dwarf2out.c revision 146895
1/* Output Dwarf2 format symbol table information from GCC.
2   Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3   2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by Gary Funck (gary@intrepid.com).
5   Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6   Extensively modified by Jason Merrill (jason@cygnus.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 2, or (at your option) any later
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING.  If not, write to the Free
22Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2302111-1307, USA.  */
24
25/* TODO: Emit .debug_line header even when there are no functions, since
26	   the file numbers are used by .debug_info.  Alternately, leave
27	   out locations for types and decls.
28	 Avoid talking about ctors and op= for PODs.
29	 Factor out common prologue sequences into multiple CIEs.  */
30
31/* The first part of this file deals with the DWARF 2 frame unwind
32   information, which is also used by the GCC efficient exception handling
33   mechanism.  The second part, controlled only by an #ifdef
34   DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35   information.  */
36
37#include "config.h"
38#include "system.h"
39#include "coretypes.h"
40#include "tm.h"
41#include "tree.h"
42#include "flags.h"
43#include "real.h"
44#include "rtl.h"
45#include "hard-reg-set.h"
46#include "regs.h"
47#include "insn-config.h"
48#include "reload.h"
49#include "function.h"
50#include "output.h"
51#include "expr.h"
52#include "libfuncs.h"
53#include "except.h"
54#include "dwarf2.h"
55#include "dwarf2out.h"
56#include "dwarf2asm.h"
57#include "toplev.h"
58#include "varray.h"
59#include "ggc.h"
60#include "md5.h"
61#include "tm_p.h"
62#include "diagnostic.h"
63#include "debug.h"
64#include "target.h"
65#include "langhooks.h"
66#include "hashtab.h"
67#include "cgraph.h"
68
69#ifdef DWARF2_DEBUGGING_INFO
70static void dwarf2out_source_line (unsigned int, const char *);
71#endif
72
73/* DWARF2 Abbreviation Glossary:
74   CFA = Canonical Frame Address
75	   a fixed address on the stack which identifies a call frame.
76	   We define it to be the value of SP just before the call insn.
77	   The CFA register and offset, which may change during the course
78	   of the function, are used to calculate its value at runtime.
79   CFI = Call Frame Instruction
80	   an instruction for the DWARF2 abstract machine
81   CIE = Common Information Entry
82	   information describing information common to one or more FDEs
83   DIE = Debugging Information Entry
84   FDE = Frame Description Entry
85	   information describing the stack call frame, in particular,
86	   how to restore registers
87
88   DW_CFA_... = DWARF2 CFA call frame instruction
89   DW_TAG_... = DWARF2 DIE tag */
90
91/* Decide whether we want to emit frame unwind information for the current
92   translation unit.  */
93
94int
95dwarf2out_do_frame (void)
96{
97  return (write_symbols == DWARF2_DEBUG
98	  || write_symbols == VMS_AND_DWARF2_DEBUG
99#ifdef DWARF2_FRAME_INFO
100	  || DWARF2_FRAME_INFO
101#endif
102#ifdef DWARF2_UNWIND_INFO
103	  || flag_unwind_tables
104	  || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105#endif
106	  );
107}
108
109/* The size of the target's pointer type.  */
110#ifndef PTR_SIZE
111#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112#endif
113
114/* Various versions of targetm.eh_frame_section.  Note these must appear
115   outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards.  */
116
117/* Version of targetm.eh_frame_section for systems with named sections.  */
118void
119named_section_eh_frame_section (void)
120{
121#ifdef EH_FRAME_SECTION_NAME
122#ifdef HAVE_LD_RO_RW_SECTION_MIXING
123  int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124  int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125  int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126  int flags;
127
128  flags = (! flag_pic
129	   || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130	       && (fde_encoding & 0x70) != DW_EH_PE_aligned
131	       && (per_encoding & 0x70) != DW_EH_PE_absptr
132	       && (per_encoding & 0x70) != DW_EH_PE_aligned
133	       && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134	       && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135	  ? 0 : SECTION_WRITE;
136  named_section_flags (EH_FRAME_SECTION_NAME, flags);
137#else
138  named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139#endif
140#endif
141}
142
143/* Version of targetm.eh_frame_section for systems using collect2.  */
144void
145collect2_eh_frame_section (void)
146{
147  tree label = get_file_function_name ('F');
148
149  data_section ();
150  ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151  (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152  ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
153}
154
155/* Default version of targetm.eh_frame_section.  */
156void
157default_eh_frame_section (void)
158{
159#ifdef EH_FRAME_SECTION_NAME
160  named_section_eh_frame_section ();
161#else
162  collect2_eh_frame_section ();
163#endif
164}
165
166/* Array of RTXes referenced by the debugging information, which therefore
167   must be kept around forever.  */
168static GTY(()) varray_type used_rtx_varray;
169
170/* A pointer to the base of a list of incomplete types which might be
171   completed at some later time.  incomplete_types_list needs to be a VARRAY
172   because we want to tell the garbage collector about it.  */
173static GTY(()) varray_type incomplete_types;
174
175/* A pointer to the base of a table of references to declaration
176   scopes.  This table is a display which tracks the nesting
177   of declaration scopes at the current scope and containing
178   scopes.  This table is used to find the proper place to
179   define type declaration DIE's.  */
180static GTY(()) varray_type decl_scope_table;
181
182/* How to start an assembler comment.  */
183#ifndef ASM_COMMENT_START
184#define ASM_COMMENT_START ";#"
185#endif
186
187typedef struct dw_cfi_struct *dw_cfi_ref;
188typedef struct dw_fde_struct *dw_fde_ref;
189typedef union  dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
190
191/* Call frames are described using a sequence of Call Frame
192   Information instructions.  The register number, offset
193   and address fields are provided as possible operands;
194   their use is selected by the opcode field.  */
195
196enum dw_cfi_oprnd_type {
197  dw_cfi_oprnd_unused,
198  dw_cfi_oprnd_reg_num,
199  dw_cfi_oprnd_offset,
200  dw_cfi_oprnd_addr,
201  dw_cfi_oprnd_loc
202};
203
204typedef union dw_cfi_oprnd_struct GTY(())
205{
206  unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207  HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208  const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209  struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
210}
211dw_cfi_oprnd;
212
213typedef struct dw_cfi_struct GTY(())
214{
215  dw_cfi_ref dw_cfi_next;
216  enum dwarf_call_frame_info dw_cfi_opc;
217  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218    dw_cfi_oprnd1;
219  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220    dw_cfi_oprnd2;
221}
222dw_cfi_node;
223
224/* This is how we define the location of the CFA. We use to handle it
225   as REG + OFFSET all the time,  but now it can be more complex.
226   It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227   Instead of passing around REG and OFFSET, we pass a copy
228   of this structure.  */
229typedef struct cfa_loc GTY(())
230{
231  unsigned long reg;
232  HOST_WIDE_INT offset;
233  HOST_WIDE_INT base_offset;
234  int indirect;            /* 1 if CFA is accessed via a dereference.  */
235} dw_cfa_location;
236
237/* All call frame descriptions (FDE's) in the GCC generated DWARF
238   refer to a single Common Information Entry (CIE), defined at
239   the beginning of the .debug_frame section.  This use of a single
240   CIE obviates the need to keep track of multiple CIE's
241   in the DWARF generation routines below.  */
242
243typedef struct dw_fde_struct GTY(())
244{
245  const char *dw_fde_begin;
246  const char *dw_fde_current_label;
247  const char *dw_fde_end;
248  dw_cfi_ref dw_fde_cfi;
249  unsigned funcdef_number;
250  unsigned all_throwers_are_sibcalls : 1;
251  unsigned nothrow : 1;
252  unsigned uses_eh_lsda : 1;
253}
254dw_fde_node;
255
256/* Maximum size (in bytes) of an artificially generated label.  */
257#define MAX_ARTIFICIAL_LABEL_BYTES	30
258
259/* The size of addresses as they appear in the Dwarf 2 data.
260   Some architectures use word addresses to refer to code locations,
261   but Dwarf 2 info always uses byte addresses.  On such machines,
262   Dwarf 2 addresses need to be larger than the architecture's
263   pointers.  */
264#ifndef DWARF2_ADDR_SIZE
265#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266#endif
267
268/* The size in bytes of a DWARF field indicating an offset or length
269   relative to a debug info section, specified to be 4 bytes in the
270   DWARF-2 specification.  The SGI/MIPS ABI defines it to be the same
271   as PTR_SIZE.  */
272
273#ifndef DWARF_OFFSET_SIZE
274#define DWARF_OFFSET_SIZE 4
275#endif
276
277/* According to the (draft) DWARF 3 specification, the initial length
278   should either be 4 or 12 bytes.  When it's 12 bytes, the first 4
279   bytes are 0xffffffff, followed by the length stored in the next 8
280   bytes.
281
282   However, the SGI/MIPS ABI uses an initial length which is equal to
283   DWARF_OFFSET_SIZE.  It is defined (elsewhere) accordingly.  */
284
285#ifndef DWARF_INITIAL_LENGTH_SIZE
286#define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287#endif
288
289#define DWARF_VERSION 2
290
291/* Round SIZE up to the nearest BOUNDARY.  */
292#define DWARF_ROUND(SIZE,BOUNDARY) \
293  ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
294
295/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
296#ifndef DWARF_CIE_DATA_ALIGNMENT
297#ifdef STACK_GROWS_DOWNWARD
298#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299#else
300#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301#endif
302#endif
303
304/* A pointer to the base of a table that contains frame description
305   information for each routine.  */
306static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
307
308/* Number of elements currently allocated for fde_table.  */
309static GTY(()) unsigned fde_table_allocated;
310
311/* Number of elements in fde_table currently in use.  */
312static GTY(()) unsigned fde_table_in_use;
313
314/* Size (in elements) of increments by which we may expand the
315   fde_table.  */
316#define FDE_TABLE_INCREMENT 256
317
318/* A list of call frame insns for the CIE.  */
319static GTY(()) dw_cfi_ref cie_cfi_head;
320
321#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323   attribute that accelerates the lookup of the FDE associated
324   with the subprogram.  This variable holds the table index of the FDE
325   associated with the current function (body) definition.  */
326static unsigned current_funcdef_fde;
327#endif
328
329struct indirect_string_node GTY(())
330{
331  const char *str;
332  unsigned int refcount;
333  unsigned int form;
334  char *label;
335};
336
337static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
338
339static GTY(()) int dw2_string_counter;
340static GTY(()) unsigned long dwarf2out_cfi_label_num;
341
342#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
343
344/* Forward declarations for functions defined in this file.  */
345
346static char *stripattributes (const char *);
347static const char *dwarf_cfi_name (unsigned);
348static dw_cfi_ref new_cfi (void);
349static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350static void add_fde_cfi (const char *, dw_cfi_ref);
351static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352static void lookup_cfa (dw_cfa_location *);
353static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354static void initial_return_save (rtx);
355static HOST_WIDE_INT stack_adjust_offset (rtx);
356static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357static void output_call_frame_info (int);
358static void dwarf2out_stack_adjust (rtx);
359static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360static void flush_queued_reg_saves (void);
361static bool clobbers_queued_reg_save (rtx);
362static void dwarf2out_frame_debug_expr (rtx, const char *);
363
364/* Support for complex CFA locations.  */
365static void output_cfa_loc (dw_cfi_ref);
366static void get_cfa_from_loc_descr (dw_cfa_location *,
367				    struct dw_loc_descr_struct *);
368static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370static void def_cfa_1 (const char *, dw_cfa_location *);
371
372/* How to start an assembler comment.  */
373#ifndef ASM_COMMENT_START
374#define ASM_COMMENT_START ";#"
375#endif
376
377/* Data and reference forms for relocatable data.  */
378#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
380
381#ifndef DEBUG_FRAME_SECTION
382#define DEBUG_FRAME_SECTION	".debug_frame"
383#endif
384
385#ifndef FUNC_BEGIN_LABEL
386#define FUNC_BEGIN_LABEL	"LFB"
387#endif
388
389#ifndef FUNC_END_LABEL
390#define FUNC_END_LABEL		"LFE"
391#endif
392
393#define FRAME_BEGIN_LABEL	"Lframe"
394#define CIE_AFTER_SIZE_LABEL	"LSCIE"
395#define CIE_END_LABEL		"LECIE"
396#define FDE_LABEL		"LSFDE"
397#define FDE_AFTER_SIZE_LABEL	"LASFDE"
398#define FDE_END_LABEL		"LEFDE"
399#define LINE_NUMBER_BEGIN_LABEL	"LSLT"
400#define LINE_NUMBER_END_LABEL	"LELT"
401#define LN_PROLOG_AS_LABEL	"LASLTP"
402#define LN_PROLOG_END_LABEL	"LELTP"
403#define DIE_LABEL_PREFIX	"DW"
404
405/* The DWARF 2 CFA column which tracks the return address.  Normally this
406   is the column for PC, or the first column after all of the hard
407   registers.  */
408#ifndef DWARF_FRAME_RETURN_COLUMN
409#ifdef PC_REGNUM
410#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (PC_REGNUM)
411#else
412#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGISTERS
413#endif
414#endif
415
416/* The mapping from gcc register number to DWARF 2 CFA column number.  By
417   default, we just provide columns for all registers.  */
418#ifndef DWARF_FRAME_REGNUM
419#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420#endif
421
422/* The offset from the incoming value of %sp to the top of the stack frame
423   for the current function.  */
424#ifndef INCOMING_FRAME_SP_OFFSET
425#define INCOMING_FRAME_SP_OFFSET 0
426#endif
427
428/* Hook used by __throw.  */
429
430rtx
431expand_builtin_dwarf_sp_column (void)
432{
433  return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
434}
435
436/* Return a pointer to a copy of the section string name S with all
437   attributes stripped off, and an asterisk prepended (for assemble_name).  */
438
439static inline char *
440stripattributes (const char *s)
441{
442  char *stripped = xmalloc (strlen (s) + 2);
443  char *p = stripped;
444
445  *p++ = '*';
446
447  while (*s && *s != ',')
448    *p++ = *s++;
449
450  *p = '\0';
451  return stripped;
452}
453
454/* Generate code to initialize the register size table.  */
455
456void
457expand_builtin_init_dwarf_reg_sizes (tree address)
458{
459  int i;
460  enum machine_mode mode = TYPE_MODE (char_type_node);
461  rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462  rtx mem = gen_rtx_MEM (BLKmode, addr);
463  bool wrote_return_column = false;
464
465  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466    if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
467      {
468	HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469	enum machine_mode save_mode = reg_raw_mode[i];
470	HOST_WIDE_INT size;
471
472	if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473	  save_mode = choose_hard_reg_mode (i, 1, true);
474	if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
475	  {
476	    if (save_mode == VOIDmode)
477	      continue;
478	    wrote_return_column = true;
479	  }
480	size = GET_MODE_SIZE (save_mode);
481	if (offset < 0)
482	  continue;
483
484	emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
485      }
486
487#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488  if (! wrote_return_column)
489    abort ();
490  i = DWARF_ALT_FRAME_RETURN_COLUMN;
491  wrote_return_column = false;
492#else
493  i = DWARF_FRAME_RETURN_COLUMN;
494#endif
495
496  if (! wrote_return_column)
497    {
498      enum machine_mode save_mode = Pmode;
499      HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500      HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501      emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
502    }
503}
504
505/* Convert a DWARF call frame info. operation to its string name */
506
507static const char *
508dwarf_cfi_name (unsigned int cfi_opc)
509{
510  switch (cfi_opc)
511    {
512    case DW_CFA_advance_loc:
513      return "DW_CFA_advance_loc";
514    case DW_CFA_offset:
515      return "DW_CFA_offset";
516    case DW_CFA_restore:
517      return "DW_CFA_restore";
518    case DW_CFA_nop:
519      return "DW_CFA_nop";
520    case DW_CFA_set_loc:
521      return "DW_CFA_set_loc";
522    case DW_CFA_advance_loc1:
523      return "DW_CFA_advance_loc1";
524    case DW_CFA_advance_loc2:
525      return "DW_CFA_advance_loc2";
526    case DW_CFA_advance_loc4:
527      return "DW_CFA_advance_loc4";
528    case DW_CFA_offset_extended:
529      return "DW_CFA_offset_extended";
530    case DW_CFA_restore_extended:
531      return "DW_CFA_restore_extended";
532    case DW_CFA_undefined:
533      return "DW_CFA_undefined";
534    case DW_CFA_same_value:
535      return "DW_CFA_same_value";
536    case DW_CFA_register:
537      return "DW_CFA_register";
538    case DW_CFA_remember_state:
539      return "DW_CFA_remember_state";
540    case DW_CFA_restore_state:
541      return "DW_CFA_restore_state";
542    case DW_CFA_def_cfa:
543      return "DW_CFA_def_cfa";
544    case DW_CFA_def_cfa_register:
545      return "DW_CFA_def_cfa_register";
546    case DW_CFA_def_cfa_offset:
547      return "DW_CFA_def_cfa_offset";
548
549    /* DWARF 3 */
550    case DW_CFA_def_cfa_expression:
551      return "DW_CFA_def_cfa_expression";
552    case DW_CFA_expression:
553      return "DW_CFA_expression";
554    case DW_CFA_offset_extended_sf:
555      return "DW_CFA_offset_extended_sf";
556    case DW_CFA_def_cfa_sf:
557      return "DW_CFA_def_cfa_sf";
558    case DW_CFA_def_cfa_offset_sf:
559      return "DW_CFA_def_cfa_offset_sf";
560
561    /* SGI/MIPS specific */
562    case DW_CFA_MIPS_advance_loc8:
563      return "DW_CFA_MIPS_advance_loc8";
564
565    /* GNU extensions */
566    case DW_CFA_GNU_window_save:
567      return "DW_CFA_GNU_window_save";
568    case DW_CFA_GNU_args_size:
569      return "DW_CFA_GNU_args_size";
570    case DW_CFA_GNU_negative_offset_extended:
571      return "DW_CFA_GNU_negative_offset_extended";
572
573    default:
574      return "DW_CFA_<unknown>";
575    }
576}
577
578/* Return a pointer to a newly allocated Call Frame Instruction.  */
579
580static inline dw_cfi_ref
581new_cfi (void)
582{
583  dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
584
585  cfi->dw_cfi_next = NULL;
586  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587  cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
588
589  return cfi;
590}
591
592/* Add a Call Frame Instruction to list of instructions.  */
593
594static inline void
595add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
596{
597  dw_cfi_ref *p;
598
599  /* Find the end of the chain.  */
600  for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601    ;
602
603  *p = cfi;
604}
605
606/* Generate a new label for the CFI info to refer to.  */
607
608char *
609dwarf2out_cfi_label (void)
610{
611  static char label[20];
612
613  ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614  ASM_OUTPUT_LABEL (asm_out_file, label);
615  return label;
616}
617
618/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619   or to the CIE if LABEL is NULL.  */
620
621static void
622add_fde_cfi (const char *label, dw_cfi_ref cfi)
623{
624  if (label)
625    {
626      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
627
628      if (*label == 0)
629	label = dwarf2out_cfi_label ();
630
631      if (fde->dw_fde_current_label == NULL
632	  || strcmp (label, fde->dw_fde_current_label) != 0)
633	{
634	  dw_cfi_ref xcfi;
635
636	  fde->dw_fde_current_label = label = xstrdup (label);
637
638	  /* Set the location counter to the new label.  */
639	  xcfi = new_cfi ();
640	  xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641	  xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642	  add_cfi (&fde->dw_fde_cfi, xcfi);
643	}
644
645      add_cfi (&fde->dw_fde_cfi, cfi);
646    }
647
648  else
649    add_cfi (&cie_cfi_head, cfi);
650}
651
652/* Subroutine of lookup_cfa.  */
653
654static inline void
655lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
656{
657  switch (cfi->dw_cfi_opc)
658    {
659    case DW_CFA_def_cfa_offset:
660      loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661      break;
662    case DW_CFA_def_cfa_register:
663      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664      break;
665    case DW_CFA_def_cfa:
666      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667      loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668      break;
669    case DW_CFA_def_cfa_expression:
670      get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671      break;
672    default:
673      break;
674    }
675}
676
677/* Find the previous value for the CFA.  */
678
679static void
680lookup_cfa (dw_cfa_location *loc)
681{
682  dw_cfi_ref cfi;
683
684  loc->reg = (unsigned long) -1;
685  loc->offset = 0;
686  loc->indirect = 0;
687  loc->base_offset = 0;
688
689  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690    lookup_cfa_1 (cfi, loc);
691
692  if (fde_table_in_use)
693    {
694      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695      for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696	lookup_cfa_1 (cfi, loc);
697    }
698}
699
700/* The current rule for calculating the DWARF2 canonical frame address.  */
701static dw_cfa_location cfa;
702
703/* The register used for saving registers to the stack, and its offset
704   from the CFA.  */
705static dw_cfa_location cfa_store;
706
707/* The running total of the size of arguments pushed onto the stack.  */
708static HOST_WIDE_INT args_size;
709
710/* The last args_size we actually output.  */
711static HOST_WIDE_INT old_args_size;
712
713/* Entry point to update the canonical frame address (CFA).
714   LABEL is passed to add_fde_cfi.  The value of CFA is now to be
715   calculated from REG+OFFSET.  */
716
717void
718dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
719{
720  dw_cfa_location loc;
721  loc.indirect = 0;
722  loc.base_offset = 0;
723  loc.reg = reg;
724  loc.offset = offset;
725  def_cfa_1 (label, &loc);
726}
727
728/* This routine does the actual work.  The CFA is now calculated from
729   the dw_cfa_location structure.  */
730
731static void
732def_cfa_1 (const char *label, dw_cfa_location *loc_p)
733{
734  dw_cfi_ref cfi;
735  dw_cfa_location old_cfa, loc;
736
737  cfa = *loc_p;
738  loc = *loc_p;
739
740  if (cfa_store.reg == loc.reg && loc.indirect == 0)
741    cfa_store.offset = loc.offset;
742
743  loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744  lookup_cfa (&old_cfa);
745
746  /* If nothing changed, no need to issue any call frame instructions.  */
747  if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748      && loc.indirect == old_cfa.indirect
749      && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750    return;
751
752  cfi = new_cfi ();
753
754  if (loc.reg == old_cfa.reg && !loc.indirect)
755    {
756      /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757	 indicating the CFA register did not change but the offset
758	 did.  */
759      cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760      cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
761    }
762
763#ifndef MIPS_DEBUGGING_INFO  /* SGI dbx thinks this means no offset.  */
764  else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765	   && !loc.indirect)
766    {
767      /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768	 indicating the CFA register has changed to <register> but the
769	 offset has not changed.  */
770      cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
772    }
773#endif
774
775  else if (loc.indirect == 0)
776    {
777      /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778	 indicating the CFA register has changed to <register> with
779	 the specified offset.  */
780      cfi->dw_cfi_opc = DW_CFA_def_cfa;
781      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782      cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
783    }
784  else
785    {
786      /* Construct a DW_CFA_def_cfa_expression instruction to
787	 calculate the CFA using a full location expression since no
788	 register-offset pair is available.  */
789      struct dw_loc_descr_struct *loc_list;
790
791      cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792      loc_list = build_cfa_loc (&loc);
793      cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
794    }
795
796  add_fde_cfi (label, cfi);
797}
798
799/* Add the CFI for saving a register.  REG is the CFA column number.
800   LABEL is passed to add_fde_cfi.
801   If SREG is -1, the register is saved at OFFSET from the CFA;
802   otherwise it is saved in SREG.  */
803
804static void
805reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
806{
807  dw_cfi_ref cfi = new_cfi ();
808
809  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
810
811  /* The following comparison is correct. -1 is used to indicate that
812     the value isn't a register number.  */
813  if (sreg == (unsigned int) -1)
814    {
815      if (reg & ~0x3f)
816	/* The register number won't fit in 6 bits, so we have to use
817	   the long form.  */
818	cfi->dw_cfi_opc = DW_CFA_offset_extended;
819      else
820	cfi->dw_cfi_opc = DW_CFA_offset;
821
822#ifdef ENABLE_CHECKING
823      {
824	/* If we get an offset that is not a multiple of
825	   DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826	   definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827	   description.  */
828	HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
829
830	if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831	  abort ();
832      }
833#endif
834      offset /= DWARF_CIE_DATA_ALIGNMENT;
835      if (offset < 0)
836	cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838      cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839    }
840  else if (sreg == reg)
841    /* We could emit a DW_CFA_same_value in this case, but don't bother.  */
842    return;
843  else
844    {
845      cfi->dw_cfi_opc = DW_CFA_register;
846      cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
847    }
848
849  add_fde_cfi (label, cfi);
850}
851
852/* Add the CFI for saving a register window.  LABEL is passed to reg_save.
853   This CFI tells the unwinder that it needs to restore the window registers
854   from the previous frame's window save area.
855
856   ??? Perhaps we should note in the CIE where windows are saved (instead of
857   assuming 0(cfa)) and what registers are in the window.  */
858
859void
860dwarf2out_window_save (const char *label)
861{
862  dw_cfi_ref cfi = new_cfi ();
863
864  cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865  add_fde_cfi (label, cfi);
866}
867
868/* Add a CFI to update the running total of the size of arguments
869   pushed onto the stack.  */
870
871void
872dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873{
874  dw_cfi_ref cfi;
875
876  if (size == old_args_size)
877    return;
878
879  old_args_size = size;
880
881  cfi = new_cfi ();
882  cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883  cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884  add_fde_cfi (label, cfi);
885}
886
887/* Entry point for saving a register to the stack.  REG is the GCC register
888   number.  LABEL and OFFSET are passed to reg_save.  */
889
890void
891dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892{
893  reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
894}
895
896/* Entry point for saving the return address in the stack.
897   LABEL and OFFSET are passed to reg_save.  */
898
899void
900dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901{
902  reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
903}
904
905/* Entry point for saving the return address in a register.
906   LABEL and SREG are passed to reg_save.  */
907
908void
909dwarf2out_return_reg (const char *label, unsigned int sreg)
910{
911  reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
912}
913
914/* Record the initial position of the return address.  RTL is
915   INCOMING_RETURN_ADDR_RTX.  */
916
917static void
918initial_return_save (rtx rtl)
919{
920  unsigned int reg = (unsigned int) -1;
921  HOST_WIDE_INT offset = 0;
922
923  switch (GET_CODE (rtl))
924    {
925    case REG:
926      /* RA is in a register.  */
927      reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928      break;
929
930    case MEM:
931      /* RA is on the stack.  */
932      rtl = XEXP (rtl, 0);
933      switch (GET_CODE (rtl))
934	{
935	case REG:
936	  if (REGNO (rtl) != STACK_POINTER_REGNUM)
937	    abort ();
938	  offset = 0;
939	  break;
940
941	case PLUS:
942	  if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943	    abort ();
944	  offset = INTVAL (XEXP (rtl, 1));
945	  break;
946
947	case MINUS:
948	  if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949	    abort ();
950	  offset = -INTVAL (XEXP (rtl, 1));
951	  break;
952
953	default:
954	  abort ();
955	}
956
957      break;
958
959    case PLUS:
960      /* The return address is at some offset from any value we can
961	 actually load.  For instance, on the SPARC it is in %i7+8. Just
962	 ignore the offset for now; it doesn't matter for unwinding frames.  */
963      if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964	abort ();
965      initial_return_save (XEXP (rtl, 0));
966      return;
967
968    default:
969      abort ();
970    }
971
972  reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
973}
974
975/* Given a SET, calculate the amount of stack adjustment it
976   contains.  */
977
978static HOST_WIDE_INT
979stack_adjust_offset (rtx pattern)
980{
981  rtx src = SET_SRC (pattern);
982  rtx dest = SET_DEST (pattern);
983  HOST_WIDE_INT offset = 0;
984  enum rtx_code code;
985
986  if (dest == stack_pointer_rtx)
987    {
988      /* (set (reg sp) (plus (reg sp) (const_int))) */
989      code = GET_CODE (src);
990      if (! (code == PLUS || code == MINUS)
991	  || XEXP (src, 0) != stack_pointer_rtx
992	  || GET_CODE (XEXP (src, 1)) != CONST_INT)
993	return 0;
994
995      offset = INTVAL (XEXP (src, 1));
996      if (code == PLUS)
997	offset = -offset;
998    }
999  else if (GET_CODE (dest) == MEM)
1000    {
1001      /* (set (mem (pre_dec (reg sp))) (foo)) */
1002      src = XEXP (dest, 0);
1003      code = GET_CODE (src);
1004
1005      switch (code)
1006	{
1007	case PRE_MODIFY:
1008	case POST_MODIFY:
1009	  if (XEXP (src, 0) == stack_pointer_rtx)
1010	    {
1011	      rtx val = XEXP (XEXP (src, 1), 1);
1012	      /* We handle only adjustments by constant amount.  */
1013	      if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014		  GET_CODE (val) != CONST_INT)
1015		abort ();
1016	      offset = -INTVAL (val);
1017	      break;
1018	    }
1019	  return 0;
1020
1021	case PRE_DEC:
1022	case POST_DEC:
1023	  if (XEXP (src, 0) == stack_pointer_rtx)
1024	    {
1025	      offset = GET_MODE_SIZE (GET_MODE (dest));
1026	      break;
1027	    }
1028	  return 0;
1029
1030	case PRE_INC:
1031	case POST_INC:
1032	  if (XEXP (src, 0) == stack_pointer_rtx)
1033	    {
1034	      offset = -GET_MODE_SIZE (GET_MODE (dest));
1035	      break;
1036	    }
1037	  return 0;
1038
1039	default:
1040	  return 0;
1041	}
1042    }
1043  else
1044    return 0;
1045
1046  return offset;
1047}
1048
1049/* Check INSN to see if it looks like a push or a stack adjustment, and
1050   make a note of it if it does.  EH uses this information to find out how
1051   much extra space it needs to pop off the stack.  */
1052
1053static void
1054dwarf2out_stack_adjust (rtx insn)
1055{
1056  HOST_WIDE_INT offset;
1057  const char *label;
1058  int i;
1059
1060  /* Don't handle epilogues at all.  Certainly it would be wrong to do so
1061     with this function.  Proper support would require all frame-related
1062     insns to be marked, and to be able to handle saving state around
1063     epilogues textually in the middle of the function.  */
1064  if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065    return;
1066
1067  if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1068    {
1069      /* Extract the size of the args from the CALL rtx itself.  */
1070      insn = PATTERN (insn);
1071      if (GET_CODE (insn) == PARALLEL)
1072	insn = XVECEXP (insn, 0, 0);
1073      if (GET_CODE (insn) == SET)
1074	insn = SET_SRC (insn);
1075      if (GET_CODE (insn) != CALL)
1076	abort ();
1077
1078      dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1079      return;
1080    }
1081
1082  /* If only calls can throw, and we have a frame pointer,
1083     save up adjustments until we see the CALL_INSN.  */
1084  else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1085    return;
1086
1087  if (GET_CODE (insn) == BARRIER)
1088    {
1089      /* When we see a BARRIER, we know to reset args_size to 0.  Usually
1090	 the compiler will have already emitted a stack adjustment, but
1091	 doesn't bother for calls to noreturn functions.  */
1092#ifdef STACK_GROWS_DOWNWARD
1093      offset = -args_size;
1094#else
1095      offset = args_size;
1096#endif
1097    }
1098  else if (GET_CODE (PATTERN (insn)) == SET)
1099    offset = stack_adjust_offset (PATTERN (insn));
1100  else if (GET_CODE (PATTERN (insn)) == PARALLEL
1101	   || GET_CODE (PATTERN (insn)) == SEQUENCE)
1102    {
1103      /* There may be stack adjustments inside compound insns.  Search
1104	 for them.  */
1105      for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1106	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1107	  offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1108    }
1109  else
1110    return;
1111
1112  if (offset == 0)
1113    return;
1114
1115  if (cfa.reg == STACK_POINTER_REGNUM)
1116    cfa.offset += offset;
1117
1118#ifndef STACK_GROWS_DOWNWARD
1119  offset = -offset;
1120#endif
1121
1122  args_size += offset;
1123  if (args_size < 0)
1124    args_size = 0;
1125
1126  label = dwarf2out_cfi_label ();
1127  def_cfa_1 (label, &cfa);
1128  dwarf2out_args_size (label, args_size);
1129}
1130
1131#endif
1132
1133/* We delay emitting a register save until either (a) we reach the end
1134   of the prologue or (b) the register is clobbered.  This clusters
1135   register saves so that there are fewer pc advances.  */
1136
1137struct queued_reg_save GTY(())
1138{
1139  struct queued_reg_save *next;
1140  rtx reg;
1141  HOST_WIDE_INT cfa_offset;
1142};
1143
1144static GTY(()) struct queued_reg_save *queued_reg_saves;
1145
1146#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1147static const char *last_reg_save_label;
1148
1149static void
1150queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1151{
1152  struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1153
1154  q->next = queued_reg_saves;
1155  q->reg = reg;
1156  q->cfa_offset = offset;
1157  queued_reg_saves = q;
1158
1159  last_reg_save_label = label;
1160}
1161
1162static void
1163flush_queued_reg_saves (void)
1164{
1165  struct queued_reg_save *q, *next;
1166
1167  for (q = queued_reg_saves; q; q = next)
1168    {
1169      dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1170      next = q->next;
1171    }
1172
1173  queued_reg_saves = NULL;
1174  last_reg_save_label = NULL;
1175}
1176
1177static bool
1178clobbers_queued_reg_save (rtx insn)
1179{
1180  struct queued_reg_save *q;
1181
1182  for (q = queued_reg_saves; q; q = q->next)
1183    if (modified_in_p (q->reg, insn))
1184      return true;
1185
1186  return false;
1187}
1188
1189
1190/* A temporary register holding an integral value used in adjusting SP
1191   or setting up the store_reg.  The "offset" field holds the integer
1192   value, not an offset.  */
1193static dw_cfa_location cfa_temp;
1194
1195/* Record call frame debugging information for an expression EXPR,
1196   which either sets SP or FP (adjusting how we calculate the frame
1197   address) or saves a register to the stack.  LABEL indicates the
1198   address of EXPR.
1199
1200   This function encodes a state machine mapping rtxes to actions on
1201   cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
1202   users need not read the source code.
1203
1204  The High-Level Picture
1205
1206  Changes in the register we use to calculate the CFA: Currently we
1207  assume that if you copy the CFA register into another register, we
1208  should take the other one as the new CFA register; this seems to
1209  work pretty well.  If it's wrong for some target, it's simple
1210  enough not to set RTX_FRAME_RELATED_P on the insn in question.
1211
1212  Changes in the register we use for saving registers to the stack:
1213  This is usually SP, but not always.  Again, we deduce that if you
1214  copy SP into another register (and SP is not the CFA register),
1215  then the new register is the one we will be using for register
1216  saves.  This also seems to work.
1217
1218  Register saves: There's not much guesswork about this one; if
1219  RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1220  register save, and the register used to calculate the destination
1221  had better be the one we think we're using for this purpose.
1222
1223  Except: If the register being saved is the CFA register, and the
1224  offset is nonzero, we are saving the CFA, so we assume we have to
1225  use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
1226  the intent is to save the value of SP from the previous frame.
1227
1228  Invariants / Summaries of Rules
1229
1230  cfa	       current rule for calculating the CFA.  It usually
1231	       consists of a register and an offset.
1232  cfa_store    register used by prologue code to save things to the stack
1233	       cfa_store.offset is the offset from the value of
1234	       cfa_store.reg to the actual CFA
1235  cfa_temp     register holding an integral value.  cfa_temp.offset
1236	       stores the value, which will be used to adjust the
1237	       stack pointer.  cfa_temp is also used like cfa_store,
1238	       to track stores to the stack via fp or a temp reg.
1239
1240  Rules  1- 4: Setting a register's value to cfa.reg or an expression
1241	       with cfa.reg as the first operand changes the cfa.reg and its
1242	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
1243	       cfa_temp.offset.
1244
1245  Rules  6- 9: Set a non-cfa.reg register value to a constant or an
1246	       expression yielding a constant.  This sets cfa_temp.reg
1247	       and cfa_temp.offset.
1248
1249  Rule 5:      Create a new register cfa_store used to save items to the
1250	       stack.
1251
1252  Rules 10-14: Save a register to the stack.  Define offset as the
1253	       difference of the original location and cfa_store's
1254	       location (or cfa_temp's location if cfa_temp is used).
1255
1256  The Rules
1257
1258  "{a,b}" indicates a choice of a xor b.
1259  "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1260
1261  Rule 1:
1262  (set <reg1> <reg2>:cfa.reg)
1263  effects: cfa.reg = <reg1>
1264	   cfa.offset unchanged
1265	   cfa_temp.reg = <reg1>
1266	   cfa_temp.offset = cfa.offset
1267
1268  Rule 2:
1269  (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1270			      {<const_int>,<reg>:cfa_temp.reg}))
1271  effects: cfa.reg = sp if fp used
1272	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1273	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1274	     if cfa_store.reg==sp
1275
1276  Rule 3:
1277  (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1278  effects: cfa.reg = fp
1279	   cfa_offset += +/- <const_int>
1280
1281  Rule 4:
1282  (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1283  constraints: <reg1> != fp
1284	       <reg1> != sp
1285  effects: cfa.reg = <reg1>
1286	   cfa_temp.reg = <reg1>
1287	   cfa_temp.offset = cfa.offset
1288
1289  Rule 5:
1290  (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1291  constraints: <reg1> != fp
1292	       <reg1> != sp
1293  effects: cfa_store.reg = <reg1>
1294	   cfa_store.offset = cfa.offset - cfa_temp.offset
1295
1296  Rule 6:
1297  (set <reg> <const_int>)
1298  effects: cfa_temp.reg = <reg>
1299	   cfa_temp.offset = <const_int>
1300
1301  Rule 7:
1302  (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1303  effects: cfa_temp.reg = <reg1>
1304	   cfa_temp.offset |= <const_int>
1305
1306  Rule 8:
1307  (set <reg> (high <exp>))
1308  effects: none
1309
1310  Rule 9:
1311  (set <reg> (lo_sum <exp> <const_int>))
1312  effects: cfa_temp.reg = <reg>
1313	   cfa_temp.offset = <const_int>
1314
1315  Rule 10:
1316  (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1317  effects: cfa_store.offset -= <const_int>
1318	   cfa.offset = cfa_store.offset if cfa.reg == sp
1319	   cfa.reg = sp
1320	   cfa.base_offset = -cfa_store.offset
1321
1322  Rule 11:
1323  (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1324  effects: cfa_store.offset += -/+ mode_size(mem)
1325	   cfa.offset = cfa_store.offset if cfa.reg == sp
1326	   cfa.reg = sp
1327	   cfa.base_offset = -cfa_store.offset
1328
1329  Rule 12:
1330  (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1331
1332       <reg2>)
1333  effects: cfa.reg = <reg1>
1334	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1335
1336  Rule 13:
1337  (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1338  effects: cfa.reg = <reg1>
1339	   cfa.base_offset = -{cfa_store,cfa_temp}.offset
1340
1341  Rule 14:
1342  (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1343  effects: cfa.reg = <reg1>
1344	   cfa.base_offset = -cfa_temp.offset
1345	   cfa_temp.offset -= mode_size(mem)  */
1346
1347static void
1348dwarf2out_frame_debug_expr (rtx expr, const char *label)
1349{
1350  rtx src, dest;
1351  HOST_WIDE_INT offset;
1352
1353  /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1354     the PARALLEL independently. The first element is always processed if
1355     it is a SET. This is for backward compatibility.   Other elements
1356     are processed only if they are SETs and the RTX_FRAME_RELATED_P
1357     flag is set in them.  */
1358  if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1359    {
1360      int par_index;
1361      int limit = XVECLEN (expr, 0);
1362
1363      for (par_index = 0; par_index < limit; par_index++)
1364	if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1365	    && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1366		|| par_index == 0))
1367	  dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1368
1369      return;
1370    }
1371
1372  if (GET_CODE (expr) != SET)
1373    abort ();
1374
1375  src = SET_SRC (expr);
1376  dest = SET_DEST (expr);
1377
1378  switch (GET_CODE (dest))
1379    {
1380    case REG:
1381      /* Rule 1 */
1382      /* Update the CFA rule wrt SP or FP.  Make sure src is
1383	 relative to the current CFA register.  */
1384      switch (GET_CODE (src))
1385	{
1386	  /* Setting FP from SP.  */
1387	case REG:
1388	  if (cfa.reg == (unsigned) REGNO (src))
1389	    /* OK.  */
1390	    ;
1391	  else
1392	    abort ();
1393
1394	  /* We used to require that dest be either SP or FP, but the
1395	     ARM copies SP to a temporary register, and from there to
1396	     FP.  So we just rely on the backends to only set
1397	     RTX_FRAME_RELATED_P on appropriate insns.  */
1398	  cfa.reg = REGNO (dest);
1399	  cfa_temp.reg = cfa.reg;
1400	  cfa_temp.offset = cfa.offset;
1401	  break;
1402
1403	case PLUS:
1404	case MINUS:
1405	case LO_SUM:
1406	  if (dest == stack_pointer_rtx)
1407	    {
1408	      /* Rule 2 */
1409	      /* Adjusting SP.  */
1410	      switch (GET_CODE (XEXP (src, 1)))
1411		{
1412		case CONST_INT:
1413		  offset = INTVAL (XEXP (src, 1));
1414		  break;
1415		case REG:
1416		  if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1417		    abort ();
1418		  offset = cfa_temp.offset;
1419		  break;
1420		default:
1421		  abort ();
1422		}
1423
1424	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
1425		{
1426		  /* Restoring SP from FP in the epilogue.  */
1427		  if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1428		    abort ();
1429		  cfa.reg = STACK_POINTER_REGNUM;
1430		}
1431	      else if (GET_CODE (src) == LO_SUM)
1432		/* Assume we've set the source reg of the LO_SUM from sp.  */
1433		;
1434	      else if (XEXP (src, 0) != stack_pointer_rtx)
1435		abort ();
1436
1437	      if (GET_CODE (src) != MINUS)
1438		offset = -offset;
1439	      if (cfa.reg == STACK_POINTER_REGNUM)
1440		cfa.offset += offset;
1441	      if (cfa_store.reg == STACK_POINTER_REGNUM)
1442		cfa_store.offset += offset;
1443	    }
1444	  else if (dest == hard_frame_pointer_rtx)
1445	    {
1446	      /* Rule 3 */
1447	      /* Either setting the FP from an offset of the SP,
1448		 or adjusting the FP */
1449	      if (! frame_pointer_needed)
1450		abort ();
1451
1452	      if (GET_CODE (XEXP (src, 0)) == REG
1453		  && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1454		  && GET_CODE (XEXP (src, 1)) == CONST_INT)
1455		{
1456		  offset = INTVAL (XEXP (src, 1));
1457		  if (GET_CODE (src) != MINUS)
1458		    offset = -offset;
1459		  cfa.offset += offset;
1460		  cfa.reg = HARD_FRAME_POINTER_REGNUM;
1461		}
1462	      else
1463		abort ();
1464	    }
1465	  else
1466	    {
1467	      if (GET_CODE (src) == MINUS)
1468		abort ();
1469
1470	      /* Rule 4 */
1471	      if (GET_CODE (XEXP (src, 0)) == REG
1472		  && REGNO (XEXP (src, 0)) == cfa.reg
1473		  && GET_CODE (XEXP (src, 1)) == CONST_INT)
1474		{
1475		  /* Setting a temporary CFA register that will be copied
1476		     into the FP later on.  */
1477		  offset = - INTVAL (XEXP (src, 1));
1478		  cfa.offset += offset;
1479		  cfa.reg = REGNO (dest);
1480		  /* Or used to save regs to the stack.  */
1481		  cfa_temp.reg = cfa.reg;
1482		  cfa_temp.offset = cfa.offset;
1483		}
1484
1485	      /* Rule 5 */
1486	      else if (GET_CODE (XEXP (src, 0)) == REG
1487		       && REGNO (XEXP (src, 0)) == cfa_temp.reg
1488		       && XEXP (src, 1) == stack_pointer_rtx)
1489		{
1490		  /* Setting a scratch register that we will use instead
1491		     of SP for saving registers to the stack.  */
1492		  if (cfa.reg != STACK_POINTER_REGNUM)
1493		    abort ();
1494		  cfa_store.reg = REGNO (dest);
1495		  cfa_store.offset = cfa.offset - cfa_temp.offset;
1496		}
1497
1498	      /* Rule 9 */
1499	      else if (GET_CODE (src) == LO_SUM
1500		       && GET_CODE (XEXP (src, 1)) == CONST_INT)
1501		{
1502		  cfa_temp.reg = REGNO (dest);
1503		  cfa_temp.offset = INTVAL (XEXP (src, 1));
1504		}
1505	      else
1506		abort ();
1507	    }
1508	  break;
1509
1510	  /* Rule 6 */
1511	case CONST_INT:
1512	  cfa_temp.reg = REGNO (dest);
1513	  cfa_temp.offset = INTVAL (src);
1514	  break;
1515
1516	  /* Rule 7 */
1517	case IOR:
1518	  if (GET_CODE (XEXP (src, 0)) != REG
1519	      || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1520	      || GET_CODE (XEXP (src, 1)) != CONST_INT)
1521	    abort ();
1522
1523	  if ((unsigned) REGNO (dest) != cfa_temp.reg)
1524	    cfa_temp.reg = REGNO (dest);
1525	  cfa_temp.offset |= INTVAL (XEXP (src, 1));
1526	  break;
1527
1528	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1529	     which will fill in all of the bits.  */
1530	  /* Rule 8 */
1531	case HIGH:
1532	  break;
1533
1534	default:
1535	  abort ();
1536	}
1537
1538      def_cfa_1 (label, &cfa);
1539      break;
1540
1541    case MEM:
1542      if (GET_CODE (src) != REG)
1543	abort ();
1544
1545      /* Saving a register to the stack.  Make sure dest is relative to the
1546	 CFA register.  */
1547      switch (GET_CODE (XEXP (dest, 0)))
1548	{
1549	  /* Rule 10 */
1550	  /* With a push.  */
1551	case PRE_MODIFY:
1552	  /* We can't handle variable size modifications.  */
1553	  if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1554	    abort ();
1555	  offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1556
1557	  if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1558	      || cfa_store.reg != STACK_POINTER_REGNUM)
1559	    abort ();
1560
1561	  cfa_store.offset += offset;
1562	  if (cfa.reg == STACK_POINTER_REGNUM)
1563	    cfa.offset = cfa_store.offset;
1564
1565	  offset = -cfa_store.offset;
1566	  break;
1567
1568	  /* Rule 11 */
1569	case PRE_INC:
1570	case PRE_DEC:
1571	  offset = GET_MODE_SIZE (GET_MODE (dest));
1572	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1573	    offset = -offset;
1574
1575	  if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1576	      || cfa_store.reg != STACK_POINTER_REGNUM)
1577	    abort ();
1578
1579	  cfa_store.offset += offset;
1580	  if (cfa.reg == STACK_POINTER_REGNUM)
1581	    cfa.offset = cfa_store.offset;
1582
1583	  offset = -cfa_store.offset;
1584	  break;
1585
1586	  /* Rule 12 */
1587	  /* With an offset.  */
1588	case PLUS:
1589	case MINUS:
1590	case LO_SUM:
1591	  if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1592	    abort ();
1593	  offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1594	  if (GET_CODE (XEXP (dest, 0)) == MINUS)
1595	    offset = -offset;
1596
1597	  if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1598	    offset -= cfa_store.offset;
1599	  else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1600	    offset -= cfa_temp.offset;
1601	  else
1602	    abort ();
1603	  break;
1604
1605	  /* Rule 13 */
1606	  /* Without an offset.  */
1607	case REG:
1608	  if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1609	    offset = -cfa_store.offset;
1610	  else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1611	    offset = -cfa_temp.offset;
1612	  else
1613	    abort ();
1614	  break;
1615
1616	  /* Rule 14 */
1617	case POST_INC:
1618	  if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1619	    abort ();
1620	  offset = -cfa_temp.offset;
1621	  cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1622	  break;
1623
1624	default:
1625	  abort ();
1626	}
1627
1628      if (REGNO (src) != STACK_POINTER_REGNUM
1629	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1630	  && (unsigned) REGNO (src) == cfa.reg)
1631	{
1632	  /* We're storing the current CFA reg into the stack.  */
1633
1634	  if (cfa.offset == 0)
1635	    {
1636	      /* If the source register is exactly the CFA, assume
1637		 we're saving SP like any other register; this happens
1638		 on the ARM.  */
1639	      def_cfa_1 (label, &cfa);
1640	      queue_reg_save (label, stack_pointer_rtx, offset);
1641	      break;
1642	    }
1643	  else
1644	    {
1645	      /* Otherwise, we'll need to look in the stack to
1646		 calculate the CFA.  */
1647	      rtx x = XEXP (dest, 0);
1648
1649	      if (GET_CODE (x) != REG)
1650		x = XEXP (x, 0);
1651	      if (GET_CODE (x) != REG)
1652		abort ();
1653
1654	      cfa.reg = REGNO (x);
1655	      cfa.base_offset = offset;
1656	      cfa.indirect = 1;
1657	      def_cfa_1 (label, &cfa);
1658	      break;
1659	    }
1660	}
1661
1662      def_cfa_1 (label, &cfa);
1663      queue_reg_save (label, src, offset);
1664      break;
1665
1666    default:
1667      abort ();
1668    }
1669}
1670
1671/* Record call frame debugging information for INSN, which either
1672   sets SP or FP (adjusting how we calculate the frame address) or saves a
1673   register to the stack.  If INSN is NULL_RTX, initialize our state.  */
1674
1675void
1676dwarf2out_frame_debug (rtx insn)
1677{
1678  const char *label;
1679  rtx src;
1680
1681  if (insn == NULL_RTX)
1682    {
1683      /* Flush any queued register saves.  */
1684      flush_queued_reg_saves ();
1685
1686      /* Set up state for generating call frame debug info.  */
1687      lookup_cfa (&cfa);
1688      if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1689	abort ();
1690
1691      cfa.reg = STACK_POINTER_REGNUM;
1692      cfa_store = cfa;
1693      cfa_temp.reg = -1;
1694      cfa_temp.offset = 0;
1695      return;
1696    }
1697
1698  if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1699    flush_queued_reg_saves ();
1700
1701  if (! RTX_FRAME_RELATED_P (insn))
1702    {
1703      if (!ACCUMULATE_OUTGOING_ARGS)
1704	dwarf2out_stack_adjust (insn);
1705
1706      return;
1707    }
1708
1709  label = dwarf2out_cfi_label ();
1710  src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1711  if (src)
1712    insn = XEXP (src, 0);
1713  else
1714    insn = PATTERN (insn);
1715
1716  dwarf2out_frame_debug_expr (insn, label);
1717}
1718
1719#endif
1720
1721/* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used.  */
1722static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1723 (enum dwarf_call_frame_info cfi);
1724
1725static enum dw_cfi_oprnd_type
1726dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1727{
1728  switch (cfi)
1729    {
1730    case DW_CFA_nop:
1731    case DW_CFA_GNU_window_save:
1732      return dw_cfi_oprnd_unused;
1733
1734    case DW_CFA_set_loc:
1735    case DW_CFA_advance_loc1:
1736    case DW_CFA_advance_loc2:
1737    case DW_CFA_advance_loc4:
1738    case DW_CFA_MIPS_advance_loc8:
1739      return dw_cfi_oprnd_addr;
1740
1741    case DW_CFA_offset:
1742    case DW_CFA_offset_extended:
1743    case DW_CFA_def_cfa:
1744    case DW_CFA_offset_extended_sf:
1745    case DW_CFA_def_cfa_sf:
1746    case DW_CFA_restore_extended:
1747    case DW_CFA_undefined:
1748    case DW_CFA_same_value:
1749    case DW_CFA_def_cfa_register:
1750    case DW_CFA_register:
1751      return dw_cfi_oprnd_reg_num;
1752
1753    case DW_CFA_def_cfa_offset:
1754    case DW_CFA_GNU_args_size:
1755    case DW_CFA_def_cfa_offset_sf:
1756      return dw_cfi_oprnd_offset;
1757
1758    case DW_CFA_def_cfa_expression:
1759    case DW_CFA_expression:
1760      return dw_cfi_oprnd_loc;
1761
1762    default:
1763      abort ();
1764    }
1765}
1766
1767/* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used.  */
1768static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1769 (enum dwarf_call_frame_info cfi);
1770
1771static enum dw_cfi_oprnd_type
1772dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1773{
1774  switch (cfi)
1775    {
1776    case DW_CFA_def_cfa:
1777    case DW_CFA_def_cfa_sf:
1778    case DW_CFA_offset:
1779    case DW_CFA_offset_extended_sf:
1780    case DW_CFA_offset_extended:
1781      return dw_cfi_oprnd_offset;
1782
1783    case DW_CFA_register:
1784      return dw_cfi_oprnd_reg_num;
1785
1786    default:
1787      return dw_cfi_oprnd_unused;
1788    }
1789}
1790
1791#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1792
1793/* Map register numbers held in the call frame info that gcc has
1794   collected using DWARF_FRAME_REGNUM to those that should be output in
1795   .debug_frame and .eh_frame.  */
1796#ifndef DWARF2_FRAME_REG_OUT
1797#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1798#endif
1799
1800/* Output a Call Frame Information opcode and its operand(s).  */
1801
1802static void
1803output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1804{
1805  unsigned long r;
1806  if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1807    dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1809			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1810			 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1811  else if (cfi->dw_cfi_opc == DW_CFA_offset)
1812    {
1813      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1814      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1815			   "DW_CFA_offset, column 0x%lx", r);
1816      dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1817    }
1818  else if (cfi->dw_cfi_opc == DW_CFA_restore)
1819    {
1820      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1821      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1822			   "DW_CFA_restore, column 0x%lx", r);
1823    }
1824  else
1825    {
1826      dw2_asm_output_data (1, cfi->dw_cfi_opc,
1827			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1828
1829      switch (cfi->dw_cfi_opc)
1830	{
1831	case DW_CFA_set_loc:
1832	  if (for_eh)
1833	    dw2_asm_output_encoded_addr_rtx (
1834		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1835		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1836		NULL);
1837	  else
1838	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1839				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1840	  break;
1841
1842	case DW_CFA_advance_loc1:
1843	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1844				fde->dw_fde_current_label, NULL);
1845	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1846	  break;
1847
1848	case DW_CFA_advance_loc2:
1849	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1850				fde->dw_fde_current_label, NULL);
1851	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1852	  break;
1853
1854	case DW_CFA_advance_loc4:
1855	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1856				fde->dw_fde_current_label, NULL);
1857	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1858	  break;
1859
1860	case DW_CFA_MIPS_advance_loc8:
1861	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1862				fde->dw_fde_current_label, NULL);
1863	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1864	  break;
1865
1866	case DW_CFA_offset_extended:
1867	case DW_CFA_def_cfa:
1868	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1869	  dw2_asm_output_data_uleb128 (r, NULL);
1870	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1871	  break;
1872
1873	case DW_CFA_offset_extended_sf:
1874	case DW_CFA_def_cfa_sf:
1875	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1876	  dw2_asm_output_data_uleb128 (r, NULL);
1877	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1878	  break;
1879
1880	case DW_CFA_restore_extended:
1881	case DW_CFA_undefined:
1882	case DW_CFA_same_value:
1883	case DW_CFA_def_cfa_register:
1884	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1885	  dw2_asm_output_data_uleb128 (r, NULL);
1886	  break;
1887
1888	case DW_CFA_register:
1889	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1890	  dw2_asm_output_data_uleb128 (r, NULL);
1891	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1892	  dw2_asm_output_data_uleb128 (r, NULL);
1893	  break;
1894
1895	case DW_CFA_def_cfa_offset:
1896	case DW_CFA_GNU_args_size:
1897	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1898	  break;
1899
1900	case DW_CFA_def_cfa_offset_sf:
1901	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1902	  break;
1903
1904	case DW_CFA_GNU_window_save:
1905	  break;
1906
1907	case DW_CFA_def_cfa_expression:
1908	case DW_CFA_expression:
1909	  output_cfa_loc (cfi);
1910	  break;
1911
1912	case DW_CFA_GNU_negative_offset_extended:
1913	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
1914	  abort ();
1915
1916	default:
1917	  break;
1918	}
1919    }
1920}
1921
1922/* Output the call frame information used to record information
1923   that relates to calculating the frame pointer, and records the
1924   location of saved registers.  */
1925
1926static void
1927output_call_frame_info (int for_eh)
1928{
1929  unsigned int i;
1930  dw_fde_ref fde;
1931  dw_cfi_ref cfi;
1932  char l1[20], l2[20], section_start_label[20];
1933  bool any_lsda_needed = false;
1934  char augmentation[6];
1935  int augmentation_size;
1936  int fde_encoding = DW_EH_PE_absptr;
1937  int per_encoding = DW_EH_PE_absptr;
1938  int lsda_encoding = DW_EH_PE_absptr;
1939
1940  /* Don't emit a CIE if there won't be any FDEs.  */
1941  if (fde_table_in_use == 0)
1942    return;
1943
1944  /* If we don't have any functions we'll want to unwind out of, don't
1945     emit any EH unwind information.  Note that if exceptions aren't
1946     enabled, we won't have collected nothrow information, and if we
1947     asked for asynchronous tables, we always want this info.  */
1948  if (for_eh)
1949    {
1950      bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1951
1952      for (i = 0; i < fde_table_in_use; i++)
1953	if (fde_table[i].uses_eh_lsda)
1954	  any_eh_needed = any_lsda_needed = true;
1955	else if (! fde_table[i].nothrow
1956		 && ! fde_table[i].all_throwers_are_sibcalls)
1957	  any_eh_needed = true;
1958
1959      if (! any_eh_needed)
1960	return;
1961    }
1962
1963  /* We're going to be generating comments, so turn on app.  */
1964  if (flag_debug_asm)
1965    app_enable ();
1966
1967  if (for_eh)
1968    (*targetm.asm_out.eh_frame_section) ();
1969  else
1970    named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1971
1972  ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1973  ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1974
1975  /* Output the CIE.  */
1976  ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1977  ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1978  dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1979			"Length of Common Information Entry");
1980  ASM_OUTPUT_LABEL (asm_out_file, l1);
1981
1982  /* Now that the CIE pointer is PC-relative for EH,
1983     use 0 to identify the CIE.  */
1984  dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1985		       (for_eh ? 0 : DW_CIE_ID),
1986		       "CIE Identifier Tag");
1987
1988  dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1989
1990  augmentation[0] = 0;
1991  augmentation_size = 0;
1992  if (for_eh)
1993    {
1994      char *p;
1995
1996      /* Augmentation:
1997	 z	Indicates that a uleb128 is present to size the
1998		augmentation section.
