    {
2310	      if (! INSN_P (insn))
2311		continue;
2312	      if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2313		return 0;
2314	    }
2315	  return 1;
2316	}
2317    }
2318  return 0;
2319}
2320
2321/* Return 1 if register REGNO was used before it was set, i.e. if it is
2322   live at function entry.  Don't count global register variables, variables
2323   in registers that can be used for function arg passing, or variables in
2324   fixed hard registers.  */
2325
2326int
2327regno_uninitialized (unsigned int regno)
2328{
2329  if (n_basic_blocks == 0
2330      || (regno < FIRST_PSEUDO_REGISTER
2331	  && (global_regs[regno]
2332	      || fixed_regs[regno]
2333	      || FUNCTION_ARG_REGNO_P (regno))))
2334    return 0;
2335
2336  return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2337}
2338
2339/* 1 if register REGNO was alive at a place where `setjmp' was called
2340   and was set more than once or is an argument.
2341   Such regs may be clobbered by `longjmp'.  */
2342
2343int
2344regno_clobbered_at_setjmp (int regno)
2345{
2346  if (n_basic_blocks == 0)
2347    return 0;
2348
2349  return ((REG_N_SETS (regno) > 1
2350	   || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2351	  && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2352}
2353
2354/* Add MEM to PBI->MEM_SET_LIST.  MEM should be canonical.  Respect the
2355   maximal list size; look for overlaps in mode and select the largest.  */
2356static void
2357add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2358{
2359  rtx i;
2360
2361  /* We don't know how large a BLKmode store is, so we must not
2362     take them into consideration.  */
2363  if (GET_MODE (mem) == BLKmode)
2364    return;
2365
2366  for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2367    {
2368      rtx e = XEXP (i, 0);
2369      if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2370	{
2371	  if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2372	    {
2373#ifdef AUTO_INC_DEC
2374	      /* If we must store a copy of the mem, we can just modify
2375		 the mode of the stored copy.  */
2376	      if (pbi->flags & PROP_AUTOINC)
2377	        PUT_MODE (e, GET_MODE (mem));
2378	      else
2379#endif
2380	        XEXP (i, 0) = mem;
2381	    }
2382	  return;
2383	}
2384    }
2385
2386  if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2387    {
2388#ifdef AUTO_INC_DEC
2389      /* Store a copy of mem, otherwise the address may be
2390	 scrogged by find_auto_inc.  */
2391      if (pbi->flags & PROP_AUTOINC)
2392	mem = shallow_copy_rtx (mem);
2393#endif
2394      pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2395      pbi->mem_set_list_len++;
2396    }
2397}
2398
2399/* INSN references memory, possibly using autoincrement addressing modes.
2400   Find any entries on the mem_set_list that need to be invalidated due
2401   to an address change.  */
2402
2403static int
2404invalidate_mems_from_autoinc (rtx *px, void *data)
2405{
2406  rtx x = *px;
2407  struct propagate_block_info *pbi = data;
2408
2409  if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2410    {
2411      invalidate_mems_from_set (pbi, XEXP (x, 0));
2412      return -1;
2413    }
2414
2415  return 0;
2416}
2417
2418/* EXP is a REG.  Remove any dependent entries from pbi->mem_set_list.  */
2419
2420static void
2421invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2422{
2423  rtx temp = pbi->mem_set_list;
2424  rtx prev = NULL_RTX;
2425  rtx next;
2426
2427  while (temp)
2428    {
2429      next = XEXP (temp, 1);
2430      if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2431	{
2432	  /* Splice this entry out of the list.  */
2433	  if (prev)
2434	    XEXP (prev, 1) = next;
2435	  else
2436	    pbi->mem_set_list = next;
2437	  free_EXPR_LIST_node (temp);
2438	  pbi->mem_set_list_len--;
2439	}
2440      else
2441	prev = temp;
2442      temp = next;
2443    }
2444}
2445
2446/* Process the registers that are set within X.  Their bits are set to
2447   1 in the regset DEAD, because they are dead prior to this insn.
2448
2449   If INSN is nonzero, it is the insn being processed.
2450
2451   FLAGS is the set of operations to perform.  */
2452
2453static void
2454mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2455{
2456  rtx cond = NULL_RTX;
2457  rtx link;
2458  enum rtx_code code;
2459  int flags = pbi->flags;
2460
2461  if (insn)
2462    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2463      {
2464	if (REG_NOTE_KIND (link) == REG_INC)
2465	  mark_set_1 (pbi, SET, XEXP (link, 0),
2466		      (GET_CODE (x) == COND_EXEC
2467		       ? COND_EXEC_TEST (x) : NULL_RTX),
2468		      insn, flags);
2469      }
2470 retry:
2471  switch (code = GET_CODE (x))
2472    {
2473    case SET:
2474      if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2475	flags |= PROP_ASM_SCAN;
2476      /* Fall through */
2477    case CLOBBER:
2478      mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2479      return;
2480
2481    case COND_EXEC:
2482      cond = COND_EXEC_TEST (x);
2483      x = COND_EXEC_CODE (x);
2484      goto retry;
2485
2486    case PARALLEL:
2487      {
2488	int i;
2489
2490	/* We must scan forwards.  If we have an asm, we need to set
2491	   the PROP_ASM_SCAN flag before scanning the clobbers.  */
2492	for (i = 0; i < XVECLEN (x, 0); i++)
2493	  {
2494	    rtx sub = XVECEXP (x, 0, i);
2495	    switch (code = GET_CODE (sub))
2496	      {
2497	      case COND_EXEC:
2498		if (cond != NULL_RTX)
2499		  abort ();
2500
2501		cond = COND_EXEC_TEST (sub);
2502		sub = COND_EXEC_CODE (sub);
2503		if (GET_CODE (sub) == SET)
2504		  goto mark_set;
2505		if (GET_CODE (sub) == CLOBBER)
2506		  goto mark_clob;
2507		break;
2508
2509	      case SET:
2510	      mark_set:
2511		if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2512		  flags |= PROP_ASM_SCAN;
2513		/* Fall through */
2514	      case CLOBBER:
2515	      mark_clob:
2516		mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2517		break;
2518
2519	      case ASM_OPERANDS:
2520		flags |= PROP_ASM_SCAN;
2521		break;
2522
2523	      default:
2524		break;
2525	      }
2526	  }
2527	break;
2528      }
2529
2530    default:
2531      break;
2532    }
2533}
2534
2535/* Process a single set, which appears in INSN.  REG (which may not
2536   actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2537   being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2538   If the set is conditional (because it appear in a COND_EXEC), COND
2539   will be the condition.  */
2540
2541static void
2542mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2543{
2544  int regno_first = -1, regno_last = -1;
2545  unsigned long not_dead = 0;
2546  int i;
2547
2548  /* Modifying just one hardware register of a multi-reg value or just a
2549     byte field of a register does not mean the value from before this insn
2550     is now dead.  Of course, if it was dead after it's unused now.  */
2551
2552  switch (GET_CODE (reg))
2553    {
2554    case PARALLEL:
2555      /* Some targets place small structures in registers for return values of
2556	 functions.  We have to detect this case specially here to get correct
2557	 flow information.  */
2558      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2559	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2560	  mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2561		      flags);
2562      return;
2563
2564    case ZERO_EXTRACT:
2565    case SIGN_EXTRACT:
2566    case STRICT_LOW_PART:
2567      /* ??? Assumes STRICT_LOW_PART not used on multi-word registers.  */
2568      do
2569	reg = XEXP (reg, 0);
2570      while (GET_CODE (reg) == SUBREG
2571	     || GET_CODE (reg) == ZERO_EXTRACT
2572	     || GET_CODE (reg) == SIGN_EXTRACT
2573	     || GET_CODE (reg) == STRICT_LOW_PART);
2574      if (GET_CODE (reg) == MEM)
2575	break;
2576      not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2577      /* Fall through.  */
2578
2579    case REG:
2580      regno_last = regno_first = REGNO (reg);
2581      if (regno_first < FIRST_PSEUDO_REGISTER)
2582	regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2583      break;
2584
2585    case SUBREG:
2586      if (GET_CODE (SUBREG_REG (reg)) == REG)
2587	{
2588	  enum machine_mode outer_mode = GET_MODE (reg);
2589	  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2590
2591	  /* Identify the range of registers affected.  This is moderately
2592	     tricky for hard registers.  See alter_subreg.  */
2593
2594	  regno_last = regno_first = REGNO (SUBREG_REG (reg));
2595	  if (regno_first < FIRST_PSEUDO_REGISTER)
2596	    {
2597	      regno_first += subreg_regno_offset (regno_first, inner_mode,
2598						  SUBREG_BYTE (reg),
2599						  outer_mode);
2600	      regno_last = (regno_first
2601			    + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2602
2603	      /* Since we've just adjusted the register number ranges, make
2604		 sure REG matches.  Otherwise some_was_live will be clear
2605		 when it shouldn't have been, and we'll create incorrect
2606		 REG_UNUSED notes.  */
2607	      reg = gen_rtx_REG (outer_mode, regno_first);
2608	    }
2609	  else
2610	    {
2611	      /* If the number of words in the subreg is less than the number
2612		 of words in the full register, we have a well-defined partial
2613		 set.  Otherwise the high bits are undefined.
