c-typeck.c revision 52284
11573Srgrimes/* Build expressions with type checking for C compiler.
21573Srgrimes   Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
31573Srgrimes
41573SrgrimesThis file is part of GNU CC.
51573Srgrimes
61573SrgrimesGNU CC is free software; you can redistribute it and/or modify
71573Srgrimesit under the terms of the GNU General Public License as published by
81573Srgrimesthe Free Software Foundation; either version 2, or (at your option)
91573Srgrimesany later version.
101573Srgrimes
111573SrgrimesGNU CC is distributed in the hope that it will be useful,
121573Srgrimesbut WITHOUT ANY WARRANTY; without even the implied warranty of
131573SrgrimesMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
141573SrgrimesGNU General Public License for more details.
151573Srgrimes
161573SrgrimesYou should have received a copy of the GNU General Public License
171573Srgrimesalong with GNU CC; see the file COPYING.  If not, write to
181573Srgrimesthe Free Software Foundation, 59 Temple Place - Suite 330,
191573SrgrimesBoston, MA 02111-1307, USA.  */
201573Srgrimes
211573Srgrimes
221573Srgrimes/* This file is part of the C front end.
231573Srgrimes   It contains routines to build C expressions given their operands,
241573Srgrimes   including computing the types of the result, C-specific error checks,
251573Srgrimes   and some optimization.
261573Srgrimes
271573Srgrimes   There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
281573Srgrimes   and to process initializations in declarations (since they work
291573Srgrimes   like a strange sort of assignment).  */
301573Srgrimes
311573Srgrimes#include "config.h"
321573Srgrimes#include "system.h"
331573Srgrimes#include "tree.h"
341573Srgrimes#include "c-tree.h"
351573Srgrimes#include "flags.h"
361573Srgrimes#include "output.h"
3792986Sobrien#include "rtl.h"
3892986Sobrien#include "expr.h"
391573Srgrimes#include "toplev.h"
4071579Sdeischen#include "intl.h"
411573Srgrimes
421573Srgrimes/* Nonzero if we've already printed a "missing braces around initializer"
4371579Sdeischen   message within this initializer.  */
441573Srgrimesstatic int missing_braces_mentioned;
451573Srgrimes
461573Srgrimesstatic tree qualify_type		PROTO((tree, tree));
471573Srgrimesstatic int comp_target_types		PROTO((tree, tree));
481573Srgrimesstatic int function_types_compatible_p	PROTO((tree, tree));
4935125Sjbstatic int type_lists_compatible_p	PROTO((tree, tree));
5035125Sjbstatic int self_promoting_type_p	PROTO((tree));
5135125Sjbstatic tree decl_constant_value		PROTO((tree));
5235125Sjbstatic tree lookup_field		PROTO((tree, tree, tree *));
5335125Sjbstatic tree convert_arguments		PROTO((tree, tree, tree, tree));
5435125Sjbstatic tree pointer_int_sum		PROTO((enum tree_code, tree, tree));
5535125Sjbstatic tree pointer_diff		PROTO((tree, tree));
5635125Sjbstatic tree unary_complex_lvalue	PROTO((enum tree_code, tree));
5735125Sjbstatic void pedantic_lvalue_warning	PROTO((enum tree_code));
581573Srgrimesstatic tree internal_build_compound_expr PROTO((tree, int));
591573Srgrimesstatic tree convert_for_assignment	PROTO((tree, tree, const char *, tree,
601573Srgrimes					       tree, int));
611573Srgrimesstatic void warn_for_assignment		PROTO((const char *, const char *,
621573Srgrimes					       tree, int));
631573Srgrimesstatic tree valid_compound_expr_initializer PROTO((tree, tree));
6471579Sdeischenstatic void push_string			PROTO((const char *));
6535502Sjbstatic void push_member_name		PROTO((tree));
6671579Sdeischenstatic void push_array_bounds		PROTO((int));
6735502Sjbstatic int spelling_length		PROTO((void));
6835502Sjbstatic char *print_spelling		PROTO((char *));
69123674Skanstatic void warning_init		PROTO((const char *));
701573Srgrimesstatic tree digest_init			PROTO((tree, tree, int, int));
711573Srgrimesstatic void check_init_type_bitfields	PROTO((tree));
721573Srgrimesstatic void output_init_element		PROTO((tree, tree, tree, int));
731573Srgrimesstatic void output_pending_init_elements PROTO((int));
74static void add_pending_init		PROTO((tree, tree));
75static int pending_init_member		PROTO((tree));
76
77/* Do `exp = require_complete_type (exp);' to make sure exp
78   does not have an incomplete type.  (That includes void types.)  */
79
80tree
81require_complete_type (value)
82     tree value;
83{
84  tree type = TREE_TYPE (value);
85
86  if (TREE_CODE (value) == ERROR_MARK)
87    return error_mark_node;
88
89  /* First, detect a valid value with a complete type.  */
90  if (TYPE_SIZE (type) != 0
91      && type != void_type_node)
92    return value;
93
94  incomplete_type_error (value, type);
95  return error_mark_node;
96}
97
98/* Print an error message for invalid use of an incomplete type.
99   VALUE is the expression that was used (or 0 if that isn't known)
100   and TYPE is the type that was invalid.  */
101
102void
103incomplete_type_error (value, type)
104     tree value;
105     tree type;
106{
107  const char *type_code_string;
108
109  /* Avoid duplicate error message.  */
110  if (TREE_CODE (type) == ERROR_MARK)
111    return;
112
113  if (value != 0 && (TREE_CODE (value) == VAR_DECL
114		     || TREE_CODE (value) == PARM_DECL))
115    error ("`%s' has an incomplete type",
116	   IDENTIFIER_POINTER (DECL_NAME (value)));
117  else
118    {
119    retry:
120      /* We must print an error message.  Be clever about what it says.  */
121
122      switch (TREE_CODE (type))
123	{
124	case RECORD_TYPE:
125	  type_code_string = "struct";
126	  break;
127
128	case UNION_TYPE:
129	  type_code_string = "union";
130	  break;
131
132	case ENUMERAL_TYPE:
133	  type_code_string = "enum";
134	  break;
135
136	case VOID_TYPE:
137	  error ("invalid use of void expression");
138	  return;
139
140	case ARRAY_TYPE:
141	  if (TYPE_DOMAIN (type))
142	    {
143	      type = TREE_TYPE (type);
144	      goto retry;
145	    }
146	  error ("invalid use of array with unspecified bounds");
147	  return;
148
149	default:
150	  abort ();
151	}
152
153      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
154	error ("invalid use of undefined type `%s %s'",
155	       type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
156      else
157	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
158	error ("invalid use of incomplete typedef `%s'",
159	       IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
160    }
161}
162
163/* Return a variant of TYPE which has all the type qualifiers of LIKE
164   as well as those of TYPE.  */
165
166static tree
167qualify_type (type, like)
168     tree type, like;
169{
170  return c_build_qualified_type (type, TYPE_QUALS (like));
171}
172
173/* Return the common type of two types.
174   We assume that comptypes has already been done and returned 1;
175   if that isn't so, this may crash.  In particular, we assume that qualifiers
176   match.
177
178   This is the type for the result of most arithmetic operations
179   if the operands have the given two types.  */
180
181tree
182common_type (t1, t2)
183     tree t1, t2;
184{
185  register enum tree_code code1;
186  register enum tree_code code2;
187  tree attributes;
188
189  /* Save time if the two types are the same.  */
190
191  if (t1 == t2) return t1;
192
193  /* If one type is nonsense, use the other.  */
194  if (t1 == error_mark_node)
195    return t2;
196  if (t2 == error_mark_node)
197    return t1;
198
199  /* Merge the attributes.  */
200  attributes = merge_machine_type_attributes (t1, t2);
201
202  /* Treat an enum type as the unsigned integer type of the same width.  */
203
204  if (TREE_CODE (t1) == ENUMERAL_TYPE)
205    t1 = type_for_size (TYPE_PRECISION (t1), 1);
206  if (TREE_CODE (t2) == ENUMERAL_TYPE)
207    t2 = type_for_size (TYPE_PRECISION (t2), 1);
208
209  code1 = TREE_CODE (t1);
210  code2 = TREE_CODE (t2);
211
212  /* If one type is complex, form the common type of the non-complex
213     components, then make that complex.  Use T1 or T2 if it is the
214     required type.  */
215  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
216    {
217      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
218      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
219      tree subtype = common_type (subtype1, subtype2);
220
221      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
222	return build_type_attribute_variant (t1, attributes);
223      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
224	return build_type_attribute_variant (t2, attributes);
225      else
226	return build_type_attribute_variant (build_complex_type (subtype),
227					     attributes);
228    }
229
230  switch (code1)
231    {
232    case INTEGER_TYPE:
233    case REAL_TYPE:
234      /* If only one is real, use it as the result.  */
235
236      if (code1 == REAL_TYPE && code2 != REAL_TYPE)
237	return build_type_attribute_variant (t1, attributes);
238
239      if (code2 == REAL_TYPE && code1 != REAL_TYPE)
240	return build_type_attribute_variant (t2, attributes);
241
242      /* Both real or both integers; use the one with greater precision.  */
243
244      if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
245	return build_type_attribute_variant (t1, attributes);
246      else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
247	return build_type_attribute_variant (t2, attributes);
248
249      /* Same precision.  Prefer longs to ints even when same size.  */
250
251      if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
252	  || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
253	return build_type_attribute_variant (long_unsigned_type_node,
254					     attributes);
255
256      if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
257	  || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
258	{
259	  /* But preserve unsignedness from the other type,
260	     since long cannot hold all the values of an unsigned int.  */
261	  if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
262	     t1 = long_unsigned_type_node;
263	  else
264	     t1 = long_integer_type_node;
265	  return build_type_attribute_variant (t1, attributes);
266	}
267
268      /* Likewise, prefer long double to double even if same size.  */
269      if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
270	  || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
271	return build_type_attribute_variant (long_double_type_node,
272					     attributes);
273
274      /* Otherwise prefer the unsigned one.  */
275
276      if (TREE_UNSIGNED (t1))
277	return build_type_attribute_variant (t1, attributes);
278      else
279	return build_type_attribute_variant (t2, attributes);
280
281    case POINTER_TYPE:
282      /* For two pointers, do this recursively on the target type,
283	 and combine the qualifiers of the two types' targets.  */
284      /* This code was turned off; I don't know why.
285	 But ANSI C specifies doing this with the qualifiers.
286	 So I turned it on again.  */
287      {
288	tree pointed_to_1 = TREE_TYPE (t1);
289	tree pointed_to_2 = TREE_TYPE (t2);
290	tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
291				   TYPE_MAIN_VARIANT (pointed_to_2));
292	t1 = build_pointer_type (c_build_qualified_type
293				 (target,
294				  TYPE_QUALS (pointed_to_1) |
295				  TYPE_QUALS (pointed_to_2)));
296	return build_type_attribute_variant (t1, attributes);
297      }
298#if 0
299      t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
300      return build_type_attribute_variant (t1, attributes);
301#endif
302
303    case ARRAY_TYPE:
304      {
305	tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
306	/* Save space: see if the result is identical to one of the args.  */
307	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
308	  return build_type_attribute_variant (t1, attributes);
309	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
310	  return build_type_attribute_variant (t2, attributes);
311	/* Merge the element types, and have a size if either arg has one.  */
312	t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
313	return build_type_attribute_variant (t1, attributes);
314      }
315
316    case FUNCTION_TYPE:
317      /* Function types: prefer the one that specified arg types.
318	 If both do, merge the arg types.  Also merge the return types.  */
319      {
320	tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
321	tree p1 = TYPE_ARG_TYPES (t1);
322	tree p2 = TYPE_ARG_TYPES (t2);
323	int len;
324	tree newargs, n;
325	int i;
326
327	/* Save space: see if the result is identical to one of the args.  */
328	if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
329	  return build_type_attribute_variant (t1, attributes);
330	if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
331	  return build_type_attribute_variant (t2, attributes);
332
333	/* Simple way if one arg fails to specify argument types.  */
334	if (TYPE_ARG_TYPES (t1) == 0)
335	 {
336	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
337	   return build_type_attribute_variant (t1, attributes);
338	 }
339	if (TYPE_ARG_TYPES (t2) == 0)
340	 {
341	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
342	   return build_type_attribute_variant (t1, attributes);
343	 }
344
345	/* If both args specify argument types, we must merge the two
346	   lists, argument by argument.  */
347
348	len = list_length (p1);
349	newargs = 0;
350
351	for (i = 0; i < len; i++)
352	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
353
354	n = newargs;
355
356	for (; p1;
357	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
358	  {
359	    /* A null type means arg type is not specified.
360	       Take whatever the other function type has.  */
361	    if (TREE_VALUE (p1) == 0)
362	      {
363		TREE_VALUE (n) = TREE_VALUE (p2);
364		goto parm_done;
365	      }
366	    if (TREE_VALUE (p2) == 0)
367	      {
368		TREE_VALUE (n) = TREE_VALUE (p1);
369		goto parm_done;
370	      }
371
372	    /* Given  wait (union {union wait *u; int *i} *)
373	       and  wait (union wait *),
374	       prefer  union wait *  as type of parm.  */
375	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
376		&& TREE_VALUE (p1) != TREE_VALUE (p2))
377	      {
378		tree memb;
379		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
380		     memb; memb = TREE_CHAIN (memb))
381		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
382		    {
383		      TREE_VALUE (n) = TREE_VALUE (p2);
384		      if (pedantic)
385			pedwarn ("function types not truly compatible in ANSI C");
386		      goto parm_done;
387		    }
388	      }
389	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
390		&& TREE_VALUE (p2) != TREE_VALUE (p1))
391	      {
392		tree memb;
393		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
394		     memb; memb = TREE_CHAIN (memb))
395		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
396		    {
397		      TREE_VALUE (n) = TREE_VALUE (p1);
398		      if (pedantic)
399			pedwarn ("function types not truly compatible in ANSI C");
400		      goto parm_done;
401		    }
402	      }
403	    TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
404	  parm_done: ;
405	  }
406
407	t1 = build_function_type (valtype, newargs);
408	/* ... falls through ...  */
409      }
410
411    default:
412      return build_type_attribute_variant (t1, attributes);
413    }
414
415}
416
417/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
418   or various other operations.  Return 2 if they are compatible
419   but a warning may be needed if you use them together.  */
420
421int
422comptypes (type1, type2)
423     tree type1, type2;
424{
425  register tree t1 = type1;
426  register tree t2 = type2;
427  int attrval, val;
428
429  /* Suppress errors caused by previously reported errors.  */
430
431  if (t1 == t2 || !t1 || !t2
432      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
433    return 1;
434
435  /* Treat an enum type as the integer type of the same width and
436     signedness.  */
437
438  if (TREE_CODE (t1) == ENUMERAL_TYPE)
439    t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
440  if (TREE_CODE (t2) == ENUMERAL_TYPE)
441    t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
442
443  if (t1 == t2)
444    return 1;
445
446  /* Different classes of types can't be compatible.  */
447
448  if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
449
450  /* Qualifiers must match.  */
451
452  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
453    return 0;
454
455  /* Allow for two different type nodes which have essentially the same
456     definition.  Note that we already checked for equality of the type
457     qualifiers (just above).  */
458
459  if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
460    return 1;
461
462#ifndef COMP_TYPE_ATTRIBUTES
463#define COMP_TYPE_ATTRIBUTES(t1,t2)	1
464#endif
465
466  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
467  if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
468     return 0;
469
470  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
471  val = 0;
472
473  switch (TREE_CODE (t1))
474    {
475    case POINTER_TYPE:
476      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
477	      ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
478      break;
479
480    case FUNCTION_TYPE:
481      val = function_types_compatible_p (t1, t2);
482      break;
483
484    case ARRAY_TYPE:
485      {
486	tree d1 = TYPE_DOMAIN (t1);
487	tree d2 = TYPE_DOMAIN (t2);
488	val = 1;
489
490	/* Target types must match incl. qualifiers.  */
491	if (TREE_TYPE (t1) != TREE_TYPE (t2)
492	    && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
493	  return 0;
494
495	/* Sizes must match unless one is missing or variable.  */
496	if (d1 == 0 || d2 == 0 || d1 == d2
497	    || TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
498	    || TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
499	    || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
500	    || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
501	  break;
502
503	if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1))
504		  == TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2)))
505		 && (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1))
506		     == TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2)))
507		 && (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1))
508		     == TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2)))
509		 && (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1))
510		     == TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2)))))
511	   val = 0;
512        break;
513      }
514
515    case RECORD_TYPE:
516      if (maybe_objc_comptypes (t1, t2, 0) == 1)
517	val = 1;
518      break;
519
520    default:
521      break;
522    }
523  return attrval == 2 && val == 1 ? 2 : val;
524}
525
526/* Return 1 if TTL and TTR are pointers to types that are equivalent,
527   ignoring their qualifiers.  */
528
529static int
530comp_target_types (ttl, ttr)
531     tree ttl, ttr;
532{
533  int val;
534
535  /* Give maybe_objc_comptypes a crack at letting these types through.  */
536  if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
537    return val;
538
539  val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
540		   TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
541
542  if (val == 2 && pedantic)
543    pedwarn ("types are not quite compatible");
544  return val;
545}
546
547/* Subroutines of `comptypes'.  */
548
549/* Return 1 if two function types F1 and F2 are compatible.
550   If either type specifies no argument types,
551   the other must specify a fixed number of self-promoting arg types.
552   Otherwise, if one type specifies only the number of arguments,
553   the other must specify that number of self-promoting arg types.
554   Otherwise, the argument types must match.  */
555
556static int
557function_types_compatible_p (f1, f2)
558     tree f1, f2;
559{
560  tree args1, args2;
561  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
562  int val = 1;
563  int val1;
564
565  if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
566	|| (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
567    return 0;
568
569  args1 = TYPE_ARG_TYPES (f1);
570  args2 = TYPE_ARG_TYPES (f2);
571
572  /* An unspecified parmlist matches any specified parmlist
573     whose argument types don't need default promotions.  */
574
575  if (args1 == 0)
576    {
577      if (!self_promoting_args_p (args2))
578	return 0;
579      /* If one of these types comes from a non-prototype fn definition,
580	 compare that with the other type's arglist.
581	 If they don't match, ask for a warning (but no error).  */
582      if (TYPE_ACTUAL_ARG_TYPES (f1)
583	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
584	val = 2;
585      return val;
586    }
587  if (args2 == 0)
588    {
589      if (!self_promoting_args_p (args1))
590	return 0;
591      if (TYPE_ACTUAL_ARG_TYPES (f2)
592	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
593	val = 2;
594      return val;
595    }
596
597  /* Both types have argument lists: compare them and propagate results.  */
598  val1 = type_lists_compatible_p (args1, args2);
599  return val1 != 1 ? val1 : val;
600}
601
602/* Check two lists of types for compatibility,
603   returning 0 for incompatible, 1 for compatible,
604   or 2 for compatible with warning.  */
605
606static int
607type_lists_compatible_p (args1, args2)
608     tree args1, args2;
609{
610  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
611  int val = 1;
612  int newval = 0;
613
614  while (1)
615    {
616      if (args1 == 0 && args2 == 0)
617	return val;
618      /* If one list is shorter than the other,
619	 they fail to match.  */
620      if (args1 == 0 || args2 == 0)
621	return 0;
622      /* A null pointer instead of a type
623	 means there is supposed to be an argument
624	 but nothing is specified about what type it has.
625	 So match anything that self-promotes.  */
626      if (TREE_VALUE (args1) == 0)
627	{
628	  if (! self_promoting_type_p (TREE_VALUE (args2)))
629	    return 0;
630	}
631      else if (TREE_VALUE (args2) == 0)
632	{
633	  if (! self_promoting_type_p (TREE_VALUE (args1)))
634	    return 0;
635	}
636      else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
637	{
638	  /* Allow  wait (union {union wait *u; int *i} *)
639	     and  wait (union wait *)  to be compatible.  */
640	  if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
641	      && (TYPE_NAME (TREE_VALUE (args1)) == 0
642		  || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
643	      && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
644	      && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
645				     TYPE_SIZE (TREE_VALUE (args2))))
646	    {
647	      tree memb;
648	      for (memb = TYPE_FIELDS (TREE_VALUE (args1));
649		   memb; memb = TREE_CHAIN (memb))
650		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
651		  break;
652	      if (memb == 0)
653		return 0;
654	    }
655	  else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
656		   && (TYPE_NAME (TREE_VALUE (args2)) == 0
657		       || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
658		   && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
659		   && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
660					  TYPE_SIZE (TREE_VALUE (args1))))
661	    {
662	      tree memb;
663	      for (memb = TYPE_FIELDS (TREE_VALUE (args2));
664		   memb; memb = TREE_CHAIN (memb))
665		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
666		  break;
667	      if (memb == 0)
668		return 0;
669	    }
670	  else
671	    return 0;
672	}
673
674      /* comptypes said ok, but record if it said to warn.  */
675      if (newval > val)
676	val = newval;
677
678      args1 = TREE_CHAIN (args1);
679      args2 = TREE_CHAIN (args2);
680    }
681}
682
683/* Return 1 if PARMS specifies a fixed number of parameters
684   and none of their types is affected by default promotions.  */
685
686int
687self_promoting_args_p (parms)
688     tree parms;
689{
690  register tree t;
691  for (t = parms; t; t = TREE_CHAIN (t))
692    {
693      register tree type = TREE_VALUE (t);
694
695      if (TREE_CHAIN (t) == 0 && type != void_type_node)
696	return 0;
697
698      if (type == 0)
699	return 0;
700
701      if (TYPE_MAIN_VARIANT (type) == float_type_node)
702	return 0;
703
704      if (C_PROMOTING_INTEGER_TYPE_P (type))
705	return 0;
706    }
707  return 1;
708}
709
710/* Return 1 if TYPE is not affected by default promotions.  */
711
712static int
713self_promoting_type_p (type)
714     tree type;
715{
716  if (TYPE_MAIN_VARIANT (type) == float_type_node)
717    return 0;
718
719  if (C_PROMOTING_INTEGER_TYPE_P (type))
720    return 0;
721
722  return 1;
723}
724
725/* Return an unsigned type the same as TYPE in other respects.  */
726
727tree
728unsigned_type (type)
729     tree type;
730{
731  tree type1 = TYPE_MAIN_VARIANT (type);
732  if (type1 == signed_char_type_node || type1 == char_type_node)
733    return unsigned_char_type_node;
734  if (type1 == integer_type_node)
735    return unsigned_type_node;
736  if (type1 == short_integer_type_node)
737    return short_unsigned_type_node;
738  if (type1 == long_integer_type_node)
739    return long_unsigned_type_node;
740  if (type1 == long_long_integer_type_node)
741    return long_long_unsigned_type_node;
742  if (type1 == intDI_type_node)
743    return unsigned_intDI_type_node;
744  if (type1 == intSI_type_node)
745    return unsigned_intSI_type_node;
746  if (type1 == intHI_type_node)
747    return unsigned_intHI_type_node;
748  if (type1 == intQI_type_node)
749    return unsigned_intQI_type_node;
750
751  return signed_or_unsigned_type (1, type);
752}
753
754/* Return a signed type the same as TYPE in other respects.  */
755
756tree
757signed_type (type)
758     tree type;
759{
760  tree type1 = TYPE_MAIN_VARIANT (type);
761  if (type1 == unsigned_char_type_node || type1 == char_type_node)
762    return signed_char_type_node;
763  if (type1 == unsigned_type_node)
764    return integer_type_node;
765  if (type1 == short_unsigned_type_node)
766    return short_integer_type_node;
767  if (type1 == long_unsigned_type_node)
768    return long_integer_type_node;
769  if (type1 == long_long_unsigned_type_node)
770    return long_long_integer_type_node;
771  if (type1 == unsigned_intDI_type_node)
772    return intDI_type_node;
773  if (type1 == unsigned_intSI_type_node)
774    return intSI_type_node;
775  if (type1 == unsigned_intHI_type_node)
776    return intHI_type_node;
777  if (type1 == unsigned_intQI_type_node)
778    return intQI_type_node;
779
780  return signed_or_unsigned_type (0, type);
781}
782
783/* Return a type the same as TYPE except unsigned or
784   signed according to UNSIGNEDP.  */
785
786tree
787signed_or_unsigned_type (unsignedp, type)
788     int unsignedp;
789     tree type;
790{
791  if ((! INTEGRAL_TYPE_P (type) && ! POINTER_TYPE_P (type))
792      || TREE_UNSIGNED (type) == unsignedp)
793    return type;
794  if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
795    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
796  if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
797    return unsignedp ? unsigned_type_node : integer_type_node;
798  if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
799    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
800  if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
801    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
802  if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
803    return (unsignedp ? long_long_unsigned_type_node
804	    : long_long_integer_type_node);
805  return type;
806}
807
808/* Compute the value of the `sizeof' operator.  */
809
810tree
811c_sizeof (type)
812     tree type;
813{
814  enum tree_code code = TREE_CODE (type);
815  tree t;
816
817  if (code == FUNCTION_TYPE)
818    {
819      if (pedantic || warn_pointer_arith)
820	pedwarn ("sizeof applied to a function type");
821      return size_int (1);
822    }
823  if (code == VOID_TYPE)
824    {
825      if (pedantic || warn_pointer_arith)
826	pedwarn ("sizeof applied to a void type");
827      return size_int (1);
828    }
829  if (code == ERROR_MARK)
830    return size_int (1);
831  if (TYPE_SIZE (type) == 0)
832    {
833      error ("sizeof applied to an incomplete type");
834      return size_int (0);
835    }
836
837  /* Convert in case a char is more than one unit.  */
838  t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
839		  size_int (TYPE_PRECISION (char_type_node)));
840  t = convert (sizetype, t);
841  /* size_binop does not put the constant in range, so do it now.  */
842  if (TREE_CODE (t) == INTEGER_CST && force_fit_type (t, 0))
843    TREE_CONSTANT_OVERFLOW (t) = TREE_OVERFLOW (t) = 1;
844  return t;
845}
846
847tree
848c_sizeof_nowarn (type)
849     tree type;
850{
851  enum tree_code code = TREE_CODE (type);
852  tree t;
853
854  if (code == FUNCTION_TYPE
855      || code == VOID_TYPE
856      || code == ERROR_MARK)
857    return size_int (1);
858  if (TYPE_SIZE (type) == 0)
859    return size_int (0);
860
861  /* Convert in case a char is more than one unit.  */
862  t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
863		  size_int (TYPE_PRECISION (char_type_node)));
864  t = convert (sizetype, t);
865  force_fit_type (t, 0);
866  return t;
867}
868
869/* Compute the size to increment a pointer by.  */
870
871tree
872c_size_in_bytes (type)
873     tree type;
874{
875  enum tree_code code = TREE_CODE (type);
876  tree t;
877
878  if (code == FUNCTION_TYPE)
879    return size_int (1);
880  if (code == VOID_TYPE)
881    return size_int (1);
882  if (code == ERROR_MARK)
883    return size_int (1);
884  if (TYPE_SIZE (type) == 0)
885    {
886      error ("arithmetic on pointer to an incomplete type");
887      return size_int (1);
888    }
889
890  /* Convert in case a char is more than one unit.  */
891  t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
892		     size_int (BITS_PER_UNIT));
893  t = convert (sizetype, t);
894  force_fit_type (t, 0);
895  return t;
896}
897
898/* Implement the __alignof keyword: Return the minimum required
899   alignment of TYPE, measured in bytes.  */
900
901tree
902c_alignof (type)
903     tree type;
904{
905  enum tree_code code = TREE_CODE (type);
906
907  if (code == FUNCTION_TYPE)
908    return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
909
910  if (code == VOID_TYPE || code == ERROR_MARK)
911    return size_int (1);
912
913  return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
914}
915
916/* Implement the __alignof keyword: Return the minimum required
917   alignment of EXPR, measured in bytes.  For VAR_DECL's and
918   FIELD_DECL's return DECL_ALIGN (which can be set from an
919   "aligned" __attribute__ specification).  */
920
921tree
922c_alignof_expr (expr)
923     tree expr;
924{
925  if (TREE_CODE (expr) == VAR_DECL)
926    return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
927
928  if (TREE_CODE (expr) == COMPONENT_REF
929      && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
930    {
931      error ("`__alignof' applied to a bit-field");
932      return size_int (1);
933    }
934  else if (TREE_CODE (expr) == COMPONENT_REF
935      && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
936    return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
937
938  if (TREE_CODE (expr) == INDIRECT_REF)
939    {
940      tree t = TREE_OPERAND (expr, 0);
941      tree best = t;
942      int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
943
944      while (TREE_CODE (t) == NOP_EXPR
945	      && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
946	{
947	  int thisalign;
948
949	  t = TREE_OPERAND (t, 0);
950	  thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
951	  if (thisalign > bestalign)
952	    best = t, bestalign = thisalign;
953	}
954      return c_alignof (TREE_TYPE (TREE_TYPE (best)));
955    }
956  else
957    return c_alignof (TREE_TYPE (expr));
958}
959
960/* Return either DECL or its known constant value (if it has one).  */
961
962static tree
963decl_constant_value (decl)
964     tree decl;
965{
966  if (/* Don't change a variable array bound or initial value to a constant
967	 in a place where a variable is invalid.  */
968      current_function_decl != 0
969      && ! pedantic
970      && ! TREE_THIS_VOLATILE (decl)
971      && TREE_READONLY (decl) && ! ITERATOR_P (decl)
972      && DECL_INITIAL (decl) != 0
973      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
974      /* This is invalid if initial value is not constant.
