c-typeck.c revision 267654
1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  /* APPLE LOCAL begin "unavailable" attribute (radar 2809697) */
1853	  if (TREE_UNAVAILABLE (subdatum))
1854	    error_unavailable_use (subdatum);
1855	  /* APPLE LOCAL end "unavailable" attribute (radar 2809697) */
1856
1857	  datum = ref;
1858
1859	  field = TREE_CHAIN (field);
1860	}
1861      while (field);
1862
1863      return ref;
1864    }
1865  else if (code != ERROR_MARK)
1866    error ("request for member %qE in something not a structure or union",
1867	   component);
1868
1869  return error_mark_node;
1870}
1871
1872/* Given an expression PTR for a pointer, return an expression
1873   for the value pointed to.
1874   ERRORSTRING is the name of the operator to appear in error messages.  */
1875
1876tree
1877build_indirect_ref (tree ptr, const char *errorstring)
1878{
1879  tree pointer = default_conversion (ptr);
1880  tree type = TREE_TYPE (pointer);
1881
1882  if (TREE_CODE (type) == POINTER_TYPE)
1883    {
1884      if (TREE_CODE (pointer) == CONVERT_EXPR
1885          || TREE_CODE (pointer) == NOP_EXPR
1886          || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1887	{
1888	  /* If a warning is issued, mark it to avoid duplicates from
1889	     the backend.  This only needs to be done at
1890	     warn_strict_aliasing > 2.  */
1891	  if (warn_strict_aliasing > 2)
1892	    if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1893					 type, TREE_OPERAND (pointer, 0)))
1894	      TREE_NO_WARNING (pointer) = 1;
1895	}
1896
1897      if (TREE_CODE (pointer) == ADDR_EXPR
1898	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1899	      == TREE_TYPE (type)))
1900	return TREE_OPERAND (pointer, 0);
1901      else
1902	{
1903	  tree t = TREE_TYPE (type);
1904	  tree ref;
1905
1906	  ref = build1 (INDIRECT_REF, t, pointer);
1907
1908	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1909	    {
1910	      error ("dereferencing pointer to incomplete type");
1911	      return error_mark_node;
1912	    }
1913	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1914	    warning (0, "dereferencing %<void *%> pointer");
1915
1916	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1917	     so that we get the proper error message if the result is used
1918	     to assign to.  Also, &* is supposed to be a no-op.
1919	     And ANSI C seems to specify that the type of the result
1920	     should be the const type.  */
1921	  /* A de-reference of a pointer to const is not a const.  It is valid
1922	     to change it via some other pointer.  */
1923	  TREE_READONLY (ref) = TYPE_READONLY (t);
1924	  TREE_SIDE_EFFECTS (ref)
1925	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1926	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1927	  return ref;
1928	}
1929    }
1930  else if (TREE_CODE (pointer) != ERROR_MARK)
1931    error ("invalid type argument of %qs (have %qT)", errorstring, type);
1932  return error_mark_node;
1933}
1934
1935/* This handles expressions of the form "a[i]", which denotes
1936   an array reference.
1937
1938   This is logically equivalent in C to *(a+i), but we may do it differently.
1939   If A is a variable or a member, we generate a primitive ARRAY_REF.
1940   This avoids forcing the array out of registers, and can work on
1941   arrays that are not lvalues (for example, members of structures returned
1942   by functions).  */
1943
1944tree
1945build_array_ref (tree array, tree index)
1946{
1947  bool swapped = false;
1948  if (TREE_TYPE (array) == error_mark_node
1949      || TREE_TYPE (index) == error_mark_node)
1950    return error_mark_node;
1951
1952  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1953      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1954    {
1955      tree temp;
1956      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1957	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1958	{
1959	  error ("subscripted value is neither array nor pointer");
1960	  return error_mark_node;
1961	}
1962      temp = array;
1963      array = index;
1964      index = temp;
1965      swapped = true;
1966    }
1967
1968  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1969    {
1970      error ("array subscript is not an integer");
1971      return error_mark_node;
1972    }
1973
1974  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1975    {
1976      error ("subscripted value is pointer to function");
1977      return error_mark_node;
1978    }
1979
1980  /* ??? Existing practice has been to warn only when the char
1981     index is syntactically the index, not for char[array].  */
1982  if (!swapped)
1983     warn_array_subscript_with_type_char (index);
1984
1985  /* Apply default promotions *after* noticing character types.  */
1986  index = default_conversion (index);
1987
1988  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1989
1990  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1991    {
1992      tree rval, type;
1993
1994      /* An array that is indexed by a non-constant
1995	 cannot be stored in a register; we must be able to do
1996	 address arithmetic on its address.
1997	 Likewise an array of elements of variable size.  */
1998      if (TREE_CODE (index) != INTEGER_CST
1999	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2000	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2001	{
2002	  if (!c_mark_addressable (array))
2003	    return error_mark_node;
2004	}
2005      /* An array that is indexed by a constant value which is not within
2006	 the array bounds cannot be stored in a register either; because we
2007	 would get a crash in store_bit_field/extract_bit_field when trying
2008	 to access a non-existent part of the register.  */
2009      if (TREE_CODE (index) == INTEGER_CST
2010	  && TYPE_DOMAIN (TREE_TYPE (array))
2011	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2012	{
2013	  if (!c_mark_addressable (array))
2014	    return error_mark_node;
2015	}
2016
2017      if (pedantic)
2018	{
2019	  tree foo = array;
2020	  while (TREE_CODE (foo) == COMPONENT_REF)
2021	    foo = TREE_OPERAND (foo, 0);
2022	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2023	    pedwarn ("ISO C forbids subscripting %<register%> array");
2024	  else if (!flag_isoc99 && !lvalue_p (foo))
2025	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2026	}
2027
2028      type = TREE_TYPE (TREE_TYPE (array));
2029      if (TREE_CODE (type) != ARRAY_TYPE)
2030	type = TYPE_MAIN_VARIANT (type);
2031      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2032      /* Array ref is const/volatile if the array elements are
2033	 or if the array is.  */
2034      TREE_READONLY (rval)
2035	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2036	    | TREE_READONLY (array));
2037      TREE_SIDE_EFFECTS (rval)
2038	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2039	    | TREE_SIDE_EFFECTS (array));
2040      TREE_THIS_VOLATILE (rval)
2041	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2042	    /* This was added by rms on 16 Nov 91.
2043	       It fixes  vol struct foo *a;  a->elts[1]
2044	       in an inline function.
2045	       Hope it doesn't break something else.  */
2046	    | TREE_THIS_VOLATILE (array));
2047      return require_complete_type (fold (rval));
2048    }
2049  else
2050    {
2051      tree ar = default_conversion (array);
2052
2053      if (ar == error_mark_node)
2054	return ar;
2055
2056      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2057      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2058
2059      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2060				 "array indexing");
2061    }
2062}
2063
2064/* Build an external reference to identifier ID.  FUN indicates
2065   whether this will be used for a function call.  LOC is the source
2066   location of the identifier.  */
2067tree
2068build_external_ref (tree id, int fun, location_t loc)
2069{
2070  tree ref;
2071  tree decl = lookup_name (id);
2072
2073  /* In Objective-C, an instance variable (ivar) may be preferred to
2074     whatever lookup_name() found.  */
2075  decl = objc_lookup_ivar (decl, id);
2076
2077  if (decl && decl != error_mark_node)
2078    ref = decl;
2079  else if (fun)
2080    /* Implicit function declaration.  */
2081    ref = implicitly_declare (id);
2082  else if (decl == error_mark_node)
2083    /* Don't complain about something that's already been
2084       complained about.  */
2085    return error_mark_node;
2086  else
2087    {
2088      undeclared_variable (id, loc);
2089      return error_mark_node;
2090    }
2091
2092  if (TREE_TYPE (ref) == error_mark_node)
2093    return error_mark_node;
2094
2095  if (TREE_DEPRECATED (ref))
2096    warn_deprecated_use (ref);
2097
2098  /* APPLE LOCAL begin "unavailable" attribute (radar 2809697) */
2099  if (TREE_UNAVAILABLE (ref))
2100    error_unavailable_use (ref);
2101  /* APPLE LOCAL end "unavailable" attribute (radar 2809697) */
2102
2103  if (!skip_evaluation)
2104    assemble_external (ref);
2105  TREE_USED (ref) = 1;
2106
2107  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2108    {
2109      if (!in_sizeof && !in_typeof)
2110	C_DECL_USED (ref) = 1;
2111      else if (DECL_INITIAL (ref) == 0
2112	       && DECL_EXTERNAL (ref)
2113	       && !TREE_PUBLIC (ref))
2114	record_maybe_used_decl (ref);
2115    }
2116
2117  if (TREE_CODE (ref) == CONST_DECL)
2118    {
2119      used_types_insert (TREE_TYPE (ref));
2120      ref = DECL_INITIAL (ref);
2121      TREE_CONSTANT (ref) = 1;
2122      TREE_INVARIANT (ref) = 1;
2123    }
2124  else if (current_function_decl != 0
2125	   && !DECL_FILE_SCOPE_P (current_function_decl)
2126	   && (TREE_CODE (ref) == VAR_DECL
2127	       || TREE_CODE (ref) == PARM_DECL
2128	       || TREE_CODE (ref) == FUNCTION_DECL))
2129    {
2130      tree context = decl_function_context (ref);
2131
2132      if (context != 0 && context != current_function_decl)
2133	DECL_NONLOCAL (ref) = 1;
2134    }
2135  /* C99 6.7.4p3: An inline definition of a function with external
2136     linkage ... shall not contain a reference to an identifier with
2137     internal linkage.  */
2138  else if (current_function_decl != 0
2139	   && DECL_DECLARED_INLINE_P (current_function_decl)
2140	   && DECL_EXTERNAL (current_function_decl)
2141	   && VAR_OR_FUNCTION_DECL_P (ref)
2142	   && DECL_FILE_SCOPE_P (ref)
2143	   && pedantic
2144	   && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2145	   && ! TREE_PUBLIC (ref))
2146    pedwarn ("%H%qD is static but used in inline function %qD "
2147	     "which is not static", &loc, ref, current_function_decl);
2148
2149  return ref;
2150}
2151
2152/* Record details of decls possibly used inside sizeof or typeof.  */
2153struct maybe_used_decl
2154{
2155  /* The decl.  */
2156  tree decl;
2157  /* The level seen at (in_sizeof + in_typeof).  */
2158  int level;
2159  /* The next one at this level or above, or NULL.  */
2160  struct maybe_used_decl *next;
2161};
2162
2163static struct maybe_used_decl *maybe_used_decls;
2164
2165/* Record that DECL, an undefined static function reference seen
2166   inside sizeof or typeof, might be used if the operand of sizeof is
2167   a VLA type or the operand of typeof is a variably modified
2168   type.  */
2169
2170static void
2171record_maybe_used_decl (tree decl)
2172{
2173  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2174  t->decl = decl;
2175  t->level = in_sizeof + in_typeof;
2176  t->next = maybe_used_decls;
2177  maybe_used_decls = t;
2178}
2179
2180/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2181   USED is false, just discard them.  If it is true, mark them used
2182   (if no longer inside sizeof or typeof) or move them to the next
2183   level up (if still inside sizeof or typeof).  */
2184
2185void
2186pop_maybe_used (bool used)
2187{
2188  struct maybe_used_decl *p = maybe_used_decls;
2189  int cur_level = in_sizeof + in_typeof;
2190  while (p && p->level > cur_level)
2191    {
2192      if (used)
2193	{
2194	  if (cur_level == 0)
2195	    C_DECL_USED (p->decl) = 1;
2196	  else
2197	    p->level = cur_level;
2198	}
2199      p = p->next;
2200    }
2201  if (!used || cur_level == 0)
2202    maybe_used_decls = p;
2203}
2204
2205/* Return the result of sizeof applied to EXPR.  */
2206
2207struct c_expr
2208c_expr_sizeof_expr (struct c_expr expr)
2209{
2210  struct c_expr ret;
2211  if (expr.value == error_mark_node)
2212    {
2213      ret.value = error_mark_node;
2214      ret.original_code = ERROR_MARK;
2215      pop_maybe_used (false);
2216    }
2217  else
2218    {
2219      ret.value = c_sizeof (TREE_TYPE (expr.value));
2220      ret.original_code = ERROR_MARK;
2221      if (c_vla_type_p (TREE_TYPE (expr.value)))
2222	{
2223	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2224	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2225	}
2226      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2227    }
2228  return ret;
2229}
2230
2231/* Return the result of sizeof applied to T, a structure for the type
2232   name passed to sizeof (rather than the type itself).  */
2233
2234struct c_expr
2235c_expr_sizeof_type (struct c_type_name *t)
2236{
2237  tree type;
2238  struct c_expr ret;
2239  type = groktypename (t);
2240  ret.value = c_sizeof (type);
2241  ret.original_code = ERROR_MARK;
2242  pop_maybe_used (type != error_mark_node
2243		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2244  return ret;
2245}
2246
2247/* Build a function call to function FUNCTION with parameters PARAMS.
2248   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2249   TREE_VALUE of each node is a parameter-expression.
2250   FUNCTION's data type may be a function type or a pointer-to-function.  */
2251
2252tree
2253build_function_call (tree function, tree params)
2254{
2255  tree fntype, fundecl = 0;
2256  tree coerced_params;
2257  tree name = NULL_TREE, result;
2258  tree tem;
2259
2260  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2261  STRIP_TYPE_NOPS (function);
2262
2263  /* Convert anything with function type to a pointer-to-function.  */
2264  if (TREE_CODE (function) == FUNCTION_DECL)
2265    {
2266      /* Implement type-directed function overloading for builtins.
2267	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2268	 handle all the type checking.  The result is a complete expression
2269	 that implements this function call.  */
2270      tem = resolve_overloaded_builtin (function, params);
2271      if (tem)
2272	return tem;
2273
2274      name = DECL_NAME (function);
2275      fundecl = function;
2276    }
2277  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2278    function = function_to_pointer_conversion (function);
2279
2280  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2281     expressions, like those used for ObjC messenger dispatches.  */
2282  function = objc_rewrite_function_call (function, params);
2283
2284  fntype = TREE_TYPE (function);
2285
2286  if (TREE_CODE (fntype) == ERROR_MARK)
2287    return error_mark_node;
2288
2289  if (!(TREE_CODE (fntype) == POINTER_TYPE
2290	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2291    {
2292      error ("called object %qE is not a function", function);
2293      return error_mark_node;
2294    }
2295
2296  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2297    current_function_returns_abnormally = 1;
2298
2299  /* fntype now gets the type of function pointed to.  */
2300  fntype = TREE_TYPE (fntype);
2301
2302  /* Check that the function is called through a compatible prototype.
2303     If it is not, replace the call by a trap, wrapped up in a compound
2304     expression if necessary.  This has the nice side-effect to prevent
2305     the tree-inliner from generating invalid assignment trees which may
2306     blow up in the RTL expander later.  */
2307  if ((TREE_CODE (function) == NOP_EXPR
2308       || TREE_CODE (function) == CONVERT_EXPR)
2309      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2310      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2311      && !comptypes (fntype, TREE_TYPE (tem)))
2312    {
2313      tree return_type = TREE_TYPE (fntype);
2314      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2315				       NULL_TREE);
2316
2317      /* This situation leads to run-time undefined behavior.  We can't,
2318	 therefore, simply error unless we can prove that all possible
2319	 executions of the program must execute the code.  */
2320      warning (0, "function called through a non-compatible type");
2321
2322      /* We can, however, treat "undefined" any way we please.
2323	 Call abort to encourage the user to fix the program.  */
2324      inform ("if this code is reached, the program will abort");
2325
2326      if (VOID_TYPE_P (return_type))
2327	return trap;
2328      else
2329	{
2330	  tree rhs;
2331
2332	  if (AGGREGATE_TYPE_P (return_type))
2333	    rhs = build_compound_literal (return_type,
2334					  build_constructor (return_type, 0));
2335	  else
2336	    rhs = fold_convert (return_type, integer_zero_node);
2337
2338	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2339	}
2340    }
2341
2342  /* Convert the parameters to the types declared in the
2343     function prototype, or apply default promotions.  */
2344
2345  coerced_params
2346    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2347
2348  if (coerced_params == error_mark_node)
2349    return error_mark_node;
2350
2351  /* Check that the arguments to the function are valid.  */
2352
2353  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2354			    TYPE_ARG_TYPES (fntype));
2355
2356  if (require_constant_value)
2357    {
2358      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2359					function, coerced_params, NULL_TREE);
2360
2361      if (TREE_CONSTANT (result)
2362	  && (name == NULL_TREE
2363	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2364	pedwarn_init ("initializer element is not constant");
2365    }
2366  else
2367    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2368			  function, coerced_params, NULL_TREE);
2369
2370  if (VOID_TYPE_P (TREE_TYPE (result)))
2371    return result;
2372  return require_complete_type (result);
2373}
2374
2375/* Convert the argument expressions in the list VALUES
2376   to the types in the list TYPELIST.  The result is a list of converted
2377   argument expressions, unless there are too few arguments in which
2378   case it is error_mark_node.
2379
2380   If TYPELIST is exhausted, or when an element has NULL as its type,
2381   perform the default conversions.
2382
2383   PARMLIST is the chain of parm decls for the function being called.
2384   It may be 0, if that info is not available.
2385   It is used only for generating error messages.
2386
2387   FUNCTION is a tree for the called function.  It is used only for
2388   error messages, where it is formatted with %qE.
2389
2390   This is also where warnings about wrong number of args are generated.
2391
2392   Both VALUES and the returned value are chains of TREE_LIST nodes
2393   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2394
2395static tree
2396convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2397{
2398  tree typetail, valtail;
2399  tree result = NULL;
2400  int parmnum;
2401  tree selector;
2402
2403  /* Change pointer to function to the function itself for
2404     diagnostics.  */
2405  if (TREE_CODE (function) == ADDR_EXPR
2406      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2407    function = TREE_OPERAND (function, 0);
2408
2409  /* Handle an ObjC selector specially for diagnostics.  */
2410  selector = objc_message_selector ();
2411
2412  /* Scan the given expressions and types, producing individual
2413     converted arguments and pushing them on RESULT in reverse order.  */
2414
2415  for (valtail = values, typetail = typelist, parmnum = 0;
2416       valtail;
2417       valtail = TREE_CHAIN (valtail), parmnum++)
2418    {
2419      tree type = typetail ? TREE_VALUE (typetail) : 0;
2420      tree val = TREE_VALUE (valtail);
2421      tree rname = function;
2422      int argnum = parmnum + 1;
2423      const char *invalid_func_diag;
2424
2425      if (type == void_type_node)
2426	{
2427	  error ("too many arguments to function %qE", function);
2428	  break;
2429	}
2430
2431      if (selector && argnum > 2)
2432	{
2433	  rname = selector;
2434	  argnum -= 2;
2435	}
2436
2437      STRIP_TYPE_NOPS (val);
2438
2439      val = require_complete_type (val);
2440
2441      if (type != 0)
2442	{
2443	  /* Formal parm type is specified by a function prototype.  */
2444	  tree parmval;
2445
2446	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2447	    {
2448	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2449	      parmval = val;
2450	    }
2451	  else
2452	    {
2453	      /* Optionally warn about conversions that
2454		 differ from the default conversions.  */
2455	      if (warn_conversion || warn_traditional)
2456		{
2457		  unsigned int formal_prec = TYPE_PRECISION (type);
2458
2459		  if (INTEGRAL_TYPE_P (type)
2460		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2461		    warning (0, "passing argument %d of %qE as integer "
2462			     "rather than floating due to prototype",
2463			     argnum, rname);
2464		  if (INTEGRAL_TYPE_P (type)
2465		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2466		    warning (0, "passing argument %d of %qE as integer "
2467			     "rather than complex due to prototype",
2468			     argnum, rname);
2469		  else if (TREE_CODE (type) == COMPLEX_TYPE
2470			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2471		    warning (0, "passing argument %d of %qE as complex "
2472			     "rather than floating due to prototype",
2473			     argnum, rname);
2474		  else if (TREE_CODE (type) == REAL_TYPE
2475			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2476		    warning (0, "passing argument %d of %qE as floating "
2477			     "rather than integer due to prototype",
2478			     argnum, rname);
2479		  else if (TREE_CODE (type) == COMPLEX_TYPE
2480			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2481		    warning (0, "passing argument %d of %qE as complex "
2482			     "rather than integer due to prototype",
2483			     argnum, rname);
2484		  else if (TREE_CODE (type) == REAL_TYPE
2485			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2486		    warning (0, "passing argument %d of %qE as floating "
2487			     "rather than complex due to prototype",
2488			     argnum, rname);
2489		  /* ??? At some point, messages should be written about
2490		     conversions between complex types, but that's too messy
2491		     to do now.  */
2492		  else if (TREE_CODE (type) == REAL_TYPE
2493			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2494		    {
2495		      /* Warn if any argument is passed as `float',
2496			 since without a prototype it would be `double'.  */
2497		      if (formal_prec == TYPE_PRECISION (float_type_node)
2498			  && type != dfloat32_type_node)
2499			warning (0, "passing argument %d of %qE as %<float%> "
2500				 "rather than %<double%> due to prototype",
2501				 argnum, rname);
2502
2503		      /* Warn if mismatch between argument and prototype
2504			 for decimal float types.  Warn of conversions with
2505			 binary float types and of precision narrowing due to
2506			 prototype. */
2507 		      else if (type != TREE_TYPE (val)
2508			       && (type == dfloat32_type_node
2509				   || type == dfloat64_type_node
2510				   || type == dfloat128_type_node
2511				   || TREE_TYPE (val) == dfloat32_type_node
2512				   || TREE_TYPE (val) == dfloat64_type_node
2513				   || TREE_TYPE (val) == dfloat128_type_node)
2514			       && (formal_prec
2515				   <= TYPE_PRECISION (TREE_TYPE (val))
2516				   || (type == dfloat128_type_node
2517				       && (TREE_TYPE (val)
2518					   != dfloat64_type_node
2519					   && (TREE_TYPE (val)
2520					       != dfloat32_type_node)))
2521				   || (type == dfloat64_type_node
2522				       && (TREE_TYPE (val)
2523					   != dfloat32_type_node))))
2524			warning (0, "passing argument %d of %qE as %qT "
2525				 "rather than %qT due to prototype",
2526				 argnum, rname, type, TREE_TYPE (val));
2527
2528		    }
2529		  /* Detect integer changing in width or signedness.
2530		     These warnings are only activated with
2531		     -Wconversion, not with -Wtraditional.  */
2532		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2533			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2534		    {
2535		      tree would_have_been = default_conversion (val);
2536		      tree type1 = TREE_TYPE (would_have_been);
2537
2538		      if (TREE_CODE (type) == ENUMERAL_TYPE
2539			  && (TYPE_MAIN_VARIANT (type)
2540			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2541			/* No warning if function asks for enum
2542			   and the actual arg is that enum type.  */
2543			;
2544		      else if (formal_prec != TYPE_PRECISION (type1))
2545			warning (OPT_Wconversion, "passing argument %d of %qE "
2546				 "with different width due to prototype",
2547				 argnum, rname);
2548		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2549			;
2550		      /* Don't complain if the formal parameter type
2551			 is an enum, because we can't tell now whether
2552			 the value was an enum--even the same enum.  */
2553		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2554			;
2555		      else if (TREE_CODE (val) == INTEGER_CST
2556			       && int_fits_type_p (val, type))
2557			/* Change in signedness doesn't matter
2558			   if a constant value is unaffected.  */
2559			;
2560		      /* If the value is extended from a narrower
2561			 unsigned type, it doesn't matter whether we
2562			 pass it as signed or unsigned; the value
2563			 certainly is the same either way.  */
2564		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2565			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2566			;
2567		      else if (TYPE_UNSIGNED (type))
2568			warning (OPT_Wconversion, "passing argument %d of %qE "
2569				 "as unsigned due to prototype",
2570				 argnum, rname);
2571		      else
2572			warning (OPT_Wconversion, "passing argument %d of %qE "
2573				 "as signed due to prototype", argnum, rname);
2574		    }
2575		}
2576
2577	      parmval = convert_for_assignment (type, val, ic_argpass,
2578						fundecl, function,
2579						parmnum + 1);
2580
2581	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2582		  && INTEGRAL_TYPE_P (type)
2583		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2584		parmval = default_conversion (parmval);
2585	    }
2586	  result = tree_cons (NULL_TREE, parmval, result);
2587	}
2588      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2589	       && (TYPE_PRECISION (TREE_TYPE (val))
2590		   < TYPE_PRECISION (double_type_node))
2591	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2592	/* Convert `float' to `double'.  */
2593	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2594      else if ((invalid_func_diag =
2595		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2596	{
2597	  error (invalid_func_diag, "");
2598	  return error_mark_node;
2599	}
2600      else
2601	/* Convert `short' and `char' to full-size `int'.  */
2602	result = tree_cons (NULL_TREE, default_conversion (val), result);
2603
2604      if (typetail)
2605	typetail = TREE_CHAIN (typetail);
2606    }
2607
2608  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2609    {
2610      error ("too few arguments to function %qE", function);
2611      return error_mark_node;
2612    }
2613
2614  return nreverse (result);
2615}
2616
2617/* This is the entry point used by the parser to build unary operators
2618   in the input.  CODE, a tree_code, specifies the unary operator, and
2619   ARG is the operand.  For unary plus, the C parser currently uses
2620   CONVERT_EXPR for code.  */
2621
2622struct c_expr
2623parser_build_unary_op (enum tree_code code, struct c_expr arg)
2624{
2625  struct c_expr result;
2626
2627  result.original_code = ERROR_MARK;
2628  result.value = build_unary_op (code, arg.value, 0);
2629
2630  if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2631    overflow_warning (result.value);
2632
2633  return result;
2634}
2635
2636/* This is the entry point used by the parser to build binary operators
2637   in the input.  CODE, a tree_code, specifies the binary operator, and
2638   ARG1 and ARG2 are the operands.  In addition to constructing the
2639   expression, we check for operands that were written with other binary
2640   operators in a way that is likely to confuse the user.  */
2641
2642struct c_expr
2643parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2644			struct c_expr arg2)
2645{
2646  struct c_expr result;
2647
2648  enum tree_code code1 = arg1.original_code;
2649  enum tree_code code2 = arg2.original_code;
2650
2651  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2652  result.original_code = code;
2653
2654  if (TREE_CODE (result.value) == ERROR_MARK)
2655    return result;
2656
2657  /* Check for cases such as x+y<<z which users are likely
2658     to misinterpret.  */
2659  if (warn_parentheses)
2660    warn_about_parentheses (code, code1, code2);
2661
2662  /* Warn about comparisons against string literals, with the exception
2663     of testing for equality or inequality of a string literal with NULL.  */
2664  if (code == EQ_EXPR || code == NE_EXPR)
2665    {
2666      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2667	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2668	warning (OPT_Waddress,
2669                 "comparison with string literal results in unspecified behaviour");
2670    }
2671  else if (TREE_CODE_CLASS (code) == tcc_comparison
2672	   && (code1 == STRING_CST || code2 == STRING_CST))
2673    warning (OPT_Waddress,
2674             "comparison with string literal results in unspecified behaviour");
2675
2676  if (TREE_OVERFLOW_P (result.value)
2677      && !TREE_OVERFLOW_P (arg1.value)
2678      && !TREE_OVERFLOW_P (arg2.value))
2679    overflow_warning (result.value);
2680
2681  return result;
2682}
2683
2684/* Return a tree for the difference of pointers OP0 and OP1.