1999	 L	Indicates the encoding (and thus presence) of
2000		an LSDA pointer in the FDE augmentation.
2001	 R	Indicates a non-default pointer encoding for
2002		FDE code pointers.
2003	 P	Indicates the presence of an encoding + language
2004		personality routine in the CIE augmentation.  */
2005
2006      fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2007      per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2008      lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2009
2010      p = augmentation + 1;
2011      if (eh_personality_libfunc)
2012	{
2013	  *p++ = 'P';
2014	  augmentation_size += 1 + size_of_encoded_value (per_encoding);
2015	}
2016      if (any_lsda_needed)
2017	{
2018	  *p++ = 'L';
2019	  augmentation_size += 1;
2020	}
2021      if (fde_encoding != DW_EH_PE_absptr)
2022	{
2023	  *p++ = 'R';
2024	  augmentation_size += 1;
2025	}
2026      if (p > augmentation + 1)
2027	{
2028	  augmentation[0] = 'z';
2029	  *p = '\0';
2030	}
2031
2032      /* Ug.  Some platforms can't do unaligned dynamic relocations at all.  */
2033      if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2034	{
2035	  int offset = (  4		/* Length */
2036			+ 4		/* CIE Id */
2037			+ 1		/* CIE version */
2038			+ strlen (augmentation) + 1	/* Augmentation */
2039			+ size_of_uleb128 (1)		/* Code alignment */
2040			+ size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2041			+ 1		/* RA column */
2042			+ 1		/* Augmentation size */
2043			+ 1		/* Personality encoding */ );
2044	  int pad = -offset & (PTR_SIZE - 1);
2045
2046	  augmentation_size += pad;
2047
2048	  /* Augmentations should be small, so there's scarce need to
2049	     iterate for a solution.  Die if we exceed one uleb128 byte.  */
2050	  if (size_of_uleb128 (augmentation_size) != 1)
2051	    abort ();
2052	}
2053    }
2054
2055  dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2056  dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2057  dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2058			       "CIE Data Alignment Factor");
2059  dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2060
2061  if (augmentation[0])
2062    {
2063      dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2064      if (eh_personality_libfunc)
2065	{
2066	  dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2067			       eh_data_format_name (per_encoding));
2068	  dw2_asm_output_encoded_addr_rtx (per_encoding,
2069					   eh_personality_libfunc, NULL);
2070	}
2071
2072      if (any_lsda_needed)
2073	dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2074			     eh_data_format_name (lsda_encoding));
2075
2076      if (fde_encoding != DW_EH_PE_absptr)
2077	dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2078			     eh_data_format_name (fde_encoding));
2079    }
2080
2081  for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2082    output_cfi (cfi, NULL, for_eh);
2083
2084  /* Pad the CIE out to an address sized boundary.  */
2085  ASM_OUTPUT_ALIGN (asm_out_file,
2086		    floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2087  ASM_OUTPUT_LABEL (asm_out_file, l2);
2088
2089  /* Loop through all of the FDE's.  */
2090  for (i = 0; i < fde_table_in_use; i++)
2091    {
2092      fde = &fde_table[i];
2093
2094      /* Don't emit EH unwind info for leaf functions that don't need it.  */
2095      if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2096	  && (fde->nothrow || fde->all_throwers_are_sibcalls)
2097	  && !fde->uses_eh_lsda)
2098	continue;
2099
2100      (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2101      ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2102      ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2103      dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2104			    "FDE Length");
2105      ASM_OUTPUT_LABEL (asm_out_file, l1);
2106
2107      if (for_eh)
2108	dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2109      else
2110	dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2111			       "FDE CIE offset");
2112
2113      if (for_eh)
2114	{
2115	  dw2_asm_output_encoded_addr_rtx (fde_encoding,
2116		   gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2117		   "FDE initial location");
2118	  dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2119				fde->dw_fde_end, fde->dw_fde_begin,
2120				"FDE address range");
2121	}
2122      else
2123	{
2124	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2125			       "FDE initial location");
2126	  dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2127				fde->dw_fde_end, fde->dw_fde_begin,
2128				"FDE address range");
2129	}
2130
2131      if (augmentation[0])
2132	{
2133	  if (any_lsda_needed)
2134	    {
2135	      int size = size_of_encoded_value (lsda_encoding);
2136
2137	      if (lsda_encoding == DW_EH_PE_aligned)
2138		{
2139		  int offset = (  4		/* Length */
2140				+ 4		/* CIE offset */
2141				+ 2 * size_of_encoded_value (fde_encoding)
2142				+ 1		/* Augmentation size */ );
2143		  int pad = -offset & (PTR_SIZE - 1);
2144
2145		  size += pad;
2146		  if (size_of_uleb128 (size) != 1)
2147		    abort ();
2148		}
2149
2150	      dw2_asm_output_data_uleb128 (size, "Augmentation size");
2151
2152	      if (fde->uses_eh_lsda)
2153		{
2154		  ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2155					       fde->funcdef_number);
2156		  dw2_asm_output_encoded_addr_rtx (
2157			lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2158			"Language Specific Data Area");
2159		}
2160	      else
2161		{
2162		  if (lsda_encoding == DW_EH_PE_aligned)
2163		    ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2164		  dw2_asm_output_data
2165		    (size_of_encoded_value (lsda_encoding), 0,
2166		     "Language Specific Data Area (none)");
2167		}
2168	    }
2169	  else
2170	    dw2_asm_output_data_uleb128 (0, "Augmentation size");
2171	}
2172
2173      /* Loop through the Call Frame Instructions associated with
2174	 this FDE.  */
2175      fde->dw_fde_current_label = fde->dw_fde_begin;
2176      for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2177	output_cfi (cfi, fde, for_eh);
2178
2179      /* Pad the FDE out to an address sized boundary.  */
2180      ASM_OUTPUT_ALIGN (asm_out_file,
2181			floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2182      ASM_OUTPUT_LABEL (asm_out_file, l2);
2183    }
2184
2185  if (for_eh && targetm.terminate_dw2_eh_frame_info)
2186    dw2_asm_output_data (4, 0, "End of Table");
2187#ifdef MIPS_DEBUGGING_INFO
2188  /* Work around Irix 6 assembler bug whereby labels at the end of a section
2189     get a value of 0.  Putting .align 0 after the label fixes it.  */
2190  ASM_OUTPUT_ALIGN (asm_out_file, 0);
2191#endif
2192
2193  /* Turn off app to make assembly quicker.  */
2194  if (flag_debug_asm)
2195    app_disable ();
2196}
2197
2198/* Output a marker (i.e. a label) for the beginning of a function, before
2199   the prologue.  */
2200
2201void
2202dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2203			  const char *file ATTRIBUTE_UNUSED)
2204{
2205  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2206  dw_fde_ref fde;
2207
2208  current_function_func_begin_label = 0;
2209
2210#ifdef IA64_UNWIND_INFO
2211  /* ??? current_function_func_begin_label is also used by except.c
2212     for call-site information.  We must emit this label if it might
2213     be used.  */
2214  if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2215      && ! dwarf2out_do_frame ())
2216    return;
2217#else
2218  if (! dwarf2out_do_frame ())
2219    return;
2220#endif
2221
2222  function_section (current_function_decl);
2223  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2224			       current_function_funcdef_no);
2225  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2226			  current_function_funcdef_no);
2227  current_function_func_begin_label = get_identifier (label);
2228
2229#ifdef IA64_UNWIND_INFO
2230  /* We can elide the fde allocation if we're not emitting debug info.  */
2231  if (! dwarf2out_do_frame ())
2232    return;
2233#endif
2234
2235  /* Expand the fde table if necessary.  */
2236  if (fde_table_in_use == fde_table_allocated)
2237    {
2238      fde_table_allocated += FDE_TABLE_INCREMENT;
2239      fde_table = ggc_realloc (fde_table,
2240			       fde_table_allocated * sizeof (dw_fde_node));
2241      memset (fde_table + fde_table_in_use, 0,
2242	      FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2243    }
2244
2245  /* Record the FDE associated with this function.  */
2246  current_funcdef_fde = fde_table_in_use;
2247
2248  /* Add the new FDE at the end of the fde_table.  */
2249  fde = &fde_table[fde_table_in_use++];
2250  fde->dw_fde_begin = xstrdup (label);
2251  fde->dw_fde_current_label = NULL;
2252  fde->dw_fde_end = NULL;
2253  fde->dw_fde_cfi = NULL;
2254  fde->funcdef_number = current_function_funcdef_no;
2255  fde->nothrow = current_function_nothrow;
2256  fde->uses_eh_lsda = cfun->uses_eh_lsda;
2257  fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2258
2259  args_size = old_args_size = 0;
2260
2261  /* We only want to output line number information for the genuine dwarf2
2262     prologue case, not the eh frame case.  */
2263#ifdef DWARF2_DEBUGGING_INFO
2264  if (file)
2265    dwarf2out_source_line (line, file);
2266#endif
2267}
2268
2269/* Output a marker (i.e. a label) for the absolute end of the generated code
2270   for a function definition.  This gets called *after* the epilogue code has
2271   been generated.  */
2272
2273void
2274dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2275			const char *file ATTRIBUTE_UNUSED)
2276{
2277  dw_fde_ref fde;
2278  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2279
2280  /* Output a label to mark the endpoint of the code generated for this
2281     function.  */
2282  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2283			       current_function_funcdef_no);
2284  ASM_OUTPUT_LABEL (asm_out_file, label);
2285  fde = &fde_table[fde_table_in_use - 1];
2286  fde->dw_fde_end = xstrdup (label);
2287}
2288
2289void
2290dwarf2out_frame_init (void)
2291{
2292  /* Allocate the initial hunk of the fde_table.  */
2293  fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2294  fde_table_allocated = FDE_TABLE_INCREMENT;
2295  fde_table_in_use = 0;
2296
2297  /* Generate the CFA instructions common to all FDE's.  Do it now for the
2298     sake of lookup_cfa.  */
2299
2300#ifdef DWARF2_UNWIND_INFO
2301  /* On entry, the Canonical Frame Address is at SP.  */
2302  dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2303  initial_return_save (INCOMING_RETURN_ADDR_RTX);
2304#endif
2305}
2306
2307void
2308dwarf2out_frame_finish (void)
2309{
2310  /* Output call frame information.  */
2311  if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2312    output_call_frame_info (0);
2313
2314  if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2315    output_call_frame_info (1);
2316}
2317#endif
2318
2319/* And now, the subset of the debugging information support code necessary
2320   for emitting location expressions.  */
2321
2322/* We need some way to distinguish DW_OP_addr with a direct symbol
2323   relocation from DW_OP_addr with a dtp-relative symbol relocation.  */
2324#define INTERNAL_DW_OP_tls_addr		(0x100 + DW_OP_addr)
2325
2326
2327typedef struct dw_val_struct *dw_val_ref;
2328typedef struct die_struct *dw_die_ref;
2329typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2330typedef struct dw_loc_list_struct *dw_loc_list_ref;
2331
2332/* Each DIE may have a series of attribute/value pairs.  Values
2333   can take on several forms.  The forms that are used in this
2334   implementation are listed below.  */
2335
2336enum dw_val_class
2337{
2338  dw_val_class_addr,
2339  dw_val_class_offset,
2340  dw_val_class_loc,
2341  dw_val_class_loc_list,
2342  dw_val_class_range_list,
2343  dw_val_class_const,
2344  dw_val_class_unsigned_const,
2345  dw_val_class_long_long,
2346  dw_val_class_vec,
2347  dw_val_class_flag,
2348  dw_val_class_die_ref,
2349  dw_val_class_fde_ref,
2350  dw_val_class_lbl_id,
2351  dw_val_class_lbl_offset,
2352  dw_val_class_str
2353};
2354
2355/* Describe a double word constant value.  */
2356/* ??? Every instance of long_long in the code really means CONST_DOUBLE.  */
2357
2358typedef struct dw_long_long_struct GTY(())
2359{
2360  unsigned long hi;
2361  unsigned long low;
2362}
2363dw_long_long_const;
2364
2365/* Describe a floating point constant value, or a vector constant value.  */
2366
2367typedef struct dw_vec_struct GTY(())
2368{
2369  unsigned char * GTY((length ("%h.length"))) array;
2370  unsigned length;
2371  unsigned elt_size;
2372}
2373dw_vec_const;
2374
2375/* The dw_val_node describes an attribute's value, as it is
2376   represented internally.  */
2377
2378typedef struct dw_val_struct GTY(())
2379{
2380  enum dw_val_class val_class;
2381  union dw_val_struct_union
2382    {
2383      rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2384      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2385      dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2386      dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2387      HOST_WIDE_INT GTY ((default (""))) val_int;
2388      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2389      dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2390      dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2391      struct dw_val_die_union
2392	{
2393	  dw_die_ref die;
2394	  int external;
2395	} GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2396      unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2397      struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2398      char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2399      unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2400    }
2401  GTY ((desc ("%1.val_class"))) v;
2402}
2403dw_val_node;
2404
2405/* Locations in memory are described using a sequence of stack machine
2406   operations.  */
2407
2408typedef struct dw_loc_descr_struct GTY(())
2409{
2410  dw_loc_descr_ref dw_loc_next;
2411  enum dwarf_location_atom dw_loc_opc;
2412  dw_val_node dw_loc_oprnd1;
2413  dw_val_node dw_loc_oprnd2;
2414  int dw_loc_addr;
2415}
2416dw_loc_descr_node;
2417
2418/* Location lists are ranges + location descriptions for that range,
2419   so you can track variables that are in different places over
2420   their entire life.  */
2421typedef struct dw_loc_list_struct GTY(())
2422{
2423  dw_loc_list_ref dw_loc_next;
2424  const char *begin; /* Label for begin address of range */
2425  const char *end;  /* Label for end address of range */
2426  char *ll_symbol; /* Label for beginning of location list.
2427		      Only on head of list */
2428  const char *section; /* Section this loclist is relative to */
2429  dw_loc_descr_ref expr;
2430} dw_loc_list_node;
2431
2432#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2433
2434static const char *dwarf_stack_op_name (unsigned);
2435static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2436				       unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2437static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2438static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2439static unsigned long size_of_locs (dw_loc_descr_ref);
2440static void output_loc_operands (dw_loc_descr_ref);
2441static void output_loc_sequence (dw_loc_descr_ref);
2442
2443/* Convert a DWARF stack opcode into its string name.  */
2444
2445static const char *
2446dwarf_stack_op_name (unsigned int op)
2447{
2448  switch (op)
2449    {
2450    case DW_OP_addr:
2451    case INTERNAL_DW_OP_tls_addr:
2452      return "DW_OP_addr";
2453    case DW_OP_deref:
2454      return "DW_OP_deref";
2455    case DW_OP_const1u:
2456      return "DW_OP_const1u";
2457    case DW_OP_const1s:
2458      return "DW_OP_const1s";
2459    case DW_OP_const2u:
2460      return "DW_OP_const2u";
2461    case DW_OP_const2s:
2462      return "DW_OP_const2s";
2463    case DW_OP_const4u:
2464      return "DW_OP_const4u";
2465    case DW_OP_const4s:
2466      return "DW_OP_const4s";
2467    case DW_OP_const8u:
2468      return "DW_OP_const8u";
2469    case DW_OP_const8s:
2470      return "DW_OP_const8s";
2471    case DW_OP_constu:
2472      return "DW_OP_constu";
2473    case DW_OP_consts:
2474      return "DW_OP_consts";
2475    case DW_OP_dup:
2476      return "DW_OP_dup";
2477    case DW_OP_drop:
2478      return "DW_OP_drop";
2479    case DW_OP_over:
2480      return "DW_OP_over";
2481    case DW_OP_pick:
2482      return "DW_OP_pick";
2483    case DW_OP_swap:
2484      return "DW_OP_swap";
2485    case DW_OP_rot:
2486      return "DW_OP_rot";
2487    case DW_OP_xderef:
2488      return "DW_OP_xderef";
2489    case DW_OP_abs:
2490      return "DW_OP_abs";
2491    case DW_OP_and:
2492      return "DW_OP_and";
2493    case DW_OP_div:
2494      return "DW_OP_div";
2495    case DW_OP_minus:
2496      return "DW_OP_minus";
2497    case DW_OP_mod:
2498      return "DW_OP_mod";
2499    case DW_OP_mul:
2500      return "DW_OP_mul";
2501    case DW_OP_neg:
2502      return "DW_OP_neg";
2503    case DW_OP_not:
2504      return "DW_OP_not";
2505    case DW_OP_or:
2506      return "DW_OP_or";
2507    case DW_OP_plus:
2508      return "DW_OP_plus";
2509    case DW_OP_plus_uconst:
2510      return "DW_OP_plus_uconst";
2511    case DW_OP_shl:
2512      return "DW_OP_shl";
2513    case DW_OP_shr:
2514      return "DW_OP_shr";
2515    case DW_OP_shra:
2516      return "DW_OP_shra";
2517    case DW_OP_xor:
2518      return "DW_OP_xor";
2519    case DW_OP_bra:
2520      return "DW_OP_bra";
2521    case DW_OP_eq:
2522      return "DW_OP_eq";
2523    case DW_OP_ge:
2524      return "DW_OP_ge";
2525    case DW_OP_gt:
2526      return "DW_OP_gt";
2527    case DW_OP_le:
2528      return "DW_OP_le";
2529    case DW_OP_lt:
2530      return "DW_OP_lt";
2531    case DW_OP_ne:
2532      return "DW_OP_ne";
2533    case DW_OP_skip:
2534      return "DW_OP_skip";
2535    case DW_OP_lit0:
2536      return "DW_OP_lit0";
2537    case DW_OP_lit1:
2538      return "DW_OP_lit1";
2539    case DW_OP_lit2:
2540      return "DW_OP_lit2";
2541    case DW_OP_lit3:
2542      return "DW_OP_lit3";
2543    case DW_OP_lit4:
2544      return "DW_OP_lit4";
2545    case DW_OP_lit5:
2546      return "DW_OP_lit5";
2547    case DW_OP_lit6:
2548      return "DW_OP_lit6";
2549    case DW_OP_lit7:
2550      return "DW_OP_lit7";
2551    case DW_OP_lit8:
2552      return "DW_OP_lit8";
2553    case DW_OP_lit9:
2554      return "DW_OP_lit9";
2555    case DW_OP_lit10:
2556      return "DW_OP_lit10";
2557    case DW_OP_lit11:
2558      return "DW_OP_lit11";
2559    case DW_OP_lit12:
2560      return "DW_OP_lit12";
2561    case DW_OP_lit13:
2562      return "DW_OP_lit13";
2563    case DW_OP_lit14:
2564      return "DW_OP_lit14";
2565    case DW_OP_lit15:
2566      return "DW_OP_lit15";
2567    case DW_OP_lit16:
2568      return "DW_OP_lit16";
2569    case DW_OP_lit17:
2570      return "DW_OP_lit17";
2571    case DW_OP_lit18:
2572      return "DW_OP_lit18";
2573    case DW_OP_lit19:
2574      return "DW_OP_lit19";
2575    case DW_OP_lit20:
2576      return "DW_OP_lit20";
2577    case DW_OP_lit21:
2578      return "DW_OP_lit21";
2579    case DW_OP_lit22:
2580      return "DW_OP_lit22";
2581    case DW_OP_lit23:
2582      return "DW_OP_lit23";
2583    case DW_OP_lit24:
2584      return "DW_OP_lit24";
2585    case DW_OP_lit25:
2586      return "DW_OP_lit25";
2587    case DW_OP_lit26:
2588      return "DW_OP_lit26";
2589    case DW_OP_lit27:
2590      return "DW_OP_lit27";
2591    case DW_OP_lit28:
2592      return "DW_OP_lit28";
2593    case DW_OP_lit29:
2594      return "DW_OP_lit29";
2595    case DW_OP_lit30:
2596      return "DW_OP_lit30";
2597    case DW_OP_lit31:
2598      return "DW_OP_lit31";
2599    case DW_OP_reg0:
2600      return "DW_OP_reg0";
2601    case DW_OP_reg1:
2602      return "DW_OP_reg1";
2603    case DW_OP_reg2:
2604      return "DW_OP_reg2";
2605    case DW_OP_reg3:
2606      return "DW_OP_reg3";
2607    case DW_OP_reg4:
2608      return "DW_OP_reg4";
2609    case DW_OP_reg5:
2610      return "DW_OP_reg5";
2611    case DW_OP_reg6:
2612      return "DW_OP_reg6";
2613    case DW_OP_reg7:
2614      return "DW_OP_reg7";
2615    case DW_OP_reg8:
2616      return "DW_OP_reg8";
2617    case DW_OP_reg9:
2618      return "DW_OP_reg9";
2619    case DW_OP_reg10:
2620      return "DW_OP_reg10";
2621    case DW_OP_reg11:
2622      return "DW_OP_reg11";
2623    case DW_OP_reg12:
2624      return "DW_OP_reg12";
2625    case DW_OP_reg13:
2626      return "DW_OP_reg13";
2627    case DW_OP_reg14:
2628      return "DW_OP_reg14";
2629    case DW_OP_reg15:
2630      return "DW_OP_reg15";
2631    case DW_OP_reg16:
2632      return "DW_OP_reg16";
2633    case DW_OP_reg17:
2634      return "DW_OP_reg17";
2635    case DW_OP_reg18:
2636      return "DW_OP_reg18";
2637    case DW_OP_reg19:
2638      return "DW_OP_reg19";
2639    case DW_OP_reg20:
2640      return "DW_OP_reg20";
2641    case DW_OP_reg21:
2642      return "DW_OP_reg21";
2643    case DW_OP_reg22:
2644      return "DW_OP_reg22";
2645    case DW_OP_reg23:
2646      return "DW_OP_reg23";
2647    case DW_OP_reg24:
2648      return "DW_OP_reg24";
2649    case DW_OP_reg25:
2650      return "DW_OP_reg25";
2651    case DW_OP_reg26:
2652      return "DW_OP_reg26";
2653    case DW_OP_reg27:
2654      return "DW_OP_reg27";
2655    case DW_OP_reg28:
2656      return "DW_OP_reg28";
2657    case DW_OP_reg29:
2658      return "DW_OP_reg29";
2659    case DW_OP_reg30:
2660      return "DW_OP_reg30";
2661    case DW_OP_reg31:
2662      return "DW_OP_reg31";
2663    case DW_OP_breg0:
2664      return "DW_OP_breg0";
2665    case DW_OP_breg1:
2666      return "DW_OP_breg1";
2667    case DW_OP_breg2:
2668      return "DW_OP_breg2";
2669    case DW_OP_breg3:
2670      return "DW_OP_breg3";
2671    case DW_OP_breg4:
2672      return "DW_OP_breg4";
2673    case DW_OP_breg5:
2674      return "DW_OP_breg5";
2675    case DW_OP_breg6:
2676      return "DW_OP_breg6";
2677    case DW_OP_breg7:
2678      return "DW_OP_breg7";
2679    case DW_OP_breg8:
2680      return "DW_OP_breg8";
2681    case DW_OP_breg9:
2682      return "DW_OP_breg9";
2683    case DW_OP_breg10:
2684      return "DW_OP_breg10";
2685    case DW_OP_breg11:
2686      return "DW_OP_breg11";
2687    case DW_OP_breg12:
2688      return "DW_OP_breg12";
2689    case DW_OP_breg13:
2690      return "DW_OP_breg13";
2691    case DW_OP_breg14:
2692      return "DW_OP_breg14";
2693    case DW_OP_breg15:
2694      return "DW_OP_breg15";
2695    case DW_OP_breg16:
2696      return "DW_OP_breg16";
2697    case DW_OP_breg17:
2698      return "DW_OP_breg17";
2699    case DW_OP_breg18:
2700      return "DW_OP_breg18";
2701    case DW_OP_breg19:
2702      return "DW_OP_breg19";
2703    case DW_OP_breg20:
2704      return "DW_OP_breg20";
2705    case DW_OP_breg21:
2706      return "DW_OP_breg21";
2707    case DW_OP_breg22:
2708      return "DW_OP_breg22";
2709    case DW_OP_breg23:
2710      return "DW_OP_breg23";
2711    case DW_OP_breg24:
2712      return "DW_OP_breg24";
2713    case DW_OP_breg25:
2714      return "DW_OP_breg25";
2715    case DW_OP_breg26:
2716      return "DW_OP_breg26";
2717    case DW_OP_breg27:
2718      return "DW_OP_breg27";
2719    case DW_OP_breg28:
2720      return "DW_OP_breg28";
2721    case DW_OP_breg29:
2722      return "DW_OP_breg29";
2723    case DW_OP_breg30:
2724      return "DW_OP_breg30";
2725    case DW_OP_breg31:
2726      return "DW_OP_breg31";
2727    case DW_OP_regx:
2728      return "DW_OP_regx";
2729    case DW_OP_fbreg:
2730      return "DW_OP_fbreg";
2731    case DW_OP_bregx:
2732      return "DW_OP_bregx";
2733    case DW_OP_piece:
2734      return "DW_OP_piece";
2735    case DW_OP_deref_size:
2736      return "DW_OP_deref_size";
2737    case DW_OP_xderef_size:
2738      return "DW_OP_xderef_size";
2739    case DW_OP_nop:
2740      return "DW_OP_nop";
2741    case DW_OP_push_object_address:
2742      return "DW_OP_push_object_address";
2743    case DW_OP_call2:
2744      return "DW_OP_call2";
2745    case DW_OP_call4:
2746      return "DW_OP_call4";
2747    case DW_OP_call_ref:
2748      return "DW_OP_call_ref";
2749    case DW_OP_GNU_push_tls_address:
2750      return "DW_OP_GNU_push_tls_address";
2751    default:
2752      return "OP_<unknown>";
2753    }
2754}
2755
2756/* Return a pointer to a newly allocated location description.  Location
2757   descriptions are simple expression terms that can be strung
2758   together to form more complicated location (address) descriptions.  */
2759
2760static inline dw_loc_descr_ref
2761new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2762	       unsigned HOST_WIDE_INT oprnd2)
2763{
2764  dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2765
2766  descr->dw_loc_opc = op;
2767  descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2768  descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2769  descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2770  descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2771
2772  return descr;
2773}
2774
2775
2776/* Add a location description term to a location description expression.  */
2777
2778static inline void
2779add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2780{
2781  dw_loc_descr_ref *d;
2782
2783  /* Find the end of the chain.  */
2784  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2785    ;
2786
2787  *d = descr;
2788}
2789
2790/* Return the size of a location descriptor.  */
2791
2792static unsigned long
2793size_of_loc_descr (dw_loc_descr_ref loc)
2794{
2795  unsigned long size = 1;
2796
2797  switch (loc->dw_loc_opc)
2798    {
2799    case DW_OP_addr:
2800    case INTERNAL_DW_OP_tls_addr:
2801      size += DWARF2_ADDR_SIZE;
2802      break;
2803    case DW_OP_const1u:
2804    case DW_OP_const1s:
2805      size += 1;
2806      break;
2807    case DW_OP_const2u:
2808    case DW_OP_const2s:
2809      size += 2;
2810      break;
2811    case DW_OP_const4u:
2812    case DW_OP_const4s:
2813      size += 4;
2814      break;
2815    case DW_OP_const8u:
2816    case DW_OP_const8s:
2817      size += 8;
2818      break;
2819    case DW_OP_constu:
2820      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821      break;
2822    case DW_OP_consts:
2823      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2824      break;
2825    case DW_OP_pick:
2826      size += 1;
2827      break;
2828    case DW_OP_plus_uconst:
2829      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2830      break;
2831    case DW_OP_skip:
2832    case DW_OP_bra:
2833      size += 2;
2834      break;
2835    case DW_OP_breg0:
2836    case DW_OP_breg1:
2837    case DW_OP_breg2:
2838    case DW_OP_breg3:
2839    case DW_OP_breg4:
2840    case DW_OP_breg5:
2841    case DW_OP_breg6:
2842    case DW_OP_breg7:
2843    case DW_OP_breg8:
2844    case DW_OP_breg9:
2845    case DW_OP_breg10:
2846    case DW_OP_breg11:
2847    case DW_OP_breg12:
2848    case DW_OP_breg13:
2849    case DW_OP_breg14:
2850    case DW_OP_breg15:
2851    case DW_OP_breg16:
2852    case DW_OP_breg17:
2853    case DW_OP_breg18:
2854    case DW_OP_breg19:
2855    case DW_OP_breg20:
2856    case DW_OP_breg21:
2857    case DW_OP_breg22:
2858    case DW_OP_breg23:
2859    case DW_OP_breg24:
2860    case DW_OP_breg25:
2861    case DW_OP_breg26:
2862    case DW_OP_breg27:
2863    case DW_OP_breg28:
2864    case DW_OP_breg29:
2865    case DW_OP_breg30:
2866    case DW_OP_breg31:
2867      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2868      break;
2869    case DW_OP_regx:
2870      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2871      break;
2872    case DW_OP_fbreg:
2873      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2874      break;
2875    case DW_OP_bregx:
2876      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877      size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2878      break;
2879    case DW_OP_piece:
2880      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2881      break;
2882    case DW_OP_deref_size:
2883    case DW_OP_xderef_size:
2884      size += 1;
2885      break;
2886    case DW_OP_call2:
2887      size += 2;
2888      break;
2889    case DW_OP_call4:
2890      size += 4;
2891      break;
2892    case DW_OP_call_ref:
2893      size += DWARF2_ADDR_SIZE;
2894      break;
2895    default:
2896      break;
2897    }
2898
2899  return size;
2900}
2901
2902/* Return the size of a series of location descriptors.  */
2903
2904static unsigned long
2905size_of_locs (dw_loc_descr_ref loc)
2906{
2907  unsigned long size;
2908
2909  for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910    {
2911      loc->dw_loc_addr = size;
2912      size += size_of_loc_descr (loc);
2913    }
2914
2915  return size;
2916}
2917
2918/* Output location description stack opcode's operands (if any).  */
2919
2920static void
2921output_loc_operands (dw_loc_descr_ref loc)
2922{
2923  dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924  dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926  switch (loc->dw_loc_opc)
2927    {
2928#ifdef DWARF2_DEBUGGING_INFO
2929    case DW_OP_addr:
2930      dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931      break;
2932    case DW_OP_const2u:
2933    case DW_OP_const2s:
2934      dw2_asm_output_data (2, val1->v.val_int, NULL);
2935      break;
2936    case DW_OP_const4u:
2937    case DW_OP_const4s:
2938      dw2_asm_output_data (4, val1->v.val_int, NULL);
2939      break;
2940    case DW_OP_const8u:
2941    case DW_OP_const8s:
2942      if (HOST_BITS_PER_LONG < 64)
2943	abort ();
2944      dw2_asm_output_data (8, val1->v.val_int, NULL);
2945      break;
2946    case DW_OP_skip:
2947    case DW_OP_bra:
2948      {
2949	int offset;
2950
2951	if (val1->val_class == dw_val_class_loc)
2952	  offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953	else
2954	  abort ();
2955
2956	dw2_asm_output_data (2, offset, NULL);
2957      }
2958      break;
2959#else
2960    case DW_OP_addr:
2961    case DW_OP_const2u:
2962    case DW_OP_const2s:
2963    case DW_OP_const4u:
2964    case DW_OP_const4s:
2965    case DW_OP_const8u:
2966    case DW_OP_const8s:
2967    case DW_OP_skip:
2968    case DW_OP_bra:
2969      /* We currently don't make any attempt to make sure these are
2970	 aligned properly like we do for the main unwind info, so
2971	 don't support emitting things larger than a byte if we're
2972	 only doing unwinding.  */
2973      abort ();
2974#endif
2975    case DW_OP_const1u:
2976    case DW_OP_const1s:
2977      dw2_asm_output_data (1, val1->v.val_int, NULL);
2978      break;
2979    case DW_OP_constu:
2980      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981      break;
2982    case DW_OP_consts:
2983      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984      break;
2985    case DW_OP_pick:
2986      dw2_asm_output_data (1, val1->v.val_int, NULL);
2987      break;
2988    case DW_OP_plus_uconst:
2989      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990      break;
2991    case DW_OP_breg0:
2992    case DW_OP_breg1:
2993    case DW_OP_breg2:
2994    case DW_OP_breg3:
2995    case DW_OP_breg4:
2996    case DW_OP_breg5:
2997    case DW_OP_breg6:
2998    case DW_OP_breg7:
2999    case DW_OP_breg8:
3000    case DW_OP_breg9:
3001    case DW_OP_breg10:
3002    case DW_OP_breg11:
3003    case DW_OP_breg12:
3004    case DW_OP_breg13:
3005    case DW_OP_breg14:
3006    case DW_OP_breg15:
3007    case DW_OP_breg16:
3008    case DW_OP_breg17:
3009    case DW_OP_breg18:
3010    case DW_OP_breg19:
3011    case DW_OP_breg20:
3012    case DW_OP_breg21:
3013    case DW_OP_breg22:
3014    case DW_OP_breg23:
3015    case DW_OP_breg24:
3016    case DW_OP_breg25:
3017    case DW_OP_breg26:
3018    case DW_OP_breg27:
3019    case DW_OP_breg28:
3020    case DW_OP_breg29:
3021    case DW_OP_breg30:
3022    case DW_OP_breg31:
3023      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024      break;
3025    case DW_OP_regx:
3026      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027      break;
3028    case DW_OP_fbreg:
3029      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030      break;
3031    case DW_OP_bregx:
3032      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033      dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034      break;
3035    case DW_OP_piece:
3036      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037      break;
3038    case DW_OP_deref_size:
3039    case DW_OP_xderef_size:
3040      dw2_asm_output_data (1, val1->v.val_int, NULL);
3041      break;
3042
3043    case INTERNAL_DW_OP_tls_addr:
3044#ifdef ASM_OUTPUT_DWARF_DTPREL
3045      ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046			       val1->v.val_addr);
3047      fputc ('\n', asm_out_file);
3048#else
3049      abort ();
3050#endif
3051      break;
3052
3053    default:
3054      /* Other codes have no operands.  */
3055      break;
3056    }
3057}
3058
3059/* Output a sequence of location operations.  */
3060
3061static void
3062output_loc_sequence (dw_loc_descr_ref loc)
3063{
3064  for (; loc != NULL; loc = loc->dw_loc_next)
3065    {
3066      /* Output the opcode.  */
3067      dw2_asm_output_data (1, loc->dw_loc_opc,
3068			   "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069
3070      /* Output the operand(s) (if any).  */
3071      output_loc_operands (loc);
3072    }
3073}
3074
3075/* This routine will generate the correct assembly data for a location
3076   description based on a cfi entry with a complex address.  */
3077
3078static void
3079output_cfa_loc (dw_cfi_ref cfi)
3080{
3081  dw_loc_descr_ref loc;
3082  unsigned long size;
3083
3084  /* Output the size of the block.  */
3085  loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086  size = size_of_locs (loc);
3087  dw2_asm_output_data_uleb128 (size, NULL);
3088
3089  /* Now output the operations themselves.  */
3090  output_loc_sequence (loc);
3091}
3092
3093/* This function builds a dwarf location descriptor sequence from
3094   a dw_cfa_location.  */
3095
3096static struct dw_loc_descr_struct *
3097build_cfa_loc (dw_cfa_location *cfa)
3098{
3099  struct dw_loc_descr_struct *head, *tmp;
3100
3101  if (cfa->indirect == 0)
3102    abort ();
3103
3104  if (cfa->base_offset)
3105    {
3106      if (cfa->reg <= 31)
3107	head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3108      else
3109	head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3110    }
3111  else if (cfa->reg <= 31)
3112    head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3113  else
3114    head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3115
3116  head->dw_loc_oprnd1.val_class = dw_val_class_const;
3117  tmp = new_loc_descr (DW_OP_deref, 0, 0);
3118  add_loc_descr (&head, tmp);
3119  if (cfa->offset != 0)
3120    {
3121      tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3122      add_loc_descr (&head, tmp);
3123    }
3124
3125  return head;
3126}
3127
3128/* This function fills in aa dw_cfa_location structure from a dwarf location
3129   descriptor sequence.  */
3130
3131static void
3132get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3133{
3134  struct dw_loc_descr_struct *ptr;
3135  cfa->offset = 0;
3136  cfa->base_offset = 0;
3137  cfa->indirect = 0;
3138  cfa->reg = -1;
3139
3140  for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3141    {
3142      enum dwarf_location_atom op = ptr->dw_loc_opc;
3143
3144      switch (op)
3145	{
3146	case DW_OP_reg0:
3147	case DW_OP_reg1:
3148	case DW_OP_reg2:
3149	case DW_OP_reg3:
3150	case DW_OP_reg4:
3151	case DW_OP_reg5:
3152	case DW_OP_reg6:
3153	case DW_OP_reg7:
3154	case DW_OP_reg8:
3155	case DW_OP_reg9:
3156	case DW_OP_reg10:
3157	case DW_OP_reg11:
3158	case DW_OP_reg12:
3159	case DW_OP_reg13:
3160	case DW_OP_reg14:
3161	case DW_OP_reg15:
3162	case DW_OP_reg16:
3163	case DW_OP_reg17:
3164	case DW_OP_reg18:
3165	case DW_OP_reg19:
3166	case DW_OP_reg20:
3167	case DW_OP_reg21:
3168	case DW_OP_reg22:
3169	case DW_OP_reg23:
3170	case DW_OP_reg24:
3171	case DW_OP_reg25:
3172	case DW_OP_reg26:
3173	case DW_OP_reg27:
3174	case DW_OP_reg28:
3175	case DW_OP_reg29:
3176	case DW_OP_reg30:
3177	case DW_OP_reg31:
3178	  cfa->reg = op - DW_OP_reg0;
3179	  break;
3180	case DW_OP_regx:
3181	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3182	  break;
3183	case DW_OP_breg0:
3184	case DW_OP_breg1:
3185	case DW_OP_breg2:
3186	case DW_OP_breg3:
3187	case DW_OP_breg4:
3188	case DW_OP_breg5:
3189	case DW_OP_breg6:
3190	case DW_OP_breg7:
3191	case DW_OP_breg8:
3192	case DW_OP_breg9:
3193	case DW_OP_breg10:
3194	case DW_OP_breg11:
3195	case DW_OP_breg12:
3196	case DW_OP_breg13:
3197	case DW_OP_breg14:
3198	case DW_OP_breg15:
3199	case DW_OP_breg16:
3200	case DW_OP_breg17:
3201	case DW_OP_breg18:
3202	case DW_OP_breg19:
3203	case DW_OP_breg20:
3204	case DW_OP_breg21:
3205	case DW_OP_breg22:
3206	case DW_OP_breg23:
3207	case DW_OP_breg24:
3208	case DW_OP_breg25:
3209	case DW_OP_breg26:
3210	case DW_OP_breg27:
3211	case DW_OP_breg28:
3212	case DW_OP_breg29:
3213	case DW_OP_breg30:
3214	case DW_OP_breg31:
3215	  cfa->reg = op - DW_OP_breg0;
3216	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3217	  break;
3218	case DW_OP_bregx:
3219	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3220	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3221	  break;
3222	case DW_OP_deref:
3223	  cfa->indirect = 1;
3224	  break;
3225	case DW_OP_plus_uconst:
3226	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3227	  break;
3228	default:
3229	  internal_error ("DW_LOC_OP %s not implemented\n",
3230			  dwarf_stack_op_name (ptr->dw_loc_opc));
3231	}
3232    }
3233}
3234#endif /* .debug_frame support */
3235
3236/* And now, the support for symbolic debugging information.  */
3237#ifdef DWARF2_DEBUGGING_INFO
3238
3239/* .debug_str support.  */
3240static int output_indirect_string (void **, void *);
3241
3242static void dwarf2out_init (const char *);
3243static void dwarf2out_finish (const char *);
3244static void dwarf2out_define (unsigned int, const char *);
3245static void dwarf2out_undef (unsigned int, const char *);
3246static void dwarf2out_start_source_file (unsigned, const char *);
3247static void dwarf2out_end_source_file (unsigned);
3248static void dwarf2out_begin_block (unsigned, unsigned);
3249static void dwarf2out_end_block (unsigned, unsigned);
3250static bool dwarf2out_ignore_block (tree);
3251static void dwarf2out_global_decl (tree);
3252static void dwarf2out_abstract_function (tree);
3253
3254/* The debug hooks structure.  */
3255
3256const struct gcc_debug_hooks dwarf2_debug_hooks =
3257{
3258  dwarf2out_init,
3259  dwarf2out_finish,
3260  dwarf2out_define,
3261  dwarf2out_undef,
3262  dwarf2out_start_source_file,
3263  dwarf2out_end_source_file,
3264  dwarf2out_begin_block,
3265  dwarf2out_end_block,
3266  dwarf2out_ignore_block,
3267  dwarf2out_source_line,
3268  dwarf2out_begin_prologue,
3269  debug_nothing_int_charstar,	/* end_prologue */
3270  dwarf2out_end_epilogue,
3271  debug_nothing_tree,		/* begin_function */
3272  debug_nothing_int,		/* end_function */
3273  dwarf2out_decl,		/* function_decl */
3274  dwarf2out_global_decl,
3275  debug_nothing_tree,		/* deferred_inline_function */
3276  /* The DWARF 2 backend tries to reduce debugging bloat by not
3277     emitting the abstract description of inline functions until
3278     something tries to reference them.  */
3279  dwarf2out_abstract_function,	/* outlining_inline_function */
3280  debug_nothing_rtx,		/* label */
3281  debug_nothing_int		/* handle_pch */
3282};
3283#endif
3284
3285/* NOTE: In the comments in this file, many references are made to
3286   "Debugging Information Entries".  This term is abbreviated as `DIE'
3287   throughout the remainder of this file.  */
3288
3289/* An internal representation of the DWARF output is built, and then
3290   walked to generate the DWARF debugging info.  The walk of the internal
3291   representation is done after the entire program has been compiled.
3292   The types below are used to describe the internal representation.  */
3293
3294/* Various DIE's use offsets relative to the beginning of the
3295   .debug_info section to refer to each other.  */
3296
3297typedef long int dw_offset;
3298
3299/* Define typedefs here to avoid circular dependencies.  */
3300
3301typedef struct dw_attr_struct *dw_attr_ref;
3302typedef struct dw_line_info_struct *dw_line_info_ref;
3303typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3304typedef struct pubname_struct *pubname_ref;
3305typedef struct dw_ranges_struct *dw_ranges_ref;
3306
3307/* Each entry in the line_info_table maintains the file and
3308   line number associated with the label generated for that
3309   entry.  The label gives the PC value associated with
3310   the line number entry.  */
3311
3312typedef struct dw_line_info_struct GTY(())
3313{
3314  unsigned long dw_file_num;
3315  unsigned long dw_line_num;
3316}
3317dw_line_info_entry;
3318
3319/* Line information for functions in separate sections; each one gets its
3320   own sequence.  */
3321typedef struct dw_separate_line_info_struct GTY(())
3322{
3323  unsigned long dw_file_num;
3324  unsigned long dw_line_num;
3325  unsigned long function;
3326}
3327dw_separate_line_info_entry;
3328
3329/* Each DIE attribute has a field specifying the attribute kind,
3330   a link to the next attribute in the chain, and an attribute value.
3331   Attributes are typically linked below the DIE they modify.  */
3332
3333typedef struct dw_attr_struct GTY(())
3334{
3335  enum dwarf_attribute dw_attr;
3336  dw_attr_ref dw_attr_next;
3337  dw_val_node dw_attr_val;
3338}
3339dw_attr_node;
3340
3341/* The Debugging Information Entry (DIE) structure */
3342
3343typedef struct die_struct GTY(())
3344{
3345  enum dwarf_tag die_tag;
3346  char *die_symbol;
3347  dw_attr_ref die_attr;
3348  dw_die_ref die_parent;
3349  dw_die_ref die_child;
3350  dw_die_ref die_sib;
3351  dw_die_ref die_definition; /* ref from a specification to its definition */
3352  dw_offset die_offset;
3353  unsigned long die_abbrev;
3354  int die_mark;
3355}
3356die_node;
3357
3358/* The pubname structure */
3359
3360typedef struct pubname_struct GTY(())
3361{
3362  dw_die_ref die;
3363  char *name;
3364}
3365pubname_entry;
3366
3367struct dw_ranges_struct GTY(())
3368{
3369  int block_num;
3370};
3371
3372/* The limbo die list structure.  */
3373typedef struct limbo_die_struct GTY(())
3374{
3375  dw_die_ref die;
3376  tree created_for;
3377  struct limbo_die_struct *next;
3378}
3379limbo_die_node;
3380
3381/* How to start an assembler comment.  */
3382#ifndef ASM_COMMENT_START
3383#define ASM_COMMENT_START ";#"
3384#endif
3385
3386/* Define a macro which returns nonzero for a TYPE_DECL which was
3387   implicitly generated for a tagged type.
3388
3389   Note that unlike the gcc front end (which generates a NULL named
3390   TYPE_DECL node for each complete tagged type, each array type, and
3391   each function type node created) the g++ front end generates a
3392   _named_ TYPE_DECL node for each tagged type node created.