2614
2615		 This is only really applicable to pseudos, since we just took
2616		 care of multi-word hard registers.  */
2617	      if (((GET_MODE_SIZE (outer_mode)
2618		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2619		  < ((GET_MODE_SIZE (inner_mode)
2620		      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2621		not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2622							    regno_first);
2623
2624	      reg = SUBREG_REG (reg);
2625	    }
2626	}
2627      else
2628	reg = SUBREG_REG (reg);
2629      break;
2630
2631    default:
2632      break;
2633    }
2634
2635  /* If this set is a MEM, then it kills any aliased writes.
2636     If this set is a REG, then it kills any MEMs which use the reg.  */
2637  if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2638    {
2639      if (GET_CODE (reg) == REG)
2640	invalidate_mems_from_set (pbi, reg);
2641
2642      /* If the memory reference had embedded side effects (autoincrement
2643	 address modes.  Then we may need to kill some entries on the
2644	 memory set list.  */
2645      if (insn && GET_CODE (reg) == MEM)
2646	for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2647
2648      if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2649	  /* ??? With more effort we could track conditional memory life.  */
2650	  && ! cond)
2651	add_to_mem_set_list (pbi, canon_rtx (reg));
2652    }
2653
2654  if (GET_CODE (reg) == REG
2655      && ! (regno_first == FRAME_POINTER_REGNUM
2656	    && (! reload_completed || frame_pointer_needed))
2657#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2658      && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2659	    && (! reload_completed || frame_pointer_needed))
2660#endif
2661#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2662      && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2663#endif
2664      )
2665    {
2666      int some_was_live = 0, some_was_dead = 0;
2667
2668      for (i = regno_first; i <= regno_last; ++i)
2669	{
2670	  int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2671	  if (pbi->local_set)
2672	    {
2673	      /* Order of the set operation matters here since both
2674		 sets may be the same.  */
2675	      CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2676	      if (cond != NULL_RTX
2677		  && ! REGNO_REG_SET_P (pbi->local_set, i))
2678		SET_REGNO_REG_SET (pbi->cond_local_set, i);
2679	      else
2680		SET_REGNO_REG_SET (pbi->local_set, i);
2681	    }
2682	  if (code != CLOBBER)
2683	    SET_REGNO_REG_SET (pbi->new_set, i);
2684
2685	  some_was_live |= needed_regno;
2686	  some_was_dead |= ! needed_regno;
2687	}
2688
2689#ifdef HAVE_conditional_execution
2690      /* Consider conditional death in deciding that the register needs
2691	 a death note.  */
2692      if (some_was_live && ! not_dead
2693	  /* The stack pointer is never dead.  Well, not strictly true,
2694	     but it's very difficult to tell from here.  Hopefully
2695	     combine_stack_adjustments will fix up the most egregious
2696	     errors.  */
2697	  && regno_first != STACK_POINTER_REGNUM)
2698	{
2699	  for (i = regno_first; i <= regno_last; ++i)
2700	    if (! mark_regno_cond_dead (pbi, i, cond))
2701	      not_dead |= ((unsigned long) 1) << (i - regno_first);
2702	}
2703#endif
2704
2705      /* Additional data to record if this is the final pass.  */
2706      if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2707		   | PROP_DEATH_NOTES | PROP_AUTOINC))
2708	{
2709	  rtx y;
2710	  int blocknum = pbi->bb->index;
2711
2712	  y = NULL_RTX;
2713	  if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2714	    {
2715	      y = pbi->reg_next_use[regno_first];
2716
2717	      /* The next use is no longer next, since a store intervenes.  */
2718	      for (i = regno_first; i <= regno_last; ++i)
2719		pbi->reg_next_use[i] = 0;
2720	    }
2721
2722	  if (flags & PROP_REG_INFO)
2723	    {
2724	      for (i = regno_first; i <= regno_last; ++i)
2725		{
2726		  /* Count (weighted) references, stores, etc.  This counts a
2727		     register twice if it is modified, but that is correct.  */
2728		  REG_N_SETS (i) += 1;
2729		  REG_N_REFS (i) += 1;
2730		  REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2731
2732	          /* The insns where a reg is live are normally counted
2733		     elsewhere, but we want the count to include the insn
2734		     where the reg is set, and the normal counting mechanism
2735		     would not count it.  */
2736		  REG_LIVE_LENGTH (i) += 1;
2737		}
2738
2739	      /* If this is a hard reg, record this function uses the reg.  */
2740	      if (regno_first < FIRST_PSEUDO_REGISTER)
2741		{
2742		  for (i = regno_first; i <= regno_last; i++)
2743		    regs_ever_live[i] = 1;
2744		  if (flags & PROP_ASM_SCAN)
2745		    for (i = regno_first; i <= regno_last; i++)
2746		      regs_asm_clobbered[i] = 1;
2747		}
2748	      else
2749		{
2750		  /* Keep track of which basic blocks each reg appears in.  */
2751		  if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2752		    REG_BASIC_BLOCK (regno_first) = blocknum;
2753		  else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2754		    REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2755		}
2756	    }
2757
2758	  if (! some_was_dead)
2759	    {
2760	      if (flags & PROP_LOG_LINKS)
2761		{
2762		  /* Make a logical link from the next following insn
2763		     that uses this register, back to this insn.
2764		     The following insns have already been processed.
2765
2766		     We don't build a LOG_LINK for hard registers containing
2767		     in ASM_OPERANDs.  If these registers get replaced,
2768		     we might wind up changing the semantics of the insn,
2769		     even if reload can make what appear to be valid
2770		     assignments later.
