c-typeck.c revision 259948
1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  datum = ref;
1853
1854	  field = TREE_CHAIN (field);
1855	}
1856      while (field);
1857
1858      return ref;
1859    }
1860  else if (code != ERROR_MARK)
1861    error ("request for member %qE in something not a structure or union",
1862	   component);
1863
1864  return error_mark_node;
1865}
1866
1867/* Given an expression PTR for a pointer, return an expression
1868   for the value pointed to.
1869   ERRORSTRING is the name of the operator to appear in error messages.  */
1870
1871tree
1872build_indirect_ref (tree ptr, const char *errorstring)
1873{
1874  tree pointer = default_conversion (ptr);
1875  tree type = TREE_TYPE (pointer);
1876
1877  if (TREE_CODE (type) == POINTER_TYPE)
1878    {
1879      if (TREE_CODE (pointer) == CONVERT_EXPR
1880          || TREE_CODE (pointer) == NOP_EXPR
1881          || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1882	{
1883	  /* If a warning is issued, mark it to avoid duplicates from
1884	     the backend.  This only needs to be done at
1885	     warn_strict_aliasing > 2.  */
1886	  if (warn_strict_aliasing > 2)
1887	    if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1888					 type, TREE_OPERAND (pointer, 0)))
1889	      TREE_NO_WARNING (pointer) = 1;
1890	}
1891
1892      if (TREE_CODE (pointer) == ADDR_EXPR
1893	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1894	      == TREE_TYPE (type)))
1895	return TREE_OPERAND (pointer, 0);
1896      else
1897	{
1898	  tree t = TREE_TYPE (type);
1899	  tree ref;
1900
1901	  ref = build1 (INDIRECT_REF, t, pointer);
1902
1903	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1904	    {
1905	      error ("dereferencing pointer to incomplete type");
1906	      return error_mark_node;
1907	    }
1908	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1909	    warning (0, "dereferencing %<void *%> pointer");
1910
1911	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1912	     so that we get the proper error message if the result is used
1913	     to assign to.  Also, &* is supposed to be a no-op.
1914	     And ANSI C seems to specify that the type of the result
1915	     should be the const type.  */
1916	  /* A de-reference of a pointer to const is not a const.  It is valid
1917	     to change it via some other pointer.  */
1918	  TREE_READONLY (ref) = TYPE_READONLY (t);
1919	  TREE_SIDE_EFFECTS (ref)
1920	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1921	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1922	  return ref;
1923	}
1924    }
1925  else if (TREE_CODE (pointer) != ERROR_MARK)
1926    error ("invalid type argument of %qs (have %qT)", errorstring, type);
1927  return error_mark_node;
1928}
1929
1930/* This handles expressions of the form "a[i]", which denotes
1931   an array reference.
1932
1933   This is logically equivalent in C to *(a+i), but we may do it differently.
1934   If A is a variable or a member, we generate a primitive ARRAY_REF.
1935   This avoids forcing the array out of registers, and can work on
1936   arrays that are not lvalues (for example, members of structures returned
1937   by functions).  */
1938
1939tree
1940build_array_ref (tree array, tree index)
1941{
1942  bool swapped = false;
1943  if (TREE_TYPE (array) == error_mark_node
1944      || TREE_TYPE (index) == error_mark_node)
1945    return error_mark_node;
1946
1947  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1948      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1949    {
1950      tree temp;
1951      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1952	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1953	{
1954	  error ("subscripted value is neither array nor pointer");
1955	  return error_mark_node;
1956	}
1957      temp = array;
1958      array = index;
1959      index = temp;
1960      swapped = true;
1961    }
1962
1963  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1964    {
1965      error ("array subscript is not an integer");
1966      return error_mark_node;
1967    }
1968
1969  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1970    {
1971      error ("subscripted value is pointer to function");
1972      return error_mark_node;
1973    }
1974
1975  /* ??? Existing practice has been to warn only when the char
1976     index is syntactically the index, not for char[array].  */
1977  if (!swapped)
1978     warn_array_subscript_with_type_char (index);
1979
1980  /* Apply default promotions *after* noticing character types.  */
1981  index = default_conversion (index);
1982
1983  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1984
1985  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1986    {
1987      tree rval, type;
1988
1989      /* An array that is indexed by a non-constant
1990	 cannot be stored in a register; we must be able to do
1991	 address arithmetic on its address.
1992	 Likewise an array of elements of variable size.  */
1993      if (TREE_CODE (index) != INTEGER_CST
1994	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1995	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1996	{
1997	  if (!c_mark_addressable (array))
1998	    return error_mark_node;
1999	}
2000      /* An array that is indexed by a constant value which is not within
2001	 the array bounds cannot be stored in a register either; because we
2002	 would get a crash in store_bit_field/extract_bit_field when trying
2003	 to access a non-existent part of the register.  */
2004      if (TREE_CODE (index) == INTEGER_CST
2005	  && TYPE_DOMAIN (TREE_TYPE (array))
2006	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2007	{
2008	  if (!c_mark_addressable (array))
2009	    return error_mark_node;
2010	}
2011
2012      if (pedantic)
2013	{
2014	  tree foo = array;
2015	  while (TREE_CODE (foo) == COMPONENT_REF)
2016	    foo = TREE_OPERAND (foo, 0);
2017	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2018	    pedwarn ("ISO C forbids subscripting %<register%> array");
2019	  else if (!flag_isoc99 && !lvalue_p (foo))
2020	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2021	}
2022
2023      type = TREE_TYPE (TREE_TYPE (array));
2024      if (TREE_CODE (type) != ARRAY_TYPE)
2025	type = TYPE_MAIN_VARIANT (type);
2026      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2027      /* Array ref is const/volatile if the array elements are
2028	 or if the array is.  */
2029      TREE_READONLY (rval)
2030	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2031	    | TREE_READONLY (array));
2032      TREE_SIDE_EFFECTS (rval)
2033	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2034	    | TREE_SIDE_EFFECTS (array));
2035      TREE_THIS_VOLATILE (rval)
2036	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2037	    /* This was added by rms on 16 Nov 91.
2038	       It fixes  vol struct foo *a;  a->elts[1]
2039	       in an inline function.
2040	       Hope it doesn't break something else.  */
2041	    | TREE_THIS_VOLATILE (array));
2042      return require_complete_type (fold (rval));
2043    }
2044  else
2045    {
2046      tree ar = default_conversion (array);
2047
2048      if (ar == error_mark_node)
2049	return ar;
2050
2051      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2052      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2053
2054      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2055				 "array indexing");
2056    }
2057}
2058
2059/* Build an external reference to identifier ID.  FUN indicates
2060   whether this will be used for a function call.  LOC is the source
2061   location of the identifier.  */
2062tree
2063build_external_ref (tree id, int fun, location_t loc)
2064{
2065  tree ref;
2066  tree decl = lookup_name (id);
2067
2068  /* In Objective-C, an instance variable (ivar) may be preferred to
2069     whatever lookup_name() found.  */
2070  decl = objc_lookup_ivar (decl, id);
2071
2072  if (decl && decl != error_mark_node)
2073    ref = decl;
2074  else if (fun)
2075    /* Implicit function declaration.  */
2076    ref = implicitly_declare (id);
2077  else if (decl == error_mark_node)
2078    /* Don't complain about something that's already been
2079       complained about.  */
2080    return error_mark_node;
2081  else
2082    {
2083      undeclared_variable (id, loc);
2084      return error_mark_node;
2085    }
2086
2087  if (TREE_TYPE (ref) == error_mark_node)
2088    return error_mark_node;
2089
2090  if (TREE_DEPRECATED (ref))
2091    warn_deprecated_use (ref);
2092
2093  if (!skip_evaluation)
2094    assemble_external (ref);
2095  TREE_USED (ref) = 1;
2096
2097  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2098    {
2099      if (!in_sizeof && !in_typeof)
2100	C_DECL_USED (ref) = 1;
2101      else if (DECL_INITIAL (ref) == 0
2102	       && DECL_EXTERNAL (ref)
2103	       && !TREE_PUBLIC (ref))
2104	record_maybe_used_decl (ref);
2105    }
2106
2107  if (TREE_CODE (ref) == CONST_DECL)
2108    {
2109      used_types_insert (TREE_TYPE (ref));
2110      ref = DECL_INITIAL (ref);
2111      TREE_CONSTANT (ref) = 1;
2112      TREE_INVARIANT (ref) = 1;
2113    }
2114  else if (current_function_decl != 0
2115	   && !DECL_FILE_SCOPE_P (current_function_decl)
2116	   && (TREE_CODE (ref) == VAR_DECL
2117	       || TREE_CODE (ref) == PARM_DECL
2118	       || TREE_CODE (ref) == FUNCTION_DECL))
2119    {
2120      tree context = decl_function_context (ref);
2121
2122      if (context != 0 && context != current_function_decl)
2123	DECL_NONLOCAL (ref) = 1;
2124    }
2125  /* C99 6.7.4p3: An inline definition of a function with external
2126     linkage ... shall not contain a reference to an identifier with
2127     internal linkage.  */
2128  else if (current_function_decl != 0
2129	   && DECL_DECLARED_INLINE_P (current_function_decl)
2130	   && DECL_EXTERNAL (current_function_decl)
2131	   && VAR_OR_FUNCTION_DECL_P (ref)
2132	   && DECL_FILE_SCOPE_P (ref)
2133	   && pedantic
2134	   && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2135	   && ! TREE_PUBLIC (ref))
2136    pedwarn ("%H%qD is static but used in inline function %qD "
2137	     "which is not static", &loc, ref, current_function_decl);
2138
2139  return ref;
2140}
2141
2142/* Record details of decls possibly used inside sizeof or typeof.  */
2143struct maybe_used_decl
2144{
2145  /* The decl.  */
2146  tree decl;
2147  /* The level seen at (in_sizeof + in_typeof).  */
2148  int level;
2149  /* The next one at this level or above, or NULL.  */
2150  struct maybe_used_decl *next;
2151};
2152
2153static struct maybe_used_decl *maybe_used_decls;
2154
2155/* Record that DECL, an undefined static function reference seen
2156   inside sizeof or typeof, might be used if the operand of sizeof is
2157   a VLA type or the operand of typeof is a variably modified
2158   type.  */
2159
2160static void
2161record_maybe_used_decl (tree decl)
2162{
2163  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2164  t->decl = decl;
2165  t->level = in_sizeof + in_typeof;
2166  t->next = maybe_used_decls;
2167  maybe_used_decls = t;
2168}
2169
2170/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2171   USED is false, just discard them.  If it is true, mark them used
2172   (if no longer inside sizeof or typeof) or move them to the next
2173   level up (if still inside sizeof or typeof).  */
2174
2175void
2176pop_maybe_used (bool used)
2177{
2178  struct maybe_used_decl *p = maybe_used_decls;
2179  int cur_level = in_sizeof + in_typeof;
2180  while (p && p->level > cur_level)
2181    {
2182      if (used)
2183	{
2184	  if (cur_level == 0)
2185	    C_DECL_USED (p->decl) = 1;
2186	  else
2187	    p->level = cur_level;
2188	}
2189      p = p->next;
2190    }
2191  if (!used || cur_level == 0)
2192    maybe_used_decls = p;
2193}
2194
2195/* Return the result of sizeof applied to EXPR.  */
2196
2197struct c_expr
2198c_expr_sizeof_expr (struct c_expr expr)
2199{
2200  struct c_expr ret;
2201  if (expr.value == error_mark_node)
2202    {
2203      ret.value = error_mark_node;
2204      ret.original_code = ERROR_MARK;
2205      pop_maybe_used (false);
2206    }
2207  else
2208    {
2209      ret.value = c_sizeof (TREE_TYPE (expr.value));
2210      ret.original_code = ERROR_MARK;
2211      if (c_vla_type_p (TREE_TYPE (expr.value)))
2212	{
2213	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2214	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2215	}
2216      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2217    }
2218  return ret;
2219}
2220
2221/* Return the result of sizeof applied to T, a structure for the type
2222   name passed to sizeof (rather than the type itself).  */
2223
2224struct c_expr
2225c_expr_sizeof_type (struct c_type_name *t)
2226{
2227  tree type;
2228  struct c_expr ret;
2229  type = groktypename (t);
2230  ret.value = c_sizeof (type);
2231  ret.original_code = ERROR_MARK;
2232  pop_maybe_used (type != error_mark_node
2233		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2234  return ret;
2235}
2236
2237/* Build a function call to function FUNCTION with parameters PARAMS.
2238   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2239   TREE_VALUE of each node is a parameter-expression.
2240   FUNCTION's data type may be a function type or a pointer-to-function.  */
2241
2242tree
2243build_function_call (tree function, tree params)
2244{
2245  tree fntype, fundecl = 0;
2246  tree coerced_params;
2247  tree name = NULL_TREE, result;
2248  tree tem;
2249
2250  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2251  STRIP_TYPE_NOPS (function);
2252
2253  /* Convert anything with function type to a pointer-to-function.  */
2254  if (TREE_CODE (function) == FUNCTION_DECL)
2255    {
2256      /* Implement type-directed function overloading for builtins.
2257	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2258	 handle all the type checking.  The result is a complete expression
2259	 that implements this function call.  */
2260      tem = resolve_overloaded_builtin (function, params);
2261      if (tem)
2262	return tem;
2263
2264      name = DECL_NAME (function);
2265      fundecl = function;
2266    }
2267  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2268    function = function_to_pointer_conversion (function);
2269
2270  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2271     expressions, like those used for ObjC messenger dispatches.  */
2272  function = objc_rewrite_function_call (function, params);
2273
2274  fntype = TREE_TYPE (function);
2275
2276  if (TREE_CODE (fntype) == ERROR_MARK)
2277    return error_mark_node;
2278
2279  if (!(TREE_CODE (fntype) == POINTER_TYPE
2280	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2281    {
2282      error ("called object %qE is not a function", function);
2283      return error_mark_node;
2284    }
2285
2286  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2287    current_function_returns_abnormally = 1;
2288
2289  /* fntype now gets the type of function pointed to.  */
2290  fntype = TREE_TYPE (fntype);
2291
2292  /* Check that the function is called through a compatible prototype.
2293     If it is not, replace the call by a trap, wrapped up in a compound
2294     expression if necessary.  This has the nice side-effect to prevent
2295     the tree-inliner from generating invalid assignment trees which may
2296     blow up in the RTL expander later.  */
2297  if ((TREE_CODE (function) == NOP_EXPR
2298       || TREE_CODE (function) == CONVERT_EXPR)
2299      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2300      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2301      && !comptypes (fntype, TREE_TYPE (tem)))
2302    {
2303      tree return_type = TREE_TYPE (fntype);
2304      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2305				       NULL_TREE);
2306
2307      /* This situation leads to run-time undefined behavior.  We can't,
2308	 therefore, simply error unless we can prove that all possible
2309	 executions of the program must execute the code.  */
2310      warning (0, "function called through a non-compatible type");
2311
2312      /* We can, however, treat "undefined" any way we please.
2313	 Call abort to encourage the user to fix the program.  */
2314      inform ("if this code is reached, the program will abort");
2315
2316      if (VOID_TYPE_P (return_type))
2317	return trap;
2318      else
2319	{
2320	  tree rhs;
2321
2322	  if (AGGREGATE_TYPE_P (return_type))
2323	    rhs = build_compound_literal (return_type,
2324					  build_constructor (return_type, 0));
2325	  else
2326	    rhs = fold_convert (return_type, integer_zero_node);
2327
2328	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2329	}
2330    }
2331
2332  /* Convert the parameters to the types declared in the
2333     function prototype, or apply default promotions.  */
2334
2335  coerced_params
2336    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2337
2338  if (coerced_params == error_mark_node)
2339    return error_mark_node;
2340
2341  /* Check that the arguments to the function are valid.  */
2342
2343  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2344			    TYPE_ARG_TYPES (fntype));
2345
2346  if (require_constant_value)
2347    {
2348      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2349					function, coerced_params, NULL_TREE);
2350
2351      if (TREE_CONSTANT (result)
2352	  && (name == NULL_TREE
2353	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2354	pedwarn_init ("initializer element is not constant");
2355    }
2356  else
2357    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2358			  function, coerced_params, NULL_TREE);
2359
2360  if (VOID_TYPE_P (TREE_TYPE (result)))
2361    return result;
2362  return require_complete_type (result);
2363}
2364
2365/* Convert the argument expressions in the list VALUES
2366   to the types in the list TYPELIST.  The result is a list of converted
2367   argument expressions, unless there are too few arguments in which
2368   case it is error_mark_node.
2369
2370   If TYPELIST is exhausted, or when an element has NULL as its type,
2371   perform the default conversions.
2372
2373   PARMLIST is the chain of parm decls for the function being called.
2374   It may be 0, if that info is not available.
2375   It is used only for generating error messages.
2376
2377   FUNCTION is a tree for the called function.  It is used only for
2378   error messages, where it is formatted with %qE.
2379
2380   This is also where warnings about wrong number of args are generated.
2381
2382   Both VALUES and the returned value are chains of TREE_LIST nodes
2383   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2384
2385static tree
2386convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2387{
2388  tree typetail, valtail;
2389  tree result = NULL;
2390  int parmnum;
2391  tree selector;
2392
2393  /* Change pointer to function to the function itself for
2394     diagnostics.  */
2395  if (TREE_CODE (function) == ADDR_EXPR
2396      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2397    function = TREE_OPERAND (function, 0);
2398
2399  /* Handle an ObjC selector specially for diagnostics.  */
2400  selector = objc_message_selector ();
2401
2402  /* Scan the given expressions and types, producing individual
2403     converted arguments and pushing them on RESULT in reverse order.  */
2404
2405  for (valtail = values, typetail = typelist, parmnum = 0;
2406       valtail;
2407       valtail = TREE_CHAIN (valtail), parmnum++)
2408    {
2409      tree type = typetail ? TREE_VALUE (typetail) : 0;
2410      tree val = TREE_VALUE (valtail);
2411      tree rname = function;
2412      int argnum = parmnum + 1;
2413      const char *invalid_func_diag;
2414
2415      if (type == void_type_node)
2416	{
2417	  error ("too many arguments to function %qE", function);
2418	  break;
2419	}
2420
2421      if (selector && argnum > 2)
2422	{
2423	  rname = selector;
2424	  argnum -= 2;
2425	}
2426
2427      STRIP_TYPE_NOPS (val);
2428
2429      val = require_complete_type (val);
2430
2431      if (type != 0)
2432	{
2433	  /* Formal parm type is specified by a function prototype.  */
2434	  tree parmval;
2435
2436	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2437	    {
2438	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2439	      parmval = val;
2440	    }
2441	  else
2442	    {
2443	      /* Optionally warn about conversions that
2444		 differ from the default conversions.  */
2445	      if (warn_conversion || warn_traditional)
2446		{
2447		  unsigned int formal_prec = TYPE_PRECISION (type);
2448
2449		  if (INTEGRAL_TYPE_P (type)
2450		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2451		    warning (0, "passing argument %d of %qE as integer "
2452			     "rather than floating due to prototype",
2453			     argnum, rname);
2454		  if (INTEGRAL_TYPE_P (type)
2455		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2456		    warning (0, "passing argument %d of %qE as integer "
2457			     "rather than complex due to prototype",
2458			     argnum, rname);
2459		  else if (TREE_CODE (type) == COMPLEX_TYPE
2460			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2461		    warning (0, "passing argument %d of %qE as complex "
2462			     "rather than floating due to prototype",
2463			     argnum, rname);
2464		  else if (TREE_CODE (type) == REAL_TYPE
2465			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2466		    warning (0, "passing argument %d of %qE as floating "
2467			     "rather than integer due to prototype",
2468			     argnum, rname);
2469		  else if (TREE_CODE (type) == COMPLEX_TYPE
2470			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2471		    warning (0, "passing argument %d of %qE as complex "
2472			     "rather than integer due to prototype",
2473			     argnum, rname);
2474		  else if (TREE_CODE (type) == REAL_TYPE
2475			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2476		    warning (0, "passing argument %d of %qE as floating "
2477			     "rather than complex due to prototype",
2478			     argnum, rname);
2479		  /* ??? At some point, messages should be written about
2480		     conversions between complex types, but that's too messy
2481		     to do now.  */
2482		  else if (TREE_CODE (type) == REAL_TYPE
2483			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2484		    {
2485		      /* Warn if any argument is passed as `float',
2486			 since without a prototype it would be `double'.  */
2487		      if (formal_prec == TYPE_PRECISION (float_type_node)
2488			  && type != dfloat32_type_node)
2489			warning (0, "passing argument %d of %qE as %<float%> "
2490				 "rather than %<double%> due to prototype",
2491				 argnum, rname);
2492
2493		      /* Warn if mismatch between argument and prototype
2494			 for decimal float types.  Warn of conversions with
2495			 binary float types and of precision narrowing due to
2496			 prototype. */
2497 		      else if (type != TREE_TYPE (val)
2498			       && (type == dfloat32_type_node
2499				   || type == dfloat64_type_node
2500				   || type == dfloat128_type_node
2501				   || TREE_TYPE (val) == dfloat32_type_node
2502				   || TREE_TYPE (val) == dfloat64_type_node
2503				   || TREE_TYPE (val) == dfloat128_type_node)
2504			       && (formal_prec
2505				   <= TYPE_PRECISION (TREE_TYPE (val))
2506				   || (type == dfloat128_type_node
2507				       && (TREE_TYPE (val)
2508					   != dfloat64_type_node
2509					   && (TREE_TYPE (val)
2510					       != dfloat32_type_node)))
2511				   || (type == dfloat64_type_node
2512				       && (TREE_TYPE (val)
2513					   != dfloat32_type_node))))
2514			warning (0, "passing argument %d of %qE as %qT "
2515				 "rather than %qT due to prototype",
2516				 argnum, rname, type, TREE_TYPE (val));
2517
2518		    }
2519		  /* Detect integer changing in width or signedness.
2520		     These warnings are only activated with
2521		     -Wconversion, not with -Wtraditional.  */
2522		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2523			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2524		    {
2525		      tree would_have_been = default_conversion (val);
2526		      tree type1 = TREE_TYPE (would_have_been);
2527
2528		      if (TREE_CODE (type) == ENUMERAL_TYPE
2529			  && (TYPE_MAIN_VARIANT (type)
2530			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2531			/* No warning if function asks for enum
2532			   and the actual arg is that enum type.  */
2533			;
2534		      else if (formal_prec != TYPE_PRECISION (type1))
2535			warning (OPT_Wconversion, "passing argument %d of %qE "
2536				 "with different width due to prototype",
2537				 argnum, rname);
2538		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2539			;
2540		      /* Don't complain if the formal parameter type
2541			 is an enum, because we can't tell now whether
2542			 the value was an enum--even the same enum.  */
2543		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2544			;
2545		      else if (TREE_CODE (val) == INTEGER_CST
2546			       && int_fits_type_p (val, type))
2547			/* Change in signedness doesn't matter
2548			   if a constant value is unaffected.  */
2549			;
2550		      /* If the value is extended from a narrower
2551			 unsigned type, it doesn't matter whether we
2552			 pass it as signed or unsigned; the value
2553			 certainly is the same either way.  */
2554		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2555			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2556			;
2557		      else if (TYPE_UNSIGNED (type))
2558			warning (OPT_Wconversion, "passing argument %d of %qE "
2559				 "as unsigned due to prototype",
2560				 argnum, rname);
2561		      else
2562			warning (OPT_Wconversion, "passing argument %d of %qE "
2563				 "as signed due to prototype", argnum, rname);
2564		    }
2565		}
2566
2567	      parmval = convert_for_assignment (type, val, ic_argpass,
2568						fundecl, function,
2569						parmnum + 1);
2570
2571	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2572		  && INTEGRAL_TYPE_P (type)
2573		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2574		parmval = default_conversion (parmval);
2575	    }
2576	  result = tree_cons (NULL_TREE, parmval, result);
2577	}
2578      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2579	       && (TYPE_PRECISION (TREE_TYPE (val))
2580		   < TYPE_PRECISION (double_type_node))
2581	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2582	/* Convert `float' to `double'.  */
2583	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2584      else if ((invalid_func_diag =
2585		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2586	{
2587	  error (invalid_func_diag);
2588	  return error_mark_node;
2589	}
2590      else
2591	/* Convert `short' and `char' to full-size `int'.  */
2592	result = tree_cons (NULL_TREE, default_conversion (val), result);
2593
2594      if (typetail)
2595	typetail = TREE_CHAIN (typetail);
2596    }
2597
2598  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2599    {
2600      error ("too few arguments to function %qE", function);
2601      return error_mark_node;
2602    }
2603
2604  return nreverse (result);
2605}
2606
2607/* This is the entry point used by the parser to build unary operators
2608   in the input.  CODE, a tree_code, specifies the unary operator, and
2609   ARG is the operand.  For unary plus, the C parser currently uses
2610   CONVERT_EXPR for code.  */
2611
2612struct c_expr
2613parser_build_unary_op (enum tree_code code, struct c_expr arg)
2614{
2615  struct c_expr result;
2616
2617  result.original_code = ERROR_MARK;
2618  result.value = build_unary_op (code, arg.value, 0);
2619
2620  if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2621    overflow_warning (result.value);
2622
2623  return result;
2624}
2625
2626/* This is the entry point used by the parser to build binary operators
2627   in the input.  CODE, a tree_code, specifies the binary operator, and
2628   ARG1 and ARG2 are the operands.  In addition to constructing the
2629   expression, we check for operands that were written with other binary
2630   operators in a way that is likely to confuse the user.  */
2631
2632struct c_expr
2633parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2634			struct c_expr arg2)
2635{
2636  struct c_expr result;
2637
2638  enum tree_code code1 = arg1.original_code;
2639  enum tree_code code2 = arg2.original_code;
2640
2641  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2642  result.original_code = code;
2643
2644  if (TREE_CODE (result.value) == ERROR_MARK)
2645    return result;
2646
2647  /* Check for cases such as x+y<<z which users are likely
2648     to misinterpret.  */
2649  if (warn_parentheses)
2650    warn_about_parentheses (code, code1, code2);
2651
2652  /* Warn about comparisons against string literals, with the exception
2653     of testing for equality or inequality of a string literal with NULL.  */
2654  if (code == EQ_EXPR || code == NE_EXPR)
2655    {
2656      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2657	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2658	warning (OPT_Waddress,
2659                 "comparison with string literal results in unspecified behaviour");
2660    }
2661  else if (TREE_CODE_CLASS (code) == tcc_comparison
2662	   && (code1 == STRING_CST || code2 == STRING_CST))
2663    warning (OPT_Waddress,
2664             "comparison with string literal results in unspecified behaviour");
2665
2666  if (TREE_OVERFLOW_P (result.value)
2667      && !TREE_OVERFLOW_P (arg1.value)
2668      && !TREE_OVERFLOW_P (arg2.value))
2669    overflow_warning (result.value);
2670
2671  return result;
2672}
2673
2674/* Return a tree for the difference of pointers OP0 and OP1.
