c-typeck.c revision 259406
1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  datum = ref;
1853
1854	  field = TREE_CHAIN (field);
1855	}
1856      while (field);
1857
1858      return ref;
1859    }
1860  else if (code != ERROR_MARK)
1861    error ("request for member %qE in something not a structure or union",
1862	   component);
1863
1864  return error_mark_node;
1865}
1866
1867/* Given an expression PTR for a pointer, return an expression
1868   for the value pointed to.
1869   ERRORSTRING is the name of the operator to appear in error messages.  */
1870
1871tree
1872build_indirect_ref (tree ptr, const char *errorstring)
1873{
1874  tree pointer = default_conversion (ptr);
1875  tree type = TREE_TYPE (pointer);
1876
1877  if (TREE_CODE (type) == POINTER_TYPE)
1878    {
1879      if (TREE_CODE (pointer) == CONVERT_EXPR
1880          || TREE_CODE (pointer) == NOP_EXPR
1881          || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1882	{
1883	  /* If a warning is issued, mark it to avoid duplicates from
1884	     the backend.  This only needs to be done at
1885	     warn_strict_aliasing > 2.  */
1886	  if (warn_strict_aliasing > 2)
1887	    if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1888					 type, TREE_OPERAND (pointer, 0)))
1889	      TREE_NO_WARNING (pointer) = 1;
1890	}
1891
1892      if (TREE_CODE (pointer) == ADDR_EXPR
1893	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1894	      == TREE_TYPE (type)))
1895	return TREE_OPERAND (pointer, 0);
1896      else
1897	{
1898	  tree t = TREE_TYPE (type);
1899	  tree ref;
1900
1901	  ref = build1 (INDIRECT_REF, t, pointer);
1902
1903	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1904	    {
1905	      error ("dereferencing pointer to incomplete type");
1906	      return error_mark_node;
1907	    }
1908	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1909	    warning (0, "dereferencing %<void *%> pointer");
1910
1911	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1912	     so that we get the proper error message if the result is used
1913	     to assign to.  Also, &* is supposed to be a no-op.
1914	     And ANSI C seems to specify that the type of the result
1915	     should be the const type.  */
1916	  /* A de-reference of a pointer to const is not a const.  It is valid
1917	     to change it via some other pointer.  */
1918	  TREE_READONLY (ref) = TYPE_READONLY (t);
1919	  TREE_SIDE_EFFECTS (ref)
1920	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1921	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1922	  return ref;
1923	}
1924    }
1925  else if (TREE_CODE (pointer) != ERROR_MARK)
1926    error ("invalid type argument of %qs", errorstring);
1927  return error_mark_node;
1928}
1929
1930/* This handles expressions of the form "a[i]", which denotes
1931   an array reference.
1932
1933   This is logically equivalent in C to *(a+i), but we may do it differently.
1934   If A is a variable or a member, we generate a primitive ARRAY_REF.
1935   This avoids forcing the array out of registers, and can work on
1936   arrays that are not lvalues (for example, members of structures returned
1937   by functions).  */
1938
1939tree
1940build_array_ref (tree array, tree index)
1941{
1942  bool swapped = false;
1943  if (TREE_TYPE (array) == error_mark_node
1944      || TREE_TYPE (index) == error_mark_node)
1945    return error_mark_node;
1946
1947  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1948      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1949    {
1950      tree temp;
1951      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1952	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1953	{
1954	  error ("subscripted value is neither array nor pointer");
1955	  return error_mark_node;
1956	}
1957      temp = array;
1958      array = index;
1959      index = temp;
1960      swapped = true;
1961    }
1962
1963  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1964    {
1965      error ("array subscript is not an integer");
1966      return error_mark_node;
1967    }
1968
1969  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1970    {
1971      error ("subscripted value is pointer to function");
1972      return error_mark_node;
1973    }
1974
1975  /* ??? Existing practice has been to warn only when the char
1976     index is syntactically the index, not for char[array].  */
1977  if (!swapped)
1978     warn_array_subscript_with_type_char (index);
1979
1980  /* Apply default promotions *after* noticing character types.  */
1981  index = default_conversion (index);
1982
1983  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1984
1985  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1986    {
1987      tree rval, type;
1988
1989      /* An array that is indexed by a non-constant
1990	 cannot be stored in a register; we must be able to do
1991	 address arithmetic on its address.
1992	 Likewise an array of elements of variable size.  */
1993      if (TREE_CODE (index) != INTEGER_CST
1994	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1995	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1996	{
1997	  if (!c_mark_addressable (array))
1998	    return error_mark_node;
1999	}
2000      /* An array that is indexed by a constant value which is not within
2001	 the array bounds cannot be stored in a register either; because we
2002	 would get a crash in store_bit_field/extract_bit_field when trying
2003	 to access a non-existent part of the register.  */
2004      if (TREE_CODE (index) == INTEGER_CST
2005	  && TYPE_DOMAIN (TREE_TYPE (array))
2006	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2007	{
2008	  if (!c_mark_addressable (array))
2009	    return error_mark_node;
2010	}
2011
2012      if (pedantic)
2013	{
2014	  tree foo = array;
2015	  while (TREE_CODE (foo) == COMPONENT_REF)
2016	    foo = TREE_OPERAND (foo, 0);
2017	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2018	    pedwarn ("ISO C forbids subscripting %<register%> array");
2019	  else if (!flag_isoc99 && !lvalue_p (foo))
2020	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2021	}
2022
2023      type = TREE_TYPE (TREE_TYPE (array));
2024      if (TREE_CODE (type) != ARRAY_TYPE)
2025	type = TYPE_MAIN_VARIANT (type);
2026      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2027      /* Array ref is const/volatile if the array elements are
2028	 or if the array is.  */
2029      TREE_READONLY (rval)
2030	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2031	    | TREE_READONLY (array));
2032      TREE_SIDE_EFFECTS (rval)
2033	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2034	    | TREE_SIDE_EFFECTS (array));
2035      TREE_THIS_VOLATILE (rval)
2036	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2037	    /* This was added by rms on 16 Nov 91.
2038	       It fixes  vol struct foo *a;  a->elts[1]
2039	       in an inline function.
2040	       Hope it doesn't break something else.  */
2041	    | TREE_THIS_VOLATILE (array));
2042      return require_complete_type (fold (rval));
2043    }
2044  else
2045    {
2046      tree ar = default_conversion (array);
2047
2048      if (ar == error_mark_node)
2049	return ar;
2050
2051      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2052      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2053
2054      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2055				 "array indexing");
2056    }
2057}
2058
2059/* Build an external reference to identifier ID.  FUN indicates
2060   whether this will be used for a function call.  LOC is the source
2061   location of the identifier.  */
2062tree
2063build_external_ref (tree id, int fun, location_t loc)
2064{
2065  tree ref;
2066  tree decl = lookup_name (id);
2067
2068  /* In Objective-C, an instance variable (ivar) may be preferred to
2069     whatever lookup_name() found.  */
2070  decl = objc_lookup_ivar (decl, id);
2071
2072  if (decl && decl != error_mark_node)
2073    ref = decl;
2074  else if (fun)
2075    /* Implicit function declaration.  */
2076    ref = implicitly_declare (id);
2077  else if (decl == error_mark_node)
2078    /* Don't complain about something that's already been
2079       complained about.  */
2080    return error_mark_node;
2081  else
2082    {
2083      undeclared_variable (id, loc);
2084      return error_mark_node;
2085    }
2086
2087  if (TREE_TYPE (ref) == error_mark_node)
2088    return error_mark_node;
2089
2090  if (TREE_DEPRECATED (ref))
2091    warn_deprecated_use (ref);
2092
2093  if (!skip_evaluation)
2094    assemble_external (ref);
2095  TREE_USED (ref) = 1;
2096
2097  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2098    {
2099      if (!in_sizeof && !in_typeof)
2100	C_DECL_USED (ref) = 1;
2101      else if (DECL_INITIAL (ref) == 0
2102	       && DECL_EXTERNAL (ref)
2103	       && !TREE_PUBLIC (ref))
2104	record_maybe_used_decl (ref);
2105    }
2106
2107  if (TREE_CODE (ref) == CONST_DECL)
2108    {
2109      used_types_insert (TREE_TYPE (ref));
2110      ref = DECL_INITIAL (ref);
2111      TREE_CONSTANT (ref) = 1;
2112      TREE_INVARIANT (ref) = 1;
2113    }
2114  else if (current_function_decl != 0
2115	   && !DECL_FILE_SCOPE_P (current_function_decl)
2116	   && (TREE_CODE (ref) == VAR_DECL
2117	       || TREE_CODE (ref) == PARM_DECL
2118	       || TREE_CODE (ref) == FUNCTION_DECL))
2119    {
2120      tree context = decl_function_context (ref);
2121
2122      if (context != 0 && context != current_function_decl)
2123	DECL_NONLOCAL (ref) = 1;
2124    }
2125  /* C99 6.7.4p3: An inline definition of a function with external
2126     linkage ... shall not contain a reference to an identifier with
2127     internal linkage.  */
2128  else if (current_function_decl != 0
2129	   && DECL_DECLARED_INLINE_P (current_function_decl)
2130	   && DECL_EXTERNAL (current_function_decl)
2131	   && VAR_OR_FUNCTION_DECL_P (ref)
2132	   && DECL_FILE_SCOPE_P (ref)
2133	   && pedantic
2134	   && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2135	   && ! TREE_PUBLIC (ref))
2136    pedwarn ("%H%qD is static but used in inline function %qD "
2137	     "which is not static", &loc, ref, current_function_decl);
2138
2139  return ref;
2140}
2141
2142/* Record details of decls possibly used inside sizeof or typeof.  */
2143struct maybe_used_decl
2144{
2145  /* The decl.  */
2146  tree decl;
2147  /* The level seen at (in_sizeof + in_typeof).  */
2148  int level;
2149  /* The next one at this level or above, or NULL.  */
2150  struct maybe_used_decl *next;
2151};
2152
2153static struct maybe_used_decl *maybe_used_decls;
2154
2155/* Record that DECL, an undefined static function reference seen
2156   inside sizeof or typeof, might be used if the operand of sizeof is
2157   a VLA type or the operand of typeof is a variably modified
2158   type.  */
2159
2160static void
2161record_maybe_used_decl (tree decl)
2162{
2163  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2164  t->decl = decl;
2165  t->level = in_sizeof + in_typeof;
2166  t->next = maybe_used_decls;
2167  maybe_used_decls = t;
2168}
2169
2170/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2171   USED is false, just discard them.  If it is true, mark them used
2172   (if no longer inside sizeof or typeof) or move them to the next
2173   level up (if still inside sizeof or typeof).  */
2174
2175void
2176pop_maybe_used (bool used)
2177{
2178  struct maybe_used_decl *p = maybe_used_decls;
2179  int cur_level = in_sizeof + in_typeof;
2180  while (p && p->level > cur_level)
2181    {
2182      if (used)
2183	{
2184	  if (cur_level == 0)
2185	    C_DECL_USED (p->decl) = 1;
2186	  else
2187	    p->level = cur_level;
2188	}
2189      p = p->next;
2190    }
2191  if (!used || cur_level == 0)
2192    maybe_used_decls = p;
2193}
2194
2195/* Return the result of sizeof applied to EXPR.  */
2196
2197struct c_expr
2198c_expr_sizeof_expr (struct c_expr expr)
2199{
2200  struct c_expr ret;
2201  if (expr.value == error_mark_node)
2202    {
2203      ret.value = error_mark_node;
2204      ret.original_code = ERROR_MARK;
2205      pop_maybe_used (false);
2206    }
2207  else
2208    {
2209      ret.value = c_sizeof (TREE_TYPE (expr.value));
2210      ret.original_code = ERROR_MARK;
2211      if (c_vla_type_p (TREE_TYPE (expr.value)))
2212	{
2213	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2214	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2215	}
2216      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2217    }
2218  return ret;
2219}
2220
2221/* Return the result of sizeof applied to T, a structure for the type
2222   name passed to sizeof (rather than the type itself).  */
2223
2224struct c_expr
2225c_expr_sizeof_type (struct c_type_name *t)
2226{
2227  tree type;
2228  struct c_expr ret;
2229  type = groktypename (t);
2230  ret.value = c_sizeof (type);
2231  ret.original_code = ERROR_MARK;
2232  pop_maybe_used (type != error_mark_node
2233		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2234  return ret;
2235}
2236
2237/* Build a function call to function FUNCTION with parameters PARAMS.
2238   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2239   TREE_VALUE of each node is a parameter-expression.
2240   FUNCTION's data type may be a function type or a pointer-to-function.  */
2241
2242tree
2243build_function_call (tree function, tree params)
2244{
2245  tree fntype, fundecl = 0;
2246  tree coerced_params;
2247  tree name = NULL_TREE, result;
2248  tree tem;
2249
2250  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2251  STRIP_TYPE_NOPS (function);
2252
2253  /* Convert anything with function type to a pointer-to-function.  */
2254  if (TREE_CODE (function) == FUNCTION_DECL)
2255    {
2256      /* Implement type-directed function overloading for builtins.
2257	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2258	 handle all the type checking.  The result is a complete expression
2259	 that implements this function call.  */
2260      tem = resolve_overloaded_builtin (function, params);
2261      if (tem)
2262	return tem;
2263
2264      name = DECL_NAME (function);
2265      fundecl = function;
2266    }
2267  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2268    function = function_to_pointer_conversion (function);
2269
2270  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2271     expressions, like those used for ObjC messenger dispatches.  */
2272  function = objc_rewrite_function_call (function, params);
2273
2274  fntype = TREE_TYPE (function);
2275
2276  if (TREE_CODE (fntype) == ERROR_MARK)
2277    return error_mark_node;
2278
2279  if (!(TREE_CODE (fntype) == POINTER_TYPE
2280	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2281    {
2282      error ("called object %qE is not a function", function);
2283      return error_mark_node;
2284    }
2285
2286  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2287    current_function_returns_abnormally = 1;
2288
2289  /* fntype now gets the type of function pointed to.  */
2290  fntype = TREE_TYPE (fntype);
2291
2292  /* Check that the function is called through a compatible prototype.
2293     If it is not, replace the call by a trap, wrapped up in a compound
2294     expression if necessary.  This has the nice side-effect to prevent
2295     the tree-inliner from generating invalid assignment trees which may
2296     blow up in the RTL expander later.  */
2297  if ((TREE_CODE (function) == NOP_EXPR
2298       || TREE_CODE (function) == CONVERT_EXPR)
2299      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2300      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2301      && !comptypes (fntype, TREE_TYPE (tem)))
2302    {
2303      tree return_type = TREE_TYPE (fntype);
2304      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2305				       NULL_TREE);
2306
2307      /* This situation leads to run-time undefined behavior.  We can't,
2308	 therefore, simply error unless we can prove that all possible
2309	 executions of the program must execute the code.  */
2310      warning (0, "function called through a non-compatible type");
2311
2312      /* We can, however, treat "undefined" any way we please.
2313	 Call abort to encourage the user to fix the program.  */
2314      inform ("if this code is reached, the program will abort");
2315
2316      if (VOID_TYPE_P (return_type))
2317	return trap;
2318      else
2319	{
2320	  tree rhs;
2321
2322	  if (AGGREGATE_TYPE_P (return_type))
2323	    rhs = build_compound_literal (return_type,
2324					  build_constructor (return_type, 0));
2325	  else
2326	    rhs = fold_convert (return_type, integer_zero_node);
2327
2328	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2329	}
2330    }
2331
2332  /* Convert the parameters to the types declared in the
2333     function prototype, or apply default promotions.  */
2334
2335  coerced_params
2336    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2337
2338  if (coerced_params == error_mark_node)
2339    return error_mark_node;
2340
2341  /* Check that the arguments to the function are valid.  */
2342
2343  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2344			    TYPE_ARG_TYPES (fntype));
2345
2346  if (require_constant_value)
2347    {
2348      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2349					function, coerced_params, NULL_TREE);
2350
2351      if (TREE_CONSTANT (result)
2352	  && (name == NULL_TREE
2353	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2354	pedwarn_init ("initializer element is not constant");
2355    }
2356  else
2357    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2358			  function, coerced_params, NULL_TREE);
2359
2360  if (VOID_TYPE_P (TREE_TYPE (result)))
2361    return result;
2362  return require_complete_type (result);
2363}
2364
2365/* Convert the argument expressions in the list VALUES
2366   to the types in the list TYPELIST.  The result is a list of converted
2367   argument expressions, unless there are too few arguments in which
2368   case it is error_mark_node.
2369
2370   If TYPELIST is exhausted, or when an element has NULL as its type,
2371   perform the default conversions.
2372
2373   PARMLIST is the chain of parm decls for the function being called.
2374   It may be 0, if that info is not available.
2375   It is used only for generating error messages.
2376
2377   FUNCTION is a tree for the called function.  It is used only for
2378   error messages, where it is formatted with %qE.