2771
2772		     We don't build a LOG_LINK for global registers to
2773		     or from a function call.  We don't want to let
2774		     combine think that it knows what is going on with
2775		     global registers.  */
2776		  if (y && (BLOCK_NUM (y) == blocknum)
2777		      && (regno_first >= FIRST_PSEUDO_REGISTER
2778			  || (asm_noperands (PATTERN (y)) < 0
2779			      && ! ((GET_CODE (insn) == CALL_INSN
2780				     || GET_CODE (y) == CALL_INSN)
2781				    && global_regs[regno_first]))))
2782		    LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2783		}
2784	    }
2785	  else if (not_dead)
2786	    ;
2787	  else if (! some_was_live)
2788	    {
2789	      if (flags & PROP_REG_INFO)
2790		REG_N_DEATHS (regno_first) += 1;
2791
2792	      if (flags & PROP_DEATH_NOTES)
2793		{
2794		  /* Note that dead stores have already been deleted
2795		     when possible.  If we get here, we have found a
2796		     dead store that cannot be eliminated (because the
2797		     same insn does something useful).  Indicate this
2798		     by marking the reg being set as dying here.  */
2799		  REG_NOTES (insn)
2800		    = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2801		}
2802	    }
2803	  else
2804	    {
2805	      if (flags & PROP_DEATH_NOTES)
2806		{
2807		  /* This is a case where we have a multi-word hard register
2808		     and some, but not all, of the words of the register are
2809		     needed in subsequent insns.  Write REG_UNUSED notes
2810		     for those parts that were not needed.  This case should
2811		     be rare.  */
2812
2813		  for (i = regno_first; i <= regno_last; ++i)
2814		    if (! REGNO_REG_SET_P (pbi->reg_live, i))
2815		      REG_NOTES (insn)
2816			= alloc_EXPR_LIST (REG_UNUSED,
2817					   regno_reg_rtx[i],
2818					   REG_NOTES (insn));
2819		}
2820	    }
2821	}
2822
2823      /* Mark the register as being dead.  */
2824      if (some_was_live
2825	  /* The stack pointer is never dead.  Well, not strictly true,
2826	     but it's very difficult to tell from here.  Hopefully
2827	     combine_stack_adjustments will fix up the most egregious
2828	     errors.  */
2829	  && regno_first != STACK_POINTER_REGNUM)
2830	{
2831	  for (i = regno_first; i <= regno_last; ++i)
2832	    if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2833	      CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2834	}
2835    }
2836  else if (GET_CODE (reg) == REG)
2837    {
2838      if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2839	pbi->reg_next_use[regno_first] = 0;
2840
2841      if ((flags & PROP_REG_INFO) != 0
2842	  && (flags & PROP_ASM_SCAN) != 0
2843	  &&  regno_first < FIRST_PSEUDO_REGISTER)
2844	{
2845	  for (i = regno_first; i <= regno_last; i++)
2846	    regs_asm_clobbered[i] = 1;
2847	}
2848    }
2849
2850  /* If this is the last pass and this is a SCRATCH, show it will be dying
2851     here and count it.  */
2852  else if (GET_CODE (reg) == SCRATCH)
2853    {
2854      if (flags & PROP_DEATH_NOTES)
2855	REG_NOTES (insn)
2856	  = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2857    }
2858}
2859
2860#ifdef HAVE_conditional_execution
2861/* Mark REGNO conditionally dead.
2862   Return true if the register is now unconditionally dead.  */
2863
2864static int
2865mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2866{
2867  /* If this is a store to a predicate register, the value of the
2868     predicate is changing, we don't know that the predicate as seen
2869     before is the same as that seen after.  Flush all dependent
2870     conditions from reg_cond_dead.  This will make all such
2871     conditionally live registers unconditionally live.  */
2872  if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2873    flush_reg_cond_reg (pbi, regno);
2874
2875  /* If this is an unconditional store, remove any conditional
2876     life that may have existed.  */
2877  if (cond == NULL_RTX)
2878    splay_tree_remove (pbi->reg_cond_dead, regno);
2879  else
2880    {
2881      splay_tree_node node;
2882      struct reg_cond_life_info *rcli;
2883      rtx ncond;
2884
2885      /* Otherwise this is a conditional set.  Record that fact.
2886	 It may have been conditionally used, or there may be a
2887	 subsequent set with a complimentary condition.  */
2888
2889      node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2890      if (node == NULL)
2891	{
2892	  /* The register was unconditionally live previously.
2893	     Record the current condition as the condition under
2894	     which it is dead.  */
2895	  rcli = xmalloc (sizeof (*rcli));
2896	  rcli->condition = cond;
2897	  rcli->stores = cond;
2898	  rcli->orig_condition = const0_rtx;
2899	  splay_tree_insert (pbi->reg_cond_dead, regno,
2900			     (splay_tree_value) rcli);
2901
2902	  SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2903
2904	  /* Not unconditionally dead.  */
2905	  return 0;
2906	}
2907      else
2908	{
2909	  /* The register was conditionally live previously.
2910	     Add the new condition to the old.  */
2911	  rcli = (struct reg_cond_life_info *) node->value;
2912	  ncond = rcli->condition;
2913	  ncond = ior_reg_cond (ncond, cond, 1);
2914	  if (rcli->stores == const0_rtx)
2915	    rcli->stores = cond;
2916	  else if (rcli->stores != const1_rtx)
2917	    rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2918
2919	  /* If the register is now unconditionally dead, remove the entry
2920	     in the splay_tree.  A register is unconditionally dead if the
2921	     dead condition ncond is true.  A register is also unconditionally
2922	     dead if the sum of all conditional stores is an unconditional
2923	     store (stores is true), and the dead condition is identically the
2924	     same as the original dead condition initialized at the end of
2925	     the block.  This is a pointer compare, not an rtx_equal_p
2926	     compare.  */
2927	  if (ncond == const1_rtx
2928	      || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2929	    splay_tree_remove (pbi->reg_cond_dead, regno);
2930	  else
2931	    {
2932	      rcli->condition = ncond;
2933
2934	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2935
2936	      /* Not unconditionally dead.  */
2937	      return 0;
2938	    }
2939	}
2940    }
2941
2942  return 1;
2943}
2944
2945/* Called from splay_tree_delete for pbi->reg_cond_life.  */
2946
2947static void
2948free_reg_cond_life_info (splay_tree_value value)
2949{
2950  struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2951  free (rcli);
2952}
2953
2954/* Helper function for flush_reg_cond_reg.  */
2955
2956static int
2957flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2958{
2959  struct reg_cond_life_info *rcli;
2960  int *xdata = (int *) data;
2961  unsigned int regno = xdata[0];
2962
2963  /* Don't need to search if last flushed value was farther on in
2964     the in-order traversal.  */
2965  if (xdata[1] >= (int) node->key)
2966    return 0;
2967
2968  /* Splice out portions of the expression that refer to regno.  */
2969  rcli = (struct reg_cond_life_info *) node->value;
2970  rcli->condition = elim_reg_cond (rcli->condition, regno);
2971  if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2972    rcli->stores = elim_reg_cond (rcli->stores, regno);
2973
2974  /* If the entire condition is now false, signal the node to be removed.  */
2975  if (rcli->condition == const0_rtx)
2976    {
2977      xdata[1] = node->key;
2978      return -1;
2979    }
2980  else if (rcli->condition == const1_rtx)
2981    abort ();
2982
2983  return 0;
2984}
2985
2986/* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE.  */
2987
2988static void
2989flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2990{
2991  int pair[2];
2992
2993  pair[0] = regno;
2994  pair[1] = -1;
2995  while (splay_tree_foreach (pbi->reg_cond_dead,
2996			     flush_reg_cond_reg_1, pair) == -1)
2997    splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2998
2999  CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3000}
3001
3002/* Logical arithmetic on predicate conditions.  IOR, NOT and AND.