2685   The resulting tree has type int.  */
2686
2687static tree
2688pointer_diff (tree op0, tree op1)
2689{
2690  tree restype = ptrdiff_type_node;
2691
2692  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2693  tree con0, con1, lit0, lit1;
2694  tree orig_op1 = op1;
2695
2696  if (pedantic || warn_pointer_arith)
2697    {
2698      if (TREE_CODE (target_type) == VOID_TYPE)
2699	pedwarn ("pointer of type %<void *%> used in subtraction");
2700      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2701	pedwarn ("pointer to a function used in subtraction");
2702    }
2703
2704  /* If the conversion to ptrdiff_type does anything like widening or
2705     converting a partial to an integral mode, we get a convert_expression
2706     that is in the way to do any simplifications.
2707     (fold-const.c doesn't know that the extra bits won't be needed.
2708     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2709     different mode in place.)
2710     So first try to find a common term here 'by hand'; we want to cover
2711     at least the cases that occur in legal static initializers.  */
2712  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2713      && (TYPE_PRECISION (TREE_TYPE (op0))
2714	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2715    con0 = TREE_OPERAND (op0, 0);
2716  else
2717    con0 = op0;
2718  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2719      && (TYPE_PRECISION (TREE_TYPE (op1))
2720	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2721    con1 = TREE_OPERAND (op1, 0);
2722  else
2723    con1 = op1;
2724
2725  if (TREE_CODE (con0) == PLUS_EXPR)
2726    {
2727      lit0 = TREE_OPERAND (con0, 1);
2728      con0 = TREE_OPERAND (con0, 0);
2729    }
2730  else
2731    lit0 = integer_zero_node;
2732
2733  if (TREE_CODE (con1) == PLUS_EXPR)
2734    {
2735      lit1 = TREE_OPERAND (con1, 1);
2736      con1 = TREE_OPERAND (con1, 0);
2737    }
2738  else
2739    lit1 = integer_zero_node;
2740
2741  if (operand_equal_p (con0, con1, 0))
2742    {
2743      op0 = lit0;
2744      op1 = lit1;
2745    }
2746
2747
2748  /* First do the subtraction as integers;
2749     then drop through to build the divide operator.
2750     Do not do default conversions on the minus operator
2751     in case restype is a short type.  */
2752
2753  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2754			 convert (restype, op1), 0);
2755  /* This generates an error if op1 is pointer to incomplete type.  */
2756  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2757    error ("arithmetic on pointer to an incomplete type");
2758
2759  /* This generates an error if op0 is pointer to incomplete type.  */
2760  op1 = c_size_in_bytes (target_type);
2761
2762  /* Divide by the size, in easiest possible way.  */
2763  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2764}
2765
2766/* Construct and perhaps optimize a tree representation
2767   for a unary operation.  CODE, a tree_code, specifies the operation
2768   and XARG is the operand.
2769   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2770   the default promotions (such as from short to int).
2771   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2772   allows non-lvalues; this is only used to handle conversion of non-lvalue
2773   arrays to pointers in C99.  */
2774
2775tree
2776build_unary_op (enum tree_code code, tree xarg, int flag)
2777{
2778  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2779  tree arg = xarg;
2780  tree argtype = 0;
2781  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2782  tree val;
2783  int noconvert = flag;
2784  const char *invalid_op_diag;
2785
2786  if (typecode == ERROR_MARK)
2787    return error_mark_node;
2788  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2789    typecode = INTEGER_TYPE;
2790
2791  if ((invalid_op_diag
2792       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2793    {
2794      error (invalid_op_diag, "");
2795      return error_mark_node;
2796    }
2797
2798  switch (code)
2799    {
2800    case CONVERT_EXPR:
2801      /* This is used for unary plus, because a CONVERT_EXPR
2802	 is enough to prevent anybody from looking inside for
2803	 associativity, but won't generate any code.  */
2804      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2805	    || typecode == COMPLEX_TYPE
2806	    || typecode == VECTOR_TYPE))
2807	{
2808	  error ("wrong type argument to unary plus");
2809	  return error_mark_node;
2810	}
2811      else if (!noconvert)
2812	arg = default_conversion (arg);
2813      arg = non_lvalue (arg);
2814      break;
2815
2816    case NEGATE_EXPR:
2817      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2818	    || typecode == COMPLEX_TYPE
2819	    || typecode == VECTOR_TYPE))
2820	{
2821	  error ("wrong type argument to unary minus");
2822	  return error_mark_node;
2823	}
2824      else if (!noconvert)
2825	arg = default_conversion (arg);
2826      break;
2827
2828    case BIT_NOT_EXPR:
2829      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2830	{
2831	  if (!noconvert)
2832	    arg = default_conversion (arg);
2833	}
2834      else if (typecode == COMPLEX_TYPE)
2835	{
2836	  code = CONJ_EXPR;
2837	  if (pedantic)
2838	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2839	  if (!noconvert)
2840	    arg = default_conversion (arg);
2841	}
2842      else
2843	{
2844	  error ("wrong type argument to bit-complement");
2845	  return error_mark_node;
2846	}
2847      break;
2848
2849    case ABS_EXPR:
2850      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2851	{
2852	  error ("wrong type argument to abs");
2853	  return error_mark_node;
2854	}
2855      else if (!noconvert)
2856	arg = default_conversion (arg);
2857      break;
2858
2859    case CONJ_EXPR:
2860      /* Conjugating a real value is a no-op, but allow it anyway.  */
2861      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2862	    || typecode == COMPLEX_TYPE))
2863	{
2864	  error ("wrong type argument to conjugation");
2865	  return error_mark_node;
2866	}
2867      else if (!noconvert)
2868	arg = default_conversion (arg);
2869      break;
2870
2871    case TRUTH_NOT_EXPR:
2872      if (typecode != INTEGER_TYPE
2873	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2874	  && typecode != COMPLEX_TYPE)
2875	{
2876	  error ("wrong type argument to unary exclamation mark");
2877	  return error_mark_node;
2878	}
2879      arg = c_objc_common_truthvalue_conversion (arg);
2880      return invert_truthvalue (arg);
2881
2882    case REALPART_EXPR:
2883      if (TREE_CODE (arg) == COMPLEX_CST)
2884	return TREE_REALPART (arg);
2885      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2886	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2887      else
2888	return arg;
2889
2890    case IMAGPART_EXPR:
2891      if (TREE_CODE (arg) == COMPLEX_CST)
2892	return TREE_IMAGPART (arg);
2893      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2894	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2895      else
2896	return convert (TREE_TYPE (arg), integer_zero_node);
2897
2898    case PREINCREMENT_EXPR:
2899    case POSTINCREMENT_EXPR:
2900    case PREDECREMENT_EXPR:
2901    case POSTDECREMENT_EXPR:
2902
2903      /* Increment or decrement the real part of the value,
2904	 and don't change the imaginary part.  */
2905      if (typecode == COMPLEX_TYPE)
2906	{
2907	  tree real, imag;
2908
2909	  if (pedantic)
2910	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2911		     " on complex types");
2912
2913	  arg = stabilize_reference (arg);
2914	  real = build_unary_op (REALPART_EXPR, arg, 1);
2915	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2916	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2917			 build_unary_op (code, real, 1), imag);
2918	}
2919
2920      /* Report invalid types.  */
2921
2922      if (typecode != POINTER_TYPE
2923	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2924	{
2925	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2926	    error ("wrong type argument to increment");
2927	  else
2928	    error ("wrong type argument to decrement");
2929
2930	  return error_mark_node;
2931	}
2932
2933      {
2934	tree inc;
2935	tree result_type = TREE_TYPE (arg);
2936
2937	arg = get_unwidened (arg, 0);
2938	argtype = TREE_TYPE (arg);
2939
2940	/* Compute the increment.  */
2941
2942	if (typecode == POINTER_TYPE)
2943	  {
2944	    /* If pointer target is an undefined struct,
2945	       we just cannot know how to do the arithmetic.  */
2946	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2947	      {
2948		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2949		  error ("increment of pointer to unknown structure");
2950		else
2951		  error ("decrement of pointer to unknown structure");
2952	      }
2953	    else if ((pedantic || warn_pointer_arith)
2954		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2955			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2956	      {
2957		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2958		  pedwarn ("wrong type argument to increment");
2959		else
2960		  pedwarn ("wrong type argument to decrement");
2961	      }
2962
2963	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2964	  }
2965	else
2966	  inc = integer_one_node;
2967
2968	inc = convert (argtype, inc);
2969
2970	/* Complain about anything else that is not a true lvalue.  */
2971	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2972				    || code == POSTINCREMENT_EXPR)
2973				   ? lv_increment
2974				   : lv_decrement)))
2975	  return error_mark_node;
2976
2977	/* Report a read-only lvalue.  */
2978	if (TREE_READONLY (arg))
2979	  {
2980	    readonly_error (arg,
2981			    ((code == PREINCREMENT_EXPR
2982			      || code == POSTINCREMENT_EXPR)
2983			     ? lv_increment : lv_decrement));
2984	    return error_mark_node;
2985	  }
2986
2987	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2988	  val = boolean_increment (code, arg);
2989	else
2990	  val = build2 (code, TREE_TYPE (arg), arg, inc);
2991	TREE_SIDE_EFFECTS (val) = 1;
2992	val = convert (result_type, val);
2993	if (TREE_CODE (val) != code)
2994	  TREE_NO_WARNING (val) = 1;
2995	return val;
2996      }
2997
2998    case ADDR_EXPR:
2999      /* Note that this operation never does default_conversion.  */
3000
3001      /* Let &* cancel out to simplify resulting code.  */
3002      if (TREE_CODE (arg) == INDIRECT_REF)
3003	{
3004	  /* Don't let this be an lvalue.  */
3005	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3006	    return non_lvalue (TREE_OPERAND (arg, 0));
3007	  return TREE_OPERAND (arg, 0);
3008	}
3009
3010      /* For &x[y], return x+y */
3011      if (TREE_CODE (arg) == ARRAY_REF)
3012	{
3013	  tree op0 = TREE_OPERAND (arg, 0);
3014	  if (!c_mark_addressable (op0))
3015	    return error_mark_node;
3016	  return build_binary_op (PLUS_EXPR,
3017				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3018				   ? array_to_pointer_conversion (op0)
3019				   : op0),
3020				  TREE_OPERAND (arg, 1), 1);
3021	}
3022
3023      /* Anything not already handled and not a true memory reference
3024	 or a non-lvalue array is an error.  */
3025      else if (typecode != FUNCTION_TYPE && !flag
3026	       && !lvalue_or_else (arg, lv_addressof))
3027	return error_mark_node;
3028
3029      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3030      argtype = TREE_TYPE (arg);
3031
3032      /* If the lvalue is const or volatile, merge that into the type
3033	 to which the address will point.  Note that you can't get a
3034	 restricted pointer by taking the address of something, so we
3035	 only have to deal with `const' and `volatile' here.  */
3036      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3037	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3038	  argtype = c_build_type_variant (argtype,
3039					  TREE_READONLY (arg),
3040					  TREE_THIS_VOLATILE (arg));
3041
3042      if (!c_mark_addressable (arg))
3043	return error_mark_node;
3044
3045      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3046		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3047
3048      argtype = build_pointer_type (argtype);
3049
3050      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3051	 when we have proper support for integer constant expressions.  */
3052      val = get_base_address (arg);
3053      if (val && TREE_CODE (val) == INDIRECT_REF
3054          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3055	{
3056	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3057
3058	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3059	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3060	}
3061
3062      val = build1 (ADDR_EXPR, argtype, arg);
3063
3064      return val;
3065
3066    default:
3067      gcc_unreachable ();
3068    }
3069
3070  if (argtype == 0)
3071    argtype = TREE_TYPE (arg);
3072  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3073				: fold_build1 (code, argtype, arg);
3074}
3075
3076/* Return nonzero if REF is an lvalue valid for this language.
3077   Lvalues can be assigned, unless their type has TYPE_READONLY.
3078   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3079
3080static int
3081lvalue_p (tree ref)
3082{
3083  enum tree_code code = TREE_CODE (ref);
3084
3085  switch (code)
3086    {
3087    case REALPART_EXPR:
3088    case IMAGPART_EXPR:
3089    case COMPONENT_REF:
3090      return lvalue_p (TREE_OPERAND (ref, 0));
3091
3092    case COMPOUND_LITERAL_EXPR:
3093    case STRING_CST:
3094      return 1;
3095
3096    case INDIRECT_REF:
3097    case ARRAY_REF:
3098    case VAR_DECL:
3099    case PARM_DECL:
3100    case RESULT_DECL:
3101    case ERROR_MARK:
3102      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3103	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3104
3105    case BIND_EXPR:
3106      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3107
3108    default:
3109      return 0;
3110    }
3111}
3112
3113/* Give an error for storing in something that is 'const'.  */
3114
3115static void
3116readonly_error (tree arg, enum lvalue_use use)
3117{
3118  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3119	      || use == lv_asm);
3120  /* Using this macro rather than (for example) arrays of messages
3121     ensures that all the format strings are checked at compile
3122     time.  */
3123#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3124				   : (use == lv_increment ? (I)		\
3125				   : (use == lv_decrement ? (D) : (AS))))
3126  if (TREE_CODE (arg) == COMPONENT_REF)
3127    {
3128      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3129	readonly_error (TREE_OPERAND (arg, 0), use);
3130      else
3131	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3132			     G_("increment of read-only member %qD"),
3133			     G_("decrement of read-only member %qD"),
3134			     G_("read-only member %qD used as %<asm%> output")),
3135	       TREE_OPERAND (arg, 1));
3136    }
3137  else if (TREE_CODE (arg) == VAR_DECL)
3138    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3139			 G_("increment of read-only variable %qD"),
3140			 G_("decrement of read-only variable %qD"),
3141			 G_("read-only variable %qD used as %<asm%> output")),
3142	   arg);
3143  else
3144    error (READONLY_MSG (G_("assignment of read-only location"),
3145			 G_("increment of read-only location"),
3146			 G_("decrement of read-only location"),
3147			 G_("read-only location used as %<asm%> output")));
3148}
3149
3150
3151/* Return nonzero if REF is an lvalue valid for this language;
3152   otherwise, print an error message and return zero.  USE says
3153   how the lvalue is being used and so selects the error message.  */
3154
3155static int
3156lvalue_or_else (tree ref, enum lvalue_use use)
3157{
3158  int win = lvalue_p (ref);
3159
3160  if (!win)
3161    lvalue_error (use);
3162
3163  return win;
3164}
3165
3166/* Mark EXP saying that we need to be able to take the
3167   address of it; it should not be allocated in a register.
3168   Returns true if successful.  */
3169
3170bool
3171c_mark_addressable (tree exp)
3172{
3173  tree x = exp;
3174
3175  while (1)
3176    switch (TREE_CODE (x))
3177      {
3178      case COMPONENT_REF:
3179	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3180	  {
3181	    error
3182	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3183	    return false;
3184	  }
3185
3186	/* ... fall through ...  */
3187
3188      case ADDR_EXPR:
3189      case ARRAY_REF:
3190      case REALPART_EXPR:
3191      case IMAGPART_EXPR:
3192	x = TREE_OPERAND (x, 0);
3193	break;
3194
3195      case COMPOUND_LITERAL_EXPR:
3196      case CONSTRUCTOR:
3197	TREE_ADDRESSABLE (x) = 1;
3198	return true;
3199
3200      case VAR_DECL:
3201      case CONST_DECL:
3202      case PARM_DECL:
3203      case RESULT_DECL:
3204	if (C_DECL_REGISTER (x)
3205	    && DECL_NONLOCAL (x))
3206	  {
3207	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3208	      {
3209		error
3210		  ("global register variable %qD used in nested function", x);
3211		return false;
3212	      }
3213	    pedwarn ("register variable %qD used in nested function", x);
3214	  }
3215	else if (C_DECL_REGISTER (x))
3216	  {
3217	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3218	      error ("address of global register variable %qD requested", x);
3219	    else
3220	      error ("address of register variable %qD requested", x);
3221	    return false;
3222	  }
3223
3224	/* drops in */
3225      case FUNCTION_DECL:
3226	TREE_ADDRESSABLE (x) = 1;
3227	/* drops out */
3228      default:
3229	return true;
3230    }
3231}
3232
3233/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3234
3235tree
3236build_conditional_expr (tree ifexp, tree op1, tree op2)
3237{
3238  tree type1;
3239  tree type2;
3240  enum tree_code code1;
3241  enum tree_code code2;
3242  tree result_type = NULL;
3243  tree orig_op1 = op1, orig_op2 = op2;
3244
3245  /* Promote both alternatives.  */
3246
3247  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3248    op1 = default_conversion (op1);
3249  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3250    op2 = default_conversion (op2);
3251
3252  if (TREE_CODE (ifexp) == ERROR_MARK
3253      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3254      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3255    return error_mark_node;
3256
3257  type1 = TREE_TYPE (op1);
3258  code1 = TREE_CODE (type1);
3259  type2 = TREE_TYPE (op2);
3260  code2 = TREE_CODE (type2);
3261
3262  /* C90 does not permit non-lvalue arrays in conditional expressions.
3263     In C99 they will be pointers by now.  */
3264  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3265    {
3266      error ("non-lvalue array in conditional expression");
3267      return error_mark_node;
3268    }
3269
3270  /* Quickly detect the usual case where op1 and op2 have the same type
3271     after promotion.  */
3272  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3273    {
3274      if (type1 == type2)
3275	result_type = type1;
3276      else
3277	result_type = TYPE_MAIN_VARIANT (type1);
3278    }
3279  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3280	    || code1 == COMPLEX_TYPE)
3281	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3282	       || code2 == COMPLEX_TYPE))
3283    {
3284      result_type = c_common_type (type1, type2);
3285
3286      /* If -Wsign-compare, warn here if type1 and type2 have
3287	 different signedness.  We'll promote the signed to unsigned
3288	 and later code won't know it used to be different.
3289	 Do this check on the original types, so that explicit casts
3290	 will be considered, but default promotions won't.  */
3291      if (warn_sign_compare && !skip_evaluation)
3292	{
3293	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3294	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3295
3296	  if (unsigned_op1 ^ unsigned_op2)
3297	    {
3298	      bool ovf;
3299
3300	      /* Do not warn if the result type is signed, since the
3301		 signed type will only be chosen if it can represent
3302		 all the values of the unsigned type.  */
3303	      if (!TYPE_UNSIGNED (result_type))
3304		/* OK */;
3305	      /* Do not warn if the signed quantity is an unsuffixed
3306		 integer literal (or some static constant expression
3307		 involving such literals) and it is non-negative.  */
3308	      else if ((unsigned_op2
3309			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3310		       || (unsigned_op1
3311			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3312		/* OK */;
3313	      else
3314		warning (0, "signed and unsigned type in conditional expression");
3315	    }
3316	}
3317    }
3318  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3319    {
3320      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3321	pedwarn ("ISO C forbids conditional expr with only one void side");
3322      result_type = void_type_node;
3323    }
3324  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3325    {
3326      if (comp_target_types (type1, type2))
3327	result_type = common_pointer_type (type1, type2);
3328      else if (null_pointer_constant_p (orig_op1))
3329	result_type = qualify_type (type2, type1);
3330      else if (null_pointer_constant_p (orig_op2))
3331	result_type = qualify_type (type1, type2);
3332      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3333	{
3334	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3335	    pedwarn ("ISO C forbids conditional expr between "
3336		     "%<void *%> and function pointer");
3337	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3338							  TREE_TYPE (type2)));
3339	}
3340      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3341	{
3342	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3343	    pedwarn ("ISO C forbids conditional expr between "
3344		     "%<void *%> and function pointer");
3345	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3346							  TREE_TYPE (type1)));
3347	}
3348      else
3349	{
3350	  pedwarn ("pointer type mismatch in conditional expression");
3351	  result_type = build_pointer_type (void_type_node);
3352	}
3353    }
3354  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3355    {
3356      if (!null_pointer_constant_p (orig_op2))
3357	pedwarn ("pointer/integer type mismatch in conditional expression");
3358      else
3359	{
3360	  op2 = null_pointer_node;
3361	}
3362      result_type = type1;
3363    }
3364  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3365    {
3366      if (!null_pointer_constant_p (orig_op1))
3367	pedwarn ("pointer/integer type mismatch in conditional expression");
3368      else
3369	{
3370	  op1 = null_pointer_node;
3371	}
3372      result_type = type2;
3373    }
3374
3375  if (!result_type)
3376    {
3377      if (flag_cond_mismatch)
3378	result_type = void_type_node;
3379      else
3380	{
3381	  error ("type mismatch in conditional expression");
3382	  return error_mark_node;
3383	}
3384    }
3385
3386  /* Merge const and volatile flags of the incoming types.  */
3387  result_type
3388    = build_type_variant (result_type,
3389			  TREE_READONLY (op1) || TREE_READONLY (op2),
3390			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3391
3392  if (result_type != TREE_TYPE (op1))
3393    op1 = convert_and_check (result_type, op1);
3394  if (result_type != TREE_TYPE (op2))
3395    op2 = convert_and_check (result_type, op2);
3396
3397  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3398}
3399
3400/* Return a compound expression that performs two expressions and
3401   returns the value of the second of them.  */
3402
3403tree
3404build_compound_expr (tree expr1, tree expr2)
3405{
3406  if (!TREE_SIDE_EFFECTS (expr1))
3407    {
3408      /* The left-hand operand of a comma expression is like an expression
3409	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3410	 any side-effects, unless it was explicitly cast to (void).  */
3411      if (warn_unused_value)
3412	{
3413	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3414	      && (TREE_CODE (expr1) == NOP_EXPR
3415		  || TREE_CODE (expr1) == CONVERT_EXPR))
3416	    ; /* (void) a, b */
3417	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3418		   && TREE_CODE (expr1) == COMPOUND_EXPR
3419		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3420		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3421	    ; /* (void) a, (void) b, c */
3422	  else
3423	    warning (0, "left-hand operand of comma expression has no effect");
3424	}
3425    }
3426
3427  /* With -Wunused, we should also warn if the left-hand operand does have
3428     side-effects, but computes a value which is not used.  For example, in
3429     `foo() + bar(), baz()' the result of the `+' operator is not used,
3430     so we should issue a warning.  */
3431  else if (warn_unused_value)
3432    warn_if_unused_value (expr1, input_location);
3433
3434  if (expr2 == error_mark_node)
3435    return error_mark_node;
3436
3437  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3438}
3439
3440/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3441
3442tree
3443build_c_cast (tree type, tree expr)
3444{
3445  tree value = expr;
3446
3447  if (type == error_mark_node || expr == error_mark_node)
3448    return error_mark_node;
3449
3450  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3451     only in <protocol> qualifications.  But when constructing cast expressions,
3452     the protocols do matter and must be kept around.  */
3453  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3454    return build1 (NOP_EXPR, type, expr);
3455
3456  type = TYPE_MAIN_VARIANT (type);
3457
3458  if (TREE_CODE (type) == ARRAY_TYPE)
3459    {
3460      error ("cast specifies array type");
3461      return error_mark_node;
3462    }
3463
3464  if (TREE_CODE (type) == FUNCTION_TYPE)
3465    {
3466      error ("cast specifies function type");
3467      return error_mark_node;
3468    }
3469
3470  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3471    {
3472      if (pedantic)
3473	{
3474	  if (TREE_CODE (type) == RECORD_TYPE
3475	      || TREE_CODE (type) == UNION_TYPE)
3476	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3477	}
3478    }
3479  else if (TREE_CODE (type) == UNION_TYPE)
3480    {
3481      tree field;
3482
3483      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3484	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3485		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3486	  break;
3487
3488      if (field)
3489	{
3490	  tree t;
3491
3492	  if (pedantic)
3493	    pedwarn ("ISO C forbids casts to union type");
3494	  t = digest_init (type,
3495			   build_constructor_single (type, field, value),
3496			   true, 0);
3497	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3498	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3499	  return t;
3500	}
3501      error ("cast to union type from type not present in union");
3502      return error_mark_node;
3503    }
3504  else
3505    {
3506      tree otype, ovalue;
3507
3508      if (type == void_type_node)
3509	return build1 (CONVERT_EXPR, type, value);
3510
3511      otype = TREE_TYPE (value);
3512
3513      /* Optionally warn about potentially worrisome casts.  */
3514
3515      if (warn_cast_qual
3516	  && TREE_CODE (type) == POINTER_TYPE
3517	  && TREE_CODE (otype) == POINTER_TYPE)
3518	{
3519	  tree in_type = type;
3520	  tree in_otype = otype;
3521	  int added = 0;
3522	  int discarded = 0;
3523
3524	  /* Check that the qualifiers on IN_TYPE are a superset of
3525	     the qualifiers of IN_OTYPE.  The outermost level of
3526	     POINTER_TYPE nodes is uninteresting and we stop as soon
3527	     as we hit a non-POINTER_TYPE node on either type.  */
3528	  do
3529	    {
3530	      in_otype = TREE_TYPE (in_otype);
3531	      in_type = TREE_TYPE (in_type);
3532
3533	      /* GNU C allows cv-qualified function types.  'const'
3534		 means the function is very pure, 'volatile' means it
3535		 can't return.  We need to warn when such qualifiers
3536		 are added, not when they're taken away.  */
3537	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3538		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3539		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3540	      else
3541		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3542	    }
3543	  while (TREE_CODE (in_type) == POINTER_TYPE
3544		 && TREE_CODE (in_otype) == POINTER_TYPE);
3545
3546	  if (added)
3547	    warning (0, "cast adds new qualifiers to function type");
3548
3549	  if (discarded)
3550	    /* There are qualifiers present in IN_OTYPE that are not
3551	       present in IN_TYPE.  */
3552	    warning (0, "cast discards qualifiers from pointer target type");
3553	}
3554
3555      /* Warn about possible alignment problems.  */
3556      if (STRICT_ALIGNMENT
3557	  && TREE_CODE (type) == POINTER_TYPE
3558	  && TREE_CODE (otype) == POINTER_TYPE
3559	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3560	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3561	  /* Don't warn about opaque types, where the actual alignment
3562	     restriction is unknown.  */
3563	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3564		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3565	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3566	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3567	warning (OPT_Wcast_align,
3568		 "cast increases required alignment of target type");
3569
3570      if (TREE_CODE (type) == INTEGER_TYPE
3571	  && TREE_CODE (otype) == POINTER_TYPE
3572	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3573      /* Unlike conversion of integers to pointers, where the
3574         warning is disabled for converting constants because
3575         of cases such as SIG_*, warn about converting constant
3576         pointers to integers. In some cases it may cause unwanted
3577         sign extension, and a warning is appropriate.  */
3578	warning (OPT_Wpointer_to_int_cast,
3579		 "cast from pointer to integer of different size");
3580
3581      if (TREE_CODE (value) == CALL_EXPR
3582	  && TREE_CODE (type) != TREE_CODE (otype))
3583	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3584		 "to non-matching type %qT", otype, type);
3585
3586      if (TREE_CODE (type) == POINTER_TYPE
3587	  && TREE_CODE (otype) == INTEGER_TYPE
3588	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3589	  /* Don't warn about converting any constant.  */
3590	  && !TREE_CONSTANT (value))
3591	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3592		 "of different size");
3593
3594      if (warn_strict_aliasing <= 2)
3595        strict_aliasing_warning (otype, type, expr);
3596
3597      /* If pedantic, warn for conversions between function and object
3598	 pointer types, except for converting a null pointer constant
3599	 to function pointer type.  */
3600      if (pedantic
3601	  && TREE_CODE (type) == POINTER_TYPE
3602	  && TREE_CODE (otype) == POINTER_TYPE
3603	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3604	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3605	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3606
3607      if (pedantic
3608	  && TREE_CODE (type) == POINTER_TYPE
3609	  && TREE_CODE (otype) == POINTER_TYPE
3610	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3611	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3612	  && !null_pointer_constant_p (value))
3613	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3614
3615      ovalue = value;
3616      value = convert (type, value);
3617
3618      /* Ignore any integer overflow caused by the cast.  */
3619      if (TREE_CODE (value) == INTEGER_CST)
3620	{
3621	  if (CONSTANT_CLASS_P (ovalue)
3622	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3623	    {
3624	      /* Avoid clobbering a shared constant.  */
3625	      value = copy_node (value);
3626	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3627	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3628	    }
3629	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3630	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3631	    value = build_int_cst_wide (TREE_TYPE (value),
3632					TREE_INT_CST_LOW (value),
3633					TREE_INT_CST_HIGH (value));
3634	}
3635    }
3636
3637  /* Don't let a cast be an lvalue.  */
3638  if (value == expr)
3639    value = non_lvalue (value);
3640
3641  return value;
3642}
3643
3644/* Interpret a cast of expression EXPR to type TYPE.  */
3645tree
3646c_cast_expr (struct c_type_name *type_name, tree expr)
3647{
3648  tree type;
3649  int saved_wsp = warn_strict_prototypes;
3650
3651  /* This avoids warnings about unprototyped casts on
3652     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3653  if (TREE_CODE (expr) == INTEGER_CST)
3654    warn_strict_prototypes = 0;
3655  type = groktypename (type_name);
3656  warn_strict_prototypes = saved_wsp;
3657
3658  return build_c_cast (type, expr);
3659}
3660
3661/* Build an assignment expression of lvalue LHS from value RHS.