3393   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3394   generate a DW_TAG_typedef DIE for them.  */
3395
3396#define TYPE_DECL_IS_STUB(decl)				\
3397  (DECL_NAME (decl) == NULL_TREE			\
3398   || (DECL_ARTIFICIAL (decl)				\
3399       && is_tagged_type (TREE_TYPE (decl))		\
3400       && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
3401	   /* This is necessary for stub decls that	\
3402	      appear in nested inline functions.  */	\
3403	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
3404	       && (decl_ultimate_origin (decl)		\
3405		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3406
3407/* Information concerning the compilation unit's programming
3408   language, and compiler version.  */
3409
3410/* Fixed size portion of the DWARF compilation unit header.  */
3411#define DWARF_COMPILE_UNIT_HEADER_SIZE \
3412  (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3413
3414/* Fixed size portion of public names info.  */
3415#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3416
3417/* Fixed size portion of the address range info.  */
3418#define DWARF_ARANGES_HEADER_SIZE					\
3419  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4,	\
3420                DWARF2_ADDR_SIZE * 2)					\
3421   - DWARF_INITIAL_LENGTH_SIZE)
3422
3423/* Size of padding portion in the address range info.  It must be
3424   aligned to twice the pointer size.  */
3425#define DWARF_ARANGES_PAD_SIZE \
3426  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3427                DWARF2_ADDR_SIZE * 2) \
3428   - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3429
3430/* Use assembler line directives if available.  */
3431#ifndef DWARF2_ASM_LINE_DEBUG_INFO
3432#ifdef HAVE_AS_DWARF2_DEBUG_LINE
3433#define DWARF2_ASM_LINE_DEBUG_INFO 1
3434#else
3435#define DWARF2_ASM_LINE_DEBUG_INFO 0
3436#endif
3437#endif
3438
3439/* Minimum line offset in a special line info. opcode.
3440   This value was chosen to give a reasonable range of values.  */
3441#define DWARF_LINE_BASE  -10
3442
3443/* First special line opcode - leave room for the standard opcodes.  */
3444#define DWARF_LINE_OPCODE_BASE  10
3445
3446/* Range of line offsets in a special line info. opcode.  */
3447#define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)
3448
3449/* Flag that indicates the initial value of the is_stmt_start flag.
3450   In the present implementation, we do not mark any lines as
3451   the beginning of a source statement, because that information
3452   is not made available by the GCC front-end.  */
3453#define	DWARF_LINE_DEFAULT_IS_STMT_START 1
3454
3455#ifdef DWARF2_DEBUGGING_INFO
3456/* This location is used by calc_die_sizes() to keep track
3457   the offset of each DIE within the .debug_info section.  */
3458static unsigned long next_die_offset;
3459#endif
3460
3461/* Record the root of the DIE's built for the current compilation unit.  */
3462static GTY(()) dw_die_ref comp_unit_die;
3463
3464/* A list of DIEs with a NULL parent waiting to be relocated.  */
3465static GTY(()) limbo_die_node *limbo_die_list;
3466
3467/* Filenames referenced by this compilation unit.  */
3468static GTY(()) varray_type file_table;
3469static GTY(()) varray_type file_table_emitted;
3470static GTY(()) size_t file_table_last_lookup_index;
3471
3472/* A pointer to the base of a table of references to DIE's that describe
3473   declarations.  The table is indexed by DECL_UID() which is a unique
3474   number identifying each decl.  */
3475static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3476
3477/* Number of elements currently allocated for the decl_die_table.  */
3478static GTY(()) unsigned decl_die_table_allocated;
3479
3480/* Number of elements in decl_die_table currently in use.  */
3481static GTY(()) unsigned decl_die_table_in_use;
3482
3483/* Size (in elements) of increments by which we may expand the
3484   decl_die_table.  */
3485#define DECL_DIE_TABLE_INCREMENT 256
3486
3487/* A pointer to the base of a list of references to DIE's that
3488   are uniquely identified by their tag, presence/absence of
3489   children DIE's, and list of attribute/value pairs.  */
3490static GTY((length ("abbrev_die_table_allocated")))
3491  dw_die_ref *abbrev_die_table;
3492
3493/* Number of elements currently allocated for abbrev_die_table.  */
3494static GTY(()) unsigned abbrev_die_table_allocated;
3495
3496/* Number of elements in type_die_table currently in use.  */
3497static GTY(()) unsigned abbrev_die_table_in_use;
3498
3499/* Size (in elements) of increments by which we may expand the
3500   abbrev_die_table.  */
3501#define ABBREV_DIE_TABLE_INCREMENT 256
3502
3503/* A pointer to the base of a table that contains line information
3504   for each source code line in .text in the compilation unit.  */
3505static GTY((length ("line_info_table_allocated")))
3506     dw_line_info_ref line_info_table;
3507
3508/* Number of elements currently allocated for line_info_table.  */
3509static GTY(()) unsigned line_info_table_allocated;
3510
3511/* Number of elements in line_info_table currently in use.  */
3512static GTY(()) unsigned line_info_table_in_use;
3513
3514/* A pointer to the base of a table that contains line information
3515   for each source code line outside of .text in the compilation unit.  */
3516static GTY ((length ("separate_line_info_table_allocated")))
3517     dw_separate_line_info_ref separate_line_info_table;
3518
3519/* Number of elements currently allocated for separate_line_info_table.  */
3520static GTY(()) unsigned separate_line_info_table_allocated;
3521
3522/* Number of elements in separate_line_info_table currently in use.  */
3523static GTY(()) unsigned separate_line_info_table_in_use;
3524
3525/* Size (in elements) of increments by which we may expand the
3526   line_info_table.  */
3527#define LINE_INFO_TABLE_INCREMENT 1024
3528
3529/* A pointer to the base of a table that contains a list of publicly
3530   accessible names.  */
3531static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3532
3533/* Number of elements currently allocated for pubname_table.  */
3534static GTY(()) unsigned pubname_table_allocated;
3535
3536/* Number of elements in pubname_table currently in use.  */
3537static GTY(()) unsigned pubname_table_in_use;
3538
3539/* Size (in elements) of increments by which we may expand the
3540   pubname_table.  */
3541#define PUBNAME_TABLE_INCREMENT 64
3542
3543/* Array of dies for which we should generate .debug_arange info.  */
3544static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3545
3546/* Number of elements currently allocated for arange_table.  */
3547static GTY(()) unsigned arange_table_allocated;
3548
3549/* Number of elements in arange_table currently in use.  */
3550static GTY(()) unsigned arange_table_in_use;
3551
3552/* Size (in elements) of increments by which we may expand the
3553   arange_table.  */
3554#define ARANGE_TABLE_INCREMENT 64
3555
3556/* Array of dies for which we should generate .debug_ranges info.  */
3557static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3558
3559/* Number of elements currently allocated for ranges_table.  */
3560static GTY(()) unsigned ranges_table_allocated;
3561
3562/* Number of elements in ranges_table currently in use.  */
3563static GTY(()) unsigned ranges_table_in_use;
3564
3565/* Size (in elements) of increments by which we may expand the
3566   ranges_table.  */
3567#define RANGES_TABLE_INCREMENT 64
3568
3569/* Whether we have location lists that need outputting */
3570static GTY(()) unsigned have_location_lists;
3571
3572#ifdef DWARF2_DEBUGGING_INFO
3573/* Record whether the function being analyzed contains inlined functions.  */
3574static int current_function_has_inlines;
3575#endif
3576#if 0 && defined (MIPS_DEBUGGING_INFO)
3577static int comp_unit_has_inlines;
3578#endif
3579
3580/* Number of file tables emitted in maybe_emit_file().  */
3581static GTY(()) int emitcount = 0;
3582
3583/* Number of internal labels generated by gen_internal_sym().  */
3584static GTY(()) int label_num;
3585
3586#ifdef DWARF2_DEBUGGING_INFO
3587
3588/* Forward declarations for functions defined in this file.  */
3589
3590static int is_pseudo_reg (rtx);
3591static tree type_main_variant (tree);
3592static int is_tagged_type (tree);
3593static const char *dwarf_tag_name (unsigned);
3594static const char *dwarf_attr_name (unsigned);
3595static const char *dwarf_form_name (unsigned);
3596#if 0
3597static const char *dwarf_type_encoding_name (unsigned);
3598#endif
3599static tree decl_ultimate_origin (tree);
3600static tree block_ultimate_origin (tree);
3601static tree decl_class_context (tree);
3602static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3603static inline enum dw_val_class AT_class (dw_attr_ref);
3604static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3605static inline unsigned AT_flag (dw_attr_ref);
3606static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3607static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3608static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3609static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3610static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3611			      unsigned long);
3612static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3613			       unsigned int, unsigned char *);
3614static hashval_t debug_str_do_hash (const void *);
3615static int debug_str_eq (const void *, const void *);
3616static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3617static inline const char *AT_string (dw_attr_ref);
3618static int AT_string_form (dw_attr_ref);
3619static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3620static void add_AT_specification (dw_die_ref, dw_die_ref);
3621static inline dw_die_ref AT_ref (dw_attr_ref);
3622static inline int AT_ref_external (dw_attr_ref);
3623static inline void set_AT_ref_external (dw_attr_ref, int);
3624static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3625static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3626static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3627static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3628			     dw_loc_list_ref);
3629static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3630static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3631static inline rtx AT_addr (dw_attr_ref);
3632static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3633static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3634static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3635			   unsigned HOST_WIDE_INT);
3636static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3637			       unsigned long);
3638static inline const char *AT_lbl (dw_attr_ref);
3639static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3640static const char *get_AT_low_pc (dw_die_ref);
3641static const char *get_AT_hi_pc (dw_die_ref);
3642static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3643static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3644static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3645static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3646static bool is_c_family (void);
3647static bool is_cxx (void);
3648static bool is_java (void);
3649static bool is_fortran (void);
3650static bool is_ada (void);
3651static void remove_AT (dw_die_ref, enum dwarf_attribute);
3652static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3653static inline void free_die (dw_die_ref);
3654static void remove_children (dw_die_ref);
3655static void add_child_die (dw_die_ref, dw_die_ref);
3656static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3657static dw_die_ref lookup_type_die (tree);
3658static void equate_type_number_to_die (tree, dw_die_ref);
3659static dw_die_ref lookup_decl_die (tree);
3660static void equate_decl_number_to_die (tree, dw_die_ref);
3661static void print_spaces (FILE *);
3662static void print_die (dw_die_ref, FILE *);
3663static void print_dwarf_line_table (FILE *);
3664static void reverse_die_lists (dw_die_ref);
3665static void reverse_all_dies (dw_die_ref);
3666static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3667static dw_die_ref pop_compile_unit (dw_die_ref);
3668static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3669static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3670static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3671static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3672static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3673static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3674static int same_die_p (dw_die_ref, dw_die_ref, int *);
3675static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3676static void compute_section_prefix (dw_die_ref);
3677static int is_type_die (dw_die_ref);
3678static int is_comdat_die (dw_die_ref);
3679static int is_symbol_die (dw_die_ref);
3680static void assign_symbol_names (dw_die_ref);
3681static void break_out_includes (dw_die_ref);
3682static hashval_t htab_cu_hash (const void *);
3683static int htab_cu_eq (const void *, const void *);
3684static void htab_cu_del (void *);
3685static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3686static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3687static void add_sibling_attributes (dw_die_ref);
3688static void build_abbrev_table (dw_die_ref);
3689static void output_location_lists (dw_die_ref);
3690static int constant_size (long unsigned);
3691static unsigned long size_of_die (dw_die_ref);
3692static void calc_die_sizes (dw_die_ref);
3693static void mark_dies (dw_die_ref);
3694static void unmark_dies (dw_die_ref);
3695static void unmark_all_dies (dw_die_ref);
3696static unsigned long size_of_pubnames (void);
3697static unsigned long size_of_aranges (void);
3698static enum dwarf_form value_format (dw_attr_ref);
3699static void output_value_format (dw_attr_ref);
3700static void output_abbrev_section (void);
3701static void output_die_symbol (dw_die_ref);
3702static void output_die (dw_die_ref);
3703static void output_compilation_unit_header (void);
3704static void output_comp_unit (dw_die_ref, int);
3705static const char *dwarf2_name (tree, int);
3706static void add_pubname (tree, dw_die_ref);
3707static void output_pubnames (void);
3708static void add_arange (tree, dw_die_ref);
3709static void output_aranges (void);
3710static unsigned int add_ranges (tree);
3711static void output_ranges (void);
3712static void output_line_info (void);
3713static void output_file_names (void);
3714static dw_die_ref base_type_die (tree);
3715static tree root_type (tree);
3716static int is_base_type (tree);
3717static bool is_subrange_type (tree);
3718static dw_die_ref subrange_type_die (tree, dw_die_ref);
3719static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3720static int type_is_enum (tree);
3721static unsigned int dbx_reg_number (rtx);
3722static dw_loc_descr_ref reg_loc_descriptor (rtx);
3723static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3724static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3725static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3726static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3727static int is_based_loc (rtx);
3728static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3729static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3730static dw_loc_descr_ref loc_descriptor (rtx);
3731static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3732static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3733static tree field_type (tree);
3734static unsigned int simple_type_align_in_bits (tree);
3735static unsigned int simple_decl_align_in_bits (tree);
3736static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3737static HOST_WIDE_INT field_byte_offset (tree);
3738static void add_AT_location_description	(dw_die_ref, enum dwarf_attribute,
3739					 dw_loc_descr_ref);
3740static void add_data_member_location_attribute (dw_die_ref, tree);
3741static void add_const_value_attribute (dw_die_ref, rtx);
3742static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3743static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3744static void insert_float (rtx, unsigned char *);
3745static rtx rtl_for_decl_location (tree);
3746static void add_location_or_const_value_attribute (dw_die_ref, tree);
3747static void tree_add_const_value_attribute (dw_die_ref, tree);
3748static void add_name_attribute (dw_die_ref, const char *);
3749static void add_comp_dir_attribute (dw_die_ref);
3750static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3751static void add_subscript_info (dw_die_ref, tree);
3752static void add_byte_size_attribute (dw_die_ref, tree);
3753static void add_bit_offset_attribute (dw_die_ref, tree);
3754static void add_bit_size_attribute (dw_die_ref, tree);
3755static void add_prototyped_attribute (dw_die_ref, tree);
3756static void add_abstract_origin_attribute (dw_die_ref, tree);
3757static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3758static void add_src_coords_attributes (dw_die_ref, tree);
3759static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3760static void push_decl_scope (tree);
3761static void pop_decl_scope (void);
3762static dw_die_ref scope_die_for (tree, dw_die_ref);
3763static inline int local_scope_p (dw_die_ref);
3764static inline int class_or_namespace_scope_p (dw_die_ref);
3765static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3766static const char *type_tag (tree);
3767static tree member_declared_type (tree);
3768#if 0
3769static const char *decl_start_label (tree);
3770#endif
3771static void gen_array_type_die (tree, dw_die_ref);
3772static void gen_set_type_die (tree, dw_die_ref);
3773#if 0
3774static void gen_entry_point_die (tree, dw_die_ref);
3775#endif
3776static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3777static void gen_inlined_structure_type_die (tree, dw_die_ref);
3778static void gen_inlined_union_type_die (tree, dw_die_ref);
3779static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3780static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3781static void gen_unspecified_parameters_die (tree, dw_die_ref);
3782static void gen_formal_types_die (tree, dw_die_ref);
3783static void gen_subprogram_die (tree, dw_die_ref);
3784static void gen_variable_die (tree, dw_die_ref);
3785static void gen_label_die (tree, dw_die_ref);
3786static void gen_lexical_block_die (tree, dw_die_ref, int);
3787static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3788static void gen_field_die (tree, dw_die_ref);
3789static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3790static dw_die_ref gen_compile_unit_die (const char *);
3791static void gen_string_type_die (tree, dw_die_ref);
3792static void gen_inheritance_die (tree, tree, dw_die_ref);
3793static void gen_member_die (tree, dw_die_ref);
3794static void gen_struct_or_union_type_die (tree, dw_die_ref);
3795static void gen_subroutine_type_die (tree, dw_die_ref);
3796static void gen_typedef_die (tree, dw_die_ref);
3797static void gen_type_die (tree, dw_die_ref);
3798static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3799static void gen_block_die (tree, dw_die_ref, int);
3800static void decls_for_scope (tree, dw_die_ref, int);
3801static int is_redundant_typedef (tree);
3802static void gen_namespace_die (tree);
3803static void gen_decl_die (tree, dw_die_ref);
3804static dw_die_ref force_namespace_die (tree);
3805static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3806static void declare_in_namespace (tree, dw_die_ref);
3807static unsigned lookup_filename (const char *);
3808static void init_file_table (void);
3809static void retry_incomplete_types (void);
3810static void gen_type_die_for_member (tree, tree, dw_die_ref);
3811static void splice_child_die (dw_die_ref, dw_die_ref);
3812static int file_info_cmp (const void *, const void *);
3813static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3814				     const char *, const char *, unsigned);
3815static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3816				       const char *, const char *,
3817				       const char *);
3818static void output_loc_list (dw_loc_list_ref);
3819static char *gen_internal_sym (const char *);
3820
3821static void prune_unmark_dies (dw_die_ref);
3822static void prune_unused_types_mark (dw_die_ref, int);
3823static void prune_unused_types_walk (dw_die_ref);
3824static void prune_unused_types_walk_attribs (dw_die_ref);
3825static void prune_unused_types_prune (dw_die_ref);
3826static void prune_unused_types (void);
3827static int maybe_emit_file (int);
3828
3829/* Section names used to hold DWARF debugging information.  */
3830#ifndef DEBUG_INFO_SECTION
3831#define DEBUG_INFO_SECTION	".debug_info"
3832#endif
3833#ifndef DEBUG_ABBREV_SECTION
3834#define DEBUG_ABBREV_SECTION	".debug_abbrev"
3835#endif
3836#ifndef DEBUG_ARANGES_SECTION
3837#define DEBUG_ARANGES_SECTION	".debug_aranges"
3838#endif
3839#ifndef DEBUG_MACINFO_SECTION
3840#define DEBUG_MACINFO_SECTION	".debug_macinfo"
3841#endif
3842#ifndef DEBUG_LINE_SECTION
3843#define DEBUG_LINE_SECTION	".debug_line"
3844#endif
3845#ifndef DEBUG_LOC_SECTION
3846#define DEBUG_LOC_SECTION	".debug_loc"
3847#endif
3848#ifndef DEBUG_PUBNAMES_SECTION
3849#define DEBUG_PUBNAMES_SECTION	".debug_pubnames"
3850#endif
3851#ifndef DEBUG_STR_SECTION
3852#define DEBUG_STR_SECTION	".debug_str"
3853#endif
3854#ifndef DEBUG_RANGES_SECTION
3855#define DEBUG_RANGES_SECTION	".debug_ranges"
3856#endif
3857
3858/* Standard ELF section names for compiled code and data.  */
3859#ifndef TEXT_SECTION_NAME
3860#define TEXT_SECTION_NAME	".text"
3861#endif
3862
3863/* Section flags for .debug_str section.  */
3864#define DEBUG_STR_SECTION_FLAGS \
3865  (HAVE_GAS_SHF_MERGE && flag_merge_constants			\
3866   ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1	\
3867   : SECTION_DEBUG)
3868
3869/* Labels we insert at beginning sections we can reference instead of
3870   the section names themselves.  */
3871
3872#ifndef TEXT_SECTION_LABEL
3873#define TEXT_SECTION_LABEL		"Ltext"
3874#endif
3875#ifndef DEBUG_LINE_SECTION_LABEL
3876#define DEBUG_LINE_SECTION_LABEL	"Ldebug_line"
3877#endif
3878#ifndef DEBUG_INFO_SECTION_LABEL
3879#define DEBUG_INFO_SECTION_LABEL	"Ldebug_info"
3880#endif
3881#ifndef DEBUG_ABBREV_SECTION_LABEL
3882#define DEBUG_ABBREV_SECTION_LABEL	"Ldebug_abbrev"
3883#endif
3884#ifndef DEBUG_LOC_SECTION_LABEL
3885#define DEBUG_LOC_SECTION_LABEL		"Ldebug_loc"
3886#endif
3887#ifndef DEBUG_RANGES_SECTION_LABEL
3888#define DEBUG_RANGES_SECTION_LABEL	"Ldebug_ranges"
3889#endif
3890#ifndef DEBUG_MACINFO_SECTION_LABEL
3891#define DEBUG_MACINFO_SECTION_LABEL     "Ldebug_macinfo"
3892#endif
3893
3894/* Definitions of defaults for formats and names of various special
3895   (artificial) labels which may be generated within this file (when the -g
3896   options is used and DWARF2_DEBUGGING_INFO is in effect.
3897   If necessary, these may be overridden from within the tm.h file, but
3898   typically, overriding these defaults is unnecessary.  */
3899
3900static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3901static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3902static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3903static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3904static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3905static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3906static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3907static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3908
3909#ifndef TEXT_END_LABEL
3910#define TEXT_END_LABEL		"Letext"
3911#endif
3912#ifndef BLOCK_BEGIN_LABEL
3913#define BLOCK_BEGIN_LABEL	"LBB"
3914#endif
3915#ifndef BLOCK_END_LABEL
3916#define BLOCK_END_LABEL		"LBE"
3917#endif
3918#ifndef LINE_CODE_LABEL
3919#define LINE_CODE_LABEL		"LM"
3920#endif
3921#ifndef SEPARATE_LINE_CODE_LABEL
3922#define SEPARATE_LINE_CODE_LABEL	"LSM"
3923#endif
3924
3925/* We allow a language front-end to designate a function that is to be
3926   called to "demangle" any name before it it put into a DIE.  */
3927
3928static const char *(*demangle_name_func) (const char *);
3929
3930void
3931dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3932{
3933  demangle_name_func = func;
3934}
3935
3936/* Test if rtl node points to a pseudo register.  */
3937
3938static inline int
3939is_pseudo_reg (rtx rtl)
3940{
3941  return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3942	  || (GET_CODE (rtl) == SUBREG
3943	      && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3944}
3945
3946/* Return a reference to a type, with its const and volatile qualifiers
3947   removed.  */
3948
3949static inline tree
3950type_main_variant (tree type)
3951{
3952  type = TYPE_MAIN_VARIANT (type);
3953
3954  /* ??? There really should be only one main variant among any group of
3955     variants of a given type (and all of the MAIN_VARIANT values for all
3956     members of the group should point to that one type) but sometimes the C
3957     front-end messes this up for array types, so we work around that bug
3958     here.  */
3959  if (TREE_CODE (type) == ARRAY_TYPE)
3960    while (type != TYPE_MAIN_VARIANT (type))
3961      type = TYPE_MAIN_VARIANT (type);
3962
3963  return type;
3964}
3965
3966/* Return nonzero if the given type node represents a tagged type.  */
3967
3968static inline int
3969is_tagged_type (tree type)
3970{
3971  enum tree_code code = TREE_CODE (type);
3972
3973  return (code == RECORD_TYPE || code == UNION_TYPE
3974	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3975}
3976
3977/* Convert a DIE tag into its string name.  */
3978
3979static const char *
3980dwarf_tag_name (unsigned int tag)
3981{
3982  switch (tag)
3983    {
3984    case DW_TAG_padding:
3985      return "DW_TAG_padding";
3986    case DW_TAG_array_type:
3987      return "DW_TAG_array_type";
3988    case DW_TAG_class_type:
3989      return "DW_TAG_class_type";
3990    case DW_TAG_entry_point:
3991      return "DW_TAG_entry_point";
3992    case DW_TAG_enumeration_type:
3993      return "DW_TAG_enumeration_type";
3994    case DW_TAG_formal_parameter:
3995      return "DW_TAG_formal_parameter";
3996    case DW_TAG_imported_declaration:
3997      return "DW_TAG_imported_declaration";
3998    case DW_TAG_label:
3999      return "DW_TAG_label";
4000    case DW_TAG_lexical_block:
4001      return "DW_TAG_lexical_block";
4002    case DW_TAG_member:
4003      return "DW_TAG_member";
4004    case DW_TAG_pointer_type:
4005      return "DW_TAG_pointer_type";
4006    case DW_TAG_reference_type:
4007      return "DW_TAG_reference_type";
4008    case DW_TAG_compile_unit:
4009      return "DW_TAG_compile_unit";
4010    case DW_TAG_string_type:
4011      return "DW_TAG_string_type";
4012    case DW_TAG_structure_type:
4013      return "DW_TAG_structure_type";
4014    case DW_TAG_subroutine_type:
4015      return "DW_TAG_subroutine_type";
4016    case DW_TAG_typedef:
4017      return "DW_TAG_typedef";
4018    case DW_TAG_union_type:
4019      return "DW_TAG_union_type";
4020    case DW_TAG_unspecified_parameters:
4021      return "DW_TAG_unspecified_parameters";
4022    case DW_TAG_variant:
4023      return "DW_TAG_variant";
4024    case DW_TAG_common_block:
4025      return "DW_TAG_common_block";
4026    case DW_TAG_common_inclusion:
4027      return "DW_TAG_common_inclusion";
4028    case DW_TAG_inheritance:
4029      return "DW_TAG_inheritance";
4030    case DW_TAG_inlined_subroutine:
4031      return "DW_TAG_inlined_subroutine";
4032    case DW_TAG_module:
4033      return "DW_TAG_module";
4034    case DW_TAG_ptr_to_member_type:
4035      return "DW_TAG_ptr_to_member_type";
4036    case DW_TAG_set_type:
4037      return "DW_TAG_set_type";
4038    case DW_TAG_subrange_type:
4039      return "DW_TAG_subrange_type";
4040    case DW_TAG_with_stmt:
4041      return "DW_TAG_with_stmt";
4042    case DW_TAG_access_declaration:
4043      return "DW_TAG_access_declaration";
4044    case DW_TAG_base_type:
4045      return "DW_TAG_base_type";
4046    case DW_TAG_catch_block:
4047      return "DW_TAG_catch_block";
4048    case DW_TAG_const_type:
4049      return "DW_TAG_const_type";
4050    case DW_TAG_constant:
4051      return "DW_TAG_constant";
4052    case DW_TAG_enumerator:
4053      return "DW_TAG_enumerator";
4054    case DW_TAG_file_type:
4055      return "DW_TAG_file_type";
4056    case DW_TAG_friend:
4057      return "DW_TAG_friend";
4058    case DW_TAG_namelist:
4059      return "DW_TAG_namelist";
4060    case DW_TAG_namelist_item:
4061      return "DW_TAG_namelist_item";
4062    case DW_TAG_namespace:
4063      return "DW_TAG_namespace";
4064    case DW_TAG_packed_type:
4065      return "DW_TAG_packed_type";
4066    case DW_TAG_subprogram:
4067      return "DW_TAG_subprogram";
4068    case DW_TAG_template_type_param:
4069      return "DW_TAG_template_type_param";
4070    case DW_TAG_template_value_param:
4071      return "DW_TAG_template_value_param";
4072    case DW_TAG_thrown_type:
4073      return "DW_TAG_thrown_type";
4074    case DW_TAG_try_block:
4075      return "DW_TAG_try_block";
4076    case DW_TAG_variant_part:
4077      return "DW_TAG_variant_part";
4078    case DW_TAG_variable:
4079      return "DW_TAG_variable";
4080    case DW_TAG_volatile_type:
4081      return "DW_TAG_volatile_type";
4082    case DW_TAG_MIPS_loop:
4083      return "DW_TAG_MIPS_loop";
4084    case DW_TAG_format_label:
4085      return "DW_TAG_format_label";
4086    case DW_TAG_function_template:
4087      return "DW_TAG_function_template";
4088    case DW_TAG_class_template:
4089      return "DW_TAG_class_template";
4090    case DW_TAG_GNU_BINCL:
4091      return "DW_TAG_GNU_BINCL";
4092    case DW_TAG_GNU_EINCL:
4093      return "DW_TAG_GNU_EINCL";
4094    default:
4095      return "DW_TAG_<unknown>";
4096    }
4097}
4098
4099/* Convert a DWARF attribute code into its string name.  */
4100
4101static const char *
4102dwarf_attr_name (unsigned int attr)
4103{
4104  switch (attr)
4105    {
4106    case DW_AT_sibling:
4107      return "DW_AT_sibling";
4108    case DW_AT_location:
4109      return "DW_AT_location";
4110    case DW_AT_name:
4111      return "DW_AT_name";
4112    case DW_AT_ordering:
4113      return "DW_AT_ordering";
4114    case DW_AT_subscr_data:
4115      return "DW_AT_subscr_data";
4116    case DW_AT_byte_size:
4117      return "DW_AT_byte_size";
4118    case DW_AT_bit_offset:
4119      return "DW_AT_bit_offset";
4120    case DW_AT_bit_size:
4121      return "DW_AT_bit_size";
4122    case DW_AT_element_list:
4123      return "DW_AT_element_list";
4124    case DW_AT_stmt_list:
4125      return "DW_AT_stmt_list";
4126    case DW_AT_low_pc:
4127      return "DW_AT_low_pc";
4128    case DW_AT_high_pc:
4129      return "DW_AT_high_pc";
4130    case DW_AT_language:
4131      return "DW_AT_language";
4132    case DW_AT_member:
4133      return "DW_AT_member";
4134    case DW_AT_discr:
4135      return "DW_AT_discr";
4136    case DW_AT_discr_value:
4137      return "DW_AT_discr_value";
4138    case DW_AT_visibility:
4139      return "DW_AT_visibility";
4140    case DW_AT_import:
4141      return "DW_AT_import";
4142    case DW_AT_string_length:
4143      return "DW_AT_string_length";
4144    case DW_AT_common_reference:
4145      return "DW_AT_common_reference";
4146    case DW_AT_comp_dir:
4147      return "DW_AT_comp_dir";
4148    case DW_AT_const_value:
4149      return "DW_AT_const_value";
4150    case DW_AT_containing_type:
4151      return "DW_AT_containing_type";
4152    case DW_AT_default_value:
4153      return "DW_AT_default_value";
4154    case DW_AT_inline:
4155      return "DW_AT_inline";
4156    case DW_AT_is_optional:
4157      return "DW_AT_is_optional";
4158    case DW_AT_lower_bound:
4159      return "DW_AT_lower_bound";
4160    case DW_AT_producer:
4161      return "DW_AT_producer";
4162    case DW_AT_prototyped:
4163      return "DW_AT_prototyped";
4164    case DW_AT_return_addr:
4165      return "DW_AT_return_addr";
4166    case DW_AT_start_scope:
4167      return "DW_AT_start_scope";
4168    case DW_AT_stride_size:
4169      return "DW_AT_stride_size";
4170    case DW_AT_upper_bound:
4171      return "DW_AT_upper_bound";
4172    case DW_AT_abstract_origin:
4173      return "DW_AT_abstract_origin";
4174    case DW_AT_accessibility:
4175      return "DW_AT_accessibility";
4176    case DW_AT_address_class:
4177      return "DW_AT_address_class";
4178    case DW_AT_artificial:
4179      return "DW_AT_artificial";
4180    case DW_AT_base_types:
4181      return "DW_AT_base_types";
4182    case DW_AT_calling_convention:
4183      return "DW_AT_calling_convention";
4184    case DW_AT_count:
4185      return "DW_AT_count";
4186    case DW_AT_data_member_location:
4187      return "DW_AT_data_member_location";
4188    case DW_AT_decl_column:
4189      return "DW_AT_decl_column";
4190    case DW_AT_decl_file:
4191      return "DW_AT_decl_file";
4192    case DW_AT_decl_line:
4193      return "DW_AT_decl_line";
4194    case DW_AT_declaration:
4195      return "DW_AT_declaration";
4196    case DW_AT_discr_list:
4197      return "DW_AT_discr_list";
4198    case DW_AT_encoding:
4199      return "DW_AT_encoding";
4200    case DW_AT_external:
4201      return "DW_AT_external";
4202    case DW_AT_frame_base:
4203      return "DW_AT_frame_base";
4204    case DW_AT_friend:
4205      return "DW_AT_friend";
4206    case DW_AT_identifier_case:
4207      return "DW_AT_identifier_case";
4208    case DW_AT_macro_info:
4209      return "DW_AT_macro_info";
4210    case DW_AT_namelist_items:
4211      return "DW_AT_namelist_items";
4212    case DW_AT_priority:
4213      return "DW_AT_priority";
4214    case DW_AT_segment:
4215      return "DW_AT_segment";
4216    case DW_AT_specification:
4217      return "DW_AT_specification";
4218    case DW_AT_static_link:
4219      return "DW_AT_static_link";
4220    case DW_AT_type:
4221      return "DW_AT_type";
4222    case DW_AT_use_location:
4223      return "DW_AT_use_location";
4224    case DW_AT_variable_parameter:
4225      return "DW_AT_variable_parameter";
4226    case DW_AT_virtuality:
4227      return "DW_AT_virtuality";
4228    case DW_AT_vtable_elem_location:
4229      return "DW_AT_vtable_elem_location";
4230
4231    case DW_AT_allocated:
4232      return "DW_AT_allocated";
4233    case DW_AT_associated:
4234      return "DW_AT_associated";
4235    case DW_AT_data_location:
4236      return "DW_AT_data_location";
4237    case DW_AT_stride:
4238      return "DW_AT_stride";
4239    case DW_AT_entry_pc:
4240      return "DW_AT_entry_pc";
4241    case DW_AT_use_UTF8:
4242      return "DW_AT_use_UTF8";
4243    case DW_AT_extension:
4244      return "DW_AT_extension";
4245    case DW_AT_ranges:
4246      return "DW_AT_ranges";
4247    case DW_AT_trampoline:
4248      return "DW_AT_trampoline";
4249    case DW_AT_call_column:
4250      return "DW_AT_call_column";
4251    case DW_AT_call_file:
4252      return "DW_AT_call_file";
4253    case DW_AT_call_line:
4254      return "DW_AT_call_line";
4255
4256    case DW_AT_MIPS_fde:
4257      return "DW_AT_MIPS_fde";
4258    case DW_AT_MIPS_loop_begin:
4259      return "DW_AT_MIPS_loop_begin";
4260    case DW_AT_MIPS_tail_loop_begin:
4261      return "DW_AT_MIPS_tail_loop_begin";
4262    case DW_AT_MIPS_epilog_begin:
4263      return "DW_AT_MIPS_epilog_begin";
4264    case DW_AT_MIPS_loop_unroll_factor:
4265      return "DW_AT_MIPS_loop_unroll_factor";
4266    case DW_AT_MIPS_software_pipeline_depth:
4267      return "DW_AT_MIPS_software_pipeline_depth";
4268    case DW_AT_MIPS_linkage_name:
4269      return "DW_AT_MIPS_linkage_name";
4270    case DW_AT_MIPS_stride:
4271      return "DW_AT_MIPS_stride";
4272    case DW_AT_MIPS_abstract_name:
4273      return "DW_AT_MIPS_abstract_name";
4274    case DW_AT_MIPS_clone_origin:
4275      return "DW_AT_MIPS_clone_origin";
4276    case DW_AT_MIPS_has_inlines:
4277      return "DW_AT_MIPS_has_inlines";
4278
4279    case DW_AT_sf_names:
4280      return "DW_AT_sf_names";
4281    case DW_AT_src_info:
4282      return "DW_AT_src_info";
4283    case DW_AT_mac_info:
4284      return "DW_AT_mac_info";
4285    case DW_AT_src_coords:
4286      return "DW_AT_src_coords";
4287    case DW_AT_body_begin:
4288      return "DW_AT_body_begin";
4289    case DW_AT_body_end:
4290      return "DW_AT_body_end";
4291    case DW_AT_GNU_vector:
4292      return "DW_AT_GNU_vector";
4293
4294    case DW_AT_VMS_rtnbeg_pd_address:
4295      return "DW_AT_VMS_rtnbeg_pd_address";
4296
4297    default:
4298      return "DW_AT_<unknown>";
4299    }
4300}
4301
4302/* Convert a DWARF value form code into its string name.  */
4303
4304static const char *
4305dwarf_form_name (unsigned int form)
4306{
4307  switch (form)
4308    {
4309    case DW_FORM_addr:
4310      return "DW_FORM_addr";
4311    case DW_FORM_block2:
4312      return "DW_FORM_block2";
4313    case DW_FORM_block4:
4314      return "DW_FORM_block4";
4315    case DW_FORM_data2:
4316      return "DW_FORM_data2";
4317    case DW_FORM_data4:
4318      return "DW_FORM_data4";
4319    case DW_FORM_data8:
4320      return "DW_FORM_data8";
4321    case DW_FORM_string:
4322      return "DW_FORM_string";
4323    case DW_FORM_block:
4324      return "DW_FORM_block";
4325    case DW_FORM_block1:
4326      return "DW_FORM_block1";
4327    case DW_FORM_data1:
4328      return "DW_FORM_data1";
4329    case DW_FORM_flag:
4330      return "DW_FORM_flag";
4331    case DW_FORM_sdata:
4332      return "DW_FORM_sdata";
4333    case DW_FORM_strp:
4334      return "DW_FORM_strp";
4335    case DW_FORM_udata:
4336      return "DW_FORM_udata";
4337    case DW_FORM_ref_addr:
4338      return "DW_FORM_ref_addr";
4339    case DW_FORM_ref1:
4340      return "DW_FORM_ref1";
4341    case DW_FORM_ref2:
4342      return "DW_FORM_ref2";
4343    case DW_FORM_ref4:
4344      return "DW_FORM_ref4";
4345    case DW_FORM_ref8:
4346      return "DW_FORM_ref8";
4347    case DW_FORM_ref_udata:
4348      return "DW_FORM_ref_udata";
4349    case DW_FORM_indirect:
4350      return "DW_FORM_indirect";
4351    default:
4352      return "DW_FORM_<unknown>";
4353    }
4354}
4355
4356/* Convert a DWARF type code into its string name.  */
4357
4358#if 0
4359static const char *
4360dwarf_type_encoding_name (unsigned enc)
4361{
4362  switch (enc)
4363    {
4364    case DW_ATE_address:
4365      return "DW_ATE_address";
4366    case DW_ATE_boolean:
4367      return "DW_ATE_boolean";
4368    case DW_ATE_complex_float:
4369      return "DW_ATE_complex_float";
4370    case DW_ATE_float:
4371      return "DW_ATE_float";
4372    case DW_ATE_signed:
4373      return "DW_ATE_signed";
4374    case DW_ATE_signed_char:
4375      return "DW_ATE_signed_char";
4376    case DW_ATE_unsigned:
4377      return "DW_ATE_unsigned";
4378    case DW_ATE_unsigned_char:
4379      return "DW_ATE_unsigned_char";
4380    default:
4381      return "DW_ATE_<unknown>";
4382    }
4383}
4384#endif
4385
4386/* Determine the "ultimate origin" of a decl.  The decl may be an inlined
4387   instance of an inlined instance of a decl which is local to an inline
4388   function, so we have to trace all of the way back through the origin chain
4389   to find out what sort of node actually served as the original seed for the
4390   given block.  */
4391
4392static tree
4393decl_ultimate_origin (tree decl)
4394{
4395  /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4396     nodes in the function to point to themselves; ignore that if
4397     we're trying to output the abstract instance of this function.  */
4398  if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4399    return NULL_TREE;
4400
4401#ifdef ENABLE_CHECKING
4402  if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4403    /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4404       most distant ancestor, this should never happen.  */
4405    abort ();
4406#endif
4407
4408  return DECL_ABSTRACT_ORIGIN (decl);
4409}
4410
4411/* Determine the "ultimate origin" of a block.  The block may be an inlined
4412   instance of an inlined instance of a block which is local to an inline
4413   function, so we have to trace all of the way back through the origin chain
4414   to find out what sort of node actually served as the original seed for the
4415   given block.  */
4416
4417static tree
4418block_ultimate_origin (tree block)
4419{
4420  tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4421
4422  /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4423     nodes in the function to point to themselves; ignore that if
4424     we're trying to output the abstract instance of this function.  */
4425  if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4426    return NULL_TREE;
4427
4428  if (immediate_origin == NULL_TREE)
4429    return NULL_TREE;
4430  else
4431    {
4432      tree ret_val;
4433      tree lookahead = immediate_origin;
4434
4435      do
4436	{
4437	  ret_val = lookahead;
4438	  lookahead = (TREE_CODE (ret_val) == BLOCK
4439		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4440	}
4441      while (lookahead != NULL && lookahead != ret_val);
4442
4443      return ret_val;
4444    }
4445}
4446
4447/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
4448   of a virtual function may refer to a base class, so we check the 'this'
4449   parameter.  */
4450
4451static tree
4452decl_class_context (tree decl)
4453{
4454  tree context = NULL_TREE;
4455
4456  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4457    context = DECL_CONTEXT (decl);
4458  else
4459    context = TYPE_MAIN_VARIANT
4460      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4461
4462  if (context && !TYPE_P (context))
4463    context = NULL_TREE;
4464
4465  return context;
4466}
4467
4468/* Add an attribute/value pair to a DIE.  We build the lists up in reverse
4469   addition order, and correct that in reverse_all_dies.  */
4470
4471static inline void
4472add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4473{
4474  if (die != NULL && attr != NULL)
4475    {
4476      attr->dw_attr_next = die->die_attr;
4477      die->die_attr = attr;
4478    }
4479}
4480
4481static inline enum dw_val_class
4482AT_class (dw_attr_ref a)
4483{
4484  return a->dw_attr_val.val_class;
4485}
4486
4487/* Add a flag value attribute to a DIE.  */
4488
4489static inline void
4490add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4491{
4492  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4493
4494  attr->dw_attr_next = NULL;
4495  attr->dw_attr = attr_kind;
4496  attr->dw_attr_val.val_class = dw_val_class_flag;
4497  attr->dw_attr_val.v.val_flag = flag;
4498  add_dwarf_attr (die, attr);
4499}
4500
4501static inline unsigned
4502AT_flag (dw_attr_ref a)
4503{
4504  if (a && AT_class (a) == dw_val_class_flag)
4505    return a->dw_attr_val.v.val_flag;
4506
4507  abort ();
4508}
4509
4510/* Add a signed integer attribute value to a DIE.  */
4511
4512static inline void
4513add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4514{
4515  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4516
4517  attr->dw_attr_next = NULL;
4518  attr->dw_attr = attr_kind;
4519  attr->dw_attr_val.val_class = dw_val_class_const;
4520  attr->dw_attr_val.v.val_int = int_val;
4521  add_dwarf_attr (die, attr);
4522}
4523
4524static inline HOST_WIDE_INT
4525AT_int (dw_attr_ref a)
4526{
4527  if (a && AT_class (a) == dw_val_class_const)
4528    return a->dw_attr_val.v.val_int;
4529
4530  abort ();
4531}
4532
4533/* Add an unsigned integer attribute value to a DIE.  */
4534
4535static inline void
4536add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4537		 unsigned HOST_WIDE_INT unsigned_val)
4538{
4539  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4540
4541  attr->dw_attr_next = NULL;
4542  attr->dw_attr = attr_kind;
4543  attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4544  attr->dw_attr_val.v.val_unsigned = unsigned_val;
4545  add_dwarf_attr (die, attr);
4546}
4547
4548static inline unsigned HOST_WIDE_INT
4549AT_unsigned (dw_attr_ref a)
4550{
4551  if (a && AT_class (a) == dw_val_class_unsigned_const)
4552    return a->dw_attr_val.v.val_unsigned;
4553
4554  abort ();
4555}
4556
4557/* Add an unsigned double integer attribute value to a DIE.  */
4558
4559static inline void
4560add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4561		  long unsigned int val_hi, long unsigned int val_low)
4562{
4563  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4564
4565  attr->dw_attr_next = NULL;
4566  attr->dw_attr = attr_kind;
4567  attr->dw_attr_val.val_class = dw_val_class_long_long;
4568  attr->dw_attr_val.v.val_long_long.hi = val_hi;
4569  attr->dw_attr_val.v.val_long_long.low = val_low;
4570  add_dwarf_attr (die, attr);
4571}
4572
4573/* Add a floating point attribute value to a DIE and return it.  */
4574
4575static inline void
4576add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4577	    unsigned int length, unsigned int elt_size, unsigned char *array)
4578{
4579  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4580
4581  attr->dw_attr_next = NULL;
4582  attr->dw_attr = attr_kind;
4583  attr->dw_attr_val.val_class = dw_val_class_vec;
4584  attr->dw_attr_val.v.val_vec.length = length;
4585  attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4586  attr->dw_attr_val.v.val_vec.array = array;
4587  add_dwarf_attr (die, attr);
4588}
4589
4590/* Hash and equality functions for debug_str_hash.  */
4591
4592static hashval_t
4593debug_str_do_hash (const void *x)
4594{
4595  return htab_hash_string (((const struct indirect_string_node *)x)->str);
4596}
4597
4598static int
4599debug_str_eq (const void *x1, const void *x2)
4600{
4601  return strcmp ((((const struct indirect_string_node *)x1)->str),
4602		 (const char *)x2) == 0;
4603}
4604
4605/* Add a string attribute value to a DIE.  */
4606
4607static inline void
4608add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4609{
4610  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4611  struct indirect_string_node *node;
4612  void **slot;
4613
4614  if (! debug_str_hash)
4615    debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4616				      debug_str_eq, NULL);
4617
4618  slot = htab_find_slot_with_hash (debug_str_hash, str,
4619				   htab_hash_string (str), INSERT);
4620  if (*slot == NULL)
4621    *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4622  node = (struct indirect_string_node *) *slot;
4623  node->str = ggc_strdup (str);
4624  node->refcount++;
4625
4626  attr->dw_attr_next = NULL;
4627  attr->dw_attr = attr_kind;
4628  attr->dw_attr_val.val_class = dw_val_class_str;
4629  attr->dw_attr_val.v.val_str = node;
4630  add_dwarf_attr (die, attr);
4631}
4632
4633static inline const char *
4634AT_string (dw_attr_ref a)
4635{
4636  if (a && AT_class (a) == dw_val_class_str)
4637    return a->dw_attr_val.v.val_str->str;
4638
4639  abort ();
4640}
4641
4642/* Find out whether a string should be output inline in DIE
4643   or out-of-line in .debug_str section.  */
4644
4645static int
4646AT_string_form (dw_attr_ref a)
4647{
4648  if (a && AT_class (a) == dw_val_class_str)
4649    {
4650      struct indirect_string_node *node;
4651      unsigned int len;
4652      char label[32];
4653
4654      node = a->dw_attr_val.v.val_str;
4655      if (node->form)
4656	return node->form;
4657
4658      len = strlen (node->str) + 1;
4659
4660      /* If the string is shorter or equal to the size of the reference, it is
4661	 always better to put it inline.  */
4662      if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4663	return node->form = DW_FORM_string;
4664
4665      /* If we cannot expect the linker to merge strings in .debug_str
4666	 section, only put it into .debug_str if it is worth even in this
4667	 single module.  */
4668      if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4669	  && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4670	return node->form = DW_FORM_string;
4671
4672      ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4673      ++dw2_string_counter;
4674      node->label = xstrdup (label);
4675
4676      return node->form = DW_FORM_strp;
4677    }
4678
4679  abort ();
4680}
4681
4682/* Add a DIE reference attribute value to a DIE.  */
4683
4684static inline void
4685add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4686{
4687  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4688
4689  attr->dw_attr_next = NULL;
4690  attr->dw_attr = attr_kind;
4691  attr->dw_attr_val.val_class = dw_val_class_die_ref;
4692  attr->dw_attr_val.v.val_die_ref.die = targ_die;
4693  attr->dw_attr_val.v.val_die_ref.external = 0;
4694  add_dwarf_attr (die, attr);
4695}
4696
4697/* Add an AT_specification attribute to a DIE, and also make the back
4698   pointer from the specification to the definition.  */
4699
4700static inline void
4701add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4702{
4703  add_AT_die_ref (die, DW_AT_specification, targ_die);
4704  if (targ_die->die_definition)
4705    abort ();
4706  targ_die->die_definition = die;
4707}
4708
4709static inline dw_die_ref
4710AT_ref (dw_attr_ref a)
4711{
4712  if (a && AT_class (a) == dw_val_class_die_ref)
4713    return a->dw_attr_val.v.val_die_ref.die;
4714
4715  abort ();
4716}
4717
4718static inline int
4719AT_ref_external (dw_attr_ref a)
4720{
4721  if (a && AT_class (a) == dw_val_class_die_ref)
4722    return a->dw_attr_val.v.val_die_ref.external;
4723
4724  return 0;
4725}
4726
4727static inline void
4728set_AT_ref_external (dw_attr_ref a, int i)
4729{
4730  if (a && AT_class (a) == dw_val_class_die_ref)
4731    a->dw_attr_val.v.val_die_ref.external = i;
4732  else
4733    abort ();
4734}
4735
4736/* Add an FDE reference attribute value to a DIE.  */
4737
4738static inline void
4739add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4740{
4741  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4742
4743  attr->dw_attr_next = NULL;
4744  attr->dw_attr = attr_kind;
4745  attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4746  attr->dw_attr_val.v.val_fde_index = targ_fde;
4747  add_dwarf_attr (die, attr);
4748}
4749
4750/* Add a location description attribute value to a DIE.  */
4751
4752static inline void
4753add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4754{
4755  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4756
4757  attr->dw_attr_next = NULL;
4758  attr->dw_attr = attr_kind;
4759  attr->dw_attr_val.val_class = dw_val_class_loc;
4760  attr->dw_attr_val.v.val_loc = loc;
4761  add_dwarf_attr (die, attr);
4762}
4763
4764static inline dw_loc_descr_ref
4765AT_loc (dw_attr_ref a)
4766{
4767  if (a && AT_class (a) == dw_val_class_loc)
4768    return a->dw_attr_val.v.val_loc;
4769
4770  abort ();
4771}
4772
4773static inline void
4774add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4775{
4776  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4777
4778  attr->dw_attr_next = NULL;
4779  attr->dw_attr = attr_kind;
4780  attr->dw_attr_val.val_class = dw_val_class_loc_list;
4781  attr->dw_attr_val.v.val_loc_list = loc_list;
4782  add_dwarf_attr (die, attr);
4783  have_location_lists = 1;
4784}
4785
4786static inline dw_loc_list_ref
4787AT_loc_list (dw_attr_ref a)
4788{
4789  if (a && AT_class (a) == dw_val_class_loc_list)
4790    return a->dw_attr_val.v.val_loc_list;
4791
4792  abort ();
4793}
4794
4795/* Add an address constant attribute value to a DIE.  */
4796
4797static inline void
4798add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4799{
4800  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4801
4802  attr->dw_attr_next = NULL;
4803  attr->dw_attr = attr_kind;
4804  attr->dw_attr_val.val_class = dw_val_class_addr;
4805  attr->dw_attr_val.v.val_addr = addr;
4806  add_dwarf_attr (die, attr);
4807}
4808
4809static inline rtx
4810AT_addr (dw_attr_ref a)
4811{
4812  if (a && AT_class (a) == dw_val_class_addr)
4813    return a->dw_attr_val.v.val_addr;
4814
4815  abort ();
4816}
4817
4818/* Add a label identifier attribute value to a DIE.  */
4819
4820static inline void
4821add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4822{
4823  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4824
4825  attr->dw_attr_next = NULL;
4826  attr->dw_attr = attr_kind;
4827  attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4828  attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4829  add_dwarf_attr (die, attr);
4830}
4831
4832/* Add a section offset attribute value to a DIE.  */
4833
4834static inline void
4835add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4836{
4837  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4838
4839  attr->dw_attr_next = NULL;
4840  attr->dw_attr = attr_kind;
4841  attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4842  attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4843  add_dwarf_attr (die, attr);
4844}
4845
4846/* Add an offset attribute value to a DIE.  */
4847
4848static inline void
4849add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4850	       unsigned HOST_WIDE_INT offset)
4851{
4852  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4853
4854  attr->dw_attr_next = NULL;
4855  attr->dw_attr = attr_kind;
4856  attr->dw_attr_val.val_class = dw_val_class_offset;
4857  attr->dw_attr_val.v.val_offset = offset;
4858  add_dwarf_attr (die, attr);
4859}
4860
4861/* Add an range_list attribute value to a DIE.  */
4862
4863static void
4864add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4865		   long unsigned int offset)
4866{
4867  dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4868
4869  attr->dw_attr_next = NULL;
4870  attr->dw_attr = attr_kind;
4871  attr->dw_attr_val.val_class = dw_val_class_range_list;
4872  attr->dw_attr_val.v.val_offset = offset;
4873  add_dwarf_attr (die, attr);
4874}
4875
4876static inline const char *
4877AT_lbl (dw_attr_ref a)
4878{
4879  if (a && (AT_class (a) == dw_val_class_lbl_id
4880	    || AT_class (a) == dw_val_class_lbl_offset))
4881    return a->dw_attr_val.v.val_lbl_id;
4882
4883  abort ();
4884}
4885
4886/* Get the attribute of type attr_kind.  */
4887
4888static dw_attr_ref
4889get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4890{
4891  dw_attr_ref a;
4892  dw_die_ref spec = NULL;
4893
4894  if (die != NULL)
4895    {
4896      for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4897	if (a->dw_attr == attr_kind)
4898	  return a;
4899	else if (a->dw_attr == DW_AT_specification
4900		 || a->dw_attr == DW_AT_abstract_origin)
4901	  spec = AT_ref (a);
4902
4903      if (spec)
4904	return get_AT (spec, attr_kind);
4905    }
4906
4907  return NULL;
4908}
4909
4910/* Return the "low pc" attribute value, typically associated with a subprogram
4911   DIE.  Return null if the "low pc" attribute is either not present, or if it
4912   cannot be represented as an assembler label identifier.  */
4913
4914static inline const char *
4915get_AT_low_pc (dw_die_ref die)
4916{
4917  dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4918
4919  return a ? AT_lbl (a) : NULL;
4920}
4921
4922/* Return the "high pc" attribute value, typically associated with a subprogram
4923   DIE.  Return null if the "high pc" attribute is either not present, or if it
4924   cannot be represented as an assembler label identifier.  */
4925
4926static inline const char *
4927get_AT_hi_pc (dw_die_ref die)
4928{
4929  dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4930
4931  return a ? AT_lbl (a) : NULL;
4932}
4933
4934/* Return the value of the string attribute designated by ATTR_KIND, or
4935   NULL if it is not present.  */
4936
4937static inline const char *
4938get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4939{
4940  dw_attr_ref a = get_AT (die, attr_kind);
4941
4942  return a ? AT_string (a) : NULL;
4943}
4944
4945/* Return the value of the flag attribute designated by ATTR_KIND, or -1
4946   if it is not present.  */
4947
4948static inline int
4949get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4950{
4951  dw_attr_ref a = get_AT (die, attr_kind);
4952
4953  return a ? AT_flag (a) : 0;
4954}
4955
4956/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4957   if it is not present.  */
4958
4959static inline unsigned
4960get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4961{
4962  dw_attr_ref a = get_AT (die, attr_kind);
4963
4964  return a ? AT_unsigned (a) : 0;
4965}
4966
4967static inline dw_die_ref
4968get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4969{
4970  dw_attr_ref a = get_AT (die, attr_kind);
4971
4972  return a ? AT_ref (a) : NULL;
4973}
4974
4975/* Return TRUE if the language is C or C++.  */
4976
4977static inline bool
4978is_c_family (void)
4979{
4980  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4981
4982  return (lang == DW_LANG_C || lang == DW_LANG_C89
4983	  || lang == DW_LANG_C_plus_plus);
4984}
4985
4986/* Return TRUE if the language is C++.  */
4987
4988static inline bool
4989is_cxx (void)
4990{
4991  return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4992	  == DW_LANG_C_plus_plus);
4993}
4994
4995/* Return TRUE if the language is Fortran.  */
4996
4997static inline bool
4998is_fortran (void)
4999{
5000  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5001
5002  return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5003}
5004
5005/* Return TRUE if the language is Java.  */
5006
5007static inline bool
5008is_java (void)
5009{
5010  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5011
5012  return lang == DW_LANG_Java;
5013}
5014
5015/* Return TRUE if the language is Ada.  */
5016
5017static inline bool
5018is_ada (void)
5019{
5020  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5021
5022  return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5023}
5024
5025/* Free up the memory used by A.  */
5026
5027static inline void free_AT (dw_attr_ref);
5028static inline void
5029free_AT (dw_attr_ref a)
5030{
5031  if (AT_class (a) == dw_val_class_str)
5032    if (a->dw_attr_val.v.val_str->refcount)
5033      a->dw_attr_val.v.val_str->refcount--;
5034}
5035
5036/* Remove the specified attribute if present.  */
5037
5038static void
5039remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5040{
5041  dw_attr_ref *p;
5042  dw_attr_ref removed = NULL;
5043
5044  if (die != NULL)
5045    {
5046      for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5047	if ((*p)->dw_attr == attr_kind)
5048	  {
5049	    removed = *p;
5050	    *p = (*p)->dw_attr_next;
5051	    break;
5052	  }
5053
5054      if (removed != 0)
5055	free_AT (removed);
5056    }
5057}
5058
5059/* Remove child die whose die_tag is specified tag.  */
5060
5061static void
5062remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5063{
5064  dw_die_ref current, prev, next;
5065  current = die->die_child;
5066  prev = NULL;
5067  while (current != NULL)
5068    {
5069      if (current->die_tag == tag)
5070	{
5071	  next = current->die_sib;
5072	  if (prev == NULL)
5073	    die->die_child = next;
5074	  else
5075	    prev->die_sib = next;
5076	  free_die (current);
5077	  current = next;
5078	}
5079      else
5080	{
5081	  prev = current;
5082	  current = current->die_sib;
5083	}
5084    }
5085}
5086
5087/* Free up the memory used by DIE.  */
5088
5089static inline void
5090free_die (dw_die_ref die)
5091{
5092  remove_children (die);
5093}
5094
5095/* Discard the children of this DIE.  */
5096
5097static void
5098remove_children (dw_die_ref die)
5099{
5100  dw_die_ref child_die = die->die_child;
5101
5102  die->die_child = NULL;
5103
5104  while (child_die != NULL)
5105    {
5106      dw_die_ref tmp_die = child_die;
5107      dw_attr_ref a;
5108
5109      child_die = child_die->die_sib;
5110
5111      for (a = tmp_die->die_attr; a != NULL;)
5112	{
5113	  dw_attr_ref tmp_a = a;
5114
5115	  a = a->dw_attr_next;
5116	  free_AT (tmp_a);
5117	}
5118
5119      free_die (tmp_die);
5120    }
5121}
5122
5123/* Add a child DIE below its parent.  We build the lists up in reverse
5124   addition order, and correct that in reverse_all_dies.  */
5125
5126static inline void
5127add_child_die (dw_die_ref die, dw_die_ref child_die)
5128{
5129  if (die != NULL && child_die != NULL)
5130    {
5131      if (die == child_die)
5132	abort ();
5133
5134      child_die->die_parent = die;
5135      child_die->die_sib = die->die_child;
5136      die->die_child = child_die;
5137    }
5138}
5139
5140/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5141   is the specification, to the front of PARENT's list of children.  */
5142
5143static void
5144splice_child_die (dw_die_ref parent, dw_die_ref child)
5145{
5146  dw_die_ref *p;
5147
5148  /* We want the declaration DIE from inside the class, not the
5149     specification DIE at toplevel.  */
5150  if (child->die_parent != parent)
5151    {
5152      dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5153
5154      if (tmp)
5155	child = tmp;
5156    }
5157
5158  if (child->die_parent != parent
5159      && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5160    abort ();
5161
5162  for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5163    if (*p == child)
5164      {
5165	*p = child->die_sib;
5166	break;
5167      }
5168
5169  child->die_parent = parent;
5170  child->die_sib = parent->die_child;
5171  parent->die_child = child;
5172}
5173
5174/* Return a pointer to a newly created DIE node.  */
5175
5176static inline dw_die_ref
5177new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5178{
5179  dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5180
5181  die->die_tag = tag_value;
5182
5183  if (parent_die != NULL)
5184    add_child_die (parent_die, die);
5185  else
5186    {
5187      limbo_die_node *limbo_node;
5188
5189      limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5190      limbo_node->die = die;
5191      limbo_node->created_for = t;
5192      limbo_node->next = limbo_die_list;
5193      limbo_die_list = limbo_node;
5194    }
5195
5196  return die;
5197}
5198
5199/* Return the DIE associated with the given type specifier.  */
5200
5201static inline dw_die_ref
5202lookup_type_die (tree type)
5203{
5204  return TYPE_SYMTAB_DIE (type);
5205}
5206
5207/* Equate a DIE to a given type specifier.  */
5208
5209static inline void
5210equate_type_number_to_die (tree type, dw_die_ref type_die)
5211{
5212  TYPE_SYMTAB_DIE (type) = type_die;
5213}
5214
5215/* Return the DIE associated with a given declaration.  */
5216
5217static inline dw_die_ref
5218lookup_decl_die (tree decl)
5219{
5220  unsigned decl_id = DECL_UID (decl);
5221
5222  return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5223}
5224
5225/* Equate a DIE to a particular declaration.  */
5226
5227static void
5228equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5229{
5230  unsigned int decl_id = DECL_UID (decl);
5231  unsigned int num_allocated;
5232
5233  if (decl_id >= decl_die_table_allocated)
5234    {
5235      num_allocated
5236	= ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5237	   / DECL_DIE_TABLE_INCREMENT)
5238	  * DECL_DIE_TABLE_INCREMENT;
5239
5240      decl_die_table = ggc_realloc (decl_die_table,
5241				    sizeof (dw_die_ref) * num_allocated);
5242
5243      memset (&decl_die_table[decl_die_table_allocated], 0,
5244	     (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5245      decl_die_table_allocated = num_allocated;
5246    }
5247
5248  if (decl_id >= decl_die_table_in_use)
5249    decl_die_table_in_use = (decl_id + 1);
5250
5251  decl_die_table[decl_id] = decl_die;
5252}
5253
5254/* Keep track of the number of spaces used to indent the
5255   output of the debugging routines that print the structure of
5256   the DIE internal representation.  */
5257static int print_indent;
5258
5259/* Indent the line the number of spaces given by print_indent.  */
5260
5261static inline void
5262print_spaces (FILE *outfile)
5263{
5264  fprintf (outfile, "%*s", print_indent, "");
5265}
5266
5267/* Print the information associated with a given DIE, and its children.