3003   For ior/and, the ADD flag determines whether we want to add the new
3004   condition X to the old one unconditionally.  If it is zero, we will
3005   only return a new expression if X allows us to simplify part of
3006   OLD, otherwise we return NULL to the caller.
3007   If ADD is nonzero, we will return a new condition in all cases.  The
3008   toplevel caller of one of these functions should always pass 1 for
3009   ADD.  */
3010
3011static rtx
3012ior_reg_cond (rtx old, rtx x, int add)
3013{
3014  rtx op0, op1;
3015
3016  if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3017    {
3018      if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3019	  && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3020	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3021	return const1_rtx;
3022      if (GET_CODE (x) == GET_CODE (old)
3023	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3024	return old;
3025      if (! add)
3026	return NULL;
3027      return gen_rtx_IOR (0, old, x);
3028    }
3029
3030  switch (GET_CODE (old))
3031    {
3032    case IOR:
3033      op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3034      op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3035      if (op0 != NULL || op1 != NULL)
3036	{
3037	  if (op0 == const0_rtx)
3038	    return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3039	  if (op1 == const0_rtx)
3040	    return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3041	  if (op0 == const1_rtx || op1 == const1_rtx)
3042	    return const1_rtx;
3043	  if (op0 == NULL)
3044	    op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3045	  else if (rtx_equal_p (x, op0))
3046	    /* (x | A) | x ~ (x | A).  */
3047	    return old;
3048	  if (op1 == NULL)
3049	    op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3050	  else if (rtx_equal_p (x, op1))
3051	    /* (A | x) | x ~ (A | x).  */
3052	    return old;
3053	  return gen_rtx_IOR (0, op0, op1);
3054	}
3055      if (! add)
3056	return NULL;
3057      return gen_rtx_IOR (0, old, x);
3058
3059    case AND:
3060      op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3061      op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3062      if (op0 != NULL || op1 != NULL)
3063	{
3064	  if (op0 == const1_rtx)
3065	    return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3066	  if (op1 == const1_rtx)
3067	    return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3068	  if (op0 == const0_rtx || op1 == const0_rtx)
3069	    return const0_rtx;
3070	  if (op0 == NULL)
3071	    op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3072	  else if (rtx_equal_p (x, op0))
3073	    /* (x & A) | x ~ x.  */
3074	    return op0;
3075	  if (op1 == NULL)
3076	    op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3077	  else if (rtx_equal_p (x, op1))
3078	    /* (A & x) | x ~ x.  */
3079	    return op1;
3080	  return gen_rtx_AND (0, op0, op1);
3081	}
3082      if (! add)
3083	return NULL;
3084      return gen_rtx_IOR (0, old, x);
3085
3086    case NOT:
3087      op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3088      if (op0 != NULL)
3089	return not_reg_cond (op0);
3090      if (! add)
3091	return NULL;
3092      return gen_rtx_IOR (0, old, x);
3093
3094    default:
3095      abort ();
3096    }
3097}
3098
3099static rtx
3100not_reg_cond (rtx x)
3101{
3102  enum rtx_code x_code;
3103
3104  if (x == const0_rtx)
3105    return const1_rtx;
3106  else if (x == const1_rtx)
3107    return const0_rtx;
3108  x_code = GET_CODE (x);
3109  if (x_code == NOT)
3110    return XEXP (x, 0);
3111  if (GET_RTX_CLASS (x_code) == '<'
3112      && GET_CODE (XEXP (x, 0)) == REG)
3113    {
3114      if (XEXP (x, 1) != const0_rtx)
3115	abort ();
3116
3117      return gen_rtx_fmt_ee (reverse_condition (x_code),
3118			     VOIDmode, XEXP (x, 0), const0_rtx);
3119    }
3120  return gen_rtx_NOT (0, x);
3121}
3122
3123static rtx
3124and_reg_cond (rtx old, rtx x, int add)
3125{
3126  rtx op0, op1;
3127
3128  if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3129    {
3130      if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3131	  && GET_CODE (x) == reverse_condition (GET_CODE (old))
3132	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3133	return const0_rtx;
3134      if (GET_CODE (x) == GET_CODE (old)
3135	  && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3136	return old;
3137      if (! add)
3138	return NULL;
3139      return gen_rtx_AND (0, old, x);
3140    }
3141
3142  switch (GET_CODE (old))
3143    {
3144    case IOR:
3145      op0 = and_reg_cond (XEXP (old, 0), x, 0);
3146      op1 = and_reg_cond (XEXP (old, 1), x, 0);
3147      if (op0 != NULL || op1 != NULL)
3148	{
3149	  if (op0 == const0_rtx)
3150	    return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3151	  if (op1 == const0_rtx)
3152	    return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3153	  if (op0 == const1_rtx || op1 == const1_rtx)
3154	    return const1_rtx;
3155	  if (op0 == NULL)
3156	    op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3157	  else if (rtx_equal_p (x, op0))
3158	    /* (x | A) & x ~ x.  */
3159	    return op0;
3160	  if (op1 == NULL)
3161	    op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3162	  else if (rtx_equal_p (x, op1))
3163	    /* (A | x) & x ~ x.  */
3164	    return op1;
3165	  return gen_rtx_IOR (0, op0, op1);
3166	}
3167      if (! add)
3168	return NULL;
3169      return gen_rtx_AND (0, old, x);
3170
3171    case AND:
3172      op0 = and_reg_cond (XEXP (old, 0), x, 0);
3173      op1 = and_reg_cond (XEXP (old, 1), x, 0);
3174      if (op0 != NULL || op1 != NULL)
3175	{
3176	  if (op0 == const1_rtx)
3177	    return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3178	  if (op1 == const1_rtx)
3179	    return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3180	  if (op0 == const0_rtx || op1 == const0_rtx)
3181	    return const0_rtx;
3182	  if (op0 == NULL)
3183	    op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3184	  else if (rtx_equal_p (x, op0))
3185	    /* (x & A) & x ~ (x & A).  */
3186	    return old;
3187	  if (op1 == NULL)
3188	    op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3189	  else if (rtx_equal_p (x, op1))
3190	    /* (A & x) & x ~ (A & x).  */
3191	    return old;
3192	  return gen_rtx_AND (0, op0, op1);
3193	}
3194      if (! add)
3195	return NULL;
3196      return gen_rtx_AND (0, old, x);
3197
3198    case NOT:
3199      op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3200      if (op0 != NULL)
3201	return not_reg_cond (op0);
3202      if (! add)
3203	return NULL;
3204      return gen_rtx_AND (0, old, x);
3205
3206    default:
3207      abort ();
3208    }
3209}
3210
3211/* Given a condition X, remove references to reg REGNO and return the
3212   new condition.  The removal will be done so that all conditions
3213   involving REGNO are considered to evaluate to false.  This function
3214   is used when the value of REGNO changes.  */
3215
3216static rtx
3217elim_reg_cond (rtx x, unsigned int regno)
3218{
3219  rtx op0, op1;
3220
3221  if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3222    {
3223      if (REGNO (XEXP (x, 0)) == regno)
3224	return const0_rtx;
3225      return x;
3226    }
3227
3228  switch (GET_CODE (x))
3229    {
3230    case AND:
3231      op0 = elim_reg_cond (XEXP (x, 0), regno);
3232      op1 = elim_reg_cond (XEXP (x, 1), regno);
3233      if (op0 == const0_rtx || op1 == const0_rtx)
3234	return const0_rtx;
3235      if (op0 == const1_rtx)
3236	return op1;
3237      if (op1 == const1_rtx)
3238	return op0;
3239      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3240	return x;
3241      return gen_rtx_AND (0, op0, op1);
3242
3243    case IOR:
3244      op0 = elim_reg_cond (XEXP (x, 0), regno);
3245      op1 = elim_reg_cond (XEXP (x, 1), regno);
3246      if (op0 == const1_rtx || op1 == const1_rtx)
3247	return const1_rtx;
3248      if (op0 == const0_rtx)
3249	return op1;
3250      if (op1 == const0_rtx)
3251	return op0;
3252      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3253	return x;
3254      return gen_rtx_IOR (0, op0, op1);
3255
3256    case NOT:
3257      op0 = elim_reg_cond (XEXP (x, 0), regno);
3258      if (op0 == const0_rtx)
3259	return const1_rtx;
3260      if (op0 == const1_rtx)
3261	return const0_rtx;
3262      if (op0 != XEXP (x, 0))
3263	return not_reg_cond (op0);
3264      return x;
3265
3266    default:
3267      abort ();
3268    }
3269}
3270#endif /* HAVE_conditional_execution */
3271
3272#ifdef AUTO_INC_DEC
3273
3274/* Try to substitute the auto-inc expression INC as the address inside
3275   MEM which occurs in INSN.  Currently, the address of MEM is an expression
3276   involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3277   that has a single set whose source is a PLUS of INCR_REG and something
3278   else.  */
3279
3280static void
3281attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3282		  rtx mem, rtx incr, rtx incr_reg)
3283{
3284  int regno = REGNO (incr_reg);
3285  rtx set = single_set (incr);
3286  rtx q = SET_DEST (set);
3287  rtx y = SET_SRC (set);
3288  int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3289
3290  /* Make sure this reg appears only once in this insn.  */
3291  if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3292    return;
3293
3294  if (dead_or_set_p (incr, incr_reg)
3295      /* Mustn't autoinc an eliminable register.  */
3296      && (regno >= FIRST_PSEUDO_REGISTER
3297	  || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3298    {
3299      /* This is the simple case.  Try to make the auto-inc.  If
3300	 we can't, we are done.  Otherwise, we will do any
3301	 needed updates below.  */
3302      if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3303	return;
3304    }
3305  else if (GET_CODE (q) == REG
3306	   /* PREV_INSN used here to check the semi-open interval
3307	      [insn,incr).  */
3308	   && ! reg_used_between_p (q,  PREV_INSN (insn), incr)
3309	   /* We must also check for sets of q as q may be
3310	      a call clobbered hard register and there may
3311	      be a call between PREV_INSN (insn) and incr.  */
3312	   && ! reg_set_between_p (q,  PREV_INSN (insn), incr))
3313    {
3314      /* We have *p followed sometime later by q = p+size.