3662   MODIFYCODE is the code for a binary operator that we use
3663   to combine the old value of LHS with RHS to get the new value.
3664   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3665
3666tree
3667build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3668{
3669  tree result;
3670  tree newrhs;
3671  tree lhstype = TREE_TYPE (lhs);
3672  tree olhstype = lhstype;
3673
3674  /* Types that aren't fully specified cannot be used in assignments.  */
3675  lhs = require_complete_type (lhs);
3676
3677  /* Avoid duplicate error messages from operands that had errors.  */
3678  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3679    return error_mark_node;
3680
3681  if (!lvalue_or_else (lhs, lv_assign))
3682    return error_mark_node;
3683
3684  STRIP_TYPE_NOPS (rhs);
3685
3686  newrhs = rhs;
3687
3688  /* If a binary op has been requested, combine the old LHS value with the RHS
3689     producing the value we should actually store into the LHS.  */
3690
3691  if (modifycode != NOP_EXPR)
3692    {
3693      lhs = stabilize_reference (lhs);
3694      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3695    }
3696
3697  /* Give an error for storing in something that is 'const'.  */
3698
3699  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3700      || ((TREE_CODE (lhstype) == RECORD_TYPE
3701	   || TREE_CODE (lhstype) == UNION_TYPE)
3702	  && C_TYPE_FIELDS_READONLY (lhstype)))
3703    {
3704      readonly_error (lhs, lv_assign);
3705      return error_mark_node;
3706    }
3707
3708  /* If storing into a structure or union member,
3709     it has probably been given type `int'.
3710     Compute the type that would go with
3711     the actual amount of storage the member occupies.  */
3712
3713  if (TREE_CODE (lhs) == COMPONENT_REF
3714      && (TREE_CODE (lhstype) == INTEGER_TYPE
3715	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3716	  || TREE_CODE (lhstype) == REAL_TYPE
3717	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3718    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3719
3720  /* If storing in a field that is in actuality a short or narrower than one,
3721     we must store in the field in its actual type.  */
3722
3723  if (lhstype != TREE_TYPE (lhs))
3724    {
3725      lhs = copy_node (lhs);
3726      TREE_TYPE (lhs) = lhstype;
3727    }
3728
3729  /* Convert new value to destination type.  */
3730
3731  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3732				   NULL_TREE, NULL_TREE, 0);
3733  if (TREE_CODE (newrhs) == ERROR_MARK)
3734    return error_mark_node;
3735
3736  /* Emit ObjC write barrier, if necessary.  */
3737  if (c_dialect_objc () && flag_objc_gc)
3738    {
3739      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3740      if (result)
3741	return result;
3742    }
3743
3744  /* Scan operands.  */
3745
3746  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3747  TREE_SIDE_EFFECTS (result) = 1;
3748
3749  /* If we got the LHS in a different type for storing in,
3750     convert the result back to the nominal type of LHS
3751     so that the value we return always has the same type
3752     as the LHS argument.  */
3753
3754  if (olhstype == TREE_TYPE (result))
3755    return result;
3756  return convert_for_assignment (olhstype, result, ic_assign,
3757				 NULL_TREE, NULL_TREE, 0);
3758}
3759
3760/* Convert value RHS to type TYPE as preparation for an assignment
3761   to an lvalue of type TYPE.
3762   The real work of conversion is done by `convert'.
3763   The purpose of this function is to generate error messages
3764   for assignments that are not allowed in C.
3765   ERRTYPE says whether it is argument passing, assignment,
3766   initialization or return.
3767
3768   FUNCTION is a tree for the function being called.
3769   PARMNUM is the number of the argument, for printing in error messages.  */
3770
3771static tree
3772convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3773			tree fundecl, tree function, int parmnum)
3774{
3775  enum tree_code codel = TREE_CODE (type);
3776  tree rhstype;
3777  enum tree_code coder;
3778  tree rname = NULL_TREE;
3779  bool objc_ok = false;
3780
3781  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3782    {
3783      tree selector;
3784      /* Change pointer to function to the function itself for
3785	 diagnostics.  */
3786      if (TREE_CODE (function) == ADDR_EXPR
3787	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3788	function = TREE_OPERAND (function, 0);
3789
3790      /* Handle an ObjC selector specially for diagnostics.  */
3791      selector = objc_message_selector ();
3792      rname = function;
3793      if (selector && parmnum > 2)
3794	{
3795	  rname = selector;
3796	  parmnum -= 2;
3797	}
3798    }
3799
3800  /* This macro is used to emit diagnostics to ensure that all format
3801     strings are complete sentences, visible to gettext and checked at
3802     compile time.  */
3803#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3804  do {						\
3805    switch (errtype)				\
3806      {						\
3807      case ic_argpass:				\
3808	pedwarn (AR, parmnum, rname);		\
3809	break;					\
3810      case ic_argpass_nonproto:			\
3811	warning (0, AR, parmnum, rname);		\
3812	break;					\
3813      case ic_assign:				\
3814	pedwarn (AS);				\
3815	break;					\
3816      case ic_init:				\
3817	pedwarn (IN);				\
3818	break;					\
3819      case ic_return:				\
3820	pedwarn (RE);				\
3821	break;					\
3822      default:					\
3823	gcc_unreachable ();			\
3824      }						\
3825  } while (0)
3826
3827  STRIP_TYPE_NOPS (rhs);
3828
3829  if (optimize && TREE_CODE (rhs) == VAR_DECL
3830	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3831    rhs = decl_constant_value_for_broken_optimization (rhs);
3832
3833  rhstype = TREE_TYPE (rhs);
3834  coder = TREE_CODE (rhstype);
3835
3836  if (coder == ERROR_MARK)
3837    return error_mark_node;
3838
3839  if (c_dialect_objc ())
3840    {
3841      int parmno;
3842
3843      switch (errtype)
3844	{
3845	case ic_return:
3846	  parmno = 0;
3847	  break;
3848
3849	case ic_assign:
3850	  parmno = -1;
3851	  break;
3852
3853	case ic_init:
3854	  parmno = -2;
3855	  break;
3856
3857	default:
3858	  parmno = parmnum;
3859	  break;
3860	}
3861
3862      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3863    }
3864
3865  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3866    return rhs;
3867
3868  if (coder == VOID_TYPE)
3869    {
3870      /* Except for passing an argument to an unprototyped function,
3871	 this is a constraint violation.  When passing an argument to
3872	 an unprototyped function, it is compile-time undefined;
3873	 making it a constraint in that case was rejected in
3874	 DR#252.  */
3875      error ("void value not ignored as it ought to be");
3876      return error_mark_node;
3877    }
3878  /* A type converts to a reference to it.
3879     This code doesn't fully support references, it's just for the
3880     special case of va_start and va_copy.  */
3881  if (codel == REFERENCE_TYPE
3882      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3883    {
3884      if (!lvalue_p (rhs))
3885	{
3886	  error ("cannot pass rvalue to reference parameter");
3887	  return error_mark_node;
3888	}
3889      if (!c_mark_addressable (rhs))
3890	return error_mark_node;
3891      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3892
3893      /* We already know that these two types are compatible, but they
3894	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3895	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3896	 likely to be va_list, a typedef to __builtin_va_list, which
3897	 is different enough that it will cause problems later.  */
3898      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3899	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3900
3901      rhs = build1 (NOP_EXPR, type, rhs);
3902      return rhs;
3903    }
3904  /* Some types can interconvert without explicit casts.  */
3905  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3906	   && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3907    return convert (type, rhs);
3908  /* Arithmetic types all interconvert, and enum is treated like int.  */
3909  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3910	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3911	    || codel == BOOLEAN_TYPE)
3912	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3913	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3914	       || coder == BOOLEAN_TYPE))
3915    return convert_and_check (type, rhs);
3916
3917  /* Aggregates in different TUs might need conversion.  */
3918  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3919      && codel == coder
3920      && comptypes (type, rhstype))
3921    return convert_and_check (type, rhs);
3922
3923  /* Conversion to a transparent union from its member types.
3924     This applies only to function arguments.  */
3925  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3926      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3927    {
3928      tree memb, marginal_memb = NULL_TREE;
3929
3930      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3931	{
3932	  tree memb_type = TREE_TYPE (memb);
3933
3934	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3935			 TYPE_MAIN_VARIANT (rhstype)))
3936	    break;
3937
3938	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3939	    continue;
3940
3941	  if (coder == POINTER_TYPE)
3942	    {
3943	      tree ttl = TREE_TYPE (memb_type);
3944	      tree ttr = TREE_TYPE (rhstype);
3945
3946	      /* Any non-function converts to a [const][volatile] void *
3947		 and vice versa; otherwise, targets must be the same.
3948		 Meanwhile, the lhs target must have all the qualifiers of
3949		 the rhs.  */
3950	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3951		  || comp_target_types (memb_type, rhstype))
3952		{
3953		  /* If this type won't generate any warnings, use it.  */
3954		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3955		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3956			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3957			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3958			     == TYPE_QUALS (ttr))
3959			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3960			     == TYPE_QUALS (ttl))))
3961		    break;
3962
3963		  /* Keep looking for a better type, but remember this one.  */
3964		  if (!marginal_memb)
3965		    marginal_memb = memb;
3966		}
3967	    }
3968
3969	  /* Can convert integer zero to any pointer type.  */
3970	  if (null_pointer_constant_p (rhs))
3971	    {
3972	      rhs = null_pointer_node;
3973	      break;
3974	    }
3975	}
3976
3977      if (memb || marginal_memb)
3978	{
3979	  if (!memb)
3980	    {
3981	      /* We have only a marginally acceptable member type;
3982		 it needs a warning.  */
3983	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3984	      tree ttr = TREE_TYPE (rhstype);
3985
3986	      /* Const and volatile mean something different for function
3987		 types, so the usual warnings are not appropriate.  */
3988	      if (TREE_CODE (ttr) == FUNCTION_TYPE
3989		  && TREE_CODE (ttl) == FUNCTION_TYPE)
3990		{
3991		  /* Because const and volatile on functions are
3992		     restrictions that say the function will not do
3993		     certain things, it is okay to use a const or volatile
3994		     function where an ordinary one is wanted, but not
3995		     vice-versa.  */
3996		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3997		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3998					    "makes qualified function "
3999					    "pointer from unqualified"),
4000					 G_("assignment makes qualified "
4001					    "function pointer from "
4002					    "unqualified"),
4003					 G_("initialization makes qualified "
4004					    "function pointer from "
4005					    "unqualified"),
4006					 G_("return makes qualified function "
4007					    "pointer from unqualified"));
4008		}
4009	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4010		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4011					"qualifiers from pointer target type"),
4012				     G_("assignment discards qualifiers "
4013					"from pointer target type"),
4014				     G_("initialization discards qualifiers "
4015					"from pointer target type"),
4016				     G_("return discards qualifiers from "
4017					"pointer target type"));
4018
4019	      memb = marginal_memb;
4020	    }
4021
4022	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4023	    pedwarn ("ISO C prohibits argument conversion to union type");
4024
4025	  return build_constructor_single (type, memb, rhs);
4026	}
4027    }
4028
4029  /* Conversions among pointers */
4030  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4031	   && (coder == codel))
4032    {
4033      tree ttl = TREE_TYPE (type);
4034      tree ttr = TREE_TYPE (rhstype);
4035      tree mvl = ttl;
4036      tree mvr = ttr;
4037      bool is_opaque_pointer;
4038      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4039
4040      if (TREE_CODE (mvl) != ARRAY_TYPE)
4041	mvl = TYPE_MAIN_VARIANT (mvl);
4042      if (TREE_CODE (mvr) != ARRAY_TYPE)
4043	mvr = TYPE_MAIN_VARIANT (mvr);
4044      /* Opaque pointers are treated like void pointers.  */
4045      is_opaque_pointer = (targetm.vector_opaque_p (type)
4046			   || targetm.vector_opaque_p (rhstype))
4047	&& TREE_CODE (ttl) == VECTOR_TYPE
4048	&& TREE_CODE (ttr) == VECTOR_TYPE;
4049
4050      /* C++ does not allow the implicit conversion void* -> T*.  However,
4051	 for the purpose of reducing the number of false positives, we
4052	 tolerate the special case of
4053
4054		int *p = NULL;
4055
4056	 where NULL is typically defined in C to be '(void *) 0'.  */
4057      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4058	warning (OPT_Wc___compat, "request for implicit conversion from "
4059		 "%qT to %qT not permitted in C++", rhstype, type);
4060
4061      /* Check if the right-hand side has a format attribute but the
4062	 left-hand side doesn't.  */
4063      if (warn_missing_format_attribute
4064	  && check_missing_format_attribute (type, rhstype))
4065	{
4066	  switch (errtype)
4067	  {
4068	  case ic_argpass:
4069	  case ic_argpass_nonproto:
4070	    warning (OPT_Wmissing_format_attribute,
4071		     "argument %d of %qE might be "
4072		     "a candidate for a format attribute",
4073		     parmnum, rname);
4074	    break;
4075	  case ic_assign:
4076	    warning (OPT_Wmissing_format_attribute,
4077		     "assignment left-hand side might be "
4078		     "a candidate for a format attribute");
4079	    break;
4080	  case ic_init:
4081	    warning (OPT_Wmissing_format_attribute,
4082		     "initialization left-hand side might be "
4083		     "a candidate for a format attribute");
4084	    break;
4085	  case ic_return:
4086	    warning (OPT_Wmissing_format_attribute,
4087		     "return type might be "
4088		     "a candidate for a format attribute");
4089	    break;
4090	  default:
4091	    gcc_unreachable ();
4092	  }
4093	}
4094
4095      /* Any non-function converts to a [const][volatile] void *
4096	 and vice versa; otherwise, targets must be the same.
4097	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4098      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4099	  || (target_cmp = comp_target_types (type, rhstype))
4100	  || is_opaque_pointer
4101	  || (c_common_unsigned_type (mvl)
4102	      == c_common_unsigned_type (mvr)))
4103	{
4104	  if (pedantic
4105	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4106		  ||
4107		  (VOID_TYPE_P (ttr)
4108		   && !null_pointer_constant_p (rhs)
4109		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4110	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4111				    "%qE between function pointer "
4112				    "and %<void *%>"),
4113				 G_("ISO C forbids assignment between "
4114				    "function pointer and %<void *%>"),
4115				 G_("ISO C forbids initialization between "
4116				    "function pointer and %<void *%>"),
4117				 G_("ISO C forbids return between function "
4118				    "pointer and %<void *%>"));
4119	  /* Const and volatile mean something different for function types,
4120	     so the usual warnings are not appropriate.  */
4121	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4122		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4123	    {
4124	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4125		{
4126		  /* Types differing only by the presence of the 'volatile'
4127		     qualifier are acceptable if the 'volatile' has been added
4128		     in by the Objective-C EH machinery.  */
4129		  if (!objc_type_quals_match (ttl, ttr))
4130		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4131					    "qualifiers from pointer target type"),
4132					 G_("assignment discards qualifiers "
4133					    "from pointer target type"),
4134					 G_("initialization discards qualifiers "
4135					    "from pointer target type"),
4136					 G_("return discards qualifiers from "
4137					    "pointer target type"));
4138		}
4139	      /* If this is not a case of ignoring a mismatch in signedness,
4140		 no warning.  */
4141	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4142		       || target_cmp)
4143		;
4144	      /* If there is a mismatch, do warn.  */
4145	      else if (warn_pointer_sign)
4146		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4147					"%d of %qE differ in signedness"),
4148				     G_("pointer targets in assignment "
4149					"differ in signedness"),
4150				     G_("pointer targets in initialization "
4151					"differ in signedness"),
4152				     G_("pointer targets in return differ "
4153					"in signedness"));
4154	    }
4155	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4156		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4157	    {
4158	      /* Because const and volatile on functions are restrictions
4159		 that say the function will not do certain things,
4160		 it is okay to use a const or volatile function
4161		 where an ordinary one is wanted, but not vice-versa.  */
4162	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4163		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4164					"qualified function pointer "
4165					"from unqualified"),
4166				     G_("assignment makes qualified function "
4167					"pointer from unqualified"),
4168				     G_("initialization makes qualified "
4169					"function pointer from unqualified"),
4170				     G_("return makes qualified function "
4171					"pointer from unqualified"));
4172	    }
4173	}
4174      else
4175	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4176	if (!objc_ok)
4177	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4178				  "incompatible pointer type"),
4179			       G_("assignment from incompatible pointer type"),
4180			       G_("initialization from incompatible "
4181				  "pointer type"),
4182			       G_("return from incompatible pointer type"));
4183
4184      return convert (type, rhs);
4185    }
4186  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4187    {
4188      /* ??? This should not be an error when inlining calls to
4189	 unprototyped functions.  */
4190      error ("invalid use of non-lvalue array");
4191      return error_mark_node;
4192    }
4193  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4194    {
4195      /* An explicit constant 0 can convert to a pointer,
4196	 or one that results from arithmetic, even including
4197	 a cast to integer type.  */
4198      if (!null_pointer_constant_p (rhs))
4199	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4200				"pointer from integer without a cast"),
4201			     G_("assignment makes pointer from integer "
4202				"without a cast"),
4203			     G_("initialization makes pointer from "
4204				"integer without a cast"),
4205			     G_("return makes pointer from integer "
4206				"without a cast"));
4207
4208      return convert (type, rhs);
4209    }
4210  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4211    {
4212      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4213			      "from pointer without a cast"),
4214			   G_("assignment makes integer from pointer "
4215			      "without a cast"),
4216			   G_("initialization makes integer from pointer "
4217			      "without a cast"),
4218			   G_("return makes integer from pointer "
4219			      "without a cast"));
4220      return convert (type, rhs);
4221    }
4222  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4223    return convert (type, rhs);
4224
4225  switch (errtype)
4226    {
4227    case ic_argpass:
4228    case ic_argpass_nonproto:
4229      /* ??? This should not be an error when inlining calls to
4230	 unprototyped functions.  */
4231      error ("incompatible type for argument %d of %qE", parmnum, rname);
4232      break;
4233    case ic_assign:
4234      error ("incompatible types in assignment");
4235      break;
4236    case ic_init:
4237      error ("incompatible types in initialization");
4238      break;
4239    case ic_return:
4240      error ("incompatible types in return");
4241      break;
4242    default:
4243      gcc_unreachable ();
4244    }
4245
4246  return error_mark_node;
4247}
4248
4249/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4250   is used for error and warning reporting and indicates which argument
4251   is being processed.  */
4252
4253tree
4254c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4255{
4256  tree ret, type;
4257
4258  /* If FN was prototyped at the call site, the value has been converted
4259     already in convert_arguments.
4260     However, we might see a prototype now that was not in place when
4261     the function call was seen, so check that the VALUE actually matches
4262     PARM before taking an early exit.  */
4263  if (!value
4264      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4265	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4266	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4267    return value;
4268
4269  type = TREE_TYPE (parm);
4270  ret = convert_for_assignment (type, value,
4271				ic_argpass_nonproto, fn,
4272				fn, argnum);
4273  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4274      && INTEGRAL_TYPE_P (type)
4275      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4276    ret = default_conversion (ret);
4277  return ret;
4278}
4279
4280/* If VALUE is a compound expr all of whose expressions are constant, then
4281   return its value.  Otherwise, return error_mark_node.
4282
4283   This is for handling COMPOUND_EXPRs as initializer elements
4284   which is allowed with a warning when -pedantic is specified.  */
4285
4286static tree
4287valid_compound_expr_initializer (tree value, tree endtype)
4288{
4289  if (TREE_CODE (value) == COMPOUND_EXPR)
4290    {
4291      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4292	  == error_mark_node)
4293	return error_mark_node;
4294      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4295					      endtype);
4296    }
4297  else if (!initializer_constant_valid_p (value, endtype))
4298    return error_mark_node;
4299  else
4300    return value;
4301}
4302
4303/* Perform appropriate conversions on the initial value of a variable,
4304   store it in the declaration DECL,
4305   and print any error messages that are appropriate.
4306   If the init is invalid, store an ERROR_MARK.  */
4307
4308void
4309store_init_value (tree decl, tree init)
4310{
4311  tree value, type;
4312
4313  /* If variable's type was invalidly declared, just ignore it.  */
4314
4315  type = TREE_TYPE (decl);
4316  if (TREE_CODE (type) == ERROR_MARK)
4317    return;
4318
4319  /* Digest the specified initializer into an expression.  */
4320
4321  value = digest_init (type, init, true, TREE_STATIC (decl));
4322
4323  /* Store the expression if valid; else report error.  */
4324
4325  if (!in_system_header
4326      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4327    warning (OPT_Wtraditional, "traditional C rejects automatic "
4328	     "aggregate initialization");
4329
4330  DECL_INITIAL (decl) = value;
4331
4332  /* ANSI wants warnings about out-of-range constant initializers.  */
4333  STRIP_TYPE_NOPS (value);
4334  constant_expression_warning (value);
4335
4336  /* Check if we need to set array size from compound literal size.  */
4337  if (TREE_CODE (type) == ARRAY_TYPE
4338      && TYPE_DOMAIN (type) == 0
4339      && value != error_mark_node)
4340    {
4341      tree inside_init = init;
4342
4343      STRIP_TYPE_NOPS (inside_init);
4344      inside_init = fold (inside_init);
4345
4346      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4347	{
4348	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4349
4350	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4351	    {
4352	      /* For int foo[] = (int [3]){1}; we need to set array size
4353		 now since later on array initializer will be just the
4354		 brace enclosed list of the compound literal.  */
4355	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4356	      TREE_TYPE (decl) = type;
4357	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4358	      layout_type (type);
4359	      layout_decl (cldecl, 0);
4360	    }
4361	}
4362    }
4363}
4364
4365/* Methods for storing and printing names for error messages.  */
4366
4367/* Implement a spelling stack that allows components of a name to be pushed
4368   and popped.  Each element on the stack is this structure.  */
4369
4370struct spelling
4371{
4372  int kind;
4373  union
4374    {
4375      unsigned HOST_WIDE_INT i;
4376      const char *s;
4377    } u;
4378};
4379
4380#define SPELLING_STRING 1
4381#define SPELLING_MEMBER 2
4382#define SPELLING_BOUNDS 3
4383
4384static struct spelling *spelling;	/* Next stack element (unused).  */
4385static struct spelling *spelling_base;	/* Spelling stack base.  */
4386static int spelling_size;		/* Size of the spelling stack.  */
4387
4388/* Macros to save and restore the spelling stack around push_... functions.