2379
2380   This is also where warnings about wrong number of args are generated.
2381
2382   Both VALUES and the returned value are chains of TREE_LIST nodes
2383   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2384
2385static tree
2386convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2387{
2388  tree typetail, valtail;
2389  tree result = NULL;
2390  int parmnum;
2391  tree selector;
2392
2393  /* Change pointer to function to the function itself for
2394     diagnostics.  */
2395  if (TREE_CODE (function) == ADDR_EXPR
2396      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2397    function = TREE_OPERAND (function, 0);
2398
2399  /* Handle an ObjC selector specially for diagnostics.  */
2400  selector = objc_message_selector ();
2401
2402  /* Scan the given expressions and types, producing individual
2403     converted arguments and pushing them on RESULT in reverse order.  */
2404
2405  for (valtail = values, typetail = typelist, parmnum = 0;
2406       valtail;
2407       valtail = TREE_CHAIN (valtail), parmnum++)
2408    {
2409      tree type = typetail ? TREE_VALUE (typetail) : 0;
2410      tree val = TREE_VALUE (valtail);
2411      tree rname = function;
2412      int argnum = parmnum + 1;
2413      const char *invalid_func_diag;
2414
2415      if (type == void_type_node)
2416	{
2417	  error ("too many arguments to function %qE", function);
2418	  break;
2419	}
2420
2421      if (selector && argnum > 2)
2422	{
2423	  rname = selector;
2424	  argnum -= 2;
2425	}
2426
2427      STRIP_TYPE_NOPS (val);
2428
2429      val = require_complete_type (val);
2430
2431      if (type != 0)
2432	{
2433	  /* Formal parm type is specified by a function prototype.  */
2434	  tree parmval;
2435
2436	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2437	    {
2438	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2439	      parmval = val;
2440	    }
2441	  else
2442	    {
2443	      /* Optionally warn about conversions that
2444		 differ from the default conversions.  */
2445	      if (warn_conversion || warn_traditional)
2446		{
2447		  unsigned int formal_prec = TYPE_PRECISION (type);
2448
2449		  if (INTEGRAL_TYPE_P (type)
2450		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2451		    warning (0, "passing argument %d of %qE as integer "
2452			     "rather than floating due to prototype",
2453			     argnum, rname);
2454		  if (INTEGRAL_TYPE_P (type)
2455		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2456		    warning (0, "passing argument %d of %qE as integer "
2457			     "rather than complex due to prototype",
2458			     argnum, rname);
2459		  else if (TREE_CODE (type) == COMPLEX_TYPE
2460			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2461		    warning (0, "passing argument %d of %qE as complex "
2462			     "rather than floating due to prototype",
2463			     argnum, rname);
2464		  else if (TREE_CODE (type) == REAL_TYPE
2465			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2466		    warning (0, "passing argument %d of %qE as floating "
2467			     "rather than integer due to prototype",
2468			     argnum, rname);
2469		  else if (TREE_CODE (type) == COMPLEX_TYPE
2470			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2471		    warning (0, "passing argument %d of %qE as complex "
2472			     "rather than integer due to prototype",
2473			     argnum, rname);
2474		  else if (TREE_CODE (type) == REAL_TYPE
2475			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2476		    warning (0, "passing argument %d of %qE as floating "
2477			     "rather than complex due to prototype",
2478			     argnum, rname);
2479		  /* ??? At some point, messages should be written about
2480		     conversions between complex types, but that's too messy
2481		     to do now.  */
2482		  else if (TREE_CODE (type) == REAL_TYPE
2483			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2484		    {
2485		      /* Warn if any argument is passed as `float',
2486			 since without a prototype it would be `double'.  */
2487		      if (formal_prec == TYPE_PRECISION (float_type_node)
2488			  && type != dfloat32_type_node)
2489			warning (0, "passing argument %d of %qE as %<float%> "
2490				 "rather than %<double%> due to prototype",
2491				 argnum, rname);
2492
2493		      /* Warn if mismatch between argument and prototype
2494			 for decimal float types.  Warn of conversions with
2495			 binary float types and of precision narrowing due to
2496			 prototype. */
2497 		      else if (type != TREE_TYPE (val)
2498			       && (type == dfloat32_type_node
2499				   || type == dfloat64_type_node
2500				   || type == dfloat128_type_node
2501				   || TREE_TYPE (val) == dfloat32_type_node
2502				   || TREE_TYPE (val) == dfloat64_type_node
2503				   || TREE_TYPE (val) == dfloat128_type_node)
2504			       && (formal_prec
2505				   <= TYPE_PRECISION (TREE_TYPE (val))
2506				   || (type == dfloat128_type_node
2507				       && (TREE_TYPE (val)
2508					   != dfloat64_type_node
2509					   && (TREE_TYPE (val)
2510					       != dfloat32_type_node)))
2511				   || (type == dfloat64_type_node
2512				       && (TREE_TYPE (val)
2513					   != dfloat32_type_node))))
2514			warning (0, "passing argument %d of %qE as %qT "
2515				 "rather than %qT due to prototype",
2516				 argnum, rname, type, TREE_TYPE (val));
2517
2518		    }
2519		  /* Detect integer changing in width or signedness.
2520		     These warnings are only activated with
2521		     -Wconversion, not with -Wtraditional.  */
2522		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2523			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2524		    {
2525		      tree would_have_been = default_conversion (val);
2526		      tree type1 = TREE_TYPE (would_have_been);
2527
2528		      if (TREE_CODE (type) == ENUMERAL_TYPE
2529			  && (TYPE_MAIN_VARIANT (type)
2530			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2531			/* No warning if function asks for enum
2532			   and the actual arg is that enum type.  */
2533			;
2534		      else if (formal_prec != TYPE_PRECISION (type1))
2535			warning (OPT_Wconversion, "passing argument %d of %qE "
2536				 "with different width due to prototype",
2537				 argnum, rname);
2538		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2539			;
2540		      /* Don't complain if the formal parameter type
2541			 is an enum, because we can't tell now whether
2542			 the value was an enum--even the same enum.  */
2543		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2544			;
2545		      else if (TREE_CODE (val) == INTEGER_CST
2546			       && int_fits_type_p (val, type))
2547			/* Change in signedness doesn't matter
2548			   if a constant value is unaffected.  */
2549			;
2550		      /* If the value is extended from a narrower
2551			 unsigned type, it doesn't matter whether we
2552			 pass it as signed or unsigned; the value
2553			 certainly is the same either way.  */
2554		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2555			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2556			;
2557		      else if (TYPE_UNSIGNED (type))
2558			warning (OPT_Wconversion, "passing argument %d of %qE "
2559				 "as unsigned due to prototype",
2560				 argnum, rname);
2561		      else
2562			warning (OPT_Wconversion, "passing argument %d of %qE "
2563				 "as signed due to prototype", argnum, rname);
2564		    }
2565		}
2566
2567	      parmval = convert_for_assignment (type, val, ic_argpass,
2568						fundecl, function,
2569						parmnum + 1);
2570
2571	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2572		  && INTEGRAL_TYPE_P (type)
2573		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2574		parmval = default_conversion (parmval);
2575	    }
2576	  result = tree_cons (NULL_TREE, parmval, result);
2577	}
2578      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2579	       && (TYPE_PRECISION (TREE_TYPE (val))
2580		   < TYPE_PRECISION (double_type_node))
2581	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2582	/* Convert `float' to `double'.  */
2583	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2584      else if ((invalid_func_diag =
2585		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2586	{
2587	  error (invalid_func_diag);
2588	  return error_mark_node;
2589	}
2590      else
2591	/* Convert `short' and `char' to full-size `int'.  */
2592	result = tree_cons (NULL_TREE, default_conversion (val), result);
2593
2594      if (typetail)
2595	typetail = TREE_CHAIN (typetail);
2596    }
2597
2598  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2599    {
2600      error ("too few arguments to function %qE", function);
2601      return error_mark_node;
2602    }
2603
2604  return nreverse (result);
2605}
2606
2607/* This is the entry point used by the parser to build unary operators
2608   in the input.  CODE, a tree_code, specifies the unary operator, and
2609   ARG is the operand.  For unary plus, the C parser currently uses
2610   CONVERT_EXPR for code.  */
2611
2612struct c_expr
2613parser_build_unary_op (enum tree_code code, struct c_expr arg)
2614{
2615  struct c_expr result;
2616
2617  result.original_code = ERROR_MARK;
2618  result.value = build_unary_op (code, arg.value, 0);
2619  overflow_warning (result.value);
2620  return result;
2621}
2622
2623/* This is the entry point used by the parser to build binary operators
2624   in the input.  CODE, a tree_code, specifies the binary operator, and
2625   ARG1 and ARG2 are the operands.  In addition to constructing the
2626   expression, we check for operands that were written with other binary
2627   operators in a way that is likely to confuse the user.  */
2628
2629struct c_expr
2630parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2631			struct c_expr arg2)
2632{
2633  struct c_expr result;
2634
2635  enum tree_code code1 = arg1.original_code;
2636  enum tree_code code2 = arg2.original_code;
2637
2638  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2639  result.original_code = code;
2640
2641  if (TREE_CODE (result.value) == ERROR_MARK)
2642    return result;
2643
2644  /* Check for cases such as x+y<<z which users are likely
2645     to misinterpret.  */
2646  if (warn_parentheses)
2647    warn_about_parentheses (code, code1, code2);
2648
2649  /* Warn about comparisons against string literals, with the exception
2650     of testing for equality or inequality of a string literal with NULL.  */
2651  if (code == EQ_EXPR || code == NE_EXPR)
2652    {
2653      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2654	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2655	warning (OPT_Waddress,
2656                 "comparison with string literal results in unspecified behaviour");
2657    }
2658  else if (TREE_CODE_CLASS (code) == tcc_comparison
2659	   && (code1 == STRING_CST || code2 == STRING_CST))
2660    warning (OPT_Waddress,
2661             "comparison with string literal results in unspecified behaviour");
2662
2663  overflow_warning (result.value);
2664
2665  return result;
2666}
2667
2668/* Return a tree for the difference of pointers OP0 and OP1.
2669   The resulting tree has type int.  */
2670
2671static tree
2672pointer_diff (tree op0, tree op1)
2673{
2674  tree restype = ptrdiff_type_node;
2675
2676  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2677  tree con0, con1, lit0, lit1;
2678  tree orig_op1 = op1;
2679
2680  if (pedantic || warn_pointer_arith)
2681    {
2682      if (TREE_CODE (target_type) == VOID_TYPE)
2683	pedwarn ("pointer of type %<void *%> used in subtraction");
2684      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2685	pedwarn ("pointer to a function used in subtraction");
2686    }
2687
2688  /* If the conversion to ptrdiff_type does anything like widening or
2689     converting a partial to an integral mode, we get a convert_expression
2690     that is in the way to do any simplifications.
2691     (fold-const.c doesn't know that the extra bits won't be needed.
2692     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2693     different mode in place.)
2694     So first try to find a common term here 'by hand'; we want to cover
2695     at least the cases that occur in legal static initializers.  */
2696  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2697      && (TYPE_PRECISION (TREE_TYPE (op0))
2698	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2699    con0 = TREE_OPERAND (op0, 0);
2700  else
2701    con0 = op0;
2702  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2703      && (TYPE_PRECISION (TREE_TYPE (op1))
2704	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2705    con1 = TREE_OPERAND (op1, 0);
2706  else
2707    con1 = op1;
2708
2709  if (TREE_CODE (con0) == PLUS_EXPR)
2710    {
2711      lit0 = TREE_OPERAND (con0, 1);
2712      con0 = TREE_OPERAND (con0, 0);
2713    }
2714  else
2715    lit0 = integer_zero_node;
2716
2717  if (TREE_CODE (con1) == PLUS_EXPR)
2718    {
2719      lit1 = TREE_OPERAND (con1, 1);
2720      con1 = TREE_OPERAND (con1, 0);
2721    }
2722  else
2723    lit1 = integer_zero_node;
2724
2725  if (operand_equal_p (con0, con1, 0))
2726    {
2727      op0 = lit0;
2728      op1 = lit1;
2729    }
2730
2731
2732  /* First do the subtraction as integers;
2733     then drop through to build the divide operator.
2734     Do not do default conversions on the minus operator
2735     in case restype is a short type.  */
2736
2737  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2738			 convert (restype, op1), 0);
2739  /* This generates an error if op1 is pointer to incomplete type.  */
2740  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2741    error ("arithmetic on pointer to an incomplete type");
2742
2743  /* This generates an error if op0 is pointer to incomplete type.  */
2744  op1 = c_size_in_bytes (target_type);
2745
2746  /* Divide by the size, in easiest possible way.  */
2747  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2748}
2749
2750/* Construct and perhaps optimize a tree representation
2751   for a unary operation.  CODE, a tree_code, specifies the operation
2752   and XARG is the operand.
2753   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2754   the default promotions (such as from short to int).
2755   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2756   allows non-lvalues; this is only used to handle conversion of non-lvalue
2757   arrays to pointers in C99.  */
2758
2759tree
2760build_unary_op (enum tree_code code, tree xarg, int flag)
2761{
2762  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2763  tree arg = xarg;
2764  tree argtype = 0;
2765  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2766  tree val;
2767  int noconvert = flag;
2768  const char *invalid_op_diag;
2769
2770  if (typecode == ERROR_MARK)
2771    return error_mark_node;
2772  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2773    typecode = INTEGER_TYPE;
2774
2775  if ((invalid_op_diag
2776       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2777    {
2778      error (invalid_op_diag);
2779      return error_mark_node;
2780    }
2781
2782  switch (code)
2783    {
2784    case CONVERT_EXPR:
2785      /* This is used for unary plus, because a CONVERT_EXPR
2786	 is enough to prevent anybody from looking inside for
2787	 associativity, but won't generate any code.  */
2788      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2789	    || typecode == COMPLEX_TYPE
2790	    || typecode == VECTOR_TYPE))
2791	{
2792	  error ("wrong type argument to unary plus");
2793	  return error_mark_node;
2794	}
2795      else if (!noconvert)
2796	arg = default_conversion (arg);
2797      arg = non_lvalue (arg);
2798      break;
2799
2800    case NEGATE_EXPR:
2801      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2802	    || typecode == COMPLEX_TYPE
2803	    || typecode == VECTOR_TYPE))
2804	{
2805	  error ("wrong type argument to unary minus");
2806	  return error_mark_node;
2807	}
2808      else if (!noconvert)
2809	arg = default_conversion (arg);
2810      break;
2811
2812    case BIT_NOT_EXPR:
2813      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2814	{
2815	  if (!noconvert)
2816	    arg = default_conversion (arg);
2817	}
2818      else if (typecode == COMPLEX_TYPE)
2819	{
2820	  code = CONJ_EXPR;
2821	  if (pedantic)
2822	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2823	  if (!noconvert)
2824	    arg = default_conversion (arg);
2825	}
2826      else
2827	{
2828	  error ("wrong type argument to bit-complement");
2829	  return error_mark_node;
2830	}
2831      break;
2832
2833    case ABS_EXPR:
2834      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2835	{
2836	  error ("wrong type argument to abs");
2837	  return error_mark_node;
2838	}
2839      else if (!noconvert)
2840	arg = default_conversion (arg);
2841      break;
2842
2843    case CONJ_EXPR:
2844      /* Conjugating a real value is a no-op, but allow it anyway.  */
2845      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2846	    || typecode == COMPLEX_TYPE))
2847	{
2848	  error ("wrong type argument to conjugation");
2849	  return error_mark_node;
2850	}
2851      else if (!noconvert)
2852	arg = default_conversion (arg);
2853      break;
2854
2855    case TRUTH_NOT_EXPR:
2856      if (typecode != INTEGER_TYPE
2857	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2858	  && typecode != COMPLEX_TYPE)
2859	{
2860	  error ("wrong type argument to unary exclamation mark");
2861	  return error_mark_node;
2862	}
2863      arg = c_objc_common_truthvalue_conversion (arg);
2864      return invert_truthvalue (arg);
2865
2866    case REALPART_EXPR:
2867      if (TREE_CODE (arg) == COMPLEX_CST)
2868	return TREE_REALPART (arg);
2869      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2870	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2871      else
2872	return arg;
2873
2874    case IMAGPART_EXPR:
2875      if (TREE_CODE (arg) == COMPLEX_CST)
2876	return TREE_IMAGPART (arg);
2877      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2878	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2879      else
2880	return convert (TREE_TYPE (arg), integer_zero_node);
2881
2882    case PREINCREMENT_EXPR:
2883    case POSTINCREMENT_EXPR:
2884    case PREDECREMENT_EXPR:
2885    case POSTDECREMENT_EXPR:
2886
2887      /* Increment or decrement the real part of the value,
2888	 and don't change the imaginary part.  */
2889      if (typecode == COMPLEX_TYPE)
2890	{
2891	  tree real, imag;
2892
2893	  if (pedantic)
2894	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2895		     " on complex types");
2896
2897	  arg = stabilize_reference (arg);
2898	  real = build_unary_op (REALPART_EXPR, arg, 1);
2899	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2900	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2901			 build_unary_op (code, real, 1), imag);
2902	}
2903
2904      /* Report invalid types.  */
2905
2906      if (typecode != POINTER_TYPE
2907	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2908	{
2909	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2910	    error ("wrong type argument to increment");
2911	  else
2912	    error ("wrong type argument to decrement");
2913
2914	  return error_mark_node;
2915	}
2916
2917      {
2918	tree inc;
2919	tree result_type = TREE_TYPE (arg);
2920
2921	arg = get_unwidened (arg, 0);
2922	argtype = TREE_TYPE (arg);
2923
2924	/* Compute the increment.  */
2925
2926	if (typecode == POINTER_TYPE)
2927	  {
2928	    /* If pointer target is an undefined struct,
2929	       we just cannot know how to do the arithmetic.  */
2930	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2931	      {
2932		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2933		  error ("increment of pointer to unknown structure");
2934		else
2935		  error ("decrement of pointer to unknown structure");
2936	      }
2937	    else if ((pedantic || warn_pointer_arith)
2938		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2939			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2940	      {
2941		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2942		  pedwarn ("wrong type argument to increment");
2943		else
2944		  pedwarn ("wrong type argument to decrement");
2945	      }
2946
2947	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2948	  }
2949	else
2950	  inc = integer_one_node;
2951
2952	inc = convert (argtype, inc);
2953
2954	/* Complain about anything else that is not a true lvalue.  */
2955	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2956				    || code == POSTINCREMENT_EXPR)
2957				   ? lv_increment
2958				   : lv_decrement)))
2959	  return error_mark_node;
2960
2961	/* Report a read-only lvalue.  */
2962	if (TREE_READONLY (arg))
2963	  {
2964	    readonly_error (arg,
2965			    ((code == PREINCREMENT_EXPR
2966			      || code == POSTINCREMENT_EXPR)
2967			     ? lv_increment : lv_decrement));
2968	    return error_mark_node;
2969	  }
2970
2971	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2972	  val = boolean_increment (code, arg);
2973	else
2974	  val = build2 (code, TREE_TYPE (arg), arg, inc);
2975	TREE_SIDE_EFFECTS (val) = 1;
2976	val = convert (result_type, val);
2977	if (TREE_CODE (val) != code)
2978	  TREE_NO_WARNING (val) = 1;
2979	return val;
2980      }
2981
2982    case ADDR_EXPR:
2983      /* Note that this operation never does default_conversion.  */
2984
2985      /* Let &* cancel out to simplify resulting code.  */
2986      if (TREE_CODE (arg) == INDIRECT_REF)
2987	{
2988	  /* Don't let this be an lvalue.  */
2989	  if (lvalue_p (TREE_OPERAND (arg, 0)))
2990	    return non_lvalue (TREE_OPERAND (arg, 0));
2991	  return TREE_OPERAND (arg, 0);
2992	}
2993
2994      /* For &x[y], return x+y */
2995      if (TREE_CODE (arg) == ARRAY_REF)
2996	{
2997	  tree op0 = TREE_OPERAND (arg, 0);
2998	  if (!c_mark_addressable (op0))
2999	    return error_mark_node;
3000	  return build_binary_op (PLUS_EXPR,
3001				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3002				   ? array_to_pointer_conversion (op0)
3003				   : op0),
3004				  TREE_OPERAND (arg, 1), 1);
3005	}
3006
3007      /* Anything not already handled and not a true memory reference
3008	 or a non-lvalue array is an error.  */
3009      else if (typecode != FUNCTION_TYPE && !flag
3010	       && !lvalue_or_else (arg, lv_addressof))
3011	return error_mark_node;
3012
3013      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3014      argtype = TREE_TYPE (arg);
3015
3016      /* If the lvalue is const or volatile, merge that into the type
3017	 to which the address will point.  Note that you can't get a
3018	 restricted pointer by taking the address of something, so we
3019	 only have to deal with `const' and `volatile' here.  */
3020      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3021	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3022	  argtype = c_build_type_variant (argtype,
3023					  TREE_READONLY (arg),
3024					  TREE_THIS_VOLATILE (arg));
3025
3026      if (!c_mark_addressable (arg))
3027	return error_mark_node;
3028
3029      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3030		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3031
3032      argtype = build_pointer_type (argtype);
3033
3034      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3035	 when we have proper support for integer constant expressions.  */
3036      val = get_base_address (arg);
3037      if (val && TREE_CODE (val) == INDIRECT_REF
3038          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3039	{
3040	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3041
3042	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3043	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3044	}
3045
3046      val = build1 (ADDR_EXPR, argtype, arg);
3047
3048      return val;
3049
3050    default:
3051      gcc_unreachable ();
3052    }
3053
3054  if (argtype == 0)
3055    argtype = TREE_TYPE (arg);
3056  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3057				: fold_build1 (code, argtype, arg);
3058}
3059
3060/* Return nonzero if REF is an lvalue valid for this language.