3315	 Both p and q must be live afterward,
3316	 and q is not used between INSN and its assignment.
3317	 Change it to q = p, ...*q..., q = q+size.
3318	 Then fall into the usual case.  */
3319      rtx insns, temp;
3320
3321      start_sequence ();
3322      emit_move_insn (q, incr_reg);
3323      insns = get_insns ();
3324      end_sequence ();
3325
3326      /* If we can't make the auto-inc, or can't make the
3327	 replacement into Y, exit.  There's no point in making
3328	 the change below if we can't do the auto-inc and doing
3329	 so is not correct in the pre-inc case.  */
3330
3331      XEXP (inc, 0) = q;
3332      validate_change (insn, &XEXP (mem, 0), inc, 1);
3333      validate_change (incr, &XEXP (y, opnum), q, 1);
3334      if (! apply_change_group ())
3335	return;
3336
3337      /* We now know we'll be doing this change, so emit the
3338	 new insn(s) and do the updates.  */
3339      emit_insn_before (insns, insn);
3340
3341      if (BB_HEAD (pbi->bb) == insn)
3342	BB_HEAD (pbi->bb) = insns;
3343
3344      /* INCR will become a NOTE and INSN won't contain a
3345	 use of INCR_REG.  If a use of INCR_REG was just placed in
3346	 the insn before INSN, make that the next use.
3347	 Otherwise, invalidate it.  */
3348      if (GET_CODE (PREV_INSN (insn)) == INSN
3349	  && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3350	  && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3351	pbi->reg_next_use[regno] = PREV_INSN (insn);
3352      else
3353	pbi->reg_next_use[regno] = 0;
3354
3355      incr_reg = q;
3356      regno = REGNO (q);
3357
3358      /* REGNO is now used in INCR which is below INSN, but
3359	 it previously wasn't live here.  If we don't mark
3360	 it as live, we'll put a REG_DEAD note for it
3361	 on this insn, which is incorrect.  */
3362      SET_REGNO_REG_SET (pbi->reg_live, regno);
3363
3364      /* If there are any calls between INSN and INCR, show
3365	 that REGNO now crosses them.  */
3366      for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3367	if (GET_CODE (temp) == CALL_INSN)
3368	  REG_N_CALLS_CROSSED (regno)++;
3369
3370      /* Invalidate alias info for Q since we just changed its value.  */
3371      clear_reg_alias_info (q);
3372    }
3373  else
3374    return;
3375
3376  /* If we haven't returned, it means we were able to make the
3377     auto-inc, so update the status.  First, record that this insn
3378     has an implicit side effect.  */
3379
3380  REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3381
3382  /* Modify the old increment-insn to simply copy
3383     the already-incremented value of our register.  */
3384  if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3385    abort ();
3386
3387  /* If that makes it a no-op (copying the register into itself) delete
3388     it so it won't appear to be a "use" and a "set" of this
3389     register.  */
3390  if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3391    {
3392      /* If the original source was dead, it's dead now.  */
3393      rtx note;
3394
3395      while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3396	{
3397	  remove_note (incr, note);
3398	  if (XEXP (note, 0) != incr_reg)
3399	    CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3400	}
3401
3402      PUT_CODE (incr, NOTE);
3403      NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3404      NOTE_SOURCE_FILE (incr) = 0;
3405    }
3406
3407  if (regno >= FIRST_PSEUDO_REGISTER)
3408    {
3409      /* Count an extra reference to the reg.  When a reg is
3410	 incremented, spilling it is worse, so we want to make
3411	 that less likely.  */
3412      REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3413
3414      /* Count the increment as a setting of the register,
3415	 even though it isn't a SET in rtl.  */
3416      REG_N_SETS (regno)++;
3417    }
3418}
3419
3420/* X is a MEM found in INSN.  See if we can convert it into an auto-increment
3421   reference.  */
3422
3423static void
3424find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3425{
3426  rtx addr = XEXP (x, 0);
3427  HOST_WIDE_INT offset = 0;
3428  rtx set, y, incr, inc_val;
3429  int regno;
3430  int size = GET_MODE_SIZE (GET_MODE (x));
3431
3432  if (GET_CODE (insn) == JUMP_INSN)
3433    return;
3434
3435  /* Here we detect use of an index register which might be good for
3436     postincrement, postdecrement, preincrement, or predecrement.  */
3437
3438  if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3439    offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3440
3441  if (GET_CODE (addr) != REG)
3442    return;
3443
3444  regno = REGNO (addr);
3445
3446  /* Is the next use an increment that might make auto-increment? */
3447  incr = pbi->reg_next_use[regno];
3448  if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3449    return;
3450  set = single_set (incr);
3451  if (set == 0 || GET_CODE (set) != SET)
3452    return;
3453  y = SET_SRC (set);
3454
3455  if (GET_CODE (y) != PLUS)
3456    return;
3457
3458  if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3459    inc_val = XEXP (y, 1);
3460  else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3461    inc_val = XEXP (y, 0);
3462  else
3463    return;
3464
3465  if (GET_CODE (inc_val) == CONST_INT)
3466    {
3467      if (HAVE_POST_INCREMENT
3468	  && (INTVAL (inc_val) == size && offset == 0))
3469	attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3470			  incr, addr);
3471      else if (HAVE_POST_DECREMENT
3472	       && (INTVAL (inc_val) == -size && offset == 0))
3473	attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3474			  incr, addr);
3475      else if (HAVE_PRE_INCREMENT
3476	       && (INTVAL (inc_val) == size && offset == size))
3477	attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3478			  incr, addr);
3479      else if (HAVE_PRE_DECREMENT
3480	       && (INTVAL (inc_val) == -size && offset == -size))
3481	attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3482			  incr, addr);
3483      else if (HAVE_POST_MODIFY_DISP && offset == 0)
3484	attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3485						    gen_rtx_PLUS (Pmode,
3486								  addr,
3487								  inc_val)),
3488			  insn, x, incr, addr);
3489      else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3490	attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3491						    gen_rtx_PLUS (Pmode,
3492								  addr,
3493								  inc_val)),
3494			  insn, x, incr, addr);
3495    }
3496  else if (GET_CODE (inc_val) == REG
3497	   && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3498				   NEXT_INSN (incr)))
3499
3500    {
3501      if (HAVE_POST_MODIFY_REG && offset == 0)
3502	attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3503						    gen_rtx_PLUS (Pmode,
3504								  addr,
3505								  inc_val)),
3506			  insn, x, incr, addr);
3507    }
3508}
3509
3510#endif /* AUTO_INC_DEC */
3511
3512static void
3513mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3514	       rtx cond ATTRIBUTE_UNUSED, rtx insn)
3515{
3516  unsigned int regno_first, regno_last, i;
3517  int some_was_live, some_was_dead, some_not_set;
3518
3519  regno_last = regno_first = REGNO (reg);
3520  if (regno_first < FIRST_PSEUDO_REGISTER)
3521    regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3522
3523  /* Find out if any of this register is live after this instruction.  */
3524  some_was_live = some_was_dead = 0;
3525  for (i = regno_first; i <= regno_last; ++i)
3526    {
3527      int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3528      some_was_live |= needed_regno;
3529      some_was_dead |= ! needed_regno;
3530    }
3531
3532  /* Find out if any of the register was set this insn.  */
3533  some_not_set = 0;
3534  for (i = regno_first; i <= regno_last; ++i)
3535    some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3536
3537  if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3538    {
3539      /* Record where each reg is used, so when the reg is set we know
3540	 the next insn that uses it.  */
3541      pbi->reg_next_use[regno_first] = insn;
3542    }
3543
3544  if (pbi->flags & PROP_REG_INFO)
3545    {
3546      if (regno_first < FIRST_PSEUDO_REGISTER)
3547	{
3548	  /* If this is a register we are going to try to eliminate,
3549	     don't mark it live here.  If we are successful in
3550	     eliminating it, it need not be live unless it is used for
3551	     pseudos, in which case it will have been set live when it
3552	     was allocated to the pseudos.  If the register will not
3553	     be eliminated, reload will set it live at that point.