975	 If it has either a function call, a memory reference,
976	 or a variable, then re-evaluating it could give different results.  */
977      && TREE_CONSTANT (DECL_INITIAL (decl))
978      /* Check for cases where this is sub-optimal, even though valid.  */
979      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
980      && DECL_MODE (decl) != BLKmode)
981    return DECL_INITIAL (decl);
982  return decl;
983}
984
985/* Perform default promotions for C data used in expressions.
986   Arrays and functions are converted to pointers;
987   enumeral types or short or char, to int.
988   In addition, manifest constants symbols are replaced by their values.  */
989
990tree
991default_conversion (exp)
992     tree exp;
993{
994  register tree type = TREE_TYPE (exp);
995  register enum tree_code code = TREE_CODE (type);
996
997  /* Constants can be used directly unless they're not loadable.  */
998  if (TREE_CODE (exp) == CONST_DECL)
999    exp = DECL_INITIAL (exp);
1000
1001  /* Replace a nonvolatile const static variable with its value unless
1002     it is an array, in which case we must be sure that taking the
1003     address of the array produces consistent results.  */
1004  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1005    {
1006      exp = decl_constant_value (exp);
1007      type = TREE_TYPE (exp);
1008    }
1009
1010  /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
1011     an lvalue.  */
1012  /* Do not use STRIP_NOPS here!  It will remove conversions from pointer
1013     to integer and cause infinite recursion.  */
1014  while (TREE_CODE (exp) == NON_LVALUE_EXPR
1015	 || (TREE_CODE (exp) == NOP_EXPR
1016	     && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
1017    exp = TREE_OPERAND (exp, 0);
1018
1019  /* Normally convert enums to int,
1020     but convert wide enums to something wider.  */
1021  if (code == ENUMERAL_TYPE)
1022    {
1023      type = type_for_size (MAX (TYPE_PRECISION (type),
1024				 TYPE_PRECISION (integer_type_node)),
1025			    ((flag_traditional
1026			      || (TYPE_PRECISION (type)
1027				  >= TYPE_PRECISION (integer_type_node)))
1028			     && TREE_UNSIGNED (type)));
1029      return convert (type, exp);
1030    }
1031
1032  if (TREE_CODE (exp) == COMPONENT_REF
1033      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)))
1034    {
1035      tree width = DECL_SIZE (TREE_OPERAND (exp, 1));
1036      HOST_WIDE_INT low = TREE_INT_CST_LOW (width);
1037
1038      /* If it's thinner than an int, promote it like a
1039	 C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone.  */
1040
1041      if (low < TYPE_PRECISION (integer_type_node))
1042	{
1043	  if (flag_traditional && TREE_UNSIGNED (type))
1044	    return convert (unsigned_type_node, exp);
1045	  else
1046	    return convert (integer_type_node, exp);
1047	}
1048    }
1049
1050  if (C_PROMOTING_INTEGER_TYPE_P (type))
1051    {
1052      /* Traditionally, unsignedness is preserved in default promotions.
1053         Also preserve unsignedness if not really getting any wider.  */
1054      if (TREE_UNSIGNED (type)
1055	  && (flag_traditional
1056	      || TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
1057	return convert (unsigned_type_node, exp);
1058      return convert (integer_type_node, exp);
1059    }
1060  if (flag_traditional && !flag_allow_single_precision
1061      && TYPE_MAIN_VARIANT (type) == float_type_node)
1062    return convert (double_type_node, exp);
1063  if (code == VOID_TYPE)
1064    {
1065      error ("void value not ignored as it ought to be");
1066      return error_mark_node;
1067    }
1068  if (code == FUNCTION_TYPE)
1069    {
1070      return build_unary_op (ADDR_EXPR, exp, 0);
1071    }
1072  if (code == ARRAY_TYPE)
1073    {
1074      register tree adr;
1075      tree restype = TREE_TYPE (type);
1076      tree ptrtype;
1077      int constp = 0;
1078      int volatilep = 0;
1079
1080      if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r'
1081	  || TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
1082	{
1083	  constp = TREE_READONLY (exp);
1084	  volatilep = TREE_THIS_VOLATILE (exp);
1085	}
1086
1087      if (TYPE_QUALS (type) || constp || volatilep)
1088	restype
1089	  = c_build_qualified_type (restype,
1090				    TYPE_QUALS (type)
1091				    | (constp * TYPE_QUAL_CONST)
1092				    | (volatilep * TYPE_QUAL_VOLATILE));
1093
1094      if (TREE_CODE (exp) == INDIRECT_REF)
1095	return convert (TYPE_POINTER_TO (restype),
1096			TREE_OPERAND (exp, 0));
1097
1098      if (TREE_CODE (exp) == COMPOUND_EXPR)
1099	{
1100	  tree op1 = default_conversion (TREE_OPERAND (exp, 1));
1101	  return build (COMPOUND_EXPR, TREE_TYPE (op1),
1102			TREE_OPERAND (exp, 0), op1);
1103	}
1104
1105      if (! lvalue_p (exp)
1106	  && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
1107	{
1108	  error ("invalid use of non-lvalue array");
1109	  return error_mark_node;
1110	}
1111
1112      ptrtype = build_pointer_type (restype);
1113
1114      if (TREE_CODE (exp) == VAR_DECL)
1115	{
1116	  /* ??? This is not really quite correct
1117	     in that the type of the operand of ADDR_EXPR
1118	     is not the target type of the type of the ADDR_EXPR itself.
1119	     Question is, can this lossage be avoided?  */
1120	  adr = build1 (ADDR_EXPR, ptrtype, exp);
1121	  if (mark_addressable (exp) == 0)
1122	    return error_mark_node;
1123	  TREE_CONSTANT (adr) = staticp (exp);
1124	  TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1125	  return adr;
1126	}
1127      /* This way is better for a COMPONENT_REF since it can
1128	 simplify the offset for a component.  */
1129      adr = build_unary_op (ADDR_EXPR, exp, 1);
1130      return convert (ptrtype, adr);
1131    }
1132  return exp;
1133}
1134
1135/* Look up component name in the structure type definition.
1136
1137   If this component name is found indirectly within an anonymous union,
1138   store in *INDIRECT the component which directly contains
1139   that anonymous union.  Otherwise, set *INDIRECT to 0.  */
1140
1141static tree
1142lookup_field (type, component, indirect)
1143     tree type, component;
1144     tree *indirect;
1145{
1146  tree field;
1147
1148  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1149     to the field elements.  Use a binary search on this array to quickly
1150     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1151     will always be set for structures which have many elements.  */
1152
1153  if (TYPE_LANG_SPECIFIC (type))
1154    {
1155      int bot, top, half;
1156      tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1157
1158      field = TYPE_FIELDS (type);
1159      bot = 0;
1160      top = TYPE_LANG_SPECIFIC (type)->len;
1161      while (top - bot > 1)
1162	{
1163	  half = (top - bot + 1) >> 1;
1164	  field = field_array[bot+half];
1165
1166	  if (DECL_NAME (field) == NULL_TREE)
1167	    {
1168	      /* Step through all anon unions in linear fashion.  */
1169	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1170		{
1171		  tree anon = 0, junk;
1172
1173		  field = field_array[bot++];
1174		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1175		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1176		    anon = lookup_field (TREE_TYPE (field), component, &junk);
1177
1178		  if (anon != NULL_TREE)
1179		    {
1180		      *indirect = field;
1181		      return anon;
1182		    }
1183		}
1184
1185	      /* Entire record is only anon unions.  */
1186	      if (bot > top)
1187		return NULL_TREE;
1188
1189	      /* Restart the binary search, with new lower bound.  */
1190	      continue;
1191	    }
1192
1193	  if (DECL_NAME (field) == component)
1194	    break;
1195	  if (DECL_NAME (field) < component)
1196	    bot += half;
1197	  else
1198	    top = bot + half;
1199	}
1200
1201      if (DECL_NAME (field_array[bot]) == component)
1202	field = field_array[bot];
1203      else if (DECL_NAME (field) != component)
1204	field = 0;
1205    }
1206  else
1207    {
1208      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1209	{
1210	  if (DECL_NAME (field) == NULL_TREE)
1211	    {
1212	      tree junk;
1213	      tree anon = 0;
1214
1215	      if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1216		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1217		anon = lookup_field (TREE_TYPE (field), component, &junk);
1218
1219	      if (anon != NULL_TREE)
1220		{
1221		  *indirect = field;
1222		  return anon;
1223		}
1224	    }
1225
1226	  if (DECL_NAME (field) == component)
1227	    break;
1228	}
1229    }
1230
1231  *indirect = NULL_TREE;
1232  return field;
1233}
1234
1235/* Make an expression to refer to the COMPONENT field of
1236   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1237
1238tree
1239build_component_ref (datum, component)
1240     tree datum, component;
1241{
1242  register tree type = TREE_TYPE (datum);
1243  register enum tree_code code = TREE_CODE (type);
1244  register tree field = NULL;
1245  register tree ref;
1246
1247  /* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
1248     unless we are not to support things not strictly ANSI.  */
1249  switch (TREE_CODE (datum))
1250    {
1251    case COMPOUND_EXPR:
1252      {
1253	tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1254	return build (COMPOUND_EXPR, TREE_TYPE (value),
1255		      TREE_OPERAND (datum, 0), value);
1256      }
1257    case COND_EXPR:
1258      return build_conditional_expr
1259	(TREE_OPERAND (datum, 0),
1260	 build_component_ref (TREE_OPERAND (datum, 1), component),
1261	 build_component_ref (TREE_OPERAND (datum, 2), component));
1262
1263    default:
1264      break;
1265    }
1266
1267  /* See if there is a field or component with name COMPONENT.  */
1268
1269  if (code == RECORD_TYPE || code == UNION_TYPE)
1270    {
1271      tree indirect = 0;
1272
1273      if (TYPE_SIZE (type) == 0)
1274	{
1275	  incomplete_type_error (NULL_TREE, type);
1276	  return error_mark_node;
1277	}
1278
1279      field = lookup_field (type, component, &indirect);
1280
1281      if (!field)
1282	{
1283	  error (code == RECORD_TYPE
1284		 ? "structure has no member named `%s'"
1285		 : "union has no member named `%s'",
1286		 IDENTIFIER_POINTER (component));
1287	  return error_mark_node;
1288	}
1289      if (TREE_TYPE (field) == error_mark_node)
1290	return error_mark_node;
1291
1292      /* If FIELD was found buried within an anonymous union,
1293	 make one COMPONENT_REF to get that anonymous union,
1294	 then fall thru to make a second COMPONENT_REF to get FIELD.  */
1295      if (indirect != 0)
1296	{
1297	  ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
1298	  if (TREE_READONLY (datum) || TREE_READONLY (indirect))
1299	    TREE_READONLY (ref) = 1;
1300	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
1301	    TREE_THIS_VOLATILE (ref) = 1;
1302	  datum = ref;
1303	}
1304
1305      ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
1306
1307      if (TREE_READONLY (datum) || TREE_READONLY (field))
1308	TREE_READONLY (ref) = 1;
1309      if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
1310	TREE_THIS_VOLATILE (ref) = 1;
1311
1312      return ref;
1313    }
1314  else if (code != ERROR_MARK)
1315    error ("request for member `%s' in something not a structure or union",
1316	    IDENTIFIER_POINTER (component));
1317
1318  return error_mark_node;
1319}
1320
1321/* Given an expression PTR for a pointer, return an expression
1322   for the value pointed to.
1323   ERRORSTRING is the name of the operator to appear in error messages.  */
1324
1325tree
1326build_indirect_ref (ptr, errorstring)
1327     tree ptr;
1328     const char *errorstring;
1329{
1330  register tree pointer = default_conversion (ptr);
1331  register tree type = TREE_TYPE (pointer);
1332
1333  if (TREE_CODE (type) == POINTER_TYPE)
1334    {
1335      if (TREE_CODE (pointer) == ADDR_EXPR
1336	  && !flag_volatile
1337	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1338	      == TREE_TYPE (type)))
1339	return TREE_OPERAND (pointer, 0);
1340      else
1341	{
1342	  tree t = TREE_TYPE (type);
1343	  register tree ref = build1 (INDIRECT_REF,
1344				      TYPE_MAIN_VARIANT (t), pointer);
1345
1346	  if (TYPE_SIZE (t) == 0 && TREE_CODE (t) != ARRAY_TYPE)
1347	    {
1348	      error ("dereferencing pointer to incomplete type");
1349	      return error_mark_node;
1350	    }
1351	  if (TREE_CODE (t) == VOID_TYPE && skip_evaluation == 0)
1352	    warning ("dereferencing `void *' pointer");
1353
1354	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1355	     so that we get the proper error message if the result is used
1356	     to assign to.  Also, &* is supposed to be a no-op.
1357	     And ANSI C seems to specify that the type of the result
1358	     should be the const type.  */
1359	  /* A de-reference of a pointer to const is not a const.  It is valid
1360	     to change it via some other pointer.  */
1361	  TREE_READONLY (ref) = TYPE_READONLY (t);
1362	  TREE_SIDE_EFFECTS (ref)
1363	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1364	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1365	  return ref;
1366	}
1367    }
1368  else if (TREE_CODE (pointer) != ERROR_MARK)
1369    error ("invalid type argument of `%s'", errorstring);
1370  return error_mark_node;
1371}
1372
1373/* This handles expressions of the form "a[i]", which denotes
1374   an array reference.
1375
1376   This is logically equivalent in C to *(a+i), but we may do it differently.
1377   If A is a variable or a member, we generate a primitive ARRAY_REF.
1378   This avoids forcing the array out of registers, and can work on
1379   arrays that are not lvalues (for example, members of structures returned
1380   by functions).  */
1381
1382tree
1383build_array_ref (array, index)
1384     tree array, index;
1385{
1386  if (index == 0)
1387    {
1388      error ("subscript missing in array reference");
1389      return error_mark_node;
1390    }
1391
1392  if (TREE_TYPE (array) == error_mark_node
1393      || TREE_TYPE (index) == error_mark_node)
1394    return error_mark_node;
1395
1396  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1397      && TREE_CODE (array) != INDIRECT_REF)
1398    {
1399      tree rval, type;
1400
1401      /* Subscripting with type char is likely to lose
1402	 on a machine where chars are signed.
1403	 So warn on any machine, but optionally.
1404	 Don't warn for unsigned char since that type is safe.
1405	 Don't warn for signed char because anyone who uses that
1406	 must have done so deliberately.  */
1407      if (warn_char_subscripts
1408	  && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1409	warning ("array subscript has type `char'");
1410
1411      /* Apply default promotions *after* noticing character types.  */
1412      index = default_conversion (index);
1413
1414      /* Require integer *after* promotion, for sake of enums.  */
1415      if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1416	{
1417	  error ("array subscript is not an integer");
1418	  return error_mark_node;
1419	}
1420
1421      /* An array that is indexed by a non-constant
1422	 cannot be stored in a register; we must be able to do
1423	 address arithmetic on its address.
1424	 Likewise an array of elements of variable size.  */
1425      if (TREE_CODE (index) != INTEGER_CST
1426	  || (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))) != 0
1427	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1428	{
1429	  if (mark_addressable (array) == 0)
1430	    return error_mark_node;
1431	}
1432      /* An array that is indexed by a constant value which is not within
1433	 the array bounds cannot be stored in a register either; because we
1434	 would get a crash in store_bit_field/extract_bit_field when trying
1435	 to access a non-existent part of the register.  */
1436      if (TREE_CODE (index) == INTEGER_CST
1437	  && TYPE_VALUES (TREE_TYPE (array))
1438	  && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1439	{
1440	  if (mark_addressable (array) == 0)
1441	    return error_mark_node;
1442	}
1443
1444      if (pedantic && !lvalue_p (array))
1445	{
1446	  if (DECL_REGISTER (array))
1447	    pedwarn ("ANSI C forbids subscripting `register' array");
1448	  else
1449	    pedwarn ("ANSI C forbids subscripting non-lvalue array");
1450	}
1451
1452      if (pedantic)
1453	{
1454	  tree foo = array;
1455	  while (TREE_CODE (foo) == COMPONENT_REF)
1456	    foo = TREE_OPERAND (foo, 0);
1457	  if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1458	    pedwarn ("ANSI C forbids subscripting non-lvalue array");
1459	}
1460
1461      type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1462      rval = build (ARRAY_REF, type, array, index);
1463      /* Array ref is const/volatile if the array elements are
1464         or if the array is.  */
1465      TREE_READONLY (rval)
1466	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1467	    | TREE_READONLY (array));
1468      TREE_SIDE_EFFECTS (rval)
1469	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1470	    | TREE_SIDE_EFFECTS (array));
1471      TREE_THIS_VOLATILE (rval)
1472	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1473	    /* This was added by rms on 16 Nov 91.
1474	       It fixes  vol struct foo *a;  a->elts[1]
1475	       in an inline function.
1476	       Hope it doesn't break something else.  */
1477	    | TREE_THIS_VOLATILE (array));
1478      return require_complete_type (fold (rval));
1479    }
1480
1481  {
1482    tree ar = default_conversion (array);
1483    tree ind = default_conversion (index);
1484
1485    /* Do the same warning check as above, but only on the part that's
1486       syntactically the index and only if it is also semantically
1487       the index.  */
1488    if (warn_char_subscripts
1489	&& TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1490	&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1491      warning ("subscript has type `char'");
1492
1493    /* Put the integer in IND to simplify error checking.  */
1494    if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1495      {
1496	tree temp = ar;
1497	ar = ind;
1498	ind = temp;
1499      }
1500
1501    if (ar == error_mark_node)
1502      return ar;
1503
1504    if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1505	|| TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1506      {
1507	error ("subscripted value is neither array nor pointer");
1508	return error_mark_node;
1509      }
1510    if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1511      {
1512	error ("array subscript is not an integer");
1513	return error_mark_node;
1514      }
1515
1516    return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1517			       "array indexing");
1518  }
1519}
1520
1521/* Build a function call to function FUNCTION with parameters PARAMS.
1522   PARAMS is a list--a chain of TREE_LIST nodes--in which the
1523   TREE_VALUE of each node is a parameter-expression.
1524   FUNCTION's data type may be a function type or a pointer-to-function.  */
1525
1526tree
1527build_function_call (function, params)
1528     tree function, params;
1529{
1530  register tree fntype, fundecl = 0;
1531  register tree coerced_params;
1532  tree name = NULL_TREE, assembler_name = NULL_TREE;
1533
1534  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
1535  STRIP_TYPE_NOPS (function);
1536
1537  /* Convert anything with function type to a pointer-to-function.  */
1538  if (TREE_CODE (function) == FUNCTION_DECL)
1539    {
1540      name = DECL_NAME (function);
1541      assembler_name = DECL_ASSEMBLER_NAME (function);
1542
1543      /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1544	 (because calling an inline function does not mean the function
1545	 needs to be separately compiled).  */
1546      fntype = build_type_variant (TREE_TYPE (function),
1547				   TREE_READONLY (function),
1548				   TREE_THIS_VOLATILE (function));
1549      fundecl = function;
1550      function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1551    }
1552  else
1553    function = default_conversion (function);
1554
1555  fntype = TREE_TYPE (function);
1556
1557  if (TREE_CODE (fntype) == ERROR_MARK)
1558    return error_mark_node;
1559
1560  if (!(TREE_CODE (fntype) == POINTER_TYPE
1561	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1562    {
1563      error ("called object is not a function");
1564      return error_mark_node;
1565    }
1566
1567  /* fntype now gets the type of function pointed to.  */
1568  fntype = TREE_TYPE (fntype);
1569
1570  /* Convert the parameters to the types declared in the
1571     function prototype, or apply default promotions.  */
1572
1573  coerced_params
1574    = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1575
1576  /* Check for errors in format strings.  */
1577
1578  if (warn_format && (name || assembler_name))
1579    check_function_format (name, assembler_name, coerced_params);
1580
1581  /* Recognize certain built-in functions so we can make tree-codes
1582     other than CALL_EXPR.  We do this when it enables fold-const.c
1583     to do something useful.  */
1584
1585  if (TREE_CODE (function) == ADDR_EXPR
1586      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1587      && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1588    switch (DECL_FUNCTION_CODE (TREE_OPERAND (function, 0)))
1589      {
1590      case BUILT_IN_ABS:
1591      case BUILT_IN_LABS:
1592      case BUILT_IN_FABS:
1593	if (coerced_params == 0)
1594	  return integer_zero_node;
1595	return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
1596      default:
1597	break;
1598      }
1599
1600  {
1601    register tree result
1602      = build (CALL_EXPR, TREE_TYPE (fntype),
1603	       function, coerced_params, NULL_TREE);
1604
1605    TREE_SIDE_EFFECTS (result) = 1;
1606    if (TREE_TYPE (result) == void_type_node)
1607      return result;
1608    return require_complete_type (result);
1609  }
1610}
1611
1612/* Convert the argument expressions in the list VALUES
1613   to the types in the list TYPELIST.  The result is a list of converted
1614   argument expressions.
1615
1616   If TYPELIST is exhausted, or when an element has NULL as its type,
1617   perform the default conversions.
1618
1619   PARMLIST is the chain of parm decls for the function being called.
1620   It may be 0, if that info is not available.
1621   It is used only for generating error messages.
1622
1623   NAME is an IDENTIFIER_NODE or 0.  It is used only for error messages.
1624
1625   This is also where warnings about wrong number of args are generated.
1626
1627   Both VALUES and the returned value are chains of TREE_LIST nodes
1628   with the elements of the list in the TREE_VALUE slots of those nodes.  */
1629
1630static tree
1631convert_arguments (typelist, values, name, fundecl)
1632     tree typelist, values, name, fundecl;
1633{
1634  register tree typetail, valtail;
1635  register tree result = NULL;
1636  int parmnum;
1637
1638  /* Scan the given expressions and types, producing individual
1639     converted arguments and pushing them on RESULT in reverse order.  */
1640
1641  for (valtail = values, typetail = typelist, parmnum = 0;
1642       valtail;
1643       valtail = TREE_CHAIN (valtail), parmnum++)
1644    {
1645      register tree type = typetail ? TREE_VALUE (typetail) : 0;
1646      register tree val = TREE_VALUE (valtail);
1647
1648      if (type == void_type_node)
1649	{
1650	  if (name)
1651	    error ("too many arguments to function `%s'",
1652		   IDENTIFIER_POINTER (name));
1653	  else
1654	    error ("too many arguments to function");
1655	  break;
1656	}
1657
1658      /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
1659      /* Do not use STRIP_NOPS here!  We do not want an enumerator with value 0
1660	 to convert automatically to a pointer.  */
1661      if (TREE_CODE (val) == NON_LVALUE_EXPR)
1662	val = TREE_OPERAND (val, 0);
1663
1664      if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
1665	  || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
1666	val = default_conversion (val);
1667
1668      val = require_complete_type (val);
1669
1670      if (type != 0)
1671	{
1672	  /* Formal parm type is specified by a function prototype.  */
1673	  tree parmval;
1674
1675	  if (TYPE_SIZE (type) == 0)
1676	    {
1677	      error ("type of formal parameter %d is incomplete", parmnum + 1);
1678	      parmval = val;
1679	    }
1680	  else
1681	    {
1682	      /* Optionally warn about conversions that
1683		 differ from the default conversions.  */
1684	      if (warn_conversion)
1685		{
1686		  int formal_prec = TYPE_PRECISION (type);
1687
1688		  if (INTEGRAL_TYPE_P (type)
1689		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1690		    warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1691		  else if (TREE_CODE (type) == COMPLEX_TYPE
1692			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1693		    warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1694		  else if (TREE_CODE (type) == REAL_TYPE
1695			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1696		    warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1697		  else if (TREE_CODE (type) == REAL_TYPE
1698			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1699		    warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1700		  /* ??? At some point, messages should be written about
1701		     conversions between complex types, but that's too messy
1702		     to do now.  */
1703		  else if (TREE_CODE (type) == REAL_TYPE
1704			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1705		    {
1706		      /* Warn if any argument is passed as `float',
1707			 since without a prototype it would be `double'.  */
1708		      if (formal_prec == TYPE_PRECISION (float_type_node))
1709			warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1710		    }
1711		  /* Detect integer changing in width or signedness.  */
1712		  else if (INTEGRAL_TYPE_P (type)
1713			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1714		    {
1715		      tree would_have_been = default_conversion (val);
1716		      tree type1 = TREE_TYPE (would_have_been);
1717
1718		      if (TREE_CODE (type) == ENUMERAL_TYPE
1719			  && type == TREE_TYPE (val))
1720			/* No warning if function asks for enum
1721			   and the actual arg is that enum type.  */
1722			;
1723		      else if (formal_prec != TYPE_PRECISION (type1))
1724			warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1725		      else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1726			;
1727		      /* Don't complain if the formal parameter type
1728			 is an enum, because we can't tell now whether
1729			 the value was an enum--even the same enum.  */
1730		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
1731			;
1732		      else if (TREE_CODE (val) == INTEGER_CST
1733			       && int_fits_type_p (val, type))
1734			/* Change in signedness doesn't matter
1735			   if a constant value is unaffected.  */
1736			;
1737		      /* Likewise for a constant in a NOP_EXPR.  */
1738		      else if (TREE_CODE (val) == NOP_EXPR
1739			       && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1740			       && int_fits_type_p (TREE_OPERAND (val, 0), type))
1741			;
1742#if 0 /* We never get such tree structure here.  */
1743		      else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1744			       && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1745			       && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1746			/* Change in signedness doesn't matter
1747			   if an enum value is unaffected.  */
1748			;
1749#endif
1750		      /* If the value is extended from a narrower
1751			 unsigned type, it doesn't matter whether we
1752			 pass it as signed or unsigned; the value
1753			 certainly is the same either way.  */
1754		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1755			       && TREE_UNSIGNED (TREE_TYPE (val)))
1756			;
1757		      else if (TREE_UNSIGNED (type))
1758			warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1759		      else
1760			warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1761		    }
1762		}
1763
1764	      parmval = convert_for_assignment (type, val,
1765					        (char *) 0, /* arg passing  */
1766						fundecl, name, parmnum + 1);
1767
1768#ifdef PROMOTE_PROTOTYPES
1769	      if ((TREE_CODE (type) == INTEGER_TYPE
1770		   || TREE_CODE (type) == ENUMERAL_TYPE)
1771		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1772		parmval = default_conversion (parmval);
1773#endif
1774	    }
1775	  result = tree_cons (NULL_TREE, parmval, result);
1776	}
1777      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1778               && (TYPE_PRECISION (TREE_TYPE (val))
1779	           < TYPE_PRECISION (double_type_node)))
1780	/* Convert `float' to `double'.  */
1781	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1782      else
1783	/* Convert `short' and `char' to full-size `int'.  */
1784	result = tree_cons (NULL_TREE, default_conversion (val), result);
1785
1786      if (typetail)
1787	typetail = TREE_CHAIN (typetail);
1788    }
1789
1790  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1791    {
1792      if (name)
1793	error ("too few arguments to function `%s'",
1794	       IDENTIFIER_POINTER (name));
1795      else
1796	error ("too few arguments to function");
1797    }
1798
1799  return nreverse (result);
1800}
1801
1802/* This is the entry point used by the parser
1803   for binary operators in the input.