5268   This routine is a debugging aid only.  */
5269
5270static void
5271print_die (dw_die_ref die, FILE *outfile)
5272{
5273  dw_attr_ref a;
5274  dw_die_ref c;
5275
5276  print_spaces (outfile);
5277  fprintf (outfile, "DIE %4lu: %s\n",
5278	   die->die_offset, dwarf_tag_name (die->die_tag));
5279  print_spaces (outfile);
5280  fprintf (outfile, "  abbrev id: %lu", die->die_abbrev);
5281  fprintf (outfile, " offset: %lu\n", die->die_offset);
5282
5283  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5284    {
5285      print_spaces (outfile);
5286      fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));
5287
5288      switch (AT_class (a))
5289	{
5290	case dw_val_class_addr:
5291	  fprintf (outfile, "address");
5292	  break;
5293	case dw_val_class_offset:
5294	  fprintf (outfile, "offset");
5295	  break;
5296	case dw_val_class_loc:
5297	  fprintf (outfile, "location descriptor");
5298	  break;
5299	case dw_val_class_loc_list:
5300	  fprintf (outfile, "location list -> label:%s",
5301		   AT_loc_list (a)->ll_symbol);
5302	  break;
5303	case dw_val_class_range_list:
5304	  fprintf (outfile, "range list");
5305	  break;
5306	case dw_val_class_const:
5307	  fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5308	  break;
5309	case dw_val_class_unsigned_const:
5310	  fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5311	  break;
5312	case dw_val_class_long_long:
5313	  fprintf (outfile, "constant (%lu,%lu)",
5314		   a->dw_attr_val.v.val_long_long.hi,
5315		   a->dw_attr_val.v.val_long_long.low);
5316	  break;
5317	case dw_val_class_vec:
5318	  fprintf (outfile, "floating-point or vector constant");
5319	  break;
5320	case dw_val_class_flag:
5321	  fprintf (outfile, "%u", AT_flag (a));
5322	  break;
5323	case dw_val_class_die_ref:
5324	  if (AT_ref (a) != NULL)
5325	    {
5326	      if (AT_ref (a)->die_symbol)
5327		fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5328	      else
5329		fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5330	    }
5331	  else
5332	    fprintf (outfile, "die -> <null>");
5333	  break;
5334	case dw_val_class_lbl_id:
5335	case dw_val_class_lbl_offset:
5336	  fprintf (outfile, "label: %s", AT_lbl (a));
5337	  break;
5338	case dw_val_class_str:
5339	  if (AT_string (a) != NULL)
5340	    fprintf (outfile, "\"%s\"", AT_string (a));
5341	  else
5342	    fprintf (outfile, "<null>");
5343	  break;
5344	default:
5345	  break;
5346	}
5347
5348      fprintf (outfile, "\n");
5349    }
5350
5351  if (die->die_child != NULL)
5352    {
5353      print_indent += 4;
5354      for (c = die->die_child; c != NULL; c = c->die_sib)
5355	print_die (c, outfile);
5356
5357      print_indent -= 4;
5358    }
5359  if (print_indent == 0)
5360    fprintf (outfile, "\n");
5361}
5362
5363/* Print the contents of the source code line number correspondence table.
5364   This routine is a debugging aid only.  */
5365
5366static void
5367print_dwarf_line_table (FILE *outfile)
5368{
5369  unsigned i;
5370  dw_line_info_ref line_info;
5371
5372  fprintf (outfile, "\n\nDWARF source line information\n");
5373  for (i = 1; i < line_info_table_in_use; i++)
5374    {
5375      line_info = &line_info_table[i];
5376      fprintf (outfile, "%5d: ", i);
5377      fprintf (outfile, "%-20s",
5378	       VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5379      fprintf (outfile, "%6ld", line_info->dw_line_num);
5380      fprintf (outfile, "\n");
5381    }
5382
5383  fprintf (outfile, "\n\n");
5384}
5385
5386/* Print the information collected for a given DIE.  */
5387
5388void
5389debug_dwarf_die (dw_die_ref die)
5390{
5391  print_die (die, stderr);
5392}
5393
5394/* Print all DWARF information collected for the compilation unit.
5395   This routine is a debugging aid only.  */
5396
5397void
5398debug_dwarf (void)
5399{
5400  print_indent = 0;
5401  print_die (comp_unit_die, stderr);
5402  if (! DWARF2_ASM_LINE_DEBUG_INFO)
5403    print_dwarf_line_table (stderr);
5404}
5405
5406/* We build up the lists of children and attributes by pushing new ones
5407   onto the beginning of the list.  Reverse the lists for DIE so that
5408   they are in order of addition.  */
5409
5410static void
5411reverse_die_lists (dw_die_ref die)
5412{
5413  dw_die_ref c, cp, cn;
5414  dw_attr_ref a, ap, an;
5415
5416  for (a = die->die_attr, ap = 0; a; a = an)
5417    {
5418      an = a->dw_attr_next;
5419      a->dw_attr_next = ap;
5420      ap = a;
5421    }
5422
5423  die->die_attr = ap;
5424
5425  for (c = die->die_child, cp = 0; c; c = cn)
5426    {
5427      cn = c->die_sib;
5428      c->die_sib = cp;
5429      cp = c;
5430    }
5431
5432  die->die_child = cp;
5433}
5434
5435/* reverse_die_lists only reverses the single die you pass it. Since we used to
5436   reverse all dies in add_sibling_attributes, which runs through all the dies,
5437   it would reverse all the dies.  Now, however, since we don't call
5438   reverse_die_lists in add_sibling_attributes, we need a routine to
5439   recursively reverse all the dies. This is that routine.  */
5440
5441static void
5442reverse_all_dies (dw_die_ref die)
5443{
5444  dw_die_ref c;
5445
5446  reverse_die_lists (die);
5447
5448  for (c = die->die_child; c; c = c->die_sib)
5449    reverse_all_dies (c);
5450}
5451
5452/* Start a new compilation unit DIE for an include file.  OLD_UNIT is the CU
5453   for the enclosing include file, if any.  BINCL_DIE is the DW_TAG_GNU_BINCL
5454   DIE that marks the start of the DIEs for this include file.  */
5455
5456static dw_die_ref
5457push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5458{
5459  const char *filename = get_AT_string (bincl_die, DW_AT_name);
5460  dw_die_ref new_unit = gen_compile_unit_die (filename);
5461
5462  new_unit->die_sib = old_unit;
5463  return new_unit;
5464}
5465
5466/* Close an include-file CU and reopen the enclosing one.  */
5467
5468static dw_die_ref
5469pop_compile_unit (dw_die_ref old_unit)
5470{
5471  dw_die_ref new_unit = old_unit->die_sib;
5472
5473  old_unit->die_sib = NULL;
5474  return new_unit;
5475}
5476
5477#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5478#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5479
5480/* Calculate the checksum of a location expression.  */
5481
5482static inline void
5483loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5484{
5485  CHECKSUM (loc->dw_loc_opc);
5486  CHECKSUM (loc->dw_loc_oprnd1);
5487  CHECKSUM (loc->dw_loc_oprnd2);
5488}
5489
5490/* Calculate the checksum of an attribute.  */
5491
5492static void
5493attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5494{
5495  dw_loc_descr_ref loc;
5496  rtx r;
5497
5498  CHECKSUM (at->dw_attr);
5499
5500  /* We don't care about differences in file numbering.  */
5501  if (at->dw_attr == DW_AT_decl_file
5502      /* Or that this was compiled with a different compiler snapshot; if
5503	 the output is the same, that's what matters.  */
5504      || at->dw_attr == DW_AT_producer)
5505    return;
5506
5507  switch (AT_class (at))
5508    {
5509    case dw_val_class_const:
5510      CHECKSUM (at->dw_attr_val.v.val_int);
5511      break;
5512    case dw_val_class_unsigned_const:
5513      CHECKSUM (at->dw_attr_val.v.val_unsigned);
5514      break;
5515    case dw_val_class_long_long:
5516      CHECKSUM (at->dw_attr_val.v.val_long_long);
5517      break;
5518    case dw_val_class_vec:
5519      CHECKSUM (at->dw_attr_val.v.val_vec);
5520      break;
5521    case dw_val_class_flag:
5522      CHECKSUM (at->dw_attr_val.v.val_flag);
5523      break;
5524    case dw_val_class_str:
5525      CHECKSUM_STRING (AT_string (at));
5526      break;
5527
5528    case dw_val_class_addr:
5529      r = AT_addr (at);
5530      switch (GET_CODE (r))
5531	{
5532	case SYMBOL_REF:
5533	  CHECKSUM_STRING (XSTR (r, 0));
5534	  break;
5535
5536	default:
5537	  abort ();
5538	}
5539      break;
5540
5541    case dw_val_class_offset:
5542      CHECKSUM (at->dw_attr_val.v.val_offset);
5543      break;
5544
5545    case dw_val_class_loc:
5546      for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5547	loc_checksum (loc, ctx);
5548      break;
5549
5550    case dw_val_class_die_ref:
5551      die_checksum (AT_ref (at), ctx, mark);
5552      break;
5553
5554    case dw_val_class_fde_ref:
5555    case dw_val_class_lbl_id:
5556    case dw_val_class_lbl_offset:
5557      break;
5558
5559    default:
5560      break;
5561    }
5562}
5563
5564/* Calculate the checksum of a DIE.  */
5565
5566static void
5567die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5568{
5569  dw_die_ref c;
5570  dw_attr_ref a;
5571
5572  /* To avoid infinite recursion.  */
5573  if (die->die_mark)
5574    {
5575      CHECKSUM (die->die_mark);
5576      return;
5577    }
5578  die->die_mark = ++(*mark);
5579
5580  CHECKSUM (die->die_tag);
5581
5582  for (a = die->die_attr; a; a = a->dw_attr_next)
5583    attr_checksum (a, ctx, mark);
5584
5585  for (c = die->die_child; c; c = c->die_sib)
5586    die_checksum (c, ctx, mark);
5587}
5588
5589#undef CHECKSUM
5590#undef CHECKSUM_STRING
5591
5592/* Do the location expressions look same?  */
5593static inline int
5594same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5595{
5596  return loc1->dw_loc_opc == loc2->dw_loc_opc
5597	 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5598	 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5599}
5600
5601/* Do the values look the same?  */
5602static int
5603same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5604{
5605  dw_loc_descr_ref loc1, loc2;
5606  rtx r1, r2;
5607
5608  if (v1->val_class != v2->val_class)
5609    return 0;
5610
5611  switch (v1->val_class)
5612    {
5613    case dw_val_class_const:
5614      return v1->v.val_int == v2->v.val_int;
5615    case dw_val_class_unsigned_const:
5616      return v1->v.val_unsigned == v2->v.val_unsigned;
5617    case dw_val_class_long_long:
5618      return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5619	     && v1->v.val_long_long.low == v2->v.val_long_long.low;
5620    case dw_val_class_vec:
5621      if (v1->v.val_vec.length != v2->v.val_vec.length
5622	  || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5623	return 0;
5624      if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5625		  v1->v.val_vec.length * v1->v.val_vec.elt_size))
5626	return 0;
5627      return 1;
5628    case dw_val_class_flag:
5629      return v1->v.val_flag == v2->v.val_flag;
5630    case dw_val_class_str:
5631      return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5632
5633    case dw_val_class_addr:
5634      r1 = v1->v.val_addr;
5635      r2 = v2->v.val_addr;
5636      if (GET_CODE (r1) != GET_CODE (r2))
5637	return 0;
5638      switch (GET_CODE (r1))
5639	{
5640	case SYMBOL_REF:
5641	  return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5642
5643	default:
5644	  abort ();
5645	}
5646
5647    case dw_val_class_offset:
5648      return v1->v.val_offset == v2->v.val_offset;
5649
5650    case dw_val_class_loc:
5651      for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5652	   loc1 && loc2;
5653	   loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5654	if (!same_loc_p (loc1, loc2, mark))
5655	  return 0;
5656      return !loc1 && !loc2;
5657
5658    case dw_val_class_die_ref:
5659      return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5660
5661    case dw_val_class_fde_ref:
5662    case dw_val_class_lbl_id:
5663    case dw_val_class_lbl_offset:
5664      return 1;
5665
5666    default:
5667      return 1;
5668    }
5669}
5670
5671/* Do the attributes look the same?  */
5672
5673static int
5674same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5675{
5676  if (at1->dw_attr != at2->dw_attr)
5677    return 0;
5678
5679  /* We don't care about differences in file numbering.  */
5680  if (at1->dw_attr == DW_AT_decl_file
5681      /* Or that this was compiled with a different compiler snapshot; if
5682	 the output is the same, that's what matters.  */
5683      || at1->dw_attr == DW_AT_producer)
5684    return 1;
5685
5686  return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5687}
5688
5689/* Do the dies look the same?  */
5690
5691static int
5692same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5693{
5694  dw_die_ref c1, c2;
5695  dw_attr_ref a1, a2;
5696
5697  /* To avoid infinite recursion.  */
5698  if (die1->die_mark)
5699    return die1->die_mark == die2->die_mark;
5700  die1->die_mark = die2->die_mark = ++(*mark);
5701
5702  if (die1->die_tag != die2->die_tag)
5703    return 0;
5704
5705  for (a1 = die1->die_attr, a2 = die2->die_attr;
5706       a1 && a2;
5707       a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5708    if (!same_attr_p (a1, a2, mark))
5709      return 0;
5710  if (a1 || a2)
5711    return 0;
5712
5713  for (c1 = die1->die_child, c2 = die2->die_child;
5714       c1 && c2;
5715       c1 = c1->die_sib, c2 = c2->die_sib)
5716    if (!same_die_p (c1, c2, mark))
5717      return 0;
5718  if (c1 || c2)
5719    return 0;
5720
5721  return 1;
5722}
5723
5724/* Do the dies look the same?  Wrapper around same_die_p.  */
5725
5726static int
5727same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5728{
5729  int mark = 0;
5730  int ret = same_die_p (die1, die2, &mark);
5731
5732  unmark_all_dies (die1);
5733  unmark_all_dies (die2);
5734
5735  return ret;
5736}
5737
5738/* The prefix to attach to symbols on DIEs in the current comdat debug
5739   info section.  */
5740static char *comdat_symbol_id;
5741
5742/* The index of the current symbol within the current comdat CU.  */
5743static unsigned int comdat_symbol_number;
5744
5745/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5746   children, and set comdat_symbol_id accordingly.  */
5747
5748static void
5749compute_section_prefix (dw_die_ref unit_die)
5750{
5751  const char *die_name = get_AT_string (unit_die, DW_AT_name);
5752  const char *base = die_name ? lbasename (die_name) : "anonymous";
5753  char *name = alloca (strlen (base) + 64);
5754  char *p;
5755  int i, mark;
5756  unsigned char checksum[16];
5757  struct md5_ctx ctx;
5758
5759  /* Compute the checksum of the DIE, then append part of it as hex digits to
5760     the name filename of the unit.  */
5761
5762  md5_init_ctx (&ctx);
5763  mark = 0;
5764  die_checksum (unit_die, &ctx, &mark);
5765  unmark_all_dies (unit_die);
5766  md5_finish_ctx (&ctx, checksum);
5767
5768  sprintf (name, "%s.", base);
5769  clean_symbol_name (name);
5770
5771  p = name + strlen (name);
5772  for (i = 0; i < 4; i++)
5773    {
5774      sprintf (p, "%.2x", checksum[i]);
5775      p += 2;
5776    }
5777
5778  comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5779  comdat_symbol_number = 0;
5780}
5781
5782/* Returns nonzero if DIE represents a type, in the sense of TYPE_P.  */
5783
5784static int
5785is_type_die (dw_die_ref die)
5786{
5787  switch (die->die_tag)
5788    {
5789    case DW_TAG_array_type:
5790    case DW_TAG_class_type:
5791    case DW_TAG_enumeration_type:
5792    case DW_TAG_pointer_type:
5793    case DW_TAG_reference_type:
5794    case DW_TAG_string_type:
5795    case DW_TAG_structure_type:
5796    case DW_TAG_subroutine_type:
5797    case DW_TAG_union_type:
5798    case DW_TAG_ptr_to_member_type:
5799    case DW_TAG_set_type:
5800    case DW_TAG_subrange_type:
5801    case DW_TAG_base_type:
5802    case DW_TAG_const_type:
5803    case DW_TAG_file_type:
5804    case DW_TAG_packed_type:
5805    case DW_TAG_volatile_type:
5806    case DW_TAG_typedef:
5807      return 1;
5808    default:
5809      return 0;
5810    }
5811}
5812
5813/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5814   Basically, we want to choose the bits that are likely to be shared between
5815   compilations (types) and leave out the bits that are specific to individual
5816   compilations (functions).  */
5817
5818static int
5819is_comdat_die (dw_die_ref c)
5820{
5821  /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5822     we do for stabs.  The advantage is a greater likelihood of sharing between
5823     objects that don't include headers in the same order (and therefore would
5824     put the base types in a different comdat).  jason 8/28/00 */
5825
5826  if (c->die_tag == DW_TAG_base_type)
5827    return 0;
5828
5829  if (c->die_tag == DW_TAG_pointer_type
5830      || c->die_tag == DW_TAG_reference_type
5831      || c->die_tag == DW_TAG_const_type
5832      || c->die_tag == DW_TAG_volatile_type)
5833    {
5834      dw_die_ref t = get_AT_ref (c, DW_AT_type);
5835
5836      return t ? is_comdat_die (t) : 0;
5837    }
5838
5839  return is_type_die (c);
5840}
5841
5842/* Returns 1 iff C is the sort of DIE that might be referred to from another
5843   compilation unit.  */
5844
5845static int
5846is_symbol_die (dw_die_ref c)
5847{
5848  return (is_type_die (c)
5849	  || (get_AT (c, DW_AT_declaration)
5850	      && !get_AT (c, DW_AT_specification)));
5851}
5852
5853static char *
5854gen_internal_sym (const char *prefix)
5855{
5856  char buf[256];
5857
5858  ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5859  return xstrdup (buf);
5860}
5861
5862/* Assign symbols to all worthy DIEs under DIE.  */
5863
5864static void
5865assign_symbol_names (dw_die_ref die)
5866{
5867  dw_die_ref c;
5868
5869  if (is_symbol_die (die))
5870    {
5871      if (comdat_symbol_id)
5872	{
5873	  char *p = alloca (strlen (comdat_symbol_id) + 64);
5874
5875	  sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5876		   comdat_symbol_id, comdat_symbol_number++);
5877	  die->die_symbol = xstrdup (p);
5878	}
5879      else
5880	die->die_symbol = gen_internal_sym ("LDIE");
5881    }
5882
5883  for (c = die->die_child; c != NULL; c = c->die_sib)
5884    assign_symbol_names (c);
5885}
5886
5887struct cu_hash_table_entry
5888{
5889  dw_die_ref cu;
5890  unsigned min_comdat_num, max_comdat_num;
5891  struct cu_hash_table_entry *next;
5892};
5893
5894/* Routines to manipulate hash table of CUs.  */
5895static hashval_t
5896htab_cu_hash (const void *of)
5897{
5898  const struct cu_hash_table_entry *entry = of;
5899
5900  return htab_hash_string (entry->cu->die_symbol);
5901}
5902
5903static int
5904htab_cu_eq (const void *of1, const void *of2)
5905{
5906  const struct cu_hash_table_entry *entry1 = of1;
5907  const struct die_struct *entry2 = of2;
5908
5909  return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5910}
5911
5912static void
5913htab_cu_del (void *what)
5914{
5915  struct cu_hash_table_entry *next, *entry = what;
5916
5917  while (entry)
5918    {
5919      next = entry->next;
5920      free (entry);
5921      entry = next;
5922    }
5923}
5924
5925/* Check whether we have already seen this CU and set up SYM_NUM
5926   accordingly.  */
5927static int
5928check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5929{
5930  struct cu_hash_table_entry dummy;
5931  struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5932
5933  dummy.max_comdat_num = 0;
5934
5935  slot = (struct cu_hash_table_entry **)
5936    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5937	INSERT);
5938  entry = *slot;
5939
5940  for (; entry; last = entry, entry = entry->next)
5941    {
5942      if (same_die_p_wrap (cu, entry->cu))
5943	break;
5944    }
5945
5946  if (entry)
5947    {
5948      *sym_num = entry->min_comdat_num;
5949      return 1;
5950    }
5951
5952  entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5953  entry->cu = cu;
5954  entry->min_comdat_num = *sym_num = last->max_comdat_num;
5955  entry->next = *slot;
5956  *slot = entry;
5957
5958  return 0;
5959}
5960
5961/* Record SYM_NUM to record of CU in HTABLE.  */
5962static void
5963record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5964{
5965  struct cu_hash_table_entry **slot, *entry;
5966
5967  slot = (struct cu_hash_table_entry **)
5968    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5969	NO_INSERT);
5970  entry = *slot;
5971
5972  entry->max_comdat_num = sym_num;
5973}
5974
5975/* Traverse the DIE (which is always comp_unit_die), and set up
5976   additional compilation units for each of the include files we see
5977   bracketed by BINCL/EINCL.  */
5978
5979static void
5980break_out_includes (dw_die_ref die)
5981{
5982  dw_die_ref *ptr;
5983  dw_die_ref unit = NULL;
5984  limbo_die_node *node, **pnode;
5985  htab_t cu_hash_table;
5986
5987  for (ptr = &(die->die_child); *ptr;)
5988    {
5989      dw_die_ref c = *ptr;
5990
5991      if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5992	  || (unit && is_comdat_die (c)))
5993	{
5994	  /* This DIE is for a secondary CU; remove it from the main one.  */
5995	  *ptr = c->die_sib;
5996
5997	  if (c->die_tag == DW_TAG_GNU_BINCL)
5998	    {
5999	      unit = push_new_compile_unit (unit, c);
6000	      free_die (c);
6001	    }
6002	  else if (c->die_tag == DW_TAG_GNU_EINCL)
6003	    {
6004	      unit = pop_compile_unit (unit);
6005	      free_die (c);
6006	    }
6007	  else
6008	    add_child_die (unit, c);
6009	}
6010      else
6011	{
6012	  /* Leave this DIE in the main CU.  */
6013	  ptr = &(c->die_sib);
6014	  continue;
6015	}
6016    }
6017
6018#if 0
6019  /* We can only use this in debugging, since the frontend doesn't check
6020     to make sure that we leave every include file we enter.  */
6021  if (unit != NULL)
6022    abort ();
6023#endif
6024
6025  assign_symbol_names (die);
6026  cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6027  for (node = limbo_die_list, pnode = &limbo_die_list;
6028       node;
6029       node = node->next)
6030    {
6031      int is_dupl;
6032
6033      compute_section_prefix (node->die);
6034      is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6035			&comdat_symbol_number);
6036      assign_symbol_names (node->die);
6037      if (is_dupl)
6038	*pnode = node->next;
6039      else
6040	{
6041	  pnode = &node->next;
6042	  record_comdat_symbol_number (node->die, cu_hash_table,
6043		comdat_symbol_number);
6044	}
6045    }
6046  htab_delete (cu_hash_table);
6047}
6048
6049/* Traverse the DIE and add a sibling attribute if it may have the
6050   effect of speeding up access to siblings.  To save some space,
6051   avoid generating sibling attributes for DIE's without children.  */
6052
6053static void
6054add_sibling_attributes (dw_die_ref die)
6055{
6056  dw_die_ref c;
6057
6058  if (die->die_tag != DW_TAG_compile_unit
6059      && die->die_sib && die->die_child != NULL)
6060    /* Add the sibling link to the front of the attribute list.  */
6061    add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6062
6063  for (c = die->die_child; c != NULL; c = c->die_sib)
6064    add_sibling_attributes (c);
6065}
6066
6067/* Output all location lists for the DIE and its children.  */
6068
6069static void
6070output_location_lists (dw_die_ref die)
6071{
6072  dw_die_ref c;
6073  dw_attr_ref d_attr;
6074
6075  for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6076    if (AT_class (d_attr) == dw_val_class_loc_list)
6077      output_loc_list (AT_loc_list (d_attr));
6078
6079  for (c = die->die_child; c != NULL; c = c->die_sib)
6080    output_location_lists (c);
6081
6082}
6083
6084/* The format of each DIE (and its attribute value pairs) is encoded in an
6085   abbreviation table.  This routine builds the abbreviation table and assigns
6086   a unique abbreviation id for each abbreviation entry.  The children of each
6087   die are visited recursively.  */
6088
6089static void
6090build_abbrev_table (dw_die_ref die)
6091{
6092  unsigned long abbrev_id;
6093  unsigned int n_alloc;
6094  dw_die_ref c;
6095  dw_attr_ref d_attr, a_attr;
6096
6097  /* Scan the DIE references, and mark as external any that refer to
6098     DIEs from other CUs (i.e. those which are not marked).  */
6099  for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6100    if (AT_class (d_attr) == dw_val_class_die_ref
6101	&& AT_ref (d_attr)->die_mark == 0)
6102      {
6103	if (AT_ref (d_attr)->die_symbol == 0)
6104	  abort ();
6105
6106	set_AT_ref_external (d_attr, 1);
6107      }
6108
6109  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6110    {
6111      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6112
6113      if (abbrev->die_tag == die->die_tag)
6114	{
6115	  if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6116	    {
6117	      a_attr = abbrev->die_attr;
6118	      d_attr = die->die_attr;
6119
6120	      while (a_attr != NULL && d_attr != NULL)
6121		{
6122		  if ((a_attr->dw_attr != d_attr->dw_attr)
6123		      || (value_format (a_attr) != value_format (d_attr)))
6124		    break;
6125
6126		  a_attr = a_attr->dw_attr_next;
6127		  d_attr = d_attr->dw_attr_next;
6128		}
6129
6130	      if (a_attr == NULL && d_attr == NULL)
6131		break;
6132	    }
6133	}
6134    }
6135
6136  if (abbrev_id >= abbrev_die_table_in_use)
6137    {
6138      if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6139	{
6140	  n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6141	  abbrev_die_table = ggc_realloc (abbrev_die_table,
6142					  sizeof (dw_die_ref) * n_alloc);
6143
6144	  memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6145		 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6146	  abbrev_die_table_allocated = n_alloc;
6147	}
6148
6149      ++abbrev_die_table_in_use;
6150      abbrev_die_table[abbrev_id] = die;
6151    }
6152
6153  die->die_abbrev = abbrev_id;
6154  for (c = die->die_child; c != NULL; c = c->die_sib)
6155    build_abbrev_table (c);
6156}
6157
6158/* Return the power-of-two number of bytes necessary to represent VALUE.  */
6159
6160static int
6161constant_size (long unsigned int value)
6162{
6163  int log;
6164
6165  if (value == 0)
6166    log = 0;
6167  else
6168    log = floor_log2 (value);
6169
6170  log = log / 8;
6171  log = 1 << (floor_log2 (log) + 1);
6172
6173  return log;
6174}
6175
6176/* Return the size of a DIE as it is represented in the
6177   .debug_info section.  */
6178
6179static unsigned long
6180size_of_die (dw_die_ref die)
6181{
6182  unsigned long size = 0;
6183  dw_attr_ref a;
6184
6185  size += size_of_uleb128 (die->die_abbrev);
6186  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6187    {
6188      switch (AT_class (a))
6189	{
6190	case dw_val_class_addr:
6191	  size += DWARF2_ADDR_SIZE;
6192	  break;
6193	case dw_val_class_offset:
6194	  size += DWARF_OFFSET_SIZE;
6195	  break;
6196	case dw_val_class_loc:
6197	  {
6198	    unsigned long lsize = size_of_locs (AT_loc (a));
6199
6200	    /* Block length.  */
6201	    size += constant_size (lsize);
6202	    size += lsize;
6203	  }
6204	  break;
6205	case dw_val_class_loc_list:
6206	  size += DWARF_OFFSET_SIZE;
6207	  break;
6208	case dw_val_class_range_list:
6209	  size += DWARF_OFFSET_SIZE;
6210	  break;
6211	case dw_val_class_const:
6212	  size += size_of_sleb128 (AT_int (a));
6213	  break;
6214	case dw_val_class_unsigned_const:
6215	  size += constant_size (AT_unsigned (a));
6216	  break;
6217	case dw_val_class_long_long:
6218	  size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6219	  break;
6220	case dw_val_class_vec:
6221	  size += 1 + (a->dw_attr_val.v.val_vec.length
6222		       * a->dw_attr_val.v.val_vec.elt_size); /* block */
6223	  break;
6224	case dw_val_class_flag:
6225	  size += 1;
6226	  break;
6227	case dw_val_class_die_ref:
6228	  if (AT_ref_external (a))
6229	    size += DWARF2_ADDR_SIZE;
6230	  else
6231	    size += DWARF_OFFSET_SIZE;
6232	  break;
6233	case dw_val_class_fde_ref:
6234	  size += DWARF_OFFSET_SIZE;
6235	  break;
6236	case dw_val_class_lbl_id:
6237	  size += DWARF2_ADDR_SIZE;
6238	  break;
6239	case dw_val_class_lbl_offset:
6240	  size += DWARF_OFFSET_SIZE;
6241	  break;
6242	case dw_val_class_str:
6243	  if (AT_string_form (a) == DW_FORM_strp)
6244	    size += DWARF_OFFSET_SIZE;
6245	  else
6246	    size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6247	  break;
6248	default:
6249	  abort ();
6250	}
6251    }
6252
6253  return size;
6254}
6255
6256/* Size the debugging information associated with a given DIE.  Visits the
6257   DIE's children recursively.  Updates the global variable next_die_offset, on
6258   each time through.  Uses the current value of next_die_offset to update the
6259   die_offset field in each DIE.  */
6260
6261static void
6262calc_die_sizes (dw_die_ref die)
6263{
6264  dw_die_ref c;
6265
6266  die->die_offset = next_die_offset;
6267  next_die_offset += size_of_die (die);
6268
6269  for (c = die->die_child; c != NULL; c = c->die_sib)
6270    calc_die_sizes (c);
6271
6272  if (die->die_child != NULL)
6273    /* Count the null byte used to terminate sibling lists.  */
6274    next_die_offset += 1;
6275}
6276
6277/* Set the marks for a die and its children.  We do this so
6278   that we know whether or not a reference needs to use FORM_ref_addr; only
6279   DIEs in the same CU will be marked.  We used to clear out the offset
6280   and use that as the flag, but ran into ordering problems.  */
6281
6282static void
6283mark_dies (dw_die_ref die)
6284{
6285  dw_die_ref c;
6286
6287  if (die->die_mark)
6288    abort ();
6289
6290  die->die_mark = 1;
6291  for (c = die->die_child; c; c = c->die_sib)
6292    mark_dies (c);
6293}
6294
6295/* Clear the marks for a die and its children.  */
6296
6297static void
6298unmark_dies (dw_die_ref die)
6299{
6300  dw_die_ref c;
6301
6302  if (!die->die_mark)
6303    abort ();
6304
6305  die->die_mark = 0;
6306  for (c = die->die_child; c; c = c->die_sib)
6307    unmark_dies (c);
6308}
6309
6310/* Clear the marks for a die, its children and referred dies.  */
6311
6312static void
6313unmark_all_dies (dw_die_ref die)
6314{
6315  dw_die_ref c;
6316  dw_attr_ref a;
6317
6318  if (!die->die_mark)
6319    return;
6320  die->die_mark = 0;
6321
6322  for (c = die->die_child; c; c = c->die_sib)
6323    unmark_all_dies (c);
6324
6325  for (a = die->die_attr; a; a = a->dw_attr_next)
6326    if (AT_class (a) == dw_val_class_die_ref)
6327      unmark_all_dies (AT_ref (a));
6328}
6329
6330/* Return the size of the .debug_pubnames table  generated for the
6331   compilation unit.  */
6332
6333static unsigned long
6334size_of_pubnames (void)
6335{
6336  unsigned long size;
6337  unsigned i;
6338
6339  size = DWARF_PUBNAMES_HEADER_SIZE;
6340  for (i = 0; i < pubname_table_in_use; i++)
6341    {
6342      pubname_ref p = &pubname_table[i];
6343      size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6344    }
6345
6346  size += DWARF_OFFSET_SIZE;
6347  return size;
6348}
6349
6350/* Return the size of the information in the .debug_aranges section.  */
6351
6352static unsigned long
6353size_of_aranges (void)
6354{
6355  unsigned long size;
6356
6357  size = DWARF_ARANGES_HEADER_SIZE;
6358
6359  /* Count the address/length pair for this compilation unit.  */
6360  size += 2 * DWARF2_ADDR_SIZE;
6361  size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6362
6363  /* Count the two zero words used to terminated the address range table.  */
6364  size += 2 * DWARF2_ADDR_SIZE;
6365  return size;
6366}
6367
6368/* Select the encoding of an attribute value.  */
6369
6370static enum dwarf_form
6371value_format (dw_attr_ref a)
6372{
6373  switch (a->dw_attr_val.val_class)
6374    {
6375    case dw_val_class_addr:
6376      return DW_FORM_addr;
6377    case dw_val_class_range_list:
6378    case dw_val_class_offset:
6379      if (DWARF_OFFSET_SIZE == 4)
6380	return DW_FORM_data4;
6381      if (DWARF_OFFSET_SIZE == 8)
6382	return DW_FORM_data8;
6383      abort ();
6384    case dw_val_class_loc_list:
6385      /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6386	 .debug_loc section */
6387      return DW_FORM_data4;
6388    case dw_val_class_loc:
6389      switch (constant_size (size_of_locs (AT_loc (a))))
6390	{
6391	case 1:
6392	  return DW_FORM_block1;
6393	case 2:
6394	  return DW_FORM_block2;
6395	default:
6396	  abort ();
6397	}
6398    case dw_val_class_const:
6399      return DW_FORM_sdata;
6400    case dw_val_class_unsigned_const:
6401      switch (constant_size (AT_unsigned (a)))
6402	{
6403	case 1:
6404	  return DW_FORM_data1;
6405	case 2:
6406	  return DW_FORM_data2;
6407	case 4:
6408	  return DW_FORM_data4;
6409	case 8:
6410	  return DW_FORM_data8;
6411	default:
6412	  abort ();
6413	}
6414    case dw_val_class_long_long:
6415      return DW_FORM_block1;
6416    case dw_val_class_vec:
6417      return DW_FORM_block1;
6418    case dw_val_class_flag:
6419      return DW_FORM_flag;
6420    case dw_val_class_die_ref:
6421      if (AT_ref_external (a))
6422	return DW_FORM_ref_addr;
6423      else
6424	return DW_FORM_ref;
6425    case dw_val_class_fde_ref:
6426      return DW_FORM_data;
6427    case dw_val_class_lbl_id:
6428      return DW_FORM_addr;
6429    case dw_val_class_lbl_offset:
6430      return DW_FORM_data;
6431    case dw_val_class_str:
6432      return AT_string_form (a);
6433
6434    default:
6435      abort ();
6436    }
6437}
6438
6439/* Output the encoding of an attribute value.  */
6440
6441static void
6442output_value_format (dw_attr_ref a)
6443{
6444  enum dwarf_form form = value_format (a);
6445
6446  dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6447}
6448
6449/* Output the .debug_abbrev section which defines the DIE abbreviation
6450   table.  */
6451
6452static void
6453output_abbrev_section (void)
6454{
6455  unsigned long abbrev_id;
6456
6457  dw_attr_ref a_attr;
6458
6459  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6460    {
6461      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6462
6463      dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6464      dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6465				   dwarf_tag_name (abbrev->die_tag));
6466
6467      if (abbrev->die_child != NULL)
6468	dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6469      else
6470	dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6471
6472      for (a_attr = abbrev->die_attr; a_attr != NULL;
6473	   a_attr = a_attr->dw_attr_next)
6474	{
6475	  dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6476				       dwarf_attr_name (a_attr->dw_attr));
6477	  output_value_format (a_attr);
6478	}
6479
6480      dw2_asm_output_data (1, 0, NULL);
6481      dw2_asm_output_data (1, 0, NULL);
6482    }
6483
6484  /* Terminate the table.  */
6485  dw2_asm_output_data (1, 0, NULL);
6486}
6487
6488/* Output a symbol we can use to refer to this DIE from another CU.  */
6489
6490static inline void
6491output_die_symbol (dw_die_ref die)
6492{
6493  char *sym = die->die_symbol;
6494
6495  if (sym == 0)
6496    return;
6497
6498  if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6499    /* We make these global, not weak; if the target doesn't support
6500       .linkonce, it doesn't support combining the sections, so debugging
6501       will break.  */
6502    (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6503
6504  ASM_OUTPUT_LABEL (asm_out_file, sym);
6505}
6506
6507/* Return a new location list, given the begin and end range, and the
6508   expression. gensym tells us whether to generate a new internal symbol for
6509   this location list node, which is done for the head of the list only.  */
6510
6511static inline dw_loc_list_ref
6512new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6513	      const char *section, unsigned int gensym)
6514{
6515  dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6516
6517  retlist->begin = begin;
6518  retlist->end = end;
6519  retlist->expr = expr;
6520  retlist->section = section;
6521  if (gensym)
6522    retlist->ll_symbol = gen_internal_sym ("LLST");
6523
6524  return retlist;
6525}
6526
6527/* Add a location description expression to a location list.  */
6528
6529static inline void
6530add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6531			   const char *begin, const char *end,
6532			   const char *section)
6533{
6534  dw_loc_list_ref *d;
6535
6536  /* Find the end of the chain.  */
6537  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6538    ;
6539
6540  /* Add a new location list node to the list.  */
6541  *d = new_loc_list (descr, begin, end, section, 0);
6542}
6543
6544/* Output the location list given to us.  */
6545
6546static void
6547output_loc_list (dw_loc_list_ref list_head)
6548{
6549  dw_loc_list_ref curr = list_head;
6550
6551  ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6552
6553  /* ??? This shouldn't be needed now that we've forced the
6554     compilation unit base address to zero when there is code
6555     in more than one section.  */
6556  if (strcmp (curr->section, ".text") == 0)
6557    {
6558      /* dw2_asm_output_data will mask off any extra bits in the ~0.  */
6559      dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6560			   "Location list base address specifier fake entry");
6561      dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6562			     "Location list base address specifier base");
6563    }
6564
6565  for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6566    {
6567      unsigned long size;
6568
6569      dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6570			    "Location list begin address (%s)",
6571			    list_head->ll_symbol);
6572      dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6573			    "Location list end address (%s)",
6574			    list_head->ll_symbol);
6575      size = size_of_locs (curr->expr);
6576
6577      /* Output the block length for this list of location operations.  */
6578      if (size > 0xffff)
6579	abort ();
6580      dw2_asm_output_data (2, size, "%s", "Location expression size");
6581
6582      output_loc_sequence (curr->expr);
6583    }
6584
6585  dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6586		       "Location list terminator begin (%s)",
6587		       list_head->ll_symbol);
6588  dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6589		       "Location list terminator end (%s)",
6590		       list_head->ll_symbol);
6591}
6592
6593/* Output the DIE and its attributes.  Called recursively to generate
6594   the definitions of each child DIE.  */
6595
6596static void
6597output_die (dw_die_ref die)
6598{
6599  dw_attr_ref a;
6600  dw_die_ref c;
6601  unsigned long size;
6602
6603  /* If someone in another CU might refer to us, set up a symbol for
6604     them to point to.  */
6605  if (die->die_symbol)
6606    output_die_symbol (die);
6607
6608  dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6609			       die->die_offset, dwarf_tag_name (die->die_tag));
6610
6611  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6612    {
6613      const char *name = dwarf_attr_name (a->dw_attr);
6614
6615      switch (AT_class (a))
6616	{
6617	case dw_val_class_addr:
6618	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6619	  break;
6620
6621	case dw_val_class_offset:
6622	  dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6623			       "%s", name);
6624	  break;
6625
6626	case dw_val_class_range_list:
6627	  {
6628	    char *p = strchr (ranges_section_label, '\0');
6629
6630	    sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6631		     a->dw_attr_val.v.val_offset);
6632	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6633				   "%s", name);
6634	    *p = '\0';
6635	  }
6636	  break;
6637
6638	case dw_val_class_loc:
6639	  size = size_of_locs (AT_loc (a));
6640
6641	  /* Output the block length for this list of location operations.  */
6642	  dw2_asm_output_data (constant_size (size), size, "%s", name);
6643
6644	  output_loc_sequence (AT_loc (a));
6645	  break;
6646
6647	case dw_val_class_const:
6648	  /* ??? It would be slightly more efficient to use a scheme like is
6649	     used for unsigned constants below, but gdb 4.x does not sign
6650	     extend.  Gdb 5.x does sign extend.  */
6651	  dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6652	  break;
6653
6654	case dw_val_class_unsigned_const:
6655	  dw2_asm_output_data (constant_size (AT_unsigned (a)),
6656			       AT_unsigned (a), "%s", name);
6657	  break;
6658
6659	case dw_val_class_long_long:
6660	  {
6661	    unsigned HOST_WIDE_INT first, second;
6662
6663	    dw2_asm_output_data (1,
6664				 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6665				 "%s", name);
6666
6667	    if (WORDS_BIG_ENDIAN)
6668	      {
6669		first = a->dw_attr_val.v.val_long_long.hi;
6670		second = a->dw_attr_val.v.val_long_long.low;
6671	      }
6672	    else
6673	      {
6674		first = a->dw_attr_val.v.val_long_long.low;
6675		second = a->dw_attr_val.v.val_long_long.hi;
6676	      }
6677
6678	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6679				 first, "long long constant");
6680	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6681				 second, NULL);
6682	  }
6683	  break;
6684
6685	case dw_val_class_vec:
6686	  {
6687	    unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6688	    unsigned int len = a->dw_attr_val.v.val_vec.length;
6689	    unsigned int i;
6690	    unsigned char *p;
6691
6692	    dw2_asm_output_data (1, len * elt_size, "%s", name);
6693	    if (elt_size > sizeof (HOST_WIDE_INT))
6694	      {
6695		elt_size /= 2;
6696		len *= 2;
6697	      }
6698	    for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6699		 i < len;
6700		 i++, p += elt_size)
6701	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6702				   "fp or vector constant word %u", i);
6703	    break;
6704	  }
6705
6706	case dw_val_class_flag:
6707	  dw2_asm_output_data (1, AT_flag (a), "%s", name);
6708	  break;
6709
6710	case dw_val_class_loc_list:
6711	  {
6712	    char *sym = AT_loc_list (a)->ll_symbol;
6713
6714	    if (sym == 0)
6715	      abort ();
6716	    dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6717				  loc_section_label, "%s", name);
6718	  }
6719	  break;
6720
6721	case dw_val_class_die_ref:
6722	  if (AT_ref_external (a))
6723	    {
6724	      char *sym = AT_ref (a)->die_symbol;
6725
6726	      if (sym == 0)
6727		abort ();
6728	      dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6729	    }
6730	  else if (AT_ref (a)->die_offset == 0)
6731	    abort ();
6732	  else
6733	    dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6734				 "%s", name);
6735	  break;
6736
6737	case dw_val_class_fde_ref:
6738	  {
6739	    char l1[20];
6740
6741	    ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6742					 a->dw_attr_val.v.val_fde_index * 2);
6743	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6744	  }
6745	  break;
6746
6747	case dw_val_class_lbl_id:
6748	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6749	  break;
6750
6751	case dw_val_class_lbl_offset:
6752	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6753	  break;
6754
6755	case dw_val_class_str:
6756	  if (AT_string_form (a) == DW_FORM_strp)
6757	    dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6758				   a->dw_attr_val.v.val_str->label,
6759				   "%s: \"%s\"", name, AT_string (a));
6760	  else
6761	    dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6762	  break;
6763
6764	default:
6765	  abort ();
6766	}
6767    }
6768
6769  for (c = die->die_child; c != NULL; c = c->die_sib)
6770    output_die (c);
6771
6772  /* Add null byte to terminate sibling list.  */
6773  if (die->die_child != NULL)
6774    dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6775			 die->die_offset);
6776}
6777
6778/* Output the compilation unit that appears at the beginning of the
6779   .debug_info section, and precedes the DIE descriptions.  */
6780
6781static void
6782output_compilation_unit_header (void)
6783{
6784  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6785    dw2_asm_output_data (4, 0xffffffff,
6786      "Initial length escape value indicating 64-bit DWARF extension");
6787  dw2_asm_output_data (DWARF_OFFSET_SIZE,
6788                       next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6789		       "Length of Compilation Unit Info");
6790  dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6791  dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6792			 "Offset Into Abbrev. Section");
6793  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6794}
6795
6796/* Output the compilation unit DIE and its children.  */
6797
6798static void
6799output_comp_unit (dw_die_ref die, int output_if_empty)
6800{
6801  const char *secname;
6802  char *oldsym, *tmp;
6803
6804  /* Unless we are outputting main CU, we may throw away empty ones.  */
6805  if (!output_if_empty && die->die_child == NULL)
6806    return;
6807
6808  /* Even if there are no children of this DIE, we must output the information
6809     about the compilation unit.  Otherwise, on an empty translation unit, we
6810     will generate a present, but empty, .debug_info section.  IRIX 6.5 `nm'
6811     will then complain when examining the file.  First mark all the DIEs in
6812     this CU so we know which get local refs.  */
6813  mark_dies (die);
6814
6815  build_abbrev_table (die);
6816
6817  /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
6818  next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6819  calc_die_sizes (die);
6820
6821  oldsym = die->die_symbol;
6822  if (oldsym)
6823    {
6824      tmp = alloca (strlen (oldsym) + 24);
6825
6826      sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6827      secname = tmp;
6828      die->die_symbol = NULL;
6829    }
6830  else
6831    secname = (const char *) DEBUG_INFO_SECTION;
6832
6833  /* Output debugging information.  */
6834  named_section_flags (secname, SECTION_DEBUG);
6835  output_compilation_unit_header ();
6836  output_die (die);
6837
6838  /* Leave the marks on the main CU, so we can check them in
6839     output_pubnames.  */
6840  if (oldsym)
6841    {
6842      unmark_dies (die);
6843      die->die_symbol = oldsym;
6844    }
6845}
6846
6847/* The DWARF2 pubname for a nested thingy looks like "A::f".  The
6848   output of lang_hooks.decl_printable_name for C++ looks like
6849   "A::f(int)".  Let's drop the argument list, and maybe the scope.  */
6850
6851static const char *
6852dwarf2_name (tree decl, int scope)
6853{
6854  return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6855}
6856
6857/* Add a new entry to .debug_pubnames if appropriate.  */
6858
6859static void
6860add_pubname (tree decl, dw_die_ref die)
6861{
6862  pubname_ref p;
6863
6864  if (! TREE_PUBLIC (decl))
6865    return;
6866
6867  if (pubname_table_in_use == pubname_table_allocated)
6868    {
6869      pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6870      pubname_table
6871	= ggc_realloc (pubname_table,
6872		       (pubname_table_allocated * sizeof (pubname_entry)));
6873      memset (pubname_table + pubname_table_in_use, 0,
6874	      PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6875    }
6876
6877  p = &pubname_table[pubname_table_in_use++];
6878  p->die = die;
6879  p->name = xstrdup (dwarf2_name (decl, 1));
6880}
6881
6882/* Output the public names table used to speed up access to externally
6883   visible names.  For now, only generate entries for externally
6884   visible procedures.  */
6885
6886static void
6887output_pubnames (void)
6888{
6889  unsigned i;
6890  unsigned long pubnames_length = size_of_pubnames ();
6891
6892  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6893    dw2_asm_output_data (4, 0xffffffff,
6894      "Initial length escape value indicating 64-bit DWARF extension");
6895  dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6896		       "Length of Public Names Info");
6897  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6898  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6899			 "Offset of Compilation Unit Info");
6900  dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6901		       "Compilation Unit Length");
6902
6903  for (i = 0; i < pubname_table_in_use; i++)
6904    {
6905      pubname_ref pub = &pubname_table[i];
6906
6907      /* We shouldn't see pubnames for DIEs outside of the main CU.  */
6908      if (pub->die->die_mark == 0)
6909	abort ();
6910
6911      dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6912			   "DIE offset");
6913
6914      dw2_asm_output_nstring (pub->name, -1, "external name");
6915    }
6916
6917  dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6918}
6919
6920/* Add a new entry to .debug_aranges if appropriate.  */
6921
6922static void
6923add_arange (tree decl, dw_die_ref die)
6924{
6925  if (! DECL_SECTION_NAME (decl))
6926    return;
6927
6928  if (arange_table_in_use == arange_table_allocated)
6929    {
6930      arange_table_allocated += ARANGE_TABLE_INCREMENT;
6931      arange_table = ggc_realloc (arange_table,
6932				  (arange_table_allocated
6933				   * sizeof (dw_die_ref)));
6934      memset (arange_table + arange_table_in_use, 0,
6935	      ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6936    }
6937
6938  arange_table[arange_table_in_use++] = die;
6939}
6940
6941/* Output the information that goes into the .debug_aranges table.