4389   Alternative to SAVE_SPELLING_STACK.  */
4390
4391#define SPELLING_DEPTH() (spelling - spelling_base)
4392#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4393
4394/* Push an element on the spelling stack with type KIND and assign VALUE
4395   to MEMBER.  */
4396
4397#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4398{									\
4399  int depth = SPELLING_DEPTH ();					\
4400									\
4401  if (depth >= spelling_size)						\
4402    {									\
4403      spelling_size += 10;						\
4404      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4405				  spelling_size);			\
4406      RESTORE_SPELLING_DEPTH (depth);					\
4407    }									\
4408									\
4409  spelling->kind = (KIND);						\
4410  spelling->MEMBER = (VALUE);						\
4411  spelling++;								\
4412}
4413
4414/* Push STRING on the stack.  Printed literally.  */
4415
4416static void
4417push_string (const char *string)
4418{
4419  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4420}
4421
4422/* Push a member name on the stack.  Printed as '.' STRING.  */
4423
4424static void
4425push_member_name (tree decl)
4426{
4427  const char *const string
4428    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4429  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4430}
4431
4432/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4433
4434static void
4435push_array_bounds (unsigned HOST_WIDE_INT bounds)
4436{
4437  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4438}
4439
4440/* Compute the maximum size in bytes of the printed spelling.  */
4441
4442static int
4443spelling_length (void)
4444{
4445  int size = 0;
4446  struct spelling *p;
4447
4448  for (p = spelling_base; p < spelling; p++)
4449    {
4450      if (p->kind == SPELLING_BOUNDS)
4451	size += 25;
4452      else
4453	size += strlen (p->u.s) + 1;
4454    }
4455
4456  return size;
4457}
4458
4459/* Print the spelling to BUFFER and return it.  */
4460
4461static char *
4462print_spelling (char *buffer)
4463{
4464  char *d = buffer;
4465  struct spelling *p;
4466
4467  for (p = spelling_base; p < spelling; p++)
4468    if (p->kind == SPELLING_BOUNDS)
4469      {
4470	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4471	d += strlen (d);
4472      }
4473    else
4474      {
4475	const char *s;
4476	if (p->kind == SPELLING_MEMBER)
4477	  *d++ = '.';
4478	for (s = p->u.s; (*d = *s++); d++)
4479	  ;
4480      }
4481  *d++ = '\0';
4482  return buffer;
4483}
4484
4485/* Issue an error message for a bad initializer component.
4486   MSGID identifies the message.
4487   The component name is taken from the spelling stack.  */
4488
4489void
4490error_init (const char *msgid)
4491{
4492  char *ofwhat;
4493
4494  error ("%s", _(msgid));
4495  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4496  if (*ofwhat)
4497    error ("(near initialization for %qs)", ofwhat);
4498}
4499
4500/* Issue a pedantic warning for a bad initializer component.
4501   MSGID identifies the message.
4502   The component name is taken from the spelling stack.  */
4503
4504void
4505pedwarn_init (const char *msgid)
4506{
4507  char *ofwhat;
4508
4509  pedwarn ("%s", _(msgid));
4510  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4511  if (*ofwhat)
4512    pedwarn ("(near initialization for %qs)", ofwhat);
4513}
4514
4515/* Issue a warning for a bad initializer component.
4516   MSGID identifies the message.
4517   The component name is taken from the spelling stack.  */
4518
4519static void
4520warning_init (const char *msgid)
4521{
4522  char *ofwhat;
4523
4524  warning (0, "%s", _(msgid));
4525  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4526  if (*ofwhat)
4527    warning (0, "(near initialization for %qs)", ofwhat);
4528}
4529
4530/* If TYPE is an array type and EXPR is a parenthesized string
4531   constant, warn if pedantic that EXPR is being used to initialize an
4532   object of type TYPE.  */
4533
4534void
4535maybe_warn_string_init (tree type, struct c_expr expr)
4536{
4537  if (pedantic
4538      && TREE_CODE (type) == ARRAY_TYPE
4539      && TREE_CODE (expr.value) == STRING_CST
4540      && expr.original_code != STRING_CST)
4541    pedwarn_init ("array initialized from parenthesized string constant");
4542}
4543
4544/* Digest the parser output INIT as an initializer for type TYPE.
4545   Return a C expression of type TYPE to represent the initial value.
4546
4547   If INIT is a string constant, STRICT_STRING is true if it is
4548   unparenthesized or we should not warn here for it being parenthesized.
4549   For other types of INIT, STRICT_STRING is not used.
4550
4551   REQUIRE_CONSTANT requests an error if non-constant initializers or
4552   elements are seen.  */
4553
4554static tree
4555digest_init (tree type, tree init, bool strict_string, int require_constant)
4556{
4557  enum tree_code code = TREE_CODE (type);
4558  tree inside_init = init;
4559
4560  if (type == error_mark_node
4561      || !init
4562      || init == error_mark_node
4563      || TREE_TYPE (init) == error_mark_node)
4564    return error_mark_node;
4565
4566  STRIP_TYPE_NOPS (inside_init);
4567
4568  inside_init = fold (inside_init);
4569
4570  /* Initialization of an array of chars from a string constant
4571     optionally enclosed in braces.  */
4572
4573  if (code == ARRAY_TYPE && inside_init
4574      && TREE_CODE (inside_init) == STRING_CST)
4575    {
4576      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4577      /* Note that an array could be both an array of character type
4578	 and an array of wchar_t if wchar_t is signed char or unsigned
4579	 char.  */
4580      bool char_array = (typ1 == char_type_node
4581			 || typ1 == signed_char_type_node
4582			 || typ1 == unsigned_char_type_node);
4583      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4584      if (char_array || wchar_array)
4585	{
4586	  struct c_expr expr;
4587	  bool char_string;
4588	  expr.value = inside_init;
4589	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4590	  maybe_warn_string_init (type, expr);
4591
4592	  char_string
4593	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4594	       == char_type_node);
4595
4596	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4597			 TYPE_MAIN_VARIANT (type)))
4598	    return inside_init;
4599
4600	  if (!wchar_array && !char_string)
4601	    {
4602	      error_init ("char-array initialized from wide string");
4603	      return error_mark_node;
4604	    }
4605	  if (char_string && !char_array)
4606	    {
4607	      error_init ("wchar_t-array initialized from non-wide string");
4608	      return error_mark_node;
4609	    }
4610
4611	  TREE_TYPE (inside_init) = type;
4612	  if (TYPE_DOMAIN (type) != 0
4613	      && TYPE_SIZE (type) != 0
4614	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4615	      /* Subtract 1 (or sizeof (wchar_t))
4616		 because it's ok to ignore the terminating null char
4617		 that is counted in the length of the constant.  */
4618	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4619				       TREE_STRING_LENGTH (inside_init)
4620				       - ((TYPE_PRECISION (typ1)
4621					   != TYPE_PRECISION (char_type_node))
4622					  ? (TYPE_PRECISION (wchar_type_node)
4623					     / BITS_PER_UNIT)
4624					  : 1)))
4625	    pedwarn_init ("initializer-string for array of chars is too long");
4626
4627	  return inside_init;
4628	}
4629      else if (INTEGRAL_TYPE_P (typ1))
4630	{
4631	  error_init ("array of inappropriate type initialized "
4632		      "from string constant");
4633	  return error_mark_node;
4634	}
4635    }
4636
4637  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4638     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4639     below and handle as a constructor.  */
4640  if (code == VECTOR_TYPE
4641      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4642      && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4643      && TREE_CONSTANT (inside_init))
4644    {
4645      if (TREE_CODE (inside_init) == VECTOR_CST
4646	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4647			TYPE_MAIN_VARIANT (type)))
4648	return inside_init;
4649
4650      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4651	{
4652	  unsigned HOST_WIDE_INT ix;
4653	  tree value;
4654	  bool constant_p = true;
4655
4656	  /* Iterate through elements and check if all constructor
4657	     elements are *_CSTs.  */
4658	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4659	    if (!CONSTANT_CLASS_P (value))
4660	      {
4661		constant_p = false;
4662		break;
4663	      }
4664
4665	  if (constant_p)
4666	    return build_vector_from_ctor (type,
4667					   CONSTRUCTOR_ELTS (inside_init));
4668	}
4669    }
4670
4671  /* Any type can be initialized
4672     from an expression of the same type, optionally with braces.  */
4673
4674  if (inside_init && TREE_TYPE (inside_init) != 0
4675      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4676		     TYPE_MAIN_VARIANT (type))
4677	  || (code == ARRAY_TYPE
4678	      && comptypes (TREE_TYPE (inside_init), type))
4679	  || (code == VECTOR_TYPE
4680	      && comptypes (TREE_TYPE (inside_init), type))
4681	  || (code == POINTER_TYPE
4682	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4683	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4684			    TREE_TYPE (type)))))
4685    {
4686      if (code == POINTER_TYPE)
4687	{
4688	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4689	    {
4690	      if (TREE_CODE (inside_init) == STRING_CST
4691		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4692		inside_init = array_to_pointer_conversion (inside_init);
4693	      else
4694		{
4695		  error_init ("invalid use of non-lvalue array");
4696		  return error_mark_node;
4697		}
4698	    }
4699	}
4700
4701      if (code == VECTOR_TYPE)
4702	/* Although the types are compatible, we may require a
4703	   conversion.  */
4704	inside_init = convert (type, inside_init);
4705
4706      if (require_constant
4707	  && (code == VECTOR_TYPE || !flag_isoc99)
4708	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4709	{
4710	  /* As an extension, allow initializing objects with static storage
4711	     duration with compound literals (which are then treated just as
4712	     the brace enclosed list they contain).  Also allow this for
4713	     vectors, as we can only assign them with compound literals.  */
4714	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4715	  inside_init = DECL_INITIAL (decl);
4716	}
4717
4718      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4719	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4720	{
4721	  error_init ("array initialized from non-constant array expression");
4722	  return error_mark_node;
4723	}
4724
4725      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4726	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4727
4728      /* Compound expressions can only occur here if -pedantic or
4729	 -pedantic-errors is specified.  In the later case, we always want
4730	 an error.  In the former case, we simply want a warning.  */
4731      if (require_constant && pedantic
4732	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4733	{
4734	  inside_init
4735	    = valid_compound_expr_initializer (inside_init,
4736					       TREE_TYPE (inside_init));
4737	  if (inside_init == error_mark_node)
4738	    error_init ("initializer element is not constant");
4739	  else
4740	    pedwarn_init ("initializer element is not constant");
4741	  if (flag_pedantic_errors)
4742	    inside_init = error_mark_node;
4743	}
4744      else if (require_constant
4745	       && !initializer_constant_valid_p (inside_init,
4746						 TREE_TYPE (inside_init)))
4747	{
4748	  error_init ("initializer element is not constant");
4749	  inside_init = error_mark_node;
4750	}
4751
4752      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4753      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4754	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4755					      NULL_TREE, 0);
4756      return inside_init;
4757    }
4758
4759  /* Handle scalar types, including conversions.  */
4760
4761  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4762      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4763      || code == VECTOR_TYPE)
4764    {
4765      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4766	  && (TREE_CODE (init) == STRING_CST
4767	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4768	init = array_to_pointer_conversion (init);
4769      inside_init
4770	= convert_for_assignment (type, init, ic_init,
4771				  NULL_TREE, NULL_TREE, 0);
4772
4773      /* Check to see if we have already given an error message.  */
4774      if (inside_init == error_mark_node)
4775	;
4776      else if (require_constant && !TREE_CONSTANT (inside_init))
4777	{
4778	  error_init ("initializer element is not constant");
4779	  inside_init = error_mark_node;
4780	}
4781      else if (require_constant
4782	       && !initializer_constant_valid_p (inside_init,
4783						 TREE_TYPE (inside_init)))
4784	{
4785	  error_init ("initializer element is not computable at load time");
4786	  inside_init = error_mark_node;
4787	}
4788
4789      return inside_init;
4790    }
4791
4792  /* Come here only for records and arrays.  */
4793
4794  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4795    {
4796      error_init ("variable-sized object may not be initialized");
4797      return error_mark_node;
4798    }
4799
4800  error_init ("invalid initializer");
4801  return error_mark_node;
4802}
4803
4804/* Handle initializers that use braces.  */
4805
4806/* Type of object we are accumulating a constructor for.
4807   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4808static tree constructor_type;
4809
4810/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4811   left to fill.  */
4812static tree constructor_fields;
4813
4814/* For an ARRAY_TYPE, this is the specified index
4815   at which to store the next element we get.  */
4816static tree constructor_index;
4817
4818/* For an ARRAY_TYPE, this is the maximum index.  */
4819static tree constructor_max_index;
4820
4821/* For a RECORD_TYPE, this is the first field not yet written out.  */
4822static tree constructor_unfilled_fields;
4823
4824/* For an ARRAY_TYPE, this is the index of the first element
4825   not yet written out.  */
4826static tree constructor_unfilled_index;
4827
4828/* In a RECORD_TYPE, the byte index of the next consecutive field.
4829   This is so we can generate gaps between fields, when appropriate.  */
4830static tree constructor_bit_index;
4831
4832/* If we are saving up the elements rather than allocating them,
4833   this is the list of elements so far (in reverse order,
4834   most recent first).  */
4835static VEC(constructor_elt,gc) *constructor_elements;
4836
4837/* 1 if constructor should be incrementally stored into a constructor chain,
4838   0 if all the elements should be kept in AVL tree.  */
4839static int constructor_incremental;
4840
4841/* 1 if so far this constructor's elements are all compile-time constants.  */
4842static int constructor_constant;
4843
4844/* 1 if so far this constructor's elements are all valid address constants.  */
4845static int constructor_simple;
4846
4847/* 1 if this constructor is erroneous so far.  */
4848static int constructor_erroneous;
4849
4850/* Structure for managing pending initializer elements, organized as an
4851   AVL tree.  */
4852
4853struct init_node
4854{
4855  struct init_node *left, *right;
4856  struct init_node *parent;
4857  int balance;
4858  tree purpose;
4859  tree value;
4860};
4861
4862/* Tree of pending elements at this constructor level.
4863   These are elements encountered out of order
4864   which belong at places we haven't reached yet in actually
4865   writing the output.
4866   Will never hold tree nodes across GC runs.  */
4867static struct init_node *constructor_pending_elts;
4868
4869/* The SPELLING_DEPTH of this constructor.  */
4870static int constructor_depth;
4871
4872/* DECL node for which an initializer is being read.
4873   0 means we are reading a constructor expression
4874   such as (struct foo) {...}.  */
4875static tree constructor_decl;
4876
4877/* Nonzero if this is an initializer for a top-level decl.  */
4878static int constructor_top_level;
4879
4880/* Nonzero if there were any member designators in this initializer.  */
4881static int constructor_designated;
4882
4883/* Nesting depth of designator list.  */
4884static int designator_depth;
4885
4886/* Nonzero if there were diagnosed errors in this designator list.  */
4887static int designator_erroneous;
4888
4889
4890/* This stack has a level for each implicit or explicit level of
4891   structuring in the initializer, including the outermost one.  It
4892   saves the values of most of the variables above.  */
4893
4894struct constructor_range_stack;
4895
4896struct constructor_stack
4897{
4898  struct constructor_stack *next;
4899  tree type;
4900  tree fields;
4901  tree index;
4902  tree max_index;
4903  tree unfilled_index;
4904  tree unfilled_fields;
4905  tree bit_index;
4906  VEC(constructor_elt,gc) *elements;
4907  struct init_node *pending_elts;
4908  int offset;
4909  int depth;
4910  /* If value nonzero, this value should replace the entire
4911     constructor at this level.  */
4912  struct c_expr replacement_value;
4913  struct constructor_range_stack *range_stack;
4914  char constant;
4915  char simple;
4916  char implicit;
4917  char erroneous;
4918  char outer;
4919  char incremental;
4920  char designated;
4921};
4922
4923static struct constructor_stack *constructor_stack;
4924
4925/* This stack represents designators from some range designator up to
4926   the last designator in the list.  */
4927
4928struct constructor_range_stack
4929{
4930  struct constructor_range_stack *next, *prev;
4931  struct constructor_stack *stack;
4932  tree range_start;
4933  tree index;
4934  tree range_end;
4935  tree fields;
4936};
4937
4938static struct constructor_range_stack *constructor_range_stack;
4939
4940/* This stack records separate initializers that are nested.
4941   Nested initializers can't happen in ANSI C, but GNU C allows them
4942   in cases like { ... (struct foo) { ... } ... }.  */
4943
4944struct initializer_stack
4945{
4946  struct initializer_stack *next;
4947  tree decl;
4948  struct constructor_stack *constructor_stack;
4949  struct constructor_range_stack *constructor_range_stack;
4950  VEC(constructor_elt,gc) *elements;
4951  struct spelling *spelling;
4952  struct spelling *spelling_base;
4953  int spelling_size;
4954  char top_level;
4955  char require_constant_value;
4956  char require_constant_elements;
4957};
4958
4959static struct initializer_stack *initializer_stack;
4960
4961/* Prepare to parse and output the initializer for variable DECL.  */
4962
4963void
4964start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4965{
4966  const char *locus;
4967  struct initializer_stack *p = XNEW (struct initializer_stack);
4968
4969  p->decl = constructor_decl;
4970  p->require_constant_value = require_constant_value;
4971  p->require_constant_elements = require_constant_elements;
4972  p->constructor_stack = constructor_stack;
4973  p->constructor_range_stack = constructor_range_stack;
4974  p->elements = constructor_elements;
4975  p->spelling = spelling;
4976  p->spelling_base = spelling_base;
4977  p->spelling_size = spelling_size;
4978  p->top_level = constructor_top_level;
4979  p->next = initializer_stack;
4980  initializer_stack = p;
4981
4982  constructor_decl = decl;
4983  constructor_designated = 0;
4984  constructor_top_level = top_level;
4985
4986  if (decl != 0 && decl != error_mark_node)
4987    {
4988      require_constant_value = TREE_STATIC (decl);
4989      require_constant_elements
4990	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4991	   /* For a scalar, you can always use any value to initialize,
4992	      even within braces.  */
4993	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4994	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4995	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4996	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4997      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4998    }
4999  else
5000    {
5001      require_constant_value = 0;
5002      require_constant_elements = 0;
5003      locus = "(anonymous)";
5004    }
5005
5006  constructor_stack = 0;
5007  constructor_range_stack = 0;
5008
5009  missing_braces_mentioned = 0;
5010
5011  spelling_base = 0;
5012  spelling_size = 0;
5013  RESTORE_SPELLING_DEPTH (0);
5014
5015  if (locus)
5016    push_string (locus);
5017}
5018
5019void
5020finish_init (void)
5021{
5022  struct initializer_stack *p = initializer_stack;
5023
5024  /* Free the whole constructor stack of this initializer.  */
5025  while (constructor_stack)
5026    {
5027      struct constructor_stack *q = constructor_stack;
5028      constructor_stack = q->next;
5029      free (q);
5030    }
5031
5032  gcc_assert (!constructor_range_stack);
5033
5034  /* Pop back to the data of the outer initializer (if any).  */
5035  free (spelling_base);
5036
5037  constructor_decl = p->decl;
5038  require_constant_value = p->require_constant_value;
5039  require_constant_elements = p->require_constant_elements;
5040  constructor_stack = p->constructor_stack;
5041  constructor_range_stack = p->constructor_range_stack;
5042  constructor_elements = p->elements;
5043  spelling = p->spelling;
5044  spelling_base = p->spelling_base;
5045  spelling_size = p->spelling_size;
5046  constructor_top_level = p->top_level;
5047  initializer_stack = p->next;
5048  free (p);
5049}
5050
5051/* Call here when we see the initializer is surrounded by braces.
5052   This is instead of a call to push_init_level;
5053   it is matched by a call to pop_init_level.
5054
5055   TYPE is the type to initialize, for a constructor expression.
5056   For an initializer for a decl, TYPE is zero.  */
5057
5058void
5059really_start_incremental_init (tree type)
5060{
5061  struct constructor_stack *p = XNEW (struct constructor_stack);
5062
5063  if (type == 0)
5064    type = TREE_TYPE (constructor_decl);
5065
5066  if (targetm.vector_opaque_p (type))
5067    error ("opaque vector types cannot be initialized");
5068
5069  p->type = constructor_type;
5070  p->fields = constructor_fields;
5071  p->index = constructor_index;
5072  p->max_index = constructor_max_index;
5073  p->unfilled_index = constructor_unfilled_index;
5074  p->unfilled_fields = constructor_unfilled_fields;
5075  p->bit_index = constructor_bit_index;
5076  p->elements = constructor_elements;
5077  p->constant = constructor_constant;
5078  p->simple = constructor_simple;
5079  p->erroneous = constructor_erroneous;
5080  p->pending_elts = constructor_pending_elts;
5081  p->depth = constructor_depth;
5082  p->replacement_value.value = 0;
5083  p->replacement_value.original_code = ERROR_MARK;
5084  p->implicit = 0;
5085  p->range_stack = 0;
5086  p->outer = 0;
5087  p->incremental = constructor_incremental;
5088  p->designated = constructor_designated;
5089  p->next = 0;
5090  constructor_stack = p;
5091
5092  constructor_constant = 1;
5093  constructor_simple = 1;
5094  constructor_depth = SPELLING_DEPTH ();
5095  constructor_elements = 0;
5096  constructor_pending_elts = 0;
5097  constructor_type = type;
5098  constructor_incremental = 1;
5099  constructor_designated = 0;
5100  designator_depth = 0;
5101  designator_erroneous = 0;
5102
5103  if (TREE_CODE (constructor_type) == RECORD_TYPE
5104      || TREE_CODE (constructor_type) == UNION_TYPE)
5105    {
5106      constructor_fields = TYPE_FIELDS (constructor_type);
5107      /* Skip any nameless bit fields at the beginning.  */
5108      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5109	     && DECL_NAME (constructor_fields) == 0)
5110	constructor_fields = TREE_CHAIN (constructor_fields);
5111
5112      constructor_unfilled_fields = constructor_fields;
5113      constructor_bit_index = bitsize_zero_node;
5114    }
5115  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5116    {
5117      if (TYPE_DOMAIN (constructor_type))
5118	{
5119	  constructor_max_index
5120	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5121
5122	  /* Detect non-empty initializations of zero-length arrays.  */
5123	  if (constructor_max_index == NULL_TREE
5124	      && TYPE_SIZE (constructor_type))
5125	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5126
5127	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5128	     to initialize VLAs will cause a proper error; avoid tree
5129	     checking errors as well by setting a safe value.  */
5130	  if (constructor_max_index
5131	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5132	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5133
5134	  constructor_index
5135	    = convert (bitsizetype,
5136		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5137	}
5138      else
5139	{
5140	  constructor_index = bitsize_zero_node;
5141	  constructor_max_index = NULL_TREE;
5142	}
5143
5144      constructor_unfilled_index = constructor_index;
5145    }
5146  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5147    {
5148      /* Vectors are like simple fixed-size arrays.  */
5149      constructor_max_index =
5150	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5151      constructor_index = bitsize_zero_node;
5152      constructor_unfilled_index = constructor_index;
5153    }
5154  else
5155    {
5156      /* Handle the case of int x = {5}; */
5157      constructor_fields = constructor_type;
5158      constructor_unfilled_fields = constructor_type;
5159    }
5160}
5161
5162/* Push down into a subobject, for initialization.