2675   The resulting tree has type int.  */
2676
2677static tree
2678pointer_diff (tree op0, tree op1)
2679{
2680  tree restype = ptrdiff_type_node;
2681
2682  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2683  tree con0, con1, lit0, lit1;
2684  tree orig_op1 = op1;
2685
2686  if (pedantic || warn_pointer_arith)
2687    {
2688      if (TREE_CODE (target_type) == VOID_TYPE)
2689	pedwarn ("pointer of type %<void *%> used in subtraction");
2690      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2691	pedwarn ("pointer to a function used in subtraction");
2692    }
2693
2694  /* If the conversion to ptrdiff_type does anything like widening or
2695     converting a partial to an integral mode, we get a convert_expression
2696     that is in the way to do any simplifications.
2697     (fold-const.c doesn't know that the extra bits won't be needed.
2698     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2699     different mode in place.)
2700     So first try to find a common term here 'by hand'; we want to cover
2701     at least the cases that occur in legal static initializers.  */
2702  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2703      && (TYPE_PRECISION (TREE_TYPE (op0))
2704	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2705    con0 = TREE_OPERAND (op0, 0);
2706  else
2707    con0 = op0;
2708  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2709      && (TYPE_PRECISION (TREE_TYPE (op1))
2710	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2711    con1 = TREE_OPERAND (op1, 0);
2712  else
2713    con1 = op1;
2714
2715  if (TREE_CODE (con0) == PLUS_EXPR)
2716    {
2717      lit0 = TREE_OPERAND (con0, 1);
2718      con0 = TREE_OPERAND (con0, 0);
2719    }
2720  else
2721    lit0 = integer_zero_node;
2722
2723  if (TREE_CODE (con1) == PLUS_EXPR)
2724    {
2725      lit1 = TREE_OPERAND (con1, 1);
2726      con1 = TREE_OPERAND (con1, 0);
2727    }
2728  else
2729    lit1 = integer_zero_node;
2730
2731  if (operand_equal_p (con0, con1, 0))
2732    {
2733      op0 = lit0;
2734      op1 = lit1;
2735    }
2736
2737
2738  /* First do the subtraction as integers;
2739     then drop through to build the divide operator.
2740     Do not do default conversions on the minus operator
2741     in case restype is a short type.  */
2742
2743  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2744			 convert (restype, op1), 0);
2745  /* This generates an error if op1 is pointer to incomplete type.  */
2746  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2747    error ("arithmetic on pointer to an incomplete type");
2748
2749  /* This generates an error if op0 is pointer to incomplete type.  */
2750  op1 = c_size_in_bytes (target_type);
2751
2752  /* Divide by the size, in easiest possible way.  */
2753  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2754}
2755
2756/* Construct and perhaps optimize a tree representation
2757   for a unary operation.  CODE, a tree_code, specifies the operation
2758   and XARG is the operand.
2759   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2760   the default promotions (such as from short to int).
2761   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2762   allows non-lvalues; this is only used to handle conversion of non-lvalue
2763   arrays to pointers in C99.  */
2764
2765tree
2766build_unary_op (enum tree_code code, tree xarg, int flag)
2767{
2768  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2769  tree arg = xarg;
2770  tree argtype = 0;
2771  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2772  tree val;
2773  int noconvert = flag;
2774  const char *invalid_op_diag;
2775
2776  if (typecode == ERROR_MARK)
2777    return error_mark_node;
2778  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2779    typecode = INTEGER_TYPE;
2780
2781  if ((invalid_op_diag
2782       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2783    {
2784      error (invalid_op_diag);
2785      return error_mark_node;
2786    }
2787
2788  switch (code)
2789    {
2790    case CONVERT_EXPR:
2791      /* This is used for unary plus, because a CONVERT_EXPR
2792	 is enough to prevent anybody from looking inside for
2793	 associativity, but won't generate any code.  */
2794      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2795	    || typecode == COMPLEX_TYPE
2796	    || typecode == VECTOR_TYPE))
2797	{
2798	  error ("wrong type argument to unary plus");
2799	  return error_mark_node;
2800	}
2801      else if (!noconvert)
2802	arg = default_conversion (arg);
2803      arg = non_lvalue (arg);
2804      break;
2805
2806    case NEGATE_EXPR:
2807      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2808	    || typecode == COMPLEX_TYPE
2809	    || typecode == VECTOR_TYPE))
2810	{
2811	  error ("wrong type argument to unary minus");
2812	  return error_mark_node;
2813	}
2814      else if (!noconvert)
2815	arg = default_conversion (arg);
2816      break;
2817
2818    case BIT_NOT_EXPR:
2819      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2820	{
2821	  if (!noconvert)
2822	    arg = default_conversion (arg);
2823	}
2824      else if (typecode == COMPLEX_TYPE)
2825	{
2826	  code = CONJ_EXPR;
2827	  if (pedantic)
2828	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2829	  if (!noconvert)
2830	    arg = default_conversion (arg);
2831	}
2832      else
2833	{
2834	  error ("wrong type argument to bit-complement");
2835	  return error_mark_node;
2836	}
2837      break;
2838
2839    case ABS_EXPR:
2840      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2841	{
2842	  error ("wrong type argument to abs");
2843	  return error_mark_node;
2844	}
2845      else if (!noconvert)
2846	arg = default_conversion (arg);
2847      break;
2848
2849    case CONJ_EXPR:
2850      /* Conjugating a real value is a no-op, but allow it anyway.  */
2851      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2852	    || typecode == COMPLEX_TYPE))
2853	{
2854	  error ("wrong type argument to conjugation");
2855	  return error_mark_node;
2856	}
2857      else if (!noconvert)
2858	arg = default_conversion (arg);
2859      break;
2860
2861    case TRUTH_NOT_EXPR:
2862      if (typecode != INTEGER_TYPE
2863	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2864	  && typecode != COMPLEX_TYPE)
2865	{
2866	  error ("wrong type argument to unary exclamation mark");
2867	  return error_mark_node;
2868	}
2869      arg = c_objc_common_truthvalue_conversion (arg);
2870      return invert_truthvalue (arg);
2871
2872    case REALPART_EXPR:
2873      if (TREE_CODE (arg) == COMPLEX_CST)
2874	return TREE_REALPART (arg);
2875      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2876	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2877      else
2878	return arg;
2879
2880    case IMAGPART_EXPR:
2881      if (TREE_CODE (arg) == COMPLEX_CST)
2882	return TREE_IMAGPART (arg);
2883      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2884	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2885      else
2886	return convert (TREE_TYPE (arg), integer_zero_node);
2887
2888    case PREINCREMENT_EXPR:
2889    case POSTINCREMENT_EXPR:
2890    case PREDECREMENT_EXPR:
2891    case POSTDECREMENT_EXPR:
2892
2893      /* Increment or decrement the real part of the value,
2894	 and don't change the imaginary part.  */
2895      if (typecode == COMPLEX_TYPE)
2896	{
2897	  tree real, imag;
2898
2899	  if (pedantic)
2900	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2901		     " on complex types");
2902
2903	  arg = stabilize_reference (arg);
2904	  real = build_unary_op (REALPART_EXPR, arg, 1);
2905	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2906	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2907			 build_unary_op (code, real, 1), imag);
2908	}
2909
2910      /* Report invalid types.  */
2911
2912      if (typecode != POINTER_TYPE
2913	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2914	{
2915	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2916	    error ("wrong type argument to increment");
2917	  else
2918	    error ("wrong type argument to decrement");
2919
2920	  return error_mark_node;
2921	}
2922
2923      {
2924	tree inc;
2925	tree result_type = TREE_TYPE (arg);
2926
2927	arg = get_unwidened (arg, 0);
2928	argtype = TREE_TYPE (arg);
2929
2930	/* Compute the increment.  */
2931
2932	if (typecode == POINTER_TYPE)
2933	  {
2934	    /* If pointer target is an undefined struct,
2935	       we just cannot know how to do the arithmetic.  */
2936	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2937	      {
2938		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2939		  error ("increment of pointer to unknown structure");
2940		else
2941		  error ("decrement of pointer to unknown structure");
2942	      }
2943	    else if ((pedantic || warn_pointer_arith)
2944		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2945			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2946	      {
2947		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2948		  pedwarn ("wrong type argument to increment");
2949		else
2950		  pedwarn ("wrong type argument to decrement");
2951	      }
2952
2953	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2954	  }
2955	else
2956	  inc = integer_one_node;
2957
2958	inc = convert (argtype, inc);
2959
2960	/* Complain about anything else that is not a true lvalue.  */
2961	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2962				    || code == POSTINCREMENT_EXPR)
2963				   ? lv_increment
2964				   : lv_decrement)))
2965	  return error_mark_node;
2966
2967	/* Report a read-only lvalue.  */
2968	if (TREE_READONLY (arg))
2969	  {
2970	    readonly_error (arg,
2971			    ((code == PREINCREMENT_EXPR
2972			      || code == POSTINCREMENT_EXPR)
2973			     ? lv_increment : lv_decrement));
2974	    return error_mark_node;
2975	  }
2976
2977	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2978	  val = boolean_increment (code, arg);
2979	else
2980	  val = build2 (code, TREE_TYPE (arg), arg, inc);
2981	TREE_SIDE_EFFECTS (val) = 1;
2982	val = convert (result_type, val);
2983	if (TREE_CODE (val) != code)
2984	  TREE_NO_WARNING (val) = 1;
2985	return val;
2986      }
2987
2988    case ADDR_EXPR:
2989      /* Note that this operation never does default_conversion.  */
2990
2991      /* Let &* cancel out to simplify resulting code.  */
2992      if (TREE_CODE (arg) == INDIRECT_REF)
2993	{
2994	  /* Don't let this be an lvalue.  */
2995	  if (lvalue_p (TREE_OPERAND (arg, 0)))
2996	    return non_lvalue (TREE_OPERAND (arg, 0));
2997	  return TREE_OPERAND (arg, 0);
2998	}
2999
3000      /* For &x[y], return x+y */
3001      if (TREE_CODE (arg) == ARRAY_REF)
3002	{
3003	  tree op0 = TREE_OPERAND (arg, 0);
3004	  if (!c_mark_addressable (op0))
3005	    return error_mark_node;
3006	  return build_binary_op (PLUS_EXPR,
3007				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3008				   ? array_to_pointer_conversion (op0)
3009				   : op0),
3010				  TREE_OPERAND (arg, 1), 1);
3011	}
3012
3013      /* Anything not already handled and not a true memory reference
3014	 or a non-lvalue array is an error.  */
3015      else if (typecode != FUNCTION_TYPE && !flag
3016	       && !lvalue_or_else (arg, lv_addressof))
3017	return error_mark_node;
3018
3019      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3020      argtype = TREE_TYPE (arg);
3021
3022      /* If the lvalue is const or volatile, merge that into the type
3023	 to which the address will point.  Note that you can't get a
3024	 restricted pointer by taking the address of something, so we
3025	 only have to deal with `const' and `volatile' here.  */
3026      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3027	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3028	  argtype = c_build_type_variant (argtype,
3029					  TREE_READONLY (arg),
3030					  TREE_THIS_VOLATILE (arg));
3031
3032      if (!c_mark_addressable (arg))
3033	return error_mark_node;
3034
3035      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3036		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3037
3038      argtype = build_pointer_type (argtype);
3039
3040      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3041	 when we have proper support for integer constant expressions.  */
3042      val = get_base_address (arg);
3043      if (val && TREE_CODE (val) == INDIRECT_REF
3044          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3045	{
3046	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3047
3048	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3049	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3050	}
3051
3052      val = build1 (ADDR_EXPR, argtype, arg);
3053
3054      return val;
3055
3056    default:
3057      gcc_unreachable ();
3058    }
3059
3060  if (argtype == 0)
3061    argtype = TREE_TYPE (arg);
3062  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3063				: fold_build1 (code, argtype, arg);
3064}
3065
3066/* Return nonzero if REF is an lvalue valid for this language.
3067   Lvalues can be assigned, unless their type has TYPE_READONLY.
3068   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3069
3070static int
3071lvalue_p (tree ref)
3072{
3073  enum tree_code code = TREE_CODE (ref);
3074
3075  switch (code)
3076    {
3077    case REALPART_EXPR:
3078    case IMAGPART_EXPR:
3079    case COMPONENT_REF:
3080      return lvalue_p (TREE_OPERAND (ref, 0));
3081
3082    case COMPOUND_LITERAL_EXPR:
3083    case STRING_CST:
3084      return 1;
3085
3086    case INDIRECT_REF:
3087    case ARRAY_REF:
3088    case VAR_DECL:
3089    case PARM_DECL:
3090    case RESULT_DECL:
3091    case ERROR_MARK:
3092      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3093	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3094
3095    case BIND_EXPR:
3096      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3097
3098    default:
3099      return 0;
3100    }
3101}
3102
3103/* Give an error for storing in something that is 'const'.  */
3104
3105static void
3106readonly_error (tree arg, enum lvalue_use use)
3107{
3108  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3109	      || use == lv_asm);
3110  /* Using this macro rather than (for example) arrays of messages
3111     ensures that all the format strings are checked at compile
3112     time.  */
3113#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3114				   : (use == lv_increment ? (I)		\
3115				   : (use == lv_decrement ? (D) : (AS))))
3116  if (TREE_CODE (arg) == COMPONENT_REF)
3117    {
3118      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3119	readonly_error (TREE_OPERAND (arg, 0), use);
3120      else
3121	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3122			     G_("increment of read-only member %qD"),
3123			     G_("decrement of read-only member %qD"),
3124			     G_("read-only member %qD used as %<asm%> output")),
3125	       TREE_OPERAND (arg, 1));
3126    }
3127  else if (TREE_CODE (arg) == VAR_DECL)
3128    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3129			 G_("increment of read-only variable %qD"),
3130			 G_("decrement of read-only variable %qD"),
3131			 G_("read-only variable %qD used as %<asm%> output")),
3132	   arg);
3133  else
3134    error (READONLY_MSG (G_("assignment of read-only location"),
3135			 G_("increment of read-only location"),
3136			 G_("decrement of read-only location"),
3137			 G_("read-only location used as %<asm%> output")));
3138}
3139
3140
3141/* Return nonzero if REF is an lvalue valid for this language;
3142   otherwise, print an error message and return zero.  USE says
3143   how the lvalue is being used and so selects the error message.  */
3144
3145static int
3146lvalue_or_else (tree ref, enum lvalue_use use)
3147{
3148  int win = lvalue_p (ref);
3149
3150  if (!win)
3151    lvalue_error (use);
3152
3153  return win;
3154}
3155
3156/* Mark EXP saying that we need to be able to take the
3157   address of it; it should not be allocated in a register.
3158   Returns true if successful.  */
3159
3160bool
3161c_mark_addressable (tree exp)
3162{
3163  tree x = exp;
3164
3165  while (1)
3166    switch (TREE_CODE (x))
3167      {
3168      case COMPONENT_REF:
3169	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3170	  {
3171	    error
3172	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3173	    return false;
3174	  }
3175
3176	/* ... fall through ...  */
3177
3178      case ADDR_EXPR:
3179      case ARRAY_REF:
3180      case REALPART_EXPR:
3181      case IMAGPART_EXPR:
3182	x = TREE_OPERAND (x, 0);
3183	break;
3184
3185      case COMPOUND_LITERAL_EXPR:
3186      case CONSTRUCTOR:
3187	TREE_ADDRESSABLE (x) = 1;
3188	return true;
3189
3190      case VAR_DECL:
3191      case CONST_DECL:
3192      case PARM_DECL:
3193      case RESULT_DECL:
3194	if (C_DECL_REGISTER (x)
3195	    && DECL_NONLOCAL (x))
3196	  {
3197	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3198	      {
3199		error
3200		  ("global register variable %qD used in nested function", x);
3201		return false;
3202	      }
3203	    pedwarn ("register variable %qD used in nested function", x);
3204	  }
3205	else if (C_DECL_REGISTER (x))
3206	  {
3207	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3208	      error ("address of global register variable %qD requested", x);
3209	    else
3210	      error ("address of register variable %qD requested", x);
3211	    return false;
3212	  }
3213
3214	/* drops in */
3215      case FUNCTION_DECL:
3216	TREE_ADDRESSABLE (x) = 1;
3217	/* drops out */
3218      default:
3219	return true;
3220    }
3221}
3222
3223/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3224
3225tree
3226build_conditional_expr (tree ifexp, tree op1, tree op2)
3227{
3228  tree type1;
3229  tree type2;
3230  enum tree_code code1;
3231  enum tree_code code2;
3232  tree result_type = NULL;
3233  tree orig_op1 = op1, orig_op2 = op2;
3234
3235  /* Promote both alternatives.  */
3236
3237  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3238    op1 = default_conversion (op1);
3239  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3240    op2 = default_conversion (op2);
3241
3242  if (TREE_CODE (ifexp) == ERROR_MARK
3243      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3244      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3245    return error_mark_node;
3246
3247  type1 = TREE_TYPE (op1);
3248  code1 = TREE_CODE (type1);
3249  type2 = TREE_TYPE (op2);
3250  code2 = TREE_CODE (type2);
3251
3252  /* C90 does not permit non-lvalue arrays in conditional expressions.
3253     In C99 they will be pointers by now.  */
3254  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3255    {
3256      error ("non-lvalue array in conditional expression");
3257      return error_mark_node;
3258    }
3259
3260  /* Quickly detect the usual case where op1 and op2 have the same type
3261     after promotion.  */
3262  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3263    {
3264      if (type1 == type2)
3265	result_type = type1;
3266      else
3267	result_type = TYPE_MAIN_VARIANT (type1);
3268    }
3269  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3270	    || code1 == COMPLEX_TYPE)
3271	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3272	       || code2 == COMPLEX_TYPE))
3273    {
3274      result_type = c_common_type (type1, type2);
3275
3276      /* If -Wsign-compare, warn here if type1 and type2 have
3277	 different signedness.  We'll promote the signed to unsigned
3278	 and later code won't know it used to be different.
3279	 Do this check on the original types, so that explicit casts
3280	 will be considered, but default promotions won't.  */
3281      if (warn_sign_compare && !skip_evaluation)
3282	{
3283	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3284	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3285
3286	  if (unsigned_op1 ^ unsigned_op2)
3287	    {
3288	      bool ovf;
3289
3290	      /* Do not warn if the result type is signed, since the
3291		 signed type will only be chosen if it can represent
3292		 all the values of the unsigned type.  */
3293	      if (!TYPE_UNSIGNED (result_type))
3294		/* OK */;
3295	      /* Do not warn if the signed quantity is an unsuffixed
3296		 integer literal (or some static constant expression
3297		 involving such literals) and it is non-negative.  */
3298	      else if ((unsigned_op2
3299			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3300		       || (unsigned_op1
3301			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3302		/* OK */;
3303	      else
3304		warning (0, "signed and unsigned type in conditional expression");
3305	    }
3306	}
3307    }
3308  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3309    {
3310      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3311	pedwarn ("ISO C forbids conditional expr with only one void side");
3312      result_type = void_type_node;
3313    }
3314  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3315    {
3316      if (comp_target_types (type1, type2))
3317	result_type = common_pointer_type (type1, type2);
3318      else if (null_pointer_constant_p (orig_op1))
3319	result_type = qualify_type (type2, type1);
3320      else if (null_pointer_constant_p (orig_op2))
3321	result_type = qualify_type (type1, type2);
3322      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3323	{
3324	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3325	    pedwarn ("ISO C forbids conditional expr between "
3326		     "%<void *%> and function pointer");
3327	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3328							  TREE_TYPE (type2)));
3329	}
3330      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3331	{
3332	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3333	    pedwarn ("ISO C forbids conditional expr between "
3334		     "%<void *%> and function pointer");
3335	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3336							  TREE_TYPE (type1)));
3337	}
3338      else
3339	{
3340	  pedwarn ("pointer type mismatch in conditional expression");
3341	  result_type = build_pointer_type (void_type_node);
3342	}
3343    }
3344  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3345    {
3346      if (!null_pointer_constant_p (orig_op2))
3347	pedwarn ("pointer/integer type mismatch in conditional expression");
3348      else
3349	{
3350	  op2 = null_pointer_node;
3351	}
3352      result_type = type1;
3353    }
3354  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3355    {
3356      if (!null_pointer_constant_p (orig_op1))
3357	pedwarn ("pointer/integer type mismatch in conditional expression");
3358      else
3359	{
3360	  op1 = null_pointer_node;
3361	}
3362      result_type = type2;
3363    }
3364
3365  if (!result_type)
3366    {
3367      if (flag_cond_mismatch)
3368	result_type = void_type_node;
3369      else
3370	{
3371	  error ("type mismatch in conditional expression");
3372	  return error_mark_node;
3373	}
3374    }
3375
3376  /* Merge const and volatile flags of the incoming types.  */
3377  result_type
3378    = build_type_variant (result_type,
3379			  TREE_READONLY (op1) || TREE_READONLY (op2),
3380			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3381
3382  if (result_type != TREE_TYPE (op1))
3383    op1 = convert_and_check (result_type, op1);
3384  if (result_type != TREE_TYPE (op2))
3385    op2 = convert_and_check (result_type, op2);
3386
3387  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3388}
3389
3390/* Return a compound expression that performs two expressions and
3391   returns the value of the second of them.  */
3392
3393tree
3394build_compound_expr (tree expr1, tree expr2)
3395{
3396  if (!TREE_SIDE_EFFECTS (expr1))
3397    {
3398      /* The left-hand operand of a comma expression is like an expression
3399	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3400	 any side-effects, unless it was explicitly cast to (void).  */
3401      if (warn_unused_value)
3402	{
3403	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3404	      && (TREE_CODE (expr1) == NOP_EXPR
3405		  || TREE_CODE (expr1) == CONVERT_EXPR))
3406	    ; /* (void) a, b */
3407	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3408		   && TREE_CODE (expr1) == COMPOUND_EXPR
3409		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3410		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3411	    ; /* (void) a, (void) b, c */
3412	  else
3413	    warning (0, "left-hand operand of comma expression has no effect");
3414	}
3415    }
3416
3417  /* With -Wunused, we should also warn if the left-hand operand does have
3418     side-effects, but computes a value which is not used.  For example, in
3419     `foo() + bar(), baz()' the result of the `+' operator is not used,
3420     so we should issue a warning.  */
3421  else if (warn_unused_value)
3422    warn_if_unused_value (expr1, input_location);
3423
3424  if (expr2 == error_mark_node)
3425    return error_mark_node;
3426
3427  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3428}
3429
3430/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3431
3432tree
3433build_c_cast (tree type, tree expr)
3434{
3435  tree value = expr;
3436
3437  if (type == error_mark_node || expr == error_mark_node)
3438    return error_mark_node;
3439
3440  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3441     only in <protocol> qualifications.  But when constructing cast expressions,
3442     the protocols do matter and must be kept around.  */
3443  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3444    return build1 (NOP_EXPR, type, expr);
3445
3446  type = TYPE_MAIN_VARIANT (type);
3447
3448  if (TREE_CODE (type) == ARRAY_TYPE)
3449    {
3450      error ("cast specifies array type");
3451      return error_mark_node;
3452    }
3453
3454  if (TREE_CODE (type) == FUNCTION_TYPE)
3455    {
3456      error ("cast specifies function type");
3457      return error_mark_node;
3458    }
3459
3460  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3461    {
3462      if (pedantic)
3463	{
3464	  if (TREE_CODE (type) == RECORD_TYPE
3465	      || TREE_CODE (type) == UNION_TYPE)
3466	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3467	}
3468    }
3469  else if (TREE_CODE (type) == UNION_TYPE)
3470    {
3471      tree field;
3472
3473      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3474	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3475		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3476	  break;
3477
3478      if (field)
3479	{
3480	  tree t;
3481
3482	  if (pedantic)
3483	    pedwarn ("ISO C forbids casts to union type");
3484	  t = digest_init (type,
3485			   build_constructor_single (type, field, value),
3486			   true, 0);
3487	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3488	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3489	  return t;
3490	}
3491      error ("cast to union type from type not present in union");
3492      return error_mark_node;
3493    }
3494  else
3495    {
3496      tree otype, ovalue;
3497
3498      if (type == void_type_node)
3499	return build1 (CONVERT_EXPR, type, value);
3500
3501      otype = TREE_TYPE (value);
3502
3503      /* Optionally warn about potentially worrisome casts.  */
3504
3505      if (warn_cast_qual
3506	  && TREE_CODE (type) == POINTER_TYPE
3507	  && TREE_CODE (otype) == POINTER_TYPE)
3508	{
3509	  tree in_type = type;
3510	  tree in_otype = otype;
3511	  int added = 0;
3512	  int discarded = 0;
3513
3514	  /* Check that the qualifiers on IN_TYPE are a superset of
3515	     the qualifiers of IN_OTYPE.  The outermost level of
3516	     POINTER_TYPE nodes is uninteresting and we stop as soon
3517	     as we hit a non-POINTER_TYPE node on either type.  */
3518	  do
3519	    {
3520	      in_otype = TREE_TYPE (in_otype);
3521	      in_type = TREE_TYPE (in_type);
3522
3523	      /* GNU C allows cv-qualified function types.  'const'
3524		 means the function is very pure, 'volatile' means it
3525		 can't return.  We need to warn when such qualifiers
3526		 are added, not when they're taken away.  */
3527	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3528		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3529		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3530	      else
3531		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3532	    }
3533	  while (TREE_CODE (in_type) == POINTER_TYPE
3534		 && TREE_CODE (in_otype) == POINTER_TYPE);
3535
3536	  if (added)
3537	    warning (0, "cast adds new qualifiers to function type");
3538
3539	  if (discarded)
3540	    /* There are qualifiers present in IN_OTYPE that are not
3541	       present in IN_TYPE.  */
3542	    warning (0, "cast discards qualifiers from pointer target type");
3543	}
3544
3545      /* Warn about possible alignment problems.  */
3546      if (STRICT_ALIGNMENT
3547	  && TREE_CODE (type) == POINTER_TYPE
3548	  && TREE_CODE (otype) == POINTER_TYPE
3549	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3550	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3551	  /* Don't warn about opaque types, where the actual alignment
3552	     restriction is unknown.  */
3553	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3554		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3555	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3556	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3557	warning (OPT_Wcast_align,
3558		 "cast increases required alignment of target type");
3559
3560      if (TREE_CODE (type) == INTEGER_TYPE
3561	  && TREE_CODE (otype) == POINTER_TYPE
3562	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3563      /* Unlike conversion of integers to pointers, where the
3564         warning is disabled for converting constants because
3565         of cases such as SIG_*, warn about converting constant
3566         pointers to integers. In some cases it may cause unwanted
3567         sign extension, and a warning is appropriate.  */
3568	warning (OPT_Wpointer_to_int_cast,
3569		 "cast from pointer to integer of different size");
3570
3571      if (TREE_CODE (value) == CALL_EXPR
3572	  && TREE_CODE (type) != TREE_CODE (otype))
3573	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3574		 "to non-matching type %qT", otype, type);
3575
3576      if (TREE_CODE (type) == POINTER_TYPE
3577	  && TREE_CODE (otype) == INTEGER_TYPE
3578	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3579	  /* Don't warn about converting any constant.  */
3580	  && !TREE_CONSTANT (value))
3581	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3582		 "of different size");
3583
3584      if (warn_strict_aliasing <= 2)
3585        strict_aliasing_warning (otype, type, expr);
3586
3587      /* If pedantic, warn for conversions between function and object
3588	 pointer types, except for converting a null pointer constant
3589	 to function pointer type.  */
3590      if (pedantic
3591	  && TREE_CODE (type) == POINTER_TYPE
3592	  && TREE_CODE (otype) == POINTER_TYPE
3593	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3594	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3595	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3596
3597      if (pedantic
3598	  && TREE_CODE (type) == POINTER_TYPE
3599	  && TREE_CODE (otype) == POINTER_TYPE
3600	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3601	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3602	  && !null_pointer_constant_p (value))
3603	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3604
3605      ovalue = value;
3606      value = convert (type, value);
3607
3608      /* Ignore any integer overflow caused by the cast.  */
3609      if (TREE_CODE (value) == INTEGER_CST)
3610	{
3611	  if (CONSTANT_CLASS_P (ovalue)
3612	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3613	    {
3614	      /* Avoid clobbering a shared constant.  */
3615	      value = copy_node (value);
3616	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3617	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3618	    }
3619	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3620	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3621	    value = build_int_cst_wide (TREE_TYPE (value),
3622					TREE_INT_CST_LOW (value),
3623					TREE_INT_CST_HIGH (value));
3624	}
3625    }
3626
3627  /* Don't let a cast be an lvalue.  */
3628  if (value == expr)
3629    value = non_lvalue (value);
3630
3631  return value;
3632}
3633
3634/* Interpret a cast of expression EXPR to type TYPE.  */
3635tree
3636c_cast_expr (struct c_type_name *type_name, tree expr)
3637{
3638  tree type;
3639  int saved_wsp = warn_strict_prototypes;
3640
3641  /* This avoids warnings about unprototyped casts on
3642     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3643  if (TREE_CODE (expr) == INTEGER_CST)
3644    warn_strict_prototypes = 0;
3645  type = groktypename (type_name);
3646  warn_strict_prototypes = saved_wsp;
3647
3648  return build_c_cast (type, expr);
3649}
3650
3651/* Build an assignment expression of lvalue LHS from value RHS.