3554
3555	     Otherwise, record that this function uses this register.  */
3556	  /* ??? The PPC backend tries to "eliminate" on the pic
3557	     register to itself.  This should be fixed.  In the mean
3558	     time, hack around it.  */
3559
3560	  if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3561	         && (regno_first == FRAME_POINTER_REGNUM
3562		     || regno_first == ARG_POINTER_REGNUM)))
3563	    for (i = regno_first; i <= regno_last; ++i)
3564	      regs_ever_live[i] = 1;
3565	}
3566      else
3567	{
3568	  /* Keep track of which basic block each reg appears in.  */
3569
3570	  int blocknum = pbi->bb->index;
3571	  if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3572	    REG_BASIC_BLOCK (regno_first) = blocknum;
3573	  else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3574	    REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3575
3576	  /* Count (weighted) number of uses of each reg.  */
3577	  REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3578	  REG_N_REFS (regno_first)++;
3579	}
3580    }
3581
3582  /* Record and count the insns in which a reg dies.  If it is used in
3583     this insn and was dead below the insn then it dies in this insn.
3584     If it was set in this insn, we do not make a REG_DEAD note;
3585     likewise if we already made such a note.  */
3586  if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3587      && some_was_dead
3588      && some_not_set)
3589    {
3590      /* Check for the case where the register dying partially
3591	 overlaps the register set by this insn.  */
3592      if (regno_first != regno_last)
3593	for (i = regno_first; i <= regno_last; ++i)
3594	  some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3595
3596      /* If none of the words in X is needed, make a REG_DEAD note.
3597	 Otherwise, we must make partial REG_DEAD notes.  */
3598      if (! some_was_live)
3599	{
3600	  if ((pbi->flags & PROP_DEATH_NOTES)
3601	      && ! find_regno_note (insn, REG_DEAD, regno_first))
3602	    REG_NOTES (insn)
3603	      = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3604
3605	  if (pbi->flags & PROP_REG_INFO)
3606	    REG_N_DEATHS (regno_first)++;
3607	}
3608      else
3609	{
3610	  /* Don't make a REG_DEAD note for a part of a register
3611	     that is set in the insn.  */
3612	  for (i = regno_first; i <= regno_last; ++i)
3613	    if (! REGNO_REG_SET_P (pbi->reg_live, i)
3614		&& ! dead_or_set_regno_p (insn, i))
3615	      REG_NOTES (insn)
3616		= alloc_EXPR_LIST (REG_DEAD,
3617				   regno_reg_rtx[i],
3618				   REG_NOTES (insn));
3619	}
3620    }
3621
3622  /* Mark the register as being live.  */
3623  for (i = regno_first; i <= regno_last; ++i)
3624    {
3625#ifdef HAVE_conditional_execution
3626      int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3627#endif
3628
3629      SET_REGNO_REG_SET (pbi->reg_live, i);
3630
3631#ifdef HAVE_conditional_execution
3632      /* If this is a conditional use, record that fact.  If it is later
3633	 conditionally set, we'll know to kill the register.  */
3634      if (cond != NULL_RTX)
3635	{
3636	  splay_tree_node node;
3637	  struct reg_cond_life_info *rcli;
3638	  rtx ncond;
3639
3640	  if (this_was_live)
3641	    {
3642	      node = splay_tree_lookup (pbi->reg_cond_dead, i);
3643	      if (node == NULL)
3644		{
3645		  /* The register was unconditionally live previously.
3646		     No need to do anything.  */
3647		}
3648	      else
3649		{
3650		  /* The register was conditionally live previously.
3651		     Subtract the new life cond from the old death cond.  */
3652		  rcli = (struct reg_cond_life_info *) node->value;
3653		  ncond = rcli->condition;
3654		  ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3655
3656		  /* If the register is now unconditionally live,
3657		     remove the entry in the splay_tree.  */
3658		  if (ncond == const0_rtx)
3659		    splay_tree_remove (pbi->reg_cond_dead, i);
3660		  else
3661		    {
3662		      rcli->condition = ncond;
3663		      SET_REGNO_REG_SET (pbi->reg_cond_reg,
3664					 REGNO (XEXP (cond, 0)));
3665		    }
3666		}
3667	    }
3668	  else
3669	    {
3670	      /* The register was not previously live at all.  Record
3671		 the condition under which it is still dead.  */
3672	      rcli = xmalloc (sizeof (*rcli));
3673	      rcli->condition = not_reg_cond (cond);
3674	      rcli->stores = const0_rtx;
3675	      rcli->orig_condition = const0_rtx;
3676	      splay_tree_insert (pbi->reg_cond_dead, i,
3677				 (splay_tree_value) rcli);
3678
3679	      SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3680	    }
3681	}
3682      else if (this_was_live)
3683	{
3684	  /* The register may have been conditionally live previously, but
3685	     is now unconditionally live.  Remove it from the conditionally
3686	     dead list, so that a conditional set won't cause us to think
3687	     it dead.  */
3688	  splay_tree_remove (pbi->reg_cond_dead, i);
3689	}
3690#endif
3691    }
3692}
3693
3694/* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3695   This is done assuming the registers needed from X are those that
3696   have 1-bits in PBI->REG_LIVE.
3697
3698   INSN is the containing instruction.  If INSN is dead, this function
3699   is not called.  */
3700
3701static void
3702mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3703{
3704  RTX_CODE code;
3705  int regno;
3706  int flags = pbi->flags;
3707
3708 retry:
3709  if (!x)
3710    return;
3711  code = GET_CODE (x);
3712  switch (code)
3713    {
3714    case LABEL_REF:
3715    case SYMBOL_REF:
3716    case CONST_INT:
3717    case CONST:
3718    case CONST_DOUBLE:
3719    case CONST_VECTOR:
3720    case PC:
3721    case ADDR_VEC:
3722    case ADDR_DIFF_VEC:
3723      return;
3724
3725#ifdef HAVE_cc0
3726    case CC0:
3727      pbi->cc0_live = 1;
3728      return;
3729#endif
3730
3731    case CLOBBER:
3732      /* If we are clobbering a MEM, mark any registers inside the address
3733	 as being used.  */
3734      if (GET_CODE (XEXP (x, 0)) == MEM)
3735	mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3736      return;
3737
3738    case MEM:
3739      /* Don't bother watching stores to mems if this is not the
3740	 final pass.  We'll not be deleting dead stores this round.  */
3741      if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3742	{
3743	  /* Invalidate the data for the last MEM stored, but only if MEM is
3744	     something that can be stored into.  */
3745	  if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3746	      && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3747	    /* Needn't clear the memory set list.  */
3748	    ;
3749	  else
3750	    {
3751	      rtx temp = pbi->mem_set_list;
3752	      rtx prev = NULL_RTX;
3753	      rtx next;
3754
3755	      while (temp)
3756		{
3757		  next = XEXP (temp, 1);
3758		  if (unchanging_anti_dependence (XEXP (temp, 0), x))
3759		    {
3760		      /* Splice temp out of the list.  */
3761		      if (prev)
3762			XEXP (prev, 1) = next;
3763		      else
3764			pbi->mem_set_list = next;
3765		      free_EXPR_LIST_node (temp);
3766		      pbi->mem_set_list_len--;
3767		    }
3768		  else
3769		    prev = temp;
3770		  temp = next;
3771		}
3772	    }
3773
3774	  /* If the memory reference had embedded side effects (autoincrement
3775	     address modes.  Then we may need to kill some entries on the
3776	     memory set list.  */
3777	  if (insn)
3778	    for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3779	}
3780
3781#ifdef AUTO_INC_DEC
3782      if (flags & PROP_AUTOINC)
3783	find_auto_inc (pbi, x, insn);
3784#endif
3785      break;
3786
3787    case SUBREG:
3788#ifdef CANNOT_CHANGE_MODE_CLASS
3789      if (flags & PROP_REG_INFO)
3790	record_subregs_of_mode (x);
3791#endif
3792
3793      /* While we're here, optimize this case.  */
3794      x = SUBREG_REG (x);
3795      if (GET_CODE (x) != REG)
3796	goto retry;
3797      /* Fall through.  */
3798
3799    case REG:
3800      /* See a register other than being set => mark it as needed.  */
3801      mark_used_reg (pbi, x, cond, insn);
3802      return;
3803
3804    case SET:
3805      {
3806	rtx testreg = SET_DEST (x);
3807	int mark_dest = 0;
3808
3809	/* If storing into MEM, don't show it as being used.  But do
3810	   show the address as being used.  */
3811	if (GET_CODE (testreg) == MEM)
3812	  {
3813#ifdef AUTO_INC_DEC
3814	    if (flags & PROP_AUTOINC)
3815	      find_auto_inc (pbi, testreg, insn);
3816#endif
3817	    mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3818	    mark_used_regs (pbi, SET_SRC (x), cond, insn);
3819	    return;
3820	  }
3821
3822	/* Storing in STRICT_LOW_PART is like storing in a reg
3823	   in that this SET might be dead, so ignore it in TESTREG.