5163   If this is for an explicit set of braces, IMPLICIT is 0.
5164   If it is because the next element belongs at a lower level,
5165   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5166
5167void
5168push_init_level (int implicit)
5169{
5170  struct constructor_stack *p;
5171  tree value = NULL_TREE;
5172
5173  /* If we've exhausted any levels that didn't have braces,
5174     pop them now.  If implicit == 1, this will have been done in
5175     process_init_element; do not repeat it here because in the case
5176     of excess initializers for an empty aggregate this leads to an
5177     infinite cycle of popping a level and immediately recreating
5178     it.  */
5179  if (implicit != 1)
5180    {
5181      while (constructor_stack->implicit)
5182	{
5183	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5184	       || TREE_CODE (constructor_type) == UNION_TYPE)
5185	      && constructor_fields == 0)
5186	    process_init_element (pop_init_level (1));
5187	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5188		   && constructor_max_index
5189		   && tree_int_cst_lt (constructor_max_index,
5190				       constructor_index))
5191	    process_init_element (pop_init_level (1));
5192	  else
5193	    break;
5194	}
5195    }
5196
5197  /* Unless this is an explicit brace, we need to preserve previous
5198     content if any.  */
5199  if (implicit)
5200    {
5201      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5202	   || TREE_CODE (constructor_type) == UNION_TYPE)
5203	  && constructor_fields)
5204	value = find_init_member (constructor_fields);
5205      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5206	value = find_init_member (constructor_index);
5207    }
5208
5209  p = XNEW (struct constructor_stack);
5210  p->type = constructor_type;
5211  p->fields = constructor_fields;
5212  p->index = constructor_index;
5213  p->max_index = constructor_max_index;
5214  p->unfilled_index = constructor_unfilled_index;
5215  p->unfilled_fields = constructor_unfilled_fields;
5216  p->bit_index = constructor_bit_index;
5217  p->elements = constructor_elements;
5218  p->constant = constructor_constant;
5219  p->simple = constructor_simple;
5220  p->erroneous = constructor_erroneous;
5221  p->pending_elts = constructor_pending_elts;
5222  p->depth = constructor_depth;
5223  p->replacement_value.value = 0;
5224  p->replacement_value.original_code = ERROR_MARK;
5225  p->implicit = implicit;
5226  p->outer = 0;
5227  p->incremental = constructor_incremental;
5228  p->designated = constructor_designated;
5229  p->next = constructor_stack;
5230  p->range_stack = 0;
5231  constructor_stack = p;
5232
5233  constructor_constant = 1;
5234  constructor_simple = 1;
5235  constructor_depth = SPELLING_DEPTH ();
5236  constructor_elements = 0;
5237  constructor_incremental = 1;
5238  constructor_designated = 0;
5239  constructor_pending_elts = 0;
5240  if (!implicit)
5241    {
5242      p->range_stack = constructor_range_stack;
5243      constructor_range_stack = 0;
5244      designator_depth = 0;
5245      designator_erroneous = 0;
5246    }
5247
5248  /* Don't die if an entire brace-pair level is superfluous
5249     in the containing level.  */
5250  if (constructor_type == 0)
5251    ;
5252  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5253	   || TREE_CODE (constructor_type) == UNION_TYPE)
5254    {
5255      /* Don't die if there are extra init elts at the end.  */
5256      if (constructor_fields == 0)
5257	constructor_type = 0;
5258      else
5259	{
5260	  constructor_type = TREE_TYPE (constructor_fields);
5261	  push_member_name (constructor_fields);
5262	  constructor_depth++;
5263	}
5264    }
5265  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5266    {
5267      constructor_type = TREE_TYPE (constructor_type);
5268      push_array_bounds (tree_low_cst (constructor_index, 1));
5269      constructor_depth++;
5270    }
5271
5272  if (constructor_type == 0)
5273    {
5274      error_init ("extra brace group at end of initializer");
5275      constructor_fields = 0;
5276      constructor_unfilled_fields = 0;
5277      return;
5278    }
5279
5280  if (value && TREE_CODE (value) == CONSTRUCTOR)
5281    {
5282      constructor_constant = TREE_CONSTANT (value);
5283      constructor_simple = TREE_STATIC (value);
5284      constructor_elements = CONSTRUCTOR_ELTS (value);
5285      if (!VEC_empty (constructor_elt, constructor_elements)
5286	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5287	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5288	set_nonincremental_init ();
5289    }
5290
5291  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5292    {
5293      missing_braces_mentioned = 1;
5294      warning_init ("missing braces around initializer");
5295    }
5296
5297  if (TREE_CODE (constructor_type) == RECORD_TYPE
5298	   || TREE_CODE (constructor_type) == UNION_TYPE)
5299    {
5300      constructor_fields = TYPE_FIELDS (constructor_type);
5301      /* Skip any nameless bit fields at the beginning.  */
5302      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5303	     && DECL_NAME (constructor_fields) == 0)
5304	constructor_fields = TREE_CHAIN (constructor_fields);
5305
5306      constructor_unfilled_fields = constructor_fields;
5307      constructor_bit_index = bitsize_zero_node;
5308    }
5309  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5310    {
5311      /* Vectors are like simple fixed-size arrays.  */
5312      constructor_max_index =
5313	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5314      constructor_index = convert (bitsizetype, integer_zero_node);
5315      constructor_unfilled_index = constructor_index;
5316    }
5317  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5318    {
5319      if (TYPE_DOMAIN (constructor_type))
5320	{
5321	  constructor_max_index
5322	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5323
5324	  /* Detect non-empty initializations of zero-length arrays.  */
5325	  if (constructor_max_index == NULL_TREE
5326	      && TYPE_SIZE (constructor_type))
5327	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5328
5329	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5330	     to initialize VLAs will cause a proper error; avoid tree
5331	     checking errors as well by setting a safe value.  */
5332	  if (constructor_max_index
5333	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5334	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5335
5336	  constructor_index
5337	    = convert (bitsizetype,
5338		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5339	}
5340      else
5341	constructor_index = bitsize_zero_node;
5342
5343      constructor_unfilled_index = constructor_index;
5344      if (value && TREE_CODE (value) == STRING_CST)
5345	{
5346	  /* We need to split the char/wchar array into individual
5347	     characters, so that we don't have to special case it
5348	     everywhere.  */
5349	  set_nonincremental_init_from_string (value);
5350	}
5351    }
5352  else
5353    {
5354      if (constructor_type != error_mark_node)
5355	warning_init ("braces around scalar initializer");
5356      constructor_fields = constructor_type;
5357      constructor_unfilled_fields = constructor_type;
5358    }
5359}
5360
5361/* At the end of an implicit or explicit brace level,
5362   finish up that level of constructor.  If a single expression
5363   with redundant braces initialized that level, return the
5364   c_expr structure for that expression.  Otherwise, the original_code
5365   element is set to ERROR_MARK.
5366   If we were outputting the elements as they are read, return 0 as the value
5367   from inner levels (process_init_element ignores that),
5368   but return error_mark_node as the value from the outermost level
5369   (that's what we want to put in DECL_INITIAL).
5370   Otherwise, return a CONSTRUCTOR expression as the value.  */
5371
5372struct c_expr
5373pop_init_level (int implicit)
5374{
5375  struct constructor_stack *p;
5376  struct c_expr ret;
5377  ret.value = 0;
5378  ret.original_code = ERROR_MARK;
5379
5380  if (implicit == 0)
5381    {
5382      /* When we come to an explicit close brace,
5383	 pop any inner levels that didn't have explicit braces.  */
5384      while (constructor_stack->implicit)
5385	process_init_element (pop_init_level (1));
5386
5387      gcc_assert (!constructor_range_stack);
5388    }
5389
5390  /* Now output all pending elements.  */
5391  constructor_incremental = 1;
5392  output_pending_init_elements (1);
5393
5394  p = constructor_stack;
5395
5396  /* Error for initializing a flexible array member, or a zero-length
5397     array member in an inappropriate context.  */
5398  if (constructor_type && constructor_fields
5399      && TREE_CODE (constructor_type) == ARRAY_TYPE
5400      && TYPE_DOMAIN (constructor_type)
5401      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5402    {
5403      /* Silently discard empty initializations.  The parser will
5404	 already have pedwarned for empty brackets.  */
5405      if (integer_zerop (constructor_unfilled_index))
5406	constructor_type = NULL_TREE;
5407      else
5408	{
5409	  gcc_assert (!TYPE_SIZE (constructor_type));
5410
5411	  if (constructor_depth > 2)
5412	    error_init ("initialization of flexible array member in a nested context");
5413	  else if (pedantic)
5414	    pedwarn_init ("initialization of a flexible array member");
5415
5416	  /* We have already issued an error message for the existence
5417	     of a flexible array member not at the end of the structure.
5418	     Discard the initializer so that we do not die later.  */
5419	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5420	    constructor_type = NULL_TREE;
5421	}
5422    }
5423
5424  /* Warn when some struct elements are implicitly initialized to zero.  */
5425  if (warn_missing_field_initializers
5426      && constructor_type
5427      && TREE_CODE (constructor_type) == RECORD_TYPE
5428      && constructor_unfilled_fields)
5429    {
5430	/* Do not warn for flexible array members or zero-length arrays.  */
5431	while (constructor_unfilled_fields
5432	       && (!DECL_SIZE (constructor_unfilled_fields)
5433		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5434	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5435
5436	/* Do not warn if this level of the initializer uses member
5437	   designators; it is likely to be deliberate.  */
5438	if (constructor_unfilled_fields && !constructor_designated)
5439	  {
5440	    push_member_name (constructor_unfilled_fields);
5441	    warning_init ("missing initializer");
5442	    RESTORE_SPELLING_DEPTH (constructor_depth);
5443	  }
5444    }
5445
5446  /* Pad out the end of the structure.  */
5447  if (p->replacement_value.value)
5448    /* If this closes a superfluous brace pair,
5449       just pass out the element between them.  */
5450    ret = p->replacement_value;
5451  else if (constructor_type == 0)
5452    ;
5453  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5454	   && TREE_CODE (constructor_type) != UNION_TYPE
5455	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5456	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5457    {
5458      /* A nonincremental scalar initializer--just return
5459	 the element, after verifying there is just one.  */
5460      if (VEC_empty (constructor_elt,constructor_elements))
5461	{
5462	  if (!constructor_erroneous)
5463	    error_init ("empty scalar initializer");
5464	  ret.value = error_mark_node;
5465	}
5466      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5467	{
5468	  error_init ("extra elements in scalar initializer");
5469	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5470	}
5471      else
5472	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5473    }
5474  else
5475    {
5476      if (constructor_erroneous)
5477	ret.value = error_mark_node;
5478      else
5479	{
5480	  ret.value = build_constructor (constructor_type,
5481					 constructor_elements);
5482	  if (constructor_constant)
5483	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5484	  if (constructor_constant && constructor_simple)
5485	    TREE_STATIC (ret.value) = 1;
5486	}
5487    }
5488
5489  constructor_type = p->type;
5490  constructor_fields = p->fields;
5491  constructor_index = p->index;
5492  constructor_max_index = p->max_index;
5493  constructor_unfilled_index = p->unfilled_index;
5494  constructor_unfilled_fields = p->unfilled_fields;
5495  constructor_bit_index = p->bit_index;
5496  constructor_elements = p->elements;
5497  constructor_constant = p->constant;
5498  constructor_simple = p->simple;
5499  constructor_erroneous = p->erroneous;
5500  constructor_incremental = p->incremental;
5501  constructor_designated = p->designated;
5502  constructor_pending_elts = p->pending_elts;
5503  constructor_depth = p->depth;
5504  if (!p->implicit)
5505    constructor_range_stack = p->range_stack;
5506  RESTORE_SPELLING_DEPTH (constructor_depth);
5507
5508  constructor_stack = p->next;
5509  free (p);
5510
5511  if (ret.value == 0 && constructor_stack == 0)
5512    ret.value = error_mark_node;
5513  return ret;
5514}
5515
5516/* Common handling for both array range and field name designators.
5517   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5518
5519static int
5520set_designator (int array)
5521{
5522  tree subtype;
5523  enum tree_code subcode;
5524
5525  /* Don't die if an entire brace-pair level is superfluous
5526     in the containing level.  */
5527  if (constructor_type == 0)
5528    return 1;
5529
5530  /* If there were errors in this designator list already, bail out
5531     silently.  */
5532  if (designator_erroneous)
5533    return 1;
5534
5535  if (!designator_depth)
5536    {
5537      gcc_assert (!constructor_range_stack);
5538
5539      /* Designator list starts at the level of closest explicit
5540	 braces.  */
5541      while (constructor_stack->implicit)
5542	process_init_element (pop_init_level (1));
5543      constructor_designated = 1;
5544      return 0;
5545    }
5546
5547  switch (TREE_CODE (constructor_type))
5548    {
5549    case  RECORD_TYPE:
5550    case  UNION_TYPE:
5551      subtype = TREE_TYPE (constructor_fields);
5552      if (subtype != error_mark_node)
5553	subtype = TYPE_MAIN_VARIANT (subtype);
5554      break;
5555    case ARRAY_TYPE:
5556      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5557      break;
5558    default:
5559      gcc_unreachable ();
5560    }
5561
5562  subcode = TREE_CODE (subtype);
5563  if (array && subcode != ARRAY_TYPE)
5564    {
5565      error_init ("array index in non-array initializer");
5566      return 1;
5567    }
5568  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5569    {
5570      error_init ("field name not in record or union initializer");
5571      return 1;
5572    }
5573
5574  constructor_designated = 1;
5575  push_init_level (2);
5576  return 0;
5577}
5578
5579/* If there are range designators in designator list, push a new designator
5580   to constructor_range_stack.  RANGE_END is end of such stack range or
5581   NULL_TREE if there is no range designator at this level.  */
5582
5583static void
5584push_range_stack (tree range_end)
5585{
5586  struct constructor_range_stack *p;
5587
5588  p = GGC_NEW (struct constructor_range_stack);
5589  p->prev = constructor_range_stack;
5590  p->next = 0;
5591  p->fields = constructor_fields;
5592  p->range_start = constructor_index;
5593  p->index = constructor_index;
5594  p->stack = constructor_stack;
5595  p->range_end = range_end;
5596  if (constructor_range_stack)
5597    constructor_range_stack->next = p;
5598  constructor_range_stack = p;
5599}
5600
5601/* Within an array initializer, specify the next index to be initialized.
5602   FIRST is that index.  If LAST is nonzero, then initialize a range
5603   of indices, running from FIRST through LAST.  */
5604
5605void
5606set_init_index (tree first, tree last)
5607{
5608  if (set_designator (1))
5609    return;
5610
5611  designator_erroneous = 1;
5612
5613  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5614      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5615    {
5616      error_init ("array index in initializer not of integer type");
5617      return;
5618    }
5619
5620  if (TREE_CODE (first) != INTEGER_CST)
5621    error_init ("nonconstant array index in initializer");
5622  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5623    error_init ("nonconstant array index in initializer");
5624  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5625    error_init ("array index in non-array initializer");
5626  else if (tree_int_cst_sgn (first) == -1)
5627    error_init ("array index in initializer exceeds array bounds");
5628  else if (constructor_max_index
5629	   && tree_int_cst_lt (constructor_max_index, first))
5630    error_init ("array index in initializer exceeds array bounds");
5631  else
5632    {
5633      constructor_index = convert (bitsizetype, first);
5634
5635      if (last)
5636	{
5637	  if (tree_int_cst_equal (first, last))
5638	    last = 0;
5639	  else if (tree_int_cst_lt (last, first))
5640	    {
5641	      error_init ("empty index range in initializer");
5642	      last = 0;
5643	    }
5644	  else
5645	    {
5646	      last = convert (bitsizetype, last);
5647	      if (constructor_max_index != 0
5648		  && tree_int_cst_lt (constructor_max_index, last))
5649		{
5650		  error_init ("array index range in initializer exceeds array bounds");
5651		  last = 0;
5652		}
5653	    }
5654	}
5655
5656      designator_depth++;
5657      designator_erroneous = 0;
5658      if (constructor_range_stack || last)
5659	push_range_stack (last);
5660    }
5661}
5662
5663/* Within a struct initializer, specify the next field to be initialized.  */
5664
5665void
5666set_init_label (tree fieldname)
5667{
5668  tree tail;
5669
5670  if (set_designator (0))
5671    return;
5672
5673  designator_erroneous = 1;
5674
5675  if (TREE_CODE (constructor_type) != RECORD_TYPE
5676      && TREE_CODE (constructor_type) != UNION_TYPE)
5677    {
5678      error_init ("field name not in record or union initializer");
5679      return;
5680    }
5681
5682  for (tail = TYPE_FIELDS (constructor_type); tail;
5683       tail = TREE_CHAIN (tail))
5684    {
5685      if (DECL_NAME (tail) == fieldname)
5686	break;
5687    }
5688
5689  if (tail == 0)
5690    error ("unknown field %qE specified in initializer", fieldname);
5691  else
5692    {
5693      constructor_fields = tail;
5694      designator_depth++;
5695      designator_erroneous = 0;
5696      if (constructor_range_stack)
5697	push_range_stack (NULL_TREE);
5698    }
5699}
5700
5701/* Add a new initializer to the tree of pending initializers.  PURPOSE
5702   identifies the initializer, either array index or field in a structure.
5703   VALUE is the value of that index or field.  */
5704
5705static void
5706add_pending_init (tree purpose, tree value)
5707{
5708  struct init_node *p, **q, *r;
5709
5710  q = &constructor_pending_elts;
5711  p = 0;
5712
5713  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5714    {
5715      while (*q != 0)
5716	{
5717	  p = *q;
5718	  if (tree_int_cst_lt (purpose, p->purpose))
5719	    q = &p->left;
5720	  else if (tree_int_cst_lt (p->purpose, purpose))
5721	    q = &p->right;
5722	  else
5723	    {
5724	      if (TREE_SIDE_EFFECTS (p->value))
5725		warning_init ("initialized field with side-effects overwritten");
5726	      else if (warn_override_init)
5727		warning_init ("initialized field overwritten");
5728	      p->value = value;
5729	      return;
5730	    }
5731	}
5732    }
5733  else
5734    {
5735      tree bitpos;
5736
5737      bitpos = bit_position (purpose);
5738      while (*q != NULL)
5739	{
5740	  p = *q;
5741	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5742	    q = &p->left;
5743	  else if (p->purpose != purpose)
5744	    q = &p->right;
5745	  else
5746	    {
5747	      if (TREE_SIDE_EFFECTS (p->value))
5748		warning_init ("initialized field with side-effects overwritten");
5749	      else if (warn_override_init)
5750		warning_init ("initialized field overwritten");
5751	      p->value = value;
5752	      return;
5753	    }
5754	}
5755    }
5756
5757  r = GGC_NEW (struct init_node);
5758  r->purpose = purpose;
5759  r->value = value;
5760
5761  *q = r;
5762  r->parent = p;
5763  r->left = 0;
5764  r->right = 0;
5765  r->balance = 0;
5766
5767  while (p)
5768    {
5769      struct init_node *s;
5770
5771      if (r == p->left)
5772	{
5773	  if (p->balance == 0)
5774	    p->balance = -1;
5775	  else if (p->balance < 0)
5776	    {
5777	      if (r->balance < 0)
5778		{
5779		  /* L rotation.  */
5780		  p->left = r->right;
5781		  if (p->left)
5782		    p->left->parent = p;
5783		  r->right = p;
5784
5785		  p->balance = 0;
5786		  r->balance = 0;
5787
5788		  s = p->parent;
5789		  p->parent = r;
5790		  r->parent = s;
5791		  if (s)
5792		    {
5793		      if (s->left == p)
5794			s->left = r;
5795		      else
5796			s->right = r;
5797		    }
5798		  else
5799		    constructor_pending_elts = r;
5800		}
5801	      else
5802		{
5803		  /* LR rotation.  */
5804		  struct init_node *t = r->right;
5805
5806		  r->right = t->left;
5807		  if (r->right)
5808		    r->right->parent = r;
5809		  t->left = r;
5810
5811		  p->left = t->right;
5812		  if (p->left)
5813		    p->left->parent = p;
5814		  t->right = p;
5815
5816		  p->balance = t->balance < 0;
5817		  r->balance = -(t->balance > 0);
5818		  t->balance = 0;
5819
5820		  s = p->parent;
5821		  p->parent = t;
5822		  r->parent = t;
5823		  t->parent = s;
5824		  if (s)
5825		    {
5826		      if (s->left == p)
5827			s->left = t;
5828		      else
5829			s->right = t;
5830		    }
5831		  else
5832		    constructor_pending_elts = t;
5833		}
5834	      break;
5835	    }
5836	  else
5837	    {
5838	      /* p->balance == +1; growth of left side balances the node.  */
5839	      p->balance = 0;
5840	      break;
5841	    }
5842	}
5843      else /* r == p->right */
5844	{
5845	  if (p->balance == 0)
5846	    /* Growth propagation from right side.  */
5847	    p->balance++;
5848	  else if (p->balance > 0)
5849	    {
5850	      if (r->balance > 0)
5851		{
5852		  /* R rotation.  */
5853		  p->right = r->left;
5854		  if (p->right)
5855		    p->right->parent = p;
5856		  r->left = p;
5857
5858		  p->balance = 0;
5859		  r->balance = 0;
5860
5861		  s = p->parent;
5862		  p->parent = r;
5863		  r->parent = s;
5864		  if (s)
5865		    {
5866		      if (s->left == p)
5867			s->left = r;
5868		      else
5869			s->right = r;
5870		    }
5871		  else
5872		    constructor_pending_elts = r;
5873		}
5874	      else /* r->balance == -1 */
5875		{
5876		  /* RL rotation */
5877		  struct init_node *t = r->left;
5878
5879		  r->left = t->right;
5880		  if (r->left)
5881		    r->left->parent = r;
5882		  t->right = r;
5883
5884		  p->right = t->left;
5885		  if (p->right)
5886		    p->right->parent = p;
5887		  t->left = p;
5888
5889		  r->balance = (t->balance < 0);
5890		  p->balance = -(t->balance > 0);
5891		  t->balance = 0;
5892
5893		  s = p->parent;
5894		  p->parent = t;
5895		  r->parent = t;
5896		  t->parent = s;
5897		  if (s)
5898		    {
5899		      if (s->left == p)
5900			s->left = t;
5901		      else
5902			s->right = t;
5903		    }
5904		  else
5905		    constructor_pending_elts = t;
5906		}
5907	      break;
5908	    }
5909	  else
5910	    {
5911	      /* p->balance == -1; growth of right side balances the node.  */
5912	      p->balance = 0;
5913	      break;
5914	    }
5915	}
5916
5917      r = p;
5918      p = p->parent;
5919    }
5920}
5921
5922/* Build AVL tree from a sorted chain.  */
5923
5924static void
5925set_nonincremental_init (void)
5926{
5927  unsigned HOST_WIDE_INT ix;
5928  tree index, value;
5929
5930  if (TREE_CODE (constructor_type) != RECORD_TYPE
5931      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5932    return;
5933
5934  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5935    add_pending_init (index, value);
5936  constructor_elements = 0;
5937  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5938    {
5939      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5940      /* Skip any nameless bit fields at the beginning.  */
5941      while (constructor_unfilled_fields != 0
5942	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5943	     && DECL_NAME (constructor_unfilled_fields) == 0)
5944	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5945
5946    }
5947  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5948    {
5949      if (TYPE_DOMAIN (constructor_type))
5950	constructor_unfilled_index
5951	    = convert (bitsizetype,
5952		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5953      else
5954	constructor_unfilled_index = bitsize_zero_node;
5955    }
5956  constructor_incremental = 0;
5957}
5958
5959/* Build AVL tree from a string constant.  */
5960
5961static void
5962set_nonincremental_init_from_string (tree str)
5963{
5964  tree value, purpose, type;
5965  HOST_WIDE_INT val[2];
5966  const char *p, *end;
5967  int byte, wchar_bytes, charwidth, bitpos;
5968
5969  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5970
5971  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5972      == TYPE_PRECISION (char_type_node))
5973    wchar_bytes = 1;
5974  else
5975    {
5976      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5977		  == TYPE_PRECISION (wchar_type_node));
5978      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5979    }
5980  charwidth = TYPE_PRECISION (char_type_node);
5981  type = TREE_TYPE (constructor_type);
5982  p = TREE_STRING_POINTER (str);
5983  end = p + TREE_STRING_LENGTH (str);
5984
5985  for (purpose = bitsize_zero_node;
5986       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5987       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5988    {
5989      if (wchar_bytes == 1)
5990	{
5991	  val[1] = (unsigned char) *p++;
5992	  val[0] = 0;
5993	}
5994      else
5995	{
5996	  val[0] = 0;
5997	  val[1] = 0;
5998	  for (byte = 0; byte < wchar_bytes; byte++)
5999	    {
6000	      if (BYTES_BIG_ENDIAN)
6001		bitpos = (wchar_bytes - byte - 1) * charwidth;
6002	      else
6003		bitpos = byte * charwidth;
6004	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6005		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6006		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6007	    }
6008	}
6009
6010      if (!TYPE_UNSIGNED (type))
6011	{
6012	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6013	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6014	    {
6015	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6016		{
6017		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6018		  val[0] = -1;
6019		}
6020	    }
6021	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6022	    {
6023	      if (val[1] < 0)
6024		val[0] = -1;
6025	    }
6026	  else if (val[0] & (((HOST_WIDE_INT) 1)
6027			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6028	    val[0] |= ((HOST_WIDE_INT) -1)
6029		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6030	}
6031
6032      value = build_int_cst_wide (type, val[1], val[0]);
6033      add_pending_init (purpose, value);
6034    }
6035
6036  constructor_incremental = 0;
6037}
6038
6039/* Return value of FIELD in pending initializer or zero if the field was
6040   not initialized yet.  */
6041
6042static tree
6043find_init_member (tree field)
6044{
6045  struct init_node *p;
6046
6047  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6048    {
6049      if (constructor_incremental
6050	  && tree_int_cst_lt (field, constructor_unfilled_index))
6051	set_nonincremental_init ();
6052
6053      p = constructor_pending_elts;
6054      while (p)
6055	{
6056	  if (tree_int_cst_lt (field, p->purpose))
6057	    p = p->left;
6058	  else if (tree_int_cst_lt (p->purpose, field))
6059	    p = p->right;
6060	  else
6061	    return p->value;
6062	}
6063    }
6064  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6065    {
6066      tree bitpos = bit_position (field);
6067
6068      if (constructor_incremental
6069	  && (!constructor_unfilled_fields
6070	      || tree_int_cst_lt (bitpos,
6071				  bit_position (constructor_unfilled_fields))))
6072	set_nonincremental_init ();
6073
6074      p = constructor_pending_elts;
6075      while (p)
6076	{
6077	  if (field == p->purpose)
6078	    return p->value;
6079	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6080	    p = p->left;
6081	  else
6082	    p = p->right;
6083	}
6084    }
6085  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6086    {
6087      if (!VEC_empty (constructor_elt, constructor_elements)
6088	  && (VEC_last (constructor_elt, constructor_elements)->index
6089	      == field))
6090	return VEC_last (constructor_elt, constructor_elements)->value;
6091    }
6092  return 0;
6093}
6094
6095/* "Output" the next constructor element.
6096   At top level, really output it to assembler code now.
6097   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6098   TYPE is the data type that the containing data type wants here.
6099   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6100   If VALUE is a string constant, STRICT_STRING is true if it is
6101   unparenthesized or we should not warn here for it being parenthesized.