3652   MODIFYCODE is the code for a binary operator that we use
3653   to combine the old value of LHS with RHS to get the new value.
3654   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3655
3656tree
3657build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3658{
3659  tree result;
3660  tree newrhs;
3661  tree lhstype = TREE_TYPE (lhs);
3662  tree olhstype = lhstype;
3663
3664  /* Types that aren't fully specified cannot be used in assignments.  */
3665  lhs = require_complete_type (lhs);
3666
3667  /* Avoid duplicate error messages from operands that had errors.  */
3668  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3669    return error_mark_node;
3670
3671  if (!lvalue_or_else (lhs, lv_assign))
3672    return error_mark_node;
3673
3674  STRIP_TYPE_NOPS (rhs);
3675
3676  newrhs = rhs;
3677
3678  /* If a binary op has been requested, combine the old LHS value with the RHS
3679     producing the value we should actually store into the LHS.  */
3680
3681  if (modifycode != NOP_EXPR)
3682    {
3683      lhs = stabilize_reference (lhs);
3684      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3685    }
3686
3687  /* Give an error for storing in something that is 'const'.  */
3688
3689  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3690      || ((TREE_CODE (lhstype) == RECORD_TYPE
3691	   || TREE_CODE (lhstype) == UNION_TYPE)
3692	  && C_TYPE_FIELDS_READONLY (lhstype)))
3693    {
3694      readonly_error (lhs, lv_assign);
3695      return error_mark_node;
3696    }
3697
3698  /* If storing into a structure or union member,
3699     it has probably been given type `int'.
3700     Compute the type that would go with
3701     the actual amount of storage the member occupies.  */
3702
3703  if (TREE_CODE (lhs) == COMPONENT_REF
3704      && (TREE_CODE (lhstype) == INTEGER_TYPE
3705	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3706	  || TREE_CODE (lhstype) == REAL_TYPE
3707	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3708    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3709
3710  /* If storing in a field that is in actuality a short or narrower than one,
3711     we must store in the field in its actual type.  */
3712
3713  if (lhstype != TREE_TYPE (lhs))
3714    {
3715      lhs = copy_node (lhs);
3716      TREE_TYPE (lhs) = lhstype;
3717    }
3718
3719  /* Convert new value to destination type.  */
3720
3721  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3722				   NULL_TREE, NULL_TREE, 0);
3723  if (TREE_CODE (newrhs) == ERROR_MARK)
3724    return error_mark_node;
3725
3726  /* Emit ObjC write barrier, if necessary.  */
3727  if (c_dialect_objc () && flag_objc_gc)
3728    {
3729      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3730      if (result)
3731	return result;
3732    }
3733
3734  /* Scan operands.  */
3735
3736  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3737  TREE_SIDE_EFFECTS (result) = 1;
3738
3739  /* If we got the LHS in a different type for storing in,
3740     convert the result back to the nominal type of LHS
3741     so that the value we return always has the same type
3742     as the LHS argument.  */
3743
3744  if (olhstype == TREE_TYPE (result))
3745    return result;
3746  return convert_for_assignment (olhstype, result, ic_assign,
3747				 NULL_TREE, NULL_TREE, 0);
3748}
3749
3750/* Convert value RHS to type TYPE as preparation for an assignment
3751   to an lvalue of type TYPE.
3752   The real work of conversion is done by `convert'.
3753   The purpose of this function is to generate error messages
3754   for assignments that are not allowed in C.
3755   ERRTYPE says whether it is argument passing, assignment,
3756   initialization or return.
3757
3758   FUNCTION is a tree for the function being called.
3759   PARMNUM is the number of the argument, for printing in error messages.  */
3760
3761static tree
3762convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3763			tree fundecl, tree function, int parmnum)
3764{
3765  enum tree_code codel = TREE_CODE (type);
3766  tree rhstype;
3767  enum tree_code coder;
3768  tree rname = NULL_TREE;
3769  bool objc_ok = false;
3770
3771  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3772    {
3773      tree selector;
3774      /* Change pointer to function to the function itself for
3775	 diagnostics.  */
3776      if (TREE_CODE (function) == ADDR_EXPR
3777	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3778	function = TREE_OPERAND (function, 0);
3779
3780      /* Handle an ObjC selector specially for diagnostics.  */
3781      selector = objc_message_selector ();
3782      rname = function;
3783      if (selector && parmnum > 2)
3784	{
3785	  rname = selector;
3786	  parmnum -= 2;
3787	}
3788    }
3789
3790  /* This macro is used to emit diagnostics to ensure that all format
3791     strings are complete sentences, visible to gettext and checked at
3792     compile time.  */
3793#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3794  do {						\
3795    switch (errtype)				\
3796      {						\
3797      case ic_argpass:				\
3798	pedwarn (AR, parmnum, rname);		\
3799	break;					\
3800      case ic_argpass_nonproto:			\
3801	warning (0, AR, parmnum, rname);		\
3802	break;					\
3803      case ic_assign:				\
3804	pedwarn (AS);				\
3805	break;					\
3806      case ic_init:				\
3807	pedwarn (IN);				\
3808	break;					\
3809      case ic_return:				\
3810	pedwarn (RE);				\
3811	break;					\
3812      default:					\
3813	gcc_unreachable ();			\
3814      }						\
3815  } while (0)
3816
3817  STRIP_TYPE_NOPS (rhs);
3818
3819  if (optimize && TREE_CODE (rhs) == VAR_DECL
3820	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3821    rhs = decl_constant_value_for_broken_optimization (rhs);
3822
3823  rhstype = TREE_TYPE (rhs);
3824  coder = TREE_CODE (rhstype);
3825
3826  if (coder == ERROR_MARK)
3827    return error_mark_node;
3828
3829  if (c_dialect_objc ())
3830    {
3831      int parmno;
3832
3833      switch (errtype)
3834	{
3835	case ic_return:
3836	  parmno = 0;
3837	  break;
3838
3839	case ic_assign:
3840	  parmno = -1;
3841	  break;
3842
3843	case ic_init:
3844	  parmno = -2;
3845	  break;
3846
3847	default:
3848	  parmno = parmnum;
3849	  break;
3850	}
3851
3852      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3853    }
3854
3855  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3856    return rhs;
3857
3858  if (coder == VOID_TYPE)
3859    {
3860      /* Except for passing an argument to an unprototyped function,
3861	 this is a constraint violation.  When passing an argument to
3862	 an unprototyped function, it is compile-time undefined;
3863	 making it a constraint in that case was rejected in
3864	 DR#252.  */
3865      error ("void value not ignored as it ought to be");
3866      return error_mark_node;
3867    }
3868  /* A type converts to a reference to it.
3869     This code doesn't fully support references, it's just for the
3870     special case of va_start and va_copy.  */
3871  if (codel == REFERENCE_TYPE
3872      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3873    {
3874      if (!lvalue_p (rhs))
3875	{
3876	  error ("cannot pass rvalue to reference parameter");
3877	  return error_mark_node;
3878	}
3879      if (!c_mark_addressable (rhs))
3880	return error_mark_node;
3881      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3882
3883      /* We already know that these two types are compatible, but they
3884	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3885	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3886	 likely to be va_list, a typedef to __builtin_va_list, which
3887	 is different enough that it will cause problems later.  */
3888      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3889	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3890
3891      rhs = build1 (NOP_EXPR, type, rhs);
3892      return rhs;
3893    }
3894  /* Some types can interconvert without explicit casts.  */
3895  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3896	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3897    return convert (type, rhs);
3898  /* Arithmetic types all interconvert, and enum is treated like int.  */
3899  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3900	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3901	    || codel == BOOLEAN_TYPE)
3902	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3903	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3904	       || coder == BOOLEAN_TYPE))
3905    return convert_and_check (type, rhs);
3906
3907  /* Aggregates in different TUs might need conversion.  */
3908  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3909      && codel == coder
3910      && comptypes (type, rhstype))
3911    return convert_and_check (type, rhs);
3912
3913  /* Conversion to a transparent union from its member types.
3914     This applies only to function arguments.  */
3915  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3916      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3917    {
3918      tree memb, marginal_memb = NULL_TREE;
3919
3920      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3921	{
3922	  tree memb_type = TREE_TYPE (memb);
3923
3924	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3925			 TYPE_MAIN_VARIANT (rhstype)))
3926	    break;
3927
3928	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3929	    continue;
3930
3931	  if (coder == POINTER_TYPE)
3932	    {
3933	      tree ttl = TREE_TYPE (memb_type);
3934	      tree ttr = TREE_TYPE (rhstype);
3935
3936	      /* Any non-function converts to a [const][volatile] void *
3937		 and vice versa; otherwise, targets must be the same.
3938		 Meanwhile, the lhs target must have all the qualifiers of
3939		 the rhs.  */
3940	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3941		  || comp_target_types (memb_type, rhstype))
3942		{
3943		  /* If this type won't generate any warnings, use it.  */
3944		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3945		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3946			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3947			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3948			     == TYPE_QUALS (ttr))
3949			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3950			     == TYPE_QUALS (ttl))))
3951		    break;
3952
3953		  /* Keep looking for a better type, but remember this one.  */
3954		  if (!marginal_memb)
3955		    marginal_memb = memb;
3956		}
3957	    }
3958
3959	  /* Can convert integer zero to any pointer type.  */
3960	  if (null_pointer_constant_p (rhs))
3961	    {
3962	      rhs = null_pointer_node;
3963	      break;
3964	    }
3965	}
3966
3967      if (memb || marginal_memb)
3968	{
3969	  if (!memb)
3970	    {
3971	      /* We have only a marginally acceptable member type;
3972		 it needs a warning.  */
3973	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3974	      tree ttr = TREE_TYPE (rhstype);
3975
3976	      /* Const and volatile mean something different for function
3977		 types, so the usual warnings are not appropriate.  */
3978	      if (TREE_CODE (ttr) == FUNCTION_TYPE
3979		  && TREE_CODE (ttl) == FUNCTION_TYPE)
3980		{
3981		  /* Because const and volatile on functions are
3982		     restrictions that say the function will not do
3983		     certain things, it is okay to use a const or volatile
3984		     function where an ordinary one is wanted, but not
3985		     vice-versa.  */
3986		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3987		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3988					    "makes qualified function "
3989					    "pointer from unqualified"),
3990					 G_("assignment makes qualified "
3991					    "function pointer from "
3992					    "unqualified"),
3993					 G_("initialization makes qualified "
3994					    "function pointer from "
3995					    "unqualified"),
3996					 G_("return makes qualified function "
3997					    "pointer from unqualified"));
3998		}
3999	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4000		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4001					"qualifiers from pointer target type"),
4002				     G_("assignment discards qualifiers "
4003					"from pointer target type"),
4004				     G_("initialization discards qualifiers "
4005					"from pointer target type"),
4006				     G_("return discards qualifiers from "
4007					"pointer target type"));
4008
4009	      memb = marginal_memb;
4010	    }
4011
4012	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4013	    pedwarn ("ISO C prohibits argument conversion to union type");
4014
4015	  return build_constructor_single (type, memb, rhs);
4016	}
4017    }
4018
4019  /* Conversions among pointers */
4020  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4021	   && (coder == codel))
4022    {
4023      tree ttl = TREE_TYPE (type);
4024      tree ttr = TREE_TYPE (rhstype);
4025      tree mvl = ttl;
4026      tree mvr = ttr;
4027      bool is_opaque_pointer;
4028      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4029
4030      if (TREE_CODE (mvl) != ARRAY_TYPE)
4031	mvl = TYPE_MAIN_VARIANT (mvl);
4032      if (TREE_CODE (mvr) != ARRAY_TYPE)
4033	mvr = TYPE_MAIN_VARIANT (mvr);
4034      /* Opaque pointers are treated like void pointers.  */
4035      is_opaque_pointer = (targetm.vector_opaque_p (type)
4036			   || targetm.vector_opaque_p (rhstype))
4037	&& TREE_CODE (ttl) == VECTOR_TYPE
4038	&& TREE_CODE (ttr) == VECTOR_TYPE;
4039
4040      /* C++ does not allow the implicit conversion void* -> T*.  However,
4041	 for the purpose of reducing the number of false positives, we
4042	 tolerate the special case of
4043
4044		int *p = NULL;
4045
4046	 where NULL is typically defined in C to be '(void *) 0'.  */
4047      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4048	warning (OPT_Wc___compat, "request for implicit conversion from "
4049		 "%qT to %qT not permitted in C++", rhstype, type);
4050
4051      /* Check if the right-hand side has a format attribute but the
4052	 left-hand side doesn't.  */
4053      if (warn_missing_format_attribute
4054	  && check_missing_format_attribute (type, rhstype))
4055	{
4056	  switch (errtype)
4057	  {
4058	  case ic_argpass:
4059	  case ic_argpass_nonproto:
4060	    warning (OPT_Wmissing_format_attribute,
4061		     "argument %d of %qE might be "
4062		     "a candidate for a format attribute",
4063		     parmnum, rname);
4064	    break;
4065	  case ic_assign:
4066	    warning (OPT_Wmissing_format_attribute,
4067		     "assignment left-hand side might be "
4068		     "a candidate for a format attribute");
4069	    break;
4070	  case ic_init:
4071	    warning (OPT_Wmissing_format_attribute,
4072		     "initialization left-hand side might be "
4073		     "a candidate for a format attribute");
4074	    break;
4075	  case ic_return:
4076	    warning (OPT_Wmissing_format_attribute,
4077		     "return type might be "
4078		     "a candidate for a format attribute");
4079	    break;
4080	  default:
4081	    gcc_unreachable ();
4082	  }
4083	}
4084
4085      /* Any non-function converts to a [const][volatile] void *
4086	 and vice versa; otherwise, targets must be the same.
4087	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4088      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4089	  || (target_cmp = comp_target_types (type, rhstype))
4090	  || is_opaque_pointer
4091	  || (c_common_unsigned_type (mvl)
4092	      == c_common_unsigned_type (mvr)))
4093	{
4094	  if (pedantic
4095	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4096		  ||
4097		  (VOID_TYPE_P (ttr)
4098		   && !null_pointer_constant_p (rhs)
4099		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4100	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4101				    "%qE between function pointer "
4102				    "and %<void *%>"),
4103				 G_("ISO C forbids assignment between "
4104				    "function pointer and %<void *%>"),
4105				 G_("ISO C forbids initialization between "
4106				    "function pointer and %<void *%>"),
4107				 G_("ISO C forbids return between function "
4108				    "pointer and %<void *%>"));
4109	  /* Const and volatile mean something different for function types,
4110	     so the usual warnings are not appropriate.  */
4111	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4112		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4113	    {
4114	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4115		{
4116		  /* Types differing only by the presence of the 'volatile'
4117		     qualifier are acceptable if the 'volatile' has been added
4118		     in by the Objective-C EH machinery.  */
4119		  if (!objc_type_quals_match (ttl, ttr))
4120		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4121					    "qualifiers from pointer target type"),
4122					 G_("assignment discards qualifiers "
4123					    "from pointer target type"),
4124					 G_("initialization discards qualifiers "
4125					    "from pointer target type"),
4126					 G_("return discards qualifiers from "
4127					    "pointer target type"));
4128		}
4129	      /* If this is not a case of ignoring a mismatch in signedness,
4130		 no warning.  */
4131	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4132		       || target_cmp)
4133		;
4134	      /* If there is a mismatch, do warn.  */
4135	      else if (warn_pointer_sign)
4136		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4137					"%d of %qE differ in signedness"),
4138				     G_("pointer targets in assignment "
4139					"differ in signedness"),
4140				     G_("pointer targets in initialization "
4141					"differ in signedness"),
4142				     G_("pointer targets in return differ "
4143					"in signedness"));
4144	    }
4145	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4146		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4147	    {
4148	      /* Because const and volatile on functions are restrictions
4149		 that say the function will not do certain things,
4150		 it is okay to use a const or volatile function
4151		 where an ordinary one is wanted, but not vice-versa.  */
4152	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4153		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4154					"qualified function pointer "
4155					"from unqualified"),
4156				     G_("assignment makes qualified function "
4157					"pointer from unqualified"),
4158				     G_("initialization makes qualified "
4159					"function pointer from unqualified"),
4160				     G_("return makes qualified function "
4161					"pointer from unqualified"));
4162	    }
4163	}
4164      else
4165	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4166	if (!objc_ok)
4167	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4168				  "incompatible pointer type"),
4169			       G_("assignment from incompatible pointer type"),
4170			       G_("initialization from incompatible "
4171				  "pointer type"),
4172			       G_("return from incompatible pointer type"));
4173
4174      return convert (type, rhs);
4175    }
4176  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4177    {
4178      /* ??? This should not be an error when inlining calls to
4179	 unprototyped functions.  */
4180      error ("invalid use of non-lvalue array");
4181      return error_mark_node;
4182    }
4183  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4184    {
4185      /* An explicit constant 0 can convert to a pointer,
4186	 or one that results from arithmetic, even including
4187	 a cast to integer type.  */
4188      if (!null_pointer_constant_p (rhs))
4189	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4190				"pointer from integer without a cast"),
4191			     G_("assignment makes pointer from integer "
4192				"without a cast"),
4193			     G_("initialization makes pointer from "
4194				"integer without a cast"),
4195			     G_("return makes pointer from integer "
4196				"without a cast"));
4197
4198      return convert (type, rhs);
4199    }
4200  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4201    {
4202      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4203			      "from pointer without a cast"),
4204			   G_("assignment makes integer from pointer "
4205			      "without a cast"),
4206			   G_("initialization makes integer from pointer "
4207			      "without a cast"),
4208			   G_("return makes integer from pointer "
4209			      "without a cast"));
4210      return convert (type, rhs);
4211    }
4212  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4213    return convert (type, rhs);
4214
4215  switch (errtype)
4216    {
4217    case ic_argpass:
4218    case ic_argpass_nonproto:
4219      /* ??? This should not be an error when inlining calls to
4220	 unprototyped functions.  */
4221      error ("incompatible type for argument %d of %qE", parmnum, rname);
4222      break;
4223    case ic_assign:
4224      error ("incompatible types in assignment");
4225      break;
4226    case ic_init:
4227      error ("incompatible types in initialization");
4228      break;
4229    case ic_return:
4230      error ("incompatible types in return");
4231      break;
4232    default:
4233      gcc_unreachable ();
4234    }
4235
4236  return error_mark_node;
4237}
4238
4239/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4240   is used for error and warning reporting and indicates which argument
4241   is being processed.  */
4242
4243tree
4244c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4245{
4246  tree ret, type;
4247
4248  /* If FN was prototyped at the call site, the value has been converted
4249     already in convert_arguments.
4250     However, we might see a prototype now that was not in place when
4251     the function call was seen, so check that the VALUE actually matches
4252     PARM before taking an early exit.  */
4253  if (!value
4254      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4255	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4256	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4257    return value;
4258
4259  type = TREE_TYPE (parm);
4260  ret = convert_for_assignment (type, value,
4261				ic_argpass_nonproto, fn,
4262				fn, argnum);
4263  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4264      && INTEGRAL_TYPE_P (type)
4265      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4266    ret = default_conversion (ret);
4267  return ret;
4268}
4269
4270/* If VALUE is a compound expr all of whose expressions are constant, then
4271   return its value.  Otherwise, return error_mark_node.
4272
4273   This is for handling COMPOUND_EXPRs as initializer elements
4274   which is allowed with a warning when -pedantic is specified.  */
4275
4276static tree
4277valid_compound_expr_initializer (tree value, tree endtype)
4278{
4279  if (TREE_CODE (value) == COMPOUND_EXPR)
4280    {
4281      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4282	  == error_mark_node)
4283	return error_mark_node;
4284      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4285					      endtype);
4286    }
4287  else if (!initializer_constant_valid_p (value, endtype))
4288    return error_mark_node;
4289  else
4290    return value;
4291}
4292
4293/* Perform appropriate conversions on the initial value of a variable,
4294   store it in the declaration DECL,
4295   and print any error messages that are appropriate.
4296   If the init is invalid, store an ERROR_MARK.  */
4297
4298void
4299store_init_value (tree decl, tree init)
4300{
4301  tree value, type;
4302
4303  /* If variable's type was invalidly declared, just ignore it.  */
4304
4305  type = TREE_TYPE (decl);
4306  if (TREE_CODE (type) == ERROR_MARK)
4307    return;
4308
4309  /* Digest the specified initializer into an expression.  */
4310
4311  value = digest_init (type, init, true, TREE_STATIC (decl));
4312
4313  /* Store the expression if valid; else report error.  */
4314
4315  if (!in_system_header
4316      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4317    warning (OPT_Wtraditional, "traditional C rejects automatic "
4318	     "aggregate initialization");
4319
4320  DECL_INITIAL (decl) = value;
4321
4322  /* ANSI wants warnings about out-of-range constant initializers.  */
4323  STRIP_TYPE_NOPS (value);
4324  constant_expression_warning (value);
4325
4326  /* Check if we need to set array size from compound literal size.  */
4327  if (TREE_CODE (type) == ARRAY_TYPE
4328      && TYPE_DOMAIN (type) == 0
4329      && value != error_mark_node)
4330    {
4331      tree inside_init = init;
4332
4333      STRIP_TYPE_NOPS (inside_init);
4334      inside_init = fold (inside_init);
4335
4336      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4337	{
4338	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4339
4340	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4341	    {
4342	      /* For int foo[] = (int [3]){1}; we need to set array size
4343		 now since later on array initializer will be just the
4344		 brace enclosed list of the compound literal.  */
4345	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4346	      TREE_TYPE (decl) = type;
4347	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4348	      layout_type (type);
4349	      layout_decl (cldecl, 0);
4350	    }
4351	}
4352    }
4353}
4354
4355/* Methods for storing and printing names for error messages.  */
4356
4357/* Implement a spelling stack that allows components of a name to be pushed
4358   and popped.  Each element on the stack is this structure.  */
4359
4360struct spelling
4361{
4362  int kind;
4363  union
4364    {
4365      unsigned HOST_WIDE_INT i;
4366      const char *s;
4367    } u;
4368};
4369
4370#define SPELLING_STRING 1
4371#define SPELLING_MEMBER 2
4372#define SPELLING_BOUNDS 3
4373
4374static struct spelling *spelling;	/* Next stack element (unused).  */
4375static struct spelling *spelling_base;	/* Spelling stack base.  */
4376static int spelling_size;		/* Size of the spelling stack.  */
4377
4378/* Macros to save and restore the spelling stack around push_... functions.