3061   Lvalues can be assigned, unless their type has TYPE_READONLY.
3062   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3063
3064static int
3065lvalue_p (tree ref)
3066{
3067  enum tree_code code = TREE_CODE (ref);
3068
3069  switch (code)
3070    {
3071    case REALPART_EXPR:
3072    case IMAGPART_EXPR:
3073    case COMPONENT_REF:
3074      return lvalue_p (TREE_OPERAND (ref, 0));
3075
3076    case COMPOUND_LITERAL_EXPR:
3077    case STRING_CST:
3078      return 1;
3079
3080    case INDIRECT_REF:
3081    case ARRAY_REF:
3082    case VAR_DECL:
3083    case PARM_DECL:
3084    case RESULT_DECL:
3085    case ERROR_MARK:
3086      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3087	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3088
3089    case BIND_EXPR:
3090      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3091
3092    default:
3093      return 0;
3094    }
3095}
3096
3097/* Give an error for storing in something that is 'const'.  */
3098
3099static void
3100readonly_error (tree arg, enum lvalue_use use)
3101{
3102  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3103	      || use == lv_asm);
3104  /* Using this macro rather than (for example) arrays of messages
3105     ensures that all the format strings are checked at compile
3106     time.  */
3107#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3108				   : (use == lv_increment ? (I)		\
3109				   : (use == lv_decrement ? (D) : (AS))))
3110  if (TREE_CODE (arg) == COMPONENT_REF)
3111    {
3112      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3113	readonly_error (TREE_OPERAND (arg, 0), use);
3114      else
3115	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3116			     G_("increment of read-only member %qD"),
3117			     G_("decrement of read-only member %qD"),
3118			     G_("read-only member %qD used as %<asm%> output")),
3119	       TREE_OPERAND (arg, 1));
3120    }
3121  else if (TREE_CODE (arg) == VAR_DECL)
3122    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3123			 G_("increment of read-only variable %qD"),
3124			 G_("decrement of read-only variable %qD"),
3125			 G_("read-only variable %qD used as %<asm%> output")),
3126	   arg);
3127  else
3128    error (READONLY_MSG (G_("assignment of read-only location"),
3129			 G_("increment of read-only location"),
3130			 G_("decrement of read-only location"),
3131			 G_("read-only location used as %<asm%> output")));
3132}
3133
3134
3135/* Return nonzero if REF is an lvalue valid for this language;
3136   otherwise, print an error message and return zero.  USE says
3137   how the lvalue is being used and so selects the error message.  */
3138
3139static int
3140lvalue_or_else (tree ref, enum lvalue_use use)
3141{
3142  int win = lvalue_p (ref);
3143
3144  if (!win)
3145    lvalue_error (use);
3146
3147  return win;
3148}
3149
3150/* Mark EXP saying that we need to be able to take the
3151   address of it; it should not be allocated in a register.
3152   Returns true if successful.  */
3153
3154bool
3155c_mark_addressable (tree exp)
3156{
3157  tree x = exp;
3158
3159  while (1)
3160    switch (TREE_CODE (x))
3161      {
3162      case COMPONENT_REF:
3163	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3164	  {
3165	    error
3166	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3167	    return false;
3168	  }
3169
3170	/* ... fall through ...  */
3171
3172      case ADDR_EXPR:
3173      case ARRAY_REF:
3174      case REALPART_EXPR:
3175      case IMAGPART_EXPR:
3176	x = TREE_OPERAND (x, 0);
3177	break;
3178
3179      case COMPOUND_LITERAL_EXPR:
3180      case CONSTRUCTOR:
3181	TREE_ADDRESSABLE (x) = 1;
3182	return true;
3183
3184      case VAR_DECL:
3185      case CONST_DECL:
3186      case PARM_DECL:
3187      case RESULT_DECL:
3188	if (C_DECL_REGISTER (x)
3189	    && DECL_NONLOCAL (x))
3190	  {
3191	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3192	      {
3193		error
3194		  ("global register variable %qD used in nested function", x);
3195		return false;
3196	      }
3197	    pedwarn ("register variable %qD used in nested function", x);
3198	  }
3199	else if (C_DECL_REGISTER (x))
3200	  {
3201	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3202	      error ("address of global register variable %qD requested", x);
3203	    else
3204	      error ("address of register variable %qD requested", x);
3205	    return false;
3206	  }
3207
3208	/* drops in */
3209      case FUNCTION_DECL:
3210	TREE_ADDRESSABLE (x) = 1;
3211	/* drops out */
3212      default:
3213	return true;
3214    }
3215}
3216
3217/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3218
3219tree
3220build_conditional_expr (tree ifexp, tree op1, tree op2)
3221{
3222  tree type1;
3223  tree type2;
3224  enum tree_code code1;
3225  enum tree_code code2;
3226  tree result_type = NULL;
3227  tree orig_op1 = op1, orig_op2 = op2;
3228
3229  /* Promote both alternatives.  */
3230
3231  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3232    op1 = default_conversion (op1);
3233  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3234    op2 = default_conversion (op2);
3235
3236  if (TREE_CODE (ifexp) == ERROR_MARK
3237      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3238      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3239    return error_mark_node;
3240
3241  type1 = TREE_TYPE (op1);
3242  code1 = TREE_CODE (type1);
3243  type2 = TREE_TYPE (op2);
3244  code2 = TREE_CODE (type2);
3245
3246  /* C90 does not permit non-lvalue arrays in conditional expressions.
3247     In C99 they will be pointers by now.  */
3248  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3249    {
3250      error ("non-lvalue array in conditional expression");
3251      return error_mark_node;
3252    }
3253
3254  /* Quickly detect the usual case where op1 and op2 have the same type
3255     after promotion.  */
3256  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3257    {
3258      if (type1 == type2)
3259	result_type = type1;
3260      else
3261	result_type = TYPE_MAIN_VARIANT (type1);
3262    }
3263  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3264	    || code1 == COMPLEX_TYPE)
3265	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3266	       || code2 == COMPLEX_TYPE))
3267    {
3268      result_type = c_common_type (type1, type2);
3269
3270      /* If -Wsign-compare, warn here if type1 and type2 have
3271	 different signedness.  We'll promote the signed to unsigned
3272	 and later code won't know it used to be different.
3273	 Do this check on the original types, so that explicit casts
3274	 will be considered, but default promotions won't.  */
3275      if (warn_sign_compare && !skip_evaluation)
3276	{
3277	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3278	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3279
3280	  if (unsigned_op1 ^ unsigned_op2)
3281	    {
3282	      bool ovf;
3283
3284	      /* Do not warn if the result type is signed, since the
3285		 signed type will only be chosen if it can represent
3286		 all the values of the unsigned type.  */
3287	      if (!TYPE_UNSIGNED (result_type))
3288		/* OK */;
3289	      /* Do not warn if the signed quantity is an unsuffixed
3290		 integer literal (or some static constant expression
3291		 involving such literals) and it is non-negative.  */
3292	      else if ((unsigned_op2
3293			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3294		       || (unsigned_op1
3295			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3296		/* OK */;
3297	      else
3298		warning (0, "signed and unsigned type in conditional expression");
3299	    }
3300	}
3301    }
3302  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3303    {
3304      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3305	pedwarn ("ISO C forbids conditional expr with only one void side");
3306      result_type = void_type_node;
3307    }
3308  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3309    {
3310      if (comp_target_types (type1, type2))
3311	result_type = common_pointer_type (type1, type2);
3312      else if (null_pointer_constant_p (orig_op1))
3313	result_type = qualify_type (type2, type1);
3314      else if (null_pointer_constant_p (orig_op2))
3315	result_type = qualify_type (type1, type2);
3316      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3317	{
3318	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3319	    pedwarn ("ISO C forbids conditional expr between "
3320		     "%<void *%> and function pointer");
3321	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3322							  TREE_TYPE (type2)));
3323	}
3324      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3325	{
3326	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3327	    pedwarn ("ISO C forbids conditional expr between "
3328		     "%<void *%> and function pointer");
3329	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3330							  TREE_TYPE (type1)));
3331	}
3332      else
3333	{
3334	  pedwarn ("pointer type mismatch in conditional expression");
3335	  result_type = build_pointer_type (void_type_node);
3336	}
3337    }
3338  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3339    {
3340      if (!null_pointer_constant_p (orig_op2))
3341	pedwarn ("pointer/integer type mismatch in conditional expression");
3342      else
3343	{
3344	  op2 = null_pointer_node;
3345	}
3346      result_type = type1;
3347    }
3348  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3349    {
3350      if (!null_pointer_constant_p (orig_op1))
3351	pedwarn ("pointer/integer type mismatch in conditional expression");
3352      else
3353	{
3354	  op1 = null_pointer_node;
3355	}
3356      result_type = type2;
3357    }
3358
3359  if (!result_type)
3360    {
3361      if (flag_cond_mismatch)
3362	result_type = void_type_node;
3363      else
3364	{
3365	  error ("type mismatch in conditional expression");
3366	  return error_mark_node;
3367	}
3368    }
3369
3370  /* Merge const and volatile flags of the incoming types.  */
3371  result_type
3372    = build_type_variant (result_type,
3373			  TREE_READONLY (op1) || TREE_READONLY (op2),
3374			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3375
3376  if (result_type != TREE_TYPE (op1))
3377    op1 = convert_and_check (result_type, op1);
3378  if (result_type != TREE_TYPE (op2))
3379    op2 = convert_and_check (result_type, op2);
3380
3381  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3382}
3383
3384/* Return a compound expression that performs two expressions and
3385   returns the value of the second of them.  */
3386
3387tree
3388build_compound_expr (tree expr1, tree expr2)
3389{
3390  if (!TREE_SIDE_EFFECTS (expr1))
3391    {
3392      /* The left-hand operand of a comma expression is like an expression
3393	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3394	 any side-effects, unless it was explicitly cast to (void).  */
3395      if (warn_unused_value)
3396	{
3397	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3398	      && (TREE_CODE (expr1) == NOP_EXPR
3399		  || TREE_CODE (expr1) == CONVERT_EXPR))
3400	    ; /* (void) a, b */
3401	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3402		   && TREE_CODE (expr1) == COMPOUND_EXPR
3403		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3404		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3405	    ; /* (void) a, (void) b, c */
3406	  else
3407	    warning (0, "left-hand operand of comma expression has no effect");
3408	}
3409    }
3410
3411  /* With -Wunused, we should also warn if the left-hand operand does have
3412     side-effects, but computes a value which is not used.  For example, in
3413     `foo() + bar(), baz()' the result of the `+' operator is not used,
3414     so we should issue a warning.  */
3415  else if (warn_unused_value)
3416    warn_if_unused_value (expr1, input_location);
3417
3418  if (expr2 == error_mark_node)
3419    return error_mark_node;
3420
3421  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3422}
3423
3424/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3425
3426tree
3427build_c_cast (tree type, tree expr)
3428{
3429  tree value = expr;
3430
3431  if (type == error_mark_node || expr == error_mark_node)
3432    return error_mark_node;
3433
3434  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3435     only in <protocol> qualifications.  But when constructing cast expressions,
3436     the protocols do matter and must be kept around.  */
3437  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3438    return build1 (NOP_EXPR, type, expr);
3439
3440  type = TYPE_MAIN_VARIANT (type);
3441
3442  if (TREE_CODE (type) == ARRAY_TYPE)
3443    {
3444      error ("cast specifies array type");
3445      return error_mark_node;
3446    }
3447
3448  if (TREE_CODE (type) == FUNCTION_TYPE)
3449    {
3450      error ("cast specifies function type");
3451      return error_mark_node;
3452    }
3453
3454  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3455    {
3456      if (pedantic)
3457	{
3458	  if (TREE_CODE (type) == RECORD_TYPE
3459	      || TREE_CODE (type) == UNION_TYPE)
3460	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3461	}
3462    }
3463  else if (TREE_CODE (type) == UNION_TYPE)
3464    {
3465      tree field;
3466
3467      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3468	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3469		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3470	  break;
3471
3472      if (field)
3473	{
3474	  tree t;
3475
3476	  if (pedantic)
3477	    pedwarn ("ISO C forbids casts to union type");
3478	  t = digest_init (type,
3479			   build_constructor_single (type, field, value),
3480			   true, 0);
3481	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3482	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3483	  return t;
3484	}
3485      error ("cast to union type from type not present in union");
3486      return error_mark_node;
3487    }
3488  else
3489    {
3490      tree otype, ovalue;
3491
3492      if (type == void_type_node)
3493	return build1 (CONVERT_EXPR, type, value);
3494
3495      otype = TREE_TYPE (value);
3496
3497      /* Optionally warn about potentially worrisome casts.  */
3498
3499      if (warn_cast_qual
3500	  && TREE_CODE (type) == POINTER_TYPE
3501	  && TREE_CODE (otype) == POINTER_TYPE)
3502	{
3503	  tree in_type = type;
3504	  tree in_otype = otype;
3505	  int added = 0;
3506	  int discarded = 0;
3507
3508	  /* Check that the qualifiers on IN_TYPE are a superset of
3509	     the qualifiers of IN_OTYPE.  The outermost level of
3510	     POINTER_TYPE nodes is uninteresting and we stop as soon
3511	     as we hit a non-POINTER_TYPE node on either type.  */
3512	  do
3513	    {
3514	      in_otype = TREE_TYPE (in_otype);
3515	      in_type = TREE_TYPE (in_type);
3516
3517	      /* GNU C allows cv-qualified function types.  'const'
3518		 means the function is very pure, 'volatile' means it
3519		 can't return.  We need to warn when such qualifiers
3520		 are added, not when they're taken away.  */
3521	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3522		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3523		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3524	      else
3525		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3526	    }
3527	  while (TREE_CODE (in_type) == POINTER_TYPE
3528		 && TREE_CODE (in_otype) == POINTER_TYPE);
3529
3530	  if (added)
3531	    warning (0, "cast adds new qualifiers to function type");
3532
3533	  if (discarded)
3534	    /* There are qualifiers present in IN_OTYPE that are not
3535	       present in IN_TYPE.  */
3536	    warning (0, "cast discards qualifiers from pointer target type");
3537	}
3538
3539      /* Warn about possible alignment problems.  */
3540      if (STRICT_ALIGNMENT
3541	  && TREE_CODE (type) == POINTER_TYPE
3542	  && TREE_CODE (otype) == POINTER_TYPE
3543	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3544	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3545	  /* Don't warn about opaque types, where the actual alignment
3546	     restriction is unknown.  */
3547	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3548		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3549	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3550	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3551	warning (OPT_Wcast_align,
3552		 "cast increases required alignment of target type");
3553
3554      if (TREE_CODE (type) == INTEGER_TYPE
3555	  && TREE_CODE (otype) == POINTER_TYPE
3556	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3557      /* Unlike conversion of integers to pointers, where the
3558         warning is disabled for converting constants because
3559         of cases such as SIG_*, warn about converting constant
3560         pointers to integers. In some cases it may cause unwanted
3561         sign extension, and a warning is appropriate.  */
3562	warning (OPT_Wpointer_to_int_cast,
3563		 "cast from pointer to integer of different size");
3564
3565      if (TREE_CODE (value) == CALL_EXPR
3566	  && TREE_CODE (type) != TREE_CODE (otype))
3567	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3568		 "to non-matching type %qT", otype, type);
3569
3570      if (TREE_CODE (type) == POINTER_TYPE
3571	  && TREE_CODE (otype) == INTEGER_TYPE
3572	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3573	  /* Don't warn about converting any constant.  */
3574	  && !TREE_CONSTANT (value))
3575	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3576		 "of different size");
3577
3578      if (warn_strict_aliasing <= 2)
3579        strict_aliasing_warning (otype, type, expr);
3580
3581      /* If pedantic, warn for conversions between function and object
3582	 pointer types, except for converting a null pointer constant
3583	 to function pointer type.  */
3584      if (pedantic
3585	  && TREE_CODE (type) == POINTER_TYPE
3586	  && TREE_CODE (otype) == POINTER_TYPE
3587	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3588	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3589	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3590
3591      if (pedantic
3592	  && TREE_CODE (type) == POINTER_TYPE
3593	  && TREE_CODE (otype) == POINTER_TYPE
3594	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3595	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3596	  && !null_pointer_constant_p (value))
3597	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3598
3599      ovalue = value;
3600      value = convert (type, value);
3601
3602      /* Ignore any integer overflow caused by the cast.  */
3603      if (TREE_CODE (value) == INTEGER_CST)
3604	{
3605	  if (CONSTANT_CLASS_P (ovalue)
3606	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3607	    {
3608	      /* Avoid clobbering a shared constant.  */
3609	      value = copy_node (value);
3610	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3611	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3612	    }
3613	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3614	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3615	    value = build_int_cst_wide (TREE_TYPE (value),
3616					TREE_INT_CST_LOW (value),
3617					TREE_INT_CST_HIGH (value));
3618	}
3619    }
3620
3621  /* Don't let a cast be an lvalue.  */
3622  if (value == expr)
3623    value = non_lvalue (value);
3624
3625  return value;
3626}
3627
3628/* Interpret a cast of expression EXPR to type TYPE.  */
3629tree
3630c_cast_expr (struct c_type_name *type_name, tree expr)
3631{
3632  tree type;
3633  int saved_wsp = warn_strict_prototypes;
3634
3635  /* This avoids warnings about unprototyped casts on
3636     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3637  if (TREE_CODE (expr) == INTEGER_CST)
3638    warn_strict_prototypes = 0;
3639  type = groktypename (type_name);
3640  warn_strict_prototypes = saved_wsp;
3641
3642  return build_c_cast (type, expr);
3643}
3644
3645/* Build an assignment expression of lvalue LHS from value RHS.