6102   For other types of VALUE, STRICT_STRING is not used.
6103
6104   PENDING if non-nil means output pending elements that belong
6105   right after this element.  (PENDING is normally 1;
6106   it is 0 while outputting pending elements, to avoid recursion.)  */
6107
6108static void
6109output_init_element (tree value, bool strict_string, tree type, tree field,
6110		     int pending)
6111{
6112  constructor_elt *celt;
6113
6114  if (type == error_mark_node || value == error_mark_node)
6115    {
6116      constructor_erroneous = 1;
6117      return;
6118    }
6119  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6120      && (TREE_CODE (value) == STRING_CST
6121	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6122      && !(TREE_CODE (value) == STRING_CST
6123	   && TREE_CODE (type) == ARRAY_TYPE
6124	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6125      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6126		     TYPE_MAIN_VARIANT (type)))
6127    value = array_to_pointer_conversion (value);
6128
6129  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6130      && require_constant_value && !flag_isoc99 && pending)
6131    {
6132      /* As an extension, allow initializing objects with static storage
6133	 duration with compound literals (which are then treated just as
6134	 the brace enclosed list they contain).  */
6135      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6136      value = DECL_INITIAL (decl);
6137    }
6138
6139  if (value == error_mark_node)
6140    constructor_erroneous = 1;
6141  else if (!TREE_CONSTANT (value))
6142    constructor_constant = 0;
6143  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6144	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6145		|| TREE_CODE (constructor_type) == UNION_TYPE)
6146	       && DECL_C_BIT_FIELD (field)
6147	       && TREE_CODE (value) != INTEGER_CST))
6148    constructor_simple = 0;
6149
6150  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6151    {
6152      if (require_constant_value)
6153	{
6154	  error_init ("initializer element is not constant");
6155	  value = error_mark_node;
6156	}
6157      else if (require_constant_elements)
6158	pedwarn ("initializer element is not computable at load time");
6159    }
6160
6161  /* If this field is empty (and not at the end of structure),
6162     don't do anything other than checking the initializer.  */
6163  if (field
6164      && (TREE_TYPE (field) == error_mark_node
6165	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6166	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6167	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6168		  || TREE_CHAIN (field)))))
6169    return;
6170
6171  value = digest_init (type, value, strict_string, require_constant_value);
6172  if (value == error_mark_node)
6173    {
6174      constructor_erroneous = 1;
6175      return;
6176    }
6177
6178  /* If this element doesn't come next in sequence,
6179     put it on constructor_pending_elts.  */
6180  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6181      && (!constructor_incremental
6182	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6183    {
6184      if (constructor_incremental
6185	  && tree_int_cst_lt (field, constructor_unfilled_index))
6186	set_nonincremental_init ();
6187
6188      add_pending_init (field, value);
6189      return;
6190    }
6191  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6192	   && (!constructor_incremental
6193	       || field != constructor_unfilled_fields))
6194    {
6195      /* We do this for records but not for unions.  In a union,
6196	 no matter which field is specified, it can be initialized
6197	 right away since it starts at the beginning of the union.  */
6198      if (constructor_incremental)
6199	{
6200	  if (!constructor_unfilled_fields)
6201	    set_nonincremental_init ();
6202	  else
6203	    {
6204	      tree bitpos, unfillpos;
6205
6206	      bitpos = bit_position (field);
6207	      unfillpos = bit_position (constructor_unfilled_fields);
6208
6209	      if (tree_int_cst_lt (bitpos, unfillpos))
6210		set_nonincremental_init ();
6211	    }
6212	}
6213
6214      add_pending_init (field, value);
6215      return;
6216    }
6217  else if (TREE_CODE (constructor_type) == UNION_TYPE
6218	   && !VEC_empty (constructor_elt, constructor_elements))
6219    {
6220      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6221				       constructor_elements)->value))
6222	warning_init ("initialized field with side-effects overwritten");
6223      else if (warn_override_init)
6224	warning_init ("initialized field overwritten");
6225
6226      /* We can have just one union field set.  */
6227      constructor_elements = 0;
6228    }
6229
6230  /* Otherwise, output this element either to
6231     constructor_elements or to the assembler file.  */
6232
6233  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6234  celt->index = field;
6235  celt->value = value;
6236
6237  /* Advance the variable that indicates sequential elements output.  */
6238  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6239    constructor_unfilled_index
6240      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6241		    bitsize_one_node);
6242  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6243    {
6244      constructor_unfilled_fields
6245	= TREE_CHAIN (constructor_unfilled_fields);
6246
6247      /* Skip any nameless bit fields.  */
6248      while (constructor_unfilled_fields != 0
6249	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6250	     && DECL_NAME (constructor_unfilled_fields) == 0)
6251	constructor_unfilled_fields =
6252	  TREE_CHAIN (constructor_unfilled_fields);
6253    }
6254  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6255    constructor_unfilled_fields = 0;
6256
6257  /* Now output any pending elements which have become next.  */
6258  if (pending)
6259    output_pending_init_elements (0);
6260}
6261
6262/* Output any pending elements which have become next.
6263   As we output elements, constructor_unfilled_{fields,index}
6264   advances, which may cause other elements to become next;
6265   if so, they too are output.
6266
6267   If ALL is 0, we return when there are
6268   no more pending elements to output now.
6269
6270   If ALL is 1, we output space as necessary so that
6271   we can output all the pending elements.  */
6272
6273static void
6274output_pending_init_elements (int all)
6275{
6276  struct init_node *elt = constructor_pending_elts;
6277  tree next;
6278
6279 retry:
6280
6281  /* Look through the whole pending tree.
6282     If we find an element that should be output now,
6283     output it.  Otherwise, set NEXT to the element
6284     that comes first among those still pending.  */
6285
6286  next = 0;
6287  while (elt)
6288    {
6289      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6290	{
6291	  if (tree_int_cst_equal (elt->purpose,
6292				  constructor_unfilled_index))
6293	    output_init_element (elt->value, true,
6294				 TREE_TYPE (constructor_type),
6295				 constructor_unfilled_index, 0);
6296	  else if (tree_int_cst_lt (constructor_unfilled_index,
6297				    elt->purpose))
6298	    {
6299	      /* Advance to the next smaller node.  */
6300	      if (elt->left)
6301		elt = elt->left;
6302	      else
6303		{
6304		  /* We have reached the smallest node bigger than the
6305		     current unfilled index.  Fill the space first.  */
6306		  next = elt->purpose;
6307		  break;
6308		}
6309	    }
6310	  else
6311	    {
6312	      /* Advance to the next bigger node.  */
6313	      if (elt->right)
6314		elt = elt->right;
6315	      else
6316		{
6317		  /* We have reached the biggest node in a subtree.  Find
6318		     the parent of it, which is the next bigger node.  */
6319		  while (elt->parent && elt->parent->right == elt)
6320		    elt = elt->parent;
6321		  elt = elt->parent;
6322		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6323					      elt->purpose))
6324		    {
6325		      next = elt->purpose;
6326		      break;
6327		    }
6328		}
6329	    }
6330	}
6331      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6332	       || TREE_CODE (constructor_type) == UNION_TYPE)
6333	{
6334	  tree ctor_unfilled_bitpos, elt_bitpos;
6335
6336	  /* If the current record is complete we are done.  */
6337	  if (constructor_unfilled_fields == 0)
6338	    break;
6339
6340	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6341	  elt_bitpos = bit_position (elt->purpose);
6342	  /* We can't compare fields here because there might be empty
6343	     fields in between.  */
6344	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6345	    {
6346	      constructor_unfilled_fields = elt->purpose;
6347	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6348				   elt->purpose, 0);
6349	    }
6350	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6351	    {
6352	      /* Advance to the next smaller node.  */
6353	      if (elt->left)
6354		elt = elt->left;
6355	      else
6356		{
6357		  /* We have reached the smallest node bigger than the
6358		     current unfilled field.  Fill the space first.  */
6359		  next = elt->purpose;
6360		  break;
6361		}
6362	    }
6363	  else
6364	    {
6365	      /* Advance to the next bigger node.  */
6366	      if (elt->right)
6367		elt = elt->right;
6368	      else
6369		{
6370		  /* We have reached the biggest node in a subtree.  Find
6371		     the parent of it, which is the next bigger node.  */
6372		  while (elt->parent && elt->parent->right == elt)
6373		    elt = elt->parent;
6374		  elt = elt->parent;
6375		  if (elt
6376		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6377					   bit_position (elt->purpose))))
6378		    {
6379		      next = elt->purpose;
6380		      break;
6381		    }
6382		}
6383	    }
6384	}
6385    }
6386
6387  /* Ordinarily return, but not if we want to output all
6388     and there are elements left.  */
6389  if (!(all && next != 0))
6390    return;
6391
6392  /* If it's not incremental, just skip over the gap, so that after
6393     jumping to retry we will output the next successive element.  */
6394  if (TREE_CODE (constructor_type) == RECORD_TYPE
6395      || TREE_CODE (constructor_type) == UNION_TYPE)
6396    constructor_unfilled_fields = next;
6397  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6398    constructor_unfilled_index = next;
6399
6400  /* ELT now points to the node in the pending tree with the next
6401     initializer to output.  */
6402  goto retry;
6403}
6404
6405/* Add one non-braced element to the current constructor level.
6406   This adjusts the current position within the constructor's type.
6407   This may also start or terminate implicit levels
6408   to handle a partly-braced initializer.
6409
6410   Once this has found the correct level for the new element,
6411   it calls output_init_element.  */
6412
6413void
6414process_init_element (struct c_expr value)
6415{
6416  tree orig_value = value.value;
6417  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6418  bool strict_string = value.original_code == STRING_CST;
6419
6420  designator_depth = 0;
6421  designator_erroneous = 0;
6422
6423  /* Handle superfluous braces around string cst as in
6424     char x[] = {"foo"}; */
6425  if (string_flag
6426      && constructor_type
6427      && TREE_CODE (constructor_type) == ARRAY_TYPE
6428      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6429      && integer_zerop (constructor_unfilled_index))
6430    {
6431      if (constructor_stack->replacement_value.value)
6432	error_init ("excess elements in char array initializer");
6433      constructor_stack->replacement_value = value;
6434      return;
6435    }
6436
6437  if (constructor_stack->replacement_value.value != 0)
6438    {
6439      error_init ("excess elements in struct initializer");
6440      return;
6441    }
6442
6443  /* Ignore elements of a brace group if it is entirely superfluous
6444     and has already been diagnosed.  */
6445  if (constructor_type == 0)
6446    return;
6447
6448  /* If we've exhausted any levels that didn't have braces,
6449     pop them now.  */
6450  while (constructor_stack->implicit)
6451    {
6452      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6453	   || TREE_CODE (constructor_type) == UNION_TYPE)
6454	  && constructor_fields == 0)
6455	process_init_element (pop_init_level (1));
6456      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6457	       && (constructor_max_index == 0
6458		   || tree_int_cst_lt (constructor_max_index,
6459				       constructor_index)))
6460	process_init_element (pop_init_level (1));
6461      else
6462	break;
6463    }
6464
6465  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6466  if (constructor_range_stack)
6467    {
6468      /* If value is a compound literal and we'll be just using its
6469	 content, don't put it into a SAVE_EXPR.  */
6470      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6471	  || !require_constant_value
6472	  || flag_isoc99)
6473	value.value = save_expr (value.value);
6474    }
6475
6476  while (1)
6477    {
6478      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6479	{
6480	  tree fieldtype;
6481	  enum tree_code fieldcode;
6482
6483	  if (constructor_fields == 0)
6484	    {
6485	      pedwarn_init ("excess elements in struct initializer");
6486	      break;
6487	    }
6488
6489	  fieldtype = TREE_TYPE (constructor_fields);
6490	  if (fieldtype != error_mark_node)
6491	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6492	  fieldcode = TREE_CODE (fieldtype);
6493
6494	  /* Error for non-static initialization of a flexible array member.  */
6495	  if (fieldcode == ARRAY_TYPE
6496	      && !require_constant_value
6497	      && TYPE_SIZE (fieldtype) == NULL_TREE
6498	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6499	    {
6500	      error_init ("non-static initialization of a flexible array member");
6501	      break;
6502	    }
6503
6504	  /* Accept a string constant to initialize a subarray.  */
6505	  if (value.value != 0
6506	      && fieldcode == ARRAY_TYPE
6507	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6508	      && string_flag)
6509	    value.value = orig_value;
6510	  /* Otherwise, if we have come to a subaggregate,
6511	     and we don't have an element of its type, push into it.  */
6512	  else if (value.value != 0
6513		   && value.value != error_mark_node
6514		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6515		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6516		       || fieldcode == UNION_TYPE))
6517	    {
6518	      push_init_level (1);
6519	      continue;
6520	    }
6521
6522	  if (value.value)
6523	    {
6524	      push_member_name (constructor_fields);
6525	      output_init_element (value.value, strict_string,
6526				   fieldtype, constructor_fields, 1);
6527	      RESTORE_SPELLING_DEPTH (constructor_depth);
6528	    }
6529	  else
6530	    /* Do the bookkeeping for an element that was
6531	       directly output as a constructor.  */
6532	    {
6533	      /* For a record, keep track of end position of last field.  */
6534	      if (DECL_SIZE (constructor_fields))
6535		constructor_bit_index
6536		  = size_binop (PLUS_EXPR,
6537				bit_position (constructor_fields),
6538				DECL_SIZE (constructor_fields));
6539
6540	      /* If the current field was the first one not yet written out,
6541		 it isn't now, so update.  */
6542	      if (constructor_unfilled_fields == constructor_fields)
6543		{
6544		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6545		  /* Skip any nameless bit fields.  */
6546		  while (constructor_unfilled_fields != 0
6547			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6548			 && DECL_NAME (constructor_unfilled_fields) == 0)
6549		    constructor_unfilled_fields =
6550		      TREE_CHAIN (constructor_unfilled_fields);
6551		}
6552	    }
6553
6554	  constructor_fields = TREE_CHAIN (constructor_fields);
6555	  /* Skip any nameless bit fields at the beginning.  */
6556	  while (constructor_fields != 0
6557		 && DECL_C_BIT_FIELD (constructor_fields)
6558		 && DECL_NAME (constructor_fields) == 0)
6559	    constructor_fields = TREE_CHAIN (constructor_fields);
6560	}
6561      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6562	{
6563	  tree fieldtype;
6564	  enum tree_code fieldcode;
6565
6566	  if (constructor_fields == 0)
6567	    {
6568	      pedwarn_init ("excess elements in union initializer");
6569	      break;
6570	    }
6571
6572	  fieldtype = TREE_TYPE (constructor_fields);
6573	  if (fieldtype != error_mark_node)
6574	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6575	  fieldcode = TREE_CODE (fieldtype);
6576
6577	  /* Warn that traditional C rejects initialization of unions.
6578	     We skip the warning if the value is zero.  This is done
6579	     under the assumption that the zero initializer in user
6580	     code appears conditioned on e.g. __STDC__ to avoid
6581	     "missing initializer" warnings and relies on default
6582	     initialization to zero in the traditional C case.
6583	     We also skip the warning if the initializer is designated,
6584	     again on the assumption that this must be conditional on
6585	     __STDC__ anyway (and we've already complained about the
6586	     member-designator already).  */
6587	  if (!in_system_header && !constructor_designated
6588	      && !(value.value && (integer_zerop (value.value)
6589				   || real_zerop (value.value))))
6590	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6591		     "of unions");
6592
6593	  /* Accept a string constant to initialize a subarray.  */
6594	  if (value.value != 0
6595	      && fieldcode == ARRAY_TYPE
6596	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6597	      && string_flag)
6598	    value.value = orig_value;
6599	  /* Otherwise, if we have come to a subaggregate,
6600	     and we don't have an element of its type, push into it.  */
6601	  else if (value.value != 0
6602		   && value.value != error_mark_node
6603		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6604		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6605		       || fieldcode == UNION_TYPE))
6606	    {
6607	      push_init_level (1);
6608	      continue;
6609	    }
6610
6611	  if (value.value)
6612	    {
6613	      push_member_name (constructor_fields);
6614	      output_init_element (value.value, strict_string,
6615				   fieldtype, constructor_fields, 1);
6616	      RESTORE_SPELLING_DEPTH (constructor_depth);
6617	    }
6618	  else
6619	    /* Do the bookkeeping for an element that was
6620	       directly output as a constructor.  */
6621	    {
6622	      constructor_bit_index = DECL_SIZE (constructor_fields);
6623	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6624	    }
6625
6626	  constructor_fields = 0;
6627	}
6628      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6629	{
6630	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6631	  enum tree_code eltcode = TREE_CODE (elttype);
6632
6633	  /* Accept a string constant to initialize a subarray.  */
6634	  if (value.value != 0
6635	      && eltcode == ARRAY_TYPE
6636	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6637	      && string_flag)
6638	    value.value = orig_value;
6639	  /* Otherwise, if we have come to a subaggregate,
6640	     and we don't have an element of its type, push into it.  */
6641	  else if (value.value != 0
6642		   && value.value != error_mark_node
6643		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6644		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6645		       || eltcode == UNION_TYPE))
6646	    {
6647	      push_init_level (1);
6648	      continue;
6649	    }
6650
6651	  if (constructor_max_index != 0
6652	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6653		  || integer_all_onesp (constructor_max_index)))
6654	    {
6655	      pedwarn_init ("excess elements in array initializer");
6656	      break;
6657	    }
6658
6659	  /* Now output the actual element.  */
6660	  if (value.value)
6661	    {
6662	      push_array_bounds (tree_low_cst (constructor_index, 1));
6663	      output_init_element (value.value, strict_string,
6664				   elttype, constructor_index, 1);
6665	      RESTORE_SPELLING_DEPTH (constructor_depth);
6666	    }
6667
6668	  constructor_index
6669	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6670
6671	  if (!value.value)
6672	    /* If we are doing the bookkeeping for an element that was
6673	       directly output as a constructor, we must update
6674	       constructor_unfilled_index.  */
6675	    constructor_unfilled_index = constructor_index;
6676	}
6677      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6678	{
6679	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6680
6681	 /* Do a basic check of initializer size.  Note that vectors
6682	    always have a fixed size derived from their type.  */
6683	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6684	    {
6685	      pedwarn_init ("excess elements in vector initializer");
6686	      break;
6687	    }
6688
6689	  /* Now output the actual element.  */
6690	  if (value.value)
6691	    output_init_element (value.value, strict_string,
6692				 elttype, constructor_index, 1);
6693
6694	  constructor_index
6695	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6696
6697	  if (!value.value)
6698	    /* If we are doing the bookkeeping for an element that was
6699	       directly output as a constructor, we must update
6700	       constructor_unfilled_index.  */
6701	    constructor_unfilled_index = constructor_index;
6702	}
6703
6704      /* Handle the sole element allowed in a braced initializer
6705	 for a scalar variable.  */
6706      else if (constructor_type != error_mark_node
6707	       && constructor_fields == 0)
6708	{
6709	  pedwarn_init ("excess elements in scalar initializer");
6710	  break;
6711	}
6712      else
6713	{
6714	  if (value.value)
6715	    output_init_element (value.value, strict_string,
6716				 constructor_type, NULL_TREE, 1);
6717	  constructor_fields = 0;
6718	}
6719
6720      /* Handle range initializers either at this level or anywhere higher
6721	 in the designator stack.  */
6722      if (constructor_range_stack)
6723	{
6724	  struct constructor_range_stack *p, *range_stack;
6725	  int finish = 0;
6726
6727	  range_stack = constructor_range_stack;
6728	  constructor_range_stack = 0;
6729	  while (constructor_stack != range_stack->stack)
6730	    {
6731	      gcc_assert (constructor_stack->implicit);
6732	      process_init_element (pop_init_level (1));
6733	    }
6734	  for (p = range_stack;
6735	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6736	       p = p->prev)
6737	    {
6738	      gcc_assert (constructor_stack->implicit);
6739	      process_init_element (pop_init_level (1));
6740	    }
6741
6742	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6743	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6744	    finish = 1;
6745
6746	  while (1)
6747	    {
6748	      constructor_index = p->index;
6749	      constructor_fields = p->fields;
6750	      if (finish && p->range_end && p->index == p->range_start)
6751		{
6752		  finish = 0;
6753		  p->prev = 0;
6754		}
6755	      p = p->next;
6756	      if (!p)
6757		break;
6758	      push_init_level (2);
6759	      p->stack = constructor_stack;
6760	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6761		p->index = p->range_start;
6762	    }
6763
6764	  if (!finish)
6765	    constructor_range_stack = range_stack;
6766	  continue;
6767	}
6768
6769      break;
6770    }
6771
6772  constructor_range_stack = 0;
6773}
6774
6775/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6776   (guaranteed to be 'volatile' or null) and ARGS (represented using
6777   an ASM_EXPR node).  */
6778tree
6779build_asm_stmt (tree cv_qualifier, tree args)
6780{
6781  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6782    ASM_VOLATILE_P (args) = 1;
6783  return add_stmt (args);
6784}
6785
6786/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6787   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6788   SIMPLE indicates whether there was anything at all after the
6789   string in the asm expression -- asm("blah") and asm("blah" : )
6790   are subtly different.  We use a ASM_EXPR node to represent this.  */
6791tree
6792build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6793		bool simple)
6794{
6795  tree tail;
6796  tree args;
6797  int i;
6798  const char *constraint;
6799  const char **oconstraints;
6800  bool allows_mem, allows_reg, is_inout;
6801  int ninputs, noutputs;
6802
6803  ninputs = list_length (inputs);
6804  noutputs = list_length (outputs);
6805  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6806
6807  string = resolve_asm_operand_names (string, outputs, inputs);
6808
6809  /* Remove output conversions that change the type but not the mode.  */
6810  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6811    {
6812      tree output = TREE_VALUE (tail);
6813
6814      /* ??? Really, this should not be here.  Users should be using a
6815	 proper lvalue, dammit.  But there's a long history of using casts
6816	 in the output operands.  In cases like longlong.h, this becomes a
6817	 primitive form of typechecking -- if the cast can be removed, then
6818	 the output operand had a type of the proper width; otherwise we'll
6819	 get an error.  Gross, but ...  */
6820      STRIP_NOPS (output);
6821
6822      if (!lvalue_or_else (output, lv_asm))
6823	output = error_mark_node;
6824
6825      if (output != error_mark_node
6826	  && (TREE_READONLY (output)
6827	      || TYPE_READONLY (TREE_TYPE (output))
6828	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6829		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6830		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6831	readonly_error (output, lv_asm);
6832
6833      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6834      oconstraints[i] = constraint;
6835
6836      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6837				   &allows_mem, &allows_reg, &is_inout))
6838	{
6839	  /* If the operand is going to end up in memory,
6840	     mark it addressable.  */
6841	  if (!allows_reg && !c_mark_addressable (output))
6842	    output = error_mark_node;
6843	}
6844      else
6845	output = error_mark_node;
6846
6847      TREE_VALUE (tail) = output;
6848    }
6849
6850  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6851    {
6852      tree input;
6853
6854      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6855      input = TREE_VALUE (tail);
6856
6857      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6858				  oconstraints, &allows_mem, &allows_reg))
6859	{
6860	  /* If the operand is going to end up in memory,
6861	     mark it addressable.  */
6862	  if (!allows_reg && allows_mem)
6863	    {
6864	      /* Strip the nops as we allow this case.  FIXME, this really
6865		 should be rejected or made deprecated.  */
6866	      STRIP_NOPS (input);
6867	      if (!c_mark_addressable (input))
6868		input = error_mark_node;
6869	  }
6870	}
6871      else
6872	input = error_mark_node;
6873
6874      TREE_VALUE (tail) = input;
6875    }
6876
6877  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6878
6879  /* asm statements without outputs, including simple ones, are treated
6880     as volatile.  */
6881  ASM_INPUT_P (args) = simple;
6882  ASM_VOLATILE_P (args) = (noutputs == 0);
6883
6884  return args;
6885}
6886
6887/* Generate a goto statement to LABEL.  */
6888
6889tree
6890c_finish_goto_label (tree label)
6891{
6892  tree decl = lookup_label (label);
6893  if (!decl)
6894    return NULL_TREE;
6895
6896  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6897    {
6898      error ("jump into statement expression");
6899      return NULL_TREE;
6900    }
6901
6902  if (C_DECL_UNJUMPABLE_VM (decl))
6903    {
6904      error ("jump into scope of identifier with variably modified type");
6905      return NULL_TREE;
6906    }
6907
6908  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6909    {
6910      /* No jump from outside this statement expression context, so
6911	 record that there is a jump from within this context.  */
6912      struct c_label_list *nlist;
6913      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6914      nlist->next = label_context_stack_se->labels_used;
6915      nlist->label = decl;
6916      label_context_stack_se->labels_used = nlist;
6917    }
6918
6919  if (!C_DECL_UNDEFINABLE_VM (decl))
6920    {
6921      /* No jump from outside this context context of identifiers with
6922	 variably modified type, so record that there is a jump from
6923	 within this context.  */
6924      struct c_label_list *nlist;
6925      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6926      nlist->next = label_context_stack_vm->labels_used;
6927      nlist->label = decl;
6928      label_context_stack_vm->labels_used = nlist;
6929    }
6930
6931  TREE_USED (decl) = 1;
6932  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6933}
6934
6935/* Generate a computed goto statement to EXPR.  */
6936
6937tree
6938c_finish_goto_ptr (tree expr)
6939{
6940  if (pedantic)
6941    pedwarn ("ISO C forbids %<goto *expr;%>");
6942  expr = convert (ptr_type_node, expr);
6943  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6944}
6945
6946/* Generate a C `return' statement.  RETVAL is the expression for what
6947   to return, or a null pointer for `return;' with no value.  */
6948
6949tree
6950c_finish_return (tree retval)
6951{
6952  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6953  bool no_warning = false;
6954
6955  if (TREE_THIS_VOLATILE (current_function_decl))
6956    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6957
6958  if (!retval)
6959    {
6960      current_function_returns_null = 1;
6961      if ((warn_return_type || flag_isoc99)
6962	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6963	{
6964	  pedwarn_c99 ("%<return%> with no value, in "
6965		       "function returning non-void");
6966	  no_warning = true;
6967	}
6968    }
6969  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6970    {
6971      current_function_returns_null = 1;
6972      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6973	pedwarn ("%<return%> with a value, in function returning void");
6974    }
6975  else
6976    {
6977      tree t = convert_for_assignment (valtype, retval, ic_return,
6978				       NULL_TREE, NULL_TREE, 0);
6979      tree res = DECL_RESULT (current_function_decl);
6980      tree inner;
6981
6982      current_function_returns_value = 1;
6983      if (t == error_mark_node)
6984	return NULL_TREE;
6985
6986      inner = t = convert (TREE_TYPE (res), t);
6987
6988      /* Strip any conversions, additions, and subtractions, and see if
6989	 we are returning the address of a local variable.  Warn if so.  */
6990      while (1)
6991	{
6992	  switch (TREE_CODE (inner))
6993	    {
6994	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6995	    case PLUS_EXPR:
6996	      inner = TREE_OPERAND (inner, 0);
6997	      continue;
6998
6999	    case MINUS_EXPR:
7000	      /* If the second operand of the MINUS_EXPR has a pointer
7001		 type (or is converted from it), this may be valid, so
7002		 don't give a warning.  */
7003	      {
7004		tree op1 = TREE_OPERAND (inner, 1);
7005
7006		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7007		       && (TREE_CODE (op1) == NOP_EXPR
7008			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7009			   || TREE_CODE (op1) == CONVERT_EXPR))
7010		  op1 = TREE_OPERAND (op1, 0);
7011
7012		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7013		  break;
7014
7015		inner = TREE_OPERAND (inner, 0);
7016		continue;
7017	      }
7018
7019	    case ADDR_EXPR:
7020	      inner = TREE_OPERAND (inner, 0);
7021
7022	      while (REFERENCE_CLASS_P (inner)
7023		     && TREE_CODE (inner) != INDIRECT_REF)
7024		inner = TREE_OPERAND (inner, 0);
7025
7026	      if (DECL_P (inner)
7027		  && !DECL_EXTERNAL (inner)
7028		  && !TREE_STATIC (inner)
7029		  && DECL_CONTEXT (inner) == current_function_decl)
7030		warning (0, "function returns address of local variable");
7031	      break;
7032
7033	    default:
7034	      break;
7035	    }
7036
7037	  break;
7038	}
7039
7040      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7041    }
7042
7043  ret_stmt = build_stmt (RETURN_EXPR, retval);
7044  TREE_NO_WARNING (ret_stmt) |= no_warning;
7045  return add_stmt (ret_stmt);
7046}
7047
7048struct c_switch {
7049  /* The SWITCH_EXPR being built.  */
7050  tree switch_expr;
7051
7052  /* The original type of the testing expression, i.e. before the
7053     default conversion is applied.  */
7054  tree orig_type;
7055
7056  /* A splay-tree mapping the low element of a case range to the high
7057     element, or NULL_TREE if there is no high element.  Used to
7058     determine whether or not a new case label duplicates an old case
7059     label.  We need a tree, rather than simply a hash table, because
7060     of the GNU case range extension.  */
7061  splay_tree cases;
7062
7063  /* Number of nested statement expressions within this switch
7064     statement; if nonzero, case and default labels may not
7065     appear.  */
7066  unsigned int blocked_stmt_expr;
7067
7068  /* Scope of outermost declarations of identifiers with variably
7069     modified type within this switch statement; if nonzero, case and
7070     default labels may not appear.  */
7071  unsigned int blocked_vm;
7072
7073  /* The next node on the stack.  */
7074  struct c_switch *next;
7075};
7076
7077/* A stack of the currently active switch statements.  The innermost
7078   switch statement is on the top of the stack.  There is no need to
7079   mark the stack for garbage collection because it is only active
7080   during the processing of the body of a function, and we never
7081   collect at that point.  */
7082
7083struct c_switch *c_switch_stack;
7084
7085/* Start a C switch statement, testing expression EXP.  Return the new
7086   SWITCH_EXPR.  */
7087
7088tree
7089c_start_case (tree exp)
7090{
7091  tree orig_type = error_mark_node;
7092  struct c_switch *cs;
7093
7094  if (exp != error_mark_node)
7095    {
7096      orig_type = TREE_TYPE (exp);
7097
7098      if (!INTEGRAL_TYPE_P (orig_type))
7099	{
7100	  if (orig_type != error_mark_node)
7101	    {
7102	      error ("switch quantity not an integer");
7103	      orig_type = error_mark_node;
7104	    }
7105	  exp = integer_zero_node;
7106	}
7107      else
7108	{
7109	  tree type = TYPE_MAIN_VARIANT (orig_type);
7110
7111	  if (!in_system_header
7112	      && (type == long_integer_type_node
7113		  || type == long_unsigned_type_node))
7114	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7115		     "converted to %<int%> in ISO C");
7116
7117	  exp = default_conversion (exp);
7118	}
7119    }
7120
7121  /* Add this new SWITCH_EXPR to the stack.  */
7122  cs = XNEW (struct c_switch);
7123  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7124  cs->orig_type = orig_type;
7125  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7126  cs->blocked_stmt_expr = 0;
7127  cs->blocked_vm = 0;
7128  cs->next = c_switch_stack;
7129  c_switch_stack = cs;
7130
7131  return add_stmt (cs->switch_expr);
7132}
7133
7134/* Process a case label.  */
7135
7136tree
7137do_case (tree low_value, tree high_value)
7138{
7139  tree label = NULL_TREE;
7140
7141  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7142      && !c_switch_stack->blocked_vm)
7143    {
7144      label = c_add_case_label (c_switch_stack->cases,
7145				SWITCH_COND (c_switch_stack->switch_expr),
7146				c_switch_stack->orig_type,
7147				low_value, high_value);
7148      if (label == error_mark_node)
7149	label = NULL_TREE;
7150    }
7151  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7152    {
7153      if (low_value)
7154	error ("case label in statement expression not containing "
7155	       "enclosing switch statement");
7156      else
7157	error ("%<default%> label in statement expression not containing "
7158	       "enclosing switch statement");
7159    }
7160  else if (c_switch_stack && c_switch_stack->blocked_vm)
7161    {
7162      if (low_value)
7163	error ("case label in scope of identifier with variably modified "
7164	       "type not containing enclosing switch statement");
7165      else
7166	error ("%<default%> label in scope of identifier with variably "
7167	       "modified type not containing enclosing switch statement");
7168    }
7169  else if (low_value)
7170    error ("case label not within a switch statement");
7171  else
7172    error ("%<default%> label not within a switch statement");
7173
7174  return label;
7175}
7176
7177/* Finish the switch statement.  */
7178
7179void
7180c_finish_case (tree body)
7181{
7182  struct c_switch *cs = c_switch_stack;
7183  location_t switch_location;
7184
7185  SWITCH_BODY (cs->switch_expr) = body;
7186
7187  /* We must not be within a statement expression nested in the switch
7188     at this point; we might, however, be within the scope of an
7189     identifier with variably modified type nested in the switch.  */
7190  gcc_assert (!cs->blocked_stmt_expr);
7191
7192  /* Emit warnings as needed.  */
7193  if (EXPR_HAS_LOCATION (cs->switch_expr))
7194    switch_location = EXPR_LOCATION (cs->switch_expr);
7195  else
7196    switch_location = input_location;
7197  c_do_switch_warnings (cs->cases, switch_location,
7198			TREE_TYPE (cs->switch_expr),
7199			SWITCH_COND (cs->switch_expr));
7200
7201  /* Pop the stack.  */
7202  c_switch_stack = cs->next;
7203  splay_tree_delete (cs->cases);
7204  XDELETE (cs);
7205}
7206
7207/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7208   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7209   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7210   statement, and was not surrounded with parenthesis.  */
7211
7212void
7213c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7214		  tree else_block, bool nested_if)
7215{
7216  tree stmt;
7217
7218  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7219  if (warn_parentheses && nested_if && else_block == NULL)
7220    {
7221      tree inner_if = then_block;
7222
7223      /* We know from the grammar productions that there is an IF nested
7224	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7225	 it might not be exactly THEN_BLOCK, but should be the last
7226	 non-container statement within.  */
7227      while (1)
7228	switch (TREE_CODE (inner_if))
7229	  {
7230	  case COND_EXPR:
7231	    goto found;
7232	  case BIND_EXPR:
7233	    inner_if = BIND_EXPR_BODY (inner_if);
7234	    break;
7235	  case STATEMENT_LIST:
7236	    inner_if = expr_last (then_block);
7237	    break;
7238	  case TRY_FINALLY_EXPR:
7239	  case TRY_CATCH_EXPR:
7240	    inner_if = TREE_OPERAND (inner_if, 0);
7241	    break;
7242	  default:
7243	    gcc_unreachable ();
7244	  }
7245    found:
7246
7247      if (COND_EXPR_ELSE (inner_if))
7248	 warning (OPT_Wparentheses,
7249		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7250		  &if_locus);
7251    }
7252
7253  empty_body_warning (then_block, else_block);
7254
7255  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7256  SET_EXPR_LOCATION (stmt, if_locus);
7257  add_stmt (stmt);
7258}
7259
7260/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
7261/* Emit a general-purpose loop construct.  START_LOCUS is the location
7262   of the beginning of the loop.  COND is the loop condition.