4379   Alternative to SAVE_SPELLING_STACK.  */
4380
4381#define SPELLING_DEPTH() (spelling - spelling_base)
4382#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4383
4384/* Push an element on the spelling stack with type KIND and assign VALUE
4385   to MEMBER.  */
4386
4387#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4388{									\
4389  int depth = SPELLING_DEPTH ();					\
4390									\
4391  if (depth >= spelling_size)						\
4392    {									\
4393      spelling_size += 10;						\
4394      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4395				  spelling_size);			\
4396      RESTORE_SPELLING_DEPTH (depth);					\
4397    }									\
4398									\
4399  spelling->kind = (KIND);						\
4400  spelling->MEMBER = (VALUE);						\
4401  spelling++;								\
4402}
4403
4404/* Push STRING on the stack.  Printed literally.  */
4405
4406static void
4407push_string (const char *string)
4408{
4409  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4410}
4411
4412/* Push a member name on the stack.  Printed as '.' STRING.  */
4413
4414static void
4415push_member_name (tree decl)
4416{
4417  const char *const string
4418    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4419  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4420}
4421
4422/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4423
4424static void
4425push_array_bounds (unsigned HOST_WIDE_INT bounds)
4426{
4427  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4428}
4429
4430/* Compute the maximum size in bytes of the printed spelling.  */
4431
4432static int
4433spelling_length (void)
4434{
4435  int size = 0;
4436  struct spelling *p;
4437
4438  for (p = spelling_base; p < spelling; p++)
4439    {
4440      if (p->kind == SPELLING_BOUNDS)
4441	size += 25;
4442      else
4443	size += strlen (p->u.s) + 1;
4444    }
4445
4446  return size;
4447}
4448
4449/* Print the spelling to BUFFER and return it.  */
4450
4451static char *
4452print_spelling (char *buffer)
4453{
4454  char *d = buffer;
4455  struct spelling *p;
4456
4457  for (p = spelling_base; p < spelling; p++)
4458    if (p->kind == SPELLING_BOUNDS)
4459      {
4460	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4461	d += strlen (d);
4462      }
4463    else
4464      {
4465	const char *s;
4466	if (p->kind == SPELLING_MEMBER)
4467	  *d++ = '.';
4468	for (s = p->u.s; (*d = *s++); d++)
4469	  ;
4470      }
4471  *d++ = '\0';
4472  return buffer;
4473}
4474
4475/* Issue an error message for a bad initializer component.
4476   MSGID identifies the message.
4477   The component name is taken from the spelling stack.  */
4478
4479void
4480error_init (const char *msgid)
4481{
4482  char *ofwhat;
4483
4484  error ("%s", _(msgid));
4485  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4486  if (*ofwhat)
4487    error ("(near initialization for %qs)", ofwhat);
4488}
4489
4490/* Issue a pedantic warning for a bad initializer component.
4491   MSGID identifies the message.
4492   The component name is taken from the spelling stack.  */
4493
4494void
4495pedwarn_init (const char *msgid)
4496{
4497  char *ofwhat;
4498
4499  pedwarn ("%s", _(msgid));
4500  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4501  if (*ofwhat)
4502    pedwarn ("(near initialization for %qs)", ofwhat);
4503}
4504
4505/* Issue a warning for a bad initializer component.
4506   MSGID identifies the message.
4507   The component name is taken from the spelling stack.  */
4508
4509static void
4510warning_init (const char *msgid)
4511{
4512  char *ofwhat;
4513
4514  warning (0, "%s", _(msgid));
4515  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4516  if (*ofwhat)
4517    warning (0, "(near initialization for %qs)", ofwhat);
4518}
4519
4520/* If TYPE is an array type and EXPR is a parenthesized string
4521   constant, warn if pedantic that EXPR is being used to initialize an
4522   object of type TYPE.  */
4523
4524void
4525maybe_warn_string_init (tree type, struct c_expr expr)
4526{
4527  if (pedantic
4528      && TREE_CODE (type) == ARRAY_TYPE
4529      && TREE_CODE (expr.value) == STRING_CST
4530      && expr.original_code != STRING_CST)
4531    pedwarn_init ("array initialized from parenthesized string constant");
4532}
4533
4534/* Digest the parser output INIT as an initializer for type TYPE.
4535   Return a C expression of type TYPE to represent the initial value.
4536
4537   If INIT is a string constant, STRICT_STRING is true if it is
4538   unparenthesized or we should not warn here for it being parenthesized.
4539   For other types of INIT, STRICT_STRING is not used.
4540
4541   REQUIRE_CONSTANT requests an error if non-constant initializers or
4542   elements are seen.  */
4543
4544static tree
4545digest_init (tree type, tree init, bool strict_string, int require_constant)
4546{
4547  enum tree_code code = TREE_CODE (type);
4548  tree inside_init = init;
4549
4550  if (type == error_mark_node
4551      || !init
4552      || init == error_mark_node
4553      || TREE_TYPE (init) == error_mark_node)
4554    return error_mark_node;
4555
4556  STRIP_TYPE_NOPS (inside_init);
4557
4558  inside_init = fold (inside_init);
4559
4560  /* Initialization of an array of chars from a string constant
4561     optionally enclosed in braces.  */
4562
4563  if (code == ARRAY_TYPE && inside_init
4564      && TREE_CODE (inside_init) == STRING_CST)
4565    {
4566      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4567      /* Note that an array could be both an array of character type
4568	 and an array of wchar_t if wchar_t is signed char or unsigned
4569	 char.  */
4570      bool char_array = (typ1 == char_type_node
4571			 || typ1 == signed_char_type_node
4572			 || typ1 == unsigned_char_type_node);
4573      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4574      if (char_array || wchar_array)
4575	{
4576	  struct c_expr expr;
4577	  bool char_string;
4578	  expr.value = inside_init;
4579	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4580	  maybe_warn_string_init (type, expr);
4581
4582	  char_string
4583	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4584	       == char_type_node);
4585
4586	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4587			 TYPE_MAIN_VARIANT (type)))
4588	    return inside_init;
4589
4590	  if (!wchar_array && !char_string)
4591	    {
4592	      error_init ("char-array initialized from wide string");
4593	      return error_mark_node;
4594	    }
4595	  if (char_string && !char_array)
4596	    {
4597	      error_init ("wchar_t-array initialized from non-wide string");
4598	      return error_mark_node;
4599	    }
4600
4601	  TREE_TYPE (inside_init) = type;
4602	  if (TYPE_DOMAIN (type) != 0
4603	      && TYPE_SIZE (type) != 0
4604	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4605	      /* Subtract 1 (or sizeof (wchar_t))
4606		 because it's ok to ignore the terminating null char
4607		 that is counted in the length of the constant.  */
4608	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4609				       TREE_STRING_LENGTH (inside_init)
4610				       - ((TYPE_PRECISION (typ1)
4611					   != TYPE_PRECISION (char_type_node))
4612					  ? (TYPE_PRECISION (wchar_type_node)
4613					     / BITS_PER_UNIT)
4614					  : 1)))
4615	    pedwarn_init ("initializer-string for array of chars is too long");
4616
4617	  return inside_init;
4618	}
4619      else if (INTEGRAL_TYPE_P (typ1))
4620	{
4621	  error_init ("array of inappropriate type initialized "
4622		      "from string constant");
4623	  return error_mark_node;
4624	}
4625    }
4626
4627  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4628     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4629     below and handle as a constructor.  */
4630  if (code == VECTOR_TYPE
4631      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4632      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4633      && TREE_CONSTANT (inside_init))
4634    {
4635      if (TREE_CODE (inside_init) == VECTOR_CST
4636	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4637			TYPE_MAIN_VARIANT (type)))
4638	return inside_init;
4639
4640      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4641	{
4642	  unsigned HOST_WIDE_INT ix;
4643	  tree value;
4644	  bool constant_p = true;
4645
4646	  /* Iterate through elements and check if all constructor
4647	     elements are *_CSTs.  */
4648	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4649	    if (!CONSTANT_CLASS_P (value))
4650	      {
4651		constant_p = false;
4652		break;
4653	      }
4654
4655	  if (constant_p)
4656	    return build_vector_from_ctor (type,
4657					   CONSTRUCTOR_ELTS (inside_init));
4658	}
4659    }
4660
4661  /* Any type can be initialized
4662     from an expression of the same type, optionally with braces.  */
4663
4664  if (inside_init && TREE_TYPE (inside_init) != 0
4665      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4666		     TYPE_MAIN_VARIANT (type))
4667	  || (code == ARRAY_TYPE
4668	      && comptypes (TREE_TYPE (inside_init), type))
4669	  || (code == VECTOR_TYPE
4670	      && comptypes (TREE_TYPE (inside_init), type))
4671	  || (code == POINTER_TYPE
4672	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4673	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4674			    TREE_TYPE (type)))))
4675    {
4676      if (code == POINTER_TYPE)
4677	{
4678	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4679	    {
4680	      if (TREE_CODE (inside_init) == STRING_CST
4681		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4682		inside_init = array_to_pointer_conversion (inside_init);
4683	      else
4684		{
4685		  error_init ("invalid use of non-lvalue array");
4686		  return error_mark_node;
4687		}
4688	    }
4689	}
4690
4691      if (code == VECTOR_TYPE)
4692	/* Although the types are compatible, we may require a
4693	   conversion.  */
4694	inside_init = convert (type, inside_init);
4695
4696      if (require_constant
4697	  && (code == VECTOR_TYPE || !flag_isoc99)
4698	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4699	{
4700	  /* As an extension, allow initializing objects with static storage
4701	     duration with compound literals (which are then treated just as
4702	     the brace enclosed list they contain).  Also allow this for
4703	     vectors, as we can only assign them with compound literals.  */
4704	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4705	  inside_init = DECL_INITIAL (decl);
4706	}
4707
4708      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4709	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4710	{
4711	  error_init ("array initialized from non-constant array expression");
4712	  return error_mark_node;
4713	}
4714
4715      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4716	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4717
4718      /* Compound expressions can only occur here if -pedantic or
4719	 -pedantic-errors is specified.  In the later case, we always want
4720	 an error.  In the former case, we simply want a warning.  */
4721      if (require_constant && pedantic
4722	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4723	{
4724	  inside_init
4725	    = valid_compound_expr_initializer (inside_init,
4726					       TREE_TYPE (inside_init));
4727	  if (inside_init == error_mark_node)
4728	    error_init ("initializer element is not constant");
4729	  else
4730	    pedwarn_init ("initializer element is not constant");
4731	  if (flag_pedantic_errors)
4732	    inside_init = error_mark_node;
4733	}
4734      else if (require_constant
4735	       && !initializer_constant_valid_p (inside_init,
4736						 TREE_TYPE (inside_init)))
4737	{
4738	  error_init ("initializer element is not constant");
4739	  inside_init = error_mark_node;
4740	}
4741
4742      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4743      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4744	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4745					      NULL_TREE, 0);
4746      return inside_init;
4747    }
4748
4749  /* Handle scalar types, including conversions.  */
4750
4751  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4752      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4753      || code == VECTOR_TYPE)
4754    {
4755      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4756	  && (TREE_CODE (init) == STRING_CST
4757	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4758	init = array_to_pointer_conversion (init);
4759      inside_init
4760	= convert_for_assignment (type, init, ic_init,
4761				  NULL_TREE, NULL_TREE, 0);
4762
4763      /* Check to see if we have already given an error message.  */
4764      if (inside_init == error_mark_node)
4765	;
4766      else if (require_constant && !TREE_CONSTANT (inside_init))
4767	{
4768	  error_init ("initializer element is not constant");
4769	  inside_init = error_mark_node;
4770	}
4771      else if (require_constant
4772	       && !initializer_constant_valid_p (inside_init,
4773						 TREE_TYPE (inside_init)))
4774	{
4775	  error_init ("initializer element is not computable at load time");
4776	  inside_init = error_mark_node;
4777	}
4778
4779      return inside_init;
4780    }
4781
4782  /* Come here only for records and arrays.  */
4783
4784  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4785    {
4786      error_init ("variable-sized object may not be initialized");
4787      return error_mark_node;
4788    }
4789
4790  error_init ("invalid initializer");
4791  return error_mark_node;
4792}
4793
4794/* Handle initializers that use braces.  */
4795
4796/* Type of object we are accumulating a constructor for.
4797   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4798static tree constructor_type;
4799
4800/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4801   left to fill.  */
4802static tree constructor_fields;
4803
4804/* For an ARRAY_TYPE, this is the specified index
4805   at which to store the next element we get.  */
4806static tree constructor_index;
4807
4808/* For an ARRAY_TYPE, this is the maximum index.  */
4809static tree constructor_max_index;
4810
4811/* For a RECORD_TYPE, this is the first field not yet written out.  */
4812static tree constructor_unfilled_fields;
4813
4814/* For an ARRAY_TYPE, this is the index of the first element
4815   not yet written out.  */
4816static tree constructor_unfilled_index;
4817
4818/* In a RECORD_TYPE, the byte index of the next consecutive field.
4819   This is so we can generate gaps between fields, when appropriate.  */
4820static tree constructor_bit_index;
4821
4822/* If we are saving up the elements rather than allocating them,
4823   this is the list of elements so far (in reverse order,
4824   most recent first).  */
4825static VEC(constructor_elt,gc) *constructor_elements;
4826
4827/* 1 if constructor should be incrementally stored into a constructor chain,
4828   0 if all the elements should be kept in AVL tree.  */
4829static int constructor_incremental;
4830
4831/* 1 if so far this constructor's elements are all compile-time constants.  */
4832static int constructor_constant;
4833
4834/* 1 if so far this constructor's elements are all valid address constants.  */
4835static int constructor_simple;
4836
4837/* 1 if this constructor is erroneous so far.  */
4838static int constructor_erroneous;
4839
4840/* Structure for managing pending initializer elements, organized as an
4841   AVL tree.  */
4842
4843struct init_node
4844{
4845  struct init_node *left, *right;
4846  struct init_node *parent;
4847  int balance;
4848  tree purpose;
4849  tree value;
4850};
4851
4852/* Tree of pending elements at this constructor level.
4853   These are elements encountered out of order
4854   which belong at places we haven't reached yet in actually
4855   writing the output.
4856   Will never hold tree nodes across GC runs.  */
4857static struct init_node *constructor_pending_elts;
4858
4859/* The SPELLING_DEPTH of this constructor.  */
4860static int constructor_depth;
4861
4862/* DECL node for which an initializer is being read.
4863   0 means we are reading a constructor expression
4864   such as (struct foo) {...}.  */
4865static tree constructor_decl;
4866
4867/* Nonzero if this is an initializer for a top-level decl.  */
4868static int constructor_top_level;
4869
4870/* Nonzero if there were any member designators in this initializer.  */
4871static int constructor_designated;
4872
4873/* Nesting depth of designator list.  */
4874static int designator_depth;
4875
4876/* Nonzero if there were diagnosed errors in this designator list.  */
4877static int designator_erroneous;
4878
4879
4880/* This stack has a level for each implicit or explicit level of
4881   structuring in the initializer, including the outermost one.  It
4882   saves the values of most of the variables above.  */
4883
4884struct constructor_range_stack;
4885
4886struct constructor_stack
4887{
4888  struct constructor_stack *next;
4889  tree type;
4890  tree fields;
4891  tree index;
4892  tree max_index;
4893  tree unfilled_index;
4894  tree unfilled_fields;
4895  tree bit_index;
4896  VEC(constructor_elt,gc) *elements;
4897  struct init_node *pending_elts;
4898  int offset;
4899  int depth;
4900  /* If value nonzero, this value should replace the entire
4901     constructor at this level.  */
4902  struct c_expr replacement_value;
4903  struct constructor_range_stack *range_stack;
4904  char constant;
4905  char simple;
4906  char implicit;
4907  char erroneous;
4908  char outer;
4909  char incremental;
4910  char designated;
4911};
4912
4913static struct constructor_stack *constructor_stack;
4914
4915/* This stack represents designators from some range designator up to
4916   the last designator in the list.  */
4917
4918struct constructor_range_stack
4919{
4920  struct constructor_range_stack *next, *prev;
4921  struct constructor_stack *stack;
4922  tree range_start;
4923  tree index;
4924  tree range_end;
4925  tree fields;
4926};
4927
4928static struct constructor_range_stack *constructor_range_stack;
4929
4930/* This stack records separate initializers that are nested.
4931   Nested initializers can't happen in ANSI C, but GNU C allows them
4932   in cases like { ... (struct foo) { ... } ... }.  */
4933
4934struct initializer_stack
4935{
4936  struct initializer_stack *next;
4937  tree decl;
4938  struct constructor_stack *constructor_stack;
4939  struct constructor_range_stack *constructor_range_stack;
4940  VEC(constructor_elt,gc) *elements;
4941  struct spelling *spelling;
4942  struct spelling *spelling_base;
4943  int spelling_size;
4944  char top_level;
4945  char require_constant_value;
4946  char require_constant_elements;
4947};
4948
4949static struct initializer_stack *initializer_stack;
4950
4951/* Prepare to parse and output the initializer for variable DECL.  */
4952
4953void
4954start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4955{
4956  const char *locus;
4957  struct initializer_stack *p = XNEW (struct initializer_stack);
4958
4959  p->decl = constructor_decl;
4960  p->require_constant_value = require_constant_value;
4961  p->require_constant_elements = require_constant_elements;
4962  p->constructor_stack = constructor_stack;
4963  p->constructor_range_stack = constructor_range_stack;
4964  p->elements = constructor_elements;
4965  p->spelling = spelling;
4966  p->spelling_base = spelling_base;
4967  p->spelling_size = spelling_size;
4968  p->top_level = constructor_top_level;
4969  p->next = initializer_stack;
4970  initializer_stack = p;
4971
4972  constructor_decl = decl;
4973  constructor_designated = 0;
4974  constructor_top_level = top_level;
4975
4976  if (decl != 0 && decl != error_mark_node)
4977    {
4978      require_constant_value = TREE_STATIC (decl);
4979      require_constant_elements
4980	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4981	   /* For a scalar, you can always use any value to initialize,
4982	      even within braces.  */
4983	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4984	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4985	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4986	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4987      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4988    }
4989  else
4990    {
4991      require_constant_value = 0;
4992      require_constant_elements = 0;
4993      locus = "(anonymous)";
4994    }
4995
4996  constructor_stack = 0;
4997  constructor_range_stack = 0;
4998
4999  missing_braces_mentioned = 0;
5000
5001  spelling_base = 0;
5002  spelling_size = 0;
5003  RESTORE_SPELLING_DEPTH (0);
5004
5005  if (locus)
5006    push_string (locus);
5007}
5008
5009void
5010finish_init (void)
5011{
5012  struct initializer_stack *p = initializer_stack;
5013
5014  /* Free the whole constructor stack of this initializer.  */
5015  while (constructor_stack)
5016    {
5017      struct constructor_stack *q = constructor_stack;
5018      constructor_stack = q->next;
5019      free (q);
5020    }
5021
5022  gcc_assert (!constructor_range_stack);
5023
5024  /* Pop back to the data of the outer initializer (if any).  */
5025  free (spelling_base);
5026
5027  constructor_decl = p->decl;
5028  require_constant_value = p->require_constant_value;
5029  require_constant_elements = p->require_constant_elements;
5030  constructor_stack = p->constructor_stack;
5031  constructor_range_stack = p->constructor_range_stack;
5032  constructor_elements = p->elements;
5033  spelling = p->spelling;
5034  spelling_base = p->spelling_base;
5035  spelling_size = p->spelling_size;
5036  constructor_top_level = p->top_level;
5037  initializer_stack = p->next;
5038  free (p);
5039}
5040
5041/* Call here when we see the initializer is surrounded by braces.
5042   This is instead of a call to push_init_level;
5043   it is matched by a call to pop_init_level.
5044
5045   TYPE is the type to initialize, for a constructor expression.
5046   For an initializer for a decl, TYPE is zero.  */
5047
5048void
5049really_start_incremental_init (tree type)
5050{
5051  struct constructor_stack *p = XNEW (struct constructor_stack);
5052
5053  if (type == 0)
5054    type = TREE_TYPE (constructor_decl);
5055
5056  if (targetm.vector_opaque_p (type))
5057    error ("opaque vector types cannot be initialized");
5058
5059  p->type = constructor_type;
5060  p->fields = constructor_fields;
5061  p->index = constructor_index;
5062  p->max_index = constructor_max_index;
5063  p->unfilled_index = constructor_unfilled_index;
5064  p->unfilled_fields = constructor_unfilled_fields;
5065  p->bit_index = constructor_bit_index;
5066  p->elements = constructor_elements;
5067  p->constant = constructor_constant;
5068  p->simple = constructor_simple;
5069  p->erroneous = constructor_erroneous;
5070  p->pending_elts = constructor_pending_elts;
5071  p->depth = constructor_depth;
5072  p->replacement_value.value = 0;
5073  p->replacement_value.original_code = ERROR_MARK;
5074  p->implicit = 0;
5075  p->range_stack = 0;
5076  p->outer = 0;
5077  p->incremental = constructor_incremental;
5078  p->designated = constructor_designated;
5079  p->next = 0;
5080  constructor_stack = p;
5081
5082  constructor_constant = 1;
5083  constructor_simple = 1;
5084  constructor_depth = SPELLING_DEPTH ();
5085  constructor_elements = 0;
5086  constructor_pending_elts = 0;
5087  constructor_type = type;
5088  constructor_incremental = 1;
5089  constructor_designated = 0;
5090  designator_depth = 0;
5091  designator_erroneous = 0;
5092
5093  if (TREE_CODE (constructor_type) == RECORD_TYPE
5094      || TREE_CODE (constructor_type) == UNION_TYPE)
5095    {
5096      constructor_fields = TYPE_FIELDS (constructor_type);
5097      /* Skip any nameless bit fields at the beginning.  */
5098      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5099	     && DECL_NAME (constructor_fields) == 0)
5100	constructor_fields = TREE_CHAIN (constructor_fields);
5101
5102      constructor_unfilled_fields = constructor_fields;
5103      constructor_bit_index = bitsize_zero_node;
5104    }
5105  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5106    {
5107      if (TYPE_DOMAIN (constructor_type))
5108	{
5109	  constructor_max_index
5110	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5111
5112	  /* Detect non-empty initializations of zero-length arrays.  */
5113	  if (constructor_max_index == NULL_TREE
5114	      && TYPE_SIZE (constructor_type))
5115	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5116
5117	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5118	     to initialize VLAs will cause a proper error; avoid tree
5119	     checking errors as well by setting a safe value.  */
5120	  if (constructor_max_index
5121	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5122	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5123
5124	  constructor_index
5125	    = convert (bitsizetype,
5126		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5127	}
5128      else
5129	{
5130	  constructor_index = bitsize_zero_node;
5131	  constructor_max_index = NULL_TREE;
5132	}
5133
5134      constructor_unfilled_index = constructor_index;
5135    }
5136  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5137    {
5138      /* Vectors are like simple fixed-size arrays.  */
5139      constructor_max_index =
5140	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5141      constructor_index = bitsize_zero_node;
5142      constructor_unfilled_index = constructor_index;
5143    }
5144  else
5145    {
5146      /* Handle the case of int x = {5}; */
5147      constructor_fields = constructor_type;
5148      constructor_unfilled_fields = constructor_type;
5149    }
5150}
5151
5152/* Push down into a subobject, for initialization.