3646   MODIFYCODE is the code for a binary operator that we use
3647   to combine the old value of LHS with RHS to get the new value.
3648   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3649
3650tree
3651build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3652{
3653  tree result;
3654  tree newrhs;
3655  tree lhstype = TREE_TYPE (lhs);
3656  tree olhstype = lhstype;
3657
3658  /* Types that aren't fully specified cannot be used in assignments.  */
3659  lhs = require_complete_type (lhs);
3660
3661  /* Avoid duplicate error messages from operands that had errors.  */
3662  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3663    return error_mark_node;
3664
3665  if (!lvalue_or_else (lhs, lv_assign))
3666    return error_mark_node;
3667
3668  STRIP_TYPE_NOPS (rhs);
3669
3670  newrhs = rhs;
3671
3672  /* If a binary op has been requested, combine the old LHS value with the RHS
3673     producing the value we should actually store into the LHS.  */
3674
3675  if (modifycode != NOP_EXPR)
3676    {
3677      lhs = stabilize_reference (lhs);
3678      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3679    }
3680
3681  /* Give an error for storing in something that is 'const'.  */
3682
3683  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3684      || ((TREE_CODE (lhstype) == RECORD_TYPE
3685	   || TREE_CODE (lhstype) == UNION_TYPE)
3686	  && C_TYPE_FIELDS_READONLY (lhstype)))
3687    {
3688      readonly_error (lhs, lv_assign);
3689      return error_mark_node;
3690    }
3691
3692  /* If storing into a structure or union member,
3693     it has probably been given type `int'.
3694     Compute the type that would go with
3695     the actual amount of storage the member occupies.  */
3696
3697  if (TREE_CODE (lhs) == COMPONENT_REF
3698      && (TREE_CODE (lhstype) == INTEGER_TYPE
3699	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3700	  || TREE_CODE (lhstype) == REAL_TYPE
3701	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3702    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3703
3704  /* If storing in a field that is in actuality a short or narrower than one,
3705     we must store in the field in its actual type.  */
3706
3707  if (lhstype != TREE_TYPE (lhs))
3708    {
3709      lhs = copy_node (lhs);
3710      TREE_TYPE (lhs) = lhstype;
3711    }
3712
3713  /* Convert new value to destination type.  */
3714
3715  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3716				   NULL_TREE, NULL_TREE, 0);
3717  if (TREE_CODE (newrhs) == ERROR_MARK)
3718    return error_mark_node;
3719
3720  /* Emit ObjC write barrier, if necessary.  */
3721  if (c_dialect_objc () && flag_objc_gc)
3722    {
3723      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3724      if (result)
3725	return result;
3726    }
3727
3728  /* Scan operands.  */
3729
3730  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3731  TREE_SIDE_EFFECTS (result) = 1;
3732
3733  /* If we got the LHS in a different type for storing in,
3734     convert the result back to the nominal type of LHS
3735     so that the value we return always has the same type
3736     as the LHS argument.  */
3737
3738  if (olhstype == TREE_TYPE (result))
3739    return result;
3740  return convert_for_assignment (olhstype, result, ic_assign,
3741				 NULL_TREE, NULL_TREE, 0);
3742}
3743
3744/* Convert value RHS to type TYPE as preparation for an assignment
3745   to an lvalue of type TYPE.
3746   The real work of conversion is done by `convert'.
3747   The purpose of this function is to generate error messages
3748   for assignments that are not allowed in C.
3749   ERRTYPE says whether it is argument passing, assignment,
3750   initialization or return.
3751
3752   FUNCTION is a tree for the function being called.
3753   PARMNUM is the number of the argument, for printing in error messages.  */
3754
3755static tree
3756convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3757			tree fundecl, tree function, int parmnum)
3758{
3759  enum tree_code codel = TREE_CODE (type);
3760  tree rhstype;
3761  enum tree_code coder;
3762  tree rname = NULL_TREE;
3763  bool objc_ok = false;
3764
3765  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3766    {
3767      tree selector;
3768      /* Change pointer to function to the function itself for
3769	 diagnostics.  */
3770      if (TREE_CODE (function) == ADDR_EXPR
3771	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3772	function = TREE_OPERAND (function, 0);
3773
3774      /* Handle an ObjC selector specially for diagnostics.  */
3775      selector = objc_message_selector ();
3776      rname = function;
3777      if (selector && parmnum > 2)
3778	{
3779	  rname = selector;
3780	  parmnum -= 2;
3781	}
3782    }
3783
3784  /* This macro is used to emit diagnostics to ensure that all format
3785     strings are complete sentences, visible to gettext and checked at
3786     compile time.  */
3787#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3788  do {						\
3789    switch (errtype)				\
3790      {						\
3791      case ic_argpass:				\
3792	pedwarn (AR, parmnum, rname);		\
3793	break;					\
3794      case ic_argpass_nonproto:			\
3795	warning (0, AR, parmnum, rname);		\
3796	break;					\
3797      case ic_assign:				\
3798	pedwarn (AS);				\
3799	break;					\
3800      case ic_init:				\
3801	pedwarn (IN);				\
3802	break;					\
3803      case ic_return:				\
3804	pedwarn (RE);				\
3805	break;					\
3806      default:					\
3807	gcc_unreachable ();			\
3808      }						\
3809  } while (0)
3810
3811  STRIP_TYPE_NOPS (rhs);
3812
3813  if (optimize && TREE_CODE (rhs) == VAR_DECL
3814	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3815    rhs = decl_constant_value_for_broken_optimization (rhs);
3816
3817  rhstype = TREE_TYPE (rhs);
3818  coder = TREE_CODE (rhstype);
3819
3820  if (coder == ERROR_MARK)
3821    return error_mark_node;
3822
3823  if (c_dialect_objc ())
3824    {
3825      int parmno;
3826
3827      switch (errtype)
3828	{
3829	case ic_return:
3830	  parmno = 0;
3831	  break;
3832
3833	case ic_assign:
3834	  parmno = -1;
3835	  break;
3836
3837	case ic_init:
3838	  parmno = -2;
3839	  break;
3840
3841	default:
3842	  parmno = parmnum;
3843	  break;
3844	}
3845
3846      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3847    }
3848
3849  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3850    {
3851      overflow_warning (rhs);
3852      return rhs;
3853    }
3854
3855  if (coder == VOID_TYPE)
3856    {
3857      /* Except for passing an argument to an unprototyped function,
3858	 this is a constraint violation.  When passing an argument to
3859	 an unprototyped function, it is compile-time undefined;
3860	 making it a constraint in that case was rejected in
3861	 DR#252.  */
3862      error ("void value not ignored as it ought to be");
3863      return error_mark_node;
3864    }
3865  /* A type converts to a reference to it.
3866     This code doesn't fully support references, it's just for the
3867     special case of va_start and va_copy.  */
3868  if (codel == REFERENCE_TYPE
3869      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3870    {
3871      if (!lvalue_p (rhs))
3872	{
3873	  error ("cannot pass rvalue to reference parameter");
3874	  return error_mark_node;
3875	}
3876      if (!c_mark_addressable (rhs))
3877	return error_mark_node;
3878      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3879
3880      /* We already know that these two types are compatible, but they
3881	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3882	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3883	 likely to be va_list, a typedef to __builtin_va_list, which
3884	 is different enough that it will cause problems later.  */
3885      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3886	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3887
3888      rhs = build1 (NOP_EXPR, type, rhs);
3889      return rhs;
3890    }
3891  /* Some types can interconvert without explicit casts.  */
3892  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3893	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3894    return convert (type, rhs);
3895  /* Arithmetic types all interconvert, and enum is treated like int.  */
3896  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3897	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3898	    || codel == BOOLEAN_TYPE)
3899	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3900	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3901	       || coder == BOOLEAN_TYPE))
3902    return convert_and_check (type, rhs);
3903
3904  /* Aggregates in different TUs might need conversion.  */
3905  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3906      && codel == coder
3907      && comptypes (type, rhstype))
3908    return convert_and_check (type, rhs);
3909
3910  /* Conversion to a transparent union from its member types.
3911     This applies only to function arguments.  */
3912  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3913      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3914    {
3915      tree memb, marginal_memb = NULL_TREE;
3916
3917      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3918	{
3919	  tree memb_type = TREE_TYPE (memb);
3920
3921	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3922			 TYPE_MAIN_VARIANT (rhstype)))
3923	    break;
3924
3925	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3926	    continue;
3927
3928	  if (coder == POINTER_TYPE)
3929	    {
3930	      tree ttl = TREE_TYPE (memb_type);
3931	      tree ttr = TREE_TYPE (rhstype);
3932
3933	      /* Any non-function converts to a [const][volatile] void *
3934		 and vice versa; otherwise, targets must be the same.
3935		 Meanwhile, the lhs target must have all the qualifiers of
3936		 the rhs.  */
3937	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3938		  || comp_target_types (memb_type, rhstype))
3939		{
3940		  /* If this type won't generate any warnings, use it.  */
3941		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3942		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3943			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3944			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3945			     == TYPE_QUALS (ttr))
3946			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3947			     == TYPE_QUALS (ttl))))
3948		    break;
3949
3950		  /* Keep looking for a better type, but remember this one.  */
3951		  if (!marginal_memb)
3952		    marginal_memb = memb;
3953		}
3954	    }
3955
3956	  /* Can convert integer zero to any pointer type.  */
3957	  if (null_pointer_constant_p (rhs))
3958	    {
3959	      rhs = null_pointer_node;
3960	      break;
3961	    }
3962	}
3963
3964      if (memb || marginal_memb)
3965	{
3966	  if (!memb)
3967	    {
3968	      /* We have only a marginally acceptable member type;
3969		 it needs a warning.  */
3970	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3971	      tree ttr = TREE_TYPE (rhstype);
3972
3973	      /* Const and volatile mean something different for function
3974		 types, so the usual warnings are not appropriate.  */
3975	      if (TREE_CODE (ttr) == FUNCTION_TYPE
3976		  && TREE_CODE (ttl) == FUNCTION_TYPE)
3977		{
3978		  /* Because const and volatile on functions are
3979		     restrictions that say the function will not do
3980		     certain things, it is okay to use a const or volatile
3981		     function where an ordinary one is wanted, but not
3982		     vice-versa.  */
3983		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3984		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3985					    "makes qualified function "
3986					    "pointer from unqualified"),
3987					 G_("assignment makes qualified "
3988					    "function pointer from "
3989					    "unqualified"),
3990					 G_("initialization makes qualified "
3991					    "function pointer from "
3992					    "unqualified"),
3993					 G_("return makes qualified function "
3994					    "pointer from unqualified"));
3995		}
3996	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3997		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3998					"qualifiers from pointer target type"),
3999				     G_("assignment discards qualifiers "
4000					"from pointer target type"),
4001				     G_("initialization discards qualifiers "
4002					"from pointer target type"),
4003				     G_("return discards qualifiers from "
4004					"pointer target type"));
4005
4006	      memb = marginal_memb;
4007	    }
4008
4009	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4010	    pedwarn ("ISO C prohibits argument conversion to union type");
4011
4012	  return build_constructor_single (type, memb, rhs);
4013	}
4014    }
4015
4016  /* Conversions among pointers */
4017  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4018	   && (coder == codel))
4019    {
4020      tree ttl = TREE_TYPE (type);
4021      tree ttr = TREE_TYPE (rhstype);
4022      tree mvl = ttl;
4023      tree mvr = ttr;
4024      bool is_opaque_pointer;
4025      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4026
4027      if (TREE_CODE (mvl) != ARRAY_TYPE)
4028	mvl = TYPE_MAIN_VARIANT (mvl);
4029      if (TREE_CODE (mvr) != ARRAY_TYPE)
4030	mvr = TYPE_MAIN_VARIANT (mvr);
4031      /* Opaque pointers are treated like void pointers.  */
4032      is_opaque_pointer = (targetm.vector_opaque_p (type)
4033			   || targetm.vector_opaque_p (rhstype))
4034	&& TREE_CODE (ttl) == VECTOR_TYPE
4035	&& TREE_CODE (ttr) == VECTOR_TYPE;
4036
4037      /* C++ does not allow the implicit conversion void* -> T*.  However,
4038	 for the purpose of reducing the number of false positives, we
4039	 tolerate the special case of
4040
4041		int *p = NULL;
4042
4043	 where NULL is typically defined in C to be '(void *) 0'.  */
4044      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4045	warning (OPT_Wc___compat, "request for implicit conversion from "
4046		 "%qT to %qT not permitted in C++", rhstype, type);
4047
4048      /* Check if the right-hand side has a format attribute but the
4049	 left-hand side doesn't.  */
4050      if (warn_missing_format_attribute
4051	  && check_missing_format_attribute (type, rhstype))
4052	{
4053	  switch (errtype)
4054	  {
4055	  case ic_argpass:
4056	  case ic_argpass_nonproto:
4057	    warning (OPT_Wmissing_format_attribute,
4058		     "argument %d of %qE might be "
4059		     "a candidate for a format attribute",
4060		     parmnum, rname);
4061	    break;
4062	  case ic_assign:
4063	    warning (OPT_Wmissing_format_attribute,
4064		     "assignment left-hand side might be "
4065		     "a candidate for a format attribute");
4066	    break;
4067	  case ic_init:
4068	    warning (OPT_Wmissing_format_attribute,
4069		     "initialization left-hand side might be "
4070		     "a candidate for a format attribute");
4071	    break;
4072	  case ic_return:
4073	    warning (OPT_Wmissing_format_attribute,
4074		     "return type might be "
4075		     "a candidate for a format attribute");
4076	    break;
4077	  default:
4078	    gcc_unreachable ();
4079	  }
4080	}
4081
4082      /* Any non-function converts to a [const][volatile] void *
4083	 and vice versa; otherwise, targets must be the same.
4084	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4085      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4086	  || (target_cmp = comp_target_types (type, rhstype))
4087	  || is_opaque_pointer
4088	  || (c_common_unsigned_type (mvl)
4089	      == c_common_unsigned_type (mvr)))
4090	{
4091	  if (pedantic
4092	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4093		  ||
4094		  (VOID_TYPE_P (ttr)
4095		   && !null_pointer_constant_p (rhs)
4096		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4097	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4098				    "%qE between function pointer "
4099				    "and %<void *%>"),
4100				 G_("ISO C forbids assignment between "
4101				    "function pointer and %<void *%>"),
4102				 G_("ISO C forbids initialization between "
4103				    "function pointer and %<void *%>"),
4104				 G_("ISO C forbids return between function "
4105				    "pointer and %<void *%>"));
4106	  /* Const and volatile mean something different for function types,
4107	     so the usual warnings are not appropriate.  */
4108	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4109		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4110	    {
4111	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4112		{
4113		  /* Types differing only by the presence of the 'volatile'
4114		     qualifier are acceptable if the 'volatile' has been added
4115		     in by the Objective-C EH machinery.  */
4116		  if (!objc_type_quals_match (ttl, ttr))
4117		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4118					    "qualifiers from pointer target type"),
4119					 G_("assignment discards qualifiers "
4120					    "from pointer target type"),
4121					 G_("initialization discards qualifiers "
4122					    "from pointer target type"),
4123					 G_("return discards qualifiers from "
4124					    "pointer target type"));
4125		}
4126	      /* If this is not a case of ignoring a mismatch in signedness,
4127		 no warning.  */
4128	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4129		       || target_cmp)
4130		;
4131	      /* If there is a mismatch, do warn.  */
4132	      else if (warn_pointer_sign)
4133		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4134					"%d of %qE differ in signedness"),
4135				     G_("pointer targets in assignment "
4136					"differ in signedness"),
4137				     G_("pointer targets in initialization "
4138					"differ in signedness"),
4139				     G_("pointer targets in return differ "
4140					"in signedness"));
4141	    }
4142	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4143		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4144	    {
4145	      /* Because const and volatile on functions are restrictions
4146		 that say the function will not do certain things,
4147		 it is okay to use a const or volatile function
4148		 where an ordinary one is wanted, but not vice-versa.  */
4149	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4150		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4151					"qualified function pointer "
4152					"from unqualified"),
4153				     G_("assignment makes qualified function "
4154					"pointer from unqualified"),
4155				     G_("initialization makes qualified "
4156					"function pointer from unqualified"),
4157				     G_("return makes qualified function "
4158					"pointer from unqualified"));
4159	    }
4160	}
4161      else
4162	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4163	if (!objc_ok)
4164	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4165				  "incompatible pointer type"),
4166			       G_("assignment from incompatible pointer type"),
4167			       G_("initialization from incompatible "
4168				  "pointer type"),
4169			       G_("return from incompatible pointer type"));
4170
4171      return convert (type, rhs);
4172    }
4173  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4174    {
4175      /* ??? This should not be an error when inlining calls to
4176	 unprototyped functions.  */
4177      error ("invalid use of non-lvalue array");
4178      return error_mark_node;
4179    }
4180  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4181    {
4182      /* An explicit constant 0 can convert to a pointer,
4183	 or one that results from arithmetic, even including
4184	 a cast to integer type.  */
4185      if (!null_pointer_constant_p (rhs))
4186	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4187				"pointer from integer without a cast"),
4188			     G_("assignment makes pointer from integer "
4189				"without a cast"),
4190			     G_("initialization makes pointer from "
4191				"integer without a cast"),
4192			     G_("return makes pointer from integer "
4193				"without a cast"));
4194
4195      return convert (type, rhs);
4196    }
4197  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4198    {
4199      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4200			      "from pointer without a cast"),
4201			   G_("assignment makes integer from pointer "
4202			      "without a cast"),
4203			   G_("initialization makes integer from pointer "
4204			      "without a cast"),
4205			   G_("return makes integer from pointer "
4206			      "without a cast"));
4207      return convert (type, rhs);
4208    }
4209  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4210    return convert (type, rhs);
4211
4212  switch (errtype)
4213    {
4214    case ic_argpass:
4215    case ic_argpass_nonproto:
4216      /* ??? This should not be an error when inlining calls to
4217	 unprototyped functions.  */
4218      error ("incompatible type for argument %d of %qE", parmnum, rname);
4219      break;
4220    case ic_assign:
4221      error ("incompatible types in assignment");
4222      break;
4223    case ic_init:
4224      error ("incompatible types in initialization");
4225      break;
4226    case ic_return:
4227      error ("incompatible types in return");
4228      break;
4229    default:
4230      gcc_unreachable ();
4231    }
4232
4233  return error_mark_node;
4234}
4235
4236/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4237   is used for error and warning reporting and indicates which argument
4238   is being processed.  */
4239
4240tree
4241c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4242{
4243  tree ret, type;
4244
4245  /* If FN was prototyped at the call site, the value has been converted
4246     already in convert_arguments.