6942   Namely, define the beginning and ending address range of the
6943   text section generated for this compilation unit.  */
6944
6945static void
6946output_aranges (void)
6947{
6948  unsigned i;
6949  unsigned long aranges_length = size_of_aranges ();
6950
6951  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6952    dw2_asm_output_data (4, 0xffffffff,
6953      "Initial length escape value indicating 64-bit DWARF extension");
6954  dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6955		       "Length of Address Ranges Info");
6956  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6957  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6958			 "Offset of Compilation Unit Info");
6959  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6960  dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6961
6962  /* We need to align to twice the pointer size here.  */
6963  if (DWARF_ARANGES_PAD_SIZE)
6964    {
6965      /* Pad using a 2 byte words so that padding is correct for any
6966	 pointer size.  */
6967      dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6968			   2 * DWARF2_ADDR_SIZE);
6969      for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6970	dw2_asm_output_data (2, 0, NULL);
6971    }
6972
6973  dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6974  dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6975			text_section_label, "Length");
6976
6977  for (i = 0; i < arange_table_in_use; i++)
6978    {
6979      dw_die_ref die = arange_table[i];
6980
6981      /* We shouldn't see aranges for DIEs outside of the main CU.  */
6982      if (die->die_mark == 0)
6983	abort ();
6984
6985      if (die->die_tag == DW_TAG_subprogram)
6986	{
6987	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6988			       "Address");
6989	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6990				get_AT_low_pc (die), "Length");
6991	}
6992      else
6993	{
6994	  /* A static variable; extract the symbol from DW_AT_location.
6995	     Note that this code isn't currently hit, as we only emit
6996	     aranges for functions (jason 9/23/99).  */
6997	  dw_attr_ref a = get_AT (die, DW_AT_location);
6998	  dw_loc_descr_ref loc;
6999
7000	  if (! a || AT_class (a) != dw_val_class_loc)
7001	    abort ();
7002
7003	  loc = AT_loc (a);
7004	  if (loc->dw_loc_opc != DW_OP_addr)
7005	    abort ();
7006
7007	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7008				   loc->dw_loc_oprnd1.v.val_addr, "Address");
7009	  dw2_asm_output_data (DWARF2_ADDR_SIZE,
7010			       get_AT_unsigned (die, DW_AT_byte_size),
7011			       "Length");
7012	}
7013    }
7014
7015  /* Output the terminator words.  */
7016  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7017  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7018}
7019
7020/* Add a new entry to .debug_ranges.  Return the offset at which it
7021   was placed.  */
7022
7023static unsigned int
7024add_ranges (tree block)
7025{
7026  unsigned int in_use = ranges_table_in_use;
7027
7028  if (in_use == ranges_table_allocated)
7029    {
7030      ranges_table_allocated += RANGES_TABLE_INCREMENT;
7031      ranges_table
7032	= ggc_realloc (ranges_table, (ranges_table_allocated
7033				      * sizeof (struct dw_ranges_struct)));
7034      memset (ranges_table + ranges_table_in_use, 0,
7035	      RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7036    }
7037
7038  ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7039  ranges_table_in_use = in_use + 1;
7040
7041  return in_use * 2 * DWARF2_ADDR_SIZE;
7042}
7043
7044static void
7045output_ranges (void)
7046{
7047  unsigned i;
7048  static const char *const start_fmt = "Offset 0x%x";
7049  const char *fmt = start_fmt;
7050
7051  for (i = 0; i < ranges_table_in_use; i++)
7052    {
7053      int block_num = ranges_table[i].block_num;
7054
7055      if (block_num)
7056	{
7057	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7058	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7059
7060	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7061	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7062
7063	  /* If all code is in the text section, then the compilation
7064	     unit base address defaults to DW_AT_low_pc, which is the
7065	     base of the text section.  */
7066	  if (separate_line_info_table_in_use == 0)
7067	    {
7068	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7069				    text_section_label,
7070				    fmt, i * 2 * DWARF2_ADDR_SIZE);
7071	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7072				    text_section_label, NULL);
7073	    }
7074
7075	  /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7076	     compilation unit base address to zero, which allows us to
7077	     use absolute addresses, and not worry about whether the
7078	     target supports cross-section arithmetic.  */
7079	  else
7080	    {
7081	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7082				   fmt, i * 2 * DWARF2_ADDR_SIZE);
7083	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7084	    }
7085
7086	  fmt = NULL;
7087	}
7088      else
7089	{
7090	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7091	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7092	  fmt = start_fmt;
7093	}
7094    }
7095}
7096
7097/* Data structure containing information about input files.  */
7098struct file_info
7099{
7100  char *path;		/* Complete file name.  */
7101  char *fname;		/* File name part.  */
7102  int length;		/* Length of entire string.  */
7103  int file_idx;		/* Index in input file table.  */
7104  int dir_idx;		/* Index in directory table.  */
7105};
7106
7107/* Data structure containing information about directories with source
7108   files.  */
7109struct dir_info
7110{
7111  char *path;		/* Path including directory name.  */
7112  int length;		/* Path length.  */
7113  int prefix;		/* Index of directory entry which is a prefix.  */
7114  int count;		/* Number of files in this directory.  */
7115  int dir_idx;		/* Index of directory used as base.  */
7116  int used;		/* Used in the end?  */
7117};
7118
7119/* Callback function for file_info comparison.  We sort by looking at
7120   the directories in the path.  */
7121
7122static int
7123file_info_cmp (const void *p1, const void *p2)
7124{
7125  const struct file_info *s1 = p1;
7126  const struct file_info *s2 = p2;
7127  unsigned char *cp1;
7128  unsigned char *cp2;
7129
7130  /* Take care of file names without directories.  We need to make sure that
7131     we return consistent values to qsort since some will get confused if
7132     we return the same value when identical operands are passed in opposite
7133     orders.  So if neither has a directory, return 0 and otherwise return
7134     1 or -1 depending on which one has the directory.  */
7135  if ((s1->path == s1->fname || s2->path == s2->fname))
7136    return (s2->path == s2->fname) - (s1->path == s1->fname);
7137
7138  cp1 = (unsigned char *) s1->path;
7139  cp2 = (unsigned char *) s2->path;
7140
7141  while (1)
7142    {
7143      ++cp1;
7144      ++cp2;
7145      /* Reached the end of the first path?  If so, handle like above.  */
7146      if ((cp1 == (unsigned char *) s1->fname)
7147	  || (cp2 == (unsigned char *) s2->fname))
7148	return ((cp2 == (unsigned char *) s2->fname)
7149		- (cp1 == (unsigned char *) s1->fname));
7150
7151      /* Character of current path component the same?  */
7152      else if (*cp1 != *cp2)
7153	return *cp1 - *cp2;
7154    }
7155}
7156
7157/* Output the directory table and the file name table.  We try to minimize
7158   the total amount of memory needed.  A heuristic is used to avoid large
7159   slowdowns with many input files.  */
7160
7161static void
7162output_file_names (void)
7163{
7164  struct file_info *files;
7165  struct dir_info *dirs;
7166  int *saved;
7167  int *savehere;
7168  int *backmap;
7169  size_t ndirs;
7170  int idx_offset;
7171  size_t i;
7172  int idx;
7173
7174  /* Handle the case where file_table is empty.  */
7175  if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7176    {
7177      dw2_asm_output_data (1, 0, "End directory table");
7178      dw2_asm_output_data (1, 0, "End file name table");
7179      return;
7180    }
7181
7182  /* Allocate the various arrays we need.  */
7183  files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7184  dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7185
7186  /* Sort the file names.  */
7187  for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7188    {
7189      char *f;
7190
7191      /* Skip all leading "./".  */
7192      f = VARRAY_CHAR_PTR (file_table, i);
7193      while (f[0] == '.' && f[1] == '/')
7194	f += 2;
7195
7196      /* Create a new array entry.  */
7197      files[i].path = f;
7198      files[i].length = strlen (f);
7199      files[i].file_idx = i;
7200
7201      /* Search for the file name part.  */
7202      f = strrchr (f, '/');
7203      files[i].fname = f == NULL ? files[i].path : f + 1;
7204    }
7205
7206  qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7207	 sizeof (files[0]), file_info_cmp);
7208
7209  /* Find all the different directories used.  */
7210  dirs[0].path = files[1].path;
7211  dirs[0].length = files[1].fname - files[1].path;
7212  dirs[0].prefix = -1;
7213  dirs[0].count = 1;
7214  dirs[0].dir_idx = 0;
7215  dirs[0].used = 0;
7216  files[1].dir_idx = 0;
7217  ndirs = 1;
7218
7219  for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7220    if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7221	&& memcmp (dirs[ndirs - 1].path, files[i].path,
7222		   dirs[ndirs - 1].length) == 0)
7223      {
7224	/* Same directory as last entry.  */
7225	files[i].dir_idx = ndirs - 1;
7226	++dirs[ndirs - 1].count;
7227      }
7228    else
7229      {
7230	size_t j;
7231
7232	/* This is a new directory.  */
7233	dirs[ndirs].path = files[i].path;
7234	dirs[ndirs].length = files[i].fname - files[i].path;
7235	dirs[ndirs].count = 1;
7236	dirs[ndirs].dir_idx = ndirs;
7237	dirs[ndirs].used = 0;
7238	files[i].dir_idx = ndirs;
7239
7240	/* Search for a prefix.  */
7241	dirs[ndirs].prefix = -1;
7242	for (j = 0; j < ndirs; j++)
7243	  if (dirs[j].length < dirs[ndirs].length
7244	      && dirs[j].length > 1
7245	      && (dirs[ndirs].prefix == -1
7246		  || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7247	      && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7248	    dirs[ndirs].prefix = j;
7249
7250	++ndirs;
7251      }
7252
7253  /* Now to the actual work.  We have to find a subset of the directories which
7254     allow expressing the file name using references to the directory table
7255     with the least amount of characters.  We do not do an exhaustive search
7256     where we would have to check out every combination of every single
7257     possible prefix.  Instead we use a heuristic which provides nearly optimal
7258     results in most cases and never is much off.  */
7259  saved = alloca (ndirs * sizeof (int));
7260  savehere = alloca (ndirs * sizeof (int));
7261
7262  memset (saved, '\0', ndirs * sizeof (saved[0]));
7263  for (i = 0; i < ndirs; i++)
7264    {
7265      size_t j;
7266      int total;
7267
7268      /* We can always save some space for the current directory.  But this
7269	 does not mean it will be enough to justify adding the directory.  */
7270      savehere[i] = dirs[i].length;
7271      total = (savehere[i] - saved[i]) * dirs[i].count;
7272
7273      for (j = i + 1; j < ndirs; j++)
7274	{
7275	  savehere[j] = 0;
7276	  if (saved[j] < dirs[i].length)
7277	    {
7278	      /* Determine whether the dirs[i] path is a prefix of the
7279		 dirs[j] path.  */
7280	      int k;
7281
7282	      k = dirs[j].prefix;
7283	      while (k != -1 && k != (int) i)
7284		k = dirs[k].prefix;
7285
7286	      if (k == (int) i)
7287		{
7288		  /* Yes it is.  We can possibly safe some memory but
7289		     writing the filenames in dirs[j] relative to
7290		     dirs[i].  */
7291		  savehere[j] = dirs[i].length;
7292		  total += (savehere[j] - saved[j]) * dirs[j].count;
7293		}
7294	    }
7295	}
7296
7297      /* Check whether we can safe enough to justify adding the dirs[i]
7298	 directory.  */
7299      if (total > dirs[i].length + 1)
7300	{
7301	  /* It's worthwhile adding.  */
7302	  for (j = i; j < ndirs; j++)
7303	    if (savehere[j] > 0)
7304	      {
7305		/* Remember how much we saved for this directory so far.  */
7306		saved[j] = savehere[j];
7307
7308		/* Remember the prefix directory.  */
7309		dirs[j].dir_idx = i;
7310	      }
7311	}
7312    }
7313
7314  /* We have to emit them in the order they appear in the file_table array
7315     since the index is used in the debug info generation.  To do this
7316     efficiently we generate a back-mapping of the indices first.  */
7317  backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7318  for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7319    {
7320      backmap[files[i].file_idx] = i;
7321
7322      /* Mark this directory as used.  */
7323      dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7324    }
7325
7326  /* That was it.  We are ready to emit the information.  First emit the
7327     directory name table.  We have to make sure the first actually emitted
7328     directory name has index one; zero is reserved for the current working
7329     directory.  Make sure we do not confuse these indices with the one for the
7330     constructed table (even though most of the time they are identical).  */
7331  idx = 1;
7332  idx_offset = dirs[0].length > 0 ? 1 : 0;
7333  for (i = 1 - idx_offset; i < ndirs; i++)
7334    if (dirs[i].used != 0)
7335      {
7336	dirs[i].used = idx++;
7337	dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7338				"Directory Entry: 0x%x", dirs[i].used);
7339      }
7340
7341  dw2_asm_output_data (1, 0, "End directory table");
7342
7343  /* Correct the index for the current working directory entry if it
7344     exists.  */
7345  if (idx_offset == 0)
7346    dirs[0].used = 0;
7347
7348  /* Now write all the file names.  */
7349  for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7350    {
7351      int file_idx = backmap[i];
7352      int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7353
7354      dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7355			      "File Entry: 0x%lx", (unsigned long) i);
7356
7357      /* Include directory index.  */
7358      dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7359
7360      /* Modification time.  */
7361      dw2_asm_output_data_uleb128 (0, NULL);
7362
7363      /* File length in bytes.  */
7364      dw2_asm_output_data_uleb128 (0, NULL);
7365    }
7366
7367  dw2_asm_output_data (1, 0, "End file name table");
7368}
7369
7370
7371/* Output the source line number correspondence information.  This
7372   information goes into the .debug_line section.  */
7373
7374static void
7375output_line_info (void)
7376{
7377  char l1[20], l2[20], p1[20], p2[20];
7378  char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7379  char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7380  unsigned opc;
7381  unsigned n_op_args;
7382  unsigned long lt_index;
7383  unsigned long current_line;
7384  long line_offset;
7385  long line_delta;
7386  unsigned long current_file;
7387  unsigned long function;
7388
7389  ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7390  ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7391  ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7392  ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7393
7394  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7395    dw2_asm_output_data (4, 0xffffffff,
7396      "Initial length escape value indicating 64-bit DWARF extension");
7397  dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7398			"Length of Source Line Info");
7399  ASM_OUTPUT_LABEL (asm_out_file, l1);
7400
7401  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7402  dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7403  ASM_OUTPUT_LABEL (asm_out_file, p1);
7404
7405  /* Define the architecture-dependent minimum instruction length (in
7406   bytes).  In this implementation of DWARF, this field is used for
7407   information purposes only.  Since GCC generates assembly language,
7408   we have no a priori knowledge of how many instruction bytes are
7409   generated for each source line, and therefore can use only the
7410   DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7411   commands.  Accordingly, we fix this as `1', which is "correct
7412   enough" for all architectures, and don't let the target override.  */
7413  dw2_asm_output_data (1, 1,
7414		       "Minimum Instruction Length");
7415
7416  dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7417		       "Default is_stmt_start flag");
7418  dw2_asm_output_data (1, DWARF_LINE_BASE,
7419		       "Line Base Value (Special Opcodes)");
7420  dw2_asm_output_data (1, DWARF_LINE_RANGE,
7421		       "Line Range Value (Special Opcodes)");
7422  dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7423		       "Special Opcode Base");
7424
7425  for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7426    {
7427      switch (opc)
7428	{
7429	case DW_LNS_advance_pc:
7430	case DW_LNS_advance_line:
7431	case DW_LNS_set_file:
7432	case DW_LNS_set_column:
7433	case DW_LNS_fixed_advance_pc:
7434	  n_op_args = 1;
7435	  break;
7436	default:
7437	  n_op_args = 0;
7438	  break;
7439	}
7440
7441      dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7442			   opc, n_op_args);
7443    }
7444
7445  /* Write out the information about the files we use.  */
7446  output_file_names ();
7447  ASM_OUTPUT_LABEL (asm_out_file, p2);
7448
7449  /* We used to set the address register to the first location in the text
7450     section here, but that didn't accomplish anything since we already
7451     have a line note for the opening brace of the first function.  */
7452
7453  /* Generate the line number to PC correspondence table, encoded as
7454     a series of state machine operations.  */
7455  current_file = 1;
7456  current_line = 1;
7457  strcpy (prev_line_label, text_section_label);
7458  for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7459    {
7460      dw_line_info_ref line_info = &line_info_table[lt_index];
7461
7462#if 0
7463      /* Disable this optimization for now; GDB wants to see two line notes
7464	 at the beginning of a function so it can find the end of the
7465	 prologue.  */
7466
7467      /* Don't emit anything for redundant notes.  Just updating the
7468	 address doesn't accomplish anything, because we already assume
7469	 that anything after the last address is this line.  */
7470      if (line_info->dw_line_num == current_line
7471	  && line_info->dw_file_num == current_file)
7472	continue;
7473#endif
7474
7475      /* Emit debug info for the address of the current line.
7476
7477	 Unfortunately, we have little choice here currently, and must always
7478	 use the most general form.  GCC does not know the address delta
7479	 itself, so we can't use DW_LNS_advance_pc.  Many ports do have length
7480	 attributes which will give an upper bound on the address range.  We
7481	 could perhaps use length attributes to determine when it is safe to
7482	 use DW_LNS_fixed_advance_pc.  */
7483
7484      ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7485      if (0)
7486	{
7487	  /* This can handle deltas up to 0xffff.  This takes 3 bytes.  */
7488	  dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7489			       "DW_LNS_fixed_advance_pc");
7490	  dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7491	}
7492      else
7493	{
7494	  /* This can handle any delta.  This takes
7495	     4+DWARF2_ADDR_SIZE bytes.  */
7496	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7497	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7498	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7499	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7500	}
7501
7502      strcpy (prev_line_label, line_label);
7503
7504      /* Emit debug info for the source file of the current line, if
7505	 different from the previous line.  */
7506      if (line_info->dw_file_num != current_file)
7507	{
7508	  current_file = line_info->dw_file_num;
7509	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7510	  dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7511				       VARRAY_CHAR_PTR (file_table,
7512							current_file));
7513	}
7514
7515      /* Emit debug info for the current line number, choosing the encoding
7516	 that uses the least amount of space.  */
7517      if (line_info->dw_line_num != current_line)
7518	{
7519	  line_offset = line_info->dw_line_num - current_line;
7520	  line_delta = line_offset - DWARF_LINE_BASE;
7521	  current_line = line_info->dw_line_num;
7522	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7523	    /* This can handle deltas from -10 to 234, using the current
7524	       definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.  This
7525	       takes 1 byte.  */
7526	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7527				 "line %lu", current_line);
7528	  else
7529	    {
7530	      /* This can handle any delta.  This takes at least 4 bytes,
7531		 depending on the value being encoded.  */
7532	      dw2_asm_output_data (1, DW_LNS_advance_line,
7533				   "advance to line %lu", current_line);
7534	      dw2_asm_output_data_sleb128 (line_offset, NULL);
7535	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7536	    }
7537	}
7538      else
7539	/* We still need to start a new row, so output a copy insn.  */
7540	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7541    }
7542
7543  /* Emit debug info for the address of the end of the function.  */
7544  if (0)
7545    {
7546      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7547			   "DW_LNS_fixed_advance_pc");
7548      dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7549    }
7550  else
7551    {
7552      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7553      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7554      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7555      dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7556    }
7557
7558  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7559  dw2_asm_output_data_uleb128 (1, NULL);
7560  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7561
7562  function = 0;
7563  current_file = 1;
7564  current_line = 1;
7565  for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7566    {
7567      dw_separate_line_info_ref line_info
7568	= &separate_line_info_table[lt_index];
7569
7570#if 0
7571      /* Don't emit anything for redundant notes.  */
7572      if (line_info->dw_line_num == current_line
7573	  && line_info->dw_file_num == current_file
7574	  && line_info->function == function)
7575	goto cont;
7576#endif
7577
7578      /* Emit debug info for the address of the current line.  If this is
7579	 a new function, or the first line of a function, then we need
7580	 to handle it differently.  */
7581      ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7582				   lt_index);
7583      if (function != line_info->function)
7584	{
7585	  function = line_info->function;
7586
7587	  /* Set the address register to the first line in the function.  */
7588	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7589	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7590	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7591	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7592	}
7593      else
7594	{
7595	  /* ??? See the DW_LNS_advance_pc comment above.  */
7596	  if (0)
7597	    {
7598	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7599				   "DW_LNS_fixed_advance_pc");
7600	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7601	    }
7602	  else
7603	    {
7604	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7605	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7606	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7607	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7608	    }
7609	}
7610
7611      strcpy (prev_line_label, line_label);
7612
7613      /* Emit debug info for the source file of the current line, if
7614	 different from the previous line.  */
7615      if (line_info->dw_file_num != current_file)
7616	{
7617	  current_file = line_info->dw_file_num;
7618	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7619	  dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7620				       VARRAY_CHAR_PTR (file_table,
7621							current_file));
7622	}
7623
7624      /* Emit debug info for the current line number, choosing the encoding
7625	 that uses the least amount of space.  */
7626      if (line_info->dw_line_num != current_line)
7627	{
7628	  line_offset = line_info->dw_line_num - current_line;
7629	  line_delta = line_offset - DWARF_LINE_BASE;
7630	  current_line = line_info->dw_line_num;
7631	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7632	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7633				 "line %lu", current_line);
7634	  else
7635	    {
7636	      dw2_asm_output_data (1, DW_LNS_advance_line,
7637				   "advance to line %lu", current_line);
7638	      dw2_asm_output_data_sleb128 (line_offset, NULL);
7639	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7640	    }
7641	}
7642      else
7643	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7644
7645#if 0
7646    cont:
7647#endif
7648
7649      lt_index++;
7650
7651      /* If we're done with a function, end its sequence.  */
7652      if (lt_index == separate_line_info_table_in_use
7653	  || separate_line_info_table[lt_index].function != function)
7654	{
7655	  current_file = 1;
7656	  current_line = 1;
7657
7658	  /* Emit debug info for the address of the end of the function.  */
7659	  ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7660	  if (0)
7661	    {
7662	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7663				   "DW_LNS_fixed_advance_pc");
7664	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7665	    }
7666	  else
7667	    {
7668	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7669	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7670	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7671	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7672	    }
7673
7674	  /* Output the marker for the end of this sequence.  */
7675	  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7676	  dw2_asm_output_data_uleb128 (1, NULL);
7677	  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7678	}
7679    }
7680
7681  /* Output the marker for the end of the line number info.  */
7682  ASM_OUTPUT_LABEL (asm_out_file, l2);
7683}
7684
7685/* Given a pointer to a tree node for some base type, return a pointer to
7686   a DIE that describes the given type.
7687
7688   This routine must only be called for GCC type nodes that correspond to
7689   Dwarf base (fundamental) types.  */
7690
7691static dw_die_ref
7692base_type_die (tree type)
7693{
7694  dw_die_ref base_type_result;
7695  const char *type_name;
7696  enum dwarf_type encoding;
7697  tree name = TYPE_NAME (type);
7698
7699  if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7700    return 0;
7701
7702  if (name)
7703    {
7704      if (TREE_CODE (name) == TYPE_DECL)
7705	name = DECL_NAME (name);
7706
7707      type_name = IDENTIFIER_POINTER (name);
7708    }
7709  else
7710    type_name = "__unknown__";
7711
7712  switch (TREE_CODE (type))
7713    {
7714    case INTEGER_TYPE:
7715      /* Carefully distinguish the C character types, without messing
7716	 up if the language is not C. Note that we check only for the names
7717	 that contain spaces; other names might occur by coincidence in other
7718	 languages.  */
7719      if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7720	     && (type == char_type_node
7721		 || ! strcmp (type_name, "signed char")
7722		 || ! strcmp (type_name, "unsigned char"))))
7723	{
7724	  if (TREE_UNSIGNED (type))
7725	    encoding = DW_ATE_unsigned;
7726	  else
7727	    encoding = DW_ATE_signed;
7728	  break;
7729	}
7730      /* else fall through.  */
7731
7732    case CHAR_TYPE:
7733      /* GNU Pascal/Ada CHAR type.  Not used in C.  */
7734      if (TREE_UNSIGNED (type))
7735	encoding = DW_ATE_unsigned_char;
7736      else
7737	encoding = DW_ATE_signed_char;
7738      break;
7739
7740    case REAL_TYPE:
7741      encoding = DW_ATE_float;
7742      break;
7743
7744      /* Dwarf2 doesn't know anything about complex ints, so use
7745	 a user defined type for it.  */
7746    case COMPLEX_TYPE:
7747      if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7748	encoding = DW_ATE_complex_float;
7749      else
7750	encoding = DW_ATE_lo_user;
7751      break;
7752
7753    case BOOLEAN_TYPE:
7754      /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
7755      encoding = DW_ATE_boolean;
7756      break;
7757
7758    default:
7759      /* No other TREE_CODEs are Dwarf fundamental types.  */
7760      abort ();
7761    }
7762
7763  base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7764  if (demangle_name_func)
7765    type_name = (*demangle_name_func) (type_name);
7766
7767  add_AT_string (base_type_result, DW_AT_name, type_name);
7768  add_AT_unsigned (base_type_result, DW_AT_byte_size,
7769		   int_size_in_bytes (type));
7770  add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7771
7772  return base_type_result;
7773}
7774
7775/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7776   the Dwarf "root" type for the given input type.  The Dwarf "root" type of
7777   a given type is generally the same as the given type, except that if the
7778   given type is a pointer or reference type, then the root type of the given
7779   type is the root type of the "basis" type for the pointer or reference
7780   type.  (This definition of the "root" type is recursive.) Also, the root
7781   type of a `const' qualified type or a `volatile' qualified type is the
7782   root type of the given type without the qualifiers.  */
7783
7784static tree
7785root_type (tree type)
7786{
7787  if (TREE_CODE (type) == ERROR_MARK)
7788    return error_mark_node;
7789
7790  switch (TREE_CODE (type))
7791    {
7792    case ERROR_MARK:
7793      return error_mark_node;
7794
7795    case POINTER_TYPE:
7796    case REFERENCE_TYPE:
7797      return type_main_variant (root_type (TREE_TYPE (type)));
7798
7799    default:
7800      return type_main_variant (type);
7801    }
7802}
7803
7804/* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7805   given input type is a Dwarf "fundamental" type.  Otherwise return null.  */
7806
7807static inline int
7808is_base_type (tree type)
7809{
7810  switch (TREE_CODE (type))
7811    {
7812    case ERROR_MARK:
7813    case VOID_TYPE:
7814    case INTEGER_TYPE:
7815    case REAL_TYPE:
7816    case COMPLEX_TYPE:
7817    case BOOLEAN_TYPE:
7818    case CHAR_TYPE:
7819      return 1;
7820
7821    case SET_TYPE:
7822    case ARRAY_TYPE:
7823    case RECORD_TYPE:
7824    case UNION_TYPE:
7825    case QUAL_UNION_TYPE:
7826    case ENUMERAL_TYPE:
7827    case FUNCTION_TYPE:
7828    case METHOD_TYPE:
7829    case POINTER_TYPE:
7830    case REFERENCE_TYPE:
7831    case FILE_TYPE:
7832    case OFFSET_TYPE:
7833    case LANG_TYPE:
7834    case VECTOR_TYPE:
7835      return 0;
7836
7837    default:
7838      abort ();
7839    }
7840
7841  return 0;
7842}
7843
7844/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7845   node, return the size in bits for the type if it is a constant, or else
7846   return the alignment for the type if the type's size is not constant, or
7847   else return BITS_PER_WORD if the type actually turns out to be an
7848   ERROR_MARK node.  */
7849
7850static inline unsigned HOST_WIDE_INT
7851simple_type_size_in_bits (tree type)
7852{
7853  if (TREE_CODE (type) == ERROR_MARK)
7854    return BITS_PER_WORD;
7855  else if (TYPE_SIZE (type) == NULL_TREE)
7856    return 0;
7857  else if (host_integerp (TYPE_SIZE (type), 1))
7858    return tree_low_cst (TYPE_SIZE (type), 1);
7859  else
7860    return TYPE_ALIGN (type);
7861}
7862
7863/* Return true if the debug information for the given type should be
7864   emitted as a subrange type.  */
7865
7866static inline bool
7867is_subrange_type (tree type)
7868{
7869  tree subtype = TREE_TYPE (type);
7870
7871  if (TREE_CODE (type) == INTEGER_TYPE
7872      && subtype != NULL_TREE)
7873    {
7874      if (TREE_CODE (subtype) == INTEGER_TYPE)
7875        return true;
7876      if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7877        return true;
7878    }
7879  return false;
7880}
7881
7882/*  Given a pointer to a tree node for a subrange type, return a pointer
7883    to a DIE that describes the given type.  */
7884
7885static dw_die_ref
7886subrange_type_die (tree type, dw_die_ref context_die)
7887{
7888  dw_die_ref subtype_die;
7889  dw_die_ref subrange_die;
7890  tree name = TYPE_NAME (type);
7891  const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7892
7893  if (context_die == NULL)
7894    context_die = comp_unit_die;
7895
7896  if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7897    subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7898  else
7899    subtype_die = base_type_die (TREE_TYPE (type));
7900
7901  subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7902
7903  if (name != NULL)
7904    {
7905      if (TREE_CODE (name) == TYPE_DECL)
7906        name = DECL_NAME (name);
7907      add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7908    }
7909
7910  if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
7911    {
7912      /* The size of the subrange type and its base type do not match,
7913         so we need to generate a size attribute for the subrange type.  */
7914      add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
7915    }
7916
7917  if (TYPE_MIN_VALUE (type) != NULL)
7918    add_bound_info (subrange_die, DW_AT_lower_bound,
7919                    TYPE_MIN_VALUE (type));
7920  if (TYPE_MAX_VALUE (type) != NULL)
7921    add_bound_info (subrange_die, DW_AT_upper_bound,
7922                    TYPE_MAX_VALUE (type));
7923  add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7924
7925  return subrange_die;
7926}
7927
7928/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7929   entry that chains various modifiers in front of the given type.  */
7930
7931static dw_die_ref
7932modified_type_die (tree type, int is_const_type, int is_volatile_type,
7933		   dw_die_ref context_die)
7934{
7935  enum tree_code code = TREE_CODE (type);
7936  dw_die_ref mod_type_die = NULL;
7937  dw_die_ref sub_die = NULL;
7938  tree item_type = NULL;
7939
7940  if (code != ERROR_MARK)
7941    {
7942      tree qualified_type;
7943
7944      /* See if we already have the appropriately qualified variant of
7945	 this type.  */
7946      qualified_type
7947	= get_qualified_type (type,
7948			      ((is_const_type ? TYPE_QUAL_CONST : 0)
7949			       | (is_volatile_type
7950				  ? TYPE_QUAL_VOLATILE : 0)));
7951
7952      /* If we do, then we can just use its DIE, if it exists.  */
7953      if (qualified_type)
7954	{
7955	  mod_type_die = lookup_type_die (qualified_type);
7956	  if (mod_type_die)
7957	    return mod_type_die;
7958	}
7959
7960      /* Handle C typedef types.  */
7961      if (qualified_type && TYPE_NAME (qualified_type)
7962	  && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7963	  && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7964	{
7965	  tree type_name = TYPE_NAME (qualified_type);
7966	  tree dtype = TREE_TYPE (type_name);
7967
7968	  if (qualified_type == dtype)
7969	    {
7970	      /* For a named type, use the typedef.  */
7971	      gen_type_die (qualified_type, context_die);
7972	      mod_type_die = lookup_type_die (qualified_type);
7973	    }
7974	  else if (is_const_type < TYPE_READONLY (dtype)
7975		   || is_volatile_type < TYPE_VOLATILE (dtype))
7976	    /* cv-unqualified version of named type.  Just use the unnamed
7977	       type to which it refers.  */
7978	    mod_type_die
7979	      = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7980				   is_const_type, is_volatile_type,
7981				   context_die);
7982
7983	  /* Else cv-qualified version of named type; fall through.  */
7984	}
7985
7986      if (mod_type_die)
7987	/* OK.  */
7988	;
7989      else if (is_const_type)
7990	{
7991	  mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7992	  sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7993	}
7994      else if (is_volatile_type)
7995	{
7996	  mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7997	  sub_die = modified_type_die (type, 0, 0, context_die);
7998	}
7999      else if (code == POINTER_TYPE)
8000	{
8001	  mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8002	  add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8003			   simple_type_size_in_bits (type) / BITS_PER_UNIT);
8004#if 0
8005	  add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8006#endif
8007	  item_type = TREE_TYPE (type);
8008	}
8009      else if (code == REFERENCE_TYPE)
8010	{
8011	  mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8012	  add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8013			   simple_type_size_in_bits (type) / BITS_PER_UNIT);
8014#if 0
8015	  add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8016#endif
8017	  item_type = TREE_TYPE (type);
8018	}
8019      else if (is_subrange_type (type))
8020        mod_type_die = subrange_type_die (type, context_die);
8021      else if (is_base_type (type))
8022	mod_type_die = base_type_die (type);
8023      else
8024	{
8025	  gen_type_die (type, context_die);
8026
8027	  /* We have to get the type_main_variant here (and pass that to the
8028	     `lookup_type_die' routine) because the ..._TYPE node we have
8029	     might simply be a *copy* of some original type node (where the
8030	     copy was created to help us keep track of typedef names) and
8031	     that copy might have a different TYPE_UID from the original
8032	     ..._TYPE node.  */
8033	  if (TREE_CODE (type) != VECTOR_TYPE)
8034	    mod_type_die = lookup_type_die (type_main_variant (type));
8035	  else
8036	    /* Vectors have the debugging information in the type,
8037	       not the main variant.  */
8038	    mod_type_die = lookup_type_die (type);
8039	  if (mod_type_die == NULL)
8040	    abort ();
8041	}
8042
8043      /* We want to equate the qualified type to the die below.  */
8044      type = qualified_type;
8045    }
8046
8047  if (type)
8048    equate_type_number_to_die (type, mod_type_die);
8049  if (item_type)
8050    /* We must do this after the equate_type_number_to_die call, in case
8051       this is a recursive type.  This ensures that the modified_type_die
8052       recursion will terminate even if the type is recursive.  Recursive
8053       types are possible in Ada.  */
8054    sub_die = modified_type_die (item_type,
8055				 TYPE_READONLY (item_type),
8056				 TYPE_VOLATILE (item_type),
8057				 context_die);
8058
8059  if (sub_die != NULL)
8060    add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8061
8062  return mod_type_die;
8063}
8064
8065/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8066   an enumerated type.  */
8067
8068static inline int
8069type_is_enum (tree type)
8070{
8071  return TREE_CODE (type) == ENUMERAL_TYPE;
8072}
8073
8074/* Return the DBX register number described by a given RTL node.  */
8075
8076static unsigned int
8077dbx_reg_number (rtx rtl)
8078{
8079  unsigned regno = REGNO (rtl);
8080
8081  if (regno >= FIRST_PSEUDO_REGISTER)
8082    abort ();
8083
8084  return DBX_REGISTER_NUMBER (regno);
8085}
8086
8087/* Return a location descriptor that designates a machine register or
8088   zero if there is none.  */
8089
8090static dw_loc_descr_ref
8091reg_loc_descriptor (rtx rtl)
8092{
8093  unsigned reg;
8094  rtx regs;
8095
8096  if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8097    return 0;
8098
8099  reg = dbx_reg_number (rtl);
8100  regs = (*targetm.dwarf_register_span) (rtl);
8101
8102  if (HARD_REGNO_NREGS (REGNO (rtl), GET_MODE (rtl)) > 1
8103      || regs)
8104    return multiple_reg_loc_descriptor (rtl, regs);
8105  else
8106    return one_reg_loc_descriptor (reg);
8107}
8108
8109/* Return a location descriptor that designates a machine register for
8110   a given hard register number.  */
8111
8112static dw_loc_descr_ref
8113one_reg_loc_descriptor (unsigned int regno)
8114{
8115  if (regno <= 31)
8116    return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8117  else
8118    return new_loc_descr (DW_OP_regx, regno, 0);
8119}
8120
8121/* Given an RTL of a register, return a location descriptor that
8122   designates a value that spans more than one register.  */
8123
8124static dw_loc_descr_ref
8125multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8126{
8127  int nregs, size, i;
8128  unsigned reg;
8129  dw_loc_descr_ref loc_result = NULL;
8130
8131  reg = dbx_reg_number (rtl);
8132  nregs = HARD_REGNO_NREGS (REGNO (rtl), GET_MODE (rtl));
8133
8134  /* Simple, contiguous registers.  */
8135  if (regs == NULL_RTX)
8136    {
8137      size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8138
8139      loc_result = NULL;
8140      while (nregs--)
8141	{
8142	  dw_loc_descr_ref t;
8143
8144	  t = one_reg_loc_descriptor (reg);
8145	  add_loc_descr (&loc_result, t);
8146	  add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8147	  ++reg;
8148	}
8149      return loc_result;
8150    }
8151
8152  /* Now onto stupid register sets in non contiguous locations.  */
8153
8154  if (GET_CODE (regs) != PARALLEL)
8155    abort ();
8156
8157  size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8158  loc_result = NULL;
8159
8160  for (i = 0; i < XVECLEN (regs, 0); ++i)
8161    {
8162      dw_loc_descr_ref t;
8163
8164      t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8165      add_loc_descr (&loc_result, t);
8166      size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8167      add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8168    }
8169  return loc_result;
8170}
8171
8172/* Return a location descriptor that designates a constant.  */
8173
8174static dw_loc_descr_ref
8175int_loc_descriptor (HOST_WIDE_INT i)
8176{
8177  enum dwarf_location_atom op;
8178
8179  /* Pick the smallest representation of a constant, rather than just
8180     defaulting to the LEB encoding.  */
8181  if (i >= 0)
8182    {
8183      if (i <= 31)
8184	op = DW_OP_lit0 + i;
8185      else if (i <= 0xff)
8186	op = DW_OP_const1u;
8187      else if (i <= 0xffff)
8188	op = DW_OP_const2u;
8189      else if (HOST_BITS_PER_WIDE_INT == 32
8190	       || i <= 0xffffffff)
8191	op = DW_OP_const4u;
8192      else
8193	op = DW_OP_constu;
8194    }
8195  else
8196    {
8197      if (i >= -0x80)
8198	op = DW_OP_const1s;
8199      else if (i >= -0x8000)
8200	op = DW_OP_const2s;
8201      else if (HOST_BITS_PER_WIDE_INT == 32
8202	       || i >= -0x80000000)
8203	op = DW_OP_const4s;
8204      else
8205	op = DW_OP_consts;
8206    }
8207
8208  return new_loc_descr (op, i, 0);
8209}
8210
8211/* Return a location descriptor that designates a base+offset location.  */
8212
8213static dw_loc_descr_ref
8214based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8215{
8216  dw_loc_descr_ref loc_result;
8217  /* For the "frame base", we use the frame pointer or stack pointer
8218     registers, since the RTL for local variables is relative to one of
8219     them.  */
8220  unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8221					 ? HARD_FRAME_POINTER_REGNUM
8222					 : STACK_POINTER_REGNUM);
8223
8224  if (reg == fp_reg)
8225    loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8226  else if (reg <= 31)
8227    loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8228  else
8229    loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8230
8231  return loc_result;
8232}
8233
8234/* Return true if this RTL expression describes a base+offset calculation.  */
8235
8236static inline int
8237is_based_loc (rtx rtl)
8238{
8239  return (GET_CODE (rtl) == PLUS
8240	  && ((GET_CODE (XEXP (rtl, 0)) == REG
8241	       && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8242	       && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8243}
8244
8245/* The following routine converts the RTL for a variable or parameter
8246   (resident in memory) into an equivalent Dwarf representation of a
8247   mechanism for getting the address of that same variable onto the top of a
8248   hypothetical "address evaluation" stack.
8249
8250   When creating memory location descriptors, we are effectively transforming
8251   the RTL for a memory-resident object into its Dwarf postfix expression
8252   equivalent.  This routine recursively descends an RTL tree, turning
8253   it into Dwarf postfix code as it goes.
8254
8255   MODE is the mode of the memory reference, needed to handle some
8256   autoincrement addressing modes.
8257
8258   Return 0 if we can't represent the location.  */
8259
8260static dw_loc_descr_ref
8261mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8262{
8263  dw_loc_descr_ref mem_loc_result = NULL;
8264
8265  /* Note that for a dynamically sized array, the location we will generate a
8266     description of here will be the lowest numbered location which is
8267     actually within the array.  That's *not* necessarily the same as the
8268     zeroth element of the array.  */
8269
8270  rtl = (*targetm.delegitimize_address) (rtl);
8271
8272  switch (GET_CODE (rtl))
8273    {
8274    case POST_INC:
8275    case POST_DEC:
8276    case POST_MODIFY:
8277      /* POST_INC and POST_DEC can be handled just like a SUBREG.  So we
8278	 just fall into the SUBREG code.  */
8279
8280      /* ... fall through ...  */
8281
8282    case SUBREG:
8283      /* The case of a subreg may arise when we have a local (register)
8284	 variable or a formal (register) parameter which doesn't quite fill
8285	 up an entire register.  For now, just assume that it is
8286	 legitimate to make the Dwarf info refer to the whole register which
8287	 contains the given subreg.  */
8288      rtl = SUBREG_REG (rtl);
8289
8290      /* ... fall through ...  */
8291
8292    case REG:
8293      /* Whenever a register number forms a part of the description of the
8294	 method for calculating the (dynamic) address of a memory resident
8295	 object, DWARF rules require the register number be referred to as
8296	 a "base register".  This distinction is not based in any way upon
8297	 what category of register the hardware believes the given register
8298	 belongs to.  This is strictly DWARF terminology we're dealing with
8299	 here. Note that in cases where the location of a memory-resident
8300	 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8301	 OP_CONST (0)) the actual DWARF location descriptor that we generate
8302	 may just be OP_BASEREG (basereg).  This may look deceptively like
8303	 the object in question was allocated to a register (rather than in
8304	 memory) so DWARF consumers need to be aware of the subtle
8305	 distinction between OP_REG and OP_BASEREG.  */
8306      if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8307	mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0);
8308      break;
8309
8310    case MEM:
8311      mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8312      if (mem_loc_result != 0)
8313	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8314      break;
8315
8316    case LO_SUM:
8317	 rtl = XEXP (rtl, 1);
8318
8319      /* ... fall through ...  */
8320
8321    case LABEL_REF:
8322      /* Some ports can transform a symbol ref into a label ref, because
8323	 the symbol ref is too far away and has to be dumped into a constant
8324	 pool.  */
8325    case CONST:
8326    case SYMBOL_REF:
8327      /* Alternatively, the symbol in the constant pool might be referenced
8328	 by a different symbol.  */
8329      if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8330	{
8331	  bool marked;
8332	  rtx tmp = get_pool_constant_mark (rtl, &marked);
8333
8334	  if (GET_CODE (tmp) == SYMBOL_REF)
8335	    {
8336	      rtl = tmp;
8337	      if (CONSTANT_POOL_ADDRESS_P (tmp))
8338		get_pool_constant_mark (tmp, &marked);
8339	      else
8340		marked = true;
8341	    }
8342
8343	  /* If all references to this pool constant were optimized away,
8344	     it was not output and thus we can't represent it.
8345	     FIXME: might try to use DW_OP_const_value here, though
8346	     DW_OP_piece complicates it.  */
8347	  if (!marked)
8348	    return 0;
8349	}
8350
8351      mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8352      mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8353      mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8354      VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8355      break;
8356
8357    case PRE_MODIFY:
8358      /* Extract the PLUS expression nested inside and fall into
8359	 PLUS code below.  */
8360      rtl = XEXP (rtl, 1);
8361      goto plus;
8362
8363    case PRE_INC:
8364    case PRE_DEC:
8365      /* Turn these into a PLUS expression and fall into the PLUS code
8366	 below.  */
8367      rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8368			  GEN_INT (GET_CODE (rtl) == PRE_INC
8369				   ? GET_MODE_UNIT_SIZE (mode)
8370				   : -GET_MODE_UNIT_SIZE (mode)));
8371
8372      /* ... fall through ...  */
8373
8374    case PLUS:
8375    plus:
8376      if (is_based_loc (rtl))
8377	mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8378					  INTVAL (XEXP (rtl, 1)));
8379      else
8380	{
8381	  mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8382	  if (mem_loc_result == 0)
8383	    break;
8384
8385	  if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8386	      && INTVAL (XEXP (rtl, 1)) >= 0)
8387	    add_loc_descr (&mem_loc_result,
8388			   new_loc_descr (DW_OP_plus_uconst,
8389					  INTVAL (XEXP (rtl, 1)), 0));
8390	  else
8391	    {
8392	      add_loc_descr (&mem_loc_result,
8393			     mem_loc_descriptor (XEXP (rtl, 1), mode));
8394	      add_loc_descr (&mem_loc_result,
8395			     new_loc_descr (DW_OP_plus, 0, 0));
8396	    }
8397	}
8398      break;
8399
8400    case MULT:
8401      {
8402	/* If a pseudo-reg is optimized away, it is possible for it to
8403	   be replaced with a MEM containing a multiply.  */
8404	dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8405	dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8406
8407	if (op0 == 0 || op1 == 0)
8408	  break;
8409
8410	mem_loc_result = op0;
8411	add_loc_descr (&mem_loc_result, op1);
8412	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8413	break;
8414      }
8415
8416    case CONST_INT:
8417      mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8418      break;
8419
8420    case ADDRESSOF:
8421      /* If this is a MEM, return its address.  Otherwise, we can't
8422	 represent this.  */
8423      if (GET_CODE (XEXP (rtl, 0)) == MEM)
8424	return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8425      else
8426	return 0;
8427
8428    default:
8429      abort ();
8430    }
8431
8432  return mem_loc_result;
8433}
8434
8435/* Return a descriptor that describes the concatenation of two locations.