7263   COND_IS_FIRST is false for DO loops.  INCR is the FOR increment
7264   expression.  BODY is the statement controlled by the loop.  BLAB is
7265   the break label.  CLAB is the continue label.  ATTRS is the
7266   attributes associated with the loop, which at present are
7267   associated with the topmost label.  Everything is allowed to be
7268   NULL.  */
7269
7270/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
7271void
7272c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7273/* APPLE LOCAL begin for-fsf-4_4 3274130 5295549 */ \
7274	       tree blab, tree clab, tree attrs, bool cond_is_first)
7275/* APPLE LOCAL end for-fsf-4_4 3274130 5295549 */ \
7276{
7277  tree entry = NULL, exit = NULL, t;
7278
7279  /* If the condition is zero don't generate a loop construct.  */
7280  if (cond && integer_zerop (cond))
7281    {
7282      if (cond_is_first)
7283	{
7284	  t = build_and_jump (&blab);
7285	  SET_EXPR_LOCATION (t, start_locus);
7286	  add_stmt (t);
7287	}
7288    }
7289  else
7290    {
7291      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7292
7293      /* If we have an exit condition, then we build an IF with gotos either
7294	 out of the loop, or to the top of it.  If there's no exit condition,
7295	 then we just build a jump back to the top.  */
7296      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7297
7298      if (cond && !integer_nonzerop (cond))
7299	{
7300	  /* Canonicalize the loop condition to the end.  This means
7301	     generating a branch to the loop condition.  Reuse the
7302	     continue label, if possible.  */
7303	  if (cond_is_first)
7304	    {
7305	      if (incr || !clab)
7306		{
7307		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7308		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7309		}
7310	      else
7311		t = build1 (GOTO_EXPR, void_type_node, clab);
7312	      SET_EXPR_LOCATION (t, start_locus);
7313	      add_stmt (t);
7314	    }
7315
7316	  t = build_and_jump (&blab);
7317	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7318	  if (cond_is_first)
7319	    SET_EXPR_LOCATION (exit, start_locus);
7320	  else
7321	    SET_EXPR_LOCATION (exit, input_location);
7322	}
7323
7324      add_stmt (top);
7325    }
7326
7327  if (body)
7328    add_stmt (body);
7329  if (clab)
7330    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7331  if (incr)
7332    add_stmt (incr);
7333  if (entry)
7334    add_stmt (entry);
7335  if (exit)
7336    add_stmt (exit);
7337  if (blab)
7338    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7339}
7340
7341tree
7342c_finish_bc_stmt (tree *label_p, bool is_break)
7343{
7344  bool skip;
7345  tree label = *label_p;
7346
7347  /* In switch statements break is sometimes stylistically used after
7348     a return statement.  This can lead to spurious warnings about
7349     control reaching the end of a non-void function when it is
7350     inlined.  Note that we are calling block_may_fallthru with
7351     language specific tree nodes; this works because
7352     block_may_fallthru returns true when given something it does not
7353     understand.  */
7354  skip = !block_may_fallthru (cur_stmt_list);
7355
7356  if (!label)
7357    {
7358      if (!skip)
7359	*label_p = label = create_artificial_label ();
7360    }
7361  else if (TREE_CODE (label) == LABEL_DECL)
7362    ;
7363  else switch (TREE_INT_CST_LOW (label))
7364    {
7365    case 0:
7366      if (is_break)
7367	error ("break statement not within loop or switch");
7368      else
7369	error ("continue statement not within a loop");
7370      return NULL_TREE;
7371
7372    case 1:
7373      gcc_assert (is_break);
7374      error ("break statement used with OpenMP for loop");
7375      return NULL_TREE;
7376
7377    default:
7378      gcc_unreachable ();
7379    }
7380
7381  if (skip)
7382    return NULL_TREE;
7383
7384  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7385}
7386
7387/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7388
7389static void
7390emit_side_effect_warnings (tree expr)
7391{
7392  if (expr == error_mark_node)
7393    ;
7394  else if (!TREE_SIDE_EFFECTS (expr))
7395    {
7396      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7397	warning (0, "%Hstatement with no effect",
7398		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7399    }
7400  else if (warn_unused_value)
7401    warn_if_unused_value (expr, input_location);
7402}
7403
7404/* Process an expression as if it were a complete statement.  Emit
7405   diagnostics, but do not call ADD_STMT.  */
7406
7407tree
7408c_process_expr_stmt (tree expr)
7409{
7410  if (!expr)
7411    return NULL_TREE;
7412
7413  if (warn_sequence_point)
7414    verify_sequence_points (expr);
7415
7416  if (TREE_TYPE (expr) != error_mark_node
7417      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7418      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7419    error ("expression statement has incomplete type");
7420
7421  /* If we're not processing a statement expression, warn about unused values.
7422     Warnings for statement expressions will be emitted later, once we figure
7423     out which is the result.  */
7424  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7425      && (extra_warnings || warn_unused_value))
7426    emit_side_effect_warnings (expr);
7427
7428  /* If the expression is not of a type to which we cannot assign a line
7429     number, wrap the thing in a no-op NOP_EXPR.  */
7430  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7431    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7432
7433  if (EXPR_P (expr))
7434    SET_EXPR_LOCATION (expr, input_location);
7435
7436  return expr;
7437}
7438
7439/* Emit an expression as a statement.  */
7440
7441tree
7442c_finish_expr_stmt (tree expr)
7443{
7444  if (expr)
7445    return add_stmt (c_process_expr_stmt (expr));
7446  else
7447    return NULL;
7448}
7449
7450/* Do the opposite and emit a statement as an expression.  To begin,
7451   create a new binding level and return it.  */
7452
7453tree
7454c_begin_stmt_expr (void)
7455{
7456  tree ret;
7457  struct c_label_context_se *nstack;
7458  struct c_label_list *glist;
7459
7460  /* We must force a BLOCK for this level so that, if it is not expanded
7461     later, there is a way to turn off the entire subtree of blocks that
7462     are contained in it.  */
7463  keep_next_level ();
7464  ret = c_begin_compound_stmt (true);
7465  if (c_switch_stack)
7466    {
7467      c_switch_stack->blocked_stmt_expr++;
7468      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7469    }
7470  for (glist = label_context_stack_se->labels_used;
7471       glist != NULL;
7472       glist = glist->next)
7473    {
7474      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7475    }
7476  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7477  nstack->labels_def = NULL;
7478  nstack->labels_used = NULL;
7479  nstack->next = label_context_stack_se;
7480  label_context_stack_se = nstack;
7481
7482  /* Mark the current statement list as belonging to a statement list.  */
7483  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7484
7485  return ret;
7486}
7487
7488tree
7489c_finish_stmt_expr (tree body)
7490{
7491  tree last, type, tmp, val;
7492  tree *last_p;
7493  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7494
7495  body = c_end_compound_stmt (body, true);
7496  if (c_switch_stack)
7497    {
7498      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7499      c_switch_stack->blocked_stmt_expr--;
7500    }
7501  /* It is no longer possible to jump to labels defined within this
7502     statement expression.  */
7503  for (dlist = label_context_stack_se->labels_def;
7504       dlist != NULL;
7505       dlist = dlist->next)
7506    {
7507      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7508    }
7509  /* It is again possible to define labels with a goto just outside
7510     this statement expression.  */
7511  for (glist = label_context_stack_se->next->labels_used;
7512       glist != NULL;
7513       glist = glist->next)
7514    {
7515      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7516      glist_prev = glist;
7517    }
7518  if (glist_prev != NULL)
7519    glist_prev->next = label_context_stack_se->labels_used;
7520  else
7521    label_context_stack_se->next->labels_used
7522      = label_context_stack_se->labels_used;
7523  label_context_stack_se = label_context_stack_se->next;
7524
7525  /* Locate the last statement in BODY.  See c_end_compound_stmt
7526     about always returning a BIND_EXPR.  */
7527  last_p = &BIND_EXPR_BODY (body);
7528  last = BIND_EXPR_BODY (body);
7529
7530 continue_searching:
7531  if (TREE_CODE (last) == STATEMENT_LIST)
7532    {
7533      tree_stmt_iterator i;
7534
7535      /* This can happen with degenerate cases like ({ }).  No value.  */
7536      if (!TREE_SIDE_EFFECTS (last))
7537	return body;
7538
7539      /* If we're supposed to generate side effects warnings, process
7540	 all of the statements except the last.  */
7541      if (extra_warnings || warn_unused_value)
7542	{
7543	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7544	    emit_side_effect_warnings (tsi_stmt (i));
7545	}
7546      else
7547	i = tsi_last (last);
7548      last_p = tsi_stmt_ptr (i);
7549      last = *last_p;
7550    }
7551
7552  /* If the end of the list is exception related, then the list was split
7553     by a call to push_cleanup.  Continue searching.  */
7554  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7555      || TREE_CODE (last) == TRY_CATCH_EXPR)
7556    {
7557      last_p = &TREE_OPERAND (last, 0);
7558      last = *last_p;
7559      goto continue_searching;
7560    }
7561
7562  /* In the case that the BIND_EXPR is not necessary, return the
7563     expression out from inside it.  */
7564  if (last == error_mark_node
7565      || (last == BIND_EXPR_BODY (body)
7566	  && BIND_EXPR_VARS (body) == NULL))
7567    {
7568      /* Do not warn if the return value of a statement expression is
7569	 unused.  */
7570      if (EXPR_P (last))
7571	TREE_NO_WARNING (last) = 1;
7572      return last;
7573    }
7574
7575  /* Extract the type of said expression.  */
7576  type = TREE_TYPE (last);
7577
7578  /* If we're not returning a value at all, then the BIND_EXPR that
7579     we already have is a fine expression to return.  */
7580  if (!type || VOID_TYPE_P (type))
7581    return body;
7582
7583  /* Now that we've located the expression containing the value, it seems
7584     silly to make voidify_wrapper_expr repeat the process.  Create a
7585     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7586  tmp = create_tmp_var_raw (type, NULL);
7587
7588  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7589     tree_expr_nonnegative_p giving up immediately.  */
7590  val = last;
7591  if (TREE_CODE (val) == NOP_EXPR
7592      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7593    val = TREE_OPERAND (val, 0);
7594
7595  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7596  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7597
7598  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7599}
7600
7601/* Begin the scope of an identifier of variably modified type, scope
7602   number SCOPE.  Jumping from outside this scope to inside it is not
7603   permitted.  */
7604
7605void
7606c_begin_vm_scope (unsigned int scope)
7607{
7608  struct c_label_context_vm *nstack;
7609  struct c_label_list *glist;
7610
7611  gcc_assert (scope > 0);
7612
7613  /* At file_scope, we don't have to do any processing.  */
7614  if (label_context_stack_vm == NULL)
7615    return;
7616
7617  if (c_switch_stack && !c_switch_stack->blocked_vm)
7618    c_switch_stack->blocked_vm = scope;
7619  for (glist = label_context_stack_vm->labels_used;
7620       glist != NULL;
7621       glist = glist->next)
7622    {
7623      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7624    }
7625  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7626  nstack->labels_def = NULL;
7627  nstack->labels_used = NULL;
7628  nstack->scope = scope;
7629  nstack->next = label_context_stack_vm;
7630  label_context_stack_vm = nstack;
7631}
7632
7633/* End a scope which may contain identifiers of variably modified
7634   type, scope number SCOPE.  */
7635
7636void
7637c_end_vm_scope (unsigned int scope)
7638{
7639  if (label_context_stack_vm == NULL)
7640    return;
7641  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7642    c_switch_stack->blocked_vm = 0;
7643  /* We may have a number of nested scopes of identifiers with
7644     variably modified type, all at this depth.  Pop each in turn.  */
7645  while (label_context_stack_vm->scope == scope)
7646    {
7647      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7648
7649      /* It is no longer possible to jump to labels defined within this
7650	 scope.  */
7651      for (dlist = label_context_stack_vm->labels_def;
7652	   dlist != NULL;
7653	   dlist = dlist->next)
7654	{
7655	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7656	}
7657      /* It is again possible to define labels with a goto just outside
7658	 this scope.  */
7659      for (glist = label_context_stack_vm->next->labels_used;
7660	   glist != NULL;
7661	   glist = glist->next)
7662	{
7663	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7664	  glist_prev = glist;
7665	}
7666      if (glist_prev != NULL)
7667	glist_prev->next = label_context_stack_vm->labels_used;
7668      else
7669	label_context_stack_vm->next->labels_used
7670	  = label_context_stack_vm->labels_used;
7671      label_context_stack_vm = label_context_stack_vm->next;
7672    }
7673}
7674
7675/* Begin and end compound statements.  This is as simple as pushing
7676   and popping new statement lists from the tree.  */
7677
7678tree
7679c_begin_compound_stmt (bool do_scope)
7680{
7681  tree stmt = push_stmt_list ();
7682  if (do_scope)
7683    push_scope ();
7684  return stmt;
7685}
7686
7687tree
7688c_end_compound_stmt (tree stmt, bool do_scope)
7689{
7690  tree block = NULL;
7691
7692  if (do_scope)
7693    {
7694      if (c_dialect_objc ())
7695	objc_clear_super_receiver ();
7696      block = pop_scope ();
7697    }
7698
7699  stmt = pop_stmt_list (stmt);
7700  stmt = c_build_bind_expr (block, stmt);
7701
7702  /* If this compound statement is nested immediately inside a statement
7703     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7704     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7705     STATEMENT_LISTs merge, and thus we can lose track of what statement
7706     was really last.  */
7707  if (cur_stmt_list
7708      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7709      && TREE_CODE (stmt) != BIND_EXPR)
7710    {
7711      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7712      TREE_SIDE_EFFECTS (stmt) = 1;
7713    }
7714
7715  return stmt;
7716}
7717
7718/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7719   when the current scope is exited.  EH_ONLY is true when this is not
7720   meant to apply to normal control flow transfer.  */
7721
7722void
7723push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7724{
7725  enum tree_code code;
7726  tree stmt, list;
7727  bool stmt_expr;
7728
7729  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7730  stmt = build_stmt (code, NULL, cleanup);
7731  add_stmt (stmt);
7732  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7733  list = push_stmt_list ();
7734  TREE_OPERAND (stmt, 0) = list;
7735  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7736}
7737
7738/* Build a binary-operation expression without default conversions.
7739   CODE is the kind of expression to build.
7740   This function differs from `build' in several ways:
7741   the data type of the result is computed and recorded in it,
7742   warnings are generated if arg data types are invalid,
7743   special handling for addition and subtraction of pointers is known,
7744   and some optimization is done (operations on narrow ints
7745   are done in the narrower type when that gives the same result).
7746   Constant folding is also done before the result is returned.
7747
7748   Note that the operands will never have enumeral types, or function
7749   or array types, because either they will have the default conversions
7750   performed or they have both just been converted to some other type in which
7751   the arithmetic is to be done.  */
7752
7753tree
7754build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7755		 int convert_p)
7756{
7757  tree type0, type1;
7758  enum tree_code code0, code1;
7759  tree op0, op1;
7760  const char *invalid_op_diag;
7761
7762  /* Expression code to give to the expression when it is built.
7763     Normally this is CODE, which is what the caller asked for,
7764     but in some special cases we change it.  */
7765  enum tree_code resultcode = code;
7766
7767  /* Data type in which the computation is to be performed.
7768     In the simplest cases this is the common type of the arguments.  */
7769  tree result_type = NULL;
7770
7771  /* Nonzero means operands have already been type-converted
7772     in whatever way is necessary.
7773     Zero means they need to be converted to RESULT_TYPE.  */
7774  int converted = 0;
7775
7776  /* Nonzero means create the expression with this type, rather than
7777     RESULT_TYPE.  */
7778  tree build_type = 0;
7779
7780  /* Nonzero means after finally constructing the expression
7781     convert it to this type.  */
7782  tree final_type = 0;
7783
7784  /* Nonzero if this is an operation like MIN or MAX which can
7785     safely be computed in short if both args are promoted shorts.
7786     Also implies COMMON.
7787     -1 indicates a bitwise operation; this makes a difference
7788     in the exact conditions for when it is safe to do the operation
7789     in a narrower mode.  */
7790  int shorten = 0;
7791
7792  /* Nonzero if this is a comparison operation;
7793     if both args are promoted shorts, compare the original shorts.
7794     Also implies COMMON.  */
7795  int short_compare = 0;
7796
7797  /* Nonzero if this is a right-shift operation, which can be computed on the
7798     original short and then promoted if the operand is a promoted short.  */
7799  int short_shift = 0;
7800
7801  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7802  int common = 0;
7803
7804  /* True means types are compatible as far as ObjC is concerned.  */
7805  bool objc_ok;
7806
7807  if (convert_p)
7808    {
7809      op0 = default_conversion (orig_op0);
7810      op1 = default_conversion (orig_op1);
7811    }
7812  else
7813    {
7814      op0 = orig_op0;
7815      op1 = orig_op1;
7816    }
7817
7818  type0 = TREE_TYPE (op0);
7819  type1 = TREE_TYPE (op1);
7820
7821  /* The expression codes of the data types of the arguments tell us
7822     whether the arguments are integers, floating, pointers, etc.  */
7823  code0 = TREE_CODE (type0);
7824  code1 = TREE_CODE (type1);
7825
7826  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7827  STRIP_TYPE_NOPS (op0);
7828  STRIP_TYPE_NOPS (op1);
7829
7830  /* If an error was already reported for one of the arguments,
7831     avoid reporting another error.  */
7832
7833  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7834    return error_mark_node;
7835
7836  if ((invalid_op_diag
7837       = targetm.invalid_binary_op (code, type0, type1)))
7838    {
7839      error (invalid_op_diag, "");
7840      return error_mark_node;
7841    }
7842
7843  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7844
7845  switch (code)
7846    {
7847    case PLUS_EXPR:
7848      /* Handle the pointer + int case.  */
7849      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7850	return pointer_int_sum (PLUS_EXPR, op0, op1);
7851      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7852	return pointer_int_sum (PLUS_EXPR, op1, op0);
7853      else
7854	common = 1;
7855      break;
7856
7857    case MINUS_EXPR:
7858      /* Subtraction of two similar pointers.