5153   If this is for an explicit set of braces, IMPLICIT is 0.
5154   If it is because the next element belongs at a lower level,
5155   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5156
5157void
5158push_init_level (int implicit)
5159{
5160  struct constructor_stack *p;
5161  tree value = NULL_TREE;
5162
5163  /* If we've exhausted any levels that didn't have braces,
5164     pop them now.  If implicit == 1, this will have been done in
5165     process_init_element; do not repeat it here because in the case
5166     of excess initializers for an empty aggregate this leads to an
5167     infinite cycle of popping a level and immediately recreating
5168     it.  */
5169  if (implicit != 1)
5170    {
5171      while (constructor_stack->implicit)
5172	{
5173	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5174	       || TREE_CODE (constructor_type) == UNION_TYPE)
5175	      && constructor_fields == 0)
5176	    process_init_element (pop_init_level (1));
5177	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5178		   && constructor_max_index
5179		   && tree_int_cst_lt (constructor_max_index,
5180				       constructor_index))
5181	    process_init_element (pop_init_level (1));
5182	  else
5183	    break;
5184	}
5185    }
5186
5187  /* Unless this is an explicit brace, we need to preserve previous
5188     content if any.  */
5189  if (implicit)
5190    {
5191      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5192	   || TREE_CODE (constructor_type) == UNION_TYPE)
5193	  && constructor_fields)
5194	value = find_init_member (constructor_fields);
5195      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5196	value = find_init_member (constructor_index);
5197    }
5198
5199  p = XNEW (struct constructor_stack);
5200  p->type = constructor_type;
5201  p->fields = constructor_fields;
5202  p->index = constructor_index;
5203  p->max_index = constructor_max_index;
5204  p->unfilled_index = constructor_unfilled_index;
5205  p->unfilled_fields = constructor_unfilled_fields;
5206  p->bit_index = constructor_bit_index;
5207  p->elements = constructor_elements;
5208  p->constant = constructor_constant;
5209  p->simple = constructor_simple;
5210  p->erroneous = constructor_erroneous;
5211  p->pending_elts = constructor_pending_elts;
5212  p->depth = constructor_depth;
5213  p->replacement_value.value = 0;
5214  p->replacement_value.original_code = ERROR_MARK;
5215  p->implicit = implicit;
5216  p->outer = 0;
5217  p->incremental = constructor_incremental;
5218  p->designated = constructor_designated;
5219  p->next = constructor_stack;
5220  p->range_stack = 0;
5221  constructor_stack = p;
5222
5223  constructor_constant = 1;
5224  constructor_simple = 1;
5225  constructor_depth = SPELLING_DEPTH ();
5226  constructor_elements = 0;
5227  constructor_incremental = 1;
5228  constructor_designated = 0;
5229  constructor_pending_elts = 0;
5230  if (!implicit)
5231    {
5232      p->range_stack = constructor_range_stack;
5233      constructor_range_stack = 0;
5234      designator_depth = 0;
5235      designator_erroneous = 0;
5236    }
5237
5238  /* Don't die if an entire brace-pair level is superfluous
5239     in the containing level.  */
5240  if (constructor_type == 0)
5241    ;
5242  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5243	   || TREE_CODE (constructor_type) == UNION_TYPE)
5244    {
5245      /* Don't die if there are extra init elts at the end.  */
5246      if (constructor_fields == 0)
5247	constructor_type = 0;
5248      else
5249	{
5250	  constructor_type = TREE_TYPE (constructor_fields);
5251	  push_member_name (constructor_fields);
5252	  constructor_depth++;
5253	}
5254    }
5255  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5256    {
5257      constructor_type = TREE_TYPE (constructor_type);
5258      push_array_bounds (tree_low_cst (constructor_index, 1));
5259      constructor_depth++;
5260    }
5261
5262  if (constructor_type == 0)
5263    {
5264      error_init ("extra brace group at end of initializer");
5265      constructor_fields = 0;
5266      constructor_unfilled_fields = 0;
5267      return;
5268    }
5269
5270  if (value && TREE_CODE (value) == CONSTRUCTOR)
5271    {
5272      constructor_constant = TREE_CONSTANT (value);
5273      constructor_simple = TREE_STATIC (value);
5274      constructor_elements = CONSTRUCTOR_ELTS (value);
5275      if (!VEC_empty (constructor_elt, constructor_elements)
5276	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5277	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5278	set_nonincremental_init ();
5279    }
5280
5281  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5282    {
5283      missing_braces_mentioned = 1;
5284      warning_init ("missing braces around initializer");
5285    }
5286
5287  if (TREE_CODE (constructor_type) == RECORD_TYPE
5288	   || TREE_CODE (constructor_type) == UNION_TYPE)
5289    {
5290      constructor_fields = TYPE_FIELDS (constructor_type);
5291      /* Skip any nameless bit fields at the beginning.  */
5292      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5293	     && DECL_NAME (constructor_fields) == 0)
5294	constructor_fields = TREE_CHAIN (constructor_fields);
5295
5296      constructor_unfilled_fields = constructor_fields;
5297      constructor_bit_index = bitsize_zero_node;
5298    }
5299  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5300    {
5301      /* Vectors are like simple fixed-size arrays.  */
5302      constructor_max_index =
5303	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5304      constructor_index = convert (bitsizetype, integer_zero_node);
5305      constructor_unfilled_index = constructor_index;
5306    }
5307  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5308    {
5309      if (TYPE_DOMAIN (constructor_type))
5310	{
5311	  constructor_max_index
5312	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5313
5314	  /* Detect non-empty initializations of zero-length arrays.  */
5315	  if (constructor_max_index == NULL_TREE
5316	      && TYPE_SIZE (constructor_type))
5317	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5318
5319	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5320	     to initialize VLAs will cause a proper error; avoid tree
5321	     checking errors as well by setting a safe value.  */
5322	  if (constructor_max_index
5323	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5324	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5325
5326	  constructor_index
5327	    = convert (bitsizetype,
5328		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5329	}
5330      else
5331	constructor_index = bitsize_zero_node;
5332
5333      constructor_unfilled_index = constructor_index;
5334      if (value && TREE_CODE (value) == STRING_CST)
5335	{
5336	  /* We need to split the char/wchar array into individual
5337	     characters, so that we don't have to special case it
5338	     everywhere.  */
5339	  set_nonincremental_init_from_string (value);
5340	}
5341    }
5342  else
5343    {
5344      if (constructor_type != error_mark_node)
5345	warning_init ("braces around scalar initializer");
5346      constructor_fields = constructor_type;
5347      constructor_unfilled_fields = constructor_type;
5348    }
5349}
5350
5351/* At the end of an implicit or explicit brace level,
5352   finish up that level of constructor.  If a single expression
5353   with redundant braces initialized that level, return the
5354   c_expr structure for that expression.  Otherwise, the original_code
5355   element is set to ERROR_MARK.
5356   If we were outputting the elements as they are read, return 0 as the value
5357   from inner levels (process_init_element ignores that),
5358   but return error_mark_node as the value from the outermost level
5359   (that's what we want to put in DECL_INITIAL).
5360   Otherwise, return a CONSTRUCTOR expression as the value.  */
5361
5362struct c_expr
5363pop_init_level (int implicit)
5364{
5365  struct constructor_stack *p;
5366  struct c_expr ret;
5367  ret.value = 0;
5368  ret.original_code = ERROR_MARK;
5369
5370  if (implicit == 0)
5371    {
5372      /* When we come to an explicit close brace,
5373	 pop any inner levels that didn't have explicit braces.  */
5374      while (constructor_stack->implicit)
5375	process_init_element (pop_init_level (1));
5376
5377      gcc_assert (!constructor_range_stack);
5378    }
5379
5380  /* Now output all pending elements.  */
5381  constructor_incremental = 1;
5382  output_pending_init_elements (1);
5383
5384  p = constructor_stack;
5385
5386  /* Error for initializing a flexible array member, or a zero-length
5387     array member in an inappropriate context.  */
5388  if (constructor_type && constructor_fields
5389      && TREE_CODE (constructor_type) == ARRAY_TYPE
5390      && TYPE_DOMAIN (constructor_type)
5391      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5392    {
5393      /* Silently discard empty initializations.  The parser will
5394	 already have pedwarned for empty brackets.  */
5395      if (integer_zerop (constructor_unfilled_index))
5396	constructor_type = NULL_TREE;
5397      else
5398	{
5399	  gcc_assert (!TYPE_SIZE (constructor_type));
5400
5401	  if (constructor_depth > 2)
5402	    error_init ("initialization of flexible array member in a nested context");
5403	  else if (pedantic)
5404	    pedwarn_init ("initialization of a flexible array member");
5405
5406	  /* We have already issued an error message for the existence
5407	     of a flexible array member not at the end of the structure.
5408	     Discard the initializer so that we do not die later.  */
5409	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5410	    constructor_type = NULL_TREE;
5411	}
5412    }
5413
5414  /* Warn when some struct elements are implicitly initialized to zero.  */
5415  if (warn_missing_field_initializers
5416      && constructor_type
5417      && TREE_CODE (constructor_type) == RECORD_TYPE
5418      && constructor_unfilled_fields)
5419    {
5420	/* Do not warn for flexible array members or zero-length arrays.  */
5421	while (constructor_unfilled_fields
5422	       && (!DECL_SIZE (constructor_unfilled_fields)
5423		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5424	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5425
5426	/* Do not warn if this level of the initializer uses member
5427	   designators; it is likely to be deliberate.  */
5428	if (constructor_unfilled_fields && !constructor_designated)
5429	  {
5430	    push_member_name (constructor_unfilled_fields);
5431	    warning_init ("missing initializer");
5432	    RESTORE_SPELLING_DEPTH (constructor_depth);
5433	  }
5434    }
5435
5436  /* Pad out the end of the structure.  */
5437  if (p->replacement_value.value)
5438    /* If this closes a superfluous brace pair,
5439       just pass out the element between them.  */
5440    ret = p->replacement_value;
5441  else if (constructor_type == 0)
5442    ;
5443  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5444	   && TREE_CODE (constructor_type) != UNION_TYPE
5445	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5446	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5447    {
5448      /* A nonincremental scalar initializer--just return
5449	 the element, after verifying there is just one.  */
5450      if (VEC_empty (constructor_elt,constructor_elements))
5451	{
5452	  if (!constructor_erroneous)
5453	    error_init ("empty scalar initializer");
5454	  ret.value = error_mark_node;
5455	}
5456      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5457	{
5458	  error_init ("extra elements in scalar initializer");
5459	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5460	}
5461      else
5462	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5463    }
5464  else
5465    {
5466      if (constructor_erroneous)
5467	ret.value = error_mark_node;
5468      else
5469	{
5470	  ret.value = build_constructor (constructor_type,
5471					 constructor_elements);
5472	  if (constructor_constant)
5473	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5474	  if (constructor_constant && constructor_simple)
5475	    TREE_STATIC (ret.value) = 1;
5476	}
5477    }
5478
5479  constructor_type = p->type;
5480  constructor_fields = p->fields;
5481  constructor_index = p->index;
5482  constructor_max_index = p->max_index;
5483  constructor_unfilled_index = p->unfilled_index;
5484  constructor_unfilled_fields = p->unfilled_fields;
5485  constructor_bit_index = p->bit_index;
5486  constructor_elements = p->elements;
5487  constructor_constant = p->constant;
5488  constructor_simple = p->simple;
5489  constructor_erroneous = p->erroneous;
5490  constructor_incremental = p->incremental;
5491  constructor_designated = p->designated;
5492  constructor_pending_elts = p->pending_elts;
5493  constructor_depth = p->depth;
5494  if (!p->implicit)
5495    constructor_range_stack = p->range_stack;
5496  RESTORE_SPELLING_DEPTH (constructor_depth);
5497
5498  constructor_stack = p->next;
5499  free (p);
5500
5501  if (ret.value == 0 && constructor_stack == 0)
5502    ret.value = error_mark_node;
5503  return ret;
5504}
5505
5506/* Common handling for both array range and field name designators.
5507   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5508
5509static int
5510set_designator (int array)
5511{
5512  tree subtype;
5513  enum tree_code subcode;
5514
5515  /* Don't die if an entire brace-pair level is superfluous
5516     in the containing level.  */
5517  if (constructor_type == 0)
5518    return 1;
5519
5520  /* If there were errors in this designator list already, bail out
5521     silently.  */
5522  if (designator_erroneous)
5523    return 1;
5524
5525  if (!designator_depth)
5526    {
5527      gcc_assert (!constructor_range_stack);
5528
5529      /* Designator list starts at the level of closest explicit
5530	 braces.  */
5531      while (constructor_stack->implicit)
5532	process_init_element (pop_init_level (1));
5533      constructor_designated = 1;
5534      return 0;
5535    }
5536
5537  switch (TREE_CODE (constructor_type))
5538    {
5539    case  RECORD_TYPE:
5540    case  UNION_TYPE:
5541      subtype = TREE_TYPE (constructor_fields);
5542      if (subtype != error_mark_node)
5543	subtype = TYPE_MAIN_VARIANT (subtype);
5544      break;
5545    case ARRAY_TYPE:
5546      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5547      break;
5548    default:
5549      gcc_unreachable ();
5550    }
5551
5552  subcode = TREE_CODE (subtype);
5553  if (array && subcode != ARRAY_TYPE)
5554    {
5555      error_init ("array index in non-array initializer");
5556      return 1;
5557    }
5558  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5559    {
5560      error_init ("field name not in record or union initializer");
5561      return 1;
5562    }
5563
5564  constructor_designated = 1;
5565  push_init_level (2);
5566  return 0;
5567}
5568
5569/* If there are range designators in designator list, push a new designator
5570   to constructor_range_stack.  RANGE_END is end of such stack range or
5571   NULL_TREE if there is no range designator at this level.  */
5572
5573static void
5574push_range_stack (tree range_end)
5575{
5576  struct constructor_range_stack *p;
5577
5578  p = GGC_NEW (struct constructor_range_stack);
5579  p->prev = constructor_range_stack;
5580  p->next = 0;
5581  p->fields = constructor_fields;
5582  p->range_start = constructor_index;
5583  p->index = constructor_index;
5584  p->stack = constructor_stack;
5585  p->range_end = range_end;
5586  if (constructor_range_stack)
5587    constructor_range_stack->next = p;
5588  constructor_range_stack = p;
5589}
5590
5591/* Within an array initializer, specify the next index to be initialized.
5592   FIRST is that index.  If LAST is nonzero, then initialize a range
5593   of indices, running from FIRST through LAST.  */
5594
5595void
5596set_init_index (tree first, tree last)
5597{
5598  if (set_designator (1))
5599    return;
5600
5601  designator_erroneous = 1;
5602
5603  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5604      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5605    {
5606      error_init ("array index in initializer not of integer type");
5607      return;
5608    }
5609
5610  if (TREE_CODE (first) != INTEGER_CST)
5611    error_init ("nonconstant array index in initializer");
5612  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5613    error_init ("nonconstant array index in initializer");
5614  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5615    error_init ("array index in non-array initializer");
5616  else if (tree_int_cst_sgn (first) == -1)
5617    error_init ("array index in initializer exceeds array bounds");
5618  else if (constructor_max_index
5619	   && tree_int_cst_lt (constructor_max_index, first))
5620    error_init ("array index in initializer exceeds array bounds");
5621  else
5622    {
5623      constructor_index = convert (bitsizetype, first);
5624
5625      if (last)
5626	{
5627	  if (tree_int_cst_equal (first, last))
5628	    last = 0;
5629	  else if (tree_int_cst_lt (last, first))
5630	    {
5631	      error_init ("empty index range in initializer");
5632	      last = 0;
5633	    }
5634	  else
5635	    {
5636	      last = convert (bitsizetype, last);
5637	      if (constructor_max_index != 0
5638		  && tree_int_cst_lt (constructor_max_index, last))
5639		{
5640		  error_init ("array index range in initializer exceeds array bounds");
5641		  last = 0;
5642		}
5643	    }
5644	}
5645
5646      designator_depth++;
5647      designator_erroneous = 0;
5648      if (constructor_range_stack || last)
5649	push_range_stack (last);
5650    }
5651}
5652
5653/* Within a struct initializer, specify the next field to be initialized.  */
5654
5655void
5656set_init_label (tree fieldname)
5657{
5658  tree tail;
5659
5660  if (set_designator (0))
5661    return;
5662
5663  designator_erroneous = 1;
5664
5665  if (TREE_CODE (constructor_type) != RECORD_TYPE
5666      && TREE_CODE (constructor_type) != UNION_TYPE)
5667    {
5668      error_init ("field name not in record or union initializer");
5669      return;
5670    }
5671
5672  for (tail = TYPE_FIELDS (constructor_type); tail;
5673       tail = TREE_CHAIN (tail))
5674    {
5675      if (DECL_NAME (tail) == fieldname)
5676	break;
5677    }
5678
5679  if (tail == 0)
5680    error ("unknown field %qE specified in initializer", fieldname);
5681  else
5682    {
5683      constructor_fields = tail;
5684      designator_depth++;
5685      designator_erroneous = 0;
5686      if (constructor_range_stack)
5687	push_range_stack (NULL_TREE);
5688    }
5689}
5690
5691/* Add a new initializer to the tree of pending initializers.  PURPOSE
5692   identifies the initializer, either array index or field in a structure.
5693   VALUE is the value of that index or field.  */
5694
5695static void
5696add_pending_init (tree purpose, tree value)
5697{
5698  struct init_node *p, **q, *r;
5699
5700  q = &constructor_pending_elts;
5701  p = 0;
5702
5703  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5704    {
5705      while (*q != 0)
5706	{
5707	  p = *q;
5708	  if (tree_int_cst_lt (purpose, p->purpose))
5709	    q = &p->left;
5710	  else if (tree_int_cst_lt (p->purpose, purpose))
5711	    q = &p->right;
5712	  else
5713	    {
5714	      if (TREE_SIDE_EFFECTS (p->value))
5715		warning_init ("initialized field with side-effects overwritten");
5716	      else if (warn_override_init)
5717		warning_init ("initialized field overwritten");
5718	      p->value = value;
5719	      return;
5720	    }
5721	}
5722    }
5723  else
5724    {
5725      tree bitpos;
5726
5727      bitpos = bit_position (purpose);
5728      while (*q != NULL)
5729	{
5730	  p = *q;
5731	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5732	    q = &p->left;
5733	  else if (p->purpose != purpose)
5734	    q = &p->right;
5735	  else
5736	    {
5737	      if (TREE_SIDE_EFFECTS (p->value))
5738		warning_init ("initialized field with side-effects overwritten");
5739	      else if (warn_override_init)
5740		warning_init ("initialized field overwritten");
5741	      p->value = value;
5742	      return;
5743	    }
5744	}
5745    }
5746
5747  r = GGC_NEW (struct init_node);
5748  r->purpose = purpose;
5749  r->value = value;
5750
5751  *q = r;
5752  r->parent = p;
5753  r->left = 0;
5754  r->right = 0;
5755  r->balance = 0;
5756
5757  while (p)
5758    {
5759      struct init_node *s;
5760
5761      if (r == p->left)
5762	{
5763	  if (p->balance == 0)
5764	    p->balance = -1;
5765	  else if (p->balance < 0)
5766	    {
5767	      if (r->balance < 0)
5768		{
5769		  /* L rotation.  */
5770		  p->left = r->right;
5771		  if (p->left)
5772		    p->left->parent = p;
5773		  r->right = p;
5774
5775		  p->balance = 0;
5776		  r->balance = 0;
5777
5778		  s = p->parent;
5779		  p->parent = r;
5780		  r->parent = s;
5781		  if (s)
5782		    {
5783		      if (s->left == p)
5784			s->left = r;
5785		      else
5786			s->right = r;
5787		    }
5788		  else
5789		    constructor_pending_elts = r;
5790		}
5791	      else
5792		{
5793		  /* LR rotation.  */
5794		  struct init_node *t = r->right;
5795
5796		  r->right = t->left;
5797		  if (r->right)
5798		    r->right->parent = r;
5799		  t->left = r;
5800
5801		  p->left = t->right;
5802		  if (p->left)
5803		    p->left->parent = p;
5804		  t->right = p;
5805
5806		  p->balance = t->balance < 0;
5807		  r->balance = -(t->balance > 0);
5808		  t->balance = 0;
5809
5810		  s = p->parent;
5811		  p->parent = t;
5812		  r->parent = t;
5813		  t->parent = s;
5814		  if (s)
5815		    {
5816		      if (s->left == p)
5817			s->left = t;
5818		      else
5819			s->right = t;
5820		    }
5821		  else
5822		    constructor_pending_elts = t;
5823		}
5824	      break;
5825	    }
5826	  else
5827	    {
5828	      /* p->balance == +1; growth of left side balances the node.  */
5829	      p->balance = 0;
5830	      break;
5831	    }
5832	}
5833      else /* r == p->right */
5834	{
5835	  if (p->balance == 0)
5836	    /* Growth propagation from right side.  */
5837	    p->balance++;
5838	  else if (p->balance > 0)
5839	    {
5840	      if (r->balance > 0)
5841		{
5842		  /* R rotation.  */
5843		  p->right = r->left;
5844		  if (p->right)
5845		    p->right->parent = p;
5846		  r->left = p;
5847
5848		  p->balance = 0;
5849		  r->balance = 0;
5850
5851		  s = p->parent;
5852		  p->parent = r;
5853		  r->parent = s;
5854		  if (s)
5855		    {
5856		      if (s->left == p)
5857			s->left = r;
5858		      else
5859			s->right = r;
5860		    }
5861		  else
5862		    constructor_pending_elts = r;
5863		}
5864	      else /* r->balance == -1 */
5865		{
5866		  /* RL rotation */
5867		  struct init_node *t = r->left;
5868
5869		  r->left = t->right;
5870		  if (r->left)
5871		    r->left->parent = r;
5872		  t->right = r;
5873
5874		  p->right = t->left;
5875		  if (p->right)
5876		    p->right->parent = p;
5877		  t->left = p;
5878
5879		  r->balance = (t->balance < 0);
5880		  p->balance = -(t->balance > 0);
5881		  t->balance = 0;
5882
5883		  s = p->parent;
5884		  p->parent = t;
5885		  r->parent = t;
5886		  t->parent = s;
5887		  if (s)
5888		    {
5889		      if (s->left == p)
5890			s->left = t;
5891		      else
5892			s->right = t;
5893		    }
5894		  else
5895		    constructor_pending_elts = t;
5896		}
5897	      break;
5898	    }
5899	  else
5900	    {
5901	      /* p->balance == -1; growth of right side balances the node.  */
5902	      p->balance = 0;
5903	      break;
5904	    }
5905	}
5906
5907      r = p;
5908      p = p->parent;
5909    }
5910}
5911
5912/* Build AVL tree from a sorted chain.  */
5913
5914static void
5915set_nonincremental_init (void)
5916{
5917  unsigned HOST_WIDE_INT ix;
5918  tree index, value;
5919
5920  if (TREE_CODE (constructor_type) != RECORD_TYPE
5921      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5922    return;
5923
5924  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5925    add_pending_init (index, value);
5926  constructor_elements = 0;
5927  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5928    {
5929      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5930      /* Skip any nameless bit fields at the beginning.  */
5931      while (constructor_unfilled_fields != 0
5932	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5933	     && DECL_NAME (constructor_unfilled_fields) == 0)
5934	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5935
5936    }
5937  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5938    {
5939      if (TYPE_DOMAIN (constructor_type))
5940	constructor_unfilled_index
5941	    = convert (bitsizetype,
5942		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5943      else
5944	constructor_unfilled_index = bitsize_zero_node;
5945    }
5946  constructor_incremental = 0;
5947}
5948
5949/* Build AVL tree from a string constant.  */
5950
5951static void
5952set_nonincremental_init_from_string (tree str)
5953{
5954  tree value, purpose, type;
5955  HOST_WIDE_INT val[2];
5956  const char *p, *end;
5957  int byte, wchar_bytes, charwidth, bitpos;
5958
5959  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5960
5961  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5962      == TYPE_PRECISION (char_type_node))
5963    wchar_bytes = 1;
5964  else
5965    {
5966      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5967		  == TYPE_PRECISION (wchar_type_node));
5968      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5969    }
5970  charwidth = TYPE_PRECISION (char_type_node);
5971  type = TREE_TYPE (constructor_type);
5972  p = TREE_STRING_POINTER (str);
5973  end = p + TREE_STRING_LENGTH (str);
5974
5975  for (purpose = bitsize_zero_node;
5976       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5977       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5978    {
5979      if (wchar_bytes == 1)
5980	{
5981	  val[1] = (unsigned char) *p++;
5982	  val[0] = 0;
5983	}
5984      else
5985	{
5986	  val[0] = 0;
5987	  val[1] = 0;
5988	  for (byte = 0; byte < wchar_bytes; byte++)
5989	    {
5990	      if (BYTES_BIG_ENDIAN)
5991		bitpos = (wchar_bytes - byte - 1) * charwidth;
5992	      else
5993		bitpos = byte * charwidth;
5994	      val[bitpos < HOST_BITS_PER_WIDE_INT]
5995		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5996		   << (bitpos % HOST_BITS_PER_WIDE_INT);
5997	    }
5998	}
5999
6000      if (!TYPE_UNSIGNED (type))
6001	{
6002	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6003	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6004	    {
6005	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6006		{
6007		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6008		  val[0] = -1;
6009		}
6010	    }
6011	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6012	    {
6013	      if (val[1] < 0)
6014		val[0] = -1;
6015	    }
6016	  else if (val[0] & (((HOST_WIDE_INT) 1)
6017			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6018	    val[0] |= ((HOST_WIDE_INT) -1)
6019		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6020	}
6021
6022      value = build_int_cst_wide (type, val[1], val[0]);
6023      add_pending_init (purpose, value);
6024    }
6025
6026  constructor_incremental = 0;
6027}
6028
6029/* Return value of FIELD in pending initializer or zero if the field was
6030   not initialized yet.  */
6031
6032static tree
6033find_init_member (tree field)
6034{
6035  struct init_node *p;
6036
6037  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6038    {
6039      if (constructor_incremental
6040	  && tree_int_cst_lt (field, constructor_unfilled_index))
6041	set_nonincremental_init ();
6042
6043      p = constructor_pending_elts;
6044      while (p)
6045	{
6046	  if (tree_int_cst_lt (field, p->purpose))
6047	    p = p->left;
6048	  else if (tree_int_cst_lt (p->purpose, field))
6049	    p = p->right;
6050	  else
6051	    return p->value;
6052	}
6053    }
6054  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6055    {
6056      tree bitpos = bit_position (field);
6057
6058      if (constructor_incremental
6059	  && (!constructor_unfilled_fields
6060	      || tree_int_cst_lt (bitpos,
6061				  bit_position (constructor_unfilled_fields))))
6062	set_nonincremental_init ();
6063
6064      p = constructor_pending_elts;
6065      while (p)
6066	{
6067	  if (field == p->purpose)
6068	    return p->value;
6069	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6070	    p = p->left;
6071	  else
6072	    p = p->right;
6073	}
6074    }
6075  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6076    {
6077      if (!VEC_empty (constructor_elt, constructor_elements)
6078	  && (VEC_last (constructor_elt, constructor_elements)->index
6079	      == field))
6080	return VEC_last (constructor_elt, constructor_elements)->value;
6081    }
6082  return 0;
6083}
6084
6085/* "Output" the next constructor element.
6086   At top level, really output it to assembler code now.
6087   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6088   TYPE is the data type that the containing data type wants here.
6089   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6090   If VALUE is a string constant, STRICT_STRING is true if it is
6091   unparenthesized or we should not warn here for it being parenthesized.