1804   In addition to constructing the expression,
1805   we check for operands that were written with other binary operators
1806   in a way that is likely to confuse the user.  */
1807
1808tree
1809parser_build_binary_op (code, arg1, arg2)
1810     enum tree_code code;
1811     tree arg1, arg2;
1812{
1813  tree result = build_binary_op (code, arg1, arg2, 1);
1814
1815  char class;
1816  char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1817  char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1818  enum tree_code code1 = ERROR_MARK;
1819  enum tree_code code2 = ERROR_MARK;
1820
1821  if (class1 == 'e' || class1 == '1'
1822      || class1 == '2' || class1 == '<')
1823    code1 = C_EXP_ORIGINAL_CODE (arg1);
1824  if (class2 == 'e' || class2 == '1'
1825      || class2 == '2' || class2 == '<')
1826    code2 = C_EXP_ORIGINAL_CODE (arg2);
1827
1828  /* Check for cases such as x+y<<z which users are likely
1829     to misinterpret.  If parens are used, C_EXP_ORIGINAL_CODE
1830     is cleared to prevent these warnings.  */
1831  if (warn_parentheses)
1832    {
1833      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1834	{
1835	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1836	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1837	    warning ("suggest parentheses around + or - inside shift");
1838	}
1839
1840      if (code == TRUTH_ORIF_EXPR)
1841	{
1842	  if (code1 == TRUTH_ANDIF_EXPR
1843	      || code2 == TRUTH_ANDIF_EXPR)
1844	    warning ("suggest parentheses around && within ||");
1845	}
1846
1847      if (code == BIT_IOR_EXPR)
1848	{
1849	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1850	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1851	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1852	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1853	    warning ("suggest parentheses around arithmetic in operand of |");
1854	  /* Check cases like x|y==z */
1855	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1856	    warning ("suggest parentheses around comparison in operand of |");
1857	}
1858
1859      if (code == BIT_XOR_EXPR)
1860	{
1861	  if (code1 == BIT_AND_EXPR
1862	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1863	      || code2 == BIT_AND_EXPR
1864	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1865	    warning ("suggest parentheses around arithmetic in operand of ^");
1866	  /* Check cases like x^y==z */
1867	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1868	    warning ("suggest parentheses around comparison in operand of ^");
1869	}
1870
1871      if (code == BIT_AND_EXPR)
1872	{
1873	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1874	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1875	    warning ("suggest parentheses around + or - in operand of &");
1876	  /* Check cases like x&y==z */
1877	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1878	    warning ("suggest parentheses around comparison in operand of &");
1879	}
1880    }
1881
1882  /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
1883  if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1884      && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1885    warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1886
1887  unsigned_conversion_warning (result, arg1);
1888  unsigned_conversion_warning (result, arg2);
1889  overflow_warning (result);
1890
1891  class = TREE_CODE_CLASS (TREE_CODE (result));
1892
1893  /* Record the code that was specified in the source,
1894     for the sake of warnings about confusing nesting.  */
1895  if (class == 'e' || class == '1'
1896      || class == '2' || class == '<')
1897    C_SET_EXP_ORIGINAL_CODE (result, code);
1898  else
1899    {
1900      int flag = TREE_CONSTANT (result);
1901      /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1902	 so that convert_for_assignment wouldn't strip it.
1903	 That way, we got warnings for things like p = (1 - 1).
1904	 But it turns out we should not get those warnings.  */
1905      result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1906      C_SET_EXP_ORIGINAL_CODE (result, code);
1907      TREE_CONSTANT (result) = flag;
1908    }
1909
1910  return result;
1911}
1912
1913/* Build a binary-operation expression without default conversions.
1914   CODE is the kind of expression to build.
1915   This function differs from `build' in several ways:
1916   the data type of the result is computed and recorded in it,
1917   warnings are generated if arg data types are invalid,
1918   special handling for addition and subtraction of pointers is known,
1919   and some optimization is done (operations on narrow ints
1920   are done in the narrower type when that gives the same result).
1921   Constant folding is also done before the result is returned.
1922
1923   Note that the operands will never have enumeral types, or function
1924   or array types, because either they will have the default conversions
1925   performed or they have both just been converted to some other type in which
1926   the arithmetic is to be done.  */
1927
1928tree
1929build_binary_op (code, orig_op0, orig_op1, convert_p)
1930     enum tree_code code;
1931     tree orig_op0, orig_op1;
1932     int convert_p;
1933{
1934  tree type0, type1;
1935  register enum tree_code code0, code1;
1936  tree op0, op1;
1937
1938  /* Expression code to give to the expression when it is built.
1939     Normally this is CODE, which is what the caller asked for,
1940     but in some special cases we change it.  */
1941  register enum tree_code resultcode = code;
1942
1943  /* Data type in which the computation is to be performed.
1944     In the simplest cases this is the common type of the arguments.  */
1945  register tree result_type = NULL;
1946
1947  /* Nonzero means operands have already been type-converted
1948     in whatever way is necessary.
1949     Zero means they need to be converted to RESULT_TYPE.  */
1950  int converted = 0;
1951
1952  /* Nonzero means create the expression with this type, rather than
1953     RESULT_TYPE.  */
1954  tree build_type = 0;
1955
1956  /* Nonzero means after finally constructing the expression
1957     convert it to this type.  */
1958  tree final_type = 0;
1959
1960  /* Nonzero if this is an operation like MIN or MAX which can
1961     safely be computed in short if both args are promoted shorts.
1962     Also implies COMMON.
1963     -1 indicates a bitwise operation; this makes a difference
1964     in the exact conditions for when it is safe to do the operation
1965     in a narrower mode.  */
1966  int shorten = 0;
1967
1968  /* Nonzero if this is a comparison operation;
1969     if both args are promoted shorts, compare the original shorts.
1970     Also implies COMMON.  */
1971  int short_compare = 0;
1972
1973  /* Nonzero if this is a right-shift operation, which can be computed on the
1974     original short and then promoted if the operand is a promoted short.  */
1975  int short_shift = 0;
1976
1977  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
1978  int common = 0;
1979
1980  if (convert_p)
1981    {
1982      op0 = default_conversion (orig_op0);
1983      op1 = default_conversion (orig_op1);
1984    }
1985  else
1986    {
1987      op0 = orig_op0;
1988      op1 = orig_op1;
1989    }
1990
1991  type0 = TREE_TYPE (op0);
1992  type1 = TREE_TYPE (op1);
1993
1994  /* The expression codes of the data types of the arguments tell us
1995     whether the arguments are integers, floating, pointers, etc.  */
1996  code0 = TREE_CODE (type0);
1997  code1 = TREE_CODE (type1);
1998
1999  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2000  STRIP_TYPE_NOPS (op0);
2001  STRIP_TYPE_NOPS (op1);
2002
2003  /* If an error was already reported for one of the arguments,
2004     avoid reporting another error.  */
2005
2006  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
2007    return error_mark_node;
2008
2009  switch (code)
2010    {
2011    case PLUS_EXPR:
2012      /* Handle the pointer + int case.  */
2013      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2014	return pointer_int_sum (PLUS_EXPR, op0, op1);
2015      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
2016	return pointer_int_sum (PLUS_EXPR, op1, op0);
2017      else
2018	common = 1;
2019      break;
2020
2021    case MINUS_EXPR:
2022      /* Subtraction of two similar pointers.
2023	 We must subtract them as integers, then divide by object size.  */
2024      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
2025	  && comp_target_types (type0, type1))
2026	return pointer_diff (op0, op1);
2027      /* Handle pointer minus int.  Just like pointer plus int.  */
2028      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2029	return pointer_int_sum (MINUS_EXPR, op0, op1);
2030      else
2031	common = 1;
2032      break;
2033
2034    case MULT_EXPR:
2035      common = 1;
2036      break;
2037
2038    case TRUNC_DIV_EXPR:
2039    case CEIL_DIV_EXPR:
2040    case FLOOR_DIV_EXPR:
2041    case ROUND_DIV_EXPR:
2042    case EXACT_DIV_EXPR:
2043      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2044	   || code0 == COMPLEX_TYPE)
2045	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2046	      || code1 == COMPLEX_TYPE))
2047	{
2048	  if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2049	    resultcode = RDIV_EXPR;
2050	  else
2051	    {
2052	      /* Although it would be tempting to shorten always here, that
2053		 loses on some targets, since the modulo instruction is
2054		 undefined if the quotient can't be represented in the
2055		 computation mode.  We shorten only if unsigned or if
2056		 dividing by something we know != -1.  */
2057	      shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2058			 || (TREE_CODE (op1) == INTEGER_CST
2059			     && (TREE_INT_CST_LOW (op1) != -1
2060				 || TREE_INT_CST_HIGH (op1) != -1)));
2061	    }
2062	  common = 1;
2063	}
2064      break;
2065
2066    case BIT_AND_EXPR:
2067    case BIT_ANDTC_EXPR:
2068    case BIT_IOR_EXPR:
2069    case BIT_XOR_EXPR:
2070      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2071	shorten = -1;
2072      /* If one operand is a constant, and the other is a short type
2073	 that has been converted to an int,
2074	 really do the work in the short type and then convert the
2075	 result to int.  If we are lucky, the constant will be 0 or 1
2076	 in the short type, making the entire operation go away.  */
2077      if (TREE_CODE (op0) == INTEGER_CST
2078	  && TREE_CODE (op1) == NOP_EXPR
2079	  && TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
2080	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
2081	{
2082	  final_type = result_type;
2083	  op1 = TREE_OPERAND (op1, 0);
2084	  result_type = TREE_TYPE (op1);
2085	}
2086      if (TREE_CODE (op1) == INTEGER_CST
2087	  && TREE_CODE (op0) == NOP_EXPR
2088	  && TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
2089	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
2090	{
2091	  final_type = result_type;
2092	  op0 = TREE_OPERAND (op0, 0);
2093	  result_type = TREE_TYPE (op0);
2094	}
2095      break;
2096
2097    case TRUNC_MOD_EXPR:
2098    case FLOOR_MOD_EXPR:
2099      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2100	{
2101	  /* Although it would be tempting to shorten always here, that loses
2102	     on some targets, since the modulo instruction is undefined if the
2103	     quotient can't be represented in the computation mode.  We shorten
2104	     only if unsigned or if dividing by something we know != -1.  */
2105	  shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2106		     || (TREE_CODE (op1) == INTEGER_CST
2107			 && (TREE_INT_CST_LOW (op1) != -1
2108			     || TREE_INT_CST_HIGH (op1) != -1)));
2109	  common = 1;
2110	}
2111      break;
2112
2113    case TRUTH_ANDIF_EXPR:
2114    case TRUTH_ORIF_EXPR:
2115    case TRUTH_AND_EXPR:
2116    case TRUTH_OR_EXPR:
2117    case TRUTH_XOR_EXPR:
2118      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2119	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2120	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2121	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2122	{
2123	  /* Result of these operations is always an int,
2124	     but that does not mean the operands should be
2125	     converted to ints!  */
2126	  result_type = integer_type_node;
2127	  op0 = truthvalue_conversion (op0);
2128	  op1 = truthvalue_conversion (op1);
2129	  converted = 1;
2130	}
2131      break;
2132
2133      /* Shift operations: result has same type as first operand;
2134	 always convert second operand to int.
2135	 Also set SHORT_SHIFT if shifting rightward.  */
2136
2137    case RSHIFT_EXPR:
2138      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2139	{
2140	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2141	    {
2142	      if (tree_int_cst_sgn (op1) < 0)
2143		warning ("right shift count is negative");
2144	      else
2145		{
2146		  if (TREE_INT_CST_LOW (op1) | TREE_INT_CST_HIGH (op1))
2147		    short_shift = 1;
2148		  if (TREE_INT_CST_HIGH (op1) != 0
2149		      || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2150			  >= TYPE_PRECISION (type0)))
2151		    warning ("right shift count >= width of type");
2152		}
2153	    }
2154	  /* Use the type of the value to be shifted.
2155	     This is what most traditional C compilers do.  */
2156	  result_type = type0;
2157	  /* Unless traditional, convert the shift-count to an integer,
2158	     regardless of size of value being shifted.  */
2159	  if (! flag_traditional)
2160	    {
2161	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2162		op1 = convert (integer_type_node, op1);
2163	      /* Avoid converting op1 to result_type later.  */
2164	      converted = 1;
2165	    }
2166	}
2167      break;
2168
2169    case LSHIFT_EXPR:
2170      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2171	{
2172	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2173	    {
2174	      if (tree_int_cst_sgn (op1) < 0)
2175		warning ("left shift count is negative");
2176	      else if (TREE_INT_CST_HIGH (op1) != 0
2177		       || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2178			   >= TYPE_PRECISION (type0)))
2179		warning ("left shift count >= width of type");
2180	    }
2181	  /* Use the type of the value to be shifted.
2182	     This is what most traditional C compilers do.  */
2183	  result_type = type0;
2184	  /* Unless traditional, convert the shift-count to an integer,
2185	     regardless of size of value being shifted.  */
2186	  if (! flag_traditional)
2187	    {
2188	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2189		op1 = convert (integer_type_node, op1);
2190	      /* Avoid converting op1 to result_type later.  */
2191	      converted = 1;
2192	    }
2193	}
2194      break;
2195
2196    case RROTATE_EXPR:
2197    case LROTATE_EXPR:
2198      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2199	{
2200	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2201	    {
2202	      if (tree_int_cst_sgn (op1) < 0)
2203		warning ("shift count is negative");
2204	      else if (TREE_INT_CST_HIGH (op1) != 0
2205		       || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2206			   >= TYPE_PRECISION (type0)))
2207		warning ("shift count >= width of type");
2208	    }
2209	  /* Use the type of the value to be shifted.
2210	     This is what most traditional C compilers do.  */
2211	  result_type = type0;
2212	  /* Unless traditional, convert the shift-count to an integer,
2213	     regardless of size of value being shifted.  */
2214	  if (! flag_traditional)
2215	    {
2216	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2217		op1 = convert (integer_type_node, op1);
2218	      /* Avoid converting op1 to result_type later.  */
2219	      converted = 1;
2220	    }
2221	}
2222      break;
2223
2224    case EQ_EXPR:
2225    case NE_EXPR:
2226      /* Result of comparison is always int,
2227	 but don't convert the args to int!  */
2228      build_type = integer_type_node;
2229      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2230	   || code0 == COMPLEX_TYPE)
2231	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2232	      || code1 == COMPLEX_TYPE))
2233	short_compare = 1;
2234      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2235	{
2236	  register tree tt0 = TREE_TYPE (type0);
2237	  register tree tt1 = TREE_TYPE (type1);
2238	  /* Anything compares with void *.  void * compares with anything.
2239	     Otherwise, the targets must be compatible
2240	     and both must be object or both incomplete.  */
2241	  if (comp_target_types (type0, type1))
2242	    result_type = common_type (type0, type1);
2243	  else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
2244	    {
2245	      /* op0 != orig_op0 detects the case of something
2246		 whose value is 0 but which isn't a valid null ptr const.  */
2247	      if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2248		  && TREE_CODE (tt1) == FUNCTION_TYPE)
2249		pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2250	    }
2251	  else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
2252	    {
2253	      if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2254		  && TREE_CODE (tt0) == FUNCTION_TYPE)
2255		pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2256	    }
2257	  else
2258	    pedwarn ("comparison of distinct pointer types lacks a cast");
2259
2260	  if (result_type == NULL_TREE)
2261	    result_type = ptr_type_node;
2262	}
2263      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2264	       && integer_zerop (op1))
2265	result_type = type0;
2266      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2267	       && integer_zerop (op0))
2268	result_type = type1;
2269      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2270	{
2271	  result_type = type0;
2272	  if (! flag_traditional)
2273	    pedwarn ("comparison between pointer and integer");
2274	}
2275      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2276	{
2277	  result_type = type1;
2278	  if (! flag_traditional)
2279	    pedwarn ("comparison between pointer and integer");
2280	}
2281      break;
2282
2283    case MAX_EXPR:
2284    case MIN_EXPR:
2285      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2286	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2287	shorten = 1;
2288      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2289	{
2290	  if (comp_target_types (type0, type1))
2291	    {
2292	      result_type = common_type (type0, type1);
2293	      if (pedantic
2294		  && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2295		pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2296	    }
2297	  else
2298	    {
2299	      result_type = ptr_type_node;
2300	      pedwarn ("comparison of distinct pointer types lacks a cast");
2301	    }
2302	}
2303      break;
2304
2305    case LE_EXPR:
2306    case GE_EXPR:
2307    case LT_EXPR:
2308    case GT_EXPR:
2309      build_type = integer_type_node;
2310      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2311	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2312	short_compare = 1;
2313      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2314	{
2315	  if (comp_target_types (type0, type1))
2316	    {
2317	      result_type = common_type (type0, type1);
2318	      if ((TYPE_SIZE (TREE_TYPE (type0)) != 0)
2319		  != (TYPE_SIZE (TREE_TYPE (type1)) != 0))
2320		pedwarn ("comparison of complete and incomplete pointers");
2321	      else if (pedantic
2322		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2323		pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2324	    }
2325	  else
2326	    {
2327	      result_type = ptr_type_node;
2328	      pedwarn ("comparison of distinct pointer types lacks a cast");
2329	    }
2330	}
2331      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2332	       && integer_zerop (op1))
2333	{
2334	  result_type = type0;
2335	  if (pedantic || extra_warnings)
2336	    pedwarn ("ordered comparison of pointer with integer zero");
2337	}
2338      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2339	       && integer_zerop (op0))
2340	{
2341	  result_type = type1;
2342	  if (pedantic)
2343	    pedwarn ("ordered comparison of pointer with integer zero");
2344	}
2345      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2346	{
2347	  result_type = type0;
2348	  if (! flag_traditional)
2349	    pedwarn ("comparison between pointer and integer");
2350	}
2351      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2352	{
2353	  result_type = type1;
2354	  if (! flag_traditional)
2355	    pedwarn ("comparison between pointer and integer");
2356	}
2357      break;
2358
2359    default:
2360      break;
2361    }
2362
2363  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2364      &&
2365      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2366    {
2367      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2368
2369      if (shorten || common || short_compare)
2370	result_type = common_type (type0, type1);
2371
2372      /* For certain operations (which identify themselves by shorten != 0)
2373	 if both args were extended from the same smaller type,
2374	 do the arithmetic in that type and then extend.
2375
2376	 shorten !=0 and !=1 indicates a bitwise operation.
2377	 For them, this optimization is safe only if
2378	 both args are zero-extended or both are sign-extended.
2379	 Otherwise, we might change the result.
2380	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2381	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
2382
2383      if (shorten && none_complex)
2384	{
2385	  int unsigned0, unsigned1;
2386	  tree arg0 = get_narrower (op0, &unsigned0);
2387	  tree arg1 = get_narrower (op1, &unsigned1);
2388	  /* UNS is 1 if the operation to be done is an unsigned one.  */
2389	  int uns = TREE_UNSIGNED (result_type);
2390	  tree type;
2391
2392	  final_type = result_type;
2393
2394	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2395	     but it *requires* conversion to FINAL_TYPE.  */
2396
2397	  if ((TYPE_PRECISION (TREE_TYPE (op0))
2398	       == TYPE_PRECISION (TREE_TYPE (arg0)))
2399	      && TREE_TYPE (op0) != final_type)
2400	    unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2401	  if ((TYPE_PRECISION (TREE_TYPE (op1))
2402	       == TYPE_PRECISION (TREE_TYPE (arg1)))
2403	      && TREE_TYPE (op1) != final_type)
2404	    unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2405
2406	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
2407
2408	  /* For bitwise operations, signedness of nominal type
2409	     does not matter.  Consider only how operands were extended.  */
2410	  if (shorten == -1)
2411	    uns = unsigned0;
2412
2413	  /* Note that in all three cases below we refrain from optimizing
2414	     an unsigned operation on sign-extended args.
2415	     That would not be valid.  */
2416
2417	  /* Both args variable: if both extended in same way
2418	     from same width, do it in that width.
2419	     Do it unsigned if args were zero-extended.  */
2420	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
2421	       < TYPE_PRECISION (result_type))
2422	      && (TYPE_PRECISION (TREE_TYPE (arg1))
2423		  == TYPE_PRECISION (TREE_TYPE (arg0)))
2424	      && unsigned0 == unsigned1
2425	      && (unsigned0 || !uns))
2426	    result_type
2427	      = signed_or_unsigned_type (unsigned0,
2428					 common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2429	  else if (TREE_CODE (arg0) == INTEGER_CST
2430		   && (unsigned1 || !uns)
2431		   && (TYPE_PRECISION (TREE_TYPE (arg1))
2432		       < TYPE_PRECISION (result_type))
2433		   && (type = signed_or_unsigned_type (unsigned1,
2434						       TREE_TYPE (arg1)),
2435		       int_fits_type_p (arg0, type)))
2436	    result_type = type;
2437	  else if (TREE_CODE (arg1) == INTEGER_CST
2438		   && (unsigned0 || !uns)
2439		   && (TYPE_PRECISION (TREE_TYPE (arg0))
2440		       < TYPE_PRECISION (result_type))
2441		   && (type = signed_or_unsigned_type (unsigned0,
2442						       TREE_TYPE (arg0)),
2443		       int_fits_type_p (arg1, type)))
2444	    result_type = type;
2445	}
2446
2447      /* Shifts can be shortened if shifting right.  */
2448
2449      if (short_shift)
2450	{
2451	  int unsigned_arg;
2452	  tree arg0 = get_narrower (op0, &unsigned_arg);
2453
2454	  final_type = result_type;
2455
2456	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
2457	    unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2458
2459	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2460	      /* We can shorten only if the shift count is less than the
2461		 number of bits in the smaller type size.  */
2462	      && TREE_INT_CST_HIGH (op1) == 0
2463	      && TYPE_PRECISION (TREE_TYPE (arg0)) > TREE_INT_CST_LOW (op1)
2464	      /* If arg is sign-extended and then unsigned-shifted,
2465		 we can simulate this with a signed shift in arg's type
2466		 only if the extended result is at least twice as wide
2467		 as the arg.  Otherwise, the shift could use up all the
2468		 ones made by sign-extension and bring in zeros.
2469		 We can't optimize that case at all, but in most machines
2470		 it never happens because available widths are 2**N.  */
2471	      && (!TREE_UNSIGNED (final_type)
2472		  || unsigned_arg
2473		  || 2 * TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (result_type)))
2474	    {
2475	      /* Do an unsigned shift if the operand was zero-extended.  */
2476	      result_type
2477		= signed_or_unsigned_type (unsigned_arg,
2478					   TREE_TYPE (arg0));
2479	      /* Convert value-to-be-shifted to that type.  */
2480	      if (TREE_TYPE (op0) != result_type)
2481		op0 = convert (result_type, op0);
2482	      converted = 1;
2483	    }
2484	}
2485
2486      /* Comparison operations are shortened too but differently.
2487	 They identify themselves by setting short_compare = 1.  */
2488
2489      if (short_compare)
2490	{
2491	  /* Don't write &op0, etc., because that would prevent op0
2492	     from being kept in a register.
2493	     Instead, make copies of the our local variables and
2494	     pass the copies by reference, then copy them back afterward.  */
2495	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2496	  enum tree_code xresultcode = resultcode;
2497	  tree val
2498	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2499	  if (val != 0)
2500	    return val;
2501	  op0 = xop0, op1 = xop1;
2502	  converted = 1;
2503	  resultcode = xresultcode;
2504
2505	  if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2506	      && skip_evaluation == 0)
2507	    {
2508	      int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2509	      int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2510
2511	      int unsignedp0, unsignedp1;
2512	      tree primop0 = get_narrower (op0, &unsignedp0);
2513	      tree primop1 = get_narrower (op1, &unsignedp1);
2514
2515	      /* Avoid spurious warnings for comparison with enumerators.  */
2516
2517	      xop0 = orig_op0;
2518	      xop1 = orig_op1;
2519	      STRIP_TYPE_NOPS (xop0);
2520	      STRIP_TYPE_NOPS (xop1);
2521
2522	      /* Give warnings for comparisons between signed and unsigned
2523		 quantities that may fail.  */
2524	      /* Do the checking based on the original operand trees, so that
2525		 casts will be considered, but default promotions won't be.  */
2526
2527	      /* Do not warn if the comparison is being done in a signed type,
2528		 since the signed type will only be chosen if it can represent
2529		 all the values of the unsigned type.  */
2530	      if (! TREE_UNSIGNED (result_type))
2531		/* OK */;
2532              /* Do not warn if both operands are unsigned.  */
2533              else if (op0_signed == op1_signed)
2534                /* OK */;
2535	      /* Do not warn if the signed quantity is an unsuffixed
2536		 integer literal (or some static constant expression
2537		 involving such literals) and it is non-negative.  */
2538	      else if ((op0_signed && TREE_CODE (xop0) == INTEGER_CST
2539			&& tree_int_cst_sgn (xop0) >= 0)
2540		       || (op1_signed && TREE_CODE (xop1) == INTEGER_CST
2541			   && tree_int_cst_sgn (xop1) >= 0))
2542		/* OK */;
2543	      /* Do not warn if the comparison is an equality operation,
2544                 the unsigned quantity is an integral constant and it does
2545                 not use the most significant bit of result_type.  */
2546	      else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR)
2547		       && ((op0_signed && TREE_CODE (xop1) == INTEGER_CST
2548			    && int_fits_type_p (xop1, signed_type (result_type)))
2549			   || (op1_signed && TREE_CODE (xop0) == INTEGER_CST
2550			       && int_fits_type_p (xop0, signed_type (result_type)))))
2551		/* OK */;
2552	      else
2553		warning ("comparison between signed and unsigned");
2554
2555	      /* Warn if two unsigned values are being compared in a size
2556		 larger than their original size, and one (and only one) is the
2557		 result of a `~' operator.  This comparison will always fail.
2558
2559		 Also warn if one operand is a constant, and the constant
2560		 does not have all bits set that are set in the ~ operand
2561		 when it is extended.  */
2562
2563	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2564		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2565		{
2566		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2567		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2568					    &unsignedp0);
2569		  else
2570		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2571					    &unsignedp1);
2572
2573		  if (TREE_CODE (primop0) == INTEGER_CST
2574		      || TREE_CODE (primop1) == INTEGER_CST)
2575		    {
2576		      tree primop;
2577		      long constant, mask;
2578		      int unsignedp, bits;
2579
2580		      if (TREE_CODE (primop0) == INTEGER_CST)
2581			{
2582			  primop = primop1;
2583			  unsignedp = unsignedp1;
2584			  constant = TREE_INT_CST_LOW (primop0);
2585			}
2586		      else
2587			{
2588			  primop = primop0;
2589			  unsignedp = unsignedp0;
2590			  constant = TREE_INT_CST_LOW (primop1);
2591			}
2592
2593		      bits = TYPE_PRECISION (TREE_TYPE (primop));
2594		      if (bits < TYPE_PRECISION (result_type)
2595			  && bits < HOST_BITS_PER_LONG && unsignedp)
2596			{
2597			  mask = (~0L) << bits;
2598			  if ((mask & constant) != mask)
2599			    warning ("comparison of promoted ~unsigned with constant");
2600			}
2601		    }
2602		  else if (unsignedp0 && unsignedp1
2603			   && (TYPE_PRECISION (TREE_TYPE (primop0))
2604			       < TYPE_PRECISION (result_type))
2605			   && (TYPE_PRECISION (TREE_TYPE (primop1))
2606			       < TYPE_PRECISION (result_type)))
2607		    warning ("comparison of promoted ~unsigned with unsigned");
2608		}
2609	    }
2610	}
2611    }
2612
2613  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2614     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2615     Then the expression will be built.