4247     However, we might see a prototype now that was not in place when
4248     the function call was seen, so check that the VALUE actually matches
4249     PARM before taking an early exit.  */
4250  if (!value
4251      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4252	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4253	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4254    return value;
4255
4256  type = TREE_TYPE (parm);
4257  ret = convert_for_assignment (type, value,
4258				ic_argpass_nonproto, fn,
4259				fn, argnum);
4260  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4261      && INTEGRAL_TYPE_P (type)
4262      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4263    ret = default_conversion (ret);
4264  return ret;
4265}
4266
4267/* If VALUE is a compound expr all of whose expressions are constant, then
4268   return its value.  Otherwise, return error_mark_node.
4269
4270   This is for handling COMPOUND_EXPRs as initializer elements
4271   which is allowed with a warning when -pedantic is specified.  */
4272
4273static tree
4274valid_compound_expr_initializer (tree value, tree endtype)
4275{
4276  if (TREE_CODE (value) == COMPOUND_EXPR)
4277    {
4278      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4279	  == error_mark_node)
4280	return error_mark_node;
4281      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4282					      endtype);
4283    }
4284  else if (!initializer_constant_valid_p (value, endtype))
4285    return error_mark_node;
4286  else
4287    return value;
4288}
4289
4290/* Perform appropriate conversions on the initial value of a variable,
4291   store it in the declaration DECL,
4292   and print any error messages that are appropriate.
4293   If the init is invalid, store an ERROR_MARK.  */
4294
4295void
4296store_init_value (tree decl, tree init)
4297{
4298  tree value, type;
4299
4300  /* If variable's type was invalidly declared, just ignore it.  */
4301
4302  type = TREE_TYPE (decl);
4303  if (TREE_CODE (type) == ERROR_MARK)
4304    return;
4305
4306  /* Digest the specified initializer into an expression.  */
4307
4308  value = digest_init (type, init, true, TREE_STATIC (decl));
4309
4310  /* Store the expression if valid; else report error.  */
4311
4312  if (!in_system_header
4313      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4314    warning (OPT_Wtraditional, "traditional C rejects automatic "
4315	     "aggregate initialization");
4316
4317  DECL_INITIAL (decl) = value;
4318
4319  /* ANSI wants warnings about out-of-range constant initializers.  */
4320  STRIP_TYPE_NOPS (value);
4321  constant_expression_warning (value);
4322
4323  /* Check if we need to set array size from compound literal size.  */
4324  if (TREE_CODE (type) == ARRAY_TYPE
4325      && TYPE_DOMAIN (type) == 0
4326      && value != error_mark_node)
4327    {
4328      tree inside_init = init;
4329
4330      STRIP_TYPE_NOPS (inside_init);
4331      inside_init = fold (inside_init);
4332
4333      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4334	{
4335	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4336
4337	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4338	    {
4339	      /* For int foo[] = (int [3]){1}; we need to set array size
4340		 now since later on array initializer will be just the
4341		 brace enclosed list of the compound literal.  */
4342	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4343	      TREE_TYPE (decl) = type;
4344	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4345	      layout_type (type);
4346	      layout_decl (cldecl, 0);
4347	    }
4348	}
4349    }
4350}
4351
4352/* Methods for storing and printing names for error messages.  */
4353
4354/* Implement a spelling stack that allows components of a name to be pushed
4355   and popped.  Each element on the stack is this structure.  */
4356
4357struct spelling
4358{
4359  int kind;
4360  union
4361    {
4362      unsigned HOST_WIDE_INT i;
4363      const char *s;
4364    } u;
4365};
4366
4367#define SPELLING_STRING 1
4368#define SPELLING_MEMBER 2
4369#define SPELLING_BOUNDS 3
4370
4371static struct spelling *spelling;	/* Next stack element (unused).  */
4372static struct spelling *spelling_base;	/* Spelling stack base.  */
4373static int spelling_size;		/* Size of the spelling stack.  */
4374
4375/* Macros to save and restore the spelling stack around push_... functions.
4376   Alternative to SAVE_SPELLING_STACK.  */
4377
4378#define SPELLING_DEPTH() (spelling - spelling_base)
4379#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4380
4381/* Push an element on the spelling stack with type KIND and assign VALUE
4382   to MEMBER.  */
4383
4384#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4385{									\
4386  int depth = SPELLING_DEPTH ();					\
4387									\
4388  if (depth >= spelling_size)						\
4389    {									\
4390      spelling_size += 10;						\
4391      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4392				  spelling_size);			\
4393      RESTORE_SPELLING_DEPTH (depth);					\
4394    }									\
4395									\
4396  spelling->kind = (KIND);						\
4397  spelling->MEMBER = (VALUE);						\
4398  spelling++;								\
4399}
4400
4401/* Push STRING on the stack.  Printed literally.  */
4402
4403static void
4404push_string (const char *string)
4405{
4406  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4407}
4408
4409/* Push a member name on the stack.  Printed as '.' STRING.  */
4410
4411static void
4412push_member_name (tree decl)
4413{
4414  const char *const string
4415    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4416  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4417}
4418
4419/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4420
4421static void
4422push_array_bounds (unsigned HOST_WIDE_INT bounds)
4423{
4424  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4425}
4426
4427/* Compute the maximum size in bytes of the printed spelling.  */
4428
4429static int
4430spelling_length (void)
4431{
4432  int size = 0;
4433  struct spelling *p;
4434
4435  for (p = spelling_base; p < spelling; p++)
4436    {
4437      if (p->kind == SPELLING_BOUNDS)
4438	size += 25;
4439      else
4440	size += strlen (p->u.s) + 1;
4441    }
4442
4443  return size;
4444}
4445
4446/* Print the spelling to BUFFER and return it.  */
4447
4448static char *
4449print_spelling (char *buffer)
4450{
4451  char *d = buffer;
4452  struct spelling *p;
4453
4454  for (p = spelling_base; p < spelling; p++)
4455    if (p->kind == SPELLING_BOUNDS)
4456      {
4457	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4458	d += strlen (d);
4459      }
4460    else
4461      {
4462	const char *s;
4463	if (p->kind == SPELLING_MEMBER)
4464	  *d++ = '.';
4465	for (s = p->u.s; (*d = *s++); d++)
4466	  ;
4467      }
4468  *d++ = '\0';
4469  return buffer;
4470}
4471
4472/* Issue an error message for a bad initializer component.
4473   MSGID identifies the message.
4474   The component name is taken from the spelling stack.  */
4475
4476void
4477error_init (const char *msgid)
4478{
4479  char *ofwhat;
4480
4481  error ("%s", _(msgid));
4482  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4483  if (*ofwhat)
4484    error ("(near initialization for %qs)", ofwhat);
4485}
4486
4487/* Issue a pedantic warning for a bad initializer component.
4488   MSGID identifies the message.
4489   The component name is taken from the spelling stack.  */
4490
4491void
4492pedwarn_init (const char *msgid)
4493{
4494  char *ofwhat;
4495
4496  pedwarn ("%s", _(msgid));
4497  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4498  if (*ofwhat)
4499    pedwarn ("(near initialization for %qs)", ofwhat);
4500}
4501
4502/* Issue a warning for a bad initializer component.
4503   MSGID identifies the message.
4504   The component name is taken from the spelling stack.  */
4505
4506static void
4507warning_init (const char *msgid)
4508{
4509  char *ofwhat;
4510
4511  warning (0, "%s", _(msgid));
4512  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4513  if (*ofwhat)
4514    warning (0, "(near initialization for %qs)", ofwhat);
4515}
4516
4517/* If TYPE is an array type and EXPR is a parenthesized string
4518   constant, warn if pedantic that EXPR is being used to initialize an
4519   object of type TYPE.  */
4520
4521void
4522maybe_warn_string_init (tree type, struct c_expr expr)
4523{
4524  if (pedantic
4525      && TREE_CODE (type) == ARRAY_TYPE
4526      && TREE_CODE (expr.value) == STRING_CST
4527      && expr.original_code != STRING_CST)
4528    pedwarn_init ("array initialized from parenthesized string constant");
4529}
4530
4531/* Digest the parser output INIT as an initializer for type TYPE.
4532   Return a C expression of type TYPE to represent the initial value.
4533
4534   If INIT is a string constant, STRICT_STRING is true if it is
4535   unparenthesized or we should not warn here for it being parenthesized.
4536   For other types of INIT, STRICT_STRING is not used.
4537
4538   REQUIRE_CONSTANT requests an error if non-constant initializers or
4539   elements are seen.  */
4540
4541static tree
4542digest_init (tree type, tree init, bool strict_string, int require_constant)
4543{
4544  enum tree_code code = TREE_CODE (type);
4545  tree inside_init = init;
4546
4547  if (type == error_mark_node
4548      || !init
4549      || init == error_mark_node
4550      || TREE_TYPE (init) == error_mark_node)
4551    return error_mark_node;
4552
4553  STRIP_TYPE_NOPS (inside_init);
4554
4555  inside_init = fold (inside_init);
4556
4557  /* Initialization of an array of chars from a string constant
4558     optionally enclosed in braces.  */
4559
4560  if (code == ARRAY_TYPE && inside_init
4561      && TREE_CODE (inside_init) == STRING_CST)
4562    {
4563      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4564      /* Note that an array could be both an array of character type
4565	 and an array of wchar_t if wchar_t is signed char or unsigned
4566	 char.  */
4567      bool char_array = (typ1 == char_type_node
4568			 || typ1 == signed_char_type_node
4569			 || typ1 == unsigned_char_type_node);
4570      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4571      if (char_array || wchar_array)
4572	{
4573	  struct c_expr expr;
4574	  bool char_string;
4575	  expr.value = inside_init;
4576	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4577	  maybe_warn_string_init (type, expr);
4578
4579	  char_string
4580	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4581	       == char_type_node);
4582
4583	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4584			 TYPE_MAIN_VARIANT (type)))
4585	    return inside_init;
4586
4587	  if (!wchar_array && !char_string)
4588	    {
4589	      error_init ("char-array initialized from wide string");
4590	      return error_mark_node;
4591	    }
4592	  if (char_string && !char_array)
4593	    {
4594	      error_init ("wchar_t-array initialized from non-wide string");
4595	      return error_mark_node;
4596	    }
4597
4598	  TREE_TYPE (inside_init) = type;
4599	  if (TYPE_DOMAIN (type) != 0
4600	      && TYPE_SIZE (type) != 0
4601	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4602	      /* Subtract 1 (or sizeof (wchar_t))
4603		 because it's ok to ignore the terminating null char
4604		 that is counted in the length of the constant.  */
4605	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4606				       TREE_STRING_LENGTH (inside_init)
4607				       - ((TYPE_PRECISION (typ1)
4608					   != TYPE_PRECISION (char_type_node))
4609					  ? (TYPE_PRECISION (wchar_type_node)
4610					     / BITS_PER_UNIT)
4611					  : 1)))
4612	    pedwarn_init ("initializer-string for array of chars is too long");
4613
4614	  return inside_init;
4615	}
4616      else if (INTEGRAL_TYPE_P (typ1))
4617	{
4618	  error_init ("array of inappropriate type initialized "
4619		      "from string constant");
4620	  return error_mark_node;
4621	}
4622    }
4623
4624  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4625     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4626     below and handle as a constructor.  */
4627  if (code == VECTOR_TYPE
4628      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4629      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4630      && TREE_CONSTANT (inside_init))
4631    {
4632      if (TREE_CODE (inside_init) == VECTOR_CST
4633	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4634			TYPE_MAIN_VARIANT (type)))
4635	return inside_init;
4636
4637      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4638	{
4639	  unsigned HOST_WIDE_INT ix;
4640	  tree value;
4641	  bool constant_p = true;
4642
4643	  /* Iterate through elements and check if all constructor
4644	     elements are *_CSTs.  */
4645	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4646	    if (!CONSTANT_CLASS_P (value))
4647	      {
4648		constant_p = false;
4649		break;
4650	      }
4651
4652	  if (constant_p)
4653	    return build_vector_from_ctor (type,
4654					   CONSTRUCTOR_ELTS (inside_init));
4655	}
4656    }
4657
4658  /* Any type can be initialized
4659     from an expression of the same type, optionally with braces.  */
4660
4661  if (inside_init && TREE_TYPE (inside_init) != 0
4662      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4663		     TYPE_MAIN_VARIANT (type))
4664	  || (code == ARRAY_TYPE
4665	      && comptypes (TREE_TYPE (inside_init), type))
4666	  || (code == VECTOR_TYPE
4667	      && comptypes (TREE_TYPE (inside_init), type))
4668	  || (code == POINTER_TYPE
4669	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4670	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4671			    TREE_TYPE (type)))))
4672    {
4673      if (code == POINTER_TYPE)
4674	{
4675	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4676	    {
4677	      if (TREE_CODE (inside_init) == STRING_CST
4678		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4679		inside_init = array_to_pointer_conversion (inside_init);
4680	      else
4681		{
4682		  error_init ("invalid use of non-lvalue array");
4683		  return error_mark_node;
4684		}
4685	    }
4686	}
4687
4688      if (code == VECTOR_TYPE)
4689	/* Although the types are compatible, we may require a
4690	   conversion.  */
4691	inside_init = convert (type, inside_init);
4692
4693      if (require_constant
4694	  && (code == VECTOR_TYPE || !flag_isoc99)
4695	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4696	{
4697	  /* As an extension, allow initializing objects with static storage
4698	     duration with compound literals (which are then treated just as
4699	     the brace enclosed list they contain).  Also allow this for
4700	     vectors, as we can only assign them with compound literals.  */
4701	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4702	  inside_init = DECL_INITIAL (decl);
4703	}
4704
4705      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4706	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4707	{
4708	  error_init ("array initialized from non-constant array expression");
4709	  return error_mark_node;
4710	}
4711
4712      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4713	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4714
4715      /* Compound expressions can only occur here if -pedantic or
4716	 -pedantic-errors is specified.  In the later case, we always want
4717	 an error.  In the former case, we simply want a warning.  */
4718      if (require_constant && pedantic
4719	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4720	{
4721	  inside_init
4722	    = valid_compound_expr_initializer (inside_init,
4723					       TREE_TYPE (inside_init));
4724	  if (inside_init == error_mark_node)
4725	    error_init ("initializer element is not constant");
4726	  else
4727	    pedwarn_init ("initializer element is not constant");
4728	  if (flag_pedantic_errors)
4729	    inside_init = error_mark_node;
4730	}
4731      else if (require_constant
4732	       && !initializer_constant_valid_p (inside_init,
4733						 TREE_TYPE (inside_init)))
4734	{
4735	  error_init ("initializer element is not constant");
4736	  inside_init = error_mark_node;
4737	}
4738
4739      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4740      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4741	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4742					      NULL_TREE, 0);
4743      return inside_init;
4744    }
4745
4746  /* Handle scalar types, including conversions.  */
4747
4748  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4749      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4750      || code == VECTOR_TYPE)
4751    {
4752      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4753	  && (TREE_CODE (init) == STRING_CST
4754	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4755	init = array_to_pointer_conversion (init);
4756      inside_init
4757	= convert_for_assignment (type, init, ic_init,
4758				  NULL_TREE, NULL_TREE, 0);
4759
4760      /* Check to see if we have already given an error message.  */
4761      if (inside_init == error_mark_node)
4762	;
4763      else if (require_constant && !TREE_CONSTANT (inside_init))
4764	{
4765	  error_init ("initializer element is not constant");
4766	  inside_init = error_mark_node;
4767	}
4768      else if (require_constant
4769	       && !initializer_constant_valid_p (inside_init,
4770						 TREE_TYPE (inside_init)))
4771	{
4772	  error_init ("initializer element is not computable at load time");
4773	  inside_init = error_mark_node;
4774	}
4775
4776      return inside_init;
4777    }
4778
4779  /* Come here only for records and arrays.  */
4780
4781  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4782    {
4783      error_init ("variable-sized object may not be initialized");
4784      return error_mark_node;
4785    }
4786
4787  error_init ("invalid initializer");
4788  return error_mark_node;
4789}
4790
4791/* Handle initializers that use braces.  */
4792
4793/* Type of object we are accumulating a constructor for.
4794   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4795static tree constructor_type;
4796
4797/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4798   left to fill.  */
4799static tree constructor_fields;
4800
4801/* For an ARRAY_TYPE, this is the specified index
4802   at which to store the next element we get.  */
4803static tree constructor_index;
4804
4805/* For an ARRAY_TYPE, this is the maximum index.  */
4806static tree constructor_max_index;
4807
4808/* For a RECORD_TYPE, this is the first field not yet written out.  */
4809static tree constructor_unfilled_fields;
4810
4811/* For an ARRAY_TYPE, this is the index of the first element
4812   not yet written out.  */
4813static tree constructor_unfilled_index;
4814
4815/* In a RECORD_TYPE, the byte index of the next consecutive field.