6092   For other types of VALUE, STRICT_STRING is not used.
6093
6094   PENDING if non-nil means output pending elements that belong
6095   right after this element.  (PENDING is normally 1;
6096   it is 0 while outputting pending elements, to avoid recursion.)  */
6097
6098static void
6099output_init_element (tree value, bool strict_string, tree type, tree field,
6100		     int pending)
6101{
6102  constructor_elt *celt;
6103
6104  if (type == error_mark_node || value == error_mark_node)
6105    {
6106      constructor_erroneous = 1;
6107      return;
6108    }
6109  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6110      && (TREE_CODE (value) == STRING_CST
6111	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6112      && !(TREE_CODE (value) == STRING_CST
6113	   && TREE_CODE (type) == ARRAY_TYPE
6114	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6115      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6116		     TYPE_MAIN_VARIANT (type)))
6117    value = array_to_pointer_conversion (value);
6118
6119  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6120      && require_constant_value && !flag_isoc99 && pending)
6121    {
6122      /* As an extension, allow initializing objects with static storage
6123	 duration with compound literals (which are then treated just as
6124	 the brace enclosed list they contain).  */
6125      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6126      value = DECL_INITIAL (decl);
6127    }
6128
6129  if (value == error_mark_node)
6130    constructor_erroneous = 1;
6131  else if (!TREE_CONSTANT (value))
6132    constructor_constant = 0;
6133  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6134	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6135		|| TREE_CODE (constructor_type) == UNION_TYPE)
6136	       && DECL_C_BIT_FIELD (field)
6137	       && TREE_CODE (value) != INTEGER_CST))
6138    constructor_simple = 0;
6139
6140  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6141    {
6142      if (require_constant_value)
6143	{
6144	  error_init ("initializer element is not constant");
6145	  value = error_mark_node;
6146	}
6147      else if (require_constant_elements)
6148	pedwarn ("initializer element is not computable at load time");
6149    }
6150
6151  /* If this field is empty (and not at the end of structure),
6152     don't do anything other than checking the initializer.  */
6153  if (field
6154      && (TREE_TYPE (field) == error_mark_node
6155	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6156	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6157	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6158		  || TREE_CHAIN (field)))))
6159    return;
6160
6161  value = digest_init (type, value, strict_string, require_constant_value);
6162  if (value == error_mark_node)
6163    {
6164      constructor_erroneous = 1;
6165      return;
6166    }
6167
6168  /* If this element doesn't come next in sequence,
6169     put it on constructor_pending_elts.  */
6170  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6171      && (!constructor_incremental
6172	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6173    {
6174      if (constructor_incremental
6175	  && tree_int_cst_lt (field, constructor_unfilled_index))
6176	set_nonincremental_init ();
6177
6178      add_pending_init (field, value);
6179      return;
6180    }
6181  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6182	   && (!constructor_incremental
6183	       || field != constructor_unfilled_fields))
6184    {
6185      /* We do this for records but not for unions.  In a union,
6186	 no matter which field is specified, it can be initialized
6187	 right away since it starts at the beginning of the union.  */
6188      if (constructor_incremental)
6189	{
6190	  if (!constructor_unfilled_fields)
6191	    set_nonincremental_init ();
6192	  else
6193	    {
6194	      tree bitpos, unfillpos;
6195
6196	      bitpos = bit_position (field);
6197	      unfillpos = bit_position (constructor_unfilled_fields);
6198
6199	      if (tree_int_cst_lt (bitpos, unfillpos))
6200		set_nonincremental_init ();
6201	    }
6202	}
6203
6204      add_pending_init (field, value);
6205      return;
6206    }
6207  else if (TREE_CODE (constructor_type) == UNION_TYPE
6208	   && !VEC_empty (constructor_elt, constructor_elements))
6209    {
6210      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6211				       constructor_elements)->value))
6212	warning_init ("initialized field with side-effects overwritten");
6213      else if (warn_override_init)
6214	warning_init ("initialized field overwritten");
6215
6216      /* We can have just one union field set.  */
6217      constructor_elements = 0;
6218    }
6219
6220  /* Otherwise, output this element either to
6221     constructor_elements or to the assembler file.  */
6222
6223  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6224  celt->index = field;
6225  celt->value = value;
6226
6227  /* Advance the variable that indicates sequential elements output.  */
6228  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6229    constructor_unfilled_index
6230      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6231		    bitsize_one_node);
6232  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6233    {
6234      constructor_unfilled_fields
6235	= TREE_CHAIN (constructor_unfilled_fields);
6236
6237      /* Skip any nameless bit fields.  */
6238      while (constructor_unfilled_fields != 0
6239	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6240	     && DECL_NAME (constructor_unfilled_fields) == 0)
6241	constructor_unfilled_fields =
6242	  TREE_CHAIN (constructor_unfilled_fields);
6243    }
6244  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6245    constructor_unfilled_fields = 0;
6246
6247  /* Now output any pending elements which have become next.  */
6248  if (pending)
6249    output_pending_init_elements (0);
6250}
6251
6252/* Output any pending elements which have become next.
6253   As we output elements, constructor_unfilled_{fields,index}
6254   advances, which may cause other elements to become next;
6255   if so, they too are output.
6256
6257   If ALL is 0, we return when there are
6258   no more pending elements to output now.
6259
6260   If ALL is 1, we output space as necessary so that
6261   we can output all the pending elements.  */
6262
6263static void
6264output_pending_init_elements (int all)
6265{
6266  struct init_node *elt = constructor_pending_elts;
6267  tree next;
6268
6269 retry:
6270
6271  /* Look through the whole pending tree.
6272     If we find an element that should be output now,
6273     output it.  Otherwise, set NEXT to the element
6274     that comes first among those still pending.  */
6275
6276  next = 0;
6277  while (elt)
6278    {
6279      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6280	{
6281	  if (tree_int_cst_equal (elt->purpose,
6282				  constructor_unfilled_index))
6283	    output_init_element (elt->value, true,
6284				 TREE_TYPE (constructor_type),
6285				 constructor_unfilled_index, 0);
6286	  else if (tree_int_cst_lt (constructor_unfilled_index,
6287				    elt->purpose))
6288	    {
6289	      /* Advance to the next smaller node.  */
6290	      if (elt->left)
6291		elt = elt->left;
6292	      else
6293		{
6294		  /* We have reached the smallest node bigger than the
6295		     current unfilled index.  Fill the space first.  */
6296		  next = elt->purpose;
6297		  break;
6298		}
6299	    }
6300	  else
6301	    {
6302	      /* Advance to the next bigger node.  */
6303	      if (elt->right)
6304		elt = elt->right;
6305	      else
6306		{
6307		  /* We have reached the biggest node in a subtree.  Find
6308		     the parent of it, which is the next bigger node.  */
6309		  while (elt->parent && elt->parent->right == elt)
6310		    elt = elt->parent;
6311		  elt = elt->parent;
6312		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6313					      elt->purpose))
6314		    {
6315		      next = elt->purpose;
6316		      break;
6317		    }
6318		}
6319	    }
6320	}
6321      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6322	       || TREE_CODE (constructor_type) == UNION_TYPE)
6323	{
6324	  tree ctor_unfilled_bitpos, elt_bitpos;
6325
6326	  /* If the current record is complete we are done.  */
6327	  if (constructor_unfilled_fields == 0)
6328	    break;
6329
6330	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6331	  elt_bitpos = bit_position (elt->purpose);
6332	  /* We can't compare fields here because there might be empty
6333	     fields in between.  */
6334	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6335	    {
6336	      constructor_unfilled_fields = elt->purpose;
6337	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6338				   elt->purpose, 0);
6339	    }
6340	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6341	    {
6342	      /* Advance to the next smaller node.  */
6343	      if (elt->left)
6344		elt = elt->left;
6345	      else
6346		{
6347		  /* We have reached the smallest node bigger than the
6348		     current unfilled field.  Fill the space first.  */
6349		  next = elt->purpose;
6350		  break;
6351		}
6352	    }
6353	  else
6354	    {
6355	      /* Advance to the next bigger node.  */
6356	      if (elt->right)
6357		elt = elt->right;
6358	      else
6359		{
6360		  /* We have reached the biggest node in a subtree.  Find
6361		     the parent of it, which is the next bigger node.  */
6362		  while (elt->parent && elt->parent->right == elt)
6363		    elt = elt->parent;
6364		  elt = elt->parent;
6365		  if (elt
6366		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6367					   bit_position (elt->purpose))))
6368		    {
6369		      next = elt->purpose;
6370		      break;
6371		    }
6372		}
6373	    }
6374	}
6375    }
6376
6377  /* Ordinarily return, but not if we want to output all
6378     and there are elements left.  */
6379  if (!(all && next != 0))
6380    return;
6381
6382  /* If it's not incremental, just skip over the gap, so that after
6383     jumping to retry we will output the next successive element.  */
6384  if (TREE_CODE (constructor_type) == RECORD_TYPE
6385      || TREE_CODE (constructor_type) == UNION_TYPE)
6386    constructor_unfilled_fields = next;
6387  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6388    constructor_unfilled_index = next;
6389
6390  /* ELT now points to the node in the pending tree with the next
6391     initializer to output.  */
6392  goto retry;
6393}
6394
6395/* Add one non-braced element to the current constructor level.
6396   This adjusts the current position within the constructor's type.
6397   This may also start or terminate implicit levels
6398   to handle a partly-braced initializer.
6399
6400   Once this has found the correct level for the new element,
6401   it calls output_init_element.  */
6402
6403void
6404process_init_element (struct c_expr value)
6405{
6406  tree orig_value = value.value;
6407  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6408  bool strict_string = value.original_code == STRING_CST;
6409
6410  designator_depth = 0;
6411  designator_erroneous = 0;
6412
6413  /* Handle superfluous braces around string cst as in
6414     char x[] = {"foo"}; */
6415  if (string_flag
6416      && constructor_type
6417      && TREE_CODE (constructor_type) == ARRAY_TYPE
6418      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6419      && integer_zerop (constructor_unfilled_index))
6420    {
6421      if (constructor_stack->replacement_value.value)
6422	error_init ("excess elements in char array initializer");
6423      constructor_stack->replacement_value = value;
6424      return;
6425    }
6426
6427  if (constructor_stack->replacement_value.value != 0)
6428    {
6429      error_init ("excess elements in struct initializer");
6430      return;
6431    }
6432
6433  /* Ignore elements of a brace group if it is entirely superfluous
6434     and has already been diagnosed.  */
6435  if (constructor_type == 0)
6436    return;
6437
6438  /* If we've exhausted any levels that didn't have braces,
6439     pop them now.  */
6440  while (constructor_stack->implicit)
6441    {
6442      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6443	   || TREE_CODE (constructor_type) == UNION_TYPE)
6444	  && constructor_fields == 0)
6445	process_init_element (pop_init_level (1));
6446      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6447	       && (constructor_max_index == 0
6448		   || tree_int_cst_lt (constructor_max_index,
6449				       constructor_index)))
6450	process_init_element (pop_init_level (1));
6451      else
6452	break;
6453    }
6454
6455  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6456  if (constructor_range_stack)
6457    {
6458      /* If value is a compound literal and we'll be just using its
6459	 content, don't put it into a SAVE_EXPR.  */
6460      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6461	  || !require_constant_value
6462	  || flag_isoc99)
6463	value.value = save_expr (value.value);
6464    }
6465
6466  while (1)
6467    {
6468      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6469	{
6470	  tree fieldtype;
6471	  enum tree_code fieldcode;
6472
6473	  if (constructor_fields == 0)
6474	    {
6475	      pedwarn_init ("excess elements in struct initializer");
6476	      break;
6477	    }
6478
6479	  fieldtype = TREE_TYPE (constructor_fields);
6480	  if (fieldtype != error_mark_node)
6481	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6482	  fieldcode = TREE_CODE (fieldtype);
6483
6484	  /* Error for non-static initialization of a flexible array member.  */
6485	  if (fieldcode == ARRAY_TYPE
6486	      && !require_constant_value
6487	      && TYPE_SIZE (fieldtype) == NULL_TREE
6488	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6489	    {
6490	      error_init ("non-static initialization of a flexible array member");
6491	      break;
6492	    }
6493
6494	  /* Accept a string constant to initialize a subarray.  */
6495	  if (value.value != 0
6496	      && fieldcode == ARRAY_TYPE
6497	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6498	      && string_flag)
6499	    value.value = orig_value;
6500	  /* Otherwise, if we have come to a subaggregate,
6501	     and we don't have an element of its type, push into it.  */
6502	  else if (value.value != 0
6503		   && value.value != error_mark_node
6504		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6505		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6506		       || fieldcode == UNION_TYPE))
6507	    {
6508	      push_init_level (1);
6509	      continue;
6510	    }
6511
6512	  if (value.value)
6513	    {
6514	      push_member_name (constructor_fields);
6515	      output_init_element (value.value, strict_string,
6516				   fieldtype, constructor_fields, 1);
6517	      RESTORE_SPELLING_DEPTH (constructor_depth);
6518	    }
6519	  else
6520	    /* Do the bookkeeping for an element that was
6521	       directly output as a constructor.  */
6522	    {
6523	      /* For a record, keep track of end position of last field.  */
6524	      if (DECL_SIZE (constructor_fields))
6525		constructor_bit_index
6526		  = size_binop (PLUS_EXPR,
6527				bit_position (constructor_fields),
6528				DECL_SIZE (constructor_fields));
6529
6530	      /* If the current field was the first one not yet written out,
6531		 it isn't now, so update.  */
6532	      if (constructor_unfilled_fields == constructor_fields)
6533		{
6534		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6535		  /* Skip any nameless bit fields.  */
6536		  while (constructor_unfilled_fields != 0
6537			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6538			 && DECL_NAME (constructor_unfilled_fields) == 0)
6539		    constructor_unfilled_fields =
6540		      TREE_CHAIN (constructor_unfilled_fields);
6541		}
6542	    }
6543
6544	  constructor_fields = TREE_CHAIN (constructor_fields);
6545	  /* Skip any nameless bit fields at the beginning.  */
6546	  while (constructor_fields != 0
6547		 && DECL_C_BIT_FIELD (constructor_fields)
6548		 && DECL_NAME (constructor_fields) == 0)
6549	    constructor_fields = TREE_CHAIN (constructor_fields);
6550	}
6551      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6552	{
6553	  tree fieldtype;
6554	  enum tree_code fieldcode;
6555
6556	  if (constructor_fields == 0)
6557	    {
6558	      pedwarn_init ("excess elements in union initializer");
6559	      break;
6560	    }
6561
6562	  fieldtype = TREE_TYPE (constructor_fields);
6563	  if (fieldtype != error_mark_node)
6564	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6565	  fieldcode = TREE_CODE (fieldtype);
6566
6567	  /* Warn that traditional C rejects initialization of unions.
6568	     We skip the warning if the value is zero.  This is done
6569	     under the assumption that the zero initializer in user
6570	     code appears conditioned on e.g. __STDC__ to avoid
6571	     "missing initializer" warnings and relies on default
6572	     initialization to zero in the traditional C case.
6573	     We also skip the warning if the initializer is designated,
6574	     again on the assumption that this must be conditional on
6575	     __STDC__ anyway (and we've already complained about the
6576	     member-designator already).  */
6577	  if (!in_system_header && !constructor_designated
6578	      && !(value.value && (integer_zerop (value.value)
6579				   || real_zerop (value.value))))
6580	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6581		     "of unions");
6582
6583	  /* Accept a string constant to initialize a subarray.  */
6584	  if (value.value != 0
6585	      && fieldcode == ARRAY_TYPE
6586	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6587	      && string_flag)
6588	    value.value = orig_value;
6589	  /* Otherwise, if we have come to a subaggregate,
6590	     and we don't have an element of its type, push into it.  */
6591	  else if (value.value != 0
6592		   && value.value != error_mark_node
6593		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6594		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6595		       || fieldcode == UNION_TYPE))
6596	    {
6597	      push_init_level (1);
6598	      continue;
6599	    }
6600
6601	  if (value.value)
6602	    {
6603	      push_member_name (constructor_fields);
6604	      output_init_element (value.value, strict_string,
6605				   fieldtype, constructor_fields, 1);
6606	      RESTORE_SPELLING_DEPTH (constructor_depth);
6607	    }
6608	  else
6609	    /* Do the bookkeeping for an element that was
6610	       directly output as a constructor.  */
6611	    {
6612	      constructor_bit_index = DECL_SIZE (constructor_fields);
6613	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6614	    }
6615
6616	  constructor_fields = 0;
6617	}
6618      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6619	{
6620	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6621	  enum tree_code eltcode = TREE_CODE (elttype);
6622
6623	  /* Accept a string constant to initialize a subarray.  */
6624	  if (value.value != 0
6625	      && eltcode == ARRAY_TYPE
6626	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6627	      && string_flag)
6628	    value.value = orig_value;
6629	  /* Otherwise, if we have come to a subaggregate,
6630	     and we don't have an element of its type, push into it.  */
6631	  else if (value.value != 0
6632		   && value.value != error_mark_node
6633		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6634		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6635		       || eltcode == UNION_TYPE))
6636	    {
6637	      push_init_level (1);
6638	      continue;
6639	    }
6640
6641	  if (constructor_max_index != 0
6642	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6643		  || integer_all_onesp (constructor_max_index)))
6644	    {
6645	      pedwarn_init ("excess elements in array initializer");
6646	      break;
6647	    }
6648
6649	  /* Now output the actual element.  */
6650	  if (value.value)
6651	    {
6652	      push_array_bounds (tree_low_cst (constructor_index, 1));
6653	      output_init_element (value.value, strict_string,
6654				   elttype, constructor_index, 1);
6655	      RESTORE_SPELLING_DEPTH (constructor_depth);
6656	    }
6657
6658	  constructor_index
6659	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6660
6661	  if (!value.value)
6662	    /* If we are doing the bookkeeping for an element that was
6663	       directly output as a constructor, we must update
6664	       constructor_unfilled_index.  */
6665	    constructor_unfilled_index = constructor_index;
6666	}
6667      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6668	{
6669	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6670
6671	 /* Do a basic check of initializer size.  Note that vectors
6672	    always have a fixed size derived from their type.  */
6673	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6674	    {
6675	      pedwarn_init ("excess elements in vector initializer");
6676	      break;
6677	    }
6678
6679	  /* Now output the actual element.  */
6680	  if (value.value)
6681	    output_init_element (value.value, strict_string,
6682				 elttype, constructor_index, 1);
6683
6684	  constructor_index
6685	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6686
6687	  if (!value.value)
6688	    /* If we are doing the bookkeeping for an element that was
6689	       directly output as a constructor, we must update
6690	       constructor_unfilled_index.  */
6691	    constructor_unfilled_index = constructor_index;
6692	}
6693
6694      /* Handle the sole element allowed in a braced initializer
6695	 for a scalar variable.  */
6696      else if (constructor_type != error_mark_node
6697	       && constructor_fields == 0)
6698	{
6699	  pedwarn_init ("excess elements in scalar initializer");
6700	  break;
6701	}
6702      else
6703	{
6704	  if (value.value)
6705	    output_init_element (value.value, strict_string,
6706				 constructor_type, NULL_TREE, 1);
6707	  constructor_fields = 0;
6708	}
6709
6710      /* Handle range initializers either at this level or anywhere higher
6711	 in the designator stack.  */
6712      if (constructor_range_stack)
6713	{
6714	  struct constructor_range_stack *p, *range_stack;
6715	  int finish = 0;
6716
6717	  range_stack = constructor_range_stack;
6718	  constructor_range_stack = 0;
6719	  while (constructor_stack != range_stack->stack)
6720	    {
6721	      gcc_assert (constructor_stack->implicit);
6722	      process_init_element (pop_init_level (1));
6723	    }
6724	  for (p = range_stack;
6725	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6726	       p = p->prev)
6727	    {
6728	      gcc_assert (constructor_stack->implicit);
6729	      process_init_element (pop_init_level (1));
6730	    }
6731
6732	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6733	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6734	    finish = 1;
6735
6736	  while (1)
6737	    {
6738	      constructor_index = p->index;
6739	      constructor_fields = p->fields;
6740	      if (finish && p->range_end && p->index == p->range_start)
6741		{
6742		  finish = 0;
6743		  p->prev = 0;
6744		}
6745	      p = p->next;
6746	      if (!p)
6747		break;
6748	      push_init_level (2);
6749	      p->stack = constructor_stack;
6750	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6751		p->index = p->range_start;
6752	    }
6753
6754	  if (!finish)
6755	    constructor_range_stack = range_stack;
6756	  continue;
6757	}
6758
6759      break;
6760    }
6761
6762  constructor_range_stack = 0;
6763}
6764
6765/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6766   (guaranteed to be 'volatile' or null) and ARGS (represented using
6767   an ASM_EXPR node).  */
6768tree
6769build_asm_stmt (tree cv_qualifier, tree args)
6770{
6771  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6772    ASM_VOLATILE_P (args) = 1;
6773  return add_stmt (args);
6774}
6775
6776/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6777   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6778   SIMPLE indicates whether there was anything at all after the
6779   string in the asm expression -- asm("blah") and asm("blah" : )
6780   are subtly different.  We use a ASM_EXPR node to represent this.  */
6781tree
6782build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6783		bool simple)
6784{
6785  tree tail;
6786  tree args;
6787  int i;
6788  const char *constraint;
6789  const char **oconstraints;
6790  bool allows_mem, allows_reg, is_inout;
6791  int ninputs, noutputs;
6792
6793  ninputs = list_length (inputs);
6794  noutputs = list_length (outputs);
6795  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6796
6797  string = resolve_asm_operand_names (string, outputs, inputs);
6798
6799  /* Remove output conversions that change the type but not the mode.  */
6800  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6801    {
6802      tree output = TREE_VALUE (tail);
6803
6804      /* ??? Really, this should not be here.  Users should be using a
6805	 proper lvalue, dammit.  But there's a long history of using casts
6806	 in the output operands.  In cases like longlong.h, this becomes a
6807	 primitive form of typechecking -- if the cast can be removed, then
6808	 the output operand had a type of the proper width; otherwise we'll
6809	 get an error.  Gross, but ...  */
6810      STRIP_NOPS (output);
6811
6812      if (!lvalue_or_else (output, lv_asm))
6813	output = error_mark_node;
6814
6815      if (output != error_mark_node
6816	  && (TREE_READONLY (output)
6817	      || TYPE_READONLY (TREE_TYPE (output))
6818	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6819		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6820		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6821	readonly_error (output, lv_asm);
6822
6823      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6824      oconstraints[i] = constraint;
6825
6826      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6827				   &allows_mem, &allows_reg, &is_inout))
6828	{
6829	  /* If the operand is going to end up in memory,
6830	     mark it addressable.  */
6831	  if (!allows_reg && !c_mark_addressable (output))
6832	    output = error_mark_node;
6833	}
6834      else
6835	output = error_mark_node;
6836
6837      TREE_VALUE (tail) = output;
6838    }
6839
6840  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6841    {
6842      tree input;
6843
6844      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6845      input = TREE_VALUE (tail);
6846
6847      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6848				  oconstraints, &allows_mem, &allows_reg))
6849	{
6850	  /* If the operand is going to end up in memory,
6851	     mark it addressable.  */
6852	  if (!allows_reg && allows_mem)
6853	    {
6854	      /* Strip the nops as we allow this case.  FIXME, this really
6855		 should be rejected or made deprecated.  */
6856	      STRIP_NOPS (input);
6857	      if (!c_mark_addressable (input))
6858		input = error_mark_node;
6859	  }
6860	}
6861      else
6862	input = error_mark_node;
6863
6864      TREE_VALUE (tail) = input;
6865    }
6866
6867  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6868
6869  /* asm statements without outputs, including simple ones, are treated
6870     as volatile.  */
6871  ASM_INPUT_P (args) = simple;
6872  ASM_VOLATILE_P (args) = (noutputs == 0);
6873
6874  return args;
6875}
6876
6877/* Generate a goto statement to LABEL.  */
6878
6879tree
6880c_finish_goto_label (tree label)
6881{
6882  tree decl = lookup_label (label);
6883  if (!decl)
6884    return NULL_TREE;
6885
6886  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6887    {
6888      error ("jump into statement expression");
6889      return NULL_TREE;
6890    }
6891
6892  if (C_DECL_UNJUMPABLE_VM (decl))
6893    {
6894      error ("jump into scope of identifier with variably modified type");
6895      return NULL_TREE;
6896    }
6897
6898  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6899    {
6900      /* No jump from outside this statement expression context, so
6901	 record that there is a jump from within this context.  */
6902      struct c_label_list *nlist;
6903      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6904      nlist->next = label_context_stack_se->labels_used;
6905      nlist->label = decl;
6906      label_context_stack_se->labels_used = nlist;
6907    }
6908
6909  if (!C_DECL_UNDEFINABLE_VM (decl))
6910    {
6911      /* No jump from outside this context context of identifiers with
6912	 variably modified type, so record that there is a jump from
6913	 within this context.  */
6914      struct c_label_list *nlist;
6915      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6916      nlist->next = label_context_stack_vm->labels_used;
6917      nlist->label = decl;
6918      label_context_stack_vm->labels_used = nlist;
6919    }
6920
6921  TREE_USED (decl) = 1;
6922  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6923}
6924
6925/* Generate a computed goto statement to EXPR.  */
6926
6927tree
6928c_finish_goto_ptr (tree expr)
6929{
6930  if (pedantic)
6931    pedwarn ("ISO C forbids %<goto *expr;%>");
6932  expr = convert (ptr_type_node, expr);
6933  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6934}
6935
6936/* Generate a C `return' statement.  RETVAL is the expression for what
6937   to return, or a null pointer for `return;' with no value.  */
6938
6939tree
6940c_finish_return (tree retval)
6941{