2616     It will be given type FINAL_TYPE if that is nonzero;
2617     otherwise, it will be given type RESULT_TYPE.  */
2618
2619  if (!result_type)
2620    {
2621      binary_op_error (code);
2622      return error_mark_node;
2623    }
2624
2625  if (! converted)
2626    {
2627      if (TREE_TYPE (op0) != result_type)
2628	op0 = convert (result_type, op0);
2629      if (TREE_TYPE (op1) != result_type)
2630	op1 = convert (result_type, op1);
2631    }
2632
2633  if (build_type == NULL_TREE)
2634    build_type = result_type;
2635
2636  {
2637    register tree result = build (resultcode, build_type, op0, op1);
2638    register tree folded;
2639
2640    folded = fold (result);
2641    if (folded == result)
2642      TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2643    if (final_type != 0)
2644      return convert (final_type, folded);
2645    return folded;
2646  }
2647}
2648
2649/* Return a tree for the sum or difference (RESULTCODE says which)
2650   of pointer PTROP and integer INTOP.  */
2651
2652static tree
2653pointer_int_sum (resultcode, ptrop, intop)
2654     enum tree_code resultcode;
2655     register tree ptrop, intop;
2656{
2657  tree size_exp;
2658
2659  register tree result;
2660  register tree folded;
2661
2662  /* The result is a pointer of the same type that is being added.  */
2663
2664  register tree result_type = TREE_TYPE (ptrop);
2665
2666  if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
2667    {
2668      if (pedantic || warn_pointer_arith)
2669	pedwarn ("pointer of type `void *' used in arithmetic");
2670      size_exp = integer_one_node;
2671    }
2672  else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
2673    {
2674      if (pedantic || warn_pointer_arith)
2675	pedwarn ("pointer to a function used in arithmetic");
2676      size_exp = integer_one_node;
2677    }
2678  else
2679    size_exp = c_size_in_bytes (TREE_TYPE (result_type));
2680
2681  /* If what we are about to multiply by the size of the elements
2682     contains a constant term, apply distributive law
2683     and multiply that constant term separately.
2684     This helps produce common subexpressions.  */
2685
2686  if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
2687      && ! TREE_CONSTANT (intop)
2688      && TREE_CONSTANT (TREE_OPERAND (intop, 1))
2689      && TREE_CONSTANT (size_exp)
2690      /* If the constant comes from pointer subtraction,
2691	 skip this optimization--it would cause an error.  */
2692      && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
2693      /* If the constant is unsigned, and smaller than the pointer size,
2694	 then we must skip this optimization.  This is because it could cause
2695	 an overflow error if the constant is negative but INTOP is not.  */
2696      && (! TREE_UNSIGNED (TREE_TYPE (intop))
2697	  || (TYPE_PRECISION (TREE_TYPE (intop))
2698	      == TYPE_PRECISION (TREE_TYPE (ptrop)))))
2699    {
2700      enum tree_code subcode = resultcode;
2701      tree int_type = TREE_TYPE (intop);
2702      if (TREE_CODE (intop) == MINUS_EXPR)
2703	subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
2704      /* Convert both subexpression types to the type of intop,
2705	 because weird cases involving pointer arithmetic
2706	 can result in a sum or difference with different type args.  */
2707      ptrop = build_binary_op (subcode, ptrop,
2708			       convert (int_type, TREE_OPERAND (intop, 1)), 1);
2709      intop = convert (int_type, TREE_OPERAND (intop, 0));
2710    }
2711
2712  /* Convert the integer argument to a type the same size as sizetype
2713     so the multiply won't overflow spuriously.  */
2714
2715  if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
2716      || TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
2717    intop = convert (type_for_size (TYPE_PRECISION (sizetype),
2718				    TREE_UNSIGNED (sizetype)), intop);
2719
2720  /* Replace the integer argument with a suitable product by the object size.
2721     Do this multiplication as signed, then convert to the appropriate
2722     pointer type (actually unsigned integral).  */
2723
2724  intop = convert (result_type,
2725		   build_binary_op (MULT_EXPR, intop,
2726				    convert (TREE_TYPE (intop), size_exp), 1));
2727
2728  /* Create the sum or difference.  */
2729
2730  result = build (resultcode, result_type, ptrop, intop);
2731
2732  folded = fold (result);
2733  if (folded == result)
2734    TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
2735  return folded;
2736}
2737
2738/* Return a tree for the difference of pointers OP0 and OP1.
2739   The resulting tree has type int.  */
2740
2741static tree
2742pointer_diff (op0, op1)
2743     register tree op0, op1;
2744{
2745  register tree result, folded;
2746  tree restype = ptrdiff_type_node;
2747
2748  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2749
2750  if (pedantic || warn_pointer_arith)
2751    {
2752      if (TREE_CODE (target_type) == VOID_TYPE)
2753	pedwarn ("pointer of type `void *' used in subtraction");
2754      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2755	pedwarn ("pointer to a function used in subtraction");
2756    }
2757
2758  /* First do the subtraction as integers;
2759     then drop through to build the divide operator.
2760     Do not do default conversions on the minus operator
2761     in case restype is a short type.  */
2762
2763  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2764			 convert (restype, op1), 0);
2765  /* This generates an error if op1 is pointer to incomplete type.  */
2766  if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1))) == 0)
2767    error ("arithmetic on pointer to an incomplete type");
2768
2769  /* This generates an error if op0 is pointer to incomplete type.  */
2770  op1 = c_size_in_bytes (target_type);
2771
2772  /* Divide by the size, in easiest possible way.  */
2773
2774  result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2775
2776  folded = fold (result);
2777  if (folded == result)
2778    TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2779  return folded;
2780}
2781
2782/* Construct and perhaps optimize a tree representation
2783   for a unary operation.  CODE, a tree_code, specifies the operation
2784   and XARG is the operand.  NOCONVERT nonzero suppresses
2785   the default promotions (such as from short to int).  */
2786
2787tree
2788build_unary_op (code, xarg, noconvert)
2789     enum tree_code code;
2790     tree xarg;
2791     int noconvert;
2792{
2793  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2794  register tree arg = xarg;
2795  register tree argtype = 0;
2796  register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2797  tree val;
2798
2799  if (typecode == ERROR_MARK)
2800    return error_mark_node;
2801  if (typecode == ENUMERAL_TYPE)
2802    typecode = INTEGER_TYPE;
2803
2804  switch (code)
2805    {
2806    case CONVERT_EXPR:
2807      /* This is used for unary plus, because a CONVERT_EXPR
2808	 is enough to prevent anybody from looking inside for
2809	 associativity, but won't generate any code.  */
2810      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2811	    || typecode == COMPLEX_TYPE))
2812	{
2813	  error ("wrong type argument to unary plus");
2814	  return error_mark_node;
2815	}
2816      else if (!noconvert)
2817	arg = default_conversion (arg);
2818      break;
2819
2820    case NEGATE_EXPR:
2821      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2822	    || typecode == COMPLEX_TYPE))
2823	{
2824	  error ("wrong type argument to unary minus");
2825	  return error_mark_node;
2826	}
2827      else if (!noconvert)
2828	arg = default_conversion (arg);
2829      break;
2830
2831    case BIT_NOT_EXPR:
2832      if (typecode == COMPLEX_TYPE)
2833	{
2834	  code = CONJ_EXPR;
2835	  if (!noconvert)
2836	    arg = default_conversion (arg);
2837	}
2838      else if (typecode != INTEGER_TYPE)
2839	{
2840	  error ("wrong type argument to bit-complement");
2841	  return error_mark_node;
2842	}
2843      else if (!noconvert)
2844	arg = default_conversion (arg);
2845      break;
2846
2847    case ABS_EXPR:
2848      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2849	    || typecode == COMPLEX_TYPE))
2850	{
2851	  error ("wrong type argument to abs");
2852	  return error_mark_node;
2853	}
2854      else if (!noconvert)
2855	arg = default_conversion (arg);
2856      break;
2857
2858    case CONJ_EXPR:
2859      /* Conjugating a real value is a no-op, but allow it anyway.  */
2860      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2861	    || typecode == COMPLEX_TYPE))
2862	{
2863	  error ("wrong type argument to conjugation");
2864	  return error_mark_node;
2865	}
2866      else if (!noconvert)
2867	arg = default_conversion (arg);
2868      break;
2869
2870    case TRUTH_NOT_EXPR:
2871      if (typecode != INTEGER_TYPE
2872	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2873	  && typecode != COMPLEX_TYPE
2874	  /* These will convert to a pointer.  */
2875	  && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2876	{
2877	  error ("wrong type argument to unary exclamation mark");
2878	  return error_mark_node;
2879	}
2880      arg = truthvalue_conversion (arg);
2881      return invert_truthvalue (arg);
2882
2883    case NOP_EXPR:
2884      break;
2885
2886    case REALPART_EXPR:
2887      if (TREE_CODE (arg) == COMPLEX_CST)
2888	return TREE_REALPART (arg);
2889      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2890	return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2891      else
2892	return arg;
2893
2894    case IMAGPART_EXPR:
2895      if (TREE_CODE (arg) == COMPLEX_CST)
2896	return TREE_IMAGPART (arg);
2897      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2898	return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2899      else
2900	return convert (TREE_TYPE (arg), integer_zero_node);
2901
2902    case PREINCREMENT_EXPR:
2903    case POSTINCREMENT_EXPR:
2904    case PREDECREMENT_EXPR:
2905    case POSTDECREMENT_EXPR:
2906      /* Handle complex lvalues (when permitted)
2907	 by reduction to simpler cases.  */
2908
2909      val = unary_complex_lvalue (code, arg);
2910      if (val != 0)
2911	return val;
2912
2913      /* Increment or decrement the real part of the value,
2914	 and don't change the imaginary part.  */
2915      if (typecode == COMPLEX_TYPE)
2916	{
2917	  tree real, imag;
2918
2919	  arg = stabilize_reference (arg);
2920	  real = build_unary_op (REALPART_EXPR, arg, 1);
2921	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2922	  return build (COMPLEX_EXPR, TREE_TYPE (arg),
2923			build_unary_op (code, real, 1), imag);
2924	}
2925
2926      /* Report invalid types.  */
2927
2928      if (typecode != POINTER_TYPE
2929	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2930	{
2931	  error (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2932		 ? "wrong type argument to increment"
2933		 : "wrong type argument to decrement");
2934	  return error_mark_node;
2935	}
2936
2937      {
2938	register tree inc;
2939	tree result_type = TREE_TYPE (arg);
2940
2941	arg = get_unwidened (arg, 0);
2942	argtype = TREE_TYPE (arg);
2943
2944	/* Compute the increment.  */
2945
2946	if (typecode == POINTER_TYPE)
2947	  {
2948	    /* If pointer target is an undefined struct,
2949	       we just cannot know how to do the arithmetic.  */
2950	    if (TYPE_SIZE (TREE_TYPE (result_type)) == 0)
2951	      error (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2952		     ? "increment of pointer to unknown structure"
2953		     : "decrement of pointer to unknown structure");
2954	    else if ((pedantic || warn_pointer_arith)
2955		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2956			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2957	      pedwarn (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2958		       ? "wrong type argument to increment"
2959		       : "wrong type argument to decrement");
2960	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2961	  }
2962	else
2963	  inc = integer_one_node;
2964
2965	inc = convert (argtype, inc);
2966
2967	/* Handle incrementing a cast-expression.  */
2968
2969	while (1)
2970	  switch (TREE_CODE (arg))
2971	    {
2972	    case NOP_EXPR:
2973	    case CONVERT_EXPR:
2974	    case FLOAT_EXPR:
2975	    case FIX_TRUNC_EXPR:
2976	    case FIX_FLOOR_EXPR:
2977	    case FIX_ROUND_EXPR:
2978	    case FIX_CEIL_EXPR:
2979	      pedantic_lvalue_warning (CONVERT_EXPR);
2980	      /* If the real type has the same machine representation
2981		 as the type it is cast to, we can make better output
2982		 by adding directly to the inside of the cast.  */
2983	      if ((TREE_CODE (TREE_TYPE (arg))
2984		   == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2985		  && (TYPE_MODE (TREE_TYPE (arg))
2986		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2987		arg = TREE_OPERAND (arg, 0);
2988	      else
2989		{
2990		  tree incremented, modify, value;
2991		  arg = stabilize_reference (arg);
2992		  if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2993		    value = arg;
2994		  else
2995		    value = save_expr (arg);
2996		  incremented = build (((code == PREINCREMENT_EXPR
2997					 || code == POSTINCREMENT_EXPR)
2998					? PLUS_EXPR : MINUS_EXPR),
2999				       argtype, value, inc);
3000		  TREE_SIDE_EFFECTS (incremented) = 1;
3001		  modify = build_modify_expr (arg, NOP_EXPR, incremented);
3002		  value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
3003		  TREE_USED (value) = 1;
3004		  return value;
3005		}
3006	      break;
3007
3008	    default:
3009	      goto give_up;
3010	    }
3011      give_up:
3012
3013	/* Complain about anything else that is not a true lvalue.  */
3014	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3015				    || code == POSTINCREMENT_EXPR)
3016				   ? "invalid lvalue in increment"
3017				   : "invalid lvalue in decrement")))
3018	  return error_mark_node;
3019
3020	/* Report a read-only lvalue.  */
3021	if (TREE_READONLY (arg))
3022	  readonly_warning (arg,
3023			    ((code == PREINCREMENT_EXPR
3024			      || code == POSTINCREMENT_EXPR)
3025			     ? "increment" : "decrement"));
3026
3027	val = build (code, TREE_TYPE (arg), arg, inc);
3028	TREE_SIDE_EFFECTS (val) = 1;
3029	val = convert (result_type, val);
3030	if (TREE_CODE (val) != code)
3031	  TREE_NO_UNUSED_WARNING (val) = 1;
3032	return val;
3033      }
3034
3035    case ADDR_EXPR:
3036      /* Note that this operation never does default_conversion
3037	 regardless of NOCONVERT.  */
3038
3039      /* Let &* cancel out to simplify resulting code.  */
3040      if (TREE_CODE (arg) == INDIRECT_REF)
3041	{
3042	  /* Don't let this be an lvalue.  */
3043	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3044	    return non_lvalue (TREE_OPERAND (arg, 0));
3045	  return TREE_OPERAND (arg, 0);
3046	}
3047
3048      /* For &x[y], return x+y */
3049      if (TREE_CODE (arg) == ARRAY_REF)
3050	{
3051	  if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
3052	    return error_mark_node;
3053	  return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
3054				  TREE_OPERAND (arg, 1), 1);
3055	}
3056
3057      /* Handle complex lvalues (when permitted)
3058	 by reduction to simpler cases.  */
3059      val = unary_complex_lvalue (code, arg);
3060      if (val != 0)
3061	return val;
3062
3063#if 0 /* Turned off because inconsistent;
3064	 float f; *&(int)f = 3.4 stores in int format
3065	 whereas (int)f = 3.4 stores in float format.  */
3066      /* Address of a cast is just a cast of the address
3067	 of the operand of the cast.  */
3068      switch (TREE_CODE (arg))
3069	{
3070	case NOP_EXPR:
3071	case CONVERT_EXPR:
3072	case FLOAT_EXPR:
3073	case FIX_TRUNC_EXPR:
3074	case FIX_FLOOR_EXPR:
3075	case FIX_ROUND_EXPR:
3076	case FIX_CEIL_EXPR:
3077	  if (pedantic)
3078	    pedwarn ("ANSI C forbids the address of a cast expression");
3079	  return convert (build_pointer_type (TREE_TYPE (arg)),
3080			  build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3081					  0));
3082	}
3083#endif
3084
3085      /* Allow the address of a constructor if all the elements
3086	 are constant.  */
3087      if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
3088	;
3089      /* Anything not already handled and not a true memory reference
3090	 is an error.  */
3091      else if (typecode != FUNCTION_TYPE
3092	       && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
3093	return error_mark_node;
3094
3095      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3096      argtype = TREE_TYPE (arg);
3097      /* If the lvalue is const or volatile, merge that into the type
3098         to which the address will point.  Note that you can't get a
3099	 restricted pointer by taking the address of something, so we
3100	 only have to deal with `const' and `volatile' here.  */
3101      if (TREE_CODE_CLASS (TREE_CODE (arg)) == 'd'
3102	  || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3103	{
3104	  if (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
3105	    argtype = c_build_type_variant (argtype,
3106					    TREE_READONLY (arg),
3107					    TREE_THIS_VOLATILE (arg));
3108	}
3109
3110      argtype = build_pointer_type (argtype);
3111
3112      if (mark_addressable (arg) == 0)
3113	return error_mark_node;
3114
3115      {
3116	tree addr;
3117
3118	if (TREE_CODE (arg) == COMPONENT_REF)
3119	  {
3120	    tree field = TREE_OPERAND (arg, 1);
3121
3122	    addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0);
3123
3124	    if (DECL_C_BIT_FIELD (field))
3125	      {
3126		error ("attempt to take address of bit-field structure member `%s'",
3127		       IDENTIFIER_POINTER (DECL_NAME (field)));
3128		return error_mark_node;
3129	      }
3130
3131	    addr = convert (argtype, addr);
3132
3133	    if (! integer_zerop (DECL_FIELD_BITPOS (field)))
3134	      {
3135		tree offset
3136		  = size_binop (EASY_DIV_EXPR, DECL_FIELD_BITPOS (field),
3137				size_int (BITS_PER_UNIT));
3138		int flag = TREE_CONSTANT (addr);
3139		addr = fold (build (PLUS_EXPR, argtype,
3140				    addr, convert (argtype, offset)));
3141		TREE_CONSTANT (addr) = flag;
3142	      }
3143	  }
3144	else
3145	  addr = build1 (code, argtype, arg);
3146
3147	/* Address of a static or external variable or
3148	   file-scope function counts as a constant.  */
3149	if (staticp (arg)
3150	    && ! (TREE_CODE (arg) == FUNCTION_DECL
3151		  && DECL_CONTEXT (arg) != 0))
3152	  TREE_CONSTANT (addr) = 1;
3153	return addr;
3154      }
3155
3156    default:
3157      break;
3158    }
3159
3160  if (argtype == 0)
3161    argtype = TREE_TYPE (arg);
3162  return fold (build1 (code, argtype, arg));
3163}
3164
3165#if 0
3166/* If CONVERSIONS is a conversion expression or a nested sequence of such,
3167   convert ARG with the same conversions in the same order
3168   and return the result.  */
3169
3170static tree
3171convert_sequence (conversions, arg)
3172     tree conversions;
3173     tree arg;
3174{
3175  switch (TREE_CODE (conversions))
3176    {
3177    case NOP_EXPR:
3178    case CONVERT_EXPR:
3179    case FLOAT_EXPR:
3180    case FIX_TRUNC_EXPR:
3181    case FIX_FLOOR_EXPR:
3182    case FIX_ROUND_EXPR:
3183    case FIX_CEIL_EXPR:
3184      return convert (TREE_TYPE (conversions),
3185		      convert_sequence (TREE_OPERAND (conversions, 0),
3186					arg));
3187
3188    default:
3189      return arg;
3190    }
3191}
3192#endif /* 0 */
3193
3194/* Return nonzero if REF is an lvalue valid for this language.
3195   Lvalues can be assigned, unless their type has TYPE_READONLY.
3196   Lvalues can have their address taken, unless they have DECL_REGISTER.  */
3197
3198int
3199lvalue_p (ref)
3200     tree ref;
3201{
3202  register enum tree_code code = TREE_CODE (ref);
3203
3204  switch (code)
3205    {
3206    case REALPART_EXPR:
3207    case IMAGPART_EXPR:
3208    case COMPONENT_REF:
3209      return lvalue_p (TREE_OPERAND (ref, 0));
3210
3211    case STRING_CST:
3212      return 1;
3213
3214    case INDIRECT_REF:
3215    case ARRAY_REF:
3216    case VAR_DECL:
3217    case PARM_DECL:
3218    case RESULT_DECL:
3219    case ERROR_MARK:
3220      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3221	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3222
3223    case BIND_EXPR:
3224    case RTL_EXPR:
3225      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3226
3227    default:
3228      return 0;
3229    }
3230}
3231
3232/* Return nonzero if REF is an lvalue valid for this language;
3233   otherwise, print an error message and return zero.  */
3234
3235int
3236lvalue_or_else (ref, msgid)
3237     tree ref;
3238     const char *msgid;
3239{
3240  int win = lvalue_p (ref);
3241  if (! win)
3242    error (msgid);
3243  return win;
3244}
3245
3246/* Apply unary lvalue-demanding operator CODE to the expression ARG
3247   for certain kinds of expressions which are not really lvalues
3248   but which we can accept as lvalues.
3249
3250   If ARG is not a kind of expression we can handle, return zero.  */
3251
3252static tree
3253unary_complex_lvalue (code, arg)
3254     enum tree_code code;
3255     tree arg;
3256{
3257  /* Handle (a, b) used as an "lvalue".  */
3258  if (TREE_CODE (arg) == COMPOUND_EXPR)
3259    {
3260      tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3261
3262      /* If this returns a function type, it isn't really being used as
3263	 an lvalue, so don't issue a warning about it.  */
3264      if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3265	pedantic_lvalue_warning (COMPOUND_EXPR);
3266
3267      return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3268		    TREE_OPERAND (arg, 0), real_result);
3269    }
3270
3271  /* Handle (a ? b : c) used as an "lvalue".  */
3272  if (TREE_CODE (arg) == COND_EXPR)
3273    {
3274      pedantic_lvalue_warning (COND_EXPR);
3275      if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3276	pedantic_lvalue_warning (COMPOUND_EXPR);
3277
3278      return (build_conditional_expr
3279	      (TREE_OPERAND (arg, 0),
3280	       build_unary_op (code, TREE_OPERAND (arg, 1), 0),
3281	       build_unary_op (code, TREE_OPERAND (arg, 2), 0)));
3282    }
3283
3284  return 0;
3285}
3286
3287/* If pedantic, warn about improper lvalue.   CODE is either COND_EXPR
3288   COMPOUND_EXPR, or CONVERT_EXPR (for casts).  */
3289
3290static void
3291pedantic_lvalue_warning (code)
3292     enum tree_code code;
3293{
3294  if (pedantic)
3295    pedwarn (code == COND_EXPR
3296	     ? "ANSI C forbids use of conditional expressions as lvalues"
3297	     : code == COMPOUND_EXPR
3298	     ? "ANSI C forbids use of compound expressions as lvalues"
3299	     : "ANSI C forbids use of cast expressions as lvalues");
3300}
3301
3302/* Warn about storing in something that is `const'.  */
3303
3304void
3305readonly_warning (arg, msgid)
3306     tree arg;
3307     const char *msgid;
3308{
3309  /* Forbid assignments to iterators.  */
3310  if (TREE_CODE (arg) == VAR_DECL && ITERATOR_P (arg))
3311    pedwarn ("%s of iterator `%s'",  _(msgid),
3312	     IDENTIFIER_POINTER (DECL_NAME (arg)));
3313
3314  if (TREE_CODE (arg) == COMPONENT_REF)
3315    {
3316      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3317	readonly_warning (TREE_OPERAND (arg, 0), msgid);
3318      else
3319	pedwarn ("%s of read-only member `%s'", _(msgid),
3320		 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3321    }
3322  else if (TREE_CODE (arg) == VAR_DECL)
3323    pedwarn ("%s of read-only variable `%s'", _(msgid),
3324	     IDENTIFIER_POINTER (DECL_NAME (arg)));
3325  else
3326    pedwarn ("%s of read-only location", _(msgid));
3327}
3328
3329/* Mark EXP saying that we need to be able to take the
3330   address of it; it should not be allocated in a register.
3331   Value is 1 if successful.  */
3332
3333int
3334mark_addressable (exp)
3335     tree exp;
3336{
3337  register tree x = exp;
3338  while (1)
3339    switch (TREE_CODE (x))
3340      {
3341      case COMPONENT_REF:
3342	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3343	  {
3344	    error ("cannot take address of bitfield `%s'",
3345		   IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3346	    return 0;
3347	  }
3348
3349	/* ... fall through ...  */
3350
3351      case ADDR_EXPR:
3352      case ARRAY_REF:
3353      case REALPART_EXPR:
3354      case IMAGPART_EXPR:
3355	x = TREE_OPERAND (x, 0);
3356	break;
3357
3358      case CONSTRUCTOR:
3359	TREE_ADDRESSABLE (x) = 1;
3360	return 1;
3361
3362      case VAR_DECL:
3363      case CONST_DECL:
3364      case PARM_DECL:
3365      case RESULT_DECL:
3366	if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3367	    && DECL_NONLOCAL (x))
3368	  {
3369	    if (TREE_PUBLIC (x))
3370	      {
3371		error ("global register variable `%s' used in nested function",
3372		       IDENTIFIER_POINTER (DECL_NAME (x)));
3373		return 0;
3374	      }
3375	    pedwarn ("register variable `%s' used in nested function",
3376		     IDENTIFIER_POINTER (DECL_NAME (x)));
3377	  }
3378	else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3379	  {
3380	    if (TREE_PUBLIC (x))
3381	      {
3382		error ("address of global register variable `%s' requested",
3383		       IDENTIFIER_POINTER (DECL_NAME (x)));
3384		return 0;
3385	      }
3386
3387	    /* If we are making this addressable due to its having
3388	       volatile components, give a different error message.  Also
3389	       handle the case of an unnamed parameter by not trying
3390	       to give the name.  */
3391
3392	    else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3393	      {
3394		error ("cannot put object with volatile field into register");
3395		return 0;
3396	      }
3397
3398	    pedwarn ("address of register variable `%s' requested",
3399		     IDENTIFIER_POINTER (DECL_NAME (x)));
3400	  }
3401	put_var_into_stack (x);
3402
3403	/* drops in */
3404      case FUNCTION_DECL:
3405	TREE_ADDRESSABLE (x) = 1;
3406#if 0  /* poplevel deals with this now.  */
3407	if (DECL_CONTEXT (x) == 0)
3408	  TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3409#endif
3410
3411      default:
3412	return 1;
3413    }
3414}
3415
3416/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3417
3418tree
3419build_conditional_expr (ifexp, op1, op2)
3420     tree ifexp, op1, op2;
3421{
3422  register tree type1;
3423  register tree type2;
3424  register enum tree_code code1;
3425  register enum tree_code code2;
3426  register tree result_type = NULL;
3427  tree orig_op1 = op1, orig_op2 = op2;
3428
3429  ifexp = truthvalue_conversion (default_conversion (ifexp));
3430
3431#if 0 /* Produces wrong result if within sizeof.  */
3432  /* Don't promote the operands separately if they promote
3433     the same way.  Return the unpromoted type and let the combined
3434     value get promoted if necessary.  */
3435
3436  if (TREE_TYPE (op1) == TREE_TYPE (op2)
3437      && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3438      && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3439      && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3440    {
3441      if (TREE_CODE (ifexp) == INTEGER_CST)
3442	return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3443
3444      return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3445    }
3446#endif
3447
3448  /* Promote both alternatives.  */
3449
3450  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3451    op1 = default_conversion (op1);
3452  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3453    op2 = default_conversion (op2);
3454
3455  if (TREE_CODE (ifexp) == ERROR_MARK
3456      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3457      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3458    return error_mark_node;
3459
3460  type1 = TREE_TYPE (op1);
3461  code1 = TREE_CODE (type1);
3462  type2 = TREE_TYPE (op2);
3463  code2 = TREE_CODE (type2);
3464
3465  /* Quickly detect the usual case where op1 and op2 have the same type
3466     after promotion.  */
3467  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3468    {
3469      if (type1 == type2)
3470	result_type = type1;
3471      else
3472	result_type = TYPE_MAIN_VARIANT (type1);
3473    }
3474  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE)
3475           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE))
3476    {
3477      result_type = common_type (type1, type2);
3478    }
3479  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3480    {
3481      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3482	pedwarn ("ANSI C forbids conditional expr with only one void side");
3483      result_type = void_type_node;
3484    }
3485  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3486    {
3487      if (comp_target_types (type1, type2))
3488	result_type = common_type (type1, type2);
3489      else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3490	       && TREE_CODE (orig_op1) != NOP_EXPR)
3491	result_type = qualify_type (type2, type1);
3492      else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3493	       && TREE_CODE (orig_op2) != NOP_EXPR)
3494	result_type = qualify_type (type1, type2);
3495      else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1)) == void_type_node)
3496	{
3497	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3498	    pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3499	  result_type = qualify_type (type1, type2);
3500	}
3501      else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2)) == void_type_node)
3502	{
3503	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3504	    pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3505	  result_type = qualify_type (type2, type1);
3506	}
3507      else
3508	{
3509	  pedwarn ("pointer type mismatch in conditional expression");
3510	  result_type = build_pointer_type (void_type_node);
3511	}
3512    }
3513  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3514    {
3515      if (! integer_zerop (op2))
3516	pedwarn ("pointer/integer type mismatch in conditional expression");
3517      else
3518	{
3519	  op2 = null_pointer_node;
3520#if 0  /* The spec seems to say this is permitted.  */
3521	  if (pedantic && TREE_CODE (type1) == FUNCTION_TYPE)
3522	    pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3523#endif
3524	}
3525      result_type = type1;
3526    }
3527  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3528    {
3529      if (!integer_zerop (op1))
3530	pedwarn ("pointer/integer type mismatch in conditional expression");
3531      else
3532	{
3533	  op1 = null_pointer_node;
3534#if 0  /* The spec seems to say this is permitted.  */
3535	  if (pedantic && TREE_CODE (type2) == FUNCTION_TYPE)
3536	    pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3537#endif
3538	}
3539      result_type = type2;
3540    }
3541
3542  if (!result_type)
3543    {
3544      if (flag_cond_mismatch)
3545	result_type = void_type_node;
3546      else
3547	{
3548	  error ("type mismatch in conditional expression");
3549	  return error_mark_node;
3550	}
3551    }
3552
3553  /* Merge const and volatile flags of the incoming types.  */
3554  result_type
3555    = build_type_variant (result_type,
3556			  TREE_READONLY (op1) || TREE_READONLY (op2),
3557			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3558
3559  if (result_type != TREE_TYPE (op1))
3560    op1 = convert_and_check (result_type, op1);
3561  if (result_type != TREE_TYPE (op2))
3562    op2 = convert_and_check (result_type, op2);
3563
3564#if 0
3565  if (code1 == RECORD_TYPE || code1 == UNION_TYPE)
3566    {
3567      result_type = TREE_TYPE (op1);
3568      if (TREE_CONSTANT (ifexp))
3569	return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3570
3571      if (TYPE_MODE (result_type) == BLKmode)
3572	{
3573	  register tree tempvar
3574	    = build_decl (VAR_DECL, NULL_TREE, result_type);
3575	  register tree xop1 = build_modify_expr (tempvar, op1);
3576	  register tree xop2 = build_modify_expr (tempvar, op2);
3577	  register tree result = fold (build (COND_EXPR, result_type,
3578					      ifexp, xop1, xop2));
3579
3580	  layout_decl (tempvar, TYPE_ALIGN (result_type));
3581	  /* No way to handle variable-sized objects here.