3824	   but in some other ways it is like using the reg.
3825
3826	   Storing in a SUBREG or a bit field is like storing the entire
3827	   register in that if the register's value is not used
3828	   then this SET is not needed.  */
3829	while (GET_CODE (testreg) == STRICT_LOW_PART
3830	       || GET_CODE (testreg) == ZERO_EXTRACT
3831	       || GET_CODE (testreg) == SIGN_EXTRACT
3832	       || GET_CODE (testreg) == SUBREG)
3833	  {
3834#ifdef CANNOT_CHANGE_MODE_CLASS
3835	    if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3836	      record_subregs_of_mode (testreg);
3837#endif
3838
3839	    /* Modifying a single register in an alternate mode
3840	       does not use any of the old value.  But these other
3841	       ways of storing in a register do use the old value.  */
3842	    if (GET_CODE (testreg) == SUBREG
3843		&& !((REG_BYTES (SUBREG_REG (testreg))
3844		      + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3845		     > (REG_BYTES (testreg)
3846			+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3847	      ;
3848	    else
3849	      mark_dest = 1;
3850
3851	    testreg = XEXP (testreg, 0);
3852	  }
3853
3854	/* If this is a store into a register or group of registers,
3855	   recursively scan the value being stored.  */
3856
3857	if ((GET_CODE (testreg) == PARALLEL
3858	     && GET_MODE (testreg) == BLKmode)
3859	    || (GET_CODE (testreg) == REG
3860		&& (regno = REGNO (testreg),
3861		    ! (regno == FRAME_POINTER_REGNUM
3862		       && (! reload_completed || frame_pointer_needed)))
3863#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3864		&& ! (regno == HARD_FRAME_POINTER_REGNUM
3865		      && (! reload_completed || frame_pointer_needed))
3866#endif
3867#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3868		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3869#endif
3870		))
3871	  {
3872	    if (mark_dest)
3873	      mark_used_regs (pbi, SET_DEST (x), cond, insn);
3874	    mark_used_regs (pbi, SET_SRC (x), cond, insn);
3875	    return;
3876	  }
3877      }
3878      break;
3879
3880    case ASM_OPERANDS:
3881    case UNSPEC_VOLATILE:
3882    case TRAP_IF:
3883    case ASM_INPUT:
3884      {
3885	/* Traditional and volatile asm instructions must be considered to use
3886	   and clobber all hard registers, all pseudo-registers and all of
3887	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.
3888
3889	   Consider for instance a volatile asm that changes the fpu rounding
3890	   mode.  An insn should not be moved across this even if it only uses
3891	   pseudo-regs because it might give an incorrectly rounded result.
3892
3893	   ?!? Unfortunately, marking all hard registers as live causes massive
3894	   problems for the register allocator and marking all pseudos as live
3895	   creates mountains of uninitialized variable warnings.
3896
3897	   So for now, just clear the memory set list and mark any regs
3898	   we can find in ASM_OPERANDS as used.  */
3899	if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3900	  {
3901	    free_EXPR_LIST_list (&pbi->mem_set_list);
3902	    pbi->mem_set_list_len = 0;
3903	  }
3904
3905	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
3906	   We can not just fall through here since then we would be confused
3907	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3908	   traditional asms unlike their normal usage.  */
3909	if (code == ASM_OPERANDS)
3910	  {
3911	    int j;
3912
3913	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3914	      mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3915	  }
3916	break;
3917      }
3918
3919    case COND_EXEC:
3920      if (cond != NULL_RTX)
3921	abort ();
3922
3923      mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3924
3925      cond = COND_EXEC_TEST (x);
3926      x = COND_EXEC_CODE (x);
3927      goto retry;
3928
3929    default:
3930      break;
3931    }
3932
3933  /* Recursively scan the operands of this expression.  */
3934
3935  {
3936    const char * const fmt = GET_RTX_FORMAT (code);
3937    int i;
3938
3939    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3940      {
3941	if (fmt[i] == 'e')
3942	  {
3943	    /* Tail recursive case: save a function call level.  */
3944	    if (i == 0)
3945	      {
3946		x = XEXP (x, 0);
3947		goto retry;
3948	      }
3949	    mark_used_regs (pbi, XEXP (x, i), cond, insn);
3950	  }
3951	else if (fmt[i] == 'E')
3952	  {
3953	    int j;
3954	    for (j = 0; j < XVECLEN (x, i); j++)
3955	      mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3956	  }
3957      }
3958  }
3959}
3960
3961#ifdef AUTO_INC_DEC
3962
3963static int
3964try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3965{
3966  /* Find the next use of this reg.  If in same basic block,
3967     make it do pre-increment or pre-decrement if appropriate.  */
3968  rtx x = single_set (insn);
3969  HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3970			  * INTVAL (XEXP (SET_SRC (x), 1)));
3971  int regno = REGNO (SET_DEST (x));
3972  rtx y = pbi->reg_next_use[regno];
3973  if (y != 0
3974      && SET_DEST (x) != stack_pointer_rtx
3975      && BLOCK_NUM (y) == BLOCK_NUM (insn)
3976      /* Don't do this if the reg dies, or gets set in y; a standard addressing
3977	 mode would be better.  */
3978      && ! dead_or_set_p (y, SET_DEST (x))
3979      && try_pre_increment (y, SET_DEST (x), amount))
3980    {
3981      /* We have found a suitable auto-increment and already changed
3982	 insn Y to do it.  So flush this increment instruction.  */
3983      propagate_block_delete_insn (insn);
3984
3985      /* Count a reference to this reg for the increment insn we are
3986	 deleting.  When a reg is incremented, spilling it is worse,
3987	 so we want to make that less likely.  */
3988      if (regno >= FIRST_PSEUDO_REGISTER)
3989	{
3990	  REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3991	  REG_N_SETS (regno)++;
3992	}
3993
3994      /* Flush any remembered memories depending on the value of
3995	 the incremented register.  */
3996      invalidate_mems_from_set (pbi, SET_DEST (x));
3997
3998      return 1;
3999    }
4000  return 0;
4001}
4002
4003/* Try to change INSN so that it does pre-increment or pre-decrement
4004   addressing on register REG in order to add AMOUNT to REG.
4005   AMOUNT is negative for pre-decrement.
4006   Returns 1 if the change could be made.
4007   This checks all about the validity of the result of modifying INSN.  */
4008
4009static int
4010try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4011{
4012  rtx use;
4013
4014  /* Nonzero if we can try to make a pre-increment or pre-decrement.
4015     For example, addl $4,r1; movl (r1),... can become movl +(r1),...  */
4016  int pre_ok = 0;
4017  /* Nonzero if we can try to make a post-increment or post-decrement.