8436   This is typically a complex variable.  */
8437
8438static dw_loc_descr_ref
8439concat_loc_descriptor (rtx x0, rtx x1)
8440{
8441  dw_loc_descr_ref cc_loc_result = NULL;
8442  dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8443  dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8444
8445  if (x0_ref == 0 || x1_ref == 0)
8446    return 0;
8447
8448  cc_loc_result = x0_ref;
8449  add_loc_descr (&cc_loc_result,
8450		 new_loc_descr (DW_OP_piece,
8451				GET_MODE_SIZE (GET_MODE (x0)), 0));
8452
8453  add_loc_descr (&cc_loc_result, x1_ref);
8454  add_loc_descr (&cc_loc_result,
8455		 new_loc_descr (DW_OP_piece,
8456				GET_MODE_SIZE (GET_MODE (x1)), 0));
8457
8458  return cc_loc_result;
8459}
8460
8461/* Output a proper Dwarf location descriptor for a variable or parameter
8462   which is either allocated in a register or in a memory location.  For a
8463   register, we just generate an OP_REG and the register number.  For a
8464   memory location we provide a Dwarf postfix expression describing how to
8465   generate the (dynamic) address of the object onto the address stack.
8466
8467   If we don't know how to describe it, return 0.  */
8468
8469static dw_loc_descr_ref
8470loc_descriptor (rtx rtl)
8471{
8472  dw_loc_descr_ref loc_result = NULL;
8473
8474  switch (GET_CODE (rtl))
8475    {
8476    case SUBREG:
8477      /* The case of a subreg may arise when we have a local (register)
8478	 variable or a formal (register) parameter which doesn't quite fill
8479	 up an entire register.  For now, just assume that it is
8480	 legitimate to make the Dwarf info refer to the whole register which
8481	 contains the given subreg.  */
8482      rtl = SUBREG_REG (rtl);
8483
8484      /* ... fall through ...  */
8485
8486    case REG:
8487      loc_result = reg_loc_descriptor (rtl);
8488      break;
8489
8490    case MEM:
8491      loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8492      break;
8493
8494    case CONCAT:
8495      loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8496      break;
8497
8498    default:
8499      abort ();
8500    }
8501
8502  return loc_result;
8503}
8504
8505/* Similar, but generate the descriptor from trees instead of rtl.  This comes
8506   up particularly with variable length arrays.  If ADDRESSP is nonzero, we are
8507   looking for an address.  Otherwise, we return a value.  If we can't make a
8508   descriptor, return 0.  */
8509
8510static dw_loc_descr_ref
8511loc_descriptor_from_tree (tree loc, int addressp)
8512{
8513  dw_loc_descr_ref ret, ret1;
8514  int indirect_p = 0;
8515  int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8516  enum dwarf_location_atom op;
8517
8518  /* ??? Most of the time we do not take proper care for sign/zero
8519     extending the values properly.  Hopefully this won't be a real
8520     problem...  */
8521
8522  switch (TREE_CODE (loc))
8523    {
8524    case ERROR_MARK:
8525      return 0;
8526
8527    case WITH_RECORD_EXPR:
8528    case PLACEHOLDER_EXPR:
8529      /* This case involves extracting fields from an object to determine the
8530	 position of other fields.  We don't try to encode this here.  The
8531	 only user of this is Ada, which encodes the needed information using
8532	 the names of types.  */
8533      return 0;
8534
8535    case CALL_EXPR:
8536      return 0;
8537
8538    case PREINCREMENT_EXPR:
8539    case PREDECREMENT_EXPR:
8540    case POSTINCREMENT_EXPR:
8541    case POSTDECREMENT_EXPR:
8542      /* There are no opcodes for these operations.  */
8543      return 0;
8544
8545    case ADDR_EXPR:
8546      /* We can support this only if we can look through conversions and
8547	 find an INDIRECT_EXPR.  */
8548      for (loc = TREE_OPERAND (loc, 0);
8549	   TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8550	   || TREE_CODE (loc) == NON_LVALUE_EXPR
8551	   || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8552	   || TREE_CODE (loc) == SAVE_EXPR;
8553	   loc = TREE_OPERAND (loc, 0))
8554	;
8555
8556       return (TREE_CODE (loc) == INDIRECT_REF
8557	       ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8558	       : 0);
8559
8560    case VAR_DECL:
8561      if (DECL_THREAD_LOCAL (loc))
8562	{
8563	  rtx rtl;
8564
8565#ifndef ASM_OUTPUT_DWARF_DTPREL
8566	  /* If this is not defined, we have no way to emit the data.  */
8567	  return 0;
8568#endif
8569
8570	  /* The way DW_OP_GNU_push_tls_address is specified, we can only
8571	     look up addresses of objects in the current module.  */
8572	  if (DECL_EXTERNAL (loc))
8573	    return 0;
8574
8575	  rtl = rtl_for_decl_location (loc);
8576	  if (rtl == NULL_RTX)
8577	    return 0;
8578
8579	  if (GET_CODE (rtl) != MEM)
8580	    return 0;
8581	  rtl = XEXP (rtl, 0);
8582	  if (! CONSTANT_P (rtl))
8583	    return 0;
8584
8585	  ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8586	  ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8587	  ret->dw_loc_oprnd1.v.val_addr = rtl;
8588
8589	  ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8590	  add_loc_descr (&ret, ret1);
8591
8592	  indirect_p = 1;
8593	  break;
8594	}
8595      /* Fall through.  */
8596
8597    case PARM_DECL:
8598      {
8599	rtx rtl = rtl_for_decl_location (loc);
8600
8601	if (rtl == NULL_RTX)
8602	  return 0;
8603	else if (CONSTANT_P (rtl))
8604	  {
8605	    ret = new_loc_descr (DW_OP_addr, 0, 0);
8606	    ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8607	    ret->dw_loc_oprnd1.v.val_addr = rtl;
8608	    indirect_p = 1;
8609	  }
8610	else
8611	  {
8612	    enum machine_mode mode = GET_MODE (rtl);
8613
8614	    if (GET_CODE (rtl) == MEM)
8615	      {
8616		indirect_p = 1;
8617		rtl = XEXP (rtl, 0);
8618	      }
8619
8620	    ret = mem_loc_descriptor (rtl, mode);
8621	  }
8622      }
8623      break;
8624
8625    case INDIRECT_REF:
8626      ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8627      indirect_p = 1;
8628      break;
8629
8630    case COMPOUND_EXPR:
8631      return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8632
8633    case NOP_EXPR:
8634    case CONVERT_EXPR:
8635    case NON_LVALUE_EXPR:
8636    case VIEW_CONVERT_EXPR:
8637    case SAVE_EXPR:
8638    case MODIFY_EXPR:
8639      return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8640
8641    case COMPONENT_REF:
8642    case BIT_FIELD_REF:
8643    case ARRAY_REF:
8644    case ARRAY_RANGE_REF:
8645      {
8646	tree obj, offset;
8647	HOST_WIDE_INT bitsize, bitpos, bytepos;
8648	enum machine_mode mode;
8649	int volatilep;
8650
8651	obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8652				   &unsignedp, &volatilep);
8653
8654	if (obj == loc)
8655	  return 0;
8656
8657	ret = loc_descriptor_from_tree (obj, 1);
8658	if (ret == 0
8659	    || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8660	  return 0;
8661
8662	if (offset != NULL_TREE)
8663	  {
8664	    /* Variable offset.  */
8665	    add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8666	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8667	  }
8668
8669	if (!addressp)
8670	  indirect_p = 1;
8671
8672	bytepos = bitpos / BITS_PER_UNIT;
8673	if (bytepos > 0)
8674	  add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8675	else if (bytepos < 0)
8676	  {
8677	    add_loc_descr (&ret, int_loc_descriptor (bytepos));
8678	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8679	  }
8680	break;
8681      }
8682
8683    case INTEGER_CST:
8684      if (host_integerp (loc, 0))
8685	ret = int_loc_descriptor (tree_low_cst (loc, 0));
8686      else
8687	return 0;
8688      break;
8689
8690    case CONSTRUCTOR:
8691      {
8692	/* Get an RTL for this, if something has been emitted.  */
8693	rtx rtl = lookup_constant_def (loc);
8694	enum machine_mode mode;
8695
8696	if (GET_CODE (rtl) != MEM)
8697	  return 0;
8698	mode = GET_MODE (rtl);
8699	rtl = XEXP (rtl, 0);
8700
8701	rtl = (*targetm.delegitimize_address) (rtl);
8702
8703	indirect_p = 1;
8704	ret = mem_loc_descriptor (rtl, mode);
8705	break;
8706      }
8707
8708    case TRUTH_AND_EXPR:
8709    case TRUTH_ANDIF_EXPR:
8710    case BIT_AND_EXPR:
8711      op = DW_OP_and;
8712      goto do_binop;
8713
8714    case TRUTH_XOR_EXPR:
8715    case BIT_XOR_EXPR:
8716      op = DW_OP_xor;
8717      goto do_binop;
8718
8719    case TRUTH_OR_EXPR:
8720    case TRUTH_ORIF_EXPR:
8721    case BIT_IOR_EXPR:
8722      op = DW_OP_or;
8723      goto do_binop;
8724
8725    case FLOOR_DIV_EXPR:
8726    case CEIL_DIV_EXPR:
8727    case ROUND_DIV_EXPR:
8728    case TRUNC_DIV_EXPR:
8729      op = DW_OP_div;
8730      goto do_binop;
8731
8732    case MINUS_EXPR:
8733      op = DW_OP_minus;
8734      goto do_binop;
8735
8736    case FLOOR_MOD_EXPR:
8737    case CEIL_MOD_EXPR:
8738    case ROUND_MOD_EXPR:
8739    case TRUNC_MOD_EXPR:
8740      op = DW_OP_mod;
8741      goto do_binop;
8742
8743    case MULT_EXPR:
8744      op = DW_OP_mul;
8745      goto do_binop;
8746
8747    case LSHIFT_EXPR:
8748      op = DW_OP_shl;
8749      goto do_binop;
8750
8751    case RSHIFT_EXPR:
8752      op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8753      goto do_binop;
8754
8755    case PLUS_EXPR:
8756      if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8757	  && host_integerp (TREE_OPERAND (loc, 1), 0))
8758	{
8759	  ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8760	  if (ret == 0)
8761	    return 0;
8762
8763	  add_loc_descr (&ret,
8764			 new_loc_descr (DW_OP_plus_uconst,
8765					tree_low_cst (TREE_OPERAND (loc, 1),
8766						      0),
8767					0));
8768	  break;
8769	}
8770
8771      op = DW_OP_plus;
8772      goto do_binop;
8773
8774    case LE_EXPR:
8775      if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8776	return 0;
8777
8778      op = DW_OP_le;
8779      goto do_binop;
8780
8781    case GE_EXPR:
8782      if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8783	return 0;
8784
8785      op = DW_OP_ge;
8786      goto do_binop;
8787
8788    case LT_EXPR:
8789      if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8790	return 0;
8791
8792      op = DW_OP_lt;
8793      goto do_binop;
8794
8795    case GT_EXPR:
8796      if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8797	return 0;
8798
8799      op = DW_OP_gt;
8800      goto do_binop;
8801
8802    case EQ_EXPR:
8803      op = DW_OP_eq;
8804      goto do_binop;
8805
8806    case NE_EXPR:
8807      op = DW_OP_ne;
8808      goto do_binop;
8809
8810    do_binop:
8811      ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8812      ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8813      if (ret == 0 || ret1 == 0)
8814	return 0;
8815
8816      add_loc_descr (&ret, ret1);
8817      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8818      break;
8819
8820    case TRUTH_NOT_EXPR:
8821    case BIT_NOT_EXPR:
8822      op = DW_OP_not;
8823      goto do_unop;
8824
8825    case ABS_EXPR:
8826      op = DW_OP_abs;
8827      goto do_unop;
8828
8829    case NEGATE_EXPR:
8830      op = DW_OP_neg;
8831      goto do_unop;
8832
8833    do_unop:
8834      ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8835      if (ret == 0)
8836	return 0;
8837
8838      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8839      break;
8840
8841    case MAX_EXPR:
8842      loc = build (COND_EXPR, TREE_TYPE (loc),
8843		   build (LT_EXPR, integer_type_node,
8844			  TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8845		   TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8846
8847      /* ... fall through ...  */
8848
8849    case COND_EXPR:
8850      {
8851	dw_loc_descr_ref lhs
8852	  = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8853	dw_loc_descr_ref rhs
8854	  = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8855	dw_loc_descr_ref bra_node, jump_node, tmp;
8856
8857	ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8858	if (ret == 0 || lhs == 0 || rhs == 0)
8859	  return 0;
8860
8861	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8862	add_loc_descr (&ret, bra_node);
8863
8864	add_loc_descr (&ret, rhs);
8865	jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8866	add_loc_descr (&ret, jump_node);
8867
8868	add_loc_descr (&ret, lhs);
8869	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8870	bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8871
8872	/* ??? Need a node to point the skip at.  Use a nop.  */
8873	tmp = new_loc_descr (DW_OP_nop, 0, 0);
8874	add_loc_descr (&ret, tmp);
8875	jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8876	jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8877      }
8878      break;
8879
8880    case EXPR_WITH_FILE_LOCATION:
8881      return loc_descriptor_from_tree (EXPR_WFL_NODE (loc), addressp);
8882
8883    case FIX_TRUNC_EXPR:
8884    case FIX_CEIL_EXPR:
8885    case FIX_FLOOR_EXPR:
8886    case FIX_ROUND_EXPR:
8887      return 0;
8888
8889    default:
8890      /* Leave front-end specific codes as simply unknown.  This comes
8891	 up, for instance, with the C STMT_EXPR.  */
8892      if ((unsigned int) TREE_CODE (loc)
8893          >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8894	return 0;
8895
8896#ifdef ENABLE_CHECKING
8897      /* Otherwise this is a generic code; we should just lists all of
8898	 these explicitly.  Aborting means we forgot one.  */
8899      abort ();
8900#else
8901      /* In a release build, we want to degrade gracefully: better to
8902	 generate incomplete debugging information than to crash.  */
8903      return NULL;
8904#endif
8905    }
8906
8907  /* Show if we can't fill the request for an address.  */
8908  if (addressp && indirect_p == 0)
8909    return 0;
8910
8911  /* If we've got an address and don't want one, dereference.  */
8912  if (!addressp && indirect_p > 0)
8913    {
8914      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8915
8916      if (size > DWARF2_ADDR_SIZE || size == -1)
8917	return 0;
8918      else if (size == DWARF2_ADDR_SIZE)
8919	op = DW_OP_deref;
8920      else
8921	op = DW_OP_deref_size;
8922
8923      add_loc_descr (&ret, new_loc_descr (op, size, 0));
8924    }
8925
8926  return ret;
8927}
8928
8929/* Given a value, round it up to the lowest multiple of `boundary'
8930   which is not less than the value itself.  */
8931
8932static inline HOST_WIDE_INT
8933ceiling (HOST_WIDE_INT value, unsigned int boundary)
8934{
8935  return (((value + boundary - 1) / boundary) * boundary);
8936}
8937
8938/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8939   pointer to the declared type for the relevant field variable, or return
8940   `integer_type_node' if the given node turns out to be an
8941   ERROR_MARK node.  */
8942
8943static inline tree
8944field_type (tree decl)
8945{
8946  tree type;
8947
8948  if (TREE_CODE (decl) == ERROR_MARK)
8949    return integer_type_node;
8950
8951  type = DECL_BIT_FIELD_TYPE (decl);
8952  if (type == NULL_TREE)
8953    type = TREE_TYPE (decl);
8954
8955  return type;
8956}
8957
8958/* Given a pointer to a tree node, return the alignment in bits for
8959   it, or else return BITS_PER_WORD if the node actually turns out to
8960   be an ERROR_MARK node.  */
8961
8962static inline unsigned
8963simple_type_align_in_bits (tree type)
8964{
8965  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8966}
8967
8968static inline unsigned
8969simple_decl_align_in_bits (tree decl)
8970{
8971  return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8972}
8973
8974/* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8975   lowest addressed byte of the "containing object" for the given FIELD_DECL,
8976   or return 0 if we are unable to determine what that offset is, either
8977   because the argument turns out to be a pointer to an ERROR_MARK node, or
8978   because the offset is actually variable.  (We can't handle the latter case
8979   just yet).  */
8980
8981static HOST_WIDE_INT
8982field_byte_offset (tree decl)
8983{
8984  unsigned int type_align_in_bits;
8985  unsigned int decl_align_in_bits;
8986  unsigned HOST_WIDE_INT type_size_in_bits;
8987  HOST_WIDE_INT object_offset_in_bits;
8988  tree type;
8989  tree field_size_tree;
8990  HOST_WIDE_INT bitpos_int;
8991  HOST_WIDE_INT deepest_bitpos;
8992  unsigned HOST_WIDE_INT field_size_in_bits;
8993
8994  if (TREE_CODE (decl) == ERROR_MARK)
8995    return 0;
8996  else if (TREE_CODE (decl) != FIELD_DECL)
8997    abort ();
8998
8999  type = field_type (decl);
9000  field_size_tree = DECL_SIZE (decl);
9001
9002  /* The size could be unspecified if there was an error, or for
9003     a flexible array member.  */
9004  if (! field_size_tree)
9005    field_size_tree = bitsize_zero_node;
9006
9007  /* We cannot yet cope with fields whose positions are variable, so
9008     for now, when we see such things, we simply return 0.  Someday, we may
9009     be able to handle such cases, but it will be damn difficult.  */
9010  if (! host_integerp (bit_position (decl), 0))
9011    return 0;
9012
9013  bitpos_int = int_bit_position (decl);
9014
9015  /* If we don't know the size of the field, pretend it's a full word.  */
9016  if (host_integerp (field_size_tree, 1))
9017    field_size_in_bits = tree_low_cst (field_size_tree, 1);
9018  else
9019    field_size_in_bits = BITS_PER_WORD;
9020
9021  type_size_in_bits = simple_type_size_in_bits (type);
9022  type_align_in_bits = simple_type_align_in_bits (type);
9023  decl_align_in_bits = simple_decl_align_in_bits (decl);
9024
9025  /* The GCC front-end doesn't make any attempt to keep track of the starting
9026     bit offset (relative to the start of the containing structure type) of the
9027     hypothetical "containing object" for a bit-field.  Thus, when computing
9028     the byte offset value for the start of the "containing object" of a
9029     bit-field, we must deduce this information on our own. This can be rather
9030     tricky to do in some cases.  For example, handling the following structure
9031     type definition when compiling for an i386/i486 target (which only aligns
9032     long long's to 32-bit boundaries) can be very tricky:
9033
9034	 struct S { int field1; long long field2:31; };
9035
9036     Fortunately, there is a simple rule-of-thumb which can be used in such
9037     cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for the
9038     structure shown above.  It decides to do this based upon one simple rule
9039     for bit-field allocation.  GCC allocates each "containing object" for each
9040     bit-field at the first (i.e. lowest addressed) legitimate alignment
9041     boundary (based upon the required minimum alignment for the declared type
9042     of the field) which it can possibly use, subject to the condition that
9043     there is still enough available space remaining in the containing object
9044     (when allocated at the selected point) to fully accommodate all of the
9045     bits of the bit-field itself.
9046
9047     This simple rule makes it obvious why GCC allocates 8 bytes for each
9048     object of the structure type shown above.  When looking for a place to
9049     allocate the "containing object" for `field2', the compiler simply tries
9050     to allocate a 64-bit "containing object" at each successive 32-bit
9051     boundary (starting at zero) until it finds a place to allocate that 64-
9052     bit field such that at least 31 contiguous (and previously unallocated)
9053     bits remain within that selected 64 bit field.  (As it turns out, for the
9054     example above, the compiler finds it is OK to allocate the "containing
9055     object" 64-bit field at bit-offset zero within the structure type.)
9056
9057     Here we attempt to work backwards from the limited set of facts we're
9058     given, and we try to deduce from those facts, where GCC must have believed
9059     that the containing object started (within the structure type). The value
9060     we deduce is then used (by the callers of this routine) to generate
9061     DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9062     and, in the case of DW_AT_location, regular fields as well).  */
9063
9064  /* Figure out the bit-distance from the start of the structure to the
9065     "deepest" bit of the bit-field.  */
9066  deepest_bitpos = bitpos_int + field_size_in_bits;
9067
9068  /* This is the tricky part.  Use some fancy footwork to deduce where the
9069     lowest addressed bit of the containing object must be.  */
9070  object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9071
9072  /* Round up to type_align by default.  This works best for bitfields.  */
9073  object_offset_in_bits += type_align_in_bits - 1;
9074  object_offset_in_bits /= type_align_in_bits;
9075  object_offset_in_bits *= type_align_in_bits;
9076
9077  if (object_offset_in_bits > bitpos_int)
9078    {
9079      /* Sigh, the decl must be packed.  */
9080      object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9081
9082      /* Round up to decl_align instead.  */
9083      object_offset_in_bits += decl_align_in_bits - 1;
9084      object_offset_in_bits /= decl_align_in_bits;
9085      object_offset_in_bits *= decl_align_in_bits;
9086    }
9087
9088  return object_offset_in_bits / BITS_PER_UNIT;
9089}
9090
9091/* The following routines define various Dwarf attributes and any data
9092   associated with them.  */
9093
9094/* Add a location description attribute value to a DIE.
9095
9096   This emits location attributes suitable for whole variables and
9097   whole parameters.  Note that the location attributes for struct fields are
9098   generated by the routine `data_member_location_attribute' below.  */
9099
9100static inline void
9101add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9102			     dw_loc_descr_ref descr)
9103{
9104  if (descr != 0)
9105    add_AT_loc (die, attr_kind, descr);
9106}
9107
9108/* Attach the specialized form of location attribute used for data members of
9109   struct and union types.  In the special case of a FIELD_DECL node which
9110   represents a bit-field, the "offset" part of this special location
9111   descriptor must indicate the distance in bytes from the lowest-addressed
9112   byte of the containing struct or union type to the lowest-addressed byte of
9113   the "containing object" for the bit-field.  (See the `field_byte_offset'
9114   function above).
9115
9116   For any given bit-field, the "containing object" is a hypothetical object
9117   (of some integral or enum type) within which the given bit-field lives.  The
9118   type of this hypothetical "containing object" is always the same as the
9119   declared type of the individual bit-field itself (for GCC anyway... the
9120   DWARF spec doesn't actually mandate this).  Note that it is the size (in
9121   bytes) of the hypothetical "containing object" which will be given in the
9122   DW_AT_byte_size attribute for this bit-field.  (See the
9123   `byte_size_attribute' function below.)  It is also used when calculating the
9124   value of the DW_AT_bit_offset attribute.  (See the `bit_offset_attribute'
9125   function below.)  */
9126
9127static void
9128add_data_member_location_attribute (dw_die_ref die, tree decl)
9129{
9130  HOST_WIDE_INT offset;
9131  dw_loc_descr_ref loc_descr = 0;
9132
9133  if (TREE_CODE (decl) == TREE_VEC)
9134    {
9135      /* We're working on the TAG_inheritance for a base class.  */
9136      if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9137	{
9138	  /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9139	     aren't at a fixed offset from all (sub)objects of the same
9140	     type.  We need to extract the appropriate offset from our
9141	     vtable.  The following dwarf expression means
9142
9143	       BaseAddr = ObAddr + *((*ObAddr) - Offset)
9144
9145	     This is specific to the V3 ABI, of course.  */
9146
9147	  dw_loc_descr_ref tmp;
9148
9149	  /* Make a copy of the object address.  */
9150	  tmp = new_loc_descr (DW_OP_dup, 0, 0);
9151	  add_loc_descr (&loc_descr, tmp);
9152
9153	  /* Extract the vtable address.  */
9154	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9155	  add_loc_descr (&loc_descr, tmp);
9156
9157	  /* Calculate the address of the offset.  */
9158	  offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9159	  if (offset >= 0)
9160	    abort ();
9161
9162	  tmp = int_loc_descriptor (-offset);
9163	  add_loc_descr (&loc_descr, tmp);
9164	  tmp = new_loc_descr (DW_OP_minus, 0, 0);
9165	  add_loc_descr (&loc_descr, tmp);
9166
9167	  /* Extract the offset.  */
9168	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9169	  add_loc_descr (&loc_descr, tmp);
9170
9171	  /* Add it to the object address.  */
9172	  tmp = new_loc_descr (DW_OP_plus, 0, 0);
9173	  add_loc_descr (&loc_descr, tmp);
9174	}
9175      else
9176	offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9177    }
9178  else
9179    offset = field_byte_offset (decl);
9180
9181  if (! loc_descr)
9182    {
9183      enum dwarf_location_atom op;
9184
9185      /* The DWARF2 standard says that we should assume that the structure
9186	 address is already on the stack, so we can specify a structure field
9187	 address by using DW_OP_plus_uconst.  */
9188
9189#ifdef MIPS_DEBUGGING_INFO
9190      /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9191	 operator correctly.  It works only if we leave the offset on the
9192	 stack.  */
9193      op = DW_OP_constu;
9194#else
9195      op = DW_OP_plus_uconst;
9196#endif
9197
9198      loc_descr = new_loc_descr (op, offset, 0);
9199    }
9200
9201  add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9202}
9203
9204/* Writes integer values to dw_vec_const array.  */
9205
9206static void
9207insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9208{
9209  while (size != 0)
9210    {
9211      *dest++ = val & 0xff;
9212      val >>= 8;
9213      --size;
9214    }
9215}
9216
9217/* Reads integers from dw_vec_const array.  Inverse of insert_int.  */
9218
9219static HOST_WIDE_INT
9220extract_int (const unsigned char *src, unsigned int size)
9221{
9222  HOST_WIDE_INT val = 0;
9223
9224  src += size;
9225  while (size != 0)
9226    {
9227      val <<= 8;
9228      val |= *--src & 0xff;
9229      --size;
9230    }
9231  return val;
9232}
9233
9234/* Writes floating point values to dw_vec_const array.  */
9235
9236static void
9237insert_float (rtx rtl, unsigned char *array)
9238{
9239  REAL_VALUE_TYPE rv;
9240  long val[4];
9241  int i;
9242
9243  REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9244  real_to_target (val, &rv, GET_MODE (rtl));
9245
9246  /* real_to_target puts 32-bit pieces in each long.  Pack them.  */
9247  for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9248    {
9249      insert_int (val[i], 4, array);
9250      array += 4;
9251    }
9252}
9253
9254/* Attach a DW_AT_const_value attribute for a variable or a parameter which
9255   does not have a "location" either in memory or in a register.  These
9256   things can arise in GNU C when a constant is passed as an actual parameter
9257   to an inlined function.  They can also arise in C++ where declared
9258   constants do not necessarily get memory "homes".  */
9259
9260static void
9261add_const_value_attribute (dw_die_ref die, rtx rtl)
9262{
9263  switch (GET_CODE (rtl))
9264    {
9265    case CONST_INT:
9266      {
9267	HOST_WIDE_INT val = INTVAL (rtl);
9268
9269	if (val < 0)
9270	  add_AT_int (die, DW_AT_const_value, val);
9271	else
9272	  add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9273      }
9274      break;
9275
9276    case CONST_DOUBLE:
9277      /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9278	 floating-point constant.  A CONST_DOUBLE is used whenever the
9279	 constant requires more than one word in order to be adequately
9280	 represented.  We output CONST_DOUBLEs as blocks.  */
9281      {
9282	enum machine_mode mode = GET_MODE (rtl);
9283
9284	if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9285	  {
9286	    unsigned int length = GET_MODE_SIZE (mode);
9287	    unsigned char *array = ggc_alloc (length);
9288
9289	    insert_float (rtl, array);
9290	    add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9291	  }
9292	else
9293	  {
9294	    /* ??? We really should be using HOST_WIDE_INT throughout.  */
9295	    if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9296	      abort ();
9297
9298	    add_AT_long_long (die, DW_AT_const_value,
9299			      CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9300	  }
9301      }
9302      break;
9303
9304    case CONST_VECTOR:
9305      {
9306	enum machine_mode mode = GET_MODE (rtl);
9307	unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9308	unsigned int length = CONST_VECTOR_NUNITS (rtl);
9309	unsigned char *array = ggc_alloc (length * elt_size);
9310	unsigned int i;
9311	unsigned char *p;
9312
9313	if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
9314	  {
9315	    for (i = 0, p = array; i < length; i++, p += elt_size)
9316	      {
9317		rtx elt = CONST_VECTOR_ELT (rtl, i);
9318		HOST_WIDE_INT lo, hi;
9319		if (GET_CODE (elt) == CONST_INT)
9320		  {
9321		    lo = INTVAL (elt);
9322		    hi = -(lo < 0);
9323		  }
9324		else if (GET_CODE (elt) == CONST_DOUBLE)
9325		  {
9326		    lo = CONST_DOUBLE_LOW (elt);
9327		    hi = CONST_DOUBLE_HIGH (elt);
9328		  }
9329		else
9330		  abort ();
9331
9332		if (elt_size <= sizeof (HOST_WIDE_INT))
9333		  insert_int (lo, elt_size, p);
9334		else if (elt_size == 2 * sizeof (HOST_WIDE_INT))
9335		  {
9336		    unsigned char *p0 = p;
9337		    unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9338
9339		    if (WORDS_BIG_ENDIAN)
9340		      {
9341			p0 = p1;
9342			p1 = p;
9343		      }
9344		    insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9345		    insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9346		  }
9347		else
9348		  abort ();
9349	      }
9350	  }
9351	else if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
9352	  {
9353	    for (i = 0, p = array; i < length; i++, p += elt_size)
9354	      {
9355		rtx elt = CONST_VECTOR_ELT (rtl, i);
9356		insert_float (elt, p);
9357	      }
9358	  }
9359	else
9360	  abort ();
9361
9362	add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9363      }
9364      break;
9365
9366    case CONST_STRING:
9367      add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9368      break;
9369
9370    case SYMBOL_REF:
9371    case LABEL_REF:
9372    case CONST:
9373      add_AT_addr (die, DW_AT_const_value, rtl);
9374      VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9375      break;
9376
9377    case PLUS:
9378      /* In cases where an inlined instance of an inline function is passed
9379	 the address of an `auto' variable (which is local to the caller) we
9380	 can get a situation where the DECL_RTL of the artificial local
9381	 variable (for the inlining) which acts as a stand-in for the
9382	 corresponding formal parameter (of the inline function) will look
9383	 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
9384	 exactly a compile-time constant expression, but it isn't the address
9385	 of the (artificial) local variable either.  Rather, it represents the
9386	 *value* which the artificial local variable always has during its
9387	 lifetime.  We currently have no way to represent such quasi-constant
9388	 values in Dwarf, so for now we just punt and generate nothing.  */
9389      break;
9390
9391    default:
9392      /* No other kinds of rtx should be possible here.  */
9393      abort ();
9394    }
9395
9396}
9397
9398static rtx
9399rtl_for_decl_location (tree decl)
9400{
9401  rtx rtl;
9402
9403  /* Here we have to decide where we are going to say the parameter "lives"
9404     (as far as the debugger is concerned).  We only have a couple of
9405     choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9406
9407     DECL_RTL normally indicates where the parameter lives during most of the
9408     activation of the function.  If optimization is enabled however, this
9409     could be either NULL or else a pseudo-reg.  Both of those cases indicate
9410     that the parameter doesn't really live anywhere (as far as the code
9411     generation parts of GCC are concerned) during most of the function's
9412     activation.  That will happen (for example) if the parameter is never
9413     referenced within the function.
9414
9415     We could just generate a location descriptor here for all non-NULL
9416     non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9417     a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9418     where DECL_RTL is NULL or is a pseudo-reg.
9419
9420     Note however that we can only get away with using DECL_INCOMING_RTL as
9421     a backup substitute for DECL_RTL in certain limited cases.  In cases
9422     where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9423     we can be sure that the parameter was passed using the same type as it is
9424     declared to have within the function, and that its DECL_INCOMING_RTL
9425     points us to a place where a value of that type is passed.
9426
9427     In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9428     we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9429     because in these cases DECL_INCOMING_RTL points us to a value of some
9430     type which is *different* from the type of the parameter itself.  Thus,
9431     if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9432     such cases, the debugger would end up (for example) trying to fetch a
9433     `float' from a place which actually contains the first part of a
9434     `double'.  That would lead to really incorrect and confusing
9435     output at debug-time.
9436
9437     So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9438     in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
9439     are a couple of exceptions however.  On little-endian machines we can
9440     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9441     not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9442     an integral type that is smaller than TREE_TYPE (decl). These cases arise
9443     when (on a little-endian machine) a non-prototyped function has a
9444     parameter declared to be of type `short' or `char'.  In such cases,
9445     TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9446     be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9447     passed `int' value.  If the debugger then uses that address to fetch
9448     a `short' or a `char' (on a little-endian machine) the result will be
9449     the correct data, so we allow for such exceptional cases below.
9450
9451     Note that our goal here is to describe the place where the given formal
9452     parameter lives during most of the function's activation (i.e. between the
9453     end of the prologue and the start of the epilogue).  We'll do that as best
9454     as we can. Note however that if the given formal parameter is modified
9455     sometime during the execution of the function, then a stack backtrace (at
9456     debug-time) will show the function as having been called with the *new*
9457     value rather than the value which was originally passed in.  This happens
9458     rarely enough that it is not a major problem, but it *is* a problem, and
9459     I'd like to fix it.
9460
9461     A future version of dwarf2out.c may generate two additional attributes for
9462     any given DW_TAG_formal_parameter DIE which will describe the "passed
9463     type" and the "passed location" for the given formal parameter in addition
9464     to the attributes we now generate to indicate the "declared type" and the
9465     "active location" for each parameter.  This additional set of attributes
9466     could be used by debuggers for stack backtraces. Separately, note that
9467     sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9468     This happens (for example) for inlined-instances of inline function formal
9469     parameters which are never referenced.  This really shouldn't be
9470     happening.  All PARM_DECL nodes should get valid non-NULL
9471     DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9472     values for inlined instances of inline function parameters, so when we see
9473     such cases, we are just out-of-luck for the time being (until integrate.c
9474     gets fixed).  */
9475
9476  /* Use DECL_RTL as the "location" unless we find something better.  */
9477  rtl = DECL_RTL_IF_SET (decl);
9478
9479  /* When generating abstract instances, ignore everything except
9480     constants, symbols living in memory, and symbols living in
9481     fixed registers.  */
9482  if (! reload_completed)
9483    {
9484      if (rtl
9485	  && (CONSTANT_P (rtl)
9486	      || (GET_CODE (rtl) == MEM
9487	          && CONSTANT_P (XEXP (rtl, 0)))
9488	      || (GET_CODE (rtl) == REG
9489	          && TREE_CODE (decl) == VAR_DECL
9490		  && TREE_STATIC (decl))))
9491	{
9492	  rtl = (*targetm.delegitimize_address) (rtl);
9493	  return rtl;
9494	}
9495      rtl = NULL_RTX;
9496    }
9497  else if (TREE_CODE (decl) == PARM_DECL)
9498    {
9499      if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9500	{
9501	  tree declared_type = TREE_TYPE (decl);
9502	  tree passed_type = DECL_ARG_TYPE (decl);
9503	  enum machine_mode dmode = TYPE_MODE (declared_type);
9504	  enum machine_mode pmode = TYPE_MODE (passed_type);
9505
9506	  /* This decl represents a formal parameter which was optimized out.
9507	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9508	     all cases where (rtl == NULL_RTX) just below.  */
9509	  if (dmode == pmode)
9510	    rtl = DECL_INCOMING_RTL (decl);
9511	  else if (SCALAR_INT_MODE_P (dmode)
9512		   && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9513		   && DECL_INCOMING_RTL (decl))
9514	    {
9515	      rtx inc = DECL_INCOMING_RTL (decl);
9516	      if (REG_P (inc))
9517		rtl = inc;
9518	      else if (GET_CODE (inc) == MEM)
9519		{
9520		  if (BYTES_BIG_ENDIAN)
9521		    rtl = adjust_address_nv (inc, dmode,
9522					     GET_MODE_SIZE (pmode)
9523					     - GET_MODE_SIZE (dmode));
9524		  else
9525		    rtl = inc;
9526		}
9527	    }
9528	}
9529
9530      /* If the parm was passed in registers, but lives on the stack, then
9531	 make a big endian correction if the mode of the type of the
9532	 parameter is not the same as the mode of the rtl.  */
9533      /* ??? This is the same series of checks that are made in dbxout.c before
9534	 we reach the big endian correction code there.  It isn't clear if all
9535	 of these checks are necessary here, but keeping them all is the safe
9536	 thing to do.  */
9537      else if (GET_CODE (rtl) == MEM
9538	       && XEXP (rtl, 0) != const0_rtx
9539	       && ! CONSTANT_P (XEXP (rtl, 0))
9540	       /* Not passed in memory.  */
9541	       && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9542	       /* Not passed by invisible reference.  */
9543	       && (GET_CODE (XEXP (rtl, 0)) != REG
9544		   || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9545		   || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9546#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9547		   || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9548#endif
9549		     )
9550	       /* Big endian correction check.  */
9551	       && BYTES_BIG_ENDIAN
9552	       && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9553	       && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9554		   < UNITS_PER_WORD))
9555	{
9556	  int offset = (UNITS_PER_WORD
9557			- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9558
9559	  rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9560			     plus_constant (XEXP (rtl, 0), offset));
9561	}
9562    }
9563
9564  if (rtl != NULL_RTX)
9565    {
9566      rtl = eliminate_regs (rtl, 0, NULL_RTX);
9567#ifdef LEAF_REG_REMAP
9568      if (current_function_uses_only_leaf_regs)
9569	leaf_renumber_regs_insn (rtl);
9570#endif
9571    }
9572
9573  /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9574     and will have been substituted directly into all expressions that use it.
9575     C does not have such a concept, but C++ and other languages do.  */
9576  else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9577    {
9578      /* If a variable is initialized with a string constant without embedded
9579	 zeros, build CONST_STRING.  */
9580      if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9581	  && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9582	{
9583	  tree arrtype = TREE_TYPE (decl);
9584	  tree enttype = TREE_TYPE (arrtype);
9585	  tree domain = TYPE_DOMAIN (arrtype);
9586	  tree init = DECL_INITIAL (decl);
9587	  enum machine_mode mode = TYPE_MODE (enttype);
9588
9589	  if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9590	      && domain
9591	      && integer_zerop (TYPE_MIN_VALUE (domain))
9592	      && compare_tree_int (TYPE_MAX_VALUE (domain),
9593				   TREE_STRING_LENGTH (init) - 1) == 0
9594	      && ((size_t) TREE_STRING_LENGTH (init)
9595		  == strlen (TREE_STRING_POINTER (init)) + 1))
9596	    rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9597	}
9598      /* If the initializer is something that we know will expand into an
9599	 immediate RTL constant, expand it now.  Expanding anything else
9600	 tends to produce unresolved symbols; see debug/5770 and c++/6381.  */
9601      else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9602	       || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9603	{
9604	  rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9605			     EXPAND_INITIALIZER);
9606	  /* If expand_expr returns a MEM, it wasn't immediate.  */
9607	  if (rtl && GET_CODE (rtl) == MEM)
9608	    abort ();
9609	}
9610    }
9611
9612  if (rtl)
9613    rtl = (*targetm.delegitimize_address) (rtl);
9614
9615  /* If we don't look past the constant pool, we risk emitting a
9616     reference to a constant pool entry that isn't referenced from
9617     code, and thus is not emitted.  */
9618  if (rtl)
9619    rtl = avoid_constant_pool_reference (rtl);
9620
9621  return rtl;
9622}
9623
9624/* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9625   data attribute for a variable or a parameter.  We generate the
9626   DW_AT_const_value attribute only in those cases where the given variable
9627   or parameter does not have a true "location" either in memory or in a
9628   register.  This can happen (for example) when a constant is passed as an
9629   actual argument in a call to an inline function.  (It's possible that
9630   these things can crop up in other ways also.)  Note that one type of
9631   constant value which can be passed into an inlined function is a constant
9632   pointer.  This can happen for example if an actual argument in an inlined
9633   function call evaluates to a compile-time constant address.  */
9634
9635static void
9636add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9637{
9638  rtx rtl;
9639  dw_loc_descr_ref descr;
9640
9641  if (TREE_CODE (decl) == ERROR_MARK)
9642    return;
9643  else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9644    abort ();
9645
9646  rtl = rtl_for_decl_location (decl);
9647  if (rtl == NULL_RTX)
9648    return;
9649
9650  switch (GET_CODE (rtl))
9651    {
9652    case ADDRESSOF:
9653      /* The address of a variable that was optimized away;
9654	 don't emit anything.  */
9655      break;
9656
9657    case CONST_INT:
9658    case CONST_DOUBLE:
9659    case CONST_VECTOR:
9660    case CONST_STRING:
9661    case SYMBOL_REF:
9662    case LABEL_REF:
9663    case CONST:
9664    case PLUS:
9665      /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9666      add_const_value_attribute (die, rtl);
9667      break;
9668
9669    case MEM:
9670      if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9671	{
9672	  /* Need loc_descriptor_from_tree since that's where we know
9673	     how to handle TLS variables.  Want the object's address
9674	     since the top-level DW_AT_location assumes such.  See
9675	     the confusion in loc_descriptor for reference.  */
9676	  descr = loc_descriptor_from_tree (decl, 1);
9677	}
9678      else
9679	{
9680	case REG:
9681	case SUBREG:
9682	case CONCAT:
9683	  descr = loc_descriptor (rtl);
9684	}
9685      add_AT_location_description (die, DW_AT_location, descr);
9686      break;
9687
9688    case PARALLEL:
9689      {
9690	rtvec par_elems = XVEC (rtl, 0);
9691	int num_elem = GET_NUM_ELEM (par_elems);
9692	enum machine_mode mode;
9693	int i;
9694
9695	/* Create the first one, so we have something to add to.  */
9696	descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9697	mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9698	add_loc_descr (&descr,
9699		       new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9700	for (i = 1; i < num_elem; i++)
9701	  {
9702	    dw_loc_descr_ref temp;
9703
9704	    temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9705	    add_loc_descr (&descr, temp);
9706	    mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9707	    add_loc_descr (&descr,
9708			   new_loc_descr (DW_OP_piece,
9709					  GET_MODE_SIZE (mode), 0));
9710	  }
9711      }
9712      add_AT_location_description (die, DW_AT_location, descr);
9713      break;
9714
9715    default:
9716      abort ();
9717    }
9718}
9719
9720/* If we don't have a copy of this variable in memory for some reason (such
9721   as a C++ member constant that doesn't have an out-of-line definition),
9722   we should tell the debugger about the constant value.  */
9723
9724static void
9725tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9726{
9727  tree init = DECL_INITIAL (decl);
9728  tree type = TREE_TYPE (decl);
9729
9730  if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9731      && initializer_constant_valid_p (init, type) == null_pointer_node)
9732    /* OK */;
9733  else
9734    return;
9735
9736  switch (TREE_CODE (type))
9737    {
9738    case INTEGER_TYPE:
9739      if (host_integerp (init, 0))
9740	add_AT_unsigned (var_die, DW_AT_const_value,
9741			 tree_low_cst (init, 0));
9742      else
9743	add_AT_long_long (var_die, DW_AT_const_value,
9744			  TREE_INT_CST_HIGH (init),
9745			  TREE_INT_CST_LOW (init));
9746      break;
9747
9748    default:;
9749    }
9750}
9751
9752/* Generate a DW_AT_name attribute given some string value to be included as
9753   the value of the attribute.  */
9754
9755static void
9756add_name_attribute (dw_die_ref die, const char *name_string)
9757{
9758  if (name_string != NULL && *name_string != 0)
9759    {
9760      if (demangle_name_func)
9761	name_string = (*demangle_name_func) (name_string);
9762
9763      add_AT_string (die, DW_AT_name, name_string);
9764    }
9765}
9766
9767/* Generate a DW_AT_comp_dir attribute for DIE.  */
9768
9769static void
9770add_comp_dir_attribute (dw_die_ref die)
9771{
9772  const char *wd = get_src_pwd ();
9773  if (wd != NULL)
9774    add_AT_string (die, DW_AT_comp_dir, wd);
9775}
9776
9777/* Given a tree node describing an array bound (either lower or upper) output
9778   a representation for that bound.  */
9779
9780static void
9781add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9782{
9783  switch (TREE_CODE (bound))
9784    {
9785    case ERROR_MARK:
9786      return;
9787
9788    /* All fixed-bounds are represented by INTEGER_CST nodes.  */
9789    case INTEGER_CST:
9790      if (! host_integerp (bound, 0)
9791	  || (bound_attr == DW_AT_lower_bound
9792	      && (((is_c_family () || is_java ()) &&  integer_zerop (bound))
9793		  || (is_fortran () && integer_onep (bound)))))
9794	/* use the default */
9795	;
9796      else
9797	add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9798      break;
9799
9800    case CONVERT_EXPR:
9801    case NOP_EXPR:
9802    case NON_LVALUE_EXPR:
9803    case VIEW_CONVERT_EXPR:
9804      add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9805      break;
9806
9807    case SAVE_EXPR:
9808      /* If optimization is turned on, the SAVE_EXPRs that describe how to
9809	 access the upper bound values may be bogus.  If they refer to a
9810	 register, they may only describe how to get at these values at the
9811	 points in the generated code right after they have just been
9812	 computed.  Worse yet, in the typical case, the upper bound values
9813	 will not even *be* computed in the optimized code (though the
9814	 number of elements will), so these SAVE_EXPRs are entirely
9815	 bogus. In order to compensate for this fact, we check here to see
9816	 if optimization is enabled, and if so, we don't add an attribute
9817	 for the (unknown and unknowable) upper bound.  This should not
9818	 cause too much trouble for existing (stupid?)  debuggers because
9819	 they have to deal with empty upper bounds location descriptions
9820	 anyway in order to be able to deal with incomplete array types.
9821	 Of course an intelligent debugger (GDB?)  should be able to
9822	 comprehend that a missing upper bound specification in an array
9823	 type used for a storage class `auto' local array variable
9824	 indicates that the upper bound is both unknown (at compile- time)
9825	 and unknowable (at run-time) due to optimization.
9826
9827	 We assume that a MEM rtx is safe because gcc wouldn't put the
9828	 value there unless it was going to be used repeatedly in the
9829	 function, i.e. for cleanups.  */
9830      if (SAVE_EXPR_RTL (bound)
9831	  && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9832	{
9833	  dw_die_ref ctx = lookup_decl_die (current_function_decl);
9834	  dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9835	  rtx loc = SAVE_EXPR_RTL (bound);
9836
9837	  /* If the RTL for the SAVE_EXPR is memory, handle the case where
9838	     it references an outer function's frame.  */
9839	  if (GET_CODE (loc) == MEM)
9840	    {
9841	      rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9842
9843	      if (XEXP (loc, 0) != new_addr)
9844		loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9845	    }
9846
9847	  add_AT_flag (decl_die, DW_AT_artificial, 1);
9848	  add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9849	  add_AT_location_description (decl_die, DW_AT_location,
9850				       loc_descriptor (loc));
9851	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
9852	}
9853
9854      /* Else leave out the attribute.  */
9855      break;
9856
9857    case VAR_DECL:
9858    case PARM_DECL:
9859      {
9860	dw_die_ref decl_die = lookup_decl_die (bound);
9861
9862	/* ??? Can this happen, or should the variable have been bound
9863	   first?  Probably it can, since I imagine that we try to create
9864	   the types of parameters in the order in which they exist in
9865	   the list, and won't have created a forward reference to a
9866	   later parameter.  */
9867	if (decl_die != NULL)
9868	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
9869	break;
9870      }
9871
9872    default:
9873      {
9874	/* Otherwise try to create a stack operation procedure to
9875	   evaluate the value of the array bound.  */
9876
9877	dw_die_ref ctx, decl_die;
9878	dw_loc_descr_ref loc;
9879
9880	loc = loc_descriptor_from_tree (bound, 0);
9881	if (loc == NULL)
9882	  break;
9883
9884	if (current_function_decl == 0)
9885	  ctx = comp_unit_die;
9886	else
9887	  ctx = lookup_decl_die (current_function_decl);
9888
9889	/* If we weren't able to find a context, it's most likely the case
9890	   that we are processing the return type of the function.  So
9891	   make a SAVE_EXPR to point to it and have the limbo DIE code
9892	   find the proper die.  The save_expr function doesn't always
9893	   make a SAVE_EXPR, so do it ourselves.  */
9894	if (ctx == 0)
9895	  bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9896			 current_function_decl, NULL_TREE);
9897
9898	decl_die = new_die (DW_TAG_variable, ctx, bound);
9899	add_AT_flag (decl_die, DW_AT_artificial, 1);
9900	add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9901	add_AT_loc (decl_die, DW_AT_location, loc);
9902
9903	add_AT_die_ref (subrange_die, bound_attr, decl_die);
9904	break;
9905      }
9906    }
9907}
9908
9909/* Note that the block of subscript information for an array type also
9910   includes information about the element type of type given array type.  */
9911
9912static void
9913add_subscript_info (dw_die_ref type_die, tree type)
9914{
9915#ifndef MIPS_DEBUGGING_INFO
9916  unsigned dimension_number;
9917#endif
9918  tree lower, upper;
9919  dw_die_ref subrange_die;
9920
9921  /* The GNU compilers represent multidimensional array types as sequences of
9922     one dimensional array types whose element types are themselves array
9923     types.  Here we squish that down, so that each multidimensional array
9924     type gets only one array_type DIE in the Dwarf debugging info. The draft
9925     Dwarf specification say that we are allowed to do this kind of
9926     compression in C (because there is no difference between an array or
9927     arrays and a multidimensional array in C) but for other source languages
9928     (e.g. Ada) we probably shouldn't do this.  */
9929
9930  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9931     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
9932     We work around this by disabling this feature.  See also
9933     gen_array_type_die.  */
9934#ifndef MIPS_DEBUGGING_INFO
9935  for (dimension_number = 0;
9936       TREE_CODE (type) == ARRAY_TYPE;
9937       type = TREE_TYPE (type), dimension_number++)
9938#endif
9939    {
9940      tree domain = TYPE_DOMAIN (type);
9941
9942      /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9943	 and (in GNU C only) variable bounds.  Handle all three forms
9944	 here.  */
9945      subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9946      if (domain)
9947	{
9948	  /* We have an array type with specified bounds.  */
9949	  lower = TYPE_MIN_VALUE (domain);
9950	  upper = TYPE_MAX_VALUE (domain);
9951
9952	  /* Define the index type.  */
9953	  if (TREE_TYPE (domain))
9954	    {
9955	      /* ??? This is probably an Ada unnamed subrange type.  Ignore the
9956		 TREE_TYPE field.  We can't emit debug info for this
9957		 because it is an unnamed integral type.  */
9958	      if (TREE_CODE (domain) == INTEGER_TYPE
9959		  && TYPE_NAME (domain) == NULL_TREE
9960		  && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9961		  && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9962		;
9963	      else
9964		add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9965				    type_die);
9966	    }
9967
9968	  /* ??? If upper is NULL, the array has unspecified length,
9969	     but it does have a lower bound.  This happens with Fortran
9970	       dimension arr(N:*)
9971	     Since the debugger is definitely going to need to know N
9972	     to produce useful results, go ahead and output the lower
9973	     bound solo, and hope the debugger can cope.  */
9974
9975	  add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9976	  if (upper)
9977	    add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9978	}
9979
9980      /* Otherwise we have an array type with an unspecified length.  The
9981	 DWARF-2 spec does not say how to handle this; let's just leave out the
9982	 bounds.  */
9983    }
9984}
9985
9986static void
9987add_byte_size_attribute (dw_die_ref die, tree tree_node)
9988{
9989  unsigned size;
9990
9991  switch (TREE_CODE (tree_node))
9992    {
9993    case ERROR_MARK:
9994      size = 0;
9995      break;
9996    case ENUMERAL_TYPE:
9997    case RECORD_TYPE:
9998    case UNION_TYPE:
9999    case QUAL_UNION_TYPE:
10000      size = int_size_in_bytes (tree_node);
10001      break;
10002    case FIELD_DECL:
10003      /* For a data member of a struct or union, the DW_AT_byte_size is
10004	 generally given as the number of bytes normally allocated for an
10005	 object of the *declared* type of the member itself.  This is true
10006	 even for bit-fields.  */
10007      size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10008      break;
10009    default:
10010      abort ();
10011    }
10012
10013  /* Note that `size' might be -1 when we get to this point.  If it is, that
10014     indicates that the byte size of the entity in question is variable.  We
10015     have no good way of expressing this fact in Dwarf at the present time,
10016     so just let the -1 pass on through.  */
10017  add_AT_unsigned (die, DW_AT_byte_size, size);
10018}
10019
10020/* For a FIELD_DECL node which represents a bit-field, output an attribute
10021   which specifies the distance in bits from the highest order bit of the
10022   "containing object" for the bit-field to the highest order bit of the
10023   bit-field itself.