3582	     I fear that the entire handling of BLKmode conditional exprs
3583	     needs to be redone.  */
3584	  if (TREE_CODE (DECL_SIZE (tempvar)) != INTEGER_CST)
3585	    abort ();
3586	  DECL_RTL (tempvar)
3587	    = assign_stack_local (DECL_MODE (tempvar),
3588				  (TREE_INT_CST_LOW (DECL_SIZE (tempvar))
3589				   + BITS_PER_UNIT - 1)
3590				  / BITS_PER_UNIT,
3591				  0);
3592
3593	  TREE_SIDE_EFFECTS (result)
3594	    = TREE_SIDE_EFFECTS (ifexp) | TREE_SIDE_EFFECTS (op1)
3595	      | TREE_SIDE_EFFECTS (op2);
3596	  return build (COMPOUND_EXPR, result_type, result, tempvar);
3597	}
3598    }
3599#endif /* 0 */
3600
3601  if (TREE_CODE (ifexp) == INTEGER_CST)
3602    return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3603
3604  return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3605}
3606
3607/* Given a list of expressions, return a compound expression
3608   that performs them all and returns the value of the last of them.  */
3609
3610tree
3611build_compound_expr (list)
3612     tree list;
3613{
3614  return internal_build_compound_expr (list, TRUE);
3615}
3616
3617static tree
3618internal_build_compound_expr (list, first_p)
3619     tree list;
3620     int first_p;
3621{
3622  register tree rest;
3623
3624  if (TREE_CHAIN (list) == 0)
3625    {
3626#if 0 /* If something inside inhibited lvalueness, we should not override.  */
3627      /* Consider (x, y+0), which is not an lvalue since y+0 is not.  */
3628
3629      /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3630      if (TREE_CODE (list) == NON_LVALUE_EXPR)
3631	list = TREE_OPERAND (list, 0);
3632#endif
3633
3634      /* Don't let (0, 0) be null pointer constant.  */
3635      if (!first_p && integer_zerop (TREE_VALUE (list)))
3636	return non_lvalue (TREE_VALUE (list));
3637      return TREE_VALUE (list);
3638    }
3639
3640  if (TREE_CHAIN (list) != 0 && TREE_CHAIN (TREE_CHAIN (list)) == 0)
3641    {
3642      /* Convert arrays to pointers when there really is a comma operator.  */
3643      if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list)))) == ARRAY_TYPE)
3644	TREE_VALUE (TREE_CHAIN (list))
3645	  = default_conversion (TREE_VALUE (TREE_CHAIN (list)));
3646    }
3647
3648  rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3649
3650  if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3651    {
3652      /* The left-hand operand of a comma expression is like an expression
3653         statement: with -W or -Wunused, we should warn if it doesn't have
3654	 any side-effects, unless it was explicitly cast to (void).  */
3655      if ((extra_warnings || warn_unused)
3656           && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3657                && TREE_TYPE (TREE_VALUE (list)) == void_type_node))
3658        warning ("left-hand operand of comma expression has no effect");
3659
3660      /* When pedantic, a compound expression can be neither an lvalue
3661         nor an integer constant expression.  */
3662      if (! pedantic)
3663        return rest;
3664    }
3665
3666  /* With -Wunused, we should also warn if the left-hand operand does have
3667     side-effects, but computes a value which is not used.  For example, in
3668     `foo() + bar(), baz()' the result of the `+' operator is not used,
3669     so we should issue a warning.  */
3670  else if (warn_unused)
3671    warn_if_unused_value (TREE_VALUE (list));
3672
3673  return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3674}
3675
3676/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3677
3678tree
3679build_c_cast (type, expr)
3680     register tree type;
3681     tree expr;
3682{
3683  register tree value = expr;
3684
3685  if (type == error_mark_node || expr == error_mark_node)
3686    return error_mark_node;
3687  type = TYPE_MAIN_VARIANT (type);
3688
3689#if 0
3690  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3691  if (TREE_CODE (value) == NON_LVALUE_EXPR)
3692    value = TREE_OPERAND (value, 0);
3693#endif
3694
3695  if (TREE_CODE (type) == ARRAY_TYPE)
3696    {
3697      error ("cast specifies array type");
3698      return error_mark_node;
3699    }
3700
3701  if (TREE_CODE (type) == FUNCTION_TYPE)
3702    {
3703      error ("cast specifies function type");
3704      return error_mark_node;
3705    }
3706
3707  if (type == TREE_TYPE (value))
3708    {
3709      if (pedantic)
3710	{
3711	  if (TREE_CODE (type) == RECORD_TYPE
3712	      || TREE_CODE (type) == UNION_TYPE)
3713	    pedwarn ("ANSI C forbids casting nonscalar to the same type");
3714	}
3715    }
3716  else if (TREE_CODE (type) == UNION_TYPE)
3717    {
3718      tree field;
3719      if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
3720	  || TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE)
3721	value = default_conversion (value);
3722
3723      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3724	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3725		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3726	  break;
3727
3728      if (field)
3729	{
3730	  const char *name;
3731	  tree t;
3732
3733	  if (pedantic)
3734	    pedwarn ("ANSI C forbids casts to union type");
3735	  if (TYPE_NAME (type) != 0)
3736	    {
3737	      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3738		name = IDENTIFIER_POINTER (TYPE_NAME (type));
3739	      else
3740		name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3741	    }
3742	  else
3743	    name = "";
3744	  t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3745					build_tree_list (field, value)),
3746			   0, 0);
3747	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3748	  return t;
3749	}
3750      error ("cast to union type from type not present in union");
3751      return error_mark_node;
3752    }
3753  else
3754    {
3755      tree otype, ovalue;
3756
3757      /* If casting to void, avoid the error that would come
3758	 from default_conversion in the case of a non-lvalue array.  */
3759      if (type == void_type_node)
3760	return build1 (CONVERT_EXPR, type, value);
3761
3762      /* Convert functions and arrays to pointers,
3763	 but don't convert any other types.  */
3764      if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
3765	  || TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE)
3766	value = default_conversion (value);
3767      otype = TREE_TYPE (value);
3768
3769      /* Optionally warn about potentially worrisome casts.  */
3770
3771      if (warn_cast_qual
3772	  && TREE_CODE (type) == POINTER_TYPE
3773	  && TREE_CODE (otype) == POINTER_TYPE)
3774	{
3775	  /* Go to the innermost object being pointed to.  */
3776	  tree in_type = type;
3777	  tree in_otype = otype;
3778
3779	  while (TREE_CODE (in_type) == POINTER_TYPE)
3780	    in_type = TREE_TYPE (in_type);
3781	  while (TREE_CODE (in_otype) == POINTER_TYPE)
3782	    in_otype = TREE_TYPE (in_otype);
3783
3784	  if (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type))
3785	    /* There are qualifiers present in IN_OTYPE that are not
3786	       present in IN_TYPE.  */
3787	    pedwarn ("cast discards qualifiers from pointer target type");
3788	}
3789
3790      /* Warn about possible alignment problems.  */
3791      if (STRICT_ALIGNMENT && warn_cast_align
3792	  && TREE_CODE (type) == POINTER_TYPE
3793	  && TREE_CODE (otype) == POINTER_TYPE
3794	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3795	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3796	  /* Don't warn about opaque types, where the actual alignment
3797	     restriction is unknown.  */
3798	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3799		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3800	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3801	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3802	warning ("cast increases required alignment of target type");
3803
3804      if (TREE_CODE (type) == INTEGER_TYPE
3805	  && TREE_CODE (otype) == POINTER_TYPE
3806	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3807	  && !TREE_CONSTANT (value))
3808	warning ("cast from pointer to integer of different size");
3809
3810      if (warn_bad_function_cast
3811	  && TREE_CODE (value) == CALL_EXPR
3812	  && TREE_CODE (type) != TREE_CODE (otype))
3813	warning ("cast does not match function type");
3814
3815      if (TREE_CODE (type) == POINTER_TYPE
3816	  && TREE_CODE (otype) == INTEGER_TYPE
3817	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3818#if 0
3819	  /* Don't warn about converting 0 to pointer,
3820	     provided the 0 was explicit--not cast or made by folding.  */
3821	  && !(TREE_CODE (value) == INTEGER_CST && integer_zerop (value))
3822#endif
3823	  /* Don't warn about converting any constant.  */
3824	  && !TREE_CONSTANT (value))
3825	warning ("cast to pointer from integer of different size");
3826
3827      ovalue = value;
3828      value = convert (type, value);
3829
3830      /* Ignore any integer overflow caused by the cast.  */
3831      if (TREE_CODE (value) == INTEGER_CST)
3832	{
3833	  TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3834	  TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3835	}
3836    }
3837
3838  /* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant.  */
3839  if (pedantic && TREE_CODE (value) == INTEGER_CST
3840      && TREE_CODE (expr) == INTEGER_CST
3841      && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3842    value = non_lvalue (value);
3843
3844  /* If pedantic, don't let a cast be an lvalue.  */
3845  if (value == expr && pedantic)
3846    value = non_lvalue (value);
3847
3848  return value;
3849}
3850
3851/* Build an assignment expression of lvalue LHS from value RHS.
3852   MODIFYCODE is the code for a binary operator that we use
3853   to combine the old value of LHS with RHS to get the new value.
3854   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3855
3856tree
3857build_modify_expr (lhs, modifycode, rhs)
3858     tree lhs, rhs;
3859     enum tree_code modifycode;
3860{
3861  register tree result;
3862  tree newrhs;
3863  tree lhstype = TREE_TYPE (lhs);
3864  tree olhstype = lhstype;
3865
3866  /* Types that aren't fully specified cannot be used in assignments.  */
3867  lhs = require_complete_type (lhs);
3868
3869  /* Avoid duplicate error messages from operands that had errors.  */
3870  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3871    return error_mark_node;
3872
3873  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3874  /* Do not use STRIP_NOPS here.  We do not want an enumerator
3875     whose value is 0 to count as a null pointer constant.  */
3876  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3877    rhs = TREE_OPERAND (rhs, 0);
3878
3879  newrhs = rhs;
3880
3881  /* Handle control structure constructs used as "lvalues".  */
3882
3883  switch (TREE_CODE (lhs))
3884    {
3885      /* Handle (a, b) used as an "lvalue".  */
3886    case COMPOUND_EXPR:
3887      pedantic_lvalue_warning (COMPOUND_EXPR);
3888      newrhs = build_modify_expr (TREE_OPERAND (lhs, 1),
3889				  modifycode, rhs);
3890      if (TREE_CODE (newrhs) == ERROR_MARK)
3891	return error_mark_node;
3892      return build (COMPOUND_EXPR, lhstype,
3893		    TREE_OPERAND (lhs, 0), newrhs);
3894
3895      /* Handle (a ? b : c) used as an "lvalue".  */
3896    case COND_EXPR:
3897      pedantic_lvalue_warning (COND_EXPR);
3898      rhs = save_expr (rhs);
3899      {
3900	/* Produce (a ? (b = rhs) : (c = rhs))
3901	   except that the RHS goes through a save-expr
3902	   so the code to compute it is only emitted once.  */
3903	tree cond
3904	  = build_conditional_expr (TREE_OPERAND (lhs, 0),
3905				    build_modify_expr (TREE_OPERAND (lhs, 1),
3906						       modifycode, rhs),
3907				    build_modify_expr (TREE_OPERAND (lhs, 2),
3908						       modifycode, rhs));
3909	if (TREE_CODE (cond) == ERROR_MARK)
3910	  return cond;
3911	/* Make sure the code to compute the rhs comes out
3912	   before the split.  */
3913	return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3914		      /* But cast it to void to avoid an "unused" error.  */
3915		      convert (void_type_node, rhs), cond);
3916      }
3917    default:
3918      break;
3919    }
3920
3921  /* If a binary op has been requested, combine the old LHS value with the RHS
3922     producing the value we should actually store into the LHS.  */
3923
3924  if (modifycode != NOP_EXPR)
3925    {
3926      lhs = stabilize_reference (lhs);
3927      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3928    }
3929
3930  /* Handle a cast used as an "lvalue".
3931     We have already performed any binary operator using the value as cast.
3932     Now convert the result to the cast type of the lhs,
3933     and then true type of the lhs and store it there;
3934     then convert result back to the cast type to be the value
3935     of the assignment.  */
3936
3937  switch (TREE_CODE (lhs))
3938    {
3939    case NOP_EXPR:
3940    case CONVERT_EXPR:
3941    case FLOAT_EXPR:
3942    case FIX_TRUNC_EXPR:
3943    case FIX_FLOOR_EXPR:
3944    case FIX_ROUND_EXPR:
3945    case FIX_CEIL_EXPR:
3946      if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE
3947	  || TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE)
3948	newrhs = default_conversion (newrhs);
3949      {
3950	tree inner_lhs = TREE_OPERAND (lhs, 0);
3951	tree result;
3952	result = build_modify_expr (inner_lhs, NOP_EXPR,
3953				    convert (TREE_TYPE (inner_lhs),
3954					     convert (lhstype, newrhs)));
3955	if (TREE_CODE (result) == ERROR_MARK)
3956	  return result;
3957	pedantic_lvalue_warning (CONVERT_EXPR);
3958	return convert (TREE_TYPE (lhs), result);
3959      }
3960
3961    default:
3962      break;
3963    }
3964
3965  /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3966     Reject anything strange now.  */
3967
3968  if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
3969    return error_mark_node;
3970
3971  /* Warn about storing in something that is `const'.  */
3972
3973  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3974      || ((TREE_CODE (lhstype) == RECORD_TYPE
3975	   || TREE_CODE (lhstype) == UNION_TYPE)
3976	  && C_TYPE_FIELDS_READONLY (lhstype)))
3977    readonly_warning (lhs, "assignment");
3978
3979  /* If storing into a structure or union member,
3980     it has probably been given type `int'.
3981     Compute the type that would go with
3982     the actual amount of storage the member occupies.  */
3983
3984  if (TREE_CODE (lhs) == COMPONENT_REF
3985      && (TREE_CODE (lhstype) == INTEGER_TYPE
3986	  || TREE_CODE (lhstype) == REAL_TYPE
3987	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3988    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3989
3990  /* If storing in a field that is in actuality a short or narrower than one,
3991     we must store in the field in its actual type.  */
3992
3993  if (lhstype != TREE_TYPE (lhs))
3994    {
3995      lhs = copy_node (lhs);
3996      TREE_TYPE (lhs) = lhstype;
3997    }
3998
3999  /* Convert new value to destination type.  */
4000
4001  newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
4002				   NULL_TREE, NULL_TREE, 0);
4003  if (TREE_CODE (newrhs) == ERROR_MARK)
4004    return error_mark_node;
4005
4006  result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
4007  TREE_SIDE_EFFECTS (result) = 1;
4008
4009  /* If we got the LHS in a different type for storing in,
4010     convert the result back to the nominal type of LHS
4011     so that the value we return always has the same type
4012     as the LHS argument.  */
4013
4014  if (olhstype == TREE_TYPE (result))
4015    return result;
4016  return convert_for_assignment (olhstype, result, _("assignment"),
4017				 NULL_TREE, NULL_TREE, 0);
4018}
4019
4020/* Convert value RHS to type TYPE as preparation for an assignment
4021   to an lvalue of type TYPE.
4022   The real work of conversion is done by `convert'.
4023   The purpose of this function is to generate error messages
4024   for assignments that are not allowed in C.
4025   ERRTYPE is a string to use in error messages:
4026   "assignment", "return", etc.  If it is null, this is parameter passing
4027   for a function call (and different error messages are output).
4028
4029   FUNNAME is the name of the function being called,
4030   as an IDENTIFIER_NODE, or null.
4031   PARMNUM is the number of the argument, for printing in error messages.  */
4032
4033static tree
4034convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
4035     tree type, rhs;
4036     const char *errtype;
4037     tree fundecl, funname;
4038     int parmnum;
4039{
4040  register enum tree_code codel = TREE_CODE (type);
4041  register tree rhstype;
4042  register enum tree_code coder;
4043
4044  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
4045  /* Do not use STRIP_NOPS here.  We do not want an enumerator
4046     whose value is 0 to count as a null pointer constant.  */
4047  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
4048    rhs = TREE_OPERAND (rhs, 0);
4049
4050  if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
4051      || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4052    rhs = default_conversion (rhs);
4053  else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4054    rhs = decl_constant_value (rhs);
4055
4056  rhstype = TREE_TYPE (rhs);
4057  coder = TREE_CODE (rhstype);
4058
4059  if (coder == ERROR_MARK)
4060    return error_mark_node;
4061
4062  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4063    {
4064      overflow_warning (rhs);
4065      /* Check for Objective-C protocols.  This will issue a warning if
4066	 there are protocol violations.  No need to use the return value.  */
4067      maybe_objc_comptypes (type, rhstype, 0);
4068      return rhs;
4069    }
4070
4071  if (coder == VOID_TYPE)
4072    {
4073      error ("void value not ignored as it ought to be");
4074      return error_mark_node;
4075    }
4076  /* Arithmetic types all interconvert, and enum is treated like int.  */
4077  if ((codel == INTEGER_TYPE || codel == REAL_TYPE || codel == ENUMERAL_TYPE
4078       || codel == COMPLEX_TYPE)
4079      && (coder == INTEGER_TYPE || coder == REAL_TYPE || coder == ENUMERAL_TYPE
4080	  || coder == COMPLEX_TYPE))
4081    return convert_and_check (type, rhs);
4082
4083  /* Conversion to a transparent union from its member types.
4084     This applies only to function arguments.  */
4085  else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4086    {
4087      tree memb_types;
4088      tree marginal_memb_type = 0;
4089
4090      for (memb_types = TYPE_FIELDS (type); memb_types;
4091	   memb_types = TREE_CHAIN (memb_types))
4092	{
4093	  tree memb_type = TREE_TYPE (memb_types);
4094
4095	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4096			 TYPE_MAIN_VARIANT (rhstype)))
4097	    break;
4098
4099	  if (TREE_CODE (memb_type) != POINTER_TYPE)
4100	    continue;
4101
4102	  if (coder == POINTER_TYPE)
4103	    {
4104	      register tree ttl = TREE_TYPE (memb_type);
4105	      register tree ttr = TREE_TYPE (rhstype);
4106
4107	      /* Any non-function converts to a [const][volatile] void *
4108		 and vice versa; otherwise, targets must be the same.
4109		 Meanwhile, the lhs target must have all the qualifiers of
4110		 the rhs.  */
4111	      if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4112		  || TYPE_MAIN_VARIANT (ttr) == void_type_node
4113		  || comp_target_types (memb_type, rhstype))
4114		{
4115		  /* If this type won't generate any warnings, use it.  */
4116		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4117		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
4118			   && TREE_CODE (ttl) == FUNCTION_TYPE)
4119			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4120			     == TYPE_QUALS (ttr))
4121			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4122			     == TYPE_QUALS (ttl))))
4123		    break;
4124
4125		  /* Keep looking for a better type, but remember this one.  */
4126		  if (! marginal_memb_type)
4127		    marginal_memb_type = memb_type;
4128		}
4129	    }
4130
4131	  /* Can convert integer zero to any pointer type.  */
4132	  if (integer_zerop (rhs)
4133	      || (TREE_CODE (rhs) == NOP_EXPR
4134		  && integer_zerop (TREE_OPERAND (rhs, 0))))
4135	    {
4136	      rhs = null_pointer_node;
4137	      break;
4138	    }
4139	}
4140
4141      if (memb_types || marginal_memb_type)
4142	{
4143	  if (! memb_types)
4144	    {
4145	      /* We have only a marginally acceptable member type;
4146		 it needs a warning.  */
4147	      register tree ttl = TREE_TYPE (marginal_memb_type);
4148	      register tree ttr = TREE_TYPE (rhstype);
4149
4150	      /* Const and volatile mean something different for function
4151		 types, so the usual warnings are not appropriate.  */
4152	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4153		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4154		{
4155		  /* Because const and volatile on functions are
4156		     restrictions that say the function will not do
4157		     certain things, it is okay to use a const or volatile
4158		     function where an ordinary one is wanted, but not
4159		     vice-versa.  */
4160		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4161		    warn_for_assignment ("%s makes qualified function pointer from unqualified",
4162					 errtype, funname, parmnum);
4163		}
4164	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4165		warn_for_assignment ("%s discards qualifiers from pointer target type",
4166				     errtype, funname,
4167				     parmnum);
4168	    }
4169
4170	  if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4171	    pedwarn ("ANSI C prohibits argument conversion to union type");
4172
4173	  return build1 (NOP_EXPR, type, rhs);
4174	}
4175    }
4176
4177  /* Conversions among pointers */
4178  else if (codel == POINTER_TYPE && coder == POINTER_TYPE)
4179    {
4180      register tree ttl = TREE_TYPE (type);
4181      register tree ttr = TREE_TYPE (rhstype);
4182
4183      /* Any non-function converts to a [const][volatile] void *
4184	 and vice versa; otherwise, targets must be the same.
4185	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4186      if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4187	  || TYPE_MAIN_VARIANT (ttr) == void_type_node
4188	  || comp_target_types (type, rhstype)
4189	  || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
4190	      == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4191	{
4192	  if (pedantic
4193	      && ((TYPE_MAIN_VARIANT (ttl) == void_type_node
4194		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4195		  ||
4196		  (TYPE_MAIN_VARIANT (ttr) == void_type_node
4197		   /* Check TREE_CODE to catch cases like (void *) (char *) 0
4198		      which are not ANSI null ptr constants.  */
4199		   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4200		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4201	    warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
4202				 errtype, funname, parmnum);
4203	  /* Const and volatile mean something different for function types,
4204	     so the usual warnings are not appropriate.  */
4205	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4206		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4207	    {
4208	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4209		warn_for_assignment ("%s discards qualifiers from pointer target type",
4210				     errtype, funname, parmnum);
4211	      /* If this is not a case of ignoring a mismatch in signedness,
4212		 no warning.  */
4213	      else if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4214		       || TYPE_MAIN_VARIANT (ttr) == void_type_node
4215		       || comp_target_types (type, rhstype))
4216		;
4217	      /* If there is a mismatch, do warn.  */
4218	      else if (pedantic)
4219		warn_for_assignment ("pointer targets in %s differ in signedness",
4220				     errtype, funname, parmnum);
4221	    }
4222	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4223		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4224	    {
4225	      /* Because const and volatile on functions are restrictions
4226		 that say the function will not do certain things,
4227		 it is okay to use a const or volatile function
4228		 where an ordinary one is wanted, but not vice-versa.  */
4229	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4230		warn_for_assignment ("%s makes qualified function pointer from unqualified",
4231				     errtype, funname, parmnum);
4232	    }
4233	}
4234      else
4235	warn_for_assignment ("%s from incompatible pointer type",
4236			     errtype, funname, parmnum);
4237      return convert (type, rhs);
4238    }
4239  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4240    {
4241      /* An explicit constant 0 can convert to a pointer,
4242	 or one that results from arithmetic, even including
4243	 a cast to integer type.  */
4244      if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4245	  &&
4246	  ! (TREE_CODE (rhs) == NOP_EXPR
4247	     && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4248	     && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4249	     && integer_zerop (TREE_OPERAND (rhs, 0))))
4250	{
4251	  warn_for_assignment ("%s makes pointer from integer without a cast",
4252			       errtype, funname, parmnum);
4253	  return convert (type, rhs);
4254	}
4255      return null_pointer_node;
4256    }
4257  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4258    {
4259      warn_for_assignment ("%s makes integer from pointer without a cast",
4260			   errtype, funname, parmnum);
4261      return convert (type, rhs);
4262    }
4263
4264  if (!errtype)
4265    {
4266      if (funname)
4267 	{
4268 	  tree selector = maybe_building_objc_message_expr ();
4269
4270 	  if (selector && parmnum > 2)
4271 	    error ("incompatible type for argument %d of `%s'",
4272		   parmnum - 2, IDENTIFIER_POINTER (selector));
4273 	  else
4274	    error ("incompatible type for argument %d of `%s'",
4275		   parmnum, IDENTIFIER_POINTER (funname));
4276	}
4277      else
4278	error ("incompatible type for argument %d of indirect function call",
4279	       parmnum);
4280    }
4281  else
4282    error ("incompatible types in %s", errtype);
4283
4284  return error_mark_node;
4285}
4286
4287/* Print a warning using MSGID.
4288   It gets OPNAME as its one parameter.
4289   If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4290   FUNCTION and ARGNUM are handled specially if we are building an
4291   Objective-C selector.  */
4292
4293static void
4294warn_for_assignment (msgid, opname, function, argnum)
4295     const char *msgid;
4296     const char *opname;
4297     tree function;
4298     int argnum;
4299{
4300  if (opname == 0)
4301    {
4302      tree selector = maybe_building_objc_message_expr ();
4303      char * new_opname;
4304
4305      if (selector && argnum > 2)
4306	{
4307	  function = selector;
4308	  argnum -= 2;
4309	}
4310      if (function)
4311	{
4312	  /* Function name is known; supply it.  */
4313	  const char *argstring = _("passing arg %d of `%s'");
4314	  new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4315					+ strlen (argstring) + 1 + 25
4316					/*%d*/ + 1);
4317	  sprintf (new_opname, argstring, argnum,
4318		   IDENTIFIER_POINTER (function));
4319	}
4320      else
4321	{
4322	  /* Function name unknown (call through ptr); just give arg number.*/
4323	  const char *argnofun = _("passing arg %d of pointer to function");
4324	  new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4325	  sprintf (new_opname, argnofun, argnum);
4326	}
4327      opname = new_opname;
4328    }
4329  pedwarn (msgid, opname);
4330}
4331
4332/* Return nonzero if VALUE is a valid constant-valued expression
4333   for use in initializing a static variable; one that can be an
4334   element of a "constant" initializer.