7859	 We must subtract them as integers, then divide by object size.  */
7860      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7861	  && comp_target_types (type0, type1))
7862	return pointer_diff (op0, op1);
7863      /* Handle pointer minus int.  Just like pointer plus int.  */
7864      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7865	return pointer_int_sum (MINUS_EXPR, op0, op1);
7866      else
7867	common = 1;
7868      break;
7869
7870    case MULT_EXPR:
7871      common = 1;
7872      break;
7873
7874    case TRUNC_DIV_EXPR:
7875    case CEIL_DIV_EXPR:
7876    case FLOOR_DIV_EXPR:
7877    case ROUND_DIV_EXPR:
7878    case EXACT_DIV_EXPR:
7879      /* Floating point division by zero is a legitimate way to obtain
7880	 infinities and NaNs.  */
7881      if (skip_evaluation == 0 && integer_zerop (op1))
7882	warning (OPT_Wdiv_by_zero, "division by zero");
7883
7884      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7885	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7886	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7887	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7888	{
7889	  enum tree_code tcode0 = code0, tcode1 = code1;
7890
7891	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7892	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7893	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7894	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7895
7896	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7897	    resultcode = RDIV_EXPR;
7898	  else
7899	    /* Although it would be tempting to shorten always here, that
7900	       loses on some targets, since the modulo instruction is
7901	       undefined if the quotient can't be represented in the
7902	       computation mode.  We shorten only if unsigned or if
7903	       dividing by something we know != -1.  */
7904	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7905		       || (TREE_CODE (op1) == INTEGER_CST
7906			   && !integer_all_onesp (op1)));
7907	  common = 1;
7908	}
7909      break;
7910
7911    case BIT_AND_EXPR:
7912    case BIT_IOR_EXPR:
7913    case BIT_XOR_EXPR:
7914      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7915	shorten = -1;
7916      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7917	common = 1;
7918      break;
7919
7920    case TRUNC_MOD_EXPR:
7921    case FLOOR_MOD_EXPR:
7922      if (skip_evaluation == 0 && integer_zerop (op1))
7923	warning (OPT_Wdiv_by_zero, "division by zero");
7924
7925      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7926	{
7927	  /* Although it would be tempting to shorten always here, that loses
7928	     on some targets, since the modulo instruction is undefined if the
7929	     quotient can't be represented in the computation mode.  We shorten
7930	     only if unsigned or if dividing by something we know != -1.  */
7931	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7932		     || (TREE_CODE (op1) == INTEGER_CST
7933			 && !integer_all_onesp (op1)));
7934	  common = 1;
7935	}
7936      break;
7937
7938    case TRUTH_ANDIF_EXPR:
7939    case TRUTH_ORIF_EXPR:
7940    case TRUTH_AND_EXPR:
7941    case TRUTH_OR_EXPR:
7942    case TRUTH_XOR_EXPR:
7943      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7944	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7945	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7946	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7947	{
7948	  /* Result of these operations is always an int,
7949	     but that does not mean the operands should be
7950	     converted to ints!  */
7951	  result_type = integer_type_node;
7952	  op0 = c_common_truthvalue_conversion (op0);
7953	  op1 = c_common_truthvalue_conversion (op1);
7954	  converted = 1;
7955	}
7956      break;
7957
7958      /* Shift operations: result has same type as first operand;
7959	 always convert second operand to int.
7960	 Also set SHORT_SHIFT if shifting rightward.  */
7961
7962    case RSHIFT_EXPR:
7963      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7964	{
7965	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7966	    {
7967	      if (tree_int_cst_sgn (op1) < 0)
7968		warning (0, "right shift count is negative");
7969	      else
7970		{
7971		  if (!integer_zerop (op1))
7972		    short_shift = 1;
7973
7974		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7975		    warning (0, "right shift count >= width of type");
7976		}
7977	    }
7978
7979	  /* Use the type of the value to be shifted.  */
7980	  result_type = type0;
7981	  /* Convert the shift-count to an integer, regardless of size
7982	     of value being shifted.  */
7983	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7984	    op1 = convert (integer_type_node, op1);
7985	  /* Avoid converting op1 to result_type later.  */
7986	  converted = 1;
7987	}
7988      break;
7989
7990    case LSHIFT_EXPR:
7991      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7992	{
7993	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7994	    {
7995	      if (tree_int_cst_sgn (op1) < 0)
7996		warning (0, "left shift count is negative");
7997
7998	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7999		warning (0, "left shift count >= width of type");
8000	    }
8001
8002	  /* Use the type of the value to be shifted.  */
8003	  result_type = type0;
8004	  /* Convert the shift-count to an integer, regardless of size
8005	     of value being shifted.  */
8006	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8007	    op1 = convert (integer_type_node, op1);
8008	  /* Avoid converting op1 to result_type later.  */
8009	  converted = 1;
8010	}
8011      break;
8012
8013    case EQ_EXPR:
8014    case NE_EXPR:
8015      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8016	warning (OPT_Wfloat_equal,
8017		 "comparing floating point with == or != is unsafe");
8018      /* Result of comparison is always int,
8019	 but don't convert the args to int!  */
8020      build_type = integer_type_node;
8021      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8022	   || code0 == COMPLEX_TYPE)
8023	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8024	      || code1 == COMPLEX_TYPE))
8025	short_compare = 1;
8026      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8027	{
8028	  tree tt0 = TREE_TYPE (type0);
8029	  tree tt1 = TREE_TYPE (type1);
8030	  /* Anything compares with void *.  void * compares with anything.
8031	     Otherwise, the targets must be compatible
8032	     and both must be object or both incomplete.  */
8033	  if (comp_target_types (type0, type1))
8034	    result_type = common_pointer_type (type0, type1);
8035	  else if (VOID_TYPE_P (tt0))
8036	    {
8037	      /* op0 != orig_op0 detects the case of something
8038		 whose value is 0 but which isn't a valid null ptr const.  */
8039	      if (pedantic && !null_pointer_constant_p (orig_op0)
8040		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8041		pedwarn ("ISO C forbids comparison of %<void *%>"
8042			 " with function pointer");
8043	    }
8044	  else if (VOID_TYPE_P (tt1))
8045	    {
8046	      if (pedantic && !null_pointer_constant_p (orig_op1)
8047		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8048		pedwarn ("ISO C forbids comparison of %<void *%>"
8049			 " with function pointer");
8050	    }
8051	  else
8052	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8053	    if (!objc_ok)
8054	      pedwarn ("comparison of distinct pointer types lacks a cast");
8055
8056	  if (result_type == NULL_TREE)
8057	    result_type = ptr_type_node;
8058	}
8059      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8060	{
8061	  if (TREE_CODE (op0) == ADDR_EXPR
8062	      && DECL_P (TREE_OPERAND (op0, 0))
8063	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8064		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8065		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8066	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8067		     TREE_OPERAND (op0, 0));
8068	  result_type = type0;
8069	}
8070      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8071	{
8072	  if (TREE_CODE (op1) == ADDR_EXPR
8073	      && DECL_P (TREE_OPERAND (op1, 0))
8074	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8075		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8076		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8077	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8078		     TREE_OPERAND (op1, 0));
8079	  result_type = type1;
8080	}
8081      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8082	{
8083	  result_type = type0;
8084	  pedwarn ("comparison between pointer and integer");
8085	}
8086      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8087	{
8088	  result_type = type1;
8089	  pedwarn ("comparison between pointer and integer");
8090	}
8091      break;
8092
8093    case LE_EXPR:
8094    case GE_EXPR:
8095    case LT_EXPR:
8096    case GT_EXPR:
8097      build_type = integer_type_node;
8098      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8099	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8100	short_compare = 1;
8101      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8102	{
8103	  if (comp_target_types (type0, type1))
8104	    {
8105	      result_type = common_pointer_type (type0, type1);
8106	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8107		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8108		pedwarn ("comparison of complete and incomplete pointers");
8109	      else if (pedantic
8110		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8111		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8112	    }
8113	  else
8114	    {
8115	      result_type = ptr_type_node;
8116	      pedwarn ("comparison of distinct pointer types lacks a cast");
8117	    }
8118	}
8119      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8120	{
8121	  result_type = type0;
8122	  if (pedantic || extra_warnings)
8123	    pedwarn ("ordered comparison of pointer with integer zero");
8124	}
8125      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8126	{
8127	  result_type = type1;
8128	  if (pedantic)
8129	    pedwarn ("ordered comparison of pointer with integer zero");
8130	}
8131      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8132	{
8133	  result_type = type0;
8134	  pedwarn ("comparison between pointer and integer");
8135	}
8136      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8137	{
8138	  result_type = type1;
8139	  pedwarn ("comparison between pointer and integer");
8140	}
8141      break;
8142
8143    default:
8144      gcc_unreachable ();
8145    }
8146
8147  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8148    return error_mark_node;
8149
8150  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8151      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8152	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8153						    TREE_TYPE (type1))))
8154    {
8155      binary_op_error (code, type0, type1);
8156      return error_mark_node;
8157    }
8158
8159  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8160       || code0 == VECTOR_TYPE)
8161      &&
8162      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8163       || code1 == VECTOR_TYPE))
8164    {
8165      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8166
8167      if (shorten || common || short_compare)
8168	result_type = c_common_type (type0, type1);
8169
8170      /* For certain operations (which identify themselves by shorten != 0)
8171	 if both args were extended from the same smaller type,
8172	 do the arithmetic in that type and then extend.
8173
8174	 shorten !=0 and !=1 indicates a bitwise operation.
8175	 For them, this optimization is safe only if
8176	 both args are zero-extended or both are sign-extended.
8177	 Otherwise, we might change the result.
8178	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8179	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8180
8181      if (shorten && none_complex)
8182	{
8183	  int unsigned0, unsigned1;
8184	  tree arg0, arg1;
8185	  int uns;
8186	  tree type;
8187
8188	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8189	     excessive narrowing when we call get_narrower below.  For
8190	     example, suppose that OP0 is of unsigned int extended
8191	     from signed char and that RESULT_TYPE is long long int.
8192	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8193	     like
8194
8195	       (long long int) (unsigned int) signed_char
8196
8197	     which get_narrower would narrow down to
8198
8199	       (unsigned int) signed char
8200
8201	     If we do not cast OP0 first, get_narrower would return
8202	     signed_char, which is inconsistent with the case of the
8203	     explicit cast.  */
8204	  op0 = convert (result_type, op0);
8205	  op1 = convert (result_type, op1);
8206
8207	  arg0 = get_narrower (op0, &unsigned0);
8208	  arg1 = get_narrower (op1, &unsigned1);
8209
8210	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8211	  uns = TYPE_UNSIGNED (result_type);
8212
8213	  final_type = result_type;
8214
8215	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8216	     but it *requires* conversion to FINAL_TYPE.  */
8217
8218	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8219	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8220	      && TREE_TYPE (op0) != final_type)
8221	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8222	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8223	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8224	      && TREE_TYPE (op1) != final_type)
8225	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8226
8227	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8228
8229	  /* For bitwise operations, signedness of nominal type
8230	     does not matter.  Consider only how operands were extended.  */
8231	  if (shorten == -1)
8232	    uns = unsigned0;
8233
8234	  /* Note that in all three cases below we refrain from optimizing
8235	     an unsigned operation on sign-extended args.
8236	     That would not be valid.  */
8237
8238	  /* Both args variable: if both extended in same way
8239	     from same width, do it in that width.
8240	     Do it unsigned if args were zero-extended.  */
8241	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8242	       < TYPE_PRECISION (result_type))
8243	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8244		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8245	      && unsigned0 == unsigned1
8246	      && (unsigned0 || !uns))
8247	    result_type
8248	      = c_common_signed_or_unsigned_type
8249	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8250	  else if (TREE_CODE (arg0) == INTEGER_CST
8251		   && (unsigned1 || !uns)
8252		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8253		       < TYPE_PRECISION (result_type))
8254		   && (type
8255		       = c_common_signed_or_unsigned_type (unsigned1,
8256							   TREE_TYPE (arg1)),
8257		       int_fits_type_p (arg0, type)))
8258	    result_type = type;
8259	  else if (TREE_CODE (arg1) == INTEGER_CST
8260		   && (unsigned0 || !uns)
8261		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8262		       < TYPE_PRECISION (result_type))
8263		   && (type
8264		       = c_common_signed_or_unsigned_type (unsigned0,
8265							   TREE_TYPE (arg0)),
8266		       int_fits_type_p (arg1, type)))
8267	    result_type = type;
8268	}
8269
8270      /* Shifts can be shortened if shifting right.  */
8271
8272      if (short_shift)
8273	{
8274	  int unsigned_arg;
8275	  tree arg0 = get_narrower (op0, &unsigned_arg);
8276
8277	  final_type = result_type;
8278
8279	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8280	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8281
8282	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8283	      /* We can shorten only if the shift count is less than the
8284		 number of bits in the smaller type size.  */
8285	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8286	      /* We cannot drop an unsigned shift after sign-extension.  */
8287	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8288	    {
8289	      /* Do an unsigned shift if the operand was zero-extended.  */
8290	      result_type
8291		= c_common_signed_or_unsigned_type (unsigned_arg,
8292						    TREE_TYPE (arg0));
8293	      /* Convert value-to-be-shifted to that type.  */
8294	      if (TREE_TYPE (op0) != result_type)
8295		op0 = convert (result_type, op0);
8296	      converted = 1;
8297	    }
8298	}
8299
8300      /* Comparison operations are shortened too but differently.
8301	 They identify themselves by setting short_compare = 1.  */
8302
8303      if (short_compare)
8304	{
8305	  /* Don't write &op0, etc., because that would prevent op0
8306	     from being kept in a register.
8307	     Instead, make copies of the our local variables and
8308	     pass the copies by reference, then copy them back afterward.  */
8309	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8310	  enum tree_code xresultcode = resultcode;
8311	  tree val
8312	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8313
8314	  if (val != 0)
8315	    return val;
8316
8317	  op0 = xop0, op1 = xop1;
8318	  converted = 1;
8319	  resultcode = xresultcode;
8320
8321	  if (warn_sign_compare && skip_evaluation == 0)
8322	    {
8323	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8324	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8325	      int unsignedp0, unsignedp1;
8326	      tree primop0 = get_narrower (op0, &unsignedp0);
8327	      tree primop1 = get_narrower (op1, &unsignedp1);
8328
8329	      xop0 = orig_op0;
8330	      xop1 = orig_op1;
8331	      STRIP_TYPE_NOPS (xop0);
8332	      STRIP_TYPE_NOPS (xop1);
8333
8334	      /* Give warnings for comparisons between signed and unsigned
8335		 quantities that may fail.
8336
8337		 Do the checking based on the original operand trees, so that
8338		 casts will be considered, but default promotions won't be.
8339
8340		 Do not warn if the comparison is being done in a signed type,
8341		 since the signed type will only be chosen if it can represent
8342		 all the values of the unsigned type.  */
8343	      if (!TYPE_UNSIGNED (result_type))
8344		/* OK */;
8345	      /* Do not warn if both operands are the same signedness.  */
8346	      else if (op0_signed == op1_signed)
8347		/* OK */;
8348	      else
8349		{
8350		  tree sop, uop;
8351		  bool ovf;
8352
8353		  if (op0_signed)
8354		    sop = xop0, uop = xop1;
8355		  else
8356		    sop = xop1, uop = xop0;
8357
8358		  /* Do not warn if the signed quantity is an
8359		     unsuffixed integer literal (or some static
8360		     constant expression involving such literals or a
8361		     conditional expression involving such literals)
8362		     and it is non-negative.  */
8363		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8364		    /* OK */;
8365		  /* Do not warn if the comparison is an equality operation,
8366		     the unsigned quantity is an integral constant, and it
8367		     would fit in the result if the result were signed.  */
8368		  else if (TREE_CODE (uop) == INTEGER_CST
8369			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8370			   && int_fits_type_p
8371			   (uop, c_common_signed_type (result_type)))
8372		    /* OK */;
8373		  /* Do not warn if the unsigned quantity is an enumeration
8374		     constant and its maximum value would fit in the result
8375		     if the result were signed.  */
8376		  else if (TREE_CODE (uop) == INTEGER_CST
8377			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8378			   && int_fits_type_p
8379			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8380			    c_common_signed_type (result_type)))
8381		    /* OK */;
8382		  else
8383		    warning (0, "comparison between signed and unsigned");
8384		}
8385
8386	      /* Warn if two unsigned values are being compared in a size
8387		 larger than their original size, and one (and only one) is the
8388		 result of a `~' operator.  This comparison will always fail.
8389
8390		 Also warn if one operand is a constant, and the constant
8391		 does not have all bits set that are set in the ~ operand
8392		 when it is extended.  */
8393
8394	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8395		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8396		{
8397		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8398		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8399					    &unsignedp0);
8400		  else
8401		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8402					    &unsignedp1);
8403
8404		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8405		    {
8406		      tree primop;
8407		      HOST_WIDE_INT constant, mask;
8408		      int unsignedp, bits;
8409
8410		      if (host_integerp (primop0, 0))
8411			{
8412			  primop = primop1;
8413			  unsignedp = unsignedp1;
8414			  constant = tree_low_cst (primop0, 0);
8415			}
8416		      else
8417			{
8418			  primop = primop0;
8419			  unsignedp = unsignedp0;
8420			  constant = tree_low_cst (primop1, 0);
8421			}
8422
8423		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8424		      if (bits < TYPE_PRECISION (result_type)
8425			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8426			{
8427			  mask = (~(HOST_WIDE_INT) 0) << bits;
8428			  if ((mask & constant) != mask)
8429			    warning (0, "comparison of promoted ~unsigned with constant");
8430			}
8431		    }
8432		  else if (unsignedp0 && unsignedp1
8433			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8434			       < TYPE_PRECISION (result_type))
8435			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8436			       < TYPE_PRECISION (result_type)))
8437		    warning (0, "comparison of promoted ~unsigned with unsigned");
8438		}
8439	    }
8440	}
8441    }
8442
8443  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8444     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8445     Then the expression will be built.
8446     It will be given type FINAL_TYPE if that is nonzero;
8447     otherwise, it will be given type RESULT_TYPE.  */
8448
8449  if (!result_type)
8450    {
8451      binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8452      return error_mark_node;
8453    }
8454
8455  if (!converted)
8456    {
8457      if (TREE_TYPE (op0) != result_type)
8458	op0 = convert_and_check (result_type, op0);
8459      if (TREE_TYPE (op1) != result_type)
8460	op1 = convert_and_check (result_type, op1);
8461
8462      /* This can happen if one operand has a vector type, and the other
8463	 has a different type.  */
8464      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8465	return error_mark_node;
8466    }
8467
8468  if (build_type == NULL_TREE)
8469    build_type = result_type;
8470
8471  {
8472    /* Treat expressions in initializers specially as they can't trap.  */
8473    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8474								    build_type,
8475								    op0, op1)
8476					 : fold_build2 (resultcode, build_type,
8477							op0, op1);
8478
8479    if (final_type != 0)
8480      result = convert (final_type, result);
8481    return result;
8482  }
8483}
8484
8485
8486/* Convert EXPR to be a truth-value, validating its type for this
8487   purpose.  */
8488
8489tree
8490c_objc_common_truthvalue_conversion (tree expr)
8491{
8492  switch (TREE_CODE (TREE_TYPE (expr)))
8493    {
8494    case ARRAY_TYPE:
8495      error ("used array that cannot be converted to pointer where scalar is required");
8496      return error_mark_node;
8497
8498    case RECORD_TYPE:
8499      error ("used struct type value where scalar is required");
8500      return error_mark_node;
8501
8502    case UNION_TYPE:
8503      error ("used union type value where scalar is required");
8504      return error_mark_node;
8505
8506    case FUNCTION_TYPE:
8507      gcc_unreachable ();
8508
8509    default:
8510      break;
8511    }
8512
8513  /* ??? Should we also give an error for void and vectors rather than
8514     leaving those to give errors later?  */
8515  return c_common_truthvalue_conversion (expr);
8516}
8517
8518
8519/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8520   required.  */
8521
8522tree
8523c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8524		bool *ti ATTRIBUTE_UNUSED, bool *se)
8525{
8526  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8527    {
8528      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8529      /* Executing a compound literal inside a function reinitializes
8530	 it.  */
8531      if (!TREE_STATIC (decl))
8532	*se = true;
8533      return decl;
8534    }
8535  else
8536    return expr;
8537}
8538
8539/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8540
8541tree
8542c_begin_omp_parallel (void)
8543{
8544  tree block;
8545
8546  keep_next_level ();
8547  block = c_begin_compound_stmt (true);
8548
8549  return block;
8550}
8551
8552tree
8553c_finish_omp_parallel (tree clauses, tree block)
8554{
8555  tree stmt;
8556
8557  block = c_end_compound_stmt (block, true);
8558
8559  stmt = make_node (OMP_PARALLEL);
8560  TREE_TYPE (stmt) = void_type_node;
8561  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8562  OMP_PARALLEL_BODY (stmt) = block;
8563
8564  return add_stmt (stmt);
8565}
8566
8567/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8568   Remove any elements from the list that are invalid.  */
8569
8570tree
8571c_finish_omp_clauses (tree clauses)
8572{
8573  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8574  tree c, t, *pc = &clauses;
8575  const char *name;
8576
8577  bitmap_obstack_initialize (NULL);
8578  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8579  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8580  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8581
8582  for (pc = &clauses, c = clauses; c ; c = *pc)
8583    {
8584      bool remove = false;
8585      bool need_complete = false;
8586      bool need_implicitly_determined = false;
8587
8588      switch (OMP_CLAUSE_CODE (c))
8589	{
8590	case OMP_CLAUSE_SHARED:
8591	  name = "shared";
8592	  need_implicitly_determined = true;
8593	  goto check_dup_generic;
8594
8595	case OMP_CLAUSE_PRIVATE:
8596	  name = "private";
8597	  need_complete = true;
8598	  need_implicitly_determined = true;
8599	  goto check_dup_generic;
8600
8601	case OMP_CLAUSE_REDUCTION:
8602	  name = "reduction";
8603	  need_implicitly_determined = true;
8604	  t = OMP_CLAUSE_DECL (c);
8605	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8606	      || POINTER_TYPE_P (TREE_TYPE (t)))
8607	    {
8608	      error ("%qE has invalid type for %<reduction%>", t);
8609	      remove = true;
8610	    }
8611	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8612	    {
8613	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8614	      const char *r_name = NULL;
8615
8616	      switch (r_code)
8617		{
8618		case PLUS_EXPR:
8619		case MULT_EXPR:
8620		case MINUS_EXPR:
8621		  break;
8622		case BIT_AND_EXPR:
8623		  r_name = "&";
8624		  break;
8625		case BIT_XOR_EXPR:
8626		  r_name = "^";
8627		  break;
8628		case BIT_IOR_EXPR:
8629		  r_name = "|";
8630		  break;
8631		case TRUTH_ANDIF_EXPR:
8632		  r_name = "&&";
8633		  break;
8634		case TRUTH_ORIF_EXPR:
8635		  r_name = "||";
8636		  break;
8637		default:
8638		  gcc_unreachable ();
8639		}
8640	      if (r_name)
8641		{
8642		  error ("%qE has invalid type for %<reduction(%s)%>",
8643			 t, r_name);
8644		  remove = true;
8645		}
8646	    }
8647	  goto check_dup_generic;
8648
8649	case OMP_CLAUSE_COPYPRIVATE:
8650	  name = "copyprivate";
8651	  goto check_dup_generic;
8652
8653	case OMP_CLAUSE_COPYIN:
8654	  name = "copyin";
8655	  t = OMP_CLAUSE_DECL (c);
8656	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8657	    {
8658	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8659	      remove = true;
8660	    }
8661	  goto check_dup_generic;
8662
8663	check_dup_generic:
8664	  t = OMP_CLAUSE_DECL (c);
8665	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8666	    {
8667	      error ("%qE is not a variable in clause %qs", t, name);
8668	      remove = true;
8669	    }
8670	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8671		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8672		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8673	    {
8674	      error ("%qE appears more than once in data clauses", t);
8675	      remove = true;
8676	    }
8677	  else
8678	    bitmap_set_bit (&generic_head, DECL_UID (t));
8679	  break;
8680
8681	case OMP_CLAUSE_FIRSTPRIVATE:
8682	  name = "firstprivate";
8683	  t = OMP_CLAUSE_DECL (c);
8684	  need_complete = true;
8685	  need_implicitly_determined = true;
8686	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8687	    {
8688	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8689	      remove = true;
8690	    }
8691	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8692		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8693	    {
8694	      error ("%qE appears more than once in data clauses", t);
8695	      remove = true;
8696	    }
8697	  else
8698	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8699	  break;
8700
8701	case OMP_CLAUSE_LASTPRIVATE:
8702	  name = "lastprivate";
8703	  t = OMP_CLAUSE_DECL (c);
8704	  need_complete = true;
8705	  need_implicitly_determined = true;
8706	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8707	    {
8708	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8709	      remove = true;
8710	    }
8711	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8712		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8713	    {
8714	      error ("%qE appears more than once in data clauses", t);
8715	      remove = true;
8716	    }
8717	  else
8718	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8719	  break;
8720
8721	case OMP_CLAUSE_IF:
8722	case OMP_CLAUSE_NUM_THREADS:
8723	case OMP_CLAUSE_SCHEDULE:
8724	case OMP_CLAUSE_NOWAIT:
8725	case OMP_CLAUSE_ORDERED:
8726	case OMP_CLAUSE_DEFAULT:
8727	  pc = &OMP_CLAUSE_CHAIN (c);
8728	  continue;
8729
8730	default:
8731	  gcc_unreachable ();
8732	}
8733
8734      if (!remove)
8735	{
8736	  t = OMP_CLAUSE_DECL (c);
8737
8738	  if (need_complete)
8739	    {
8740	      t = require_complete_type (t);
8741	      if (t == error_mark_node)
8742		remove = true;
8743	    }
8744
8745	  if (need_implicitly_determined)
8746	    {
8747	      const char *share_name = NULL;
8748
8749	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8750		share_name = "threadprivate";
8751	      else switch (c_omp_predetermined_sharing (t))
8752		{
8753		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8754		  break;
8755		case OMP_CLAUSE_DEFAULT_SHARED:
8756		  share_name = "shared";
8757		  break;
8758		case OMP_CLAUSE_DEFAULT_PRIVATE:
8759		  share_name = "private";
8760		  break;
8761		default:
8762		  gcc_unreachable ();
8763		}
8764	      if (share_name)
8765		{
8766		  error ("%qE is predetermined %qs for %qs",
8767			 t, share_name, name);
8768		  remove = true;
8769		}
8770	    }
8771	}
8772
8773      if (remove)
8774	*pc = OMP_CLAUSE_CHAIN (c);
8775      else
8776	pc = &OMP_CLAUSE_CHAIN (c);
8777    }
8778
8779  bitmap_obstack_release (NULL);
8780  return clauses;
8781}
8782