6942  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6943  bool no_warning = false;
6944
6945  if (TREE_THIS_VOLATILE (current_function_decl))
6946    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6947
6948  if (!retval)
6949    {
6950      current_function_returns_null = 1;
6951      if ((warn_return_type || flag_isoc99)
6952	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6953	{
6954	  pedwarn_c99 ("%<return%> with no value, in "
6955		       "function returning non-void");
6956	  no_warning = true;
6957	}
6958    }
6959  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6960    {
6961      current_function_returns_null = 1;
6962      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6963	pedwarn ("%<return%> with a value, in function returning void");
6964    }
6965  else
6966    {
6967      tree t = convert_for_assignment (valtype, retval, ic_return,
6968				       NULL_TREE, NULL_TREE, 0);
6969      tree res = DECL_RESULT (current_function_decl);
6970      tree inner;
6971
6972      current_function_returns_value = 1;
6973      if (t == error_mark_node)
6974	return NULL_TREE;
6975
6976      inner = t = convert (TREE_TYPE (res), t);
6977
6978      /* Strip any conversions, additions, and subtractions, and see if
6979	 we are returning the address of a local variable.  Warn if so.  */
6980      while (1)
6981	{
6982	  switch (TREE_CODE (inner))
6983	    {
6984	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6985	    case PLUS_EXPR:
6986	      inner = TREE_OPERAND (inner, 0);
6987	      continue;
6988
6989	    case MINUS_EXPR:
6990	      /* If the second operand of the MINUS_EXPR has a pointer
6991		 type (or is converted from it), this may be valid, so
6992		 don't give a warning.  */
6993	      {
6994		tree op1 = TREE_OPERAND (inner, 1);
6995
6996		while (!POINTER_TYPE_P (TREE_TYPE (op1))
6997		       && (TREE_CODE (op1) == NOP_EXPR
6998			   || TREE_CODE (op1) == NON_LVALUE_EXPR
6999			   || TREE_CODE (op1) == CONVERT_EXPR))
7000		  op1 = TREE_OPERAND (op1, 0);
7001
7002		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7003		  break;
7004
7005		inner = TREE_OPERAND (inner, 0);
7006		continue;
7007	      }
7008
7009	    case ADDR_EXPR:
7010	      inner = TREE_OPERAND (inner, 0);
7011
7012	      while (REFERENCE_CLASS_P (inner)
7013		     && TREE_CODE (inner) != INDIRECT_REF)
7014		inner = TREE_OPERAND (inner, 0);
7015
7016	      if (DECL_P (inner)
7017		  && !DECL_EXTERNAL (inner)
7018		  && !TREE_STATIC (inner)
7019		  && DECL_CONTEXT (inner) == current_function_decl)
7020		warning (0, "function returns address of local variable");
7021	      break;
7022
7023	    default:
7024	      break;
7025	    }
7026
7027	  break;
7028	}
7029
7030      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7031    }
7032
7033  ret_stmt = build_stmt (RETURN_EXPR, retval);
7034  TREE_NO_WARNING (ret_stmt) |= no_warning;
7035  return add_stmt (ret_stmt);
7036}
7037
7038struct c_switch {
7039  /* The SWITCH_EXPR being built.  */
7040  tree switch_expr;
7041
7042  /* The original type of the testing expression, i.e. before the
7043     default conversion is applied.  */
7044  tree orig_type;
7045
7046  /* A splay-tree mapping the low element of a case range to the high
7047     element, or NULL_TREE if there is no high element.  Used to
7048     determine whether or not a new case label duplicates an old case
7049     label.  We need a tree, rather than simply a hash table, because
7050     of the GNU case range extension.  */
7051  splay_tree cases;
7052
7053  /* Number of nested statement expressions within this switch
7054     statement; if nonzero, case and default labels may not
7055     appear.  */
7056  unsigned int blocked_stmt_expr;
7057
7058  /* Scope of outermost declarations of identifiers with variably
7059     modified type within this switch statement; if nonzero, case and
7060     default labels may not appear.  */
7061  unsigned int blocked_vm;
7062
7063  /* The next node on the stack.  */
7064  struct c_switch *next;
7065};
7066
7067/* A stack of the currently active switch statements.  The innermost
7068   switch statement is on the top of the stack.  There is no need to
7069   mark the stack for garbage collection because it is only active
7070   during the processing of the body of a function, and we never
7071   collect at that point.  */
7072
7073struct c_switch *c_switch_stack;
7074
7075/* Start a C switch statement, testing expression EXP.  Return the new
7076   SWITCH_EXPR.  */
7077
7078tree
7079c_start_case (tree exp)
7080{
7081  tree orig_type = error_mark_node;
7082  struct c_switch *cs;
7083
7084  if (exp != error_mark_node)
7085    {
7086      orig_type = TREE_TYPE (exp);
7087
7088      if (!INTEGRAL_TYPE_P (orig_type))
7089	{
7090	  if (orig_type != error_mark_node)
7091	    {
7092	      error ("switch quantity not an integer");
7093	      orig_type = error_mark_node;
7094	    }
7095	  exp = integer_zero_node;
7096	}
7097      else
7098	{
7099	  tree type = TYPE_MAIN_VARIANT (orig_type);
7100
7101	  if (!in_system_header
7102	      && (type == long_integer_type_node
7103		  || type == long_unsigned_type_node))
7104	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7105		     "converted to %<int%> in ISO C");
7106
7107	  exp = default_conversion (exp);
7108	}
7109    }
7110
7111  /* Add this new SWITCH_EXPR to the stack.  */
7112  cs = XNEW (struct c_switch);
7113  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7114  cs->orig_type = orig_type;
7115  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7116  cs->blocked_stmt_expr = 0;
7117  cs->blocked_vm = 0;
7118  cs->next = c_switch_stack;
7119  c_switch_stack = cs;
7120
7121  return add_stmt (cs->switch_expr);
7122}
7123
7124/* Process a case label.  */
7125
7126tree
7127do_case (tree low_value, tree high_value)
7128{
7129  tree label = NULL_TREE;
7130
7131  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7132      && !c_switch_stack->blocked_vm)
7133    {
7134      label = c_add_case_label (c_switch_stack->cases,
7135				SWITCH_COND (c_switch_stack->switch_expr),
7136				c_switch_stack->orig_type,
7137				low_value, high_value);
7138      if (label == error_mark_node)
7139	label = NULL_TREE;
7140    }
7141  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7142    {
7143      if (low_value)
7144	error ("case label in statement expression not containing "
7145	       "enclosing switch statement");
7146      else
7147	error ("%<default%> label in statement expression not containing "
7148	       "enclosing switch statement");
7149    }
7150  else if (c_switch_stack && c_switch_stack->blocked_vm)
7151    {
7152      if (low_value)
7153	error ("case label in scope of identifier with variably modified "
7154	       "type not containing enclosing switch statement");
7155      else
7156	error ("%<default%> label in scope of identifier with variably "
7157	       "modified type not containing enclosing switch statement");
7158    }
7159  else if (low_value)
7160    error ("case label not within a switch statement");
7161  else
7162    error ("%<default%> label not within a switch statement");
7163
7164  return label;
7165}
7166
7167/* Finish the switch statement.  */
7168
7169void
7170c_finish_case (tree body)
7171{
7172  struct c_switch *cs = c_switch_stack;
7173  location_t switch_location;
7174
7175  SWITCH_BODY (cs->switch_expr) = body;
7176
7177  /* We must not be within a statement expression nested in the switch
7178     at this point; we might, however, be within the scope of an
7179     identifier with variably modified type nested in the switch.  */
7180  gcc_assert (!cs->blocked_stmt_expr);
7181
7182  /* Emit warnings as needed.  */
7183  if (EXPR_HAS_LOCATION (cs->switch_expr))
7184    switch_location = EXPR_LOCATION (cs->switch_expr);
7185  else
7186    switch_location = input_location;
7187  c_do_switch_warnings (cs->cases, switch_location,
7188			TREE_TYPE (cs->switch_expr),
7189			SWITCH_COND (cs->switch_expr));
7190
7191  /* Pop the stack.  */
7192  c_switch_stack = cs->next;
7193  splay_tree_delete (cs->cases);
7194  XDELETE (cs);
7195}
7196
7197/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7198   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7199   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7200   statement, and was not surrounded with parenthesis.  */
7201
7202void
7203c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7204		  tree else_block, bool nested_if)
7205{
7206  tree stmt;
7207
7208  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7209  if (warn_parentheses && nested_if && else_block == NULL)
7210    {
7211      tree inner_if = then_block;
7212
7213      /* We know from the grammar productions that there is an IF nested
7214	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7215	 it might not be exactly THEN_BLOCK, but should be the last
7216	 non-container statement within.  */
7217      while (1)
7218	switch (TREE_CODE (inner_if))
7219	  {
7220	  case COND_EXPR:
7221	    goto found;
7222	  case BIND_EXPR:
7223	    inner_if = BIND_EXPR_BODY (inner_if);
7224	    break;
7225	  case STATEMENT_LIST:
7226	    inner_if = expr_last (then_block);
7227	    break;
7228	  case TRY_FINALLY_EXPR:
7229	  case TRY_CATCH_EXPR:
7230	    inner_if = TREE_OPERAND (inner_if, 0);
7231	    break;
7232	  default:
7233	    gcc_unreachable ();
7234	  }
7235    found:
7236
7237      if (COND_EXPR_ELSE (inner_if))
7238	 warning (OPT_Wparentheses,
7239		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7240		  &if_locus);
7241    }
7242
7243  empty_body_warning (then_block, else_block);
7244
7245  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7246  SET_EXPR_LOCATION (stmt, if_locus);
7247  add_stmt (stmt);
7248}
7249
7250/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7251   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7252   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7253   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7254   the continue label.  Everything is allowed to be NULL.  */
7255
7256void
7257c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7258	       tree blab, tree clab, bool cond_is_first)
7259{
7260  tree entry = NULL, exit = NULL, t;
7261
7262  /* If the condition is zero don't generate a loop construct.  */
7263  if (cond && integer_zerop (cond))
7264    {
7265      if (cond_is_first)
7266	{
7267	  t = build_and_jump (&blab);
7268	  SET_EXPR_LOCATION (t, start_locus);
7269	  add_stmt (t);
7270	}
7271    }
7272  else
7273    {
7274      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7275
7276      /* If we have an exit condition, then we build an IF with gotos either
7277	 out of the loop, or to the top of it.  If there's no exit condition,
7278	 then we just build a jump back to the top.  */
7279      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7280
7281      if (cond && !integer_nonzerop (cond))
7282	{
7283	  /* Canonicalize the loop condition to the end.  This means
7284	     generating a branch to the loop condition.  Reuse the
7285	     continue label, if possible.  */
7286	  if (cond_is_first)
7287	    {
7288	      if (incr || !clab)
7289		{
7290		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7291		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7292		}
7293	      else
7294		t = build1 (GOTO_EXPR, void_type_node, clab);
7295	      SET_EXPR_LOCATION (t, start_locus);
7296	      add_stmt (t);
7297	    }
7298
7299	  t = build_and_jump (&blab);
7300	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7301	  if (cond_is_first)
7302	    SET_EXPR_LOCATION (exit, start_locus);
7303	  else
7304	    SET_EXPR_LOCATION (exit, input_location);
7305	}
7306
7307      add_stmt (top);
7308    }
7309
7310  if (body)
7311    add_stmt (body);
7312  if (clab)
7313    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7314  if (incr)
7315    add_stmt (incr);
7316  if (entry)
7317    add_stmt (entry);
7318  if (exit)
7319    add_stmt (exit);
7320  if (blab)
7321    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7322}
7323
7324tree
7325c_finish_bc_stmt (tree *label_p, bool is_break)
7326{
7327  bool skip;
7328  tree label = *label_p;
7329
7330  /* In switch statements break is sometimes stylistically used after
7331     a return statement.  This can lead to spurious warnings about
7332     control reaching the end of a non-void function when it is
7333     inlined.  Note that we are calling block_may_fallthru with
7334     language specific tree nodes; this works because
7335     block_may_fallthru returns true when given something it does not
7336     understand.  */
7337  skip = !block_may_fallthru (cur_stmt_list);
7338
7339  if (!label)
7340    {
7341      if (!skip)
7342	*label_p = label = create_artificial_label ();
7343    }
7344  else if (TREE_CODE (label) == LABEL_DECL)
7345    ;
7346  else switch (TREE_INT_CST_LOW (label))
7347    {
7348    case 0:
7349      if (is_break)
7350	error ("break statement not within loop or switch");
7351      else
7352	error ("continue statement not within a loop");
7353      return NULL_TREE;
7354
7355    case 1:
7356      gcc_assert (is_break);
7357      error ("break statement used with OpenMP for loop");
7358      return NULL_TREE;
7359
7360    default:
7361      gcc_unreachable ();
7362    }
7363
7364  if (skip)
7365    return NULL_TREE;
7366
7367  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7368}
7369
7370/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7371
7372static void
7373emit_side_effect_warnings (tree expr)
7374{
7375  if (expr == error_mark_node)
7376    ;
7377  else if (!TREE_SIDE_EFFECTS (expr))
7378    {
7379      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7380	warning (0, "%Hstatement with no effect",
7381		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7382    }
7383  else if (warn_unused_value)
7384    warn_if_unused_value (expr, input_location);
7385}
7386
7387/* Process an expression as if it were a complete statement.  Emit
7388   diagnostics, but do not call ADD_STMT.  */
7389
7390tree
7391c_process_expr_stmt (tree expr)
7392{
7393  if (!expr)
7394    return NULL_TREE;
7395
7396  if (warn_sequence_point)
7397    verify_sequence_points (expr);
7398
7399  if (TREE_TYPE (expr) != error_mark_node
7400      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7401      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7402    error ("expression statement has incomplete type");
7403
7404  /* If we're not processing a statement expression, warn about unused values.
7405     Warnings for statement expressions will be emitted later, once we figure
7406     out which is the result.  */
7407  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7408      && (extra_warnings || warn_unused_value))
7409    emit_side_effect_warnings (expr);
7410
7411  /* If the expression is not of a type to which we cannot assign a line
7412     number, wrap the thing in a no-op NOP_EXPR.  */
7413  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7414    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7415
7416  if (EXPR_P (expr))
7417    SET_EXPR_LOCATION (expr, input_location);
7418
7419  return expr;
7420}
7421
7422/* Emit an expression as a statement.  */
7423
7424tree
7425c_finish_expr_stmt (tree expr)
7426{
7427  if (expr)
7428    return add_stmt (c_process_expr_stmt (expr));
7429  else
7430    return NULL;
7431}
7432
7433/* Do the opposite and emit a statement as an expression.  To begin,
7434   create a new binding level and return it.  */
7435
7436tree
7437c_begin_stmt_expr (void)
7438{
7439  tree ret;
7440  struct c_label_context_se *nstack;
7441  struct c_label_list *glist;
7442
7443  /* We must force a BLOCK for this level so that, if it is not expanded
7444     later, there is a way to turn off the entire subtree of blocks that
7445     are contained in it.  */
7446  keep_next_level ();
7447  ret = c_begin_compound_stmt (true);
7448  if (c_switch_stack)
7449    {
7450      c_switch_stack->blocked_stmt_expr++;
7451      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7452    }
7453  for (glist = label_context_stack_se->labels_used;
7454       glist != NULL;
7455       glist = glist->next)
7456    {
7457      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7458    }
7459  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7460  nstack->labels_def = NULL;
7461  nstack->labels_used = NULL;
7462  nstack->next = label_context_stack_se;
7463  label_context_stack_se = nstack;
7464
7465  /* Mark the current statement list as belonging to a statement list.  */
7466  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7467
7468  return ret;
7469}
7470
7471tree
7472c_finish_stmt_expr (tree body)
7473{
7474  tree last, type, tmp, val;
7475  tree *last_p;
7476  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7477
7478  body = c_end_compound_stmt (body, true);
7479  if (c_switch_stack)
7480    {
7481      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7482      c_switch_stack->blocked_stmt_expr--;
7483    }
7484  /* It is no longer possible to jump to labels defined within this
7485     statement expression.  */
7486  for (dlist = label_context_stack_se->labels_def;
7487       dlist != NULL;
7488       dlist = dlist->next)
7489    {
7490      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7491    }
7492  /* It is again possible to define labels with a goto just outside
7493     this statement expression.  */
7494  for (glist = label_context_stack_se->next->labels_used;
7495       glist != NULL;
7496       glist = glist->next)
7497    {
7498      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7499      glist_prev = glist;
7500    }
7501  if (glist_prev != NULL)
7502    glist_prev->next = label_context_stack_se->labels_used;
7503  else
7504    label_context_stack_se->next->labels_used
7505      = label_context_stack_se->labels_used;
7506  label_context_stack_se = label_context_stack_se->next;
7507
7508  /* Locate the last statement in BODY.  See c_end_compound_stmt
7509     about always returning a BIND_EXPR.  */
7510  last_p = &BIND_EXPR_BODY (body);
7511  last = BIND_EXPR_BODY (body);
7512
7513 continue_searching:
7514  if (TREE_CODE (last) == STATEMENT_LIST)
7515    {
7516      tree_stmt_iterator i;
7517
7518      /* This can happen with degenerate cases like ({ }).  No value.  */
7519      if (!TREE_SIDE_EFFECTS (last))
7520	return body;
7521
7522      /* If we're supposed to generate side effects warnings, process
7523	 all of the statements except the last.  */
7524      if (extra_warnings || warn_unused_value)
7525	{
7526	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7527	    emit_side_effect_warnings (tsi_stmt (i));
7528	}
7529      else
7530	i = tsi_last (last);
7531      last_p = tsi_stmt_ptr (i);
7532      last = *last_p;
7533    }
7534
7535  /* If the end of the list is exception related, then the list was split
7536     by a call to push_cleanup.  Continue searching.  */
7537  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7538      || TREE_CODE (last) == TRY_CATCH_EXPR)
7539    {
7540      last_p = &TREE_OPERAND (last, 0);
7541      last = *last_p;
7542      goto continue_searching;
7543    }
7544
7545  /* In the case that the BIND_EXPR is not necessary, return the
7546     expression out from inside it.  */
7547  if (last == error_mark_node
7548      || (last == BIND_EXPR_BODY (body)
7549	  && BIND_EXPR_VARS (body) == NULL))
7550    {
7551      /* Do not warn if the return value of a statement expression is
7552	 unused.  */
7553      if (EXPR_P (last))
7554	TREE_NO_WARNING (last) = 1;
7555      return last;
7556    }
7557
7558  /* Extract the type of said expression.  */
7559  type = TREE_TYPE (last);
7560
7561  /* If we're not returning a value at all, then the BIND_EXPR that
7562     we already have is a fine expression to return.  */
7563  if (!type || VOID_TYPE_P (type))
7564    return body;
7565
7566  /* Now that we've located the expression containing the value, it seems
7567     silly to make voidify_wrapper_expr repeat the process.  Create a
7568     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7569  tmp = create_tmp_var_raw (type, NULL);
7570
7571  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7572     tree_expr_nonnegative_p giving up immediately.  */
7573  val = last;
7574  if (TREE_CODE (val) == NOP_EXPR
7575      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7576    val = TREE_OPERAND (val, 0);
7577
7578  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7579  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7580
7581  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7582}
7583
7584/* Begin the scope of an identifier of variably modified type, scope
7585   number SCOPE.  Jumping from outside this scope to inside it is not
7586   permitted.  */
7587
7588void
7589c_begin_vm_scope (unsigned int scope)
7590{
7591  struct c_label_context_vm *nstack;
7592  struct c_label_list *glist;
7593
7594  gcc_assert (scope > 0);
7595
7596  /* At file_scope, we don't have to do any processing.  */
7597  if (label_context_stack_vm == NULL)
7598    return;
7599
7600  if (c_switch_stack && !c_switch_stack->blocked_vm)
7601    c_switch_stack->blocked_vm = scope;
7602  for (glist = label_context_stack_vm->labels_used;
7603       glist != NULL;
7604       glist = glist->next)
7605    {
7606      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7607    }
7608  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7609  nstack->labels_def = NULL;
7610  nstack->labels_used = NULL;
7611  nstack->scope = scope;
7612  nstack->next = label_context_stack_vm;
7613  label_context_stack_vm = nstack;
7614}
7615
7616/* End a scope which may contain identifiers of variably modified
7617   type, scope number SCOPE.  */
7618
7619void
7620c_end_vm_scope (unsigned int scope)
7621{
7622  if (label_context_stack_vm == NULL)
7623    return;
7624  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7625    c_switch_stack->blocked_vm = 0;
7626  /* We may have a number of nested scopes of identifiers with
7627     variably modified type, all at this depth.  Pop each in turn.  */
7628  while (label_context_stack_vm->scope == scope)
7629    {
7630      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7631
7632      /* It is no longer possible to jump to labels defined within this
7633	 scope.  */
7634      for (dlist = label_context_stack_vm->labels_def;
7635	   dlist != NULL;
7636	   dlist = dlist->next)
7637	{
7638	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7639	}
7640      /* It is again possible to define labels with a goto just outside
7641	 this scope.  */
7642      for (glist = label_context_stack_vm->next->labels_used;
7643	   glist != NULL;
7644	   glist = glist->next)
7645	{
7646	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7647	  glist_prev = glist;
7648	}
7649      if (glist_prev != NULL)
7650	glist_prev->next = label_context_stack_vm->labels_used;
7651      else
7652	label_context_stack_vm->next->labels_used
7653	  = label_context_stack_vm->labels_used;
7654      label_context_stack_vm = label_context_stack_vm->next;
7655    }
7656}
7657
7658/* Begin and end compound statements.  This is as simple as pushing
7659   and popping new statement lists from the tree.  */
7660
7661tree
7662c_begin_compound_stmt (bool do_scope)
7663{
7664  tree stmt = push_stmt_list ();
7665  if (do_scope)
7666    push_scope ();
7667  return stmt;
7668}
7669
7670tree
7671c_end_compound_stmt (tree stmt, bool do_scope)
7672{
7673  tree block = NULL;
7674
7675  if (do_scope)
7676    {
7677      if (c_dialect_objc ())
7678	objc_clear_super_receiver ();
7679      block = pop_scope ();
7680    }
7681
7682  stmt = pop_stmt_list (stmt);
7683  stmt = c_build_bind_expr (block, stmt);
7684
7685  /* If this compound statement is nested immediately inside a statement
7686     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7687     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7688     STATEMENT_LISTs merge, and thus we can lose track of what statement
7689     was really last.  */
7690  if (cur_stmt_list
7691      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7692      && TREE_CODE (stmt) != BIND_EXPR)
7693    {
7694      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7695      TREE_SIDE_EFFECTS (stmt) = 1;
7696    }
7697
7698  return stmt;
7699}
7700
7701/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7702   when the current scope is exited.  EH_ONLY is true when this is not
7703   meant to apply to normal control flow transfer.  */
7704
7705void
7706push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7707{
7708  enum tree_code code;
7709  tree stmt, list;
7710  bool stmt_expr;
7711
7712  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7713  stmt = build_stmt (code, NULL, cleanup);
7714  add_stmt (stmt);
7715  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7716  list = push_stmt_list ();
7717  TREE_OPERAND (stmt, 0) = list;
7718  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7719}
7720
7721/* Build a binary-operation expression without default conversions.
7722   CODE is the kind of expression to build.
7723   This function differs from `build' in several ways:
7724   the data type of the result is computed and recorded in it,
7725   warnings are generated if arg data types are invalid,
7726   special handling for addition and subtraction of pointers is known,
7727   and some optimization is done (operations on narrow ints
7728   are done in the narrower type when that gives the same result).
7729   Constant folding is also done before the result is returned.
7730
7731   Note that the operands will never have enumeral types, or function
7732   or array types, because either they will have the default conversions
7733   performed or they have both just been converted to some other type in which
7734   the arithmetic is to be done.  */
7735
7736tree
7737build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7738		 int convert_p)
7739{
7740  tree type0, type1;
7741  enum tree_code code0, code1;
7742  tree op0, op1;
7743  const char *invalid_op_diag;
7744
7745  /* Expression code to give to the expression when it is built.
7746     Normally this is CODE, which is what the caller asked for,
7747     but in some special cases we change it.  */
7748  enum tree_code resultcode = code;
7749
7750  /* Data type in which the computation is to be performed.
7751     In the simplest cases this is the common type of the arguments.  */
7752  tree result_type = NULL;
7753
7754  /* Nonzero means operands have already been type-converted
7755     in whatever way is necessary.
7756     Zero means they need to be converted to RESULT_TYPE.  */
7757  int converted = 0;
7758
7759  /* Nonzero means create the expression with this type, rather than
7760     RESULT_TYPE.  */
7761  tree build_type = 0;
7762
7763  /* Nonzero means after finally constructing the expression
7764     convert it to this type.  */
7765  tree final_type = 0;
7766
7767  /* Nonzero if this is an operation like MIN or MAX which can
7768     safely be computed in short if both args are promoted shorts.
7769     Also implies COMMON.
7770     -1 indicates a bitwise operation; this makes a difference
7771     in the exact conditions for when it is safe to do the operation
7772     in a narrower mode.  */
7773  int shorten = 0;
7774
7775  /* Nonzero if this is a comparison operation;
7776     if both args are promoted shorts, compare the original shorts.
7777     Also implies COMMON.  */
7778  int short_compare = 0;
7779
7780  /* Nonzero if this is a right-shift operation, which can be computed on the
7781     original short and then promoted if the operand is a promoted short.  */
7782  int short_shift = 0;
7783
7784  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7785  int common = 0;
7786
7787  /* True means types are compatible as far as ObjC is concerned.  */
7788  bool objc_ok;
7789
7790  if (convert_p)
7791    {
7792      op0 = default_conversion (orig_op0);
7793      op1 = default_conversion (orig_op1);
7794    }
7795  else
7796    {
7797      op0 = orig_op0;
7798      op1 = orig_op1;
7799    }
7800
7801  type0 = TREE_TYPE (op0);
7802  type1 = TREE_TYPE (op1);
7803
7804  /* The expression codes of the data types of the arguments tell us
7805     whether the arguments are integers, floating, pointers, etc.  */
7806  code0 = TREE_CODE (type0);
7807  code1 = TREE_CODE (type1);
7808
7809  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7810  STRIP_TYPE_NOPS (op0);
7811  STRIP_TYPE_NOPS (op1);
7812
7813  /* If an error was already reported for one of the arguments,
7814     avoid reporting another error.  */
7815
7816  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7817    return error_mark_node;
7818
7819  if ((invalid_op_diag
7820       = targetm.invalid_binary_op (code, type0, type1)))
7821    {
7822      error (invalid_op_diag);
7823      return error_mark_node;
7824    }
7825
7826  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7827
7828  switch (code)
7829    {
7830    case PLUS_EXPR:
7831      /* Handle the pointer + int case.  */
7832      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7833	return pointer_int_sum (PLUS_EXPR, op0, op1);
7834      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7835	return pointer_int_sum (PLUS_EXPR, op1, op0);
7836      else
7837	common = 1;
7838      break;
7839
7840    case MINUS_EXPR:
7841      /* Subtraction of two similar pointers.