4335
4336   Return null_pointer_node if the value is absolute;
4337   if it is relocatable, return the variable that determines the relocation.
4338   We assume that VALUE has been folded as much as possible;
4339   therefore, we do not need to check for such things as
4340   arithmetic-combinations of integers.  */
4341
4342tree
4343initializer_constant_valid_p (value, endtype)
4344     tree value;
4345     tree endtype;
4346{
4347  switch (TREE_CODE (value))
4348    {
4349    case CONSTRUCTOR:
4350      if ((TREE_CODE (TREE_TYPE (value)) == UNION_TYPE
4351	   || TREE_CODE (TREE_TYPE (value)) == RECORD_TYPE)
4352	  && TREE_CONSTANT (value)
4353	  && CONSTRUCTOR_ELTS (value))
4354	return
4355	  initializer_constant_valid_p (TREE_VALUE (CONSTRUCTOR_ELTS (value)),
4356					endtype);
4357
4358      return TREE_STATIC (value) ? null_pointer_node : 0;
4359
4360    case INTEGER_CST:
4361    case REAL_CST:
4362    case STRING_CST:
4363    case COMPLEX_CST:
4364      return null_pointer_node;
4365
4366    case ADDR_EXPR:
4367      return TREE_OPERAND (value, 0);
4368
4369    case NON_LVALUE_EXPR:
4370      return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4371
4372    case CONVERT_EXPR:
4373    case NOP_EXPR:
4374      /* Allow conversions between pointer types.  */
4375      if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
4376	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE)
4377	return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4378
4379      /* Allow conversions between real types.  */
4380      if (TREE_CODE (TREE_TYPE (value)) == REAL_TYPE
4381	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == REAL_TYPE)
4382	return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4383
4384      /* Allow length-preserving conversions between integer types.  */
4385      if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4386	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
4387	  && (TYPE_PRECISION (TREE_TYPE (value))
4388	      == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
4389	return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4390
4391      /* Allow conversions between other integer types only if
4392	 explicit value.  */
4393      if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4394	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
4395	{
4396	  tree inner = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4397						     endtype);
4398	  if (inner == null_pointer_node)
4399	    return null_pointer_node;
4400	  return 0;
4401	}
4402
4403      /* Allow (int) &foo provided int is as wide as a pointer.  */
4404      if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4405	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE
4406	  && (TYPE_PRECISION (TREE_TYPE (value))
4407	      >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
4408	return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4409					     endtype);
4410
4411      /* Likewise conversions from int to pointers, but also allow
4412	 conversions from 0.  */
4413      if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
4414	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
4415	{
4416	  if (integer_zerop (TREE_OPERAND (value, 0)))
4417	    return null_pointer_node;
4418	  else if (TYPE_PRECISION (TREE_TYPE (value))
4419		   <= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0))))
4420	    return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4421						 endtype);
4422	}
4423
4424      /* Allow conversions to union types if the value inside is okay.  */
4425      if (TREE_CODE (TREE_TYPE (value)) == UNION_TYPE)
4426	return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4427					     endtype);
4428      return 0;
4429
4430    case PLUS_EXPR:
4431      if (TREE_CODE (endtype) == INTEGER_TYPE
4432	  && TYPE_PRECISION (endtype) < POINTER_SIZE)
4433	return 0;
4434      {
4435	tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4436						    endtype);
4437	tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
4438						    endtype);
4439	/* If either term is absolute, use the other terms relocation.  */
4440	if (valid0 == null_pointer_node)
4441	  return valid1;
4442	if (valid1 == null_pointer_node)
4443	  return valid0;
4444	return 0;
4445      }
4446
4447    case MINUS_EXPR:
4448      if (TREE_CODE (endtype) == INTEGER_TYPE
4449	  && TYPE_PRECISION (endtype) < POINTER_SIZE)
4450	return 0;
4451      {
4452	tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4453						    endtype);
4454	tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
4455						    endtype);
4456	/* Win if second argument is absolute.  */
4457	if (valid1 == null_pointer_node)
4458	  return valid0;
4459	/* Win if both arguments have the same relocation.
4460	   Then the value is absolute.  */
4461	if (valid0 == valid1)
4462	  return null_pointer_node;
4463	return 0;
4464      }
4465
4466    default:
4467      return 0;
4468    }
4469}
4470
4471/* If VALUE is a compound expr all of whose expressions are constant, then
4472   return its value.  Otherwise, return error_mark_node.
4473
4474   This is for handling COMPOUND_EXPRs as initializer elements
4475   which is allowed with a warning when -pedantic is specified.  */
4476
4477static tree
4478valid_compound_expr_initializer (value, endtype)
4479     tree value;
4480     tree endtype;
4481{
4482  if (TREE_CODE (value) == COMPOUND_EXPR)
4483    {
4484      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4485	  == error_mark_node)
4486	return error_mark_node;
4487      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4488					      endtype);
4489    }
4490  else if (! TREE_CONSTANT (value)
4491	   && ! initializer_constant_valid_p (value, endtype))
4492    return error_mark_node;
4493  else
4494    return value;
4495}
4496
4497/* Perform appropriate conversions on the initial value of a variable,
4498   store it in the declaration DECL,
4499   and print any error messages that are appropriate.
4500   If the init is invalid, store an ERROR_MARK.  */
4501
4502void
4503store_init_value (decl, init)
4504     tree decl, init;
4505{
4506  register tree value, type;
4507
4508  /* If variable's type was invalidly declared, just ignore it.  */
4509
4510  type = TREE_TYPE (decl);
4511  if (TREE_CODE (type) == ERROR_MARK)
4512    return;
4513
4514  /* Digest the specified initializer into an expression.  */
4515
4516  value = digest_init (type, init, TREE_STATIC (decl),
4517		       TREE_STATIC (decl) || pedantic);
4518
4519  /* Store the expression if valid; else report error.  */
4520
4521#if 0
4522  /* Note that this is the only place we can detect the error
4523     in a case such as   struct foo bar = (struct foo) { x, y };
4524     where there is one initial value which is a constructor expression.  */
4525  if (value == error_mark_node)
4526    ;
4527  else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4528    {
4529      error ("initializer for static variable is not constant");
4530      value = error_mark_node;
4531    }
4532  else if (TREE_STATIC (decl)
4533	   && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4534    {
4535      error ("initializer for static variable uses complicated arithmetic");
4536      value = error_mark_node;
4537    }
4538  else
4539    {
4540      if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4541	{
4542	  if (! TREE_CONSTANT (value))
4543	    pedwarn ("aggregate initializer is not constant");
4544	  else if (! TREE_STATIC (value))
4545	    pedwarn ("aggregate initializer uses complicated arithmetic");
4546	}
4547    }
4548#endif
4549
4550  DECL_INITIAL (decl) = value;
4551
4552  /* ANSI wants warnings about out-of-range constant initializers.  */
4553  STRIP_TYPE_NOPS (value);
4554  constant_expression_warning (value);
4555}
4556
4557/* Methods for storing and printing names for error messages.  */
4558
4559/* Implement a spelling stack that allows components of a name to be pushed
4560   and popped.  Each element on the stack is this structure.  */
4561
4562struct spelling
4563{
4564  int kind;
4565  union
4566    {
4567      int i;
4568      const char *s;
4569    } u;
4570};
4571
4572#define SPELLING_STRING 1
4573#define SPELLING_MEMBER 2
4574#define SPELLING_BOUNDS 3
4575
4576static struct spelling *spelling;	/* Next stack element (unused).  */
4577static struct spelling *spelling_base;	/* Spelling stack base.  */
4578static int spelling_size;		/* Size of the spelling stack.  */
4579
4580/* Macros to save and restore the spelling stack around push_... functions.
4581   Alternative to SAVE_SPELLING_STACK.  */
4582
4583#define SPELLING_DEPTH() (spelling - spelling_base)
4584#define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
4585
4586/* Save and restore the spelling stack around arbitrary C code.  */
4587
4588#define SAVE_SPELLING_DEPTH(code)		\
4589{						\
4590  int __depth = SPELLING_DEPTH ();		\
4591  code;						\
4592  RESTORE_SPELLING_DEPTH (__depth);		\
4593}
4594
4595/* Push an element on the spelling stack with type KIND and assign VALUE
4596   to MEMBER.  */
4597
4598#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4599{									\
4600  int depth = SPELLING_DEPTH ();					\
4601									\
4602  if (depth >= spelling_size)						\
4603    {									\
4604      spelling_size += 10;						\
4605      if (spelling_base == 0)						\
4606	spelling_base							\
4607	  = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling));	\
4608      else								\
4609        spelling_base							\
4610	  = (struct spelling *) xrealloc (spelling_base,		\
4611					  spelling_size * sizeof (struct spelling));	\
4612      RESTORE_SPELLING_DEPTH (depth);					\
4613    }									\
4614									\
4615  spelling->kind = (KIND);						\
4616  spelling->MEMBER = (VALUE);						\
4617  spelling++;								\
4618}
4619
4620/* Push STRING on the stack.  Printed literally.  */
4621
4622static void
4623push_string (string)
4624     const char *string;
4625{
4626  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4627}
4628
4629/* Push a member name on the stack.  Printed as '.' STRING.  */
4630
4631static void
4632push_member_name (decl)
4633     tree decl;
4634
4635{
4636  const char *string
4637    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4638  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4639}
4640
4641/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4642
4643static void
4644push_array_bounds (bounds)
4645     int bounds;
4646{
4647  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4648}
4649
4650/* Compute the maximum size in bytes of the printed spelling.  */
4651
4652static int
4653spelling_length ()
4654{
4655  register int size = 0;
4656  register struct spelling *p;
4657
4658  for (p = spelling_base; p < spelling; p++)
4659    {
4660      if (p->kind == SPELLING_BOUNDS)
4661	size += 25;
4662      else
4663	size += strlen (p->u.s) + 1;
4664    }
4665
4666  return size;
4667}
4668
4669/* Print the spelling to BUFFER and return it.  */
4670
4671static char *
4672print_spelling (buffer)
4673     register char *buffer;
4674{
4675  register char *d = buffer;
4676  register struct spelling *p;
4677
4678  for (p = spelling_base; p < spelling; p++)
4679    if (p->kind == SPELLING_BOUNDS)
4680      {
4681	sprintf (d, "[%d]", p->u.i);
4682	d += strlen (d);
4683      }
4684    else
4685      {
4686	register const char *s;
4687	if (p->kind == SPELLING_MEMBER)
4688	  *d++ = '.';
4689	for (s = p->u.s; (*d = *s++); d++)
4690	  ;
4691      }
4692  *d++ = '\0';
4693  return buffer;
4694}
4695
4696/* Issue an error message for a bad initializer component.
4697   MSGID identifies the message.
4698   The component name is taken from the spelling stack.  */
4699
4700void
4701error_init (msgid)
4702     const char *msgid;
4703{
4704  char *ofwhat;
4705
4706  error (msgid);
4707  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4708  if (*ofwhat)
4709    error ("(near initialization for `%s')", ofwhat);
4710}
4711
4712/* Issue a pedantic warning for a bad initializer component.
4713   MSGID identifies the message.
4714   The component name is taken from the spelling stack.  */
4715
4716void
4717pedwarn_init (msgid)
4718     const char *msgid;
4719{
4720  char *ofwhat;
4721
4722  pedwarn (msgid);
4723  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4724  if (*ofwhat)
4725    pedwarn ("(near initialization for `%s')", ofwhat);
4726}
4727
4728/* Issue a warning for a bad initializer component.
4729   MSGID identifies the message.
4730   The component name is taken from the spelling stack.  */
4731
4732static void
4733warning_init (msgid)
4734     const char *msgid;
4735{
4736  char *ofwhat;
4737
4738  warning (msgid);
4739  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4740  if (*ofwhat)
4741    warning ("(near initialization for `%s')", ofwhat);
4742}
4743
4744/* Digest the parser output INIT as an initializer for type TYPE.
4745   Return a C expression of type TYPE to represent the initial value.
4746
4747   The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
4748   if non-constant initializers or elements are seen.  CONSTRUCTOR_CONSTANT
4749   applies only to elements of constructors.  */
4750
4751static tree
4752digest_init (type, init, require_constant, constructor_constant)
4753     tree type, init;
4754     int require_constant, constructor_constant;
4755{
4756  enum tree_code code = TREE_CODE (type);
4757  tree inside_init = init;
4758
4759  if (init == error_mark_node)
4760    return init;
4761
4762  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
4763  /* Do not use STRIP_NOPS here.  We do not want an enumerator
4764     whose value is 0 to count as a null pointer constant.  */
4765  if (TREE_CODE (init) == NON_LVALUE_EXPR)
4766    inside_init = TREE_OPERAND (init, 0);
4767
4768  /* Initialization of an array of chars from a string constant
4769     optionally enclosed in braces.  */
4770
4771  if (code == ARRAY_TYPE)
4772    {
4773      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4774      if ((typ1 == char_type_node
4775	   || typ1 == signed_char_type_node
4776	   || typ1 == unsigned_char_type_node
4777	   || typ1 == unsigned_wchar_type_node
4778	   || typ1 == signed_wchar_type_node)
4779	  && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4780	{
4781	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4782			 TYPE_MAIN_VARIANT (type)))
4783	    return inside_init;
4784
4785	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4786	       != char_type_node)
4787	      && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4788	    {
4789	      error_init ("char-array initialized from wide string");
4790	      return error_mark_node;
4791	    }
4792	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4793	       == char_type_node)
4794	      && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4795	    {
4796	      error_init ("int-array initialized from non-wide string");
4797	      return error_mark_node;
4798	    }
4799
4800	  TREE_TYPE (inside_init) = type;
4801	  if (TYPE_DOMAIN (type) != 0
4802	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
4803	    {
4804	      register int size = TREE_INT_CST_LOW (TYPE_SIZE (type));
4805	      size = (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
4806	      /* Subtract 1 (or sizeof (wchar_t))
4807		 because it's ok to ignore the terminating null char
4808		 that is counted in the length of the constant.  */
4809	      if (size < TREE_STRING_LENGTH (inside_init)
4810		  - (TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node)
4811		     ? TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT
4812		     : 1))
4813		pedwarn_init ("initializer-string for array of chars is too long");
4814	    }
4815	  return inside_init;
4816	}
4817    }
4818
4819  /* Any type can be initialized
4820     from an expression of the same type, optionally with braces.  */
4821
4822  if (inside_init && TREE_TYPE (inside_init) != 0
4823      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4824		     TYPE_MAIN_VARIANT (type))
4825	  || (code == ARRAY_TYPE
4826	      && comptypes (TREE_TYPE (inside_init), type))
4827	  || (code == POINTER_TYPE
4828	      && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4829		  || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4830	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4831			    TREE_TYPE (type)))))
4832    {
4833      if (code == POINTER_TYPE
4834	  && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4835	      || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE))
4836	inside_init = default_conversion (inside_init);
4837      else if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4838	       && TREE_CODE (inside_init) != CONSTRUCTOR)
4839	{
4840	  error_init ("array initialized from non-constant array expression");
4841	  return error_mark_node;
4842	}
4843
4844      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4845	inside_init = decl_constant_value (inside_init);
4846
4847      /* Compound expressions can only occur here if -pedantic or
4848	 -pedantic-errors is specified.  In the later case, we always want
4849	 an error.  In the former case, we simply want a warning.  */
4850      if (require_constant && pedantic
4851	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4852	{
4853	  inside_init
4854	    = valid_compound_expr_initializer (inside_init,
4855					       TREE_TYPE (inside_init));
4856	  if (inside_init == error_mark_node)
4857	    error_init ("initializer element is not constant");
4858	  else
4859	    pedwarn_init ("initializer element is not constant");
4860	  if (flag_pedantic_errors)
4861	    inside_init = error_mark_node;
4862	}
4863      else if (require_constant && ! TREE_CONSTANT (inside_init))
4864	{
4865	  error_init ("initializer element is not constant");
4866	  inside_init = error_mark_node;
4867	}
4868      else if (require_constant
4869	       && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4870	{
4871	  error_init ("initializer element is not computable at load time");
4872	  inside_init = error_mark_node;
4873	}
4874
4875      return inside_init;
4876    }
4877
4878  /* Handle scalar types, including conversions.  */
4879
4880  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4881      || code == ENUMERAL_TYPE || code == COMPLEX_TYPE)
4882    {
4883      /* Note that convert_for_assignment calls default_conversion
4884	 for arrays and functions.  We must not call it in the
4885	 case where inside_init is a null pointer constant.  */
4886      inside_init
4887	= convert_for_assignment (type, init, _("initialization"),
4888				  NULL_TREE, NULL_TREE, 0);
4889
4890      if (require_constant && ! TREE_CONSTANT (inside_init))
4891	{
4892	  error_init ("initializer element is not constant");
4893	  inside_init = error_mark_node;
4894	}
4895      else if (require_constant
4896	       && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4897	{
4898	  error_init ("initializer element is not computable at load time");
4899	  inside_init = error_mark_node;
4900	}
4901
4902      return inside_init;
4903    }
4904
4905  /* Come here only for records and arrays.  */
4906
4907  if (TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4908    {
4909      error_init ("variable-sized object may not be initialized");
4910      return error_mark_node;
4911    }
4912
4913  /* Traditionally, you can write  struct foo x = 0;
4914     and it initializes the first element of x to 0.  */
4915  if (flag_traditional)
4916    {
4917      tree top = 0, prev = 0, otype = type;
4918      while (TREE_CODE (type) == RECORD_TYPE
4919	     || TREE_CODE (type) == ARRAY_TYPE
4920	     || TREE_CODE (type) == QUAL_UNION_TYPE
4921	     || TREE_CODE (type) == UNION_TYPE)
4922	{
4923	  tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
4924	  if (prev == 0)
4925	    top = temp;
4926	  else
4927	    TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
4928	  prev = temp;
4929	  if (TREE_CODE (type) == ARRAY_TYPE)
4930	    type = TREE_TYPE (type);
4931	  else if (TYPE_FIELDS (type))
4932	    type = TREE_TYPE (TYPE_FIELDS (type));
4933	  else
4934	    {
4935	      error_init ("invalid initializer");
4936	      return error_mark_node;
4937	    }
4938	}
4939
4940      if (otype != type)
4941	{
4942	  TREE_OPERAND (prev, 1)
4943	    = build_tree_list (NULL_TREE,
4944			       digest_init (type, init, require_constant,
4945					    constructor_constant));
4946	  return top;
4947	}
4948      else
4949	return error_mark_node;
4950    }
4951  error_init ("invalid initializer");
4952  return error_mark_node;
4953}
4954
4955/* Handle initializers that use braces.  */
4956
4957/* Type of object we are accumulating a constructor for.
4958   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4959static tree constructor_type;
4960
4961/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4962   left to fill.  */
4963static tree constructor_fields;
4964
4965/* For an ARRAY_TYPE, this is the specified index
4966   at which to store the next element we get.
4967   This is a special INTEGER_CST node that we modify in place.  */
4968static tree constructor_index;
4969
4970/* For an ARRAY_TYPE, this is the end index of the range
4971   to initialize with the next element, or NULL in the ordinary case
4972   where the element is used just once.  */
4973static tree constructor_range_end;
4974
4975/* For an ARRAY_TYPE, this is the maximum index.  */
4976static tree constructor_max_index;
4977
4978/* For a RECORD_TYPE, this is the first field not yet written out.  */
4979static tree constructor_unfilled_fields;
4980
4981/* For an ARRAY_TYPE, this is the index of the first element
4982   not yet written out.
4983   This is a special INTEGER_CST node that we modify in place.  */
4984static tree constructor_unfilled_index;
4985
4986/* In a RECORD_TYPE, the byte index of the next consecutive field.
4987   This is so we can generate gaps between fields, when appropriate.
4988   This is a special INTEGER_CST node that we modify in place.  */
4989static tree constructor_bit_index;
4990
4991/* If we are saving up the elements rather than allocating them,
4992   this is the list of elements so far (in reverse order,
4993   most recent first).  */
4994static tree constructor_elements;
4995
4996/* 1 if so far this constructor's elements are all compile-time constants.  */
4997static int constructor_constant;
4998
4999/* 1 if so far this constructor's elements are all valid address constants.  */
5000static int constructor_simple;
5001
5002/* 1 if this constructor is erroneous so far.  */
5003static int constructor_erroneous;
5004
5005/* 1 if have called defer_addressed_constants.  */
5006static int constructor_subconstants_deferred;
5007
5008/* Structure for managing pending initializer elements, organized as an
5009   AVL tree.  */
5010
5011struct init_node
5012{
5013  struct init_node *left, *right;
5014  struct init_node *parent;
5015  int balance;
5016  tree purpose;
5017  tree value;
5018};
5019
5020/* Tree of pending elements at this constructor level.
5021   These are elements encountered out of order
5022   which belong at places we haven't reached yet in actually
5023   writing the output.  */
5024static struct init_node *constructor_pending_elts;
5025
5026/* The SPELLING_DEPTH of this constructor.  */
5027static int constructor_depth;
5028
5029/* 0 if implicitly pushing constructor levels is allowed.  */
5030int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages.  */
5031
5032static int require_constant_value;
5033static int require_constant_elements;
5034
5035/* 1 if it is ok to output this constructor as we read it.
5036   0 means must accumulate a CONSTRUCTOR expression.  */
5037static int constructor_incremental;
5038
5039/* DECL node for which an initializer is being read.
5040   0 means we are reading a constructor expression
5041   such as (struct foo) {...}.  */
5042static tree constructor_decl;
5043
5044/* start_init saves the ASMSPEC arg here for really_start_incremental_init.  */
5045static char *constructor_asmspec;
5046
5047/* Nonzero if this is an initializer for a top-level decl.  */
5048static int constructor_top_level;
5049
5050
5051/* This stack has a level for each implicit or explicit level of
5052   structuring in the initializer, including the outermost one.  It
5053   saves the values of most of the variables above.  */
5054
5055struct constructor_stack
5056{
5057  struct constructor_stack *next;
5058  tree type;
5059  tree fields;
5060  tree index;
5061  tree range_end;
5062  tree max_index;
5063  tree unfilled_index;
5064  tree unfilled_fields;
5065  tree bit_index;
5066  tree elements;
5067  int offset;
5068  struct init_node *pending_elts;
5069  int depth;
5070  /* If nonzero, this value should replace the entire
5071     constructor at this level.  */
5072  tree replacement_value;
5073  char constant;
5074  char simple;
5075  char implicit;
5076  char incremental;
5077  char erroneous;
5078  char outer;
5079};
5080
5081struct constructor_stack *constructor_stack;
5082
5083/* This stack records separate initializers that are nested.
5084   Nested initializers can't happen in ANSI C, but GNU C allows them
5085   in cases like { ... (struct foo) { ... } ... }.  */
5086
5087struct initializer_stack
5088{
5089  struct initializer_stack *next;
5090  tree decl;
5091  char *asmspec;
5092  struct constructor_stack *constructor_stack;
5093  tree elements;
5094  struct spelling *spelling;
5095  struct spelling *spelling_base;
5096  int spelling_size;
5097  char top_level;
5098  char incremental;
5099  char require_constant_value;
5100  char require_constant_elements;
5101  char deferred;
5102};
5103
5104struct initializer_stack *initializer_stack;
5105
5106/* Prepare to parse and output the initializer for variable DECL.  */
5107
5108void
5109start_init (decl, asmspec_tree, top_level)
5110     tree decl;
5111     tree asmspec_tree;
5112     int top_level;
5113{
5114  const char *locus;
5115  struct initializer_stack *p
5116    = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
5117  char *asmspec = 0;
5118
5119  if (asmspec_tree)
5120    asmspec = TREE_STRING_POINTER (asmspec_tree);
5121
5122  p->decl = constructor_decl;
5123  p->asmspec = constructor_asmspec;
5124  p->incremental = constructor_incremental;
5125  p->require_constant_value = require_constant_value;
5126  p->require_constant_elements = require_constant_elements;
5127  p->constructor_stack = constructor_stack;
5128  p->elements = constructor_elements;
5129  p->spelling = spelling;
5130  p->spelling_base = spelling_base;
5131  p->spelling_size = spelling_size;
5132  p->deferred = constructor_subconstants_deferred;
5133  p->top_level = constructor_top_level;
5134  p->next = initializer_stack;
5135  initializer_stack = p;
5136
5137  constructor_decl = decl;
5138  constructor_incremental = top_level;
5139  constructor_asmspec = asmspec;
5140  constructor_subconstants_deferred = 0;
5141  constructor_top_level = top_level;
5142
5143  if (decl != 0)
5144    {
5145      require_constant_value = TREE_STATIC (decl);
5146      require_constant_elements
5147	= ((TREE_STATIC (decl) || pedantic)
5148	   /* For a scalar, you can always use any value to initialize,
5149	      even within braces.  */
5150	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5151	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5152	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5153	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5154      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5155      constructor_incremental |= TREE_STATIC (decl);
5156    }
5157  else
5158    {
5159      require_constant_value = 0;
5160      require_constant_elements = 0;
5161      locus = "(anonymous)";
5162    }
5163
5164  constructor_stack = 0;
5165
5166  missing_braces_mentioned = 0;
5167
5168  spelling_base = 0;
5169  spelling_size = 0;
5170  RESTORE_SPELLING_DEPTH (0);
5171
5172  if (locus)
5173    push_string (locus);
5174}
5175
5176void
5177finish_init ()
5178{
5179  struct initializer_stack *p = initializer_stack;
5180
5181  /* Output subconstants (string constants, usually)
5182     that were referenced within this initializer and saved up.
5183     Must do this if and only if we called defer_addressed_constants.  */
5184  if (constructor_subconstants_deferred)
5185    output_deferred_addressed_constants ();
5186
5187  /* Free the whole constructor stack of this initializer.  */
5188  while (constructor_stack)
5189    {
5190      struct constructor_stack *q = constructor_stack;
5191      constructor_stack = q->next;
5192      free (q);
5193    }
5194
5195  /* Pop back to the data of the outer initializer (if any).  */
5196  constructor_decl = p->decl;
5197  constructor_asmspec = p->asmspec;
5198  constructor_incremental = p->incremental;
5199  require_constant_value = p->require_constant_value;
5200  require_constant_elements = p->require_constant_elements;
5201  constructor_stack = p->constructor_stack;
5202  constructor_elements = p->elements;
5203  spelling = p->spelling;
5204  spelling_base = p->spelling_base;
5205  spelling_size = p->spelling_size;
5206  constructor_subconstants_deferred = p->deferred;
5207  constructor_top_level = p->top_level;
5208  initializer_stack = p->next;
5209  free (p);
5210}
5211
5212/* Call here when we see the initializer is surrounded by braces.
5213   This is instead of a call to push_init_level;
5214   it is matched by a call to pop_init_level.
5215
5216   TYPE is the type to initialize, for a constructor expression.
5217   For an initializer for a decl, TYPE is zero.  */
5218
5219void
5220really_start_incremental_init (type)
5221     tree type;
5222{
5223  struct constructor_stack *p
5224    = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5225
5226  if (type == 0)
5227    type = TREE_TYPE (constructor_decl);
5228
5229  /* Turn off constructor_incremental if type is a struct with bitfields.