10024
10025   For any given bit-field, the "containing object" is a hypothetical object
10026   (of some integral or enum type) within which the given bit-field lives.  The
10027   type of this hypothetical "containing object" is always the same as the
10028   declared type of the individual bit-field itself.  The determination of the
10029   exact location of the "containing object" for a bit-field is rather
10030   complicated.  It's handled by the `field_byte_offset' function (above).
10031
10032   Note that it is the size (in bytes) of the hypothetical "containing object"
10033   which will be given in the DW_AT_byte_size attribute for this bit-field.
10034   (See `byte_size_attribute' above).  */
10035
10036static inline void
10037add_bit_offset_attribute (dw_die_ref die, tree decl)
10038{
10039  HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10040  tree type = DECL_BIT_FIELD_TYPE (decl);
10041  HOST_WIDE_INT bitpos_int;
10042  HOST_WIDE_INT highest_order_object_bit_offset;
10043  HOST_WIDE_INT highest_order_field_bit_offset;
10044  HOST_WIDE_INT unsigned bit_offset;
10045
10046  /* Must be a field and a bit field.  */
10047  if (!type
10048      || TREE_CODE (decl) != FIELD_DECL)
10049    abort ();
10050
10051  /* We can't yet handle bit-fields whose offsets are variable, so if we
10052     encounter such things, just return without generating any attribute
10053     whatsoever.  Likewise for variable or too large size.  */
10054  if (! host_integerp (bit_position (decl), 0)
10055      || ! host_integerp (DECL_SIZE (decl), 1))
10056    return;
10057
10058  bitpos_int = int_bit_position (decl);
10059
10060  /* Note that the bit offset is always the distance (in bits) from the
10061     highest-order bit of the "containing object" to the highest-order bit of
10062     the bit-field itself.  Since the "high-order end" of any object or field
10063     is different on big-endian and little-endian machines, the computation
10064     below must take account of these differences.  */
10065  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10066  highest_order_field_bit_offset = bitpos_int;
10067
10068  if (! BYTES_BIG_ENDIAN)
10069    {
10070      highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10071      highest_order_object_bit_offset += simple_type_size_in_bits (type);
10072    }
10073
10074  bit_offset
10075    = (! BYTES_BIG_ENDIAN
10076       ? highest_order_object_bit_offset - highest_order_field_bit_offset
10077       : highest_order_field_bit_offset - highest_order_object_bit_offset);
10078
10079  add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10080}
10081
10082/* For a FIELD_DECL node which represents a bit field, output an attribute
10083   which specifies the length in bits of the given field.  */
10084
10085static inline void
10086add_bit_size_attribute (dw_die_ref die, tree decl)
10087{
10088  /* Must be a field and a bit field.  */
10089  if (TREE_CODE (decl) != FIELD_DECL
10090      || ! DECL_BIT_FIELD_TYPE (decl))
10091    abort ();
10092
10093  if (host_integerp (DECL_SIZE (decl), 1))
10094    add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10095}
10096
10097/* If the compiled language is ANSI C, then add a 'prototyped'
10098   attribute, if arg types are given for the parameters of a function.  */
10099
10100static inline void
10101add_prototyped_attribute (dw_die_ref die, tree func_type)
10102{
10103  if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10104      && TYPE_ARG_TYPES (func_type) != NULL)
10105    add_AT_flag (die, DW_AT_prototyped, 1);
10106}
10107
10108/* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
10109   by looking in either the type declaration or object declaration
10110   equate table.  */
10111
10112static inline void
10113add_abstract_origin_attribute (dw_die_ref die, tree origin)
10114{
10115  dw_die_ref origin_die = NULL;
10116
10117  if (TREE_CODE (origin) != FUNCTION_DECL)
10118    {
10119      /* We may have gotten separated from the block for the inlined
10120	 function, if we're in an exception handler or some such; make
10121	 sure that the abstract function has been written out.
10122
10123	 Doing this for nested functions is wrong, however; functions are
10124	 distinct units, and our context might not even be inline.  */
10125      tree fn = origin;
10126
10127      if (TYPE_P (fn))
10128	fn = TYPE_STUB_DECL (fn);
10129
10130      fn = decl_function_context (fn);
10131      if (fn)
10132	dwarf2out_abstract_function (fn);
10133    }
10134
10135  if (DECL_P (origin))
10136    origin_die = lookup_decl_die (origin);
10137  else if (TYPE_P (origin))
10138    origin_die = lookup_type_die (origin);
10139
10140  if (origin_die == NULL)
10141    abort ();
10142
10143  add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10144}
10145
10146/* We do not currently support the pure_virtual attribute.  */
10147
10148static inline void
10149add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10150{
10151  if (DECL_VINDEX (func_decl))
10152    {
10153      add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10154
10155      if (host_integerp (DECL_VINDEX (func_decl), 0))
10156	add_AT_loc (die, DW_AT_vtable_elem_location,
10157		    new_loc_descr (DW_OP_constu,
10158				   tree_low_cst (DECL_VINDEX (func_decl), 0),
10159				   0));
10160
10161      /* GNU extension: Record what type this method came from originally.  */
10162      if (debug_info_level > DINFO_LEVEL_TERSE)
10163	add_AT_die_ref (die, DW_AT_containing_type,
10164			lookup_type_die (DECL_CONTEXT (func_decl)));
10165    }
10166}
10167
10168/* Add source coordinate attributes for the given decl.  */
10169
10170static void
10171add_src_coords_attributes (dw_die_ref die, tree decl)
10172{
10173  unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10174
10175  add_AT_unsigned (die, DW_AT_decl_file, file_index);
10176  add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10177}
10178
10179/* Add a DW_AT_name attribute and source coordinate attribute for the
10180   given decl, but only if it actually has a name.  */
10181
10182static void
10183add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10184{
10185  tree decl_name;
10186
10187  decl_name = DECL_NAME (decl);
10188  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10189    {
10190      add_name_attribute (die, dwarf2_name (decl, 0));
10191      if (! DECL_ARTIFICIAL (decl))
10192	add_src_coords_attributes (die, decl);
10193
10194      if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10195	  && TREE_PUBLIC (decl)
10196	  && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10197	  && !DECL_ABSTRACT (decl))
10198	add_AT_string (die, DW_AT_MIPS_linkage_name,
10199		       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10200    }
10201
10202#ifdef VMS_DEBUGGING_INFO
10203  /* Get the function's name, as described by its RTL.  This may be different
10204     from the DECL_NAME name used in the source file.  */
10205  if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10206    {
10207      add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10208		   XEXP (DECL_RTL (decl), 0));
10209      VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10210    }
10211#endif
10212}
10213
10214/* Push a new declaration scope.  */
10215
10216static void
10217push_decl_scope (tree scope)
10218{
10219  VARRAY_PUSH_TREE (decl_scope_table, scope);
10220}
10221
10222/* Pop a declaration scope.  */
10223
10224static inline void
10225pop_decl_scope (void)
10226{
10227  if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10228    abort ();
10229
10230  VARRAY_POP (decl_scope_table);
10231}
10232
10233/* Return the DIE for the scope that immediately contains this type.
10234   Non-named types get global scope.  Named types nested in other
10235   types get their containing scope if it's open, or global scope
10236   otherwise.  All other types (i.e. function-local named types) get
10237   the current active scope.  */
10238
10239static dw_die_ref
10240scope_die_for (tree t, dw_die_ref context_die)
10241{
10242  dw_die_ref scope_die = NULL;
10243  tree containing_scope;
10244  int i;
10245
10246  /* Non-types always go in the current scope.  */
10247  if (! TYPE_P (t))
10248    abort ();
10249
10250  containing_scope = TYPE_CONTEXT (t);
10251
10252  /* Use the containing namespace if it was passed in (for a declaration).  */
10253  if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10254    {
10255      if (context_die == lookup_decl_die (containing_scope))
10256	/* OK */;
10257      else
10258	containing_scope = NULL_TREE;
10259    }
10260
10261  /* Ignore function type "scopes" from the C frontend.  They mean that
10262     a tagged type is local to a parmlist of a function declarator, but
10263     that isn't useful to DWARF.  */
10264  if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10265    containing_scope = NULL_TREE;
10266
10267  if (containing_scope == NULL_TREE
10268      || TREE_CODE (containing_scope) == TRANSLATION_UNIT_DECL)
10269    scope_die = comp_unit_die;
10270  else if (TYPE_P (containing_scope))
10271    {
10272      /* For types, we can just look up the appropriate DIE.  But
10273	 first we check to see if we're in the middle of emitting it
10274	 so we know where the new DIE should go.  */
10275      for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10276	if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10277	  break;
10278
10279      if (i < 0)
10280	{
10281	  if (debug_info_level > DINFO_LEVEL_TERSE
10282	      && !TREE_ASM_WRITTEN (containing_scope))
10283	    abort ();
10284
10285	  /* If none of the current dies are suitable, we get file scope.  */
10286	  scope_die = comp_unit_die;
10287	}
10288      else
10289	scope_die = lookup_type_die (containing_scope);
10290    }
10291  else
10292    scope_die = context_die;
10293
10294  return scope_die;
10295}
10296
10297/* Returns nonzero if CONTEXT_DIE is internal to a function.  */
10298
10299static inline int
10300local_scope_p (dw_die_ref context_die)
10301{
10302  for (; context_die; context_die = context_die->die_parent)
10303    if (context_die->die_tag == DW_TAG_inlined_subroutine
10304	|| context_die->die_tag == DW_TAG_subprogram)
10305      return 1;
10306
10307  return 0;
10308}
10309
10310/* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10311   whether or not to treat a DIE in this context as a declaration.  */
10312
10313static inline int
10314class_or_namespace_scope_p (dw_die_ref context_die)
10315{
10316  return (context_die
10317	  && (context_die->die_tag == DW_TAG_structure_type
10318	      || context_die->die_tag == DW_TAG_union_type
10319	      || context_die->die_tag == DW_TAG_namespace));
10320}
10321
10322/* Many forms of DIEs require a "type description" attribute.  This
10323   routine locates the proper "type descriptor" die for the type given
10324   by 'type', and adds a DW_AT_type attribute below the given die.  */
10325
10326static void
10327add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10328		    int decl_volatile, dw_die_ref context_die)
10329{
10330  enum tree_code code  = TREE_CODE (type);
10331  dw_die_ref type_die  = NULL;
10332
10333  /* ??? If this type is an unnamed subrange type of an integral or
10334     floating-point type, use the inner type.  This is because we have no
10335     support for unnamed types in base_type_die.  This can happen if this is
10336     an Ada subrange type.  Correct solution is emit a subrange type die.  */
10337  if ((code == INTEGER_TYPE || code == REAL_TYPE)
10338      && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10339    type = TREE_TYPE (type), code = TREE_CODE (type);
10340
10341  if (code == ERROR_MARK
10342      /* Handle a special case.  For functions whose return type is void, we
10343	 generate *no* type attribute.  (Note that no object may have type
10344	 `void', so this only applies to function return types).  */
10345      || code == VOID_TYPE)
10346    return;
10347
10348  type_die = modified_type_die (type,
10349				decl_const || TYPE_READONLY (type),
10350				decl_volatile || TYPE_VOLATILE (type),
10351				context_die);
10352
10353  if (type_die != NULL)
10354    add_AT_die_ref (object_die, DW_AT_type, type_die);
10355}
10356
10357/* Given a tree pointer to a struct, class, union, or enum type node, return
10358   a pointer to the (string) tag name for the given type, or zero if the type
10359   was declared without a tag.  */
10360
10361static const char *
10362type_tag (tree type)
10363{
10364  const char *name = 0;
10365
10366  if (TYPE_NAME (type) != 0)
10367    {
10368      tree t = 0;
10369
10370      /* Find the IDENTIFIER_NODE for the type name.  */
10371      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10372	t = TYPE_NAME (type);
10373
10374      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10375	 a TYPE_DECL node, regardless of whether or not a `typedef' was
10376	 involved.  */
10377      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10378	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
10379	t = DECL_NAME (TYPE_NAME (type));
10380
10381      /* Now get the name as a string, or invent one.  */
10382      if (t != 0)
10383	name = IDENTIFIER_POINTER (t);
10384    }
10385
10386  return (name == 0 || *name == '\0') ? 0 : name;
10387}
10388
10389/* Return the type associated with a data member, make a special check
10390   for bit field types.  */
10391
10392static inline tree
10393member_declared_type (tree member)
10394{
10395  return (DECL_BIT_FIELD_TYPE (member)
10396	  ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10397}
10398
10399/* Get the decl's label, as described by its RTL. This may be different
10400   from the DECL_NAME name used in the source file.  */
10401
10402#if 0
10403static const char *
10404decl_start_label (tree decl)
10405{
10406  rtx x;
10407  const char *fnname;
10408
10409  x = DECL_RTL (decl);
10410  if (GET_CODE (x) != MEM)
10411    abort ();
10412
10413  x = XEXP (x, 0);
10414  if (GET_CODE (x) != SYMBOL_REF)
10415    abort ();
10416
10417  fnname = XSTR (x, 0);
10418  return fnname;
10419}
10420#endif
10421
10422/* These routines generate the internal representation of the DIE's for
10423   the compilation unit.  Debugging information is collected by walking
10424   the declaration trees passed in from dwarf2out_decl().  */
10425
10426static void
10427gen_array_type_die (tree type, dw_die_ref context_die)
10428{
10429  dw_die_ref scope_die = scope_die_for (type, context_die);
10430  dw_die_ref array_die;
10431  tree element_type;
10432
10433  /* ??? The SGI dwarf reader fails for array of array of enum types unless
10434     the inner array type comes before the outer array type.  Thus we must
10435     call gen_type_die before we call new_die.  See below also.  */
10436#ifdef MIPS_DEBUGGING_INFO
10437  gen_type_die (TREE_TYPE (type), context_die);
10438#endif
10439
10440  array_die = new_die (DW_TAG_array_type, scope_die, type);
10441  add_name_attribute (array_die, type_tag (type));
10442  equate_type_number_to_die (type, array_die);
10443
10444  if (TREE_CODE (type) == VECTOR_TYPE)
10445    {
10446      /* The frontend feeds us a representation for the vector as a struct
10447	 containing an array.  Pull out the array type.  */
10448      type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10449      add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10450    }
10451
10452#if 0
10453  /* We default the array ordering.  SDB will probably do
10454     the right things even if DW_AT_ordering is not present.  It's not even
10455     an issue until we start to get into multidimensional arrays anyway.  If
10456     SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10457     then we'll have to put the DW_AT_ordering attribute back in.  (But if
10458     and when we find out that we need to put these in, we will only do so
10459     for multidimensional arrays.  */
10460  add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10461#endif
10462
10463#ifdef MIPS_DEBUGGING_INFO
10464  /* The SGI compilers handle arrays of unknown bound by setting
10465     AT_declaration and not emitting any subrange DIEs.  */
10466  if (! TYPE_DOMAIN (type))
10467    add_AT_flag (array_die, DW_AT_declaration, 1);
10468  else
10469#endif
10470    add_subscript_info (array_die, type);
10471
10472  /* Add representation of the type of the elements of this array type.  */
10473  element_type = TREE_TYPE (type);
10474
10475  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10476     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
10477     We work around this by disabling this feature.  See also
10478     add_subscript_info.  */
10479#ifndef MIPS_DEBUGGING_INFO
10480  while (TREE_CODE (element_type) == ARRAY_TYPE)
10481    element_type = TREE_TYPE (element_type);
10482
10483  gen_type_die (element_type, context_die);
10484#endif
10485
10486  add_type_attribute (array_die, element_type, 0, 0, context_die);
10487}
10488
10489static void
10490gen_set_type_die (tree type, dw_die_ref context_die)
10491{
10492  dw_die_ref type_die
10493    = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10494
10495  equate_type_number_to_die (type, type_die);
10496  add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10497}
10498
10499#if 0
10500static void
10501gen_entry_point_die (tree decl, dw_die_ref context_die)
10502{
10503  tree origin = decl_ultimate_origin (decl);
10504  dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10505
10506  if (origin != NULL)
10507    add_abstract_origin_attribute (decl_die, origin);
10508  else
10509    {
10510      add_name_and_src_coords_attributes (decl_die, decl);
10511      add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10512			  0, 0, context_die);
10513    }
10514
10515  if (DECL_ABSTRACT (decl))
10516    equate_decl_number_to_die (decl, decl_die);
10517  else
10518    add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10519}
10520#endif
10521
10522/* Walk through the list of incomplete types again, trying once more to
10523   emit full debugging info for them.  */
10524
10525static void
10526retry_incomplete_types (void)
10527{
10528  int i;
10529
10530  for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10531    gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10532}
10533
10534/* Generate a DIE to represent an inlined instance of an enumeration type.  */
10535
10536static void
10537gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10538{
10539  dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10540
10541  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10542     be incomplete and such types are not marked.  */
10543  add_abstract_origin_attribute (type_die, type);
10544}
10545
10546/* Generate a DIE to represent an inlined instance of a structure type.  */
10547
10548static void
10549gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10550{
10551  dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10552
10553  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10554     be incomplete and such types are not marked.  */
10555  add_abstract_origin_attribute (type_die, type);
10556}
10557
10558/* Generate a DIE to represent an inlined instance of a union type.  */
10559
10560static void
10561gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10562{
10563  dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10564
10565  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10566     be incomplete and such types are not marked.  */
10567  add_abstract_origin_attribute (type_die, type);
10568}
10569
10570/* Generate a DIE to represent an enumeration type.  Note that these DIEs
10571   include all of the information about the enumeration values also. Each
10572   enumerated type name/value is listed as a child of the enumerated type
10573   DIE.  */
10574
10575static dw_die_ref
10576gen_enumeration_type_die (tree type, dw_die_ref context_die)
10577{
10578  dw_die_ref type_die = lookup_type_die (type);
10579
10580  if (type_die == NULL)
10581    {
10582      type_die = new_die (DW_TAG_enumeration_type,
10583			  scope_die_for (type, context_die), type);
10584      equate_type_number_to_die (type, type_die);
10585      add_name_attribute (type_die, type_tag (type));
10586    }
10587  else if (! TYPE_SIZE (type))
10588    return type_die;
10589  else
10590    remove_AT (type_die, DW_AT_declaration);
10591
10592  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
10593     given enum type is incomplete, do not generate the DW_AT_byte_size
10594     attribute or the DW_AT_element_list attribute.  */
10595  if (TYPE_SIZE (type))
10596    {
10597      tree link;
10598
10599      TREE_ASM_WRITTEN (type) = 1;
10600      add_byte_size_attribute (type_die, type);
10601      if (TYPE_STUB_DECL (type) != NULL_TREE)
10602	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10603
10604      /* If the first reference to this type was as the return type of an
10605	 inline function, then it may not have a parent.  Fix this now.  */
10606      if (type_die->die_parent == NULL)
10607	add_child_die (scope_die_for (type, context_die), type_die);
10608
10609      for (link = TYPE_FIELDS (type);
10610	   link != NULL; link = TREE_CHAIN (link))
10611	{
10612	  dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10613	  tree value = TREE_VALUE (link);
10614
10615	  add_name_attribute (enum_die,
10616			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10617
10618	  if (host_integerp (value, TREE_UNSIGNED (TREE_TYPE (value))))
10619	    /* DWARF2 does not provide a way of indicating whether or
10620	       not enumeration constants are signed or unsigned.  GDB
10621	       always assumes the values are signed, so we output all
10622	       values as if they were signed.  That means that
10623	       enumeration constants with very large unsigned values
10624	       will appear to have negative values in the debugger.  */
10625	    add_AT_int (enum_die, DW_AT_const_value,
10626			tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10627	}
10628    }
10629  else
10630    add_AT_flag (type_die, DW_AT_declaration, 1);
10631
10632  return type_die;
10633}
10634
10635/* Generate a DIE to represent either a real live formal parameter decl or to
10636   represent just the type of some formal parameter position in some function
10637   type.
10638
10639   Note that this routine is a bit unusual because its argument may be a
10640   ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10641   represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10642   node.  If it's the former then this function is being called to output a
10643   DIE to represent a formal parameter object (or some inlining thereof).  If
10644   it's the latter, then this function is only being called to output a
10645   DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10646   argument type of some subprogram type.  */
10647
10648static dw_die_ref
10649gen_formal_parameter_die (tree node, dw_die_ref context_die)
10650{
10651  dw_die_ref parm_die
10652    = new_die (DW_TAG_formal_parameter, context_die, node);
10653  tree origin;
10654
10655  switch (TREE_CODE_CLASS (TREE_CODE (node)))
10656    {
10657    case 'd':
10658      origin = decl_ultimate_origin (node);
10659      if (origin != NULL)
10660	add_abstract_origin_attribute (parm_die, origin);
10661      else
10662	{
10663	  add_name_and_src_coords_attributes (parm_die, node);
10664	  add_type_attribute (parm_die, TREE_TYPE (node),
10665			      TREE_READONLY (node),
10666			      TREE_THIS_VOLATILE (node),
10667			      context_die);
10668	  if (DECL_ARTIFICIAL (node))
10669	    add_AT_flag (parm_die, DW_AT_artificial, 1);
10670	}
10671
10672      equate_decl_number_to_die (node, parm_die);
10673      if (! DECL_ABSTRACT (node))
10674	add_location_or_const_value_attribute (parm_die, node);
10675
10676      break;
10677
10678    case 't':
10679      /* We were called with some kind of a ..._TYPE node.  */
10680      add_type_attribute (parm_die, node, 0, 0, context_die);
10681      break;
10682
10683    default:
10684      abort ();
10685    }
10686
10687  return parm_die;
10688}
10689
10690/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10691   at the end of an (ANSI prototyped) formal parameters list.  */
10692
10693static void
10694gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10695{
10696  new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10697}
10698
10699/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10700   DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10701   parameters as specified in some function type specification (except for
10702   those which appear as part of a function *definition*).  */
10703
10704static void
10705gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10706{
10707  tree link;
10708  tree formal_type = NULL;
10709  tree first_parm_type;
10710  tree arg;
10711
10712  if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10713    {
10714      arg = DECL_ARGUMENTS (function_or_method_type);
10715      function_or_method_type = TREE_TYPE (function_or_method_type);
10716    }
10717  else
10718    arg = NULL_TREE;
10719
10720  first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10721
10722  /* Make our first pass over the list of formal parameter types and output a
10723     DW_TAG_formal_parameter DIE for each one.  */
10724  for (link = first_parm_type; link; )
10725    {
10726      dw_die_ref parm_die;
10727
10728      formal_type = TREE_VALUE (link);
10729      if (formal_type == void_type_node)
10730	break;
10731
10732      /* Output a (nameless) DIE to represent the formal parameter itself.  */
10733      parm_die = gen_formal_parameter_die (formal_type, context_die);
10734      if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10735	   && link == first_parm_type)
10736	  || (arg && DECL_ARTIFICIAL (arg)))
10737	add_AT_flag (parm_die, DW_AT_artificial, 1);
10738
10739      link = TREE_CHAIN (link);
10740      if (arg)
10741	arg = TREE_CHAIN (arg);
10742    }
10743
10744  /* If this function type has an ellipsis, add a
10745     DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
10746  if (formal_type != void_type_node)
10747    gen_unspecified_parameters_die (function_or_method_type, context_die);
10748
10749  /* Make our second (and final) pass over the list of formal parameter types
10750     and output DIEs to represent those types (as necessary).  */
10751  for (link = TYPE_ARG_TYPES (function_or_method_type);
10752       link && TREE_VALUE (link);
10753       link = TREE_CHAIN (link))
10754    gen_type_die (TREE_VALUE (link), context_die);
10755}
10756
10757/* We want to generate the DIE for TYPE so that we can generate the
10758   die for MEMBER, which has been defined; we will need to refer back
10759   to the member declaration nested within TYPE.  If we're trying to
10760   generate minimal debug info for TYPE, processing TYPE won't do the
10761   trick; we need to attach the member declaration by hand.  */
10762
10763static void
10764gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10765{
10766  gen_type_die (type, context_die);
10767
10768  /* If we're trying to avoid duplicate debug info, we may not have
10769     emitted the member decl for this function.  Emit it now.  */
10770  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10771      && ! lookup_decl_die (member))
10772    {
10773      if (decl_ultimate_origin (member))
10774	abort ();
10775
10776      push_decl_scope (type);
10777      if (TREE_CODE (member) == FUNCTION_DECL)
10778	gen_subprogram_die (member, lookup_type_die (type));
10779      else
10780	gen_variable_die (member, lookup_type_die (type));
10781
10782      pop_decl_scope ();
10783    }
10784}
10785
10786/* Generate the DWARF2 info for the "abstract" instance of a function which we
10787   may later generate inlined and/or out-of-line instances of.  */
10788
10789static void
10790dwarf2out_abstract_function (tree decl)
10791{
10792  dw_die_ref old_die;
10793  tree save_fn;
10794  tree context;
10795  int was_abstract = DECL_ABSTRACT (decl);
10796
10797  /* Make sure we have the actual abstract inline, not a clone.  */
10798  decl = DECL_ORIGIN (decl);
10799
10800  old_die = lookup_decl_die (decl);
10801  if (old_die && get_AT (old_die, DW_AT_inline))
10802    /* We've already generated the abstract instance.  */
10803    return;
10804
10805  /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10806     we don't get confused by DECL_ABSTRACT.  */
10807  if (debug_info_level > DINFO_LEVEL_TERSE)
10808    {
10809      context = decl_class_context (decl);
10810      if (context)
10811	gen_type_die_for_member
10812	  (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10813    }
10814
10815  /* Pretend we've just finished compiling this function.  */
10816  save_fn = current_function_decl;
10817  current_function_decl = decl;
10818
10819  set_decl_abstract_flags (decl, 1);
10820  dwarf2out_decl (decl);
10821  if (! was_abstract)
10822    set_decl_abstract_flags (decl, 0);
10823
10824  current_function_decl = save_fn;
10825}
10826
10827/* Generate a DIE to represent a declared function (either file-scope or
10828   block-local).  */
10829
10830static void
10831gen_subprogram_die (tree decl, dw_die_ref context_die)
10832{
10833  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10834  tree origin = decl_ultimate_origin (decl);
10835  dw_die_ref subr_die;
10836  rtx fp_reg;
10837  tree fn_arg_types;
10838  tree outer_scope;
10839  dw_die_ref old_die = lookup_decl_die (decl);
10840  int declaration = (current_function_decl != decl
10841		     || class_or_namespace_scope_p (context_die));
10842
10843  /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10844     started to generate the abstract instance of an inline, decided to output
10845     its containing class, and proceeded to emit the declaration of the inline
10846     from the member list for the class.  If so, DECLARATION takes priority;
10847     we'll get back to the abstract instance when done with the class.  */
10848
10849  /* The class-scope declaration DIE must be the primary DIE.  */
10850  if (origin && declaration && class_or_namespace_scope_p (context_die))
10851    {
10852      origin = NULL;
10853      if (old_die)
10854	abort ();
10855    }
10856
10857  if (origin != NULL)
10858    {
10859      if (declaration && ! local_scope_p (context_die))
10860	abort ();
10861
10862      /* Fixup die_parent for the abstract instance of a nested
10863	 inline function.  */
10864      if (old_die && old_die->die_parent == NULL)
10865	add_child_die (context_die, old_die);
10866
10867      subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10868      add_abstract_origin_attribute (subr_die, origin);
10869    }
10870  else if (old_die)
10871    {
10872      unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10873
10874      if (!get_AT_flag (old_die, DW_AT_declaration)
10875	  /* We can have a normal definition following an inline one in the
10876	     case of redefinition of GNU C extern inlines.
10877	     It seems reasonable to use AT_specification in this case.  */
10878	  && !get_AT (old_die, DW_AT_inline))
10879	{
10880	  /* ??? This can happen if there is a bug in the program, for
10881	     instance, if it has duplicate function definitions.  Ideally,
10882	     we should detect this case and ignore it.  For now, if we have
10883	     already reported an error, any error at all, then assume that
10884	     we got here because of an input error, not a dwarf2 bug.  */
10885	  if (errorcount)
10886	    return;
10887	  abort ();
10888	}
10889
10890      /* If the definition comes from the same place as the declaration,
10891	 maybe use the old DIE.  We always want the DIE for this function
10892	 that has the *_pc attributes to be under comp_unit_die so the
10893	 debugger can find it.  We also need to do this for abstract
10894	 instances of inlines, since the spec requires the out-of-line copy
10895	 to have the same parent.  For local class methods, this doesn't
10896	 apply; we just use the old DIE.  */
10897      if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10898	  && (DECL_ARTIFICIAL (decl)
10899	      || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10900		  && (get_AT_unsigned (old_die, DW_AT_decl_line)
10901		      == (unsigned) DECL_SOURCE_LINE (decl)))))
10902	{
10903	  subr_die = old_die;
10904
10905	  /* Clear out the declaration attribute and the formal parameters.  */
10906	  remove_AT (subr_die, DW_AT_declaration);
10907	  remove_child_TAG (subr_die, DW_TAG_formal_parameter);
10908	}
10909      else
10910	{
10911	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10912	  add_AT_specification (subr_die, old_die);
10913	  if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10914	    add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10915	  if (get_AT_unsigned (old_die, DW_AT_decl_line)
10916	      != (unsigned) DECL_SOURCE_LINE (decl))
10917	    add_AT_unsigned
10918	      (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10919	}
10920    }
10921  else
10922    {
10923      subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10924
10925      if (TREE_PUBLIC (decl))
10926	add_AT_flag (subr_die, DW_AT_external, 1);
10927
10928      add_name_and_src_coords_attributes (subr_die, decl);
10929      if (debug_info_level > DINFO_LEVEL_TERSE)
10930	{
10931	  add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10932	  add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10933			      0, 0, context_die);
10934	}
10935
10936      add_pure_or_virtual_attribute (subr_die, decl);
10937      if (DECL_ARTIFICIAL (decl))
10938	add_AT_flag (subr_die, DW_AT_artificial, 1);
10939
10940      if (TREE_PROTECTED (decl))
10941	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10942      else if (TREE_PRIVATE (decl))
10943	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10944    }
10945
10946  if (declaration)
10947    {
10948      if (!old_die || !get_AT (old_die, DW_AT_inline))
10949	{
10950	  add_AT_flag (subr_die, DW_AT_declaration, 1);
10951
10952	  /* The first time we see a member function, it is in the context of
10953	     the class to which it belongs.  We make sure of this by emitting
10954	     the class first.  The next time is the definition, which is
10955	     handled above.  The two may come from the same source text.  */
10956	  if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10957	    equate_decl_number_to_die (decl, subr_die);
10958	}
10959    }
10960  else if (DECL_ABSTRACT (decl))
10961    {
10962      if (DECL_DECLARED_INLINE_P (decl))
10963	{
10964          if (cgraph_function_possibly_inlined_p (decl))
10965	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10966	  else
10967	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10968	}
10969      else
10970	{
10971	  if (cgraph_function_possibly_inlined_p (decl))
10972            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10973	  else
10974            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10975	}
10976
10977      equate_decl_number_to_die (decl, subr_die);
10978    }
10979  else if (!DECL_EXTERNAL (decl))
10980    {
10981      if (!old_die || !get_AT (old_die, DW_AT_inline))
10982	equate_decl_number_to_die (decl, subr_die);
10983
10984      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10985				   current_function_funcdef_no);
10986      add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10987      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10988				   current_function_funcdef_no);
10989      add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10990
10991      add_pubname (decl, subr_die);
10992      add_arange (decl, subr_die);
10993
10994#ifdef MIPS_DEBUGGING_INFO
10995      /* Add a reference to the FDE for this routine.  */
10996      add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10997#endif
10998
10999      /* Define the "frame base" location for this routine.  We use the
11000	 frame pointer or stack pointer registers, since the RTL for local
11001	 variables is relative to one of them.  */
11002      fp_reg
11003	= frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11004      add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11005
11006#if 0
11007      /* ??? This fails for nested inline functions, because context_display
11008	 is not part of the state saved/restored for inline functions.  */
11009      if (current_function_needs_context)
11010	add_AT_location_description (subr_die, DW_AT_static_link,
11011			     loc_descriptor (lookup_static_chain (decl)));
11012#endif
11013    }
11014
11015  /* Now output descriptions of the arguments for this function. This gets
11016     (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11017     for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11018     `...' at the end of the formal parameter list.  In order to find out if
11019     there was a trailing ellipsis or not, we must instead look at the type
11020     associated with the FUNCTION_DECL.  This will be a node of type
11021     FUNCTION_TYPE. If the chain of type nodes hanging off of this
11022     FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11023     an ellipsis at the end.  */
11024
11025  /* In the case where we are describing a mere function declaration, all we
11026     need to do here (and all we *can* do here) is to describe the *types* of
11027     its formal parameters.  */
11028  if (debug_info_level <= DINFO_LEVEL_TERSE)
11029    ;
11030  else if (declaration)
11031    gen_formal_types_die (decl, subr_die);
11032  else
11033    {
11034      /* Generate DIEs to represent all known formal parameters.  */
11035      tree arg_decls = DECL_ARGUMENTS (decl);
11036      tree parm;
11037
11038      /* When generating DIEs, generate the unspecified_parameters DIE
11039	 instead if we come across the arg "__builtin_va_alist" */
11040      for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11041	if (TREE_CODE (parm) == PARM_DECL)
11042	  {
11043	    if (DECL_NAME (parm)
11044		&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11045			    "__builtin_va_alist"))
11046	      gen_unspecified_parameters_die (parm, subr_die);
11047	    else
11048	      gen_decl_die (parm, subr_die);
11049	  }
11050
11051      /* Decide whether we need an unspecified_parameters DIE at the end.
11052	 There are 2 more cases to do this for: 1) the ansi ... declaration -
11053	 this is detectable when the end of the arg list is not a
11054	 void_type_node 2) an unprototyped function declaration (not a
11055	 definition).  This just means that we have no info about the
11056	 parameters at all.  */
11057      fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11058      if (fn_arg_types != NULL)
11059	{
11060	  /* This is the prototyped case, check for....  */
11061	  if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11062	    gen_unspecified_parameters_die (decl, subr_die);
11063	}
11064      else if (DECL_INITIAL (decl) == NULL_TREE)
11065	gen_unspecified_parameters_die (decl, subr_die);
11066    }
11067
11068  /* Output Dwarf info for all of the stuff within the body of the function
11069     (if it has one - it may be just a declaration).  */
11070  outer_scope = DECL_INITIAL (decl);
11071
11072  /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11073     a function.  This BLOCK actually represents the outermost binding contour
11074     for the function, i.e. the contour in which the function's formal
11075     parameters and labels get declared. Curiously, it appears that the front
11076     end doesn't actually put the PARM_DECL nodes for the current function onto
11077     the BLOCK_VARS list for this outer scope, but are strung off of the
11078     DECL_ARGUMENTS list for the function instead.
11079
11080     The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11081     the LABEL_DECL nodes for the function however, and we output DWARF info
11082     for those in decls_for_scope.  Just within the `outer_scope' there will be
11083     a BLOCK node representing the function's outermost pair of curly braces,
11084     and any blocks used for the base and member initializers of a C++
11085     constructor function.  */
11086  if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11087    {
11088      current_function_has_inlines = 0;
11089      decls_for_scope (outer_scope, subr_die, 0);
11090
11091#if 0 && defined (MIPS_DEBUGGING_INFO)
11092      if (current_function_has_inlines)
11093	{
11094	  add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11095	  if (! comp_unit_has_inlines)
11096	    {
11097	      add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11098	      comp_unit_has_inlines = 1;
11099	    }
11100	}
11101#endif
11102    }
11103}
11104
11105/* Generate a DIE to represent a declared data object.  */
11106
11107static void
11108gen_variable_die (tree decl, dw_die_ref context_die)
11109{
11110  tree origin = decl_ultimate_origin (decl);
11111  dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11112
11113  dw_die_ref old_die = lookup_decl_die (decl);
11114  int declaration = (DECL_EXTERNAL (decl)
11115		     || class_or_namespace_scope_p (context_die));
11116
11117  if (origin != NULL)
11118    add_abstract_origin_attribute (var_die, origin);
11119
11120  /* Loop unrolling can create multiple blocks that refer to the same
11121     static variable, so we must test for the DW_AT_declaration flag.
11122
11123     ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11124     copy decls and set the DECL_ABSTRACT flag on them instead of
11125     sharing them.
11126
11127     ??? Duplicated blocks have been rewritten to use .debug_ranges.  */
11128  else if (old_die && TREE_STATIC (decl)
11129	   && get_AT_flag (old_die, DW_AT_declaration) == 1)
11130    {
11131      /* This is a definition of a C++ class level static.  */
11132      add_AT_specification (var_die, old_die);
11133      if (DECL_NAME (decl))
11134	{
11135	  unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11136
11137	  if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11138	    add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11139
11140	  if (get_AT_unsigned (old_die, DW_AT_decl_line)
11141	      != (unsigned) DECL_SOURCE_LINE (decl))
11142
11143	    add_AT_unsigned (var_die, DW_AT_decl_line,
11144			     DECL_SOURCE_LINE (decl));
11145	}
11146    }
11147  else
11148    {
11149      add_name_and_src_coords_attributes (var_die, decl);
11150      add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11151			  TREE_THIS_VOLATILE (decl), context_die);
11152
11153      if (TREE_PUBLIC (decl))
11154	add_AT_flag (var_die, DW_AT_external, 1);
11155
11156      if (DECL_ARTIFICIAL (decl))
11157	add_AT_flag (var_die, DW_AT_artificial, 1);
11158
11159      if (TREE_PROTECTED (decl))
11160	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11161      else if (TREE_PRIVATE (decl))
11162	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11163    }
11164
11165  if (declaration)
11166    add_AT_flag (var_die, DW_AT_declaration, 1);
11167
11168  if (class_or_namespace_scope_p (context_die) || DECL_ABSTRACT (decl))
11169    equate_decl_number_to_die (decl, var_die);
11170
11171  if (! declaration && ! DECL_ABSTRACT (decl))
11172    {
11173      add_location_or_const_value_attribute (var_die, decl);
11174      add_pubname (decl, var_die);
11175    }
11176  else
11177    tree_add_const_value_attribute (var_die, decl);
11178}
11179
11180/* Generate a DIE to represent a label identifier.  */
11181
11182static void
11183gen_label_die (tree decl, dw_die_ref context_die)
11184{
11185  tree origin = decl_ultimate_origin (decl);
11186  dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11187  rtx insn;
11188  char label[MAX_ARTIFICIAL_LABEL_BYTES];
11189
11190  if (origin != NULL)
11191    add_abstract_origin_attribute (lbl_die, origin);
11192  else
11193    add_name_and_src_coords_attributes (lbl_die, decl);
11194
11195  if (DECL_ABSTRACT (decl))
11196    equate_decl_number_to_die (decl, lbl_die);
11197  else
11198    {
11199      insn = DECL_RTL_IF_SET (decl);
11200
11201      /* Deleted labels are programmer specified labels which have been
11202	 eliminated because of various optimizations.  We still emit them
11203	 here so that it is possible to put breakpoints on them.  */
11204      if (insn
11205	  && (GET_CODE (insn) == CODE_LABEL
11206	      || ((GET_CODE (insn) == NOTE
11207	           && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11208	{
11209	  /* When optimization is enabled (via -O) some parts of the compiler
11210	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11211	     represent source-level labels which were explicitly declared by
11212	     the user.  This really shouldn't be happening though, so catch
11213	     it if it ever does happen.  */
11214	  if (INSN_DELETED_P (insn))
11215	    abort ();
11216
11217	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11218	  add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11219	}
11220    }
11221}
11222
11223/* Generate a DIE for a lexical block.  */
11224
11225static void
11226gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11227{
11228  dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11229  char label[MAX_ARTIFICIAL_LABEL_BYTES];
11230
11231  if (! BLOCK_ABSTRACT (stmt))
11232    {
11233      if (BLOCK_FRAGMENT_CHAIN (stmt))
11234	{
11235	  tree chain;
11236
11237	  add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11238
11239	  chain = BLOCK_FRAGMENT_CHAIN (stmt);
11240	  do
11241	    {
11242	      add_ranges (chain);
11243	      chain = BLOCK_FRAGMENT_CHAIN (chain);
11244	    }
11245	  while (chain);
11246	  add_ranges (NULL);
11247	}
11248      else
11249	{
11250	  ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11251				       BLOCK_NUMBER (stmt));
11252	  add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11253	  ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11254				       BLOCK_NUMBER (stmt));
11255	  add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11256	}
11257    }
11258
11259  decls_for_scope (stmt, stmt_die, depth);
11260}
11261
11262/* Generate a DIE for an inlined subprogram.  */
11263
11264static void
11265gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11266{
11267  tree decl = block_ultimate_origin (stmt);
11268
11269  /* Emit info for the abstract instance first, if we haven't yet.  We
11270     must emit this even if the block is abstract, otherwise when we
11271     emit the block below (or elsewhere), we may end up trying to emit
11272     a die whose origin die hasn't been emitted, and crashing.  */
11273  dwarf2out_abstract_function (decl);
11274
11275  if (! BLOCK_ABSTRACT (stmt))
11276    {
11277      dw_die_ref subr_die
11278	= new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11279      char label[MAX_ARTIFICIAL_LABEL_BYTES];
11280
11281      add_abstract_origin_attribute (subr_die, decl);
11282      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11283				   BLOCK_NUMBER (stmt));
11284      add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11285      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11286				   BLOCK_NUMBER (stmt));
11287      add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11288      decls_for_scope (stmt, subr_die, depth);
11289      current_function_has_inlines = 1;
11290    }
11291  else
11292    /* We may get here if we're the outer block of function A that was
11293       inlined into function B that was inlined into function C.  When
11294       generating debugging info for C, dwarf2out_abstract_function(B)
11295       would mark all inlined blocks as abstract, including this one.
11296       So, we wouldn't (and shouldn't) expect labels to be generated
11297       for this one.  Instead, just emit debugging info for
11298       declarations within the block.  This is particularly important
11299       in the case of initializers of arguments passed from B to us:
11300       if they're statement expressions containing declarations, we
11301       wouldn't generate dies for their abstract variables, and then,
11302       when generating dies for the real variables, we'd die (pun
11303       intended :-)  */
11304    gen_lexical_block_die (stmt, context_die, depth);
11305}
11306
11307/* Generate a DIE for a field in a record, or structure.  */
11308
11309static void
11310gen_field_die (tree decl, dw_die_ref context_die)
11311{
11312  dw_die_ref decl_die;
11313
11314  if (TREE_TYPE (decl) == error_mark_node)
11315    return;
11316
11317  decl_die = new_die (DW_TAG_member, context_die, decl);
11318  add_name_and_src_coords_attributes (decl_die, decl);
11319  add_type_attribute (decl_die, member_declared_type (decl),
11320		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11321		      context_die);
11322
11323  if (DECL_BIT_FIELD_TYPE (decl))
11324    {
11325      add_byte_size_attribute (decl_die, decl);
11326      add_bit_size_attribute (decl_die, decl);
11327      add_bit_offset_attribute (decl_die, decl);
11328    }
11329
11330  if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11331    add_data_member_location_attribute (decl_die, decl);
11332
11333  if (DECL_ARTIFICIAL (decl))
11334    add_AT_flag (decl_die, DW_AT_artificial, 1);
11335
11336  if (TREE_PROTECTED (decl))
11337    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11338  else if (TREE_PRIVATE (decl))
11339    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11340}
11341
11342#if 0
11343/* Don't generate either pointer_type DIEs or reference_type DIEs here.
11344   Use modified_type_die instead.
11345   We keep this code here just in case these types of DIEs may be needed to
11346   represent certain things in other languages (e.g. Pascal) someday.  */
11347
11348static void
11349gen_pointer_type_die (tree type, dw_die_ref context_die)
11350{
11351  dw_die_ref ptr_die
11352    = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11353
11354  equate_type_number_to_die (type, ptr_die);
11355  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11356  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11357}
11358
11359/* Don't generate either pointer_type DIEs or reference_type DIEs here.
11360   Use modified_type_die instead.
11361   We keep this code here just in case these types of DIEs may be needed to
11362   represent certain things in other languages (e.g. Pascal) someday.  */
11363
11364static void
11365gen_reference_type_die (tree type, dw_die_ref context_die)
11366{
11367  dw_die_ref ref_die
11368    = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11369
11370  equate_type_number_to_die (type, ref_die);
11371  add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11372  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11373}
11374#endif
11375
11376/* Generate a DIE for a pointer to a member type.  */
11377
11378static void
11379gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11380{
11381  dw_die_ref ptr_die
11382    = new_die (DW_TAG_ptr_to_member_type,
11383	       scope_die_for (type, context_die), type);
11384
11385  equate_type_number_to_die (type, ptr_die);
11386  add_AT_die_ref (ptr_die, DW_AT_containing_type,
11387		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11388  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11389}
11390
11391/* Generate the DIE for the compilation unit.  */
11392
11393static dw_die_ref
11394gen_compile_unit_die (const char *filename)
11395{
11396  dw_die_ref die;
11397  char producer[250];
11398  const char *language_string = lang_hooks.name;
11399  int language;
11400
11401  die = new_die (DW_TAG_compile_unit, NULL, NULL);
11402
11403  if (filename)
11404    {
11405      add_name_attribute (die, filename);
11406      /* Don't add cwd for <built-in>.  */
11407      if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11408	add_comp_dir_attribute (die);
11409    }
11410
11411  sprintf (producer, "%s %s", language_string, version_string);
11412
11413#ifdef MIPS_DEBUGGING_INFO
11414  /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11415     string.  The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11416     not appear in the producer string, the debugger reaches the conclusion
11417     that the object file is stripped and has no debugging information.
11418     To get the MIPS/SGI debugger to believe that there is debugging
11419     information in the object file, we add a -g to the producer string.  */
11420  if (debug_info_level > DINFO_LEVEL_TERSE)
11421    strcat (producer, " -g");
11422#endif
11423
11424  add_AT_string (die, DW_AT_producer, producer);
11425
11426  if (strcmp (language_string, "GNU C++") == 0)
11427    language = DW_LANG_C_plus_plus;
11428  else if (strcmp (language_string, "GNU Ada") == 0)
11429    language = DW_LANG_Ada95;
11430  else if (strcmp (language_string, "GNU F77") == 0)
11431    language = DW_LANG_Fortran77;
11432  else if (strcmp (language_string, "GNU Pascal") == 0)
11433    language = DW_LANG_Pascal83;
11434  else if (strcmp (language_string, "GNU Java") == 0)
11435    language = DW_LANG_Java;
11436  else
11437    language = DW_LANG_C89;
11438
11439  add_AT_unsigned (die, DW_AT_language, language);
11440  return die;
11441}
11442
11443/* Generate a DIE for a string type.  */
11444
11445static void
11446gen_string_type_die (tree type, dw_die_ref context_die)
11447{
11448  dw_die_ref type_die
11449    = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11450
11451  equate_type_number_to_die (type, type_die);
11452
11453  /* ??? Fudge the string length attribute for now.
11454     TODO: add string length info.  */
11455#if 0
11456  string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11457  bound_representation (upper_bound, 0, 'u');
11458#endif
11459}
11460
11461/* Generate the DIE for a base class.  */
11462
11463static void
11464gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11465{
11466  dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11467
11468  add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11469  add_data_member_location_attribute (die, binfo);
11470
11471  if (TREE_VIA_VIRTUAL (binfo))
11472    add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11473
11474  if (access == access_public_node)
11475    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11476  else if (access == access_protected_node)
11477    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11478}
11479
11480/* Generate a DIE for a class member.  */
11481
11482static void
11483gen_member_die (tree type, dw_die_ref context_die)
11484{
11485  tree member;
11486  tree binfo = TYPE_BINFO (type);
11487  dw_die_ref child;
11488
11489  /* If this is not an incomplete type, output descriptions of each of its
11490     members. Note that as we output the DIEs necessary to represent the
11491     members of this record or union type, we will also be trying to output
11492     DIEs to represent the *types* of those members. However the `type'
11493     function (above) will specifically avoid generating type DIEs for member
11494     types *within* the list of member DIEs for this (containing) type except
11495     for those types (of members) which are explicitly marked as also being
11496     members of this (containing) type themselves.  The g++ front- end can
11497     force any given type to be treated as a member of some other (containing)
11498     type by setting the TYPE_CONTEXT of the given (member) type to point to
11499     the TREE node representing the appropriate (containing) type.  */
11500
11501  /* First output info about the base classes.  */
11502  if (binfo && BINFO_BASETYPES (binfo))
11503    {
11504      tree bases = BINFO_BASETYPES (binfo);
11505      tree accesses = BINFO_BASEACCESSES (binfo);
11506      int n_bases = TREE_VEC_LENGTH (bases);
11507      int i;
11508
11509      for (i = 0; i < n_bases; i++)
11510	gen_inheritance_die (TREE_VEC_ELT (bases, i),
11511			     (accesses ? TREE_VEC_ELT (accesses, i)
11512			      : access_public_node), context_die);
11513    }
11514
11515  /* Now output info about the data members and type members.  */
11516  for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11517    {
11518      /* If we thought we were generating minimal debug info for TYPE
11519	 and then changed our minds, some of the member declarations
11520	 may have already been defined.  Don't define them again, but
11521	 do put them in the right order.  */
11522
11523      child = lookup_decl_die (member);
11524      if (child)
11525	splice_child_die (context_die, child);
11526      else
11527	gen_decl_die (member, context_die);
11528    }
11529
11530  /* Now output info about the function members (if any).  */
11531  for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11532    {
11533      /* Don't include clones in the member list.  */
11534      if (DECL_ABSTRACT_ORIGIN (member))
11535	continue;
11536
11537      child = lookup_decl_die (member);
11538      if (child)
11539	splice_child_die (context_die, child);
11540      else
11541	gen_decl_die (member, context_die);
11542    }
11543}
11544
11545/* Generate a DIE for a structure or union type.  If TYPE_DECL_SUPPRESS_DEBUG
11546   is set, we pretend that the type was never defined, so we only get the
11547   member DIEs needed by later specification DIEs.  */
11548
11549static void
11550gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11551{
11552  dw_die_ref type_die = lookup_type_die (type);
11553  dw_die_ref scope_die = 0;
11554  int nested = 0;
11555  int complete = (TYPE_SIZE (type)
11556		  && (! TYPE_STUB_DECL (type)
11557		      || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11558  int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11559
11560  if (type_die && ! complete)
11561    return;
11562
11563  if (TYPE_CONTEXT (type) != NULL_TREE
11564      && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11565	  || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11566    nested = 1;
11567
11568  scope_die = scope_die_for (type, context_die);
11569
11570  if (! type_die || (nested && scope_die == comp_unit_die))
11571    /* First occurrence of type or toplevel definition of nested class.  */
11572    {
11573      dw_die_ref old_die = type_die;
11574
11575      type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11576			  ? DW_TAG_structure_type : DW_TAG_union_type,
11577			  scope_die, type);
11578      equate_type_number_to_die (type, type_die);
11579      if (old_die)
11580	add_AT_specification (type_die, old_die);
11581      else
11582	add_name_attribute (type_die, type_tag (type));
11583    }
11584  else
11585    remove_AT (type_die, DW_AT_declaration);
11586
11587  /* If this type has been completed, then give it a byte_size attribute and
11588     then give a list of members.  */
11589  if (complete && !ns_decl)
11590    {
11591      /* Prevent infinite recursion in cases where the type of some member of
11592	 this type is expressed in terms of this type itself.  */
11593      TREE_ASM_WRITTEN (type) = 1;
11594      add_byte_size_attribute (type_die, type);
11595      if (TYPE_STUB_DECL (type) != NULL_TREE)
11596	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11597
11598      /* If the first reference to this type was as the return type of an
11599	 inline function, then it may not have a parent.  Fix this now.  */
11600      if (type_die->die_parent == NULL)
11601	add_child_die (scope_die, type_die);
11602
11603      push_decl_scope (type);
11604      gen_member_die (type, type_die);
11605      pop_decl_scope ();
11606
11607      /* GNU extension: Record what type our vtable lives in.  */
11608      if (TYPE_VFIELD (type))
11609	{
11610	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11611
11612	  gen_type_die (vtype, context_die);
11613	  add_AT_die_ref (type_die, DW_AT_containing_type,
11614			  lookup_type_die (vtype));
11615	}
11616    }
11617  else
11618    {
11619      add_AT_flag (type_die, DW_AT_declaration, 1);
11620
11621      /* We don't need to do this for function-local types.  */
11622      if (TYPE_STUB_DECL (type)
11623	  && ! decl_function_context (TYPE_STUB_DECL (type)))
11624	VARRAY_PUSH_TREE (incomplete_types, type);
11625    }
11626}
11627
11628/* Generate a DIE for a subroutine _type_.  */
11629
11630static void
11631gen_subroutine_type_die (tree type, dw_die_ref context_die)
11632{
11633  tree return_type = TREE_TYPE (type);
11634  dw_die_ref subr_die
11635    = new_die (DW_TAG_subroutine_type,
11636	       scope_die_for (type, context_die), type);
11637
11638  equate_type_number_to_die (type, subr_die);
11639  add_prototyped_attribute (subr_die, type);
11640  add_type_attribute (subr_die, return_type, 0, 0, context_die);
11641  gen_formal_types_die (type, subr_die);
11642}
11643
11644/* Generate a DIE for a type definition.  */
11645
11646static void
11647gen_typedef_die (tree decl, dw_die_ref context_die)
11648{
11649  dw_die_ref type_die;
11650  tree origin;
11651
11652  if (TREE_ASM_WRITTEN (decl))
11653    return;
11654
11655  TREE_ASM_WRITTEN (decl) = 1;
11656  type_die = new_die (DW_TAG_typedef, context_die, decl);
11657  origin = decl_ultimate_origin (decl);
11658  if (origin != NULL)
11659    add_abstract_origin_attribute (type_die, origin);
11660  else
11661    {
11662      tree type;
11663
11664      add_name_and_src_coords_attributes (type_die, decl);
11665      if (DECL_ORIGINAL_TYPE (decl))
11666	{
11667	  type = DECL_ORIGINAL_TYPE (decl);
11668
11669	  if (type == TREE_TYPE (decl))
11670	    abort ();
11671	  else
11672	    equate_type_number_to_die (TREE_TYPE (decl), type_die);
11673	}
11674      else
11675	type = TREE_TYPE (decl);
11676
11677      add_type_attribute (type_die, type, TREE_READONLY (decl),
11678			  TREE_THIS_VOLATILE (decl), context_die);
11679    }
11680
11681  if (DECL_ABSTRACT (decl))
11682    equate_decl_number_to_die (decl, type_die);
11683}
11684
11685/* Generate a type description DIE.  */
11686
11687static void
11688gen_type_die (tree type, dw_die_ref context_die)
11689{
11690  int need_pop;
11691
11692  if (type == NULL_TREE || type == error_mark_node)
11693    return;
11694
11695  if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11696      && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11697    {
11698      if (TREE_ASM_WRITTEN (type))
11699	return;
11700
11701      /* Prevent broken recursion; we can't hand off to the same type.  */
11702      if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11703	abort ();
11704
11705      TREE_ASM_WRITTEN (type) = 1;
11706      gen_decl_die (TYPE_NAME (type), context_die);
11707      return;
11708    }
11709
11710  /* We are going to output a DIE to represent the unqualified version
11711     of this type (i.e. without any const or volatile qualifiers) so
11712     get the main variant (i.e. the unqualified version) of this type
11713     now.  (Vectors are special because the debugging info is in the
11714     cloned type itself).  */
11715  if (TREE_CODE (type) != VECTOR_TYPE)
11716    type = type_main_variant (type);
11717
11718  if (TREE_ASM_WRITTEN (type))
11719    return;
11720
11721  switch (TREE_CODE (type))
11722    {
11723    case ERROR_MARK:
11724      break;
11725
11726    case POINTER_TYPE:
11727    case REFERENCE_TYPE:
11728      /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
11729	 ensures that the gen_type_die recursion will terminate even if the
11730	 type is recursive.  Recursive types are possible in Ada.  */
11731      /* ??? We could perhaps do this for all types before the switch
11732	 statement.  */
11733      TREE_ASM_WRITTEN (type) = 1;
11734
11735      /* For these types, all that is required is that we output a DIE (or a
11736	 set of DIEs) to represent the "basis" type.  */
11737      gen_type_die (TREE_TYPE (type), context_die);
11738      break;
11739
11740    case OFFSET_TYPE:
11741      /* This code is used for C++ pointer-to-data-member types.