7842	 We must subtract them as integers, then divide by object size.  */
7843      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7844	  && comp_target_types (type0, type1))
7845	return pointer_diff (op0, op1);
7846      /* Handle pointer minus int.  Just like pointer plus int.  */
7847      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7848	return pointer_int_sum (MINUS_EXPR, op0, op1);
7849      else
7850	common = 1;
7851      break;
7852
7853    case MULT_EXPR:
7854      common = 1;
7855      break;
7856
7857    case TRUNC_DIV_EXPR:
7858    case CEIL_DIV_EXPR:
7859    case FLOOR_DIV_EXPR:
7860    case ROUND_DIV_EXPR:
7861    case EXACT_DIV_EXPR:
7862      /* Floating point division by zero is a legitimate way to obtain
7863	 infinities and NaNs.  */
7864      if (skip_evaluation == 0 && integer_zerop (op1))
7865	warning (OPT_Wdiv_by_zero, "division by zero");
7866
7867      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7868	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7869	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7870	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7871	{
7872	  enum tree_code tcode0 = code0, tcode1 = code1;
7873
7874	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7875	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7876	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7877	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7878
7879	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7880	    resultcode = RDIV_EXPR;
7881	  else
7882	    /* Although it would be tempting to shorten always here, that
7883	       loses on some targets, since the modulo instruction is
7884	       undefined if the quotient can't be represented in the
7885	       computation mode.  We shorten only if unsigned or if
7886	       dividing by something we know != -1.  */
7887	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7888		       || (TREE_CODE (op1) == INTEGER_CST
7889			   && !integer_all_onesp (op1)));
7890	  common = 1;
7891	}
7892      break;
7893
7894    case BIT_AND_EXPR:
7895    case BIT_IOR_EXPR:
7896    case BIT_XOR_EXPR:
7897      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7898	shorten = -1;
7899      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7900	common = 1;
7901      break;
7902
7903    case TRUNC_MOD_EXPR:
7904    case FLOOR_MOD_EXPR:
7905      if (skip_evaluation == 0 && integer_zerop (op1))
7906	warning (OPT_Wdiv_by_zero, "division by zero");
7907
7908      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7909	{
7910	  /* Although it would be tempting to shorten always here, that loses
7911	     on some targets, since the modulo instruction is undefined if the
7912	     quotient can't be represented in the computation mode.  We shorten
7913	     only if unsigned or if dividing by something we know != -1.  */
7914	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7915		     || (TREE_CODE (op1) == INTEGER_CST
7916			 && !integer_all_onesp (op1)));
7917	  common = 1;
7918	}
7919      break;
7920
7921    case TRUTH_ANDIF_EXPR:
7922    case TRUTH_ORIF_EXPR:
7923    case TRUTH_AND_EXPR:
7924    case TRUTH_OR_EXPR:
7925    case TRUTH_XOR_EXPR:
7926      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7927	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7928	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7929	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7930	{
7931	  /* Result of these operations is always an int,
7932	     but that does not mean the operands should be
7933	     converted to ints!  */
7934	  result_type = integer_type_node;
7935	  op0 = c_common_truthvalue_conversion (op0);
7936	  op1 = c_common_truthvalue_conversion (op1);
7937	  converted = 1;
7938	}
7939      break;
7940
7941      /* Shift operations: result has same type as first operand;
7942	 always convert second operand to int.
7943	 Also set SHORT_SHIFT if shifting rightward.  */
7944
7945    case RSHIFT_EXPR:
7946      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7947	{
7948	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7949	    {
7950	      if (tree_int_cst_sgn (op1) < 0)
7951		warning (0, "right shift count is negative");
7952	      else
7953		{
7954		  if (!integer_zerop (op1))
7955		    short_shift = 1;
7956
7957		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7958		    warning (0, "right shift count >= width of type");
7959		}
7960	    }
7961
7962	  /* Use the type of the value to be shifted.  */
7963	  result_type = type0;
7964	  /* Convert the shift-count to an integer, regardless of size
7965	     of value being shifted.  */
7966	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7967	    op1 = convert (integer_type_node, op1);
7968	  /* Avoid converting op1 to result_type later.  */
7969	  converted = 1;
7970	}
7971      break;
7972
7973    case LSHIFT_EXPR:
7974      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7975	{
7976	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7977	    {
7978	      if (tree_int_cst_sgn (op1) < 0)
7979		warning (0, "left shift count is negative");
7980
7981	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7982		warning (0, "left shift count >= width of type");
7983	    }
7984
7985	  /* Use the type of the value to be shifted.  */
7986	  result_type = type0;
7987	  /* Convert the shift-count to an integer, regardless of size
7988	     of value being shifted.  */
7989	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7990	    op1 = convert (integer_type_node, op1);
7991	  /* Avoid converting op1 to result_type later.  */
7992	  converted = 1;
7993	}
7994      break;
7995
7996    case EQ_EXPR:
7997    case NE_EXPR:
7998      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7999	warning (OPT_Wfloat_equal,
8000		 "comparing floating point with == or != is unsafe");
8001      /* Result of comparison is always int,
8002	 but don't convert the args to int!  */
8003      build_type = integer_type_node;
8004      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8005	   || code0 == COMPLEX_TYPE)
8006	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8007	      || code1 == COMPLEX_TYPE))
8008	short_compare = 1;
8009      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8010	{
8011	  tree tt0 = TREE_TYPE (type0);
8012	  tree tt1 = TREE_TYPE (type1);
8013	  /* Anything compares with void *.  void * compares with anything.
8014	     Otherwise, the targets must be compatible
8015	     and both must be object or both incomplete.  */
8016	  if (comp_target_types (type0, type1))
8017	    result_type = common_pointer_type (type0, type1);
8018	  else if (VOID_TYPE_P (tt0))
8019	    {
8020	      /* op0 != orig_op0 detects the case of something
8021		 whose value is 0 but which isn't a valid null ptr const.  */
8022	      if (pedantic && !null_pointer_constant_p (orig_op0)
8023		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8024		pedwarn ("ISO C forbids comparison of %<void *%>"
8025			 " with function pointer");
8026	    }
8027	  else if (VOID_TYPE_P (tt1))
8028	    {
8029	      if (pedantic && !null_pointer_constant_p (orig_op1)
8030		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8031		pedwarn ("ISO C forbids comparison of %<void *%>"
8032			 " with function pointer");
8033	    }
8034	  else
8035	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8036	    if (!objc_ok)
8037	      pedwarn ("comparison of distinct pointer types lacks a cast");
8038
8039	  if (result_type == NULL_TREE)
8040	    result_type = ptr_type_node;
8041	}
8042      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8043	{
8044	  if (TREE_CODE (op0) == ADDR_EXPR
8045	      && DECL_P (TREE_OPERAND (op0, 0))
8046	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8047		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8048		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8049	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8050		     TREE_OPERAND (op0, 0));
8051	  result_type = type0;
8052	}
8053      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8054	{
8055	  if (TREE_CODE (op1) == ADDR_EXPR
8056	      && DECL_P (TREE_OPERAND (op1, 0))
8057	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8058		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8059		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8060	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8061		     TREE_OPERAND (op1, 0));
8062	  result_type = type1;
8063	}
8064      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8065	{
8066	  result_type = type0;
8067	  pedwarn ("comparison between pointer and integer");
8068	}
8069      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8070	{
8071	  result_type = type1;
8072	  pedwarn ("comparison between pointer and integer");
8073	}
8074      break;
8075
8076    case LE_EXPR:
8077    case GE_EXPR:
8078    case LT_EXPR:
8079    case GT_EXPR:
8080      build_type = integer_type_node;
8081      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8082	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8083	short_compare = 1;
8084      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8085	{
8086	  if (comp_target_types (type0, type1))
8087	    {
8088	      result_type = common_pointer_type (type0, type1);
8089	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8090		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8091		pedwarn ("comparison of complete and incomplete pointers");
8092	      else if (pedantic
8093		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8094		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8095	    }
8096	  else
8097	    {
8098	      result_type = ptr_type_node;
8099	      pedwarn ("comparison of distinct pointer types lacks a cast");
8100	    }
8101	}
8102      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8103	{
8104	  result_type = type0;
8105	  if (pedantic || extra_warnings)
8106	    pedwarn ("ordered comparison of pointer with integer zero");
8107	}
8108      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8109	{
8110	  result_type = type1;
8111	  if (pedantic)
8112	    pedwarn ("ordered comparison of pointer with integer zero");
8113	}
8114      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8115	{
8116	  result_type = type0;
8117	  pedwarn ("comparison between pointer and integer");
8118	}
8119      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8120	{
8121	  result_type = type1;
8122	  pedwarn ("comparison between pointer and integer");
8123	}
8124      break;
8125
8126    default:
8127      gcc_unreachable ();
8128    }
8129
8130  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8131    return error_mark_node;
8132
8133  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8134      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8135	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8136						    TREE_TYPE (type1))))
8137    {
8138      binary_op_error (code, type0, type1);
8139      return error_mark_node;
8140    }
8141
8142  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8143       || code0 == VECTOR_TYPE)
8144      &&
8145      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8146       || code1 == VECTOR_TYPE))
8147    {
8148      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8149
8150      if (shorten || common || short_compare)
8151	result_type = c_common_type (type0, type1);
8152
8153      /* For certain operations (which identify themselves by shorten != 0)
8154	 if both args were extended from the same smaller type,
8155	 do the arithmetic in that type and then extend.
8156
8157	 shorten !=0 and !=1 indicates a bitwise operation.
8158	 For them, this optimization is safe only if
8159	 both args are zero-extended or both are sign-extended.
8160	 Otherwise, we might change the result.
8161	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8162	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8163
8164      if (shorten && none_complex)
8165	{
8166	  int unsigned0, unsigned1;
8167	  tree arg0, arg1;
8168	  int uns;
8169	  tree type;
8170
8171	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8172	     excessive narrowing when we call get_narrower below.  For
8173	     example, suppose that OP0 is of unsigned int extended
8174	     from signed char and that RESULT_TYPE is long long int.
8175	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8176	     like
8177
8178	       (long long int) (unsigned int) signed_char
8179
8180	     which get_narrower would narrow down to
8181
8182	       (unsigned int) signed char
8183
8184	     If we do not cast OP0 first, get_narrower would return
8185	     signed_char, which is inconsistent with the case of the
8186	     explicit cast.  */
8187	  op0 = convert (result_type, op0);
8188	  op1 = convert (result_type, op1);
8189
8190	  arg0 = get_narrower (op0, &unsigned0);
8191	  arg1 = get_narrower (op1, &unsigned1);
8192
8193	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8194	  uns = TYPE_UNSIGNED (result_type);
8195
8196	  final_type = result_type;
8197
8198	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8199	     but it *requires* conversion to FINAL_TYPE.  */
8200
8201	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8202	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8203	      && TREE_TYPE (op0) != final_type)
8204	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8205	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8206	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8207	      && TREE_TYPE (op1) != final_type)
8208	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8209
8210	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8211
8212	  /* For bitwise operations, signedness of nominal type
8213	     does not matter.  Consider only how operands were extended.  */
8214	  if (shorten == -1)
8215	    uns = unsigned0;
8216
8217	  /* Note that in all three cases below we refrain from optimizing
8218	     an unsigned operation on sign-extended args.
8219	     That would not be valid.  */
8220
8221	  /* Both args variable: if both extended in same way
8222	     from same width, do it in that width.
8223	     Do it unsigned if args were zero-extended.  */
8224	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8225	       < TYPE_PRECISION (result_type))
8226	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8227		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8228	      && unsigned0 == unsigned1
8229	      && (unsigned0 || !uns))
8230	    result_type
8231	      = c_common_signed_or_unsigned_type
8232	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8233	  else if (TREE_CODE (arg0) == INTEGER_CST
8234		   && (unsigned1 || !uns)
8235		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8236		       < TYPE_PRECISION (result_type))
8237		   && (type
8238		       = c_common_signed_or_unsigned_type (unsigned1,
8239							   TREE_TYPE (arg1)),
8240		       int_fits_type_p (arg0, type)))
8241	    result_type = type;
8242	  else if (TREE_CODE (arg1) == INTEGER_CST
8243		   && (unsigned0 || !uns)
8244		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8245		       < TYPE_PRECISION (result_type))
8246		   && (type
8247		       = c_common_signed_or_unsigned_type (unsigned0,
8248							   TREE_TYPE (arg0)),
8249		       int_fits_type_p (arg1, type)))
8250	    result_type = type;
8251	}
8252
8253      /* Shifts can be shortened if shifting right.  */
8254
8255      if (short_shift)
8256	{
8257	  int unsigned_arg;
8258	  tree arg0 = get_narrower (op0, &unsigned_arg);
8259
8260	  final_type = result_type;
8261
8262	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8263	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8264
8265	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8266	      /* We can shorten only if the shift count is less than the
8267		 number of bits in the smaller type size.  */
8268	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8269	      /* We cannot drop an unsigned shift after sign-extension.  */
8270	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8271	    {
8272	      /* Do an unsigned shift if the operand was zero-extended.  */
8273	      result_type
8274		= c_common_signed_or_unsigned_type (unsigned_arg,
8275						    TREE_TYPE (arg0));
8276	      /* Convert value-to-be-shifted to that type.  */
8277	      if (TREE_TYPE (op0) != result_type)
8278		op0 = convert (result_type, op0);
8279	      converted = 1;
8280	    }
8281	}
8282
8283      /* Comparison operations are shortened too but differently.
8284	 They identify themselves by setting short_compare = 1.  */
8285
8286      if (short_compare)
8287	{
8288	  /* Don't write &op0, etc., because that would prevent op0
8289	     from being kept in a register.
8290	     Instead, make copies of the our local variables and
8291	     pass the copies by reference, then copy them back afterward.  */
8292	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8293	  enum tree_code xresultcode = resultcode;
8294	  tree val
8295	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8296
8297	  if (val != 0)
8298	    return val;
8299
8300	  op0 = xop0, op1 = xop1;
8301	  converted = 1;
8302	  resultcode = xresultcode;
8303
8304	  if (warn_sign_compare && skip_evaluation == 0)
8305	    {
8306	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8307	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8308	      int unsignedp0, unsignedp1;
8309	      tree primop0 = get_narrower (op0, &unsignedp0);
8310	      tree primop1 = get_narrower (op1, &unsignedp1);
8311
8312	      xop0 = orig_op0;
8313	      xop1 = orig_op1;
8314	      STRIP_TYPE_NOPS (xop0);
8315	      STRIP_TYPE_NOPS (xop1);
8316
8317	      /* Give warnings for comparisons between signed and unsigned
8318		 quantities that may fail.
8319
8320		 Do the checking based on the original operand trees, so that
8321		 casts will be considered, but default promotions won't be.
8322
8323		 Do not warn if the comparison is being done in a signed type,
8324		 since the signed type will only be chosen if it can represent
8325		 all the values of the unsigned type.  */
8326	      if (!TYPE_UNSIGNED (result_type))
8327		/* OK */;
8328	      /* Do not warn if both operands are the same signedness.  */
8329	      else if (op0_signed == op1_signed)
8330		/* OK */;
8331	      else
8332		{
8333		  tree sop, uop;
8334		  bool ovf;
8335
8336		  if (op0_signed)
8337		    sop = xop0, uop = xop1;
8338		  else
8339		    sop = xop1, uop = xop0;
8340
8341		  /* Do not warn if the signed quantity is an
8342		     unsuffixed integer literal (or some static
8343		     constant expression involving such literals or a
8344		     conditional expression involving such literals)
8345		     and it is non-negative.  */
8346		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8347		    /* OK */;
8348		  /* Do not warn if the comparison is an equality operation,
8349		     the unsigned quantity is an integral constant, and it
8350		     would fit in the result if the result were signed.  */
8351		  else if (TREE_CODE (uop) == INTEGER_CST
8352			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8353			   && int_fits_type_p
8354			   (uop, c_common_signed_type (result_type)))
8355		    /* OK */;
8356		  /* Do not warn if the unsigned quantity is an enumeration
8357		     constant and its maximum value would fit in the result
8358		     if the result were signed.  */
8359		  else if (TREE_CODE (uop) == INTEGER_CST
8360			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8361			   && int_fits_type_p
8362			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8363			    c_common_signed_type (result_type)))
8364		    /* OK */;
8365		  else
8366		    warning (0, "comparison between signed and unsigned");
8367		}
8368
8369	      /* Warn if two unsigned values are being compared in a size
8370		 larger than their original size, and one (and only one) is the
8371		 result of a `~' operator.  This comparison will always fail.
8372
8373		 Also warn if one operand is a constant, and the constant
8374		 does not have all bits set that are set in the ~ operand
8375		 when it is extended.  */
8376
8377	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8378		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8379		{
8380		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8381		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8382					    &unsignedp0);
8383		  else
8384		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8385					    &unsignedp1);
8386
8387		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8388		    {
8389		      tree primop;
8390		      HOST_WIDE_INT constant, mask;
8391		      int unsignedp, bits;
8392
8393		      if (host_integerp (primop0, 0))
8394			{
8395			  primop = primop1;
8396			  unsignedp = unsignedp1;
8397			  constant = tree_low_cst (primop0, 0);
8398			}
8399		      else
8400			{
8401			  primop = primop0;
8402			  unsignedp = unsignedp0;
8403			  constant = tree_low_cst (primop1, 0);
8404			}
8405
8406		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8407		      if (bits < TYPE_PRECISION (result_type)
8408			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8409			{
8410			  mask = (~(HOST_WIDE_INT) 0) << bits;
8411			  if ((mask & constant) != mask)
8412			    warning (0, "comparison of promoted ~unsigned with constant");
8413			}
8414		    }
8415		  else if (unsignedp0 && unsignedp1
8416			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8417			       < TYPE_PRECISION (result_type))
8418			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8419			       < TYPE_PRECISION (result_type)))
8420		    warning (0, "comparison of promoted ~unsigned with unsigned");
8421		}
8422	    }
8423	}
8424    }
8425
8426  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8427     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8428     Then the expression will be built.
8429     It will be given type FINAL_TYPE if that is nonzero;
8430     otherwise, it will be given type RESULT_TYPE.  */
8431
8432  if (!result_type)
8433    {
8434      binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8435      return error_mark_node;
8436    }
8437
8438  if (!converted)
8439    {
8440      if (TREE_TYPE (op0) != result_type)
8441	op0 = convert_and_check (result_type, op0);
8442      if (TREE_TYPE (op1) != result_type)
8443	op1 = convert_and_check (result_type, op1);
8444
8445      /* This can happen if one operand has a vector type, and the other
8446	 has a different type.  */
8447      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8448	return error_mark_node;
8449    }
8450
8451  if (build_type == NULL_TREE)
8452    build_type = result_type;
8453
8454  {
8455    /* Treat expressions in initializers specially as they can't trap.  */
8456    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8457								    build_type,
8458								    op0, op1)
8459					 : fold_build2 (resultcode, build_type,
8460							op0, op1);
8461
8462    if (final_type != 0)
8463      result = convert (final_type, result);
8464    return result;
8465  }
8466}
8467
8468
8469/* Convert EXPR to be a truth-value, validating its type for this
8470   purpose.  */
8471
8472tree
8473c_objc_common_truthvalue_conversion (tree expr)
8474{
8475  switch (TREE_CODE (TREE_TYPE (expr)))
8476    {
8477    case ARRAY_TYPE:
8478      error ("used array that cannot be converted to pointer where scalar is required");
8479      return error_mark_node;
8480
8481    case RECORD_TYPE:
8482      error ("used struct type value where scalar is required");
8483      return error_mark_node;
8484
8485    case UNION_TYPE:
8486      error ("used union type value where scalar is required");
8487      return error_mark_node;
8488
8489    case FUNCTION_TYPE:
8490      gcc_unreachable ();
8491
8492    default:
8493      break;
8494    }
8495
8496  /* ??? Should we also give an error for void and vectors rather than
8497     leaving those to give errors later?  */
8498  return c_common_truthvalue_conversion (expr);
8499}
8500
8501
8502/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8503   required.  */
8504
8505tree
8506c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8507		bool *ti ATTRIBUTE_UNUSED, bool *se)
8508{
8509  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8510    {
8511      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8512      /* Executing a compound literal inside a function reinitializes
8513	 it.  */
8514      if (!TREE_STATIC (decl))
8515	*se = true;
8516      return decl;
8517    }
8518  else
8519    return expr;
8520}
8521
8522/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8523
8524tree
8525c_begin_omp_parallel (void)
8526{
8527  tree block;
8528
8529  keep_next_level ();
8530  block = c_begin_compound_stmt (true);
8531
8532  return block;
8533}
8534
8535tree
8536c_finish_omp_parallel (tree clauses, tree block)
8537{
8538  tree stmt;
8539
8540  block = c_end_compound_stmt (block, true);
8541
8542  stmt = make_node (OMP_PARALLEL);
8543  TREE_TYPE (stmt) = void_type_node;
8544  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8545  OMP_PARALLEL_BODY (stmt) = block;
8546
8547  return add_stmt (stmt);
8548}
8549
8550/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8551   Remove any elements from the list that are invalid.  */
8552
8553tree
8554c_finish_omp_clauses (tree clauses)
8555{
8556  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8557  tree c, t, *pc = &clauses;
8558  const char *name;
8559
8560  bitmap_obstack_initialize (NULL);
8561  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8562  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8563  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8564
8565  for (pc = &clauses, c = clauses; c ; c = *pc)
8566    {
8567      bool remove = false;
8568      bool need_complete = false;
8569      bool need_implicitly_determined = false;
8570
8571      switch (OMP_CLAUSE_CODE (c))
8572	{
8573	case OMP_CLAUSE_SHARED:
8574	  name = "shared";
8575	  need_implicitly_determined = true;
8576	  goto check_dup_generic;
8577
8578	case OMP_CLAUSE_PRIVATE:
8579	  name = "private";
8580	  need_complete = true;
8581	  need_implicitly_determined = true;
8582	  goto check_dup_generic;
8583
8584	case OMP_CLAUSE_REDUCTION:
8585	  name = "reduction";
8586	  need_implicitly_determined = true;
8587	  t = OMP_CLAUSE_DECL (c);
8588	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8589	      || POINTER_TYPE_P (TREE_TYPE (t)))
8590	    {
8591	      error ("%qE has invalid type for %<reduction%>", t);
8592	      remove = true;
8593	    }
8594	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8595	    {
8596	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8597	      const char *r_name = NULL;
8598
8599	      switch (r_code)
8600		{
8601		case PLUS_EXPR:
8602		case MULT_EXPR:
8603		case MINUS_EXPR:
8604		  break;
8605		case BIT_AND_EXPR:
8606		  r_name = "&";
8607		  break;
8608		case BIT_XOR_EXPR:
8609		  r_name = "^";
8610		  break;
8611		case BIT_IOR_EXPR:
8612		  r_name = "|";
8613		  break;
8614		case TRUTH_ANDIF_EXPR:
8615		  r_name = "&&";
8616		  break;
8617		case TRUTH_ORIF_EXPR:
8618		  r_name = "||";
8619		  break;
8620		default:
8621		  gcc_unreachable ();
8622		}
8623	      if (r_name)
8624		{
8625		  error ("%qE has invalid type for %<reduction(%s)%>",
8626			 t, r_name);
8627		  remove = true;
8628		}
8629	    }
8630	  goto check_dup_generic;
8631
8632	case OMP_CLAUSE_COPYPRIVATE:
8633	  name = "copyprivate";
8634	  goto check_dup_generic;
8635
8636	case OMP_CLAUSE_COPYIN:
8637	  name = "copyin";
8638	  t = OMP_CLAUSE_DECL (c);
8639	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8640	    {
8641	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8642	      remove = true;
8643	    }
8644	  goto check_dup_generic;
8645
8646	check_dup_generic:
8647	  t = OMP_CLAUSE_DECL (c);
8648	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8649	    {
8650	      error ("%qE is not a variable in clause %qs", t, name);
8651	      remove = true;
8652	    }
8653	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8654		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8655		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8656	    {
8657	      error ("%qE appears more than once in data clauses", t);
8658	      remove = true;
8659	    }
8660	  else
8661	    bitmap_set_bit (&generic_head, DECL_UID (t));
8662	  break;
8663
8664	case OMP_CLAUSE_FIRSTPRIVATE:
8665	  name = "firstprivate";
8666	  t = OMP_CLAUSE_DECL (c);
8667	  need_complete = true;
8668	  need_implicitly_determined = true;
8669	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8670	    {
8671	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8672	      remove = true;
8673	    }
8674	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8675		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8676	    {
8677	      error ("%qE appears more than once in data clauses", t);
8678	      remove = true;
8679	    }
8680	  else
8681	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8682	  break;
8683
8684	case OMP_CLAUSE_LASTPRIVATE:
8685	  name = "lastprivate";
8686	  t = OMP_CLAUSE_DECL (c);
8687	  need_complete = true;
8688	  need_implicitly_determined = true;
8689	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8690	    {
8691	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8692	      remove = true;
8693	    }
8694	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8695		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8696	    {
8697	      error ("%qE appears more than once in data clauses", t);
8698	      remove = true;
8699	    }
8700	  else
8701	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8702	  break;
8703
8704	case OMP_CLAUSE_IF:
8705	case OMP_CLAUSE_NUM_THREADS:
8706	case OMP_CLAUSE_SCHEDULE:
8707	case OMP_CLAUSE_NOWAIT:
8708	case OMP_CLAUSE_ORDERED:
8709	case OMP_CLAUSE_DEFAULT:
8710	  pc = &OMP_CLAUSE_CHAIN (c);
8711	  continue;
8712
8713	default:
8714	  gcc_unreachable ();
8715	}
8716
8717      if (!remove)
8718	{
8719	  t = OMP_CLAUSE_DECL (c);
8720
8721	  if (need_complete)
8722	    {
8723	      t = require_complete_type (t);
8724	      if (t == error_mark_node)
8725		remove = true;
8726	    }
8727
8728	  if (need_implicitly_determined)
8729	    {
8730	      const char *share_name = NULL;
8731
8732	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8733		share_name = "threadprivate";
8734	      else switch (c_omp_predetermined_sharing (t))
8735		{
8736		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8737		  break;
8738		case OMP_CLAUSE_DEFAULT_SHARED:
8739		  share_name = "shared";
8740		  break;
8741		case OMP_CLAUSE_DEFAULT_PRIVATE:
8742		  share_name = "private";
8743		  break;
8744		default:
8745		  gcc_unreachable ();
8746		}
8747	      if (share_name)
8748		{
8749		  error ("%qE is predetermined %qs for %qs",
8750			 t, share_name, name);
8751		  remove = true;
8752		}
8753	    }
8754	}
8755
8756      if (remove)
8757	*pc = OMP_CLAUSE_CHAIN (c);
8758      else
8759	pc = &OMP_CLAUSE_CHAIN (c);
8760    }
8761
8762  bitmap_obstack_release (NULL);
8763  return clauses;
8764}
8765