5230     Do this before the first push, so that the corrected value
5231     is available in finish_init.  */
5232  check_init_type_bitfields (type);
5233
5234  p->type = constructor_type;
5235  p->fields = constructor_fields;
5236  p->index = constructor_index;
5237  p->range_end = constructor_range_end;
5238  p->max_index = constructor_max_index;
5239  p->unfilled_index = constructor_unfilled_index;
5240  p->unfilled_fields = constructor_unfilled_fields;
5241  p->bit_index = constructor_bit_index;
5242  p->elements = constructor_elements;
5243  p->constant = constructor_constant;
5244  p->simple = constructor_simple;
5245  p->erroneous = constructor_erroneous;
5246  p->pending_elts = constructor_pending_elts;
5247  p->depth = constructor_depth;
5248  p->replacement_value = 0;
5249  p->implicit = 0;
5250  p->incremental = constructor_incremental;
5251  p->outer = 0;
5252  p->next = 0;
5253  constructor_stack = p;
5254
5255  constructor_constant = 1;
5256  constructor_simple = 1;
5257  constructor_depth = SPELLING_DEPTH ();
5258  constructor_elements = 0;
5259  constructor_pending_elts = 0;
5260  constructor_type = type;
5261
5262  if (TREE_CODE (constructor_type) == RECORD_TYPE
5263      || TREE_CODE (constructor_type) == UNION_TYPE)
5264    {
5265      constructor_fields = TYPE_FIELDS (constructor_type);
5266      /* Skip any nameless bit fields at the beginning.  */
5267      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5268	     && DECL_NAME (constructor_fields) == 0)
5269	constructor_fields = TREE_CHAIN (constructor_fields);
5270      constructor_unfilled_fields = constructor_fields;
5271      constructor_bit_index = copy_node (integer_zero_node);
5272      TREE_TYPE (constructor_bit_index) = sbitsizetype;
5273    }
5274  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5275    {
5276      constructor_range_end = 0;
5277      if (TYPE_DOMAIN (constructor_type))
5278	{
5279	  constructor_max_index
5280	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5281	  constructor_index
5282	    = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5283	}
5284      else
5285	constructor_index = copy_node (integer_zero_node);
5286      constructor_unfilled_index = copy_node (constructor_index);
5287    }
5288  else
5289    {
5290      /* Handle the case of int x = {5}; */
5291      constructor_fields = constructor_type;
5292      constructor_unfilled_fields = constructor_type;
5293    }
5294
5295  if (constructor_incremental)
5296    {
5297      int momentary = suspend_momentary ();
5298      push_obstacks_nochange ();
5299      if (TREE_PERMANENT (constructor_decl))
5300	end_temporary_allocation ();
5301      make_decl_rtl (constructor_decl, constructor_asmspec,
5302		     constructor_top_level);
5303      assemble_variable (constructor_decl, constructor_top_level, 0, 1);
5304      pop_obstacks ();
5305      resume_momentary (momentary);
5306    }
5307
5308  if (constructor_incremental)
5309    {
5310      defer_addressed_constants ();
5311      constructor_subconstants_deferred = 1;
5312    }
5313}
5314
5315/* Push down into a subobject, for initialization.
5316   If this is for an explicit set of braces, IMPLICIT is 0.
5317   If it is because the next element belongs at a lower level,
5318   IMPLICIT is 1.  */
5319
5320void
5321push_init_level (implicit)
5322     int implicit;
5323{
5324  struct constructor_stack *p;
5325
5326  /* If we've exhausted any levels that didn't have braces,
5327     pop them now.  */
5328  while (constructor_stack->implicit)
5329    {
5330      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5331	   || TREE_CODE (constructor_type) == UNION_TYPE)
5332	  && constructor_fields == 0)
5333	process_init_element (pop_init_level (1));
5334      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5335	       && tree_int_cst_lt (constructor_max_index, constructor_index))
5336	process_init_element (pop_init_level (1));
5337      else
5338	break;
5339    }
5340
5341  /* Structure elements may require alignment.  Do this now if necessary
5342     for the subaggregate, and if it comes next in sequence.  Don't do
5343     this for subaggregates that will go on the pending list.  */
5344  if (constructor_incremental && constructor_type != 0
5345      && TREE_CODE (constructor_type) == RECORD_TYPE && constructor_fields
5346      && constructor_fields == constructor_unfilled_fields)
5347    {
5348      /* Advance to offset of this element.  */
5349      if (! tree_int_cst_equal (constructor_bit_index,
5350				DECL_FIELD_BITPOS (constructor_fields)))
5351	{
5352	  /* By using unsigned arithmetic, the result will be correct even
5353	     in case of overflows, if BITS_PER_UNIT is a power of two.  */
5354	  unsigned next = (TREE_INT_CST_LOW
5355			   (DECL_FIELD_BITPOS (constructor_fields))
5356			   / (unsigned)BITS_PER_UNIT);
5357	  unsigned here = (TREE_INT_CST_LOW (constructor_bit_index)
5358			   / (unsigned)BITS_PER_UNIT);
5359
5360	  assemble_zeros ((next - here)
5361			  * (unsigned)BITS_PER_UNIT
5362			  / (unsigned)BITS_PER_UNIT);
5363	}
5364      /* Indicate that we have now filled the structure up to the current
5365	 field.  */
5366      constructor_unfilled_fields = constructor_fields;
5367    }
5368
5369  p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5370  p->type = constructor_type;
5371  p->fields = constructor_fields;
5372  p->index = constructor_index;
5373  p->range_end = constructor_range_end;
5374  p->max_index = constructor_max_index;
5375  p->unfilled_index = constructor_unfilled_index;
5376  p->unfilled_fields = constructor_unfilled_fields;
5377  p->bit_index = constructor_bit_index;
5378  p->elements = constructor_elements;
5379  p->constant = constructor_constant;
5380  p->simple = constructor_simple;
5381  p->erroneous = constructor_erroneous;
5382  p->pending_elts = constructor_pending_elts;
5383  p->depth = constructor_depth;
5384  p->replacement_value = 0;
5385  p->implicit = implicit;
5386  p->incremental = constructor_incremental;
5387  p->outer = 0;
5388  p->next = constructor_stack;
5389  constructor_stack = p;
5390
5391  constructor_constant = 1;
5392  constructor_simple = 1;
5393  constructor_depth = SPELLING_DEPTH ();
5394  constructor_elements = 0;
5395  constructor_pending_elts = 0;
5396
5397  /* Don't die if an entire brace-pair level is superfluous
5398     in the containing level.  */
5399  if (constructor_type == 0)
5400    ;
5401  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5402	   || TREE_CODE (constructor_type) == UNION_TYPE)
5403    {
5404      /* Don't die if there are extra init elts at the end.  */
5405      if (constructor_fields == 0)
5406	constructor_type = 0;
5407      else
5408	{
5409	  constructor_type = TREE_TYPE (constructor_fields);
5410	  push_member_name (constructor_fields);
5411	  constructor_depth++;
5412	  if (constructor_fields != constructor_unfilled_fields)
5413	    constructor_incremental = 0;
5414	}
5415    }
5416  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5417    {
5418      constructor_type = TREE_TYPE (constructor_type);
5419      push_array_bounds (TREE_INT_CST_LOW (constructor_index));
5420      constructor_depth++;
5421      if (! tree_int_cst_equal (constructor_index, constructor_unfilled_index)
5422	  || constructor_range_end != 0)
5423	constructor_incremental = 0;
5424    }
5425
5426  if (constructor_type == 0)
5427    {
5428      error_init ("extra brace group at end of initializer");
5429      constructor_fields = 0;
5430      constructor_unfilled_fields = 0;
5431      return;
5432    }
5433
5434  /* Turn off constructor_incremental if type is a struct with bitfields.  */
5435  check_init_type_bitfields (constructor_type);
5436
5437  if (implicit && warn_missing_braces && !missing_braces_mentioned)
5438    {
5439      missing_braces_mentioned = 1;
5440      warning_init ("missing braces around initializer");
5441    }
5442
5443  if (TREE_CODE (constructor_type) == RECORD_TYPE
5444	   || TREE_CODE (constructor_type) == UNION_TYPE)
5445    {
5446      constructor_fields = TYPE_FIELDS (constructor_type);
5447      /* Skip any nameless bit fields at the beginning.  */
5448      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5449	     && DECL_NAME (constructor_fields) == 0)
5450	constructor_fields = TREE_CHAIN (constructor_fields);
5451      constructor_unfilled_fields = constructor_fields;
5452      constructor_bit_index = copy_node (integer_zero_node);
5453      TREE_TYPE (constructor_bit_index) = sbitsizetype;
5454    }
5455  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5456    {
5457      constructor_range_end = 0;
5458      if (TYPE_DOMAIN (constructor_type))
5459	{
5460	  constructor_max_index
5461	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5462	  constructor_index
5463	    = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5464	}
5465      else
5466	constructor_index = copy_node (integer_zero_node);
5467      constructor_unfilled_index = copy_node (constructor_index);
5468    }
5469  else
5470    {
5471      warning_init ("braces around scalar initializer");
5472      constructor_fields = constructor_type;
5473      constructor_unfilled_fields = constructor_type;
5474    }
5475}
5476
5477/* Don't read a struct incrementally if it has any bitfields,
5478   because the incremental reading code doesn't know how to
5479   handle bitfields yet.  */
5480
5481static void
5482check_init_type_bitfields (type)
5483     tree type;
5484{
5485  if (TREE_CODE (type) == RECORD_TYPE)
5486    {
5487      tree tail;
5488      for (tail = TYPE_FIELDS (type); tail;
5489	   tail = TREE_CHAIN (tail))
5490	{
5491	  if (DECL_C_BIT_FIELD (tail))
5492	    {
5493	      constructor_incremental = 0;
5494	      break;
5495	    }
5496
5497	  check_init_type_bitfields (TREE_TYPE (tail));
5498	}
5499    }
5500
5501  else if (TREE_CODE (type) == UNION_TYPE)
5502    {
5503      tree tail = TYPE_FIELDS (type);
5504      if (tail && DECL_C_BIT_FIELD (tail))
5505	/* We also use the nonincremental algorithm for initiliazation
5506	   of unions whose first member is a bitfield, becuase the
5507	   incremental algorithm has no code for dealing with
5508	   bitfields. */
5509	constructor_incremental = 0;
5510    }
5511
5512  else if (TREE_CODE (type) == ARRAY_TYPE)
5513    check_init_type_bitfields (TREE_TYPE (type));
5514}
5515
5516/* At the end of an implicit or explicit brace level,
5517   finish up that level of constructor.
5518   If we were outputting the elements as they are read, return 0
5519   from inner levels (process_init_element ignores that),
5520   but return error_mark_node from the outermost level
5521   (that's what we want to put in DECL_INITIAL).
5522   Otherwise, return a CONSTRUCTOR expression.  */
5523
5524tree
5525pop_init_level (implicit)
5526     int implicit;
5527{
5528  struct constructor_stack *p;
5529  int size = 0;
5530  tree constructor = 0;
5531
5532  if (implicit == 0)
5533    {
5534      /* When we come to an explicit close brace,
5535	 pop any inner levels that didn't have explicit braces.  */
5536      while (constructor_stack->implicit)
5537	process_init_element (pop_init_level (1));
5538    }
5539
5540  p = constructor_stack;
5541
5542  if (constructor_type != 0)
5543    size = int_size_in_bytes (constructor_type);
5544
5545  /* Warn when some struct elements are implicitly initialized to zero.  */
5546  if (extra_warnings
5547      && constructor_type
5548      && TREE_CODE (constructor_type) == RECORD_TYPE
5549      && constructor_unfilled_fields)
5550    {
5551      push_member_name (constructor_unfilled_fields);
5552      warning_init ("missing initializer");
5553      RESTORE_SPELLING_DEPTH (constructor_depth);
5554    }
5555
5556  /* Now output all pending elements.  */
5557  output_pending_init_elements (1);
5558
5559#if 0 /* c-parse.in warns about {}.  */
5560  /* In ANSI, each brace level must have at least one element.  */
5561  if (! implicit && pedantic
5562      && (TREE_CODE (constructor_type) == ARRAY_TYPE
5563	  ? integer_zerop (constructor_unfilled_index)
5564	  : constructor_unfilled_fields == TYPE_FIELDS (constructor_type)))
5565    pedwarn_init ("empty braces in initializer");
5566#endif
5567
5568  /* Pad out the end of the structure.  */
5569
5570  if (p->replacement_value)
5571    {
5572      /* If this closes a superfluous brace pair,
5573	 just pass out the element between them.  */
5574      constructor = p->replacement_value;
5575      /* If this is the top level thing within the initializer,
5576	 and it's for a variable, then since we already called
5577	 assemble_variable, we must output the value now.  */
5578      if (p->next == 0 && constructor_decl != 0
5579	  && constructor_incremental)
5580	{
5581	  constructor = digest_init (constructor_type, constructor,
5582				     require_constant_value,
5583				     require_constant_elements);
5584
5585	  /* If initializing an array of unknown size,
5586	     determine the size now.  */
5587	  if (TREE_CODE (constructor_type) == ARRAY_TYPE
5588	      && TYPE_DOMAIN (constructor_type) == 0)
5589	    {
5590	      int failure;
5591	      int momentary_p;
5592
5593	      push_obstacks_nochange ();
5594	      if (TREE_PERMANENT (constructor_type))
5595		end_temporary_allocation ();
5596
5597	      momentary_p = suspend_momentary ();
5598
5599	      /* We shouldn't have an incomplete array type within
5600		 some other type.  */
5601	      if (constructor_stack->next)
5602		abort ();
5603
5604	      failure
5605		= complete_array_type (constructor_type,
5606				       constructor, 0);
5607	      if (failure)
5608		abort ();
5609
5610	      size = int_size_in_bytes (constructor_type);
5611	      resume_momentary (momentary_p);
5612	      pop_obstacks ();
5613	    }
5614
5615	  output_constant (constructor, size);
5616	}
5617    }
5618  else if (constructor_type == 0)
5619    ;
5620  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5621	   && TREE_CODE (constructor_type) != UNION_TYPE
5622	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5623	   && ! constructor_incremental)
5624    {
5625      /* A nonincremental scalar initializer--just return
5626	 the element, after verifying there is just one.  */
5627      if (constructor_elements == 0)
5628	{
5629	  error_init ("empty scalar initializer");
5630	  constructor = error_mark_node;
5631	}
5632      else if (TREE_CHAIN (constructor_elements) != 0)
5633	{
5634	  error_init ("extra elements in scalar initializer");
5635	  constructor = TREE_VALUE (constructor_elements);
5636	}
5637      else
5638	constructor = TREE_VALUE (constructor_elements);
5639    }
5640  else if (! constructor_incremental)
5641    {
5642      if (constructor_erroneous)
5643	constructor = error_mark_node;
5644      else
5645	{
5646	  int momentary = suspend_momentary ();
5647
5648	  constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5649			       nreverse (constructor_elements));
5650	  if (constructor_constant)
5651	    TREE_CONSTANT (constructor) = 1;
5652	  if (constructor_constant && constructor_simple)
5653	    TREE_STATIC (constructor) = 1;
5654
5655	  resume_momentary (momentary);
5656	}
5657    }
5658  else
5659    {
5660      tree filled;
5661      int momentary = suspend_momentary ();
5662
5663      if (TREE_CODE (constructor_type) == RECORD_TYPE
5664	  || TREE_CODE (constructor_type) == UNION_TYPE)
5665	{
5666	  /* Find the offset of the end of that field.  */
5667	  filled = size_binop (CEIL_DIV_EXPR,
5668			       constructor_bit_index,
5669			       size_int (BITS_PER_UNIT));
5670	}
5671      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5672	{
5673	  /* If initializing an array of unknown size,
5674	     determine the size now.  */
5675	  if (TREE_CODE (constructor_type) == ARRAY_TYPE
5676	      && TYPE_DOMAIN (constructor_type) == 0)
5677	    {
5678	      tree maxindex
5679		= size_binop (MINUS_EXPR,
5680			      constructor_unfilled_index,
5681			      integer_one_node);
5682
5683	      push_obstacks_nochange ();
5684	      if (TREE_PERMANENT (constructor_type))
5685		end_temporary_allocation ();
5686	      maxindex = copy_node (maxindex);
5687	      TYPE_DOMAIN (constructor_type) = build_index_type (maxindex);
5688	      TREE_TYPE (maxindex) = TYPE_DOMAIN (constructor_type);
5689
5690	      /* TYPE_MAX_VALUE is always one less than the number of elements
5691		 in the array, because we start counting at zero.  Therefore,
5692		 warn only if the value is less than zero.  */
5693	      if (pedantic
5694		  && (tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5695		      < 0))
5696		error_with_decl (constructor_decl,
5697				 "zero or negative array size `%s'");
5698	      layout_type (constructor_type);
5699	      size = int_size_in_bytes (constructor_type);
5700	      pop_obstacks ();
5701	    }
5702
5703	  filled = size_binop (MULT_EXPR, constructor_unfilled_index,
5704			       size_in_bytes (TREE_TYPE (constructor_type)));
5705	}
5706      else
5707	filled = 0;
5708
5709      if (filled != 0)
5710	assemble_zeros (size - TREE_INT_CST_LOW (filled));
5711
5712      resume_momentary (momentary);
5713    }
5714
5715
5716  constructor_type = p->type;
5717  constructor_fields = p->fields;
5718  constructor_index = p->index;
5719  constructor_range_end = p->range_end;
5720  constructor_max_index = p->max_index;
5721  constructor_unfilled_index = p->unfilled_index;
5722  constructor_unfilled_fields = p->unfilled_fields;
5723  constructor_bit_index = p->bit_index;
5724  constructor_elements = p->elements;
5725  constructor_constant = p->constant;
5726  constructor_simple = p->simple;
5727  constructor_erroneous = p->erroneous;
5728  constructor_pending_elts = p->pending_elts;
5729  constructor_depth = p->depth;
5730  constructor_incremental = p->incremental;
5731  RESTORE_SPELLING_DEPTH (constructor_depth);
5732
5733  constructor_stack = p->next;
5734  free (p);
5735
5736  if (constructor == 0)
5737    {
5738      if (constructor_stack == 0)
5739	return error_mark_node;
5740      return NULL_TREE;
5741    }
5742  return constructor;
5743}
5744
5745/* Within an array initializer, specify the next index to be initialized.
5746   FIRST is that index.  If LAST is nonzero, then initialize a range
5747   of indices, running from FIRST through LAST.  */
5748
5749void
5750set_init_index (first, last)
5751     tree first, last;
5752{
5753  while ((TREE_CODE (first) == NOP_EXPR
5754	  || TREE_CODE (first) == CONVERT_EXPR
5755	  || TREE_CODE (first) == NON_LVALUE_EXPR)
5756	 && (TYPE_MODE (TREE_TYPE (first))
5757	     == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5758    (first) = TREE_OPERAND (first, 0);
5759  if (last)
5760    while ((TREE_CODE (last) == NOP_EXPR
5761	    || TREE_CODE (last) == CONVERT_EXPR
5762	    || TREE_CODE (last) == NON_LVALUE_EXPR)
5763	   && (TYPE_MODE (TREE_TYPE (last))
5764	       == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5765      (last) = TREE_OPERAND (last, 0);
5766
5767  if (TREE_CODE (first) != INTEGER_CST)
5768    error_init ("nonconstant array index in initializer");
5769  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5770    error_init ("nonconstant array index in initializer");
5771  else if (! constructor_unfilled_index)
5772    error_init ("array index in non-array initializer");
5773  else if (tree_int_cst_lt (first, constructor_unfilled_index))
5774    error_init ("duplicate array index in initializer");
5775  else
5776    {
5777      TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (first);
5778      TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (first);
5779
5780      if (last != 0 && tree_int_cst_lt (last, first))
5781	error_init ("empty index range in initializer");
5782      else
5783	{
5784	  if (pedantic)
5785	    pedwarn ("ANSI C forbids specifying element to initialize");
5786	  constructor_range_end = last;
5787	}
5788    }
5789}
5790
5791/* Within a struct initializer, specify the next field to be initialized.  */
5792
5793void
5794set_init_label (fieldname)
5795     tree fieldname;
5796{
5797  tree tail;
5798  int passed = 0;
5799
5800  /* Don't die if an entire brace-pair level is superfluous
5801     in the containing level.  */
5802  if (constructor_type == 0)
5803    return;
5804
5805  for (tail = TYPE_FIELDS (constructor_type); tail;
5806       tail = TREE_CHAIN (tail))
5807    {
5808      if (tail == constructor_unfilled_fields)
5809	passed = 1;
5810      if (DECL_NAME (tail) == fieldname)
5811	break;
5812    }
5813
5814  if (tail == 0)
5815    error ("unknown field `%s' specified in initializer",
5816	   IDENTIFIER_POINTER (fieldname));
5817  else if (!passed)
5818    error ("field `%s' already initialized",
5819	   IDENTIFIER_POINTER (fieldname));
5820  else
5821    {
5822      constructor_fields = tail;
5823      if (pedantic)
5824	pedwarn ("ANSI C forbids specifying structure member to initialize");
5825    }
5826}
5827
5828/* Add a new initializer to the tree of pending initializers.  PURPOSE
5829   indentifies the initializer, either array index or field in a structure.
5830   VALUE is the value of that index or field.  */
5831
5832static void
5833add_pending_init (purpose, value)
5834     tree purpose, value;
5835{
5836  struct init_node *p, **q, *r;
5837
5838  q = &constructor_pending_elts;
5839  p = 0;
5840
5841  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5842    {
5843      while (*q != 0)
5844	{
5845	  p = *q;
5846	  if (tree_int_cst_lt (purpose, p->purpose))
5847	    q = &p->left;
5848	  else if (tree_int_cst_lt (p->purpose, purpose))
5849	    q = &p->right;
5850	  else
5851	    abort ();
5852	}
5853    }
5854  else
5855    {
5856      while (*q != NULL)
5857	{
5858	  p = *q;
5859	  if (tree_int_cst_lt (DECL_FIELD_BITPOS (purpose),
5860			       DECL_FIELD_BITPOS (p->purpose)))
5861	    q = &p->left;
5862	  else if (tree_int_cst_lt (DECL_FIELD_BITPOS (p->purpose),
5863				    DECL_FIELD_BITPOS (purpose)))
5864	    q = &p->right;
5865	  else
5866	    abort ();
5867	}
5868    }
5869
5870  r = (struct init_node *) oballoc (sizeof (struct init_node));
5871  r->purpose = purpose;
5872  r->value = value;
5873
5874  *q = r;
5875  r->parent = p;
5876  r->left = 0;
5877  r->right = 0;
5878  r->balance = 0;
5879
5880  while (p)
5881    {
5882      struct init_node *s;
5883
5884      if (r == p->left)
5885	{
5886	  if (p->balance == 0)
5887	    p->balance = -1;
5888	  else if (p->balance < 0)
5889	    {
5890	      if (r->balance < 0)
5891		{
5892		  /* L rotation. */
5893		  p->left = r->right;
5894		  if (p->left)
5895		    p->left->parent = p;
5896		  r->right = p;
5897
5898		  p->balance = 0;
5899		  r->balance = 0;
5900
5901		  s = p->parent;
5902		  p->parent = r;
5903		  r->parent = s;
5904		  if (s)
5905		    {
5906		      if (s->left == p)
5907			s->left = r;
5908		      else
5909			s->right = r;
5910		    }
5911		  else
5912		    constructor_pending_elts = r;
5913		}
5914	      else
5915		{
5916		  /* LR rotation. */
5917		  struct init_node *t = r->right;
5918
5919		  r->right = t->left;
5920		  if (r->right)
5921		    r->right->parent = r;
5922		  t->left = r;
5923
5924		  p->left = t->right;
5925		  if (p->left)
5926		    p->left->parent = p;
5927		  t->right = p;
5928
5929		  p->balance = t->balance < 0;
5930		  r->balance = -(t->balance > 0);
5931		  t->balance = 0;
5932
5933		  s = p->parent;
5934		  p->parent = t;
5935		  r->parent = t;
5936		  t->parent = s;
5937		  if (s)
5938		    {
5939		      if (s->left == p)
5940			s->left = t;
5941		      else
5942			s->right = t;
5943		    }
5944		  else
5945		    constructor_pending_elts = t;
5946		}
5947	      break;
5948	    }
5949	  else
5950	    {
5951	      /* p->balance == +1; growth of left side balances the node.  */
5952	      p->balance = 0;
5953	      break;
5954	    }
5955	}
5956      else /* r == p->right */
5957	{
5958	  if (p->balance == 0)
5959	    /* Growth propagation from right side.  */
5960	    p->balance++;
5961	  else if (p->balance > 0)
5962	    {
5963	      if (r->balance > 0)
5964		{
5965		  /* R rotation. */
5966		  p->right = r->left;
5967		  if (p->right)
5968		    p->right->parent = p;
5969		  r->left = p;
5970
5971		  p->balance = 0;
5972		  r->balance = 0;
5973
5974		  s = p->parent;
5975		  p->parent = r;
5976		  r->parent = s;
5977		  if (s)
5978		    {
5979		      if (s->left == p)
5980			s->left = r;
5981		      else
5982			s->right = r;
5983		    }
5984		  else
5985		    constructor_pending_elts = r;
5986		}
5987	      else /* r->balance == -1 */
5988		{
5989		  /* RL rotation */
5990		  struct init_node *t = r->left;
5991
5992		  r->left = t->right;
5993		  if (r->left)
5994		    r->left->parent = r;
5995		  t->right = r;
5996
5997		  p->right = t->left;
5998		  if (p->right)
5999		    p->right->parent = p;
6000		  t->left = p;
6001
6002		  r->balance = (t->balance < 0);
6003		  p->balance = -(t->balance > 0);
6004		  t->balance = 0;
6005
6006		  s = p->parent;
6007		  p->parent = t;
6008		  r->parent = t;
6009		  t->parent = s;
6010		  if (s)
6011		    {
6012		      if (s->left == p)
6013			s->left = t;
6014		      else
6015			s->right = t;
6016		    }
6017		  else
6018		    constructor_pending_elts = t;
6019		}
6020	      break;
6021	    }
6022	  else
6023	    {
6024	      /* p->balance == -1; growth of right side balances the node. */
6025	      p->balance = 0;
6026	      break;
6027	    }
6028	}
6029
6030      r = p;
6031      p = p->parent;
6032    }
6033}
6034
6035/* Return nonzero if FIELD is equal to the index of a pending initializer.  */
6036
6037static int
6038pending_init_member (field)
6039     tree field;
6040{
6041  struct init_node *p;
6042
6043  p = constructor_pending_elts;
6044  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6045    {
6046      while (p)
6047	{
6048	  if (tree_int_cst_equal (field, p->purpose))
6049	    return 1;
6050	  else if (tree_int_cst_lt (field, p->purpose))
6051	    p = p->left;
6052	  else
6053	    p = p->right;
6054	}
6055    }
6056  else
6057    {
6058      while (p)
6059	{
6060	  if (field == p->purpose)
6061	    return 1;
6062	  else if (tree_int_cst_lt (DECL_FIELD_BITPOS (field),
6063				    DECL_FIELD_BITPOS (p->purpose)))
6064	    p = p->left;
6065	  else
6066	    p = p->right;
6067	}
6068    }
6069
6070  return 0;
6071}
6072
6073/* "Output" the next constructor element.
6074   At top level, really output it to assembler code now.
6075   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6076   TYPE is the data type that the containing data type wants here.