4816   This is so we can generate gaps between fields, when appropriate.  */
4817static tree constructor_bit_index;
4818
4819/* If we are saving up the elements rather than allocating them,
4820   this is the list of elements so far (in reverse order,
4821   most recent first).  */
4822static VEC(constructor_elt,gc) *constructor_elements;
4823
4824/* 1 if constructor should be incrementally stored into a constructor chain,
4825   0 if all the elements should be kept in AVL tree.  */
4826static int constructor_incremental;
4827
4828/* 1 if so far this constructor's elements are all compile-time constants.  */
4829static int constructor_constant;
4830
4831/* 1 if so far this constructor's elements are all valid address constants.  */
4832static int constructor_simple;
4833
4834/* 1 if this constructor is erroneous so far.  */
4835static int constructor_erroneous;
4836
4837/* Structure for managing pending initializer elements, organized as an
4838   AVL tree.  */
4839
4840struct init_node
4841{
4842  struct init_node *left, *right;
4843  struct init_node *parent;
4844  int balance;
4845  tree purpose;
4846  tree value;
4847};
4848
4849/* Tree of pending elements at this constructor level.
4850   These are elements encountered out of order
4851   which belong at places we haven't reached yet in actually
4852   writing the output.
4853   Will never hold tree nodes across GC runs.  */
4854static struct init_node *constructor_pending_elts;
4855
4856/* The SPELLING_DEPTH of this constructor.  */
4857static int constructor_depth;
4858
4859/* DECL node for which an initializer is being read.
4860   0 means we are reading a constructor expression
4861   such as (struct foo) {...}.  */
4862static tree constructor_decl;
4863
4864/* Nonzero if this is an initializer for a top-level decl.  */
4865static int constructor_top_level;
4866
4867/* Nonzero if there were any member designators in this initializer.  */
4868static int constructor_designated;
4869
4870/* Nesting depth of designator list.  */
4871static int designator_depth;
4872
4873/* Nonzero if there were diagnosed errors in this designator list.  */
4874static int designator_erroneous;
4875
4876
4877/* This stack has a level for each implicit or explicit level of
4878   structuring in the initializer, including the outermost one.  It
4879   saves the values of most of the variables above.  */
4880
4881struct constructor_range_stack;
4882
4883struct constructor_stack
4884{
4885  struct constructor_stack *next;
4886  tree type;
4887  tree fields;
4888  tree index;
4889  tree max_index;
4890  tree unfilled_index;
4891  tree unfilled_fields;
4892  tree bit_index;
4893  VEC(constructor_elt,gc) *elements;
4894  struct init_node *pending_elts;
4895  int offset;
4896  int depth;
4897  /* If value nonzero, this value should replace the entire
4898     constructor at this level.  */
4899  struct c_expr replacement_value;
4900  struct constructor_range_stack *range_stack;
4901  char constant;
4902  char simple;
4903  char implicit;
4904  char erroneous;
4905  char outer;
4906  char incremental;
4907  char designated;
4908};
4909
4910static struct constructor_stack *constructor_stack;
4911
4912/* This stack represents designators from some range designator up to
4913   the last designator in the list.  */
4914
4915struct constructor_range_stack
4916{
4917  struct constructor_range_stack *next, *prev;
4918  struct constructor_stack *stack;
4919  tree range_start;
4920  tree index;
4921  tree range_end;
4922  tree fields;
4923};
4924
4925static struct constructor_range_stack *constructor_range_stack;
4926
4927/* This stack records separate initializers that are nested.
4928   Nested initializers can't happen in ANSI C, but GNU C allows them
4929   in cases like { ... (struct foo) { ... } ... }.  */
4930
4931struct initializer_stack
4932{
4933  struct initializer_stack *next;
4934  tree decl;
4935  struct constructor_stack *constructor_stack;
4936  struct constructor_range_stack *constructor_range_stack;
4937  VEC(constructor_elt,gc) *elements;
4938  struct spelling *spelling;
4939  struct spelling *spelling_base;
4940  int spelling_size;
4941  char top_level;
4942  char require_constant_value;
4943  char require_constant_elements;
4944};
4945
4946static struct initializer_stack *initializer_stack;
4947
4948/* Prepare to parse and output the initializer for variable DECL.  */
4949
4950void
4951start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4952{
4953  const char *locus;
4954  struct initializer_stack *p = XNEW (struct initializer_stack);
4955
4956  p->decl = constructor_decl;
4957  p->require_constant_value = require_constant_value;
4958  p->require_constant_elements = require_constant_elements;
4959  p->constructor_stack = constructor_stack;
4960  p->constructor_range_stack = constructor_range_stack;
4961  p->elements = constructor_elements;
4962  p->spelling = spelling;
4963  p->spelling_base = spelling_base;
4964  p->spelling_size = spelling_size;
4965  p->top_level = constructor_top_level;
4966  p->next = initializer_stack;
4967  initializer_stack = p;
4968
4969  constructor_decl = decl;
4970  constructor_designated = 0;
4971  constructor_top_level = top_level;
4972
4973  if (decl != 0 && decl != error_mark_node)
4974    {
4975      require_constant_value = TREE_STATIC (decl);
4976      require_constant_elements
4977	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4978	   /* For a scalar, you can always use any value to initialize,
4979	      even within braces.  */
4980	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4981	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4982	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4983	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4984      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4985    }
4986  else
4987    {
4988      require_constant_value = 0;
4989      require_constant_elements = 0;
4990      locus = "(anonymous)";
4991    }
4992
4993  constructor_stack = 0;
4994  constructor_range_stack = 0;
4995
4996  missing_braces_mentioned = 0;
4997
4998  spelling_base = 0;
4999  spelling_size = 0;
5000  RESTORE_SPELLING_DEPTH (0);
5001
5002  if (locus)
5003    push_string (locus);
5004}
5005
5006void
5007finish_init (void)
5008{
5009  struct initializer_stack *p = initializer_stack;
5010
5011  /* Free the whole constructor stack of this initializer.  */
5012  while (constructor_stack)
5013    {
5014      struct constructor_stack *q = constructor_stack;
5015      constructor_stack = q->next;
5016      free (q);
5017    }
5018
5019  gcc_assert (!constructor_range_stack);
5020
5021  /* Pop back to the data of the outer initializer (if any).  */
5022  free (spelling_base);
5023
5024  constructor_decl = p->decl;
5025  require_constant_value = p->require_constant_value;
5026  require_constant_elements = p->require_constant_elements;
5027  constructor_stack = p->constructor_stack;
5028  constructor_range_stack = p->constructor_range_stack;
5029  constructor_elements = p->elements;
5030  spelling = p->spelling;
5031  spelling_base = p->spelling_base;
5032  spelling_size = p->spelling_size;
5033  constructor_top_level = p->top_level;
5034  initializer_stack = p->next;
5035  free (p);
5036}
5037
5038/* Call here when we see the initializer is surrounded by braces.
5039   This is instead of a call to push_init_level;
5040   it is matched by a call to pop_init_level.
5041
5042   TYPE is the type to initialize, for a constructor expression.
5043   For an initializer for a decl, TYPE is zero.  */
5044
5045void
5046really_start_incremental_init (tree type)
5047{
5048  struct constructor_stack *p = XNEW (struct constructor_stack);
5049
5050  if (type == 0)
5051    type = TREE_TYPE (constructor_decl);
5052
5053  if (targetm.vector_opaque_p (type))
5054    error ("opaque vector types cannot be initialized");
5055
5056  p->type = constructor_type;
5057  p->fields = constructor_fields;
5058  p->index = constructor_index;
5059  p->max_index = constructor_max_index;
5060  p->unfilled_index = constructor_unfilled_index;
5061  p->unfilled_fields = constructor_unfilled_fields;
5062  p->bit_index = constructor_bit_index;
5063  p->elements = constructor_elements;
5064  p->constant = constructor_constant;
5065  p->simple = constructor_simple;
5066  p->erroneous = constructor_erroneous;
5067  p->pending_elts = constructor_pending_elts;
5068  p->depth = constructor_depth;
5069  p->replacement_value.value = 0;
5070  p->replacement_value.original_code = ERROR_MARK;
5071  p->implicit = 0;
5072  p->range_stack = 0;
5073  p->outer = 0;
5074  p->incremental = constructor_incremental;
5075  p->designated = constructor_designated;
5076  p->next = 0;
5077  constructor_stack = p;
5078
5079  constructor_constant = 1;
5080  constructor_simple = 1;
5081  constructor_depth = SPELLING_DEPTH ();
5082  constructor_elements = 0;
5083  constructor_pending_elts = 0;
5084  constructor_type = type;
5085  constructor_incremental = 1;
5086  constructor_designated = 0;
5087  designator_depth = 0;
5088  designator_erroneous = 0;
5089
5090  if (TREE_CODE (constructor_type) == RECORD_TYPE
5091      || TREE_CODE (constructor_type) == UNION_TYPE)
5092    {
5093      constructor_fields = TYPE_FIELDS (constructor_type);
5094      /* Skip any nameless bit fields at the beginning.  */
5095      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5096	     && DECL_NAME (constructor_fields) == 0)
5097	constructor_fields = TREE_CHAIN (constructor_fields);
5098
5099      constructor_unfilled_fields = constructor_fields;
5100      constructor_bit_index = bitsize_zero_node;
5101    }
5102  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5103    {
5104      if (TYPE_DOMAIN (constructor_type))
5105	{
5106	  constructor_max_index
5107	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5108
5109	  /* Detect non-empty initializations of zero-length arrays.  */
5110	  if (constructor_max_index == NULL_TREE
5111	      && TYPE_SIZE (constructor_type))
5112	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5113
5114	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5115	     to initialize VLAs will cause a proper error; avoid tree
5116	     checking errors as well by setting a safe value.  */
5117	  if (constructor_max_index
5118	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5119	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5120
5121	  constructor_index
5122	    = convert (bitsizetype,
5123		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5124	}
5125      else
5126	{
5127	  constructor_index = bitsize_zero_node;
5128	  constructor_max_index = NULL_TREE;
5129	}
5130
5131      constructor_unfilled_index = constructor_index;
5132    }
5133  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5134    {
5135      /* Vectors are like simple fixed-size arrays.  */
5136      constructor_max_index =
5137	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5138      constructor_index = bitsize_zero_node;
5139      constructor_unfilled_index = constructor_index;
5140    }
5141  else
5142    {
5143      /* Handle the case of int x = {5}; */
5144      constructor_fields = constructor_type;
5145      constructor_unfilled_fields = constructor_type;
5146    }
5147}
5148
5149/* Push down into a subobject, for initialization.
5150   If this is for an explicit set of braces, IMPLICIT is 0.
5151   If it is because the next element belongs at a lower level,
5152   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5153
5154void
5155push_init_level (int implicit)
5156{
5157  struct constructor_stack *p;
5158  tree value = NULL_TREE;
5159
5160  /* If we've exhausted any levels that didn't have braces,
5161     pop them now.  If implicit == 1, this will have been done in
5162     process_init_element; do not repeat it here because in the case
5163     of excess initializers for an empty aggregate this leads to an
5164     infinite cycle of popping a level and immediately recreating
5165     it.  */
5166  if (implicit != 1)
5167    {
5168      while (constructor_stack->implicit)
5169	{
5170	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5171	       || TREE_CODE (constructor_type) == UNION_TYPE)
5172	      && constructor_fields == 0)
5173	    process_init_element (pop_init_level (1));
5174	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5175		   && constructor_max_index
5176		   && tree_int_cst_lt (constructor_max_index,
5177				       constructor_index))
5178	    process_init_element (pop_init_level (1));
5179	  else
5180	    break;
5181	}
5182    }
5183
5184  /* Unless this is an explicit brace, we need to preserve previous
5185     content if any.  */
5186  if (implicit)
5187    {
5188      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5189	   || TREE_CODE (constructor_type) == UNION_TYPE)
5190	  && constructor_fields)
5191	value = find_init_member (constructor_fields);
5192      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5193	value = find_init_member (constructor_index);
5194    }
5195
5196  p = XNEW (struct constructor_stack);
5197  p->type = constructor_type;
5198  p->fields = constructor_fields;
5199  p->index = constructor_index;
5200  p->max_index = constructor_max_index;
5201  p->unfilled_index = constructor_unfilled_index;
5202  p->unfilled_fields = constructor_unfilled_fields;
5203  p->bit_index = constructor_bit_index;
5204  p->elements = constructor_elements;
5205  p->constant = constructor_constant;
5206  p->simple = constructor_simple;
5207  p->erroneous = constructor_erroneous;
5208  p->pending_elts = constructor_pending_elts;
5209  p->depth = constructor_depth;
5210  p->replacement_value.value = 0;
5211  p->replacement_value.original_code = ERROR_MARK;
5212  p->implicit = implicit;
5213  p->outer = 0;
5214  p->incremental = constructor_incremental;
5215  p->designated = constructor_designated;
5216  p->next = constructor_stack;
5217  p->range_stack = 0;
5218  constructor_stack = p;
5219
5220  constructor_constant = 1;
5221  constructor_simple = 1;
5222  constructor_depth = SPELLING_DEPTH ();
5223  constructor_elements = 0;
5224  constructor_incremental = 1;
5225  constructor_designated = 0;
5226  constructor_pending_elts = 0;
5227  if (!implicit)
5228    {
5229      p->range_stack = constructor_range_stack;
5230      constructor_range_stack = 0;
5231      designator_depth = 0;
5232      designator_erroneous = 0;
5233    }
5234
5235  /* Don't die if an entire brace-pair level is superfluous
5236     in the containing level.  */
5237  if (constructor_type == 0)
5238    ;
5239  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5240	   || TREE_CODE (constructor_type) == UNION_TYPE)
5241    {
5242      /* Don't die if there are extra init elts at the end.  */
5243      if (constructor_fields == 0)
5244	constructor_type = 0;
5245      else
5246	{
5247	  constructor_type = TREE_TYPE (constructor_fields);
5248	  push_member_name (constructor_fields);
5249	  constructor_depth++;
5250	}
5251    }
5252  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5253    {
5254      constructor_type = TREE_TYPE (constructor_type);
5255      push_array_bounds (tree_low_cst (constructor_index, 1));
5256      constructor_depth++;
5257    }
5258
5259  if (constructor_type == 0)
5260    {
5261      error_init ("extra brace group at end of initializer");
5262      constructor_fields = 0;
5263      constructor_unfilled_fields = 0;
5264      return;
5265    }
5266
5267  if (value && TREE_CODE (value) == CONSTRUCTOR)
5268    {
5269      constructor_constant = TREE_CONSTANT (value);
5270      constructor_simple = TREE_STATIC (value);
5271      constructor_elements = CONSTRUCTOR_ELTS (value);
5272      if (!VEC_empty (constructor_elt, constructor_elements)
5273	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5274	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5275	set_nonincremental_init ();
5276    }
5277
5278  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5279    {
5280      missing_braces_mentioned = 1;
5281      warning_init ("missing braces around initializer");
5282    }
5283
5284  if (TREE_CODE (constructor_type) == RECORD_TYPE
5285	   || TREE_CODE (constructor_type) == UNION_TYPE)
5286    {
5287      constructor_fields = TYPE_FIELDS (constructor_type);
5288      /* Skip any nameless bit fields at the beginning.  */
5289      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5290	     && DECL_NAME (constructor_fields) == 0)
5291	constructor_fields = TREE_CHAIN (constructor_fields);
5292
5293      constructor_unfilled_fields = constructor_fields;
5294      constructor_bit_index = bitsize_zero_node;
5295    }
5296  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5297    {
5298      /* Vectors are like simple fixed-size arrays.  */
5299      constructor_max_index =
5300	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5301      constructor_index = convert (bitsizetype, integer_zero_node);
5302      constructor_unfilled_index = constructor_index;
5303    }
5304  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5305    {
5306      if (TYPE_DOMAIN (constructor_type))
5307	{
5308	  constructor_max_index
5309	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5310
5311	  /* Detect non-empty initializations of zero-length arrays.  */
5312	  if (constructor_max_index == NULL_TREE
5313	      && TYPE_SIZE (constructor_type))
5314	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5315
5316	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5317	     to initialize VLAs will cause a proper error; avoid tree
5318	     checking errors as well by setting a safe value.  */
5319	  if (constructor_max_index
5320	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5321	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5322
5323	  constructor_index
5324	    = convert (bitsizetype,
5325		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5326	}
5327      else
5328	constructor_index = bitsize_zero_node;
5329
5330      constructor_unfilled_index = constructor_index;
5331      if (value && TREE_CODE (value) == STRING_CST)
5332	{
5333	  /* We need to split the char/wchar array into individual
5334	     characters, so that we don't have to special case it
5335	     everywhere.  */
5336	  set_nonincremental_init_from_string (value);
5337	}
5338    }
5339  else
5340    {
5341      if (constructor_type != error_mark_node)
5342	warning_init ("braces around scalar initializer");
5343      constructor_fields = constructor_type;
5344      constructor_unfilled_fields = constructor_type;
5345    }
5346}
5347
5348/* At the end of an implicit or explicit brace level,
5349   finish up that level of constructor.  If a single expression
5350   with redundant braces initialized that level, return the
5351   c_expr structure for that expression.  Otherwise, the original_code
5352   element is set to ERROR_MARK.
5353   If we were outputting the elements as they are read, return 0 as the value
5354   from inner levels (process_init_element ignores that),
5355   but return error_mark_node as the value from the outermost level
5356   (that's what we want to put in DECL_INITIAL).