11742	 Output a description of the relevant class type.  */
11743      gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11744
11745      /* Output a description of the type of the object pointed to.  */
11746      gen_type_die (TREE_TYPE (type), context_die);
11747
11748      /* Now output a DIE to represent this pointer-to-data-member type
11749	 itself.  */
11750      gen_ptr_to_mbr_type_die (type, context_die);
11751      break;
11752
11753    case SET_TYPE:
11754      gen_type_die (TYPE_DOMAIN (type), context_die);
11755      gen_set_type_die (type, context_die);
11756      break;
11757
11758    case FILE_TYPE:
11759      gen_type_die (TREE_TYPE (type), context_die);
11760      abort ();			/* No way to represent these in Dwarf yet!  */
11761      break;
11762
11763    case FUNCTION_TYPE:
11764      /* Force out return type (in case it wasn't forced out already).  */
11765      gen_type_die (TREE_TYPE (type), context_die);
11766      gen_subroutine_type_die (type, context_die);
11767      break;
11768
11769    case METHOD_TYPE:
11770      /* Force out return type (in case it wasn't forced out already).  */
11771      gen_type_die (TREE_TYPE (type), context_die);
11772      gen_subroutine_type_die (type, context_die);
11773      break;
11774
11775    case ARRAY_TYPE:
11776      if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11777	{
11778	  gen_type_die (TREE_TYPE (type), context_die);
11779	  gen_string_type_die (type, context_die);
11780	}
11781      else
11782	gen_array_type_die (type, context_die);
11783      break;
11784
11785    case VECTOR_TYPE:
11786      gen_array_type_die (type, context_die);
11787      break;
11788
11789    case ENUMERAL_TYPE:
11790    case RECORD_TYPE:
11791    case UNION_TYPE:
11792    case QUAL_UNION_TYPE:
11793      /* If this is a nested type whose containing class hasn't been written
11794	 out yet, writing it out will cover this one, too.  This does not apply
11795	 to instantiations of member class templates; they need to be added to
11796	 the containing class as they are generated.  FIXME: This hurts the
11797	 idea of combining type decls from multiple TUs, since we can't predict
11798	 what set of template instantiations we'll get.  */
11799      if (TYPE_CONTEXT (type)
11800	  && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11801	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11802	{
11803	  gen_type_die (TYPE_CONTEXT (type), context_die);
11804
11805	  if (TREE_ASM_WRITTEN (type))
11806	    return;
11807
11808	  /* If that failed, attach ourselves to the stub.  */
11809	  push_decl_scope (TYPE_CONTEXT (type));
11810	  context_die = lookup_type_die (TYPE_CONTEXT (type));
11811	  need_pop = 1;
11812	}
11813      else
11814	{
11815	  declare_in_namespace (type, context_die);
11816	  need_pop = 0;
11817	}
11818
11819      if (TREE_CODE (type) == ENUMERAL_TYPE)
11820	gen_enumeration_type_die (type, context_die);
11821      else
11822	gen_struct_or_union_type_die (type, context_die);
11823
11824      if (need_pop)
11825	pop_decl_scope ();
11826
11827      /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11828	 it up if it is ever completed.  gen_*_type_die will set it for us
11829	 when appropriate.  */
11830      return;
11831
11832    case VOID_TYPE:
11833    case INTEGER_TYPE:
11834    case REAL_TYPE:
11835    case COMPLEX_TYPE:
11836    case BOOLEAN_TYPE:
11837    case CHAR_TYPE:
11838      /* No DIEs needed for fundamental types.  */
11839      break;
11840
11841    case LANG_TYPE:
11842      /* No Dwarf representation currently defined.  */
11843      break;
11844
11845    default:
11846      abort ();
11847    }
11848
11849  TREE_ASM_WRITTEN (type) = 1;
11850}
11851
11852/* Generate a DIE for a tagged type instantiation.  */
11853
11854static void
11855gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11856{
11857  if (type == NULL_TREE || type == error_mark_node)
11858    return;
11859
11860  /* We are going to output a DIE to represent the unqualified version of
11861     this type (i.e. without any const or volatile qualifiers) so make sure
11862     that we have the main variant (i.e. the unqualified version) of this
11863     type now.  */
11864  if (type != type_main_variant (type))
11865    abort ();
11866
11867  /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11868     an instance of an unresolved type.  */
11869
11870  switch (TREE_CODE (type))
11871    {
11872    case ERROR_MARK:
11873      break;
11874
11875    case ENUMERAL_TYPE:
11876      gen_inlined_enumeration_type_die (type, context_die);
11877      break;
11878
11879    case RECORD_TYPE:
11880      gen_inlined_structure_type_die (type, context_die);
11881      break;
11882
11883    case UNION_TYPE:
11884    case QUAL_UNION_TYPE:
11885      gen_inlined_union_type_die (type, context_die);
11886      break;
11887
11888    default:
11889      abort ();
11890    }
11891}
11892
11893/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11894   things which are local to the given block.  */
11895
11896static void
11897gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11898{
11899  int must_output_die = 0;
11900  tree origin;
11901  tree decl;
11902  enum tree_code origin_code;
11903
11904  /* Ignore blocks never really used to make RTL.  */
11905  if (stmt == NULL_TREE || !TREE_USED (stmt)
11906      || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11907    return;
11908
11909  /* If the block is one fragment of a non-contiguous block, do not
11910     process the variables, since they will have been done by the
11911     origin block.  Do process subblocks.  */
11912  if (BLOCK_FRAGMENT_ORIGIN (stmt))
11913    {
11914      tree sub;
11915
11916      for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11917	gen_block_die (sub, context_die, depth + 1);
11918
11919      return;
11920    }
11921
11922  /* Determine the "ultimate origin" of this block.  This block may be an
11923     inlined instance of an inlined instance of inline function, so we have
11924     to trace all of the way back through the origin chain to find out what
11925     sort of node actually served as the original seed for the creation of
11926     the current block.  */
11927  origin = block_ultimate_origin (stmt);
11928  origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11929
11930  /* Determine if we need to output any Dwarf DIEs at all to represent this
11931     block.  */
11932  if (origin_code == FUNCTION_DECL)
11933    /* The outer scopes for inlinings *must* always be represented.  We
11934       generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
11935    must_output_die = 1;
11936  else
11937    {
11938      /* In the case where the current block represents an inlining of the
11939	 "body block" of an inline function, we must *NOT* output any DIE for
11940	 this block because we have already output a DIE to represent the whole
11941	 inlined function scope and the "body block" of any function doesn't
11942	 really represent a different scope according to ANSI C rules.  So we
11943	 check here to make sure that this block does not represent a "body
11944	 block inlining" before trying to set the MUST_OUTPUT_DIE flag.  */
11945      if (! is_body_block (origin ? origin : stmt))
11946	{
11947	  /* Determine if this block directly contains any "significant"
11948	     local declarations which we will need to output DIEs for.  */
11949	  if (debug_info_level > DINFO_LEVEL_TERSE)
11950	    /* We are not in terse mode so *any* local declaration counts
11951	       as being a "significant" one.  */
11952	    must_output_die = (BLOCK_VARS (stmt) != NULL);
11953	  else
11954	    /* We are in terse mode, so only local (nested) function
11955	       definitions count as "significant" local declarations.  */
11956	    for (decl = BLOCK_VARS (stmt);
11957		 decl != NULL; decl = TREE_CHAIN (decl))
11958	      if (TREE_CODE (decl) == FUNCTION_DECL
11959		  && DECL_INITIAL (decl))
11960		{
11961		  must_output_die = 1;
11962		  break;
11963		}
11964	}
11965    }
11966
11967  /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11968     DIE for any block which contains no significant local declarations at
11969     all.  Rather, in such cases we just call `decls_for_scope' so that any
11970     needed Dwarf info for any sub-blocks will get properly generated. Note
11971     that in terse mode, our definition of what constitutes a "significant"
11972     local declaration gets restricted to include only inlined function
11973     instances and local (nested) function definitions.  */
11974  if (must_output_die)
11975    {
11976      if (origin_code == FUNCTION_DECL)
11977	gen_inlined_subroutine_die (stmt, context_die, depth);
11978      else
11979	gen_lexical_block_die (stmt, context_die, depth);
11980    }
11981  else
11982    decls_for_scope (stmt, context_die, depth);
11983}
11984
11985/* Generate all of the decls declared within a given scope and (recursively)
11986   all of its sub-blocks.  */
11987
11988static void
11989decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11990{
11991  tree decl;
11992  tree subblocks;
11993
11994  /* Ignore blocks never really used to make RTL.  */
11995  if (stmt == NULL_TREE || ! TREE_USED (stmt))
11996    return;
11997
11998  /* Output the DIEs to represent all of the data objects and typedefs
11999     declared directly within this block but not within any nested
12000     sub-blocks.  Also, nested function and tag DIEs have been
12001     generated with a parent of NULL; fix that up now.  */
12002  for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12003    {
12004      dw_die_ref die;
12005
12006      if (TREE_CODE (decl) == FUNCTION_DECL)
12007	die = lookup_decl_die (decl);
12008      else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12009	die = lookup_type_die (TREE_TYPE (decl));
12010      else
12011	die = NULL;
12012
12013      if (die != NULL && die->die_parent == NULL)
12014	add_child_die (context_die, die);
12015      else
12016	gen_decl_die (decl, context_die);
12017    }
12018
12019  /* If we're at -g1, we're not interested in subblocks.  */
12020  if (debug_info_level <= DINFO_LEVEL_TERSE)
12021    return;
12022
12023  /* Output the DIEs to represent all sub-blocks (and the items declared
12024     therein) of this block.  */
12025  for (subblocks = BLOCK_SUBBLOCKS (stmt);
12026       subblocks != NULL;
12027       subblocks = BLOCK_CHAIN (subblocks))
12028    gen_block_die (subblocks, context_die, depth + 1);
12029}
12030
12031/* Is this a typedef we can avoid emitting?  */
12032
12033static inline int
12034is_redundant_typedef (tree decl)
12035{
12036  if (TYPE_DECL_IS_STUB (decl))
12037    return 1;
12038
12039  if (DECL_ARTIFICIAL (decl)
12040      && DECL_CONTEXT (decl)
12041      && is_tagged_type (DECL_CONTEXT (decl))
12042      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12043      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12044    /* Also ignore the artificial member typedef for the class name.  */
12045    return 1;
12046
12047  return 0;
12048}
12049
12050/* Returns the DIE for namespace NS or aborts.
12051
12052   Note that namespaces don't really have a lexical context, so there's no
12053   need to pass in a context_die.  They always go inside their containing
12054   namespace, or comp_unit_die if none.  */
12055
12056static dw_die_ref
12057force_namespace_die (tree ns)
12058{
12059  dw_die_ref ns_die;
12060
12061  dwarf2out_decl (ns);
12062  ns_die = lookup_decl_die (ns);
12063  if (!ns_die)
12064    abort();
12065
12066  return ns_die;
12067}
12068
12069/* Force out any required namespaces to be able to output DECL,
12070   and return the new context_die for it, if it's changed.  */
12071
12072static dw_die_ref
12073setup_namespace_context (tree thing, dw_die_ref context_die)
12074{
12075  tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12076  if (context && TREE_CODE (context) == NAMESPACE_DECL)
12077    /* Force out the namespace.  */
12078    context_die = force_namespace_die (context);
12079
12080  return context_die;
12081}
12082
12083/* Emit a declaration DIE for THING (which is either a DECL or a tagged
12084   type) within its namespace, if appropriate.
12085
12086   For compatibility with older debuggers, namespace DIEs only contain
12087   declarations; all definitions are emitted at CU scope.  */
12088
12089static void
12090declare_in_namespace (tree thing, dw_die_ref context_die)
12091{
12092  dw_die_ref ns_context;
12093
12094  if (debug_info_level <= DINFO_LEVEL_TERSE)
12095    return;
12096
12097  ns_context = setup_namespace_context (thing, context_die);
12098
12099  if (ns_context != context_die)
12100    {
12101      if (DECL_P (thing))
12102	gen_decl_die (thing, ns_context);
12103      else
12104	gen_type_die (thing, ns_context);
12105    }
12106}
12107
12108/* Generate a DIE for a namespace or namespace alias.  */
12109
12110static void
12111gen_namespace_die (tree decl)
12112{
12113  dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12114
12115  /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12116     they are an alias of.  */
12117  if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12118    {
12119      /* Output a real namespace.  */
12120      dw_die_ref namespace_die
12121	= new_die (DW_TAG_namespace, context_die, decl);
12122      add_name_and_src_coords_attributes (namespace_die, decl);
12123      equate_decl_number_to_die (decl, namespace_die);
12124    }
12125  else
12126    {
12127      /* Output a namespace alias.  */
12128
12129      /* Force out the namespace we are an alias of, if necessary.  */
12130      dw_die_ref origin_die
12131	= force_namespace_die (DECL_ABSTRACT_ORIGIN (decl));
12132
12133      /* Now create the namespace alias DIE.  */
12134      dw_die_ref namespace_die
12135	= new_die (DW_TAG_imported_declaration, context_die, decl);
12136      add_name_and_src_coords_attributes (namespace_die, decl);
12137      add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12138      equate_decl_number_to_die (decl, namespace_die);
12139    }
12140}
12141
12142/* Generate Dwarf debug information for a decl described by DECL.  */
12143
12144static void
12145gen_decl_die (tree decl, dw_die_ref context_die)
12146{
12147  tree origin;
12148
12149  if (DECL_P (decl) && DECL_IGNORED_P (decl))
12150    return;
12151
12152  switch (TREE_CODE (decl))
12153    {
12154    case ERROR_MARK:
12155      break;
12156
12157    case CONST_DECL:
12158      /* The individual enumerators of an enum type get output when we output
12159	 the Dwarf representation of the relevant enum type itself.  */
12160      break;
12161
12162    case FUNCTION_DECL:
12163      /* Don't output any DIEs to represent mere function declarations,
12164	 unless they are class members or explicit block externs.  */
12165      if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12166	  && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12167	break;
12168
12169      /* If we're emitting a clone, emit info for the abstract instance.  */
12170      if (DECL_ORIGIN (decl) != decl)
12171	dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12172
12173      /* If we're emitting an out-of-line copy of an inline function,
12174	 emit info for the abstract instance and set up to refer to it.  */
12175      else if (cgraph_function_possibly_inlined_p (decl)
12176	       && ! DECL_ABSTRACT (decl)
12177	       && ! class_or_namespace_scope_p (context_die)
12178	       /* dwarf2out_abstract_function won't emit a die if this is just
12179		  a declaration.  We must avoid setting DECL_ABSTRACT_ORIGIN in
12180		  that case, because that works only if we have a die.  */
12181	       && DECL_INITIAL (decl) != NULL_TREE)
12182	{
12183	  dwarf2out_abstract_function (decl);
12184	  set_decl_origin_self (decl);
12185	}
12186
12187      /* Otherwise we're emitting the primary DIE for this decl.  */
12188      else if (debug_info_level > DINFO_LEVEL_TERSE)
12189	{
12190	  /* Before we describe the FUNCTION_DECL itself, make sure that we
12191	     have described its return type.  */
12192	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12193
12194	  /* And its virtual context.  */
12195	  if (DECL_VINDEX (decl) != NULL_TREE)
12196	    gen_type_die (DECL_CONTEXT (decl), context_die);
12197
12198	  /* And its containing type.  */
12199	  origin = decl_class_context (decl);
12200	  if (origin != NULL_TREE)
12201	    gen_type_die_for_member (origin, decl, context_die);
12202
12203	  /* And its containing namespace.  */
12204	  declare_in_namespace (decl, context_die);
12205	}
12206
12207      /* Now output a DIE to represent the function itself.  */
12208      gen_subprogram_die (decl, context_die);
12209      break;
12210
12211    case TYPE_DECL:
12212      /* If we are in terse mode, don't generate any DIEs to represent any
12213	 actual typedefs.  */
12214      if (debug_info_level <= DINFO_LEVEL_TERSE)
12215	break;
12216
12217      /* In the special case of a TYPE_DECL node representing the declaration
12218	 of some type tag, if the given TYPE_DECL is marked as having been
12219	 instantiated from some other (original) TYPE_DECL node (e.g. one which
12220	 was generated within the original definition of an inline function) we
12221	 have to generate a special (abbreviated) DW_TAG_structure_type,
12222	 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here.  */
12223      if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12224	{
12225	  gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12226	  break;
12227	}
12228
12229      if (is_redundant_typedef (decl))
12230	gen_type_die (TREE_TYPE (decl), context_die);
12231      else
12232	/* Output a DIE to represent the typedef itself.  */
12233	gen_typedef_die (decl, context_die);
12234      break;
12235
12236    case LABEL_DECL:
12237      if (debug_info_level >= DINFO_LEVEL_NORMAL)
12238	gen_label_die (decl, context_die);
12239      break;
12240
12241    case VAR_DECL:
12242      /* If we are in terse mode, don't generate any DIEs to represent any
12243	 variable declarations or definitions.  */
12244      if (debug_info_level <= DINFO_LEVEL_TERSE)
12245	break;
12246
12247      /* Output any DIEs that are needed to specify the type of this data
12248	 object.  */
12249      gen_type_die (TREE_TYPE (decl), context_die);
12250
12251      /* And its containing type.  */
12252      origin = decl_class_context (decl);
12253      if (origin != NULL_TREE)
12254	gen_type_die_for_member (origin, decl, context_die);
12255
12256      /* And its containing namespace.  */
12257      declare_in_namespace (decl, context_die);
12258
12259      /* Now output the DIE to represent the data object itself.  This gets
12260	 complicated because of the possibility that the VAR_DECL really
12261	 represents an inlined instance of a formal parameter for an inline
12262	 function.  */
12263      origin = decl_ultimate_origin (decl);
12264      if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12265	gen_formal_parameter_die (decl, context_die);
12266      else
12267	gen_variable_die (decl, context_die);
12268      break;
12269
12270    case FIELD_DECL:
12271      /* Ignore the nameless fields that are used to skip bits but handle C++
12272	 anonymous unions.  */
12273      if (DECL_NAME (decl) != NULL_TREE
12274	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12275	{
12276	  gen_type_die (member_declared_type (decl), context_die);
12277	  gen_field_die (decl, context_die);
12278	}
12279      break;
12280
12281    case PARM_DECL:
12282      gen_type_die (TREE_TYPE (decl), context_die);
12283      gen_formal_parameter_die (decl, context_die);
12284      break;
12285
12286    case NAMESPACE_DECL:
12287      gen_namespace_die (decl);
12288      break;
12289
12290    default:
12291      if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12292	/* Probably some frontend-internal decl.  Assume we don't care.  */
12293	break;
12294      abort ();
12295    }
12296}
12297
12298/* Add Ada "use" clause information for SGI Workshop debugger.  */
12299
12300void
12301dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12302{
12303  unsigned int file_index;
12304
12305  if (filename != NULL)
12306    {
12307      dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12308      tree context_list_decl
12309	= build_decl (LABEL_DECL, get_identifier (context_list),
12310		      void_type_node);
12311
12312      TREE_PUBLIC (context_list_decl) = TRUE;
12313      add_name_attribute (unit_die, context_list);
12314      file_index = lookup_filename (filename);
12315      add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12316      add_pubname (context_list_decl, unit_die);
12317    }
12318}
12319
12320/* Output debug information for global decl DECL.  Called from toplev.c after
12321   compilation proper has finished.  */
12322
12323static void
12324dwarf2out_global_decl (tree decl)
12325{
12326  /* Output DWARF2 information for file-scope tentative data object
12327     declarations, file-scope (extern) function declarations (which had no
12328     corresponding body) and file-scope tagged type declarations and
12329     definitions which have not yet been forced out.  */
12330  if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12331    dwarf2out_decl (decl);
12332}
12333
12334/* Write the debugging output for DECL.  */
12335
12336void
12337dwarf2out_decl (tree decl)
12338{
12339  dw_die_ref context_die = comp_unit_die;
12340
12341  switch (TREE_CODE (decl))
12342    {
12343    case ERROR_MARK:
12344      return;
12345
12346    case FUNCTION_DECL:
12347      /* What we would really like to do here is to filter out all mere
12348	 file-scope declarations of file-scope functions which are never
12349	 referenced later within this translation unit (and keep all of ones
12350	 that *are* referenced later on) but we aren't clairvoyant, so we have
12351	 no idea which functions will be referenced in the future (i.e. later
12352	 on within the current translation unit). So here we just ignore all
12353	 file-scope function declarations which are not also definitions.  If
12354	 and when the debugger needs to know something about these functions,
12355	 it will have to hunt around and find the DWARF information associated
12356	 with the definition of the function.
12357
12358	 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12359	 nodes represent definitions and which ones represent mere
12360	 declarations.  We have to check DECL_INITIAL instead. That's because
12361	 the C front-end supports some weird semantics for "extern inline"
12362	 function definitions.  These can get inlined within the current
12363	 translation unit (an thus, we need to generate Dwarf info for their
12364	 abstract instances so that the Dwarf info for the concrete inlined
12365	 instances can have something to refer to) but the compiler never
12366	 generates any out-of-lines instances of such things (despite the fact
12367	 that they *are* definitions).
12368
12369	 The important point is that the C front-end marks these "extern
12370	 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12371	 them anyway. Note that the C++ front-end also plays some similar games
12372	 for inline function definitions appearing within include files which
12373	 also contain `#pragma interface' pragmas.  */
12374      if (DECL_INITIAL (decl) == NULL_TREE)
12375	return;
12376
12377      /* If we're a nested function, initially use a parent of NULL; if we're
12378	 a plain function, this will be fixed up in decls_for_scope.  If
12379	 we're a method, it will be ignored, since we already have a DIE.  */
12380      if (decl_function_context (decl)
12381	  /* But if we're in terse mode, we don't care about scope.  */
12382	  && debug_info_level > DINFO_LEVEL_TERSE)
12383	context_die = NULL;
12384      break;
12385
12386    case VAR_DECL:
12387      /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12388	 declaration and if the declaration was never even referenced from
12389	 within this entire compilation unit.  We suppress these DIEs in
12390	 order to save space in the .debug section (by eliminating entries
12391	 which are probably useless).  Note that we must not suppress
12392	 block-local extern declarations (whether used or not) because that
12393	 would screw-up the debugger's name lookup mechanism and cause it to
12394	 miss things which really ought to be in scope at a given point.  */
12395      if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12396	return;
12397
12398      /* If we are in terse mode, don't generate any DIEs to represent any
12399	 variable declarations or definitions.  */
12400      if (debug_info_level <= DINFO_LEVEL_TERSE)
12401	return;
12402      break;
12403
12404    case NAMESPACE_DECL:
12405      if (debug_info_level <= DINFO_LEVEL_TERSE)
12406	return;
12407      if (lookup_decl_die (decl) != NULL)
12408        return;
12409      break;
12410
12411    case TYPE_DECL:
12412      /* Don't emit stubs for types unless they are needed by other DIEs.  */
12413      if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12414	return;
12415
12416      /* Don't bother trying to generate any DIEs to represent any of the
12417	 normal built-in types for the language we are compiling.  */
12418      if (DECL_SOURCE_LINE (decl) == 0)
12419	{
12420	  /* OK, we need to generate one for `bool' so GDB knows what type
12421	     comparisons have.  */
12422	  if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12423	       == DW_LANG_C_plus_plus)
12424	      && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12425	      && ! DECL_IGNORED_P (decl))
12426	    modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12427
12428	  return;
12429	}
12430
12431      /* If we are in terse mode, don't generate any DIEs for types.  */
12432      if (debug_info_level <= DINFO_LEVEL_TERSE)
12433	return;
12434
12435      /* If we're a function-scope tag, initially use a parent of NULL;
12436	 this will be fixed up in decls_for_scope.  */
12437      if (decl_function_context (decl))
12438	context_die = NULL;
12439
12440      break;
12441
12442    default:
12443      return;
12444    }
12445
12446  gen_decl_die (decl, context_die);
12447}
12448
12449/* Output a marker (i.e. a label) for the beginning of the generated code for
12450   a lexical block.  */
12451
12452static void
12453dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12454		       unsigned int blocknum)
12455{
12456  function_section (current_function_decl);
12457  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12458}
12459
12460/* Output a marker (i.e. a label) for the end of the generated code for a
12461   lexical block.  */
12462
12463static void
12464dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12465{
12466  function_section (current_function_decl);
12467  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12468}
12469
12470/* Returns nonzero if it is appropriate not to emit any debugging
12471   information for BLOCK, because it doesn't contain any instructions.
12472
12473   Don't allow this for blocks with nested functions or local classes
12474   as we would end up with orphans, and in the presence of scheduling
12475   we may end up calling them anyway.  */
12476
12477static bool
12478dwarf2out_ignore_block (tree block)
12479{
12480  tree decl;
12481
12482  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12483    if (TREE_CODE (decl) == FUNCTION_DECL
12484	|| (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12485      return 0;
12486
12487  return 1;
12488}
12489
12490/* Lookup FILE_NAME (in the list of filenames that we know about here in
12491   dwarf2out.c) and return its "index".  The index of each (known) filename is
12492   just a unique number which is associated with only that one filename.  We
12493   need such numbers for the sake of generating labels (in the .debug_sfnames
12494   section) and references to those files numbers (in the .debug_srcinfo
12495   and.debug_macinfo sections).  If the filename given as an argument is not
12496   found in our current list, add it to the list and assign it the next
12497   available unique index number.  In order to speed up searches, we remember
12498   the index of the filename was looked up last.  This handles the majority of
12499   all searches.  */
12500
12501static unsigned
12502lookup_filename (const char *file_name)
12503{
12504  size_t i, n;
12505  char *save_file_name;
12506
12507  /* Check to see if the file name that was searched on the previous
12508     call matches this file name.  If so, return the index.  */
12509  if (file_table_last_lookup_index != 0)
12510    {
12511      const char *last
12512	= VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12513      if (strcmp (file_name, last) == 0)
12514	return file_table_last_lookup_index;
12515    }
12516
12517  /* Didn't match the previous lookup, search the table */
12518  n = VARRAY_ACTIVE_SIZE (file_table);
12519  for (i = 1; i < n; i++)
12520    if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12521      {
12522	file_table_last_lookup_index = i;
12523	return i;
12524      }
12525
12526  /* Add the new entry to the end of the filename table.  */
12527  file_table_last_lookup_index = n;
12528  save_file_name = (char *) ggc_strdup (file_name);
12529  VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12530  VARRAY_PUSH_UINT (file_table_emitted, 0);
12531
12532  return i;
12533}
12534
12535static int
12536maybe_emit_file (int fileno)
12537{
12538  if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12539    {
12540      if (!VARRAY_UINT (file_table_emitted, fileno))
12541	{
12542	  VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12543	  fprintf (asm_out_file, "\t.file %u ",
12544		   VARRAY_UINT (file_table_emitted, fileno));
12545	  output_quoted_string (asm_out_file,
12546				VARRAY_CHAR_PTR (file_table, fileno));
12547	  fputc ('\n', asm_out_file);
12548	}
12549      return VARRAY_UINT (file_table_emitted, fileno);
12550    }
12551  else
12552    return fileno;
12553}
12554
12555static void
12556init_file_table (void)
12557{
12558  /* Allocate the initial hunk of the file_table.  */
12559  VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12560  VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12561
12562  /* Skip the first entry - file numbers begin at 1.  */
12563  VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12564  VARRAY_PUSH_UINT (file_table_emitted, 0);
12565  file_table_last_lookup_index = 0;
12566}
12567
12568/* Output a label to mark the beginning of a source code line entry
12569   and record information relating to this source line, in
12570   'line_info_table' for later output of the .debug_line section.  */
12571
12572static void
12573dwarf2out_source_line (unsigned int line, const char *filename)
12574{
12575  if (debug_info_level >= DINFO_LEVEL_NORMAL
12576      && line != 0)
12577    {
12578      function_section (current_function_decl);
12579
12580      /* If requested, emit something human-readable.  */
12581      if (flag_debug_asm)
12582	fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12583		 filename, line);
12584
12585      if (DWARF2_ASM_LINE_DEBUG_INFO)
12586	{
12587	  unsigned file_num = lookup_filename (filename);
12588
12589	  file_num = maybe_emit_file (file_num);
12590
12591	  /* Emit the .loc directive understood by GNU as.  */
12592	  fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12593
12594	  /* Indicate that line number info exists.  */
12595	  line_info_table_in_use++;
12596
12597	  /* Indicate that multiple line number tables exist.  */
12598	  if (DECL_SECTION_NAME (current_function_decl))
12599	    separate_line_info_table_in_use++;
12600	}
12601      else if (DECL_SECTION_NAME (current_function_decl))
12602	{
12603	  dw_separate_line_info_ref line_info;
12604	  (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12605				     separate_line_info_table_in_use);
12606
12607	  /* expand the line info table if necessary */
12608	  if (separate_line_info_table_in_use
12609	      == separate_line_info_table_allocated)
12610	    {
12611	      separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12612	      separate_line_info_table
12613		= ggc_realloc (separate_line_info_table,
12614			       separate_line_info_table_allocated
12615			       * sizeof (dw_separate_line_info_entry));
12616	      memset (separate_line_info_table
12617		       + separate_line_info_table_in_use,
12618		      0,
12619		      (LINE_INFO_TABLE_INCREMENT
12620		       * sizeof (dw_separate_line_info_entry)));
12621	    }
12622
12623	  /* Add the new entry at the end of the line_info_table.  */
12624	  line_info
12625	    = &separate_line_info_table[separate_line_info_table_in_use++];
12626	  line_info->dw_file_num = lookup_filename (filename);
12627	  line_info->dw_line_num = line;
12628	  line_info->function = current_function_funcdef_no;
12629	}
12630      else
12631	{
12632	  dw_line_info_ref line_info;
12633
12634	  (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12635				     line_info_table_in_use);
12636
12637	  /* Expand the line info table if necessary.  */
12638	  if (line_info_table_in_use == line_info_table_allocated)
12639	    {
12640	      line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12641	      line_info_table
12642		= ggc_realloc (line_info_table,
12643			       (line_info_table_allocated
12644				* sizeof (dw_line_info_entry)));
12645	      memset (line_info_table + line_info_table_in_use, 0,
12646		      LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12647	    }
12648
12649	  /* Add the new entry at the end of the line_info_table.  */
12650	  line_info = &line_info_table[line_info_table_in_use++];
12651	  line_info->dw_file_num = lookup_filename (filename);
12652	  line_info->dw_line_num = line;
12653	}
12654    }
12655}
12656
12657/* Record the beginning of a new source file.  */
12658
12659static void
12660dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12661{
12662  if (flag_eliminate_dwarf2_dups)
12663    {
12664      /* Record the beginning of the file for break_out_includes.  */
12665      dw_die_ref bincl_die;
12666
12667      bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12668      add_AT_string (bincl_die, DW_AT_name, filename);
12669    }
12670
12671  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12672    {
12673      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12674      dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12675      dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12676				   lineno);
12677      maybe_emit_file (lookup_filename (filename));
12678      dw2_asm_output_data_uleb128 (lookup_filename (filename),
12679				   "Filename we just started");
12680    }
12681}
12682
12683/* Record the end of a source file.  */
12684
12685static void
12686dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12687{
12688  if (flag_eliminate_dwarf2_dups)
12689    /* Record the end of the file for break_out_includes.  */
12690    new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12691
12692  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12693    {
12694      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12695      dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12696    }
12697}
12698
12699/* Called from debug_define in toplev.c.  The `buffer' parameter contains
12700   the tail part of the directive line, i.e. the part which is past the
12701   initial whitespace, #, whitespace, directive-name, whitespace part.  */
12702
12703static void
12704dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12705		  const char *buffer ATTRIBUTE_UNUSED)
12706{
12707  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12708    {
12709      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12710      dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12711      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12712      dw2_asm_output_nstring (buffer, -1, "The macro");
12713    }
12714}
12715
12716/* Called from debug_undef in toplev.c.  The `buffer' parameter contains
12717   the tail part of the directive line, i.e. the part which is past the
12718   initial whitespace, #, whitespace, directive-name, whitespace part.  */
12719
12720static void
12721dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12722		 const char *buffer ATTRIBUTE_UNUSED)
12723{
12724  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12725    {
12726      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12727      dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12728      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12729      dw2_asm_output_nstring (buffer, -1, "The macro");
12730    }
12731}
12732
12733/* Set up for Dwarf output at the start of compilation.  */
12734
12735static void
12736dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12737{
12738  init_file_table ();
12739
12740  /* Allocate the initial hunk of the decl_die_table.  */
12741  decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12742				      * sizeof (dw_die_ref));
12743  decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12744  decl_die_table_in_use = 0;
12745
12746  /* Allocate the initial hunk of the decl_scope_table.  */
12747  VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12748
12749  /* Allocate the initial hunk of the abbrev_die_table.  */
12750  abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12751					* sizeof (dw_die_ref));
12752  abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12753  /* Zero-th entry is allocated, but unused */
12754  abbrev_die_table_in_use = 1;
12755
12756  /* Allocate the initial hunk of the line_info_table.  */
12757  line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12758				       * sizeof (dw_line_info_entry));
12759  line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12760
12761  /* Zero-th entry is allocated, but unused */
12762  line_info_table_in_use = 1;
12763
12764  /* Generate the initial DIE for the .debug section.  Note that the (string)
12765     value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12766     will (typically) be a relative pathname and that this pathname should be
12767     taken as being relative to the directory from which the compiler was
12768     invoked when the given (base) source file was compiled.  We will fill
12769     in this value in dwarf2out_finish.  */
12770  comp_unit_die = gen_compile_unit_die (NULL);
12771
12772  VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12773
12774  VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12775
12776  ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12777  ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12778			       DEBUG_ABBREV_SECTION_LABEL, 0);
12779  if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12780    ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12781  else
12782    strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12783
12784  ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12785			       DEBUG_INFO_SECTION_LABEL, 0);
12786  ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12787			       DEBUG_LINE_SECTION_LABEL, 0);
12788  ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12789			       DEBUG_RANGES_SECTION_LABEL, 0);
12790  named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12791  ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12792  named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12793  ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12794  named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12795  ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12796
12797  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12798    {
12799      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12800      ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12801				   DEBUG_MACINFO_SECTION_LABEL, 0);
12802      ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12803    }
12804
12805  if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12806    {
12807      text_section ();
12808      ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12809    }
12810}
12811
12812/* A helper function for dwarf2out_finish called through
12813   ht_forall.  Emit one queued .debug_str string.  */
12814
12815static int
12816output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12817{
12818  struct indirect_string_node *node = (struct indirect_string_node *) *h;
12819
12820  if (node->form == DW_FORM_strp)
12821    {
12822      named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12823      ASM_OUTPUT_LABEL (asm_out_file, node->label);
12824      assemble_string (node->str, strlen (node->str) + 1);
12825    }
12826
12827  return 1;
12828}
12829
12830
12831
12832/* Clear the marks for a die and its children.
12833   Be cool if the mark isn't set.  */
12834
12835static void
12836prune_unmark_dies (dw_die_ref die)
12837{
12838  dw_die_ref c;
12839  die->die_mark = 0;
12840  for (c = die->die_child; c; c = c->die_sib)
12841    prune_unmark_dies (c);
12842}
12843
12844
12845/* Given DIE that we're marking as used, find any other dies
12846   it references as attributes and mark them as used.  */
12847
12848static void
12849prune_unused_types_walk_attribs (dw_die_ref die)
12850{
12851  dw_attr_ref a;
12852
12853  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12854    {
12855      if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12856	{
12857	  /* A reference to another DIE.
12858	     Make sure that it will get emitted.  */
12859	  prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12860	}
12861      else if (a->dw_attr == DW_AT_decl_file)
12862	{
12863	  /* A reference to a file.  Make sure the file name is emitted.  */
12864	  a->dw_attr_val.v.val_unsigned =
12865	    maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12866	}
12867    }
12868}
12869
12870
12871/* Mark DIE as being used.  If DOKIDS is true, then walk down
12872   to DIE's children.  */
12873
12874static void
12875prune_unused_types_mark (dw_die_ref die, int dokids)
12876{
12877  dw_die_ref c;
12878
12879  if (die->die_mark == 0)
12880    {
12881      /* We haven't done this node yet.  Mark it as used.  */
12882      die->die_mark = 1;
12883
12884      /* We also have to mark its parents as used.
12885	 (But we don't want to mark our parents' kids due to this.)  */
12886      if (die->die_parent)
12887	prune_unused_types_mark (die->die_parent, 0);
12888
12889      /* Mark any referenced nodes.  */
12890      prune_unused_types_walk_attribs (die);
12891
12892      /* If this node is a specification,
12893         also mark the definition, if it exists.  */
12894      if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12895        prune_unused_types_mark (die->die_definition, 1);
12896    }
12897
12898  if (dokids && die->die_mark != 2)
12899    {
12900      /* We need to walk the children, but haven't done so yet.
12901	 Remember that we've walked the kids.  */
12902      die->die_mark = 2;
12903
12904      /* Walk them.  */
12905      for (c = die->die_child; c; c = c->die_sib)
12906	{
12907	  /* If this is an array type, we need to make sure our
12908	     kids get marked, even if they're types.  */
12909	  if (die->die_tag == DW_TAG_array_type)
12910	    prune_unused_types_mark (c, 1);
12911	  else
12912	    prune_unused_types_walk (c);
12913	}
12914    }
12915}
12916
12917
12918/* Walk the tree DIE and mark types that we actually use.  */
12919
12920static void
12921prune_unused_types_walk (dw_die_ref die)
12922{
12923  dw_die_ref c;
12924
12925  /* Don't do anything if this node is already marked.  */
12926  if (die->die_mark)
12927    return;
12928
12929  switch (die->die_tag) {
12930  case DW_TAG_const_type:
12931  case DW_TAG_packed_type:
12932  case DW_TAG_pointer_type:
12933  case DW_TAG_reference_type:
12934  case DW_TAG_volatile_type:
12935  case DW_TAG_typedef:
12936  case DW_TAG_array_type:
12937  case DW_TAG_structure_type:
12938  case DW_TAG_union_type:
12939  case DW_TAG_class_type:
12940  case DW_TAG_friend:
12941  case DW_TAG_variant_part:
12942  case DW_TAG_enumeration_type:
12943  case DW_TAG_subroutine_type:
12944  case DW_TAG_string_type:
12945  case DW_TAG_set_type:
12946  case DW_TAG_subrange_type:
12947  case DW_TAG_ptr_to_member_type:
12948  case DW_TAG_file_type:
12949    /* It's a type node --- don't mark it.  */
12950    return;
12951
12952  default:
12953    /* Mark everything else.  */
12954    break;
12955  }
12956
12957  die->die_mark = 1;
12958
12959  /* Now, mark any dies referenced from here.  */
12960  prune_unused_types_walk_attribs (die);
12961
12962  /* Mark children.  */
12963  for (c = die->die_child; c; c = c->die_sib)
12964    prune_unused_types_walk (c);
12965}
12966
12967
12968/* Remove from the tree DIE any dies that aren't marked.  */
12969
12970static void
12971prune_unused_types_prune (dw_die_ref die)
12972{
12973  dw_die_ref c, p, n;
12974  if (!die->die_mark)
12975    abort();
12976
12977  p = NULL;
12978  for (c = die->die_child; c; c = n)
12979    {
12980      n = c->die_sib;
12981      if (c->die_mark)
12982	{
12983	  prune_unused_types_prune (c);
12984	  p = c;
12985	}
12986      else
12987	{
12988	  if (p)
12989	    p->die_sib = n;
12990	  else
12991	    die->die_child = n;
12992	  free_die (c);
12993	}
12994    }
12995}
12996
12997
12998/* Remove dies representing declarations that we never use.  */
12999
13000static void
13001prune_unused_types (void)
13002{
13003  unsigned int i;
13004  limbo_die_node *node;
13005
13006  /* Clear all the marks.  */
13007  prune_unmark_dies (comp_unit_die);
13008  for (node = limbo_die_list; node; node = node->next)
13009    prune_unmark_dies (node->die);
13010
13011  /* Set the mark on nodes that are actually used.  */
13012  prune_unused_types_walk (comp_unit_die);
13013  for (node = limbo_die_list; node; node = node->next)
13014    prune_unused_types_walk (node->die);
13015
13016  /* Also set the mark on nodes referenced from the
13017     pubname_table or arange_table.  */
13018  for (i = 0; i < pubname_table_in_use; i++)
13019    prune_unused_types_mark (pubname_table[i].die, 1);
13020  for (i = 0; i < arange_table_in_use; i++)
13021    prune_unused_types_mark (arange_table[i], 1);
13022
13023  /* Get rid of nodes that aren't marked.  */
13024  prune_unused_types_prune (comp_unit_die);
13025  for (node = limbo_die_list; node; node = node->next)
13026    prune_unused_types_prune (node->die);
13027
13028  /* Leave the marks clear.  */
13029  prune_unmark_dies (comp_unit_die);
13030  for (node = limbo_die_list; node; node = node->next)
13031    prune_unmark_dies (node->die);
13032}
13033
13034/* Output stuff that dwarf requires at the end of every file,
13035   and generate the DWARF-2 debugging info.  */
13036
13037static void
13038dwarf2out_finish (const char *filename)
13039{
13040  limbo_die_node *node, *next_node;
13041  dw_die_ref die = 0;
13042
13043  /* Add the name for the main input file now.  We delayed this from
13044     dwarf2out_init to avoid complications with PCH.  */
13045  add_name_attribute (comp_unit_die, filename);
13046  if (filename[0] != DIR_SEPARATOR)
13047    add_comp_dir_attribute (comp_unit_die);
13048  else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13049    {
13050      size_t i;
13051      for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13052	if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13053	    /* Don't add cwd for <built-in>.  */
13054	    && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13055	  {
13056	    add_comp_dir_attribute (comp_unit_die);
13057	    break;
13058	  }
13059    }
13060
13061  /* Traverse the limbo die list, and add parent/child links.  The only
13062     dies without parents that should be here are concrete instances of
13063     inline functions, and the comp_unit_die.  We can ignore the comp_unit_die.
13064     For concrete instances, we can get the parent die from the abstract
13065     instance.  */
13066  for (node = limbo_die_list; node; node = next_node)
13067    {
13068      next_node = node->next;
13069      die = node->die;
13070
13071      if (die->die_parent == NULL)
13072	{
13073	  dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13074	  tree context;
13075
13076	  if (origin)
13077	    add_child_die (origin->die_parent, die);
13078	  else if (die == comp_unit_die)
13079	    ;
13080	  /* If this was an expression for a bound involved in a function
13081	     return type, it may be a SAVE_EXPR for which we weren't able
13082	     to find a DIE previously.  So try now.  */
13083	  else if (node->created_for
13084		   && TREE_CODE (node->created_for) == SAVE_EXPR
13085		   && 0 != (origin = (lookup_decl_die
13086				      (SAVE_EXPR_CONTEXT
13087				       (node->created_for)))))
13088	    add_child_die (origin, die);
13089	  else if (errorcount > 0 || sorrycount > 0)
13090	    /* It's OK to be confused by errors in the input.  */
13091	    add_child_die (comp_unit_die, die);
13092	  else if (node->created_for
13093		   && ((DECL_P (node->created_for)
13094			&& (context = DECL_CONTEXT (node->created_for)))
13095		       || (TYPE_P (node->created_for)
13096			   && (context = TYPE_CONTEXT (node->created_for))))
13097		   && TREE_CODE (context) == FUNCTION_DECL)
13098	    {
13099	      /* In certain situations, the lexical block containing a
13100		 nested function can be optimized away, which results
13101		 in the nested function die being orphaned.  Likewise
13102		 with the return type of that nested function.  Force
13103		 this to be a child of the containing function.  */
13104	      origin = lookup_decl_die (context);
13105	      if (! origin)
13106		abort ();
13107	      add_child_die (origin, die);
13108	    }
13109	  else
13110	    abort ();
13111	}
13112    }
13113
13114  limbo_die_list = NULL;
13115
13116  /* Walk through the list of incomplete types again, trying once more to
13117     emit full debugging info for them.  */
13118  retry_incomplete_types ();
13119
13120  /* We need to reverse all the dies before break_out_includes, or
13121     we'll see the end of an include file before the beginning.  */
13122  reverse_all_dies (comp_unit_die);
13123
13124  if (flag_eliminate_unused_debug_types)
13125    prune_unused_types ();
13126
13127  /* Generate separate CUs for each of the include files we've seen.
13128     They will go into limbo_die_list.  */
13129  if (flag_eliminate_dwarf2_dups)
13130    break_out_includes (comp_unit_die);
13131
13132  /* Traverse the DIE's and add add sibling attributes to those DIE's
13133     that have children.  */
13134  add_sibling_attributes (comp_unit_die);
13135  for (node = limbo_die_list; node; node = node->next)
13136    add_sibling_attributes (node->die);
13137
13138  /* Output a terminator label for the .text section.  */
13139  text_section ();
13140  (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13141
13142  /* Output the source line correspondence table.  We must do this
13143     even if there is no line information.  Otherwise, on an empty
13144     translation unit, we will generate a present, but empty,
13145     .debug_info section.  IRIX 6.5 `nm' will then complain when
13146     examining the file.  */
13147  if (! DWARF2_ASM_LINE_DEBUG_INFO)
13148    {
13149      named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13150      output_line_info ();
13151    }
13152
13153  /* Output location list section if necessary.  */
13154  if (have_location_lists)
13155    {
13156      /* Output the location lists info.  */
13157      named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13158      ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13159				   DEBUG_LOC_SECTION_LABEL, 0);
13160      ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13161      output_location_lists (die);
13162      have_location_lists = 0;
13163    }
13164
13165  /* We can only use the low/high_pc attributes if all of the code was
13166     in .text.  */
13167  if (separate_line_info_table_in_use == 0)
13168    {
13169      add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13170      add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13171    }
13172
13173  /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13174     "base address".  Use zero so that these addresses become absolute.  */
13175  else if (have_location_lists || ranges_table_in_use)
13176    add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13177
13178  if (debug_info_level >= DINFO_LEVEL_NORMAL)
13179    add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13180		       debug_line_section_label);
13181
13182  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13183    add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13184
13185  /* Output all of the compilation units.  We put the main one last so that
13186     the offsets are available to output_pubnames.  */
13187  for (node = limbo_die_list; node; node = node->next)
13188    output_comp_unit (node->die, 0);
13189
13190  output_comp_unit (comp_unit_die, 0);
13191
13192  /* Output the abbreviation table.  */
13193  named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13194  output_abbrev_section ();
13195
13196  /* Output public names table if necessary.  */
13197  if (pubname_table_in_use)
13198    {
13199      named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13200      output_pubnames ();
13201    }
13202
13203  /* Output the address range information.  We only put functions in the arange
13204     table, so don't write it out if we don't have any.  */
13205  if (fde_table_in_use)
13206    {
13207      named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13208      output_aranges ();
13209    }
13210
13211  /* Output ranges section if necessary.  */
13212  if (ranges_table_in_use)
13213    {
13214      named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13215      ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13216      output_ranges ();
13217    }
13218
13219  /* Have to end the primary source file.  */
13220  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13221    {
13222      named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13223      dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13224      dw2_asm_output_data (1, 0, "End compilation unit");
13225    }
13226
13227  /* If we emitted any DW_FORM_strp form attribute, output the string
13228     table too.  */
13229  if (debug_str_hash)
13230    htab_traverse (debug_str_hash, output_indirect_string, NULL);
13231}
13232#else
13233
13234/* This should never be used, but its address is needed for comparisons.  */
13235const struct gcc_debug_hooks dwarf2_debug_hooks;
13236
13237#endif /* DWARF2_DEBUGGING_INFO */
13238
13239#include "gt-dwarf2out.h"
13240