4018     For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4019     It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4020     supports both pre-inc and post-inc, or both pre-dec and post-dec.  */
4021  int post_ok = 0;
4022
4023  /* Nonzero if the opportunity actually requires post-inc or post-dec.  */
4024  int do_post = 0;
4025
4026  /* From the sign of increment, see which possibilities are conceivable
4027     on this target machine.  */
4028  if (HAVE_PRE_INCREMENT && amount > 0)
4029    pre_ok = 1;
4030  if (HAVE_POST_INCREMENT && amount > 0)
4031    post_ok = 1;
4032
4033  if (HAVE_PRE_DECREMENT && amount < 0)
4034    pre_ok = 1;
4035  if (HAVE_POST_DECREMENT && amount < 0)
4036    post_ok = 1;
4037
4038  if (! (pre_ok || post_ok))
4039    return 0;
4040
4041  /* It is not safe to add a side effect to a jump insn
4042     because if the incremented register is spilled and must be reloaded
4043     there would be no way to store the incremented value back in memory.  */
4044
4045  if (GET_CODE (insn) == JUMP_INSN)
4046    return 0;
4047
4048  use = 0;
4049  if (pre_ok)
4050    use = find_use_as_address (PATTERN (insn), reg, 0);
4051  if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4052    {
4053      use = find_use_as_address (PATTERN (insn), reg, -amount);
4054      do_post = 1;
4055    }
4056
4057  if (use == 0 || use == (rtx) (size_t) 1)
4058    return 0;
4059
4060  if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4061    return 0;
4062
4063  /* See if this combination of instruction and addressing mode exists.  */
4064  if (! validate_change (insn, &XEXP (use, 0),
4065			 gen_rtx_fmt_e (amount > 0
4066					? (do_post ? POST_INC : PRE_INC)
4067					: (do_post ? POST_DEC : PRE_DEC),
4068					Pmode, reg), 0))
4069    return 0;
4070
4071  /* Record that this insn now has an implicit side effect on X.  */
4072  REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4073  return 1;
4074}
4075
4076#endif /* AUTO_INC_DEC */
4077
4078/* Find the place in the rtx X where REG is used as a memory address.
4079   Return the MEM rtx that so uses it.
4080   If PLUSCONST is nonzero, search instead for a memory address equivalent to
4081   (plus REG (const_int PLUSCONST)).
4082
4083   If such an address does not appear, return 0.
4084   If REG appears more than once, or is used other than in such an address,
4085   return (rtx) 1.  */
4086
4087rtx
4088find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4089{
4090  enum rtx_code code = GET_CODE (x);
4091  const char * const fmt = GET_RTX_FORMAT (code);
4092  int i;
4093  rtx value = 0;
4094  rtx tem;
4095
4096  if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4097    return x;
4098
4099  if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4100      && XEXP (XEXP (x, 0), 0) == reg
4101      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4102      && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4103    return x;
4104
4105  if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4106    {
4107      /* If REG occurs inside a MEM used in a bit-field reference,
4108	 that is unacceptable.  */
4109      if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4110	return (rtx) (size_t) 1;
4111    }
4112
4113  if (x == reg)
4114    return (rtx) (size_t) 1;
4115
4116  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4117    {
4118      if (fmt[i] == 'e')
4119	{
4120	  tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4121	  if (value == 0)
4122	    value = tem;
4123	  else if (tem != 0)
4124	    return (rtx) (size_t) 1;
4125	}
4126      else if (fmt[i] == 'E')
4127	{
4128	  int j;
4129	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4130	    {
4131	      tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4132	      if (value == 0)
4133		value = tem;
4134	      else if (tem != 0)
4135		return (rtx) (size_t) 1;
4136	    }
4137	}
4138    }
4139
4140  return value;
4141}
4142
4143/* Write information about registers and basic blocks into FILE.
4144   This is part of making a debugging dump.  */
4145
4146void
4147dump_regset (regset r, FILE *outf)
4148{
4149  int i;
4150  if (r == NULL)
4151    {
4152      fputs (" (nil)", outf);
4153      return;
4154    }
4155
4156  EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4157    {
4158      fprintf (outf, " %d", i);
4159      if (i < FIRST_PSEUDO_REGISTER)
4160	fprintf (outf, " [%s]",
4161		 reg_names[i]);
4162    });
4163}
4164
4165/* Print a human-readable representation of R on the standard error
4166   stream.  This function is designed to be used from within the
4167   debugger.  */
4168
4169void
4170debug_regset (regset r)
4171{
4172  dump_regset (r, stderr);
4173  putc ('\n', stderr);
4174}
4175
4176/* Recompute register set/reference counts immediately prior to register
4177   allocation.
4178
4179   This avoids problems with set/reference counts changing to/from values
4180   which have special meanings to the register allocators.
4181
4182   Additionally, the reference counts are the primary component used by the
4183   register allocators to prioritize pseudos for allocation to hard regs.
4184   More accurate reference counts generally lead to better register allocation.
4185
4186   F is the first insn to be scanned.
4187
4188   LOOP_STEP denotes how much loop_depth should be incremented per
4189   loop nesting level in order to increase the ref count more for
4190   references in a loop.
4191
4192   It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4193   possibly other information which is used by the register allocators.  */
4194
4195void
4196recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4197{
4198  allocate_reg_life_data ();
4199  update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4200}
4201
4202/* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4203   blocks.  If BLOCKS is NULL, assume the universal set.  Returns a count
4204   of the number of registers that died.  */
4205
4206int
4207count_or_remove_death_notes (sbitmap blocks, int kill)
4208{
4209  int count = 0;
4210  int i;
4211  basic_block bb;
4212
4213
4214  /* This used to be a loop over all the blocks with a membership test
4215     inside the loop.  That can be amazingly expensive on a large CFG
4216     when only a small number of bits are set in BLOCKs (for example,
4217     the calls from the scheduler typically have very few bits set).
4218
4219     For extra credit, someone should convert BLOCKS to a bitmap rather
4220     than an sbitmap.  */
4221  if (blocks)
4222    {
4223      EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4224	{
4225	  count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4226	});
4227    }
4228  else
4229    {
4230      FOR_EACH_BB (bb)
4231	{
4232	  count += count_or_remove_death_notes_bb (bb, kill);
4233	}
4234    }
4235
4236  return count;
4237}
4238
4239/* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4240   block BB.  Returns a count of the number of registers that died.  */
4241
4242static int
4243count_or_remove_death_notes_bb (basic_block bb, int kill)
4244{
4245  int count = 0;
4246  rtx insn;
4247
4248  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4249    {
4250      if (INSN_P (insn))
4251	{
4252	  rtx *pprev = &REG_NOTES (insn);
4253	  rtx link = *pprev;
4254
4255	  while (link)
4256	    {
4257	      switch (REG_NOTE_KIND (link))
4258		{
4259		case REG_DEAD:
4260		  if (GET_CODE (XEXP (link, 0)) == REG)
4261		    {
4262		      rtx reg = XEXP (link, 0);
4263		      int n;
4264
4265		      if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4266		        n = 1;
4267		      else
4268		        n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4269		      count += n;
4270		    }
4271
4272		  /* Fall through.  */
4273
4274		case REG_UNUSED:
4275		  if (kill)
4276		    {
4277		      rtx next = XEXP (link, 1);
4278		      free_EXPR_LIST_node (link);
4279		      *pprev = link = next;
4280		      break;
4281		    }
4282		  /* Fall through.  */
4283
4284		default:
4285		  pprev = &XEXP (link, 1);
4286		  link = *pprev;
4287		  break;
4288		}
4289	    }
4290	}
4291
4292      if (insn == BB_END (bb))
4293	break;
4294    }
4295
4296  return count;
4297}
4298
4299/* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4300   if blocks is NULL.  */
4301
4302static void
4303clear_log_links (sbitmap blocks)
4304{
4305  rtx insn;
4306  int i;
4307
4308  if (!blocks)
4309    {
4310      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4311	if (INSN_P (insn))
4312	  free_INSN_LIST_list (&LOG_LINKS (insn));
4313    }
4314  else
4315    EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4316      {
4317	basic_block bb = BASIC_BLOCK (i);
4318
4319	for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4320	     insn = NEXT_INSN (insn))
4321	  if (INSN_P (insn))
4322	    free_INSN_LIST_list (&LOG_LINKS (insn));
4323      });
4324}
4325
4326/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4327   correspond to the hard registers, if any, set in that map.  This
4328   could be done far more efficiently by having all sorts of special-cases
4329   with moving single words, but probably isn't worth the trouble.  */
4330
4331void
4332reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4333{
4334  int i;
4335
4336  EXECUTE_IF_SET_IN_BITMAP
4337    (from, 0, i,
4338     {
4339       if (i >= FIRST_PSEUDO_REGISTER)
4340	 return;
4341       SET_HARD_REG_BIT (*to, i);
4342     });
4343}
4344