5357   Otherwise, return a CONSTRUCTOR expression as the value.  */
5358
5359struct c_expr
5360pop_init_level (int implicit)
5361{
5362  struct constructor_stack *p;
5363  struct c_expr ret;
5364  ret.value = 0;
5365  ret.original_code = ERROR_MARK;
5366
5367  if (implicit == 0)
5368    {
5369      /* When we come to an explicit close brace,
5370	 pop any inner levels that didn't have explicit braces.  */
5371      while (constructor_stack->implicit)
5372	process_init_element (pop_init_level (1));
5373
5374      gcc_assert (!constructor_range_stack);
5375    }
5376
5377  /* Now output all pending elements.  */
5378  constructor_incremental = 1;
5379  output_pending_init_elements (1);
5380
5381  p = constructor_stack;
5382
5383  /* Error for initializing a flexible array member, or a zero-length
5384     array member in an inappropriate context.  */
5385  if (constructor_type && constructor_fields
5386      && TREE_CODE (constructor_type) == ARRAY_TYPE
5387      && TYPE_DOMAIN (constructor_type)
5388      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5389    {
5390      /* Silently discard empty initializations.  The parser will
5391	 already have pedwarned for empty brackets.  */
5392      if (integer_zerop (constructor_unfilled_index))
5393	constructor_type = NULL_TREE;
5394      else
5395	{
5396	  gcc_assert (!TYPE_SIZE (constructor_type));
5397
5398	  if (constructor_depth > 2)
5399	    error_init ("initialization of flexible array member in a nested context");
5400	  else if (pedantic)
5401	    pedwarn_init ("initialization of a flexible array member");
5402
5403	  /* We have already issued an error message for the existence
5404	     of a flexible array member not at the end of the structure.
5405	     Discard the initializer so that we do not die later.  */
5406	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5407	    constructor_type = NULL_TREE;
5408	}
5409    }
5410
5411  /* Warn when some struct elements are implicitly initialized to zero.  */
5412  if (warn_missing_field_initializers
5413      && constructor_type
5414      && TREE_CODE (constructor_type) == RECORD_TYPE
5415      && constructor_unfilled_fields)
5416    {
5417	/* Do not warn for flexible array members or zero-length arrays.  */
5418	while (constructor_unfilled_fields
5419	       && (!DECL_SIZE (constructor_unfilled_fields)
5420		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5421	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5422
5423	/* Do not warn if this level of the initializer uses member
5424	   designators; it is likely to be deliberate.  */
5425	if (constructor_unfilled_fields && !constructor_designated)
5426	  {
5427	    push_member_name (constructor_unfilled_fields);
5428	    warning_init ("missing initializer");
5429	    RESTORE_SPELLING_DEPTH (constructor_depth);
5430	  }
5431    }
5432
5433  /* Pad out the end of the structure.  */
5434  if (p->replacement_value.value)
5435    /* If this closes a superfluous brace pair,
5436       just pass out the element between them.  */
5437    ret = p->replacement_value;
5438  else if (constructor_type == 0)
5439    ;
5440  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5441	   && TREE_CODE (constructor_type) != UNION_TYPE
5442	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5443	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5444    {
5445      /* A nonincremental scalar initializer--just return
5446	 the element, after verifying there is just one.  */
5447      if (VEC_empty (constructor_elt,constructor_elements))
5448	{
5449	  if (!constructor_erroneous)
5450	    error_init ("empty scalar initializer");
5451	  ret.value = error_mark_node;
5452	}
5453      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5454	{
5455	  error_init ("extra elements in scalar initializer");
5456	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5457	}
5458      else
5459	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5460    }
5461  else
5462    {
5463      if (constructor_erroneous)
5464	ret.value = error_mark_node;
5465      else
5466	{
5467	  ret.value = build_constructor (constructor_type,
5468					 constructor_elements);
5469	  if (constructor_constant)
5470	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5471	  if (constructor_constant && constructor_simple)
5472	    TREE_STATIC (ret.value) = 1;
5473	}
5474    }
5475
5476  constructor_type = p->type;
5477  constructor_fields = p->fields;
5478  constructor_index = p->index;
5479  constructor_max_index = p->max_index;
5480  constructor_unfilled_index = p->unfilled_index;
5481  constructor_unfilled_fields = p->unfilled_fields;
5482  constructor_bit_index = p->bit_index;
5483  constructor_elements = p->elements;
5484  constructor_constant = p->constant;
5485  constructor_simple = p->simple;
5486  constructor_erroneous = p->erroneous;
5487  constructor_incremental = p->incremental;
5488  constructor_designated = p->designated;
5489  constructor_pending_elts = p->pending_elts;
5490  constructor_depth = p->depth;
5491  if (!p->implicit)
5492    constructor_range_stack = p->range_stack;
5493  RESTORE_SPELLING_DEPTH (constructor_depth);
5494
5495  constructor_stack = p->next;
5496  free (p);
5497
5498  if (ret.value == 0 && constructor_stack == 0)
5499    ret.value = error_mark_node;
5500  return ret;
5501}
5502
5503/* Common handling for both array range and field name designators.
5504   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5505
5506static int
5507set_designator (int array)
5508{
5509  tree subtype;
5510  enum tree_code subcode;
5511
5512  /* Don't die if an entire brace-pair level is superfluous
5513     in the containing level.  */
5514  if (constructor_type == 0)
5515    return 1;
5516
5517  /* If there were errors in this designator list already, bail out
5518     silently.  */
5519  if (designator_erroneous)
5520    return 1;
5521
5522  if (!designator_depth)
5523    {
5524      gcc_assert (!constructor_range_stack);
5525
5526      /* Designator list starts at the level of closest explicit
5527	 braces.  */
5528      while (constructor_stack->implicit)
5529	process_init_element (pop_init_level (1));
5530      constructor_designated = 1;
5531      return 0;
5532    }
5533
5534  switch (TREE_CODE (constructor_type))
5535    {
5536    case  RECORD_TYPE:
5537    case  UNION_TYPE:
5538      subtype = TREE_TYPE (constructor_fields);
5539      if (subtype != error_mark_node)
5540	subtype = TYPE_MAIN_VARIANT (subtype);
5541      break;
5542    case ARRAY_TYPE:
5543      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5544      break;
5545    default:
5546      gcc_unreachable ();
5547    }
5548
5549  subcode = TREE_CODE (subtype);
5550  if (array && subcode != ARRAY_TYPE)
5551    {
5552      error_init ("array index in non-array initializer");
5553      return 1;
5554    }
5555  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5556    {
5557      error_init ("field name not in record or union initializer");
5558      return 1;
5559    }
5560
5561  constructor_designated = 1;
5562  push_init_level (2);
5563  return 0;
5564}
5565
5566/* If there are range designators in designator list, push a new designator
5567   to constructor_range_stack.  RANGE_END is end of such stack range or
5568   NULL_TREE if there is no range designator at this level.  */
5569
5570static void
5571push_range_stack (tree range_end)
5572{
5573  struct constructor_range_stack *p;
5574
5575  p = GGC_NEW (struct constructor_range_stack);
5576  p->prev = constructor_range_stack;
5577  p->next = 0;
5578  p->fields = constructor_fields;
5579  p->range_start = constructor_index;
5580  p->index = constructor_index;
5581  p->stack = constructor_stack;
5582  p->range_end = range_end;
5583  if (constructor_range_stack)
5584    constructor_range_stack->next = p;
5585  constructor_range_stack = p;
5586}
5587
5588/* Within an array initializer, specify the next index to be initialized.
5589   FIRST is that index.  If LAST is nonzero, then initialize a range
5590   of indices, running from FIRST through LAST.  */
5591
5592void
5593set_init_index (tree first, tree last)
5594{
5595  if (set_designator (1))
5596    return;
5597
5598  designator_erroneous = 1;
5599
5600  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5601      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5602    {
5603      error_init ("array index in initializer not of integer type");
5604      return;
5605    }
5606
5607  if (TREE_CODE (first) != INTEGER_CST)
5608    error_init ("nonconstant array index in initializer");
5609  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5610    error_init ("nonconstant array index in initializer");
5611  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5612    error_init ("array index in non-array initializer");
5613  else if (tree_int_cst_sgn (first) == -1)
5614    error_init ("array index in initializer exceeds array bounds");
5615  else if (constructor_max_index
5616	   && tree_int_cst_lt (constructor_max_index, first))
5617    error_init ("array index in initializer exceeds array bounds");
5618  else
5619    {
5620      constructor_index = convert (bitsizetype, first);
5621
5622      if (last)
5623	{
5624	  if (tree_int_cst_equal (first, last))
5625	    last = 0;
5626	  else if (tree_int_cst_lt (last, first))
5627	    {
5628	      error_init ("empty index range in initializer");
5629	      last = 0;
5630	    }
5631	  else
5632	    {
5633	      last = convert (bitsizetype, last);
5634	      if (constructor_max_index != 0
5635		  && tree_int_cst_lt (constructor_max_index, last))
5636		{
5637		  error_init ("array index range in initializer exceeds array bounds");
5638		  last = 0;
5639		}
5640	    }
5641	}
5642
5643      designator_depth++;
5644      designator_erroneous = 0;
5645      if (constructor_range_stack || last)
5646	push_range_stack (last);
5647    }
5648}
5649
5650/* Within a struct initializer, specify the next field to be initialized.  */
5651
5652void
5653set_init_label (tree fieldname)
5654{
5655  tree tail;
5656
5657  if (set_designator (0))
5658    return;
5659
5660  designator_erroneous = 1;
5661
5662  if (TREE_CODE (constructor_type) != RECORD_TYPE
5663      && TREE_CODE (constructor_type) != UNION_TYPE)
5664    {
5665      error_init ("field name not in record or union initializer");
5666      return;
5667    }
5668
5669  for (tail = TYPE_FIELDS (constructor_type); tail;
5670       tail = TREE_CHAIN (tail))
5671    {
5672      if (DECL_NAME (tail) == fieldname)
5673	break;
5674    }
5675
5676  if (tail == 0)
5677    error ("unknown field %qE specified in initializer", fieldname);
5678  else
5679    {
5680      constructor_fields = tail;
5681      designator_depth++;
5682      designator_erroneous = 0;
5683      if (constructor_range_stack)
5684	push_range_stack (NULL_TREE);
5685    }
5686}
5687
5688/* Add a new initializer to the tree of pending initializers.  PURPOSE
5689   identifies the initializer, either array index or field in a structure.
5690   VALUE is the value of that index or field.  */
5691
5692static void
5693add_pending_init (tree purpose, tree value)
5694{
5695  struct init_node *p, **q, *r;
5696
5697  q = &constructor_pending_elts;
5698  p = 0;
5699
5700  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5701    {
5702      while (*q != 0)
5703	{
5704	  p = *q;
5705	  if (tree_int_cst_lt (purpose, p->purpose))
5706	    q = &p->left;
5707	  else if (tree_int_cst_lt (p->purpose, purpose))
5708	    q = &p->right;
5709	  else
5710	    {
5711	      if (TREE_SIDE_EFFECTS (p->value))
5712		warning_init ("initialized field with side-effects overwritten");
5713	      else if (warn_override_init)
5714		warning_init ("initialized field overwritten");
5715	      p->value = value;
5716	      return;
5717	    }
5718	}
5719    }
5720  else
5721    {
5722      tree bitpos;
5723
5724      bitpos = bit_position (purpose);
5725      while (*q != NULL)
5726	{
5727	  p = *q;
5728	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5729	    q = &p->left;
5730	  else if (p->purpose != purpose)
5731	    q = &p->right;
5732	  else
5733	    {
5734	      if (TREE_SIDE_EFFECTS (p->value))
5735		warning_init ("initialized field with side-effects overwritten");
5736	      else if (warn_override_init)
5737		warning_init ("initialized field overwritten");
5738	      p->value = value;
5739	      return;
5740	    }
5741	}
5742    }
5743
5744  r = GGC_NEW (struct init_node);
5745  r->purpose = purpose;
5746  r->value = value;
5747
5748  *q = r;
5749  r->parent = p;
5750  r->left = 0;
5751  r->right = 0;
5752  r->balance = 0;
5753
5754  while (p)
5755    {
5756      struct init_node *s;
5757
5758      if (r == p->left)
5759	{
5760	  if (p->balance == 0)
5761	    p->balance = -1;
5762	  else if (p->balance < 0)
5763	    {
5764	      if (r->balance < 0)
5765		{
5766		  /* L rotation.  */
5767		  p->left = r->right;
5768		  if (p->left)
5769		    p->left->parent = p;
5770		  r->right = p;
5771
5772		  p->balance = 0;
5773		  r->balance = 0;
5774
5775		  s = p->parent;
5776		  p->parent = r;
5777		  r->parent = s;
5778		  if (s)
5779		    {
5780		      if (s->left == p)
5781			s->left = r;
5782		      else
5783			s->right = r;
5784		    }
5785		  else
5786		    constructor_pending_elts = r;
5787		}
5788	      else
5789		{
5790		  /* LR rotation.  */
5791		  struct init_node *t = r->right;
5792
5793		  r->right = t->left;
5794		  if (r->right)
5795		    r->right->parent = r;
5796		  t->left = r;
5797
5798		  p->left = t->right;
5799		  if (p->left)
5800		    p->left->parent = p;
5801		  t->right = p;
5802
5803		  p->balance = t->balance < 0;
5804		  r->balance = -(t->balance > 0);
5805		  t->balance = 0;
5806
5807		  s = p->parent;
5808		  p->parent = t;
5809		  r->parent = t;
5810		  t->parent = s;
5811		  if (s)
5812		    {
5813		      if (s->left == p)
5814			s->left = t;
5815		      else
5816			s->right = t;
5817		    }
5818		  else
5819		    constructor_pending_elts = t;
5820		}
5821	      break;
5822	    }
5823	  else
5824	    {
5825	      /* p->balance == +1; growth of left side balances the node.  */
5826	      p->balance = 0;
5827	      break;
5828	    }
5829	}
5830      else /* r == p->right */
5831	{
5832	  if (p->balance == 0)
5833	    /* Growth propagation from right side.  */
5834	    p->balance++;
5835	  else if (p->balance > 0)
5836	    {
5837	      if (r->balance > 0)
5838		{
5839		  /* R rotation.  */
5840		  p->right = r->left;
5841		  if (p->right)
5842		    p->right->parent = p;
5843		  r->left = p;
5844
5845		  p->balance = 0;
5846		  r->balance = 0;
5847
5848		  s = p->parent;
5849		  p->parent = r;
5850		  r->parent = s;
5851		  if (s)
5852		    {
5853		      if (s->left == p)
5854			s->left = r;
5855		      else
5856			s->right = r;
5857		    }
5858		  else
5859		    constructor_pending_elts = r;
5860		}
5861	      else /* r->balance == -1 */
5862		{
5863		  /* RL rotation */
5864		  struct init_node *t = r->left;
5865
5866		  r->left = t->right;
5867		  if (r->left)
5868		    r->left->parent = r;
5869		  t->right = r;
5870
5871		  p->right = t->left;
5872		  if (p->right)
5873		    p->right->parent = p;
5874		  t->left = p;
5875
5876		  r->balance = (t->balance < 0);
5877		  p->balance = -(t->balance > 0);
5878		  t->balance = 0;
5879
5880		  s = p->parent;
5881		  p->parent = t;
5882		  r->parent = t;
5883		  t->parent = s;
5884		  if (s)
5885		    {
5886		      if (s->left == p)
5887			s->left = t;
5888		      else
5889			s->right = t;
5890		    }
5891		  else
5892		    constructor_pending_elts = t;
5893		}
5894	      break;
5895	    }
5896	  else
5897	    {
5898	      /* p->balance == -1; growth of right side balances the node.  */
5899	      p->balance = 0;
5900	      break;
5901	    }
5902	}
5903
5904      r = p;
5905      p = p->parent;
5906    }
5907}
5908
5909/* Build AVL tree from a sorted chain.  */
5910
5911static void
5912set_nonincremental_init (void)
5913{
5914  unsigned HOST_WIDE_INT ix;
5915  tree index, value;
5916
5917  if (TREE_CODE (constructor_type) != RECORD_TYPE
5918      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5919    return;
5920
5921  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5922    add_pending_init (index, value);
5923  constructor_elements = 0;
5924  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5925    {
5926      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5927      /* Skip any nameless bit fields at the beginning.  */
5928      while (constructor_unfilled_fields != 0
5929	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5930	     && DECL_NAME (constructor_unfilled_fields) == 0)
5931	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5932
5933    }
5934  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5935    {
5936      if (TYPE_DOMAIN (constructor_type))
5937	constructor_unfilled_index
5938	    = convert (bitsizetype,
5939		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5940      else
5941	constructor_unfilled_index = bitsize_zero_node;
5942    }
5943  constructor_incremental = 0;
5944}
5945
5946/* Build AVL tree from a string constant.  */
5947
5948static void
5949set_nonincremental_init_from_string (tree str)
5950{
5951  tree value, purpose, type;
5952  HOST_WIDE_INT val[2];
5953  const char *p, *end;
5954  int byte, wchar_bytes, charwidth, bitpos;
5955
5956  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5957
5958  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5959      == TYPE_PRECISION (char_type_node))
5960    wchar_bytes = 1;
5961  else
5962    {
5963      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5964		  == TYPE_PRECISION (wchar_type_node));
5965      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5966    }
5967  charwidth = TYPE_PRECISION (char_type_node);
5968  type = TREE_TYPE (constructor_type);
5969  p = TREE_STRING_POINTER (str);
5970  end = p + TREE_STRING_LENGTH (str);
5971
5972  for (purpose = bitsize_zero_node;
5973       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5974       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5975    {
5976      if (wchar_bytes == 1)
5977	{
5978	  val[1] = (unsigned char) *p++;
5979	  val[0] = 0;
5980	}
5981      else
5982	{
5983	  val[0] = 0;
5984	  val[1] = 0;
5985	  for (byte = 0; byte < wchar_bytes; byte++)
5986	    {
5987	      if (BYTES_BIG_ENDIAN)
5988		bitpos = (wchar_bytes - byte - 1) * charwidth;
5989	      else
5990		bitpos = byte * charwidth;
5991	      val[bitpos < HOST_BITS_PER_WIDE_INT]
5992		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5993		   << (bitpos % HOST_BITS_PER_WIDE_INT);
5994	    }
5995	}
5996
5997      if (!TYPE_UNSIGNED (type))
5998	{
5999	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6000	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6001	    {
6002	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6003		{
6004		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6005		  val[0] = -1;
6006		}
6007	    }
6008	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6009	    {
6010	      if (val[1] < 0)
6011		val[0] = -1;
6012	    }
6013	  else if (val[0] & (((HOST_WIDE_INT) 1)
6014			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6015	    val[0] |= ((HOST_WIDE_INT) -1)
6016		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6017	}
6018
6019      value = build_int_cst_wide (type, val[1], val[0]);
6020      add_pending_init (purpose, value);
6021    }
6022
6023  constructor_incremental = 0;
6024}
6025
6026/* Return value of FIELD in pending initializer or zero if the field was
6027   not initialized yet.  */
6028
6029static tree
6030find_init_member (tree field)
6031{
6032  struct init_node *p;
6033
6034  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6035    {
6036      if (constructor_incremental
6037	  && tree_int_cst_lt (field, constructor_unfilled_index))
6038	set_nonincremental_init ();
6039
6040      p = constructor_pending_elts;
6041      while (p)
6042	{
6043	  if (tree_int_cst_lt (field, p->purpose))
6044	    p = p->left;
6045	  else if (tree_int_cst_lt (p->purpose, field))
6046	    p = p->right;
6047	  else
6048	    return p->value;
6049	}
6050    }
6051  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6052    {
6053      tree bitpos = bit_position (field);
6054
6055      if (constructor_incremental
6056	  && (!constructor_unfilled_fields
6057	      || tree_int_cst_lt (bitpos,
6058				  bit_position (constructor_unfilled_fields))))
6059	set_nonincremental_init ();
6060
6061      p = constructor_pending_elts;
6062      while (p)
6063	{
6064	  if (field == p->purpose)
6065	    return p->value;
6066	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6067	    p = p->left;
6068	  else
6069	    p = p->right;
6070	}
6071    }
6072  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6073    {
6074      if (!VEC_empty (constructor_elt, constructor_elements)
6075	  && (VEC_last (constructor_elt, constructor_elements)->index
6076	      == field))
6077	return VEC_last (constructor_elt, constructor_elements)->value;
6078    }
6079  return 0;
6080}
6081
6082/* "Output" the next constructor element.
6083   At top level, really output it to assembler code now.
6084   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6085   TYPE is the data type that the containing data type wants here.
6086   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6087   If VALUE is a string constant, STRICT_STRING is true if it is
6088   unparenthesized or we should not warn here for it being parenthesized.
6089   For other types of VALUE, STRICT_STRING is not used.
6090
6091   PENDING if non-nil means output pending elements that belong
6092   right after this element.  (PENDING is normally 1;
6093   it is 0 while outputting pending elements, to avoid recursion.)  */
6094
6095static void
6096output_init_element (tree value, bool strict_string, tree type, tree field,
6097		     int pending)
6098{
6099  constructor_elt *celt;
6100
6101  if (type == error_mark_node || value == error_mark_node)
6102    {
6103      constructor_erroneous = 1;
6104      return;
6105    }
6106  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6107      && (TREE_CODE (value) == STRING_CST
6108	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6109      && !(TREE_CODE (value) == STRING_CST
6110	   && TREE_CODE (type) == ARRAY_TYPE
6111	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6112      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6113		     TYPE_MAIN_VARIANT (type)))
6114    value = array_to_pointer_conversion (value);
6115
6116  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6117      && require_constant_value && !flag_isoc99 && pending)
6118    {
6119      /* As an extension, allow initializing objects with static storage
6120	 duration with compound literals (which are then treated just as
6121	 the brace enclosed list they contain).  */
6122      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6123      value = DECL_INITIAL (decl);
6124    }
6125
6126  if (value == error_mark_node)
6127    constructor_erroneous = 1;
6128  else if (!TREE_CONSTANT (value))
6129    constructor_constant = 0;
6130  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6131	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6132		|| TREE_CODE (constructor_type) == UNION_TYPE)
6133	       && DECL_C_BIT_FIELD (field)
6134	       && TREE_CODE (value) != INTEGER_CST))
6135    constructor_simple = 0;
6136
6137  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6138    {
6139      if (require_constant_value)
6140	{
6141	  error_init ("initializer element is not constant");
6142	  value = error_mark_node;
6143	}
6144      else if (require_constant_elements)
6145	pedwarn ("initializer element is not computable at load time");
6146    }
6147
6148  /* If this field is empty (and not at the end of structure),
6149     don't do anything other than checking the initializer.  */
6150  if (field
6151      && (TREE_TYPE (field) == error_mark_node
6152	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6153	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6154	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6155		  || TREE_CHAIN (field)))))
6156    return;
6157
6158  value = digest_init (type, value, strict_string, require_constant_value);
6159  if (value == error_mark_node)
6160    {
6161      constructor_erroneous = 1;
6162      return;
6163    }
6164
6165  /* If this element doesn't come next in sequence,
6166     put it on constructor_pending_elts.  */
6167  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6168      && (!constructor_incremental
6169	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6170    {
6171      if (constructor_incremental
6172	  && tree_int_cst_lt (field, constructor_unfilled_index))
6173	set_nonincremental_init ();
6174
6175      add_pending_init (field, value);
6176      return;
6177    }
6178  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6179	   && (!constructor_incremental
6180	       || field != constructor_unfilled_fields))
6181    {
6182      /* We do this for records but not for unions.  In a union,
6183	 no matter which field is specified, it can be initialized
6184	 right away since it starts at the beginning of the union.  */
6185      if (constructor_incremental)
6186	{
6187	  if (!constructor_unfilled_fields)
6188	    set_nonincremental_init ();
6189	  else
6190	    {
6191	      tree bitpos, unfillpos;
6192
6193	      bitpos = bit_position (field);
6194	      unfillpos = bit_position (constructor_unfilled_fields);
6195
6196	      if (tree_int_cst_lt (bitpos, unfillpos))
6197		set_nonincremental_init ();
6198	    }
6199	}
6200
6201      add_pending_init (field, value);
6202      return;
6203    }
6204  else if (TREE_CODE (constructor_type) == UNION_TYPE
6205	   && !VEC_empty (constructor_elt, constructor_elements))
6206    {
6207      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6208				       constructor_elements)->value))
6209	warning_init ("initialized field with side-effects overwritten");
6210      else if (warn_override_init)
6211	warning_init ("initialized field overwritten");
6212
6213      /* We can have just one union field set.  */
6214      constructor_elements = 0;
6215    }
6216
6217  /* Otherwise, output this element either to
6218     constructor_elements or to the assembler file.  */
6219
6220  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6221  celt->index = field;
6222  celt->value = value;
6223
6224  /* Advance the variable that indicates sequential elements output.  */
6225  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6226    constructor_unfilled_index
6227      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6228		    bitsize_one_node);
6229  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6230    {
6231      constructor_unfilled_fields
6232	= TREE_CHAIN (constructor_unfilled_fields);
6233
6234      /* Skip any nameless bit fields.  */
6235      while (constructor_unfilled_fields != 0
6236	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6237	     && DECL_NAME (constructor_unfilled_fields) == 0)
6238	constructor_unfilled_fields =
6239	  TREE_CHAIN (constructor_unfilled_fields);
6240    }
6241  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6242    constructor_unfilled_fields = 0;
6243
6244  /* Now output any pending elements which have become next.  */
6245  if (pending)
6246    output_pending_init_elements (0);
6247}
6248
6249/* Output any pending elements which have become next.
6250   As we output elements, constructor_unfilled_{fields,index}
6251   advances, which may cause other elements to become next;
6252   if so, they too are output.
6253
6254   If ALL is 0, we return when there are
6255   no more pending elements to output now.
6256
6257   If ALL is 1, we output space as necessary so that
6258   we can output all the pending elements.  */
6259
6260static void
6261output_pending_init_elements (int all)
6262{
6263  struct init_node *elt = constructor_pending_elts;
6264  tree next;
6265
6266 retry:
6267
6268  /* Look through the whole pending tree.
6269     If we find an element that should be output now,
6270     output it.  Otherwise, set NEXT to the element
6271     that comes first among those still pending.  */
6272
6273  next = 0;
6274  while (elt)
6275    {
6276      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6277	{
6278	  if (tree_int_cst_equal (elt->purpose,
6279				  constructor_unfilled_index))
6280	    output_init_element (elt->value, true,
6281				 TREE_TYPE (constructor_type),
6282				 constructor_unfilled_index, 0);
6283	  else if (tree_int_cst_lt (constructor_unfilled_index,
6284				    elt->purpose))
6285	    {
6286	      /* Advance to the next smaller node.  */
6287	      if (elt->left)
6288		elt = elt->left;
6289	      else
6290		{
6291		  /* We have reached the smallest node bigger than the
6292		     current unfilled index.  Fill the space first.  */
6293		  next = elt->purpose;
6294		  break;
6295		}
6296	    }
6297	  else
6298	    {
6299	      /* Advance to the next bigger node.  */
6300	      if (elt->right)
6301		elt = elt->right;
6302	      else
6303		{
6304		  /* We have reached the biggest node in a subtree.  Find
6305		     the parent of it, which is the next bigger node.  */
6306		  while (elt->parent && elt->parent->right == elt)
6307		    elt = elt->parent;
6308		  elt = elt->parent;
6309		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6310					      elt->purpose))
6311		    {
6312		      next = elt->purpose;
6313		      break;
6314		    }
6315		}
6316	    }
6317	}
6318      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6319	       || TREE_CODE (constructor_type) == UNION_TYPE)
6320	{
6321	  tree ctor_unfilled_bitpos, elt_bitpos;
6322
6323	  /* If the current record is complete we are done.  */
6324	  if (constructor_unfilled_fields == 0)
6325	    break;
6326
6327	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6328	  elt_bitpos = bit_position (elt->purpose);
6329	  /* We can't compare fields here because there might be empty
6330	     fields in between.  */
6331	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6332	    {
6333	      constructor_unfilled_fields = elt->purpose;
6334	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6335				   elt->purpose, 0);
6336	    }
6337	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6338	    {
6339	      /* Advance to the next smaller node.  */
6340	      if (elt->left)
6341		elt = elt->left;
6342	      else
6343		{
6344		  /* We have reached the smallest node bigger than the
6345		     current unfilled field.  Fill the space first.  */
6346		  next = elt->purpose;
6347		  break;
6348		}
6349	    }
6350	  else
6351	    {
6352	      /* Advance to the next bigger node.  */
6353	      if (elt->right)
6354		elt = elt->right;
6355	      else
6356		{
6357		  /* We have reached the biggest node in a subtree.  Find
6358		     the parent of it, which is the next bigger node.  */
6359		  while (elt->parent && elt->parent->right == elt)
6360		    elt = elt->parent;
6361		  elt = elt->parent;
6362		  if (elt
6363		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6364					   bit_position (elt->purpose))))
6365		    {
6366		      next = elt->purpose;
6367		      break;
6368		    }
6369		}
6370	    }
6371	}
6372    }
6373
6374  /* Ordinarily return, but not if we want to output all
6375     and there are elements left.  */
6376  if (!(all && next != 0))
6377    return;
6378
6379  /* If it's not incremental, just skip over the gap, so that after
6380     jumping to retry we will output the next successive element.  */
6381  if (TREE_CODE (constructor_type) == RECORD_TYPE
6382      || TREE_CODE (constructor_type) == UNION_TYPE)
6383    constructor_unfilled_fields = next;
6384  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6385    constructor_unfilled_index = next;
6386
6387  /* ELT now points to the node in the pending tree with the next
6388     initializer to output.  */
6389  goto retry;
6390}
6391
6392/* Add one non-braced element to the current constructor level.
6393   This adjusts the current position within the constructor's type.
6394   This may also start or terminate implicit levels
6395   to handle a partly-braced initializer.
6396
6397   Once this has found the correct level for the new element,
6398   it calls output_init_element.  */
6399
6400void
6401process_init_element (struct c_expr value)
6402{
6403  tree orig_value = value.value;
6404  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6405  bool strict_string = value.original_code == STRING_CST;
6406
6407  designator_depth = 0;
6408  designator_erroneous = 0;
6409
6410  /* Handle superfluous braces around string cst as in
6411     char x[] = {"foo"}; */
6412  if (string_flag
6413      && constructor_type
6414      && TREE_CODE (constructor_type) == ARRAY_TYPE
6415      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6416      && integer_zerop (constructor_unfilled_index))
6417    {
6418      if (constructor_stack->replacement_value.value)
6419	error_init ("excess elements in char array initializer");
6420      constructor_stack->replacement_value = value;
6421      return;
6422    }
6423
6424  if (constructor_stack->replacement_value.value != 0)
6425    {
6426      error_init ("excess elements in struct initializer");
6427      return;
6428    }
6429
6430  /* Ignore elements of a brace group if it is entirely superfluous
6431     and has already been diagnosed.  */
6432  if (constructor_type == 0)
6433    return;
6434
6435  /* If we've exhausted any levels that didn't have braces,
6436     pop them now.  */
6437  while (constructor_stack->implicit)
6438    {
6439      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6440	   || TREE_CODE (constructor_type) == UNION_TYPE)
6441	  && constructor_fields == 0)
6442	process_init_element (pop_init_level (1));
6443      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6444	       && (constructor_max_index == 0
6445		   || tree_int_cst_lt (constructor_max_index,
6446				       constructor_index)))
6447	process_init_element (pop_init_level (1));
6448      else
6449	break;
6450    }
6451
6452  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6453  if (constructor_range_stack)
6454    {
6455      /* If value is a compound literal and we'll be just using its
6456	 content, don't put it into a SAVE_EXPR.  */
6457      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6458	  || !require_constant_value
6459	  || flag_isoc99)
6460	value.value = save_expr (value.value);
6461    }
6462
6463  while (1)
6464    {
6465      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6466	{
6467	  tree fieldtype;
6468	  enum tree_code fieldcode;
6469
6470	  if (constructor_fields == 0)
6471	    {
6472	      pedwarn_init ("excess elements in struct initializer");
6473	      break;
6474	    }
6475
6476	  fieldtype = TREE_TYPE (constructor_fields);
6477	  if (fieldtype != error_mark_node)
6478	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6479	  fieldcode = TREE_CODE (fieldtype);
6480
6481	  /* Error for non-static initialization of a flexible array member.  */
6482	  if (fieldcode == ARRAY_TYPE
6483	      && !require_constant_value
6484	      && TYPE_SIZE (fieldtype) == NULL_TREE
6485	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6486	    {
6487	      error_init ("non-static initialization of a flexible array member");
6488	      break;
6489	    }
6490
6491	  /* Accept a string constant to initialize a subarray.  */
6492	  if (value.value != 0
6493	      && fieldcode == ARRAY_TYPE
6494	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6495	      && string_flag)
6496	    value.value = orig_value;
6497	  /* Otherwise, if we have come to a subaggregate,
6498	     and we don't have an element of its type, push into it.  */
6499	  else if (value.value != 0
6500		   && value.value != error_mark_node
6501		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6502		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6503		       || fieldcode == UNION_TYPE))
6504	    {
6505	      push_init_level (1);
6506	      continue;
6507	    }
6508
6509	  if (value.value)
6510	    {
6511	      push_member_name (constructor_fields);
6512	      output_init_element (value.value, strict_string,
6513				   fieldtype, constructor_fields, 1);
6514	      RESTORE_SPELLING_DEPTH (constructor_depth);
6515	    }
6516	  else
6517	    /* Do the bookkeeping for an element that was
6518	       directly output as a constructor.  */
6519	    {
6520	      /* For a record, keep track of end position of last field.  */
6521	      if (DECL_SIZE (constructor_fields))
6522		constructor_bit_index
6523		  = size_binop (PLUS_EXPR,
6524				bit_position (constructor_fields),
6525				DECL_SIZE (constructor_fields));
6526
6527	      /* If the current field was the first one not yet written out,
6528		 it isn't now, so update.  */
6529	      if (constructor_unfilled_fields == constructor_fields)
6530		{
6531		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6532		  /* Skip any nameless bit fields.  */
6533		  while (constructor_unfilled_fields != 0
6534			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6535			 && DECL_NAME (constructor_unfilled_fields) == 0)
6536		    constructor_unfilled_fields =
6537		      TREE_CHAIN (constructor_unfilled_fields);
6538		}
6539	    }
6540
6541	  constructor_fields = TREE_CHAIN (constructor_fields);
6542	  /* Skip any nameless bit fields at the beginning.  */
6543	  while (constructor_fields != 0
6544		 && DECL_C_BIT_FIELD (constructor_fields)
6545		 && DECL_NAME (constructor_fields) == 0)
6546	    constructor_fields = TREE_CHAIN (constructor_fields);
6547	}
6548      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6549	{
6550	  tree fieldtype;
6551	  enum tree_code fieldcode;
6552
6553	  if (constructor_fields == 0)
6554	    {
6555	      pedwarn_init ("excess elements in union initializer");
6556	      break;
6557	    }
6558
6559	  fieldtype = TREE_TYPE (constructor_fields);
6560	  if (fieldtype != error_mark_node)
6561	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6562	  fieldcode = TREE_CODE (fieldtype);
6563
6564	  /* Warn that traditional C rejects initialization of unions.
6565	     We skip the warning if the value is zero.  This is done
6566	     under the assumption that the zero initializer in user
6567	     code appears conditioned on e.g. __STDC__ to avoid
6568	     "missing initializer" warnings and relies on default
6569	     initialization to zero in the traditional C case.
6570	     We also skip the warning if the initializer is designated,
6571	     again on the assumption that this must be conditional on
6572	     __STDC__ anyway (and we've already complained about the
6573	     member-designator already).  */
6574	  if (!in_system_header && !constructor_designated
6575	      && !(value.value && (integer_zerop (value.value)
6576				   || real_zerop (value.value))))
6577	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6578		     "of unions");
6579
6580	  /* Accept a string constant to initialize a subarray.  */
6581	  if (value.value != 0
6582	      && fieldcode == ARRAY_TYPE
6583	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6584	      && string_flag)
6585	    value.value = orig_value;
6586	  /* Otherwise, if we have come to a subaggregate,
6587	     and we don't have an element of its type, push into it.  */
6588	  else if (value.value != 0
6589		   && value.value != error_mark_node
6590		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6591		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6592		       || fieldcode == UNION_TYPE))
6593	    {
6594	      push_init_level (1);
6595	      continue;
6596	    }
6597
6598	  if (value.value)
6599	    {
6600	      push_member_name (constructor_fields);
6601	      output_init_element (value.value, strict_string,
6602				   fieldtype, constructor_fields, 1);
6603	      RESTORE_SPELLING_DEPTH (constructor_depth);
6604	    }
6605	  else
6606	    /* Do the bookkeeping for an element that was
6607	       directly output as a constructor.  */
6608	    {
6609	      constructor_bit_index = DECL_SIZE (constructor_fields);
6610	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6611	    }
6612
6613	  constructor_fields