6077   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6078
6079   PENDING if non-nil means output pending elements that belong
6080   right after this element.  (PENDING is normally 1;
6081   it is 0 while outputting pending elements, to avoid recursion.)  */
6082
6083static void
6084output_init_element (value, type, field, pending)
6085     tree value, type, field;
6086     int pending;
6087{
6088  int duplicate = 0;
6089
6090  if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6091      || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6092	  && !(TREE_CODE (value) == STRING_CST
6093	       && TREE_CODE (type) == ARRAY_TYPE
6094	       && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6095	  && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6096			 TYPE_MAIN_VARIANT (type))))
6097    value = default_conversion (value);
6098
6099  if (value == error_mark_node)
6100    constructor_erroneous = 1;
6101  else if (!TREE_CONSTANT (value))
6102    constructor_constant = 0;
6103  else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6104	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6105		|| TREE_CODE (constructor_type) == UNION_TYPE)
6106	       && DECL_C_BIT_FIELD (field)
6107	       && TREE_CODE (value) != INTEGER_CST))
6108    constructor_simple = 0;
6109
6110  if (require_constant_value && ! TREE_CONSTANT (value))
6111    {
6112      error_init ("initializer element is not constant");
6113      value = error_mark_node;
6114    }
6115  else if (require_constant_elements
6116	   && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6117    {
6118      error_init ("initializer element is not computable at load time");
6119      value = error_mark_node;
6120    }
6121
6122  /* If this element duplicates one on constructor_pending_elts,
6123     print a message and ignore it.  Don't do this when we're
6124     processing elements taken off constructor_pending_elts,
6125     because we'd always get spurious errors.  */
6126  if (pending)
6127    {
6128      if (TREE_CODE (constructor_type) == RECORD_TYPE
6129	  || TREE_CODE (constructor_type) == UNION_TYPE
6130	  || TREE_CODE (constructor_type) == ARRAY_TYPE)
6131	{
6132	  if (pending_init_member (field))
6133	    {
6134	      error_init ("duplicate initializer");
6135	      duplicate = 1;
6136	    }
6137	}
6138    }
6139
6140  /* If this element doesn't come next in sequence,
6141     put it on constructor_pending_elts.  */
6142  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6143      && !tree_int_cst_equal (field, constructor_unfilled_index))
6144    {
6145      if (! duplicate)
6146	/* The copy_node is needed in case field is actually
6147	   constructor_index, which is modified in place.  */
6148	add_pending_init (copy_node (field),
6149			  digest_init (type, value, require_constant_value,
6150				       require_constant_elements));
6151    }
6152  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6153	   && field != constructor_unfilled_fields)
6154    {
6155      /* We do this for records but not for unions.  In a union,
6156	 no matter which field is specified, it can be initialized
6157	 right away since it starts at the beginning of the union.  */
6158      if (!duplicate)
6159	add_pending_init (field,
6160			  digest_init (type, value, require_constant_value,
6161				       require_constant_elements));
6162    }
6163  else
6164    {
6165      /* Otherwise, output this element either to
6166	 constructor_elements or to the assembler file.  */
6167
6168      if (!duplicate)
6169	{
6170	  if (! constructor_incremental)
6171	    {
6172	      if (field && TREE_CODE (field) == INTEGER_CST)
6173		field = copy_node (field);
6174	      constructor_elements
6175		= tree_cons (field, digest_init (type, value,
6176						 require_constant_value,
6177						 require_constant_elements),
6178			     constructor_elements);
6179	    }
6180	  else
6181	    {
6182	      /* Structure elements may require alignment.
6183		 Do this, if necessary.  */
6184	      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6185		{
6186		  /* Advance to offset of this element.  */
6187		  if (! tree_int_cst_equal (constructor_bit_index,
6188					    DECL_FIELD_BITPOS (field)))
6189		    {
6190		      /* By using unsigned arithmetic, the result will be
6191			 correct even in case of overflows, if BITS_PER_UNIT
6192			 is a power of two.  */
6193		      unsigned next = (TREE_INT_CST_LOW
6194				       (DECL_FIELD_BITPOS (field))
6195				       / (unsigned)BITS_PER_UNIT);
6196		      unsigned here = (TREE_INT_CST_LOW
6197				       (constructor_bit_index)
6198				       / (unsigned)BITS_PER_UNIT);
6199
6200		      assemble_zeros ((next - here)
6201				      * (unsigned)BITS_PER_UNIT
6202				      / (unsigned)BITS_PER_UNIT);
6203		    }
6204		}
6205	      output_constant (digest_init (type, value,
6206					    require_constant_value,
6207					    require_constant_elements),
6208			       int_size_in_bytes (type));
6209
6210	      /* For a record or union,
6211		 keep track of end position of last field.  */
6212	      if (TREE_CODE (constructor_type) == RECORD_TYPE
6213		  || TREE_CODE (constructor_type) == UNION_TYPE)
6214		{
6215		  tree temp = size_binop (PLUS_EXPR, DECL_FIELD_BITPOS (field),
6216					  DECL_SIZE (field));
6217		  TREE_INT_CST_LOW (constructor_bit_index)
6218		    = TREE_INT_CST_LOW (temp);
6219		  TREE_INT_CST_HIGH (constructor_bit_index)
6220		    = TREE_INT_CST_HIGH (temp);
6221		}
6222	    }
6223	}
6224
6225      /* Advance the variable that indicates sequential elements output.  */
6226      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6227	{
6228	  tree tem = size_binop (PLUS_EXPR, constructor_unfilled_index,
6229				 integer_one_node);
6230	  TREE_INT_CST_LOW (constructor_unfilled_index)
6231	    = TREE_INT_CST_LOW (tem);
6232	  TREE_INT_CST_HIGH (constructor_unfilled_index)
6233	    = TREE_INT_CST_HIGH (tem);
6234	}
6235      else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6236	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6237      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6238	constructor_unfilled_fields = 0;
6239
6240      /* Now output any pending elements which have become next.  */
6241      if (pending)
6242	output_pending_init_elements (0);
6243    }
6244}
6245
6246/* Output any pending elements which have become next.
6247   As we output elements, constructor_unfilled_{fields,index}
6248   advances, which may cause other elements to become next;
6249   if so, they too are output.
6250
6251   If ALL is 0, we return when there are
6252   no more pending elements to output now.
6253
6254   If ALL is 1, we output space as necessary so that
6255   we can output all the pending elements.  */
6256
6257static void
6258output_pending_init_elements (all)
6259     int all;
6260{
6261  struct init_node *elt = constructor_pending_elts;
6262  tree next;
6263
6264 retry:
6265
6266  /* Look thru the whole pending tree.
6267     If we find an element that should be output now,
6268     output it.  Otherwise, set NEXT to the element
6269     that comes first among those still pending.  */
6270
6271  next = 0;
6272  while (elt)
6273    {
6274      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6275	{
6276	  if (tree_int_cst_equal (elt->purpose,
6277				  constructor_unfilled_index))
6278	    output_init_element (elt->value,
6279				 TREE_TYPE (constructor_type),
6280				 constructor_unfilled_index, 0);
6281	  else if (tree_int_cst_lt (constructor_unfilled_index,
6282				    elt->purpose))
6283	    {
6284	      /* Advance to the next smaller node.  */
6285	      if (elt->left)
6286		elt = elt->left;
6287	      else
6288		{
6289		  /* We have reached the smallest node bigger than the
6290		     current unfilled index.  Fill the space first.  */
6291		  next = elt->purpose;
6292		  break;
6293		}
6294	    }
6295	  else
6296	    {
6297	      /* Advance to the next bigger node.  */
6298	      if (elt->right)
6299		elt = elt->right;
6300	      else
6301		{
6302		  /* We have reached the biggest node in a subtree.  Find
6303		     the parent of it, which is the next bigger node.  */
6304		  while (elt->parent && elt->parent->right == elt)
6305		    elt = elt->parent;
6306		  elt = elt->parent;
6307		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6308					      elt->purpose))
6309		    {
6310		      next = elt->purpose;
6311		      break;
6312		    }
6313		}
6314	    }
6315	}
6316      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6317	       || TREE_CODE (constructor_type) == UNION_TYPE)
6318	{
6319	  /* If the current record is complete we are done.  */
6320	  if (constructor_unfilled_fields == 0)
6321	    break;
6322	  if (elt->purpose == constructor_unfilled_fields)
6323	    {
6324	      output_init_element (elt->value,
6325				   TREE_TYPE (constructor_unfilled_fields),
6326				   constructor_unfilled_fields,
6327				   0);
6328	    }
6329	  else if (tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
6330				    DECL_FIELD_BITPOS (elt->purpose)))
6331	    {
6332	      /* Advance to the next smaller node.  */
6333	      if (elt->left)
6334		elt = elt->left;
6335	      else
6336		{
6337		  /* We have reached the smallest node bigger than the
6338		     current unfilled field.  Fill the space first.  */
6339		  next = elt->purpose;
6340		  break;
6341		}
6342	    }
6343	  else
6344	    {
6345	      /* Advance to the next bigger node.  */
6346	      if (elt->right)
6347		elt = elt->right;
6348	      else
6349		{
6350		  /* We have reached the biggest node in a subtree.  Find
6351		     the parent of it, which is the next bigger node.  */
6352		  while (elt->parent && elt->parent->right == elt)
6353		    elt = elt->parent;
6354		  elt = elt->parent;
6355		  if (elt
6356		      && tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
6357					  DECL_FIELD_BITPOS (elt->purpose)))
6358		    {
6359		      next = elt->purpose;
6360		      break;
6361		    }
6362		}
6363	    }
6364	}
6365    }
6366
6367  /* Ordinarily return, but not if we want to output all
6368     and there are elements left.  */
6369  if (! (all && next != 0))
6370    return;
6371
6372  /* Generate space up to the position of NEXT.  */
6373  if (constructor_incremental)
6374    {
6375      tree filled;
6376      tree nextpos_tree = size_int (0);
6377
6378      if (TREE_CODE (constructor_type) == RECORD_TYPE
6379	  || TREE_CODE (constructor_type) == UNION_TYPE)
6380	{
6381	  tree tail;
6382	  /* Find the last field written out, if any.  */
6383	  for (tail = TYPE_FIELDS (constructor_type); tail;
6384	       tail = TREE_CHAIN (tail))
6385	    if (TREE_CHAIN (tail) == constructor_unfilled_fields)
6386	      break;
6387
6388	  if (tail)
6389	    /* Find the offset of the end of that field.  */
6390	    filled = size_binop (CEIL_DIV_EXPR,
6391				 size_binop (PLUS_EXPR,
6392					     DECL_FIELD_BITPOS (tail),
6393					     DECL_SIZE (tail)),
6394				 size_int (BITS_PER_UNIT));
6395	  else
6396	    filled = size_int (0);
6397
6398	  nextpos_tree = size_binop (CEIL_DIV_EXPR,
6399				     DECL_FIELD_BITPOS (next),
6400				     size_int (BITS_PER_UNIT));
6401
6402	  TREE_INT_CST_HIGH (constructor_bit_index)
6403	    = TREE_INT_CST_HIGH (DECL_FIELD_BITPOS (next));
6404	  TREE_INT_CST_LOW (constructor_bit_index)
6405	    = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (next));
6406	  constructor_unfilled_fields = next;
6407	}
6408      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6409	{
6410	  filled = size_binop (MULT_EXPR, constructor_unfilled_index,
6411			       size_in_bytes (TREE_TYPE (constructor_type)));
6412	  nextpos_tree
6413	    = size_binop (MULT_EXPR, next,
6414			  size_in_bytes (TREE_TYPE (constructor_type)));
6415	  TREE_INT_CST_LOW (constructor_unfilled_index)
6416	    = TREE_INT_CST_LOW (next);
6417	  TREE_INT_CST_HIGH (constructor_unfilled_index)
6418	    = TREE_INT_CST_HIGH (next);
6419	}
6420      else
6421	filled = 0;
6422
6423      if (filled)
6424	{
6425	  int nextpos = TREE_INT_CST_LOW (nextpos_tree);
6426
6427	  assemble_zeros (nextpos - TREE_INT_CST_LOW (filled));
6428	}
6429    }
6430  else
6431    {
6432      /* If it's not incremental, just skip over the gap,
6433	 so that after jumping to retry we will output the next
6434	 successive element.  */
6435      if (TREE_CODE (constructor_type) == RECORD_TYPE
6436	  || TREE_CODE (constructor_type) == UNION_TYPE)
6437	constructor_unfilled_fields = next;
6438      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6439	{
6440	  TREE_INT_CST_LOW (constructor_unfilled_index)
6441	    = TREE_INT_CST_LOW (next);
6442	  TREE_INT_CST_HIGH (constructor_unfilled_index)
6443	    = TREE_INT_CST_HIGH (next);
6444	}
6445    }
6446
6447  /* ELT now points to the node in the pending tree with the next
6448     initializer to output.  */
6449  goto retry;
6450}
6451
6452/* Add one non-braced element to the current constructor level.
6453   This adjusts the current position within the constructor's type.
6454   This may also start or terminate implicit levels
6455   to handle a partly-braced initializer.
6456
6457   Once this has found the correct level for the new element,
6458   it calls output_init_element.
6459
6460   Note: if we are incrementally outputting this constructor,
6461   this function may be called with a null argument
6462   representing a sub-constructor that was already incrementally output.
6463   When that happens, we output nothing, but we do the bookkeeping
6464   to skip past that element of the current constructor.  */
6465
6466void
6467process_init_element (value)
6468     tree value;
6469{
6470  tree orig_value = value;
6471  int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6472
6473  /* Handle superfluous braces around string cst as in
6474     char x[] = {"foo"}; */
6475  if (string_flag
6476      && constructor_type
6477      && TREE_CODE (constructor_type) == ARRAY_TYPE
6478      && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6479      && integer_zerop (constructor_unfilled_index))
6480    {
6481      constructor_stack->replacement_value = value;
6482      return;
6483    }
6484
6485  if (constructor_stack->replacement_value != 0)
6486    {
6487      error_init ("excess elements in struct initializer");
6488      return;
6489    }
6490
6491  /* Ignore elements of a brace group if it is entirely superfluous
6492     and has already been diagnosed.  */
6493  if (constructor_type == 0)
6494    return;
6495
6496  /* If we've exhausted any levels that didn't have braces,
6497     pop them now.  */
6498  while (constructor_stack->implicit)
6499    {
6500      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6501	   || TREE_CODE (constructor_type) == UNION_TYPE)
6502	  && constructor_fields == 0)
6503	process_init_element (pop_init_level (1));
6504      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6505	       && (constructor_max_index == 0
6506		   || tree_int_cst_lt (constructor_max_index,
6507				       constructor_index)))
6508	process_init_element (pop_init_level (1));
6509      else
6510	break;
6511    }
6512
6513  while (1)
6514    {
6515      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6516	{
6517	  tree fieldtype;
6518	  enum tree_code fieldcode;
6519
6520	  if (constructor_fields == 0)
6521	    {
6522	      pedwarn_init ("excess elements in struct initializer");
6523	      break;
6524	    }
6525
6526	  fieldtype = TREE_TYPE (constructor_fields);
6527	  if (fieldtype != error_mark_node)
6528	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6529	  fieldcode = TREE_CODE (fieldtype);
6530
6531	  /* Accept a string constant to initialize a subarray.  */
6532	  if (value != 0
6533	      && fieldcode == ARRAY_TYPE
6534	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6535	      && string_flag)
6536	    value = orig_value;
6537	  /* Otherwise, if we have come to a subaggregate,
6538	     and we don't have an element of its type, push into it.  */
6539	  else if (value != 0 && !constructor_no_implicit
6540		   && value != error_mark_node
6541		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6542		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6543		       || fieldcode == UNION_TYPE))
6544	    {
6545	      push_init_level (1);
6546	      continue;
6547	    }
6548
6549	  if (value)
6550	    {
6551	      push_member_name (constructor_fields);
6552	      output_init_element (value, fieldtype, constructor_fields, 1);
6553	      RESTORE_SPELLING_DEPTH (constructor_depth);
6554	    }
6555	  else
6556	    /* Do the bookkeeping for an element that was
6557	       directly output as a constructor.  */
6558	    {
6559	      /* For a record, keep track of end position of last field.  */
6560	      tree temp = size_binop (PLUS_EXPR,
6561				      DECL_FIELD_BITPOS (constructor_fields),
6562				      DECL_SIZE (constructor_fields));
6563	      TREE_INT_CST_LOW (constructor_bit_index)
6564		= TREE_INT_CST_LOW (temp);
6565	      TREE_INT_CST_HIGH (constructor_bit_index)
6566		= TREE_INT_CST_HIGH (temp);
6567
6568	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6569	    }
6570
6571	  constructor_fields = TREE_CHAIN (constructor_fields);
6572	  /* Skip any nameless bit fields at the beginning.  */
6573	  while (constructor_fields != 0
6574		 && DECL_C_BIT_FIELD (constructor_fields)
6575		 && DECL_NAME (constructor_fields) == 0)
6576	    constructor_fields = TREE_CHAIN (constructor_fields);
6577	  break;
6578	}
6579      if (TREE_CODE (constructor_type) == UNION_TYPE)
6580	{
6581	  tree fieldtype;
6582	  enum tree_code fieldcode;
6583
6584	  if (constructor_fields == 0)
6585	    {
6586	      pedwarn_init ("excess elements in union initializer");
6587	      break;
6588	    }
6589
6590	  fieldtype = TREE_TYPE (constructor_fields);
6591	  if (fieldtype != error_mark_node)
6592	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6593	  fieldcode = TREE_CODE (fieldtype);
6594
6595	  /* Accept a string constant to initialize a subarray.  */
6596	  if (value != 0
6597	      && fieldcode == ARRAY_TYPE
6598	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6599	      && string_flag)
6600	    value = orig_value;
6601	  /* Otherwise, if we have come to a subaggregate,
6602	     and we don't have an element of its type, push into it.  */
6603	  else if (value != 0 && !constructor_no_implicit
6604		   && value != error_mark_node
6605		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6606		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6607		       || fieldcode == UNION_TYPE))
6608	    {
6609	      push_init_level (1);
6610	      continue;
6611	    }
6612
6613	  if (value)
6614	    {
6615	      push_member_name (constructor_fields);
6616	      output_init_element (value, fieldtype, constructor_fields, 1);
6617	      RESTORE_SPELLING_DEPTH (constructor_depth);
6618	    }
6619	  else
6620	    /* Do the bookkeeping for an element that was
6621	       directly output as a constructor.  */
6622	    {
6623	      TREE_INT_CST_LOW (constructor_bit_index)
6624		= TREE_INT_CST_LOW (DECL_SIZE (constructor_fields));
6625	      TREE_INT_CST_HIGH (constructor_bit_index)
6626		= TREE_INT_CST_HIGH (DECL_SIZE (constructor_fields));
6627
6628	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6629	    }
6630
6631	  constructor_fields = 0;
6632	  break;
6633	}
6634      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6635	{
6636	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6637	  enum tree_code eltcode = TREE_CODE (elttype);
6638
6639	  /* Accept a string constant to initialize a subarray.  */
6640	  if (value != 0
6641	      && eltcode == ARRAY_TYPE
6642	      && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6643	      && string_flag)
6644	    value = orig_value;
6645	  /* Otherwise, if we have come to a subaggregate,
6646	     and we don't have an element of its type, push into it.  */
6647	  else if (value != 0 && !constructor_no_implicit
6648		   && value != error_mark_node
6649		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6650		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6651		       || eltcode == UNION_TYPE))
6652	    {
6653	      push_init_level (1);
6654	      continue;
6655	    }
6656
6657	  if (constructor_max_index != 0
6658	      && tree_int_cst_lt (constructor_max_index, constructor_index))
6659	    {
6660	      pedwarn_init ("excess elements in array initializer");
6661	      break;
6662	    }
6663
6664	  /* In the case of [LO .. HI] = VALUE, only evaluate VALUE once.  */
6665	  if (constructor_range_end)
6666	    {
6667	      if (constructor_max_index != 0
6668		  && tree_int_cst_lt (constructor_max_index,
6669				      constructor_range_end))
6670		{
6671		  pedwarn_init ("excess elements in array initializer");
6672		  TREE_INT_CST_HIGH (constructor_range_end)
6673		    = TREE_INT_CST_HIGH (constructor_max_index);
6674		  TREE_INT_CST_LOW (constructor_range_end)
6675		    = TREE_INT_CST_LOW (constructor_max_index);
6676		}
6677
6678	      value = save_expr (value);
6679	    }
6680
6681	  /* Now output the actual element.
6682	     Ordinarily, output once.
6683	     If there is a range, repeat it till we advance past the range.  */
6684	  do
6685	    {
6686	      tree tem;
6687
6688	      if (value)
6689		{
6690		  push_array_bounds (TREE_INT_CST_LOW (constructor_index));
6691		  output_init_element (value, elttype, constructor_index, 1);
6692		  RESTORE_SPELLING_DEPTH (constructor_depth);
6693		}
6694
6695	      tem = size_binop (PLUS_EXPR, constructor_index,
6696				integer_one_node);
6697	      TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (tem);
6698	      TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (tem);
6699
6700	      if (!value)
6701		/* If we are doing the bookkeeping for an element that was
6702		   directly output as a constructor,
6703		   we must update constructor_unfilled_index.  */
6704		{
6705		  TREE_INT_CST_LOW (constructor_unfilled_index)
6706		    = TREE_INT_CST_LOW (constructor_index);
6707		  TREE_INT_CST_HIGH (constructor_unfilled_index)
6708		    = TREE_INT_CST_HIGH (constructor_index);
6709		}
6710	    }
6711	  while (! (constructor_range_end == 0
6712		    || tree_int_cst_lt (constructor_range_end,
6713					constructor_index)));
6714
6715	  break;
6716	}
6717
6718      /* Handle the sole element allowed in a braced initializer
6719	 for a scalar variable.  */
6720      if (constructor_fields == 0)
6721	{
6722	  pedwarn_init ("excess elements in scalar initializer");
6723	  break;
6724	}
6725
6726      if (value)
6727	output_init_element (value, constructor_type, NULL_TREE, 1);
6728      constructor_fields = 0;
6729      break;
6730    }
6731
6732  /* If the (lexically) previous elments are not now saved,
6733     we can discard the storage for them.  */
6734  if (constructor_incremental && constructor_pending_elts == 0 && value != 0
6735      && constructor_stack == 0)
6736    clear_momentary ();
6737}
6738
6739/* Expand an ASM statement with operands, handling output operands
6740   that are not variables or INDIRECT_REFS by transforming such
6741   cases into cases that expand_asm_operands can handle.
6742
6743   Arguments are same as for expand_asm_operands.  */
6744
6745void
6746c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6747     tree string, outputs, inputs, clobbers;
6748     int vol;
6749     char *filename;
6750     int line;
6751{
6752  int noutputs = list_length (outputs);
6753  register int i;
6754  /* o[I] is the place that output number I should be written.  */
6755  register tree *o = (tree *) alloca (noutputs * sizeof (tree));
6756  register tree tail;
6757
6758  if (TREE_CODE (string) == ADDR_EXPR)
6759    string = TREE_OPERAND (string, 0);
6760  if (TREE_CODE (string) != STRING_CST)
6761    {
6762      error ("asm template is not a string constant");
6763      return;
6764    }
6765
6766  /* Record the contents of OUTPUTS before it is modified.  */
6767  for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6768    o[i] = TREE_VALUE (tail);
6769
6770  /* Perform default conversions on array and function inputs.  */
6771  /* Don't do this for other types--
6772     it would screw up operands expected to be in memory.  */
6773  for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), i++)
6774    if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == ARRAY_TYPE
6775	|| TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == FUNCTION_TYPE)
6776      TREE_VALUE (tail) = default_conversion (TREE_VALUE (tail));
6777
6778  /* Generate the ASM_OPERANDS insn;
6779     store into the TREE_VALUEs of OUTPUTS some trees for
6780     where the values were actually stored.  */
6781  expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6782
6783  /* Copy all the intermediate outputs into the specified outputs.  */
6784  for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6785    {
6786      if (o[i] != TREE_VALUE (tail))
6787	{
6788	  expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6789		       NULL_RTX, VOIDmode, EXPAND_NORMAL);
6790	  free_temp_slots ();
6791	}
6792      /* Detect modification of read-only values.
6793	 (Otherwise done by build_modify_expr.)  */
6794      else
6795	{
6796	  tree type = TREE_TYPE (o[i]);
6797	  if (TREE_READONLY (o[i])
6798	      || TYPE_READONLY (type)
6799	      || ((TREE_CODE (type) == RECORD_TYPE
6800		   || TREE_CODE (type) == UNION_TYPE)
6801		  && C_TYPE_FIELDS_READONLY (type)))
6802	    readonly_warning (o[i], "modification by `asm'");
6803	}
6804    }
6805
6806  /* Those MODIFY_EXPRs could do autoincrements.  */
6807  emit_queue ();
6808}
6809
6810/* Expand a C `return' statement.
6811   RETVAL is the expression for what to return,
6812   or a null pointer for `return;' with no value.  */
6813
6814void
6815c_expand_return (retval)
6816     tree retval;
6817{
6818  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6819
6820  if (TREE_THIS_VOLATILE (current_function_decl))
6821    warning ("function declared `noreturn' has a `return' statement");
6822
6823  if (!retval)
6824    {
6825      current_function_returns_null = 1;
6826      if (warn_return_type && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6827	warning ("`return' with no value, in function returning non-void");
6828      expand_null_return ();
6829    }
6830  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6831    {
6832      current_function_returns_null = 1;
6833      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6834	pedwarn ("`return' with a value, in function returning void");
6835      expand_return (retval);
6836    }
6837  else
6838    {
6839      tree t = convert_for_assignment (valtype, retval, _("return"),
6840				       NULL_TREE, NULL_TREE, 0);
6841      tree res = DECL_RESULT (current_function_decl);
6842      tree inner;
6843
6844      if (t == error_mark_node)
6845	return;
6846
6847      inner = t = convert (TREE_TYPE (res), t);
6848
6849      /* Strip any conversions, additions, and subtractions, and see if
6850	 we are returning the address of a local variable.  Warn if so.  */
6851      while (1)
6852	{
6853	  switch (TREE_CODE (inner))
6854	    {
6855	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6856	    case PLUS_EXPR:
6857	      inner = TREE_OPERAND (inner, 0);
6858	      continue;
6859
6860	    case MINUS_EXPR:
6861	      /* If the second operand of the MINUS_EXPR has a pointer
6862		 type (or is converted from it), this may be valid, so
6863		 don't give a warning.  */
6864	      {
6865		tree op1 = TREE_OPERAND (inner, 1);
6866
6867		while (! POINTER_TYPE_P (TREE_TYPE (op1))
6868		       && (TREE_CODE (op1) == NOP_EXPR
6869			   || TREE_CODE (op1) == NON_LVALUE_EXPR
6870			   || TREE_CODE (op1) == CONVERT_EXPR))
6871		  op1 = TREE_OPERAND (op1, 0);
6872
6873		if (POINTER_TYPE_P (TREE_TYPE (op1)))
6874		  break;
6875
6876		inner = TREE_OPERAND (inner, 0);
6877		continue;
6878	      }
6879
6880	    case ADDR_EXPR:
6881	      inner = TREE_OPERAND (inner, 0);
6882
6883	      while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
6884		inner = TREE_OPERAND (inner, 0);
6885
6886	      if (TREE_CODE (inner) == VAR_DECL
6887		  && ! DECL_EXTERNAL (inner)
6888		  && ! TREE_STATIC (inner)
6889		  && DECL_CONTEXT (inner) == current_function_decl)
6890		warning ("function returns address of local variable");
6891	      break;
6892
6893	    default:
6894	      break;
6895	    }
6896
6897	  break;
6898	}
6899
6900      t = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
6901      TREE_SIDE_EFFECTS (t) = 1;
6902      expand_return (t);
6903      current_function_returns_value = 1;
6904    }
6905}
6906
6907/* Start a C switch statement, testing expression EXP.
6908   Return EXP if it is valid, an error node otherwise.  */
6909
6910tree
6911c_expand_start_case (exp)
6912     tree exp;
6913{
6914  register enum tree_code code = TREE_CODE (TREE_TYPE (exp));
6915  tree type = TREE_TYPE (exp);
6916
6917  if (code != INTEGER_TYPE && code != ENUMERAL_TYPE && code != ERROR_MARK)
6918    {
6919      error ("switch quantity not an integer");
6920      exp = error_mark_node;
6921    }
6922  else
6923    {
6924      tree index;
6925      type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
6926
6927      if (warn_traditional
6928	  && (type == long_integer_type_node
6929	      || type == long_unsigned_type_node))
6930	pedwarn ("`long' switch expression not converted to `int' in ANSI C");
6931
6932      exp = default_conversion (exp);
6933      type = TREE_TYPE (exp);
6934      index = get_unwidened (exp, NULL_TREE);
6935      /* We can't strip a conversion from a signed type to an unsigned,
6936	 because if we did, int_fits_type_p would do the wrong thing
6937	 when checking case values for being in range,
6938	 and it's too hard to do the right thing.  */
6939      if (TREE_UNSIGNED (TREE_TYPE (exp))
6940	  == TREE_UNSIGNED (TREE_TYPE (index)))
6941	exp = index;
6942    }
6943
6944  expand_start_case (1, exp, type, "switch statement");
6945
6946  return exp;
6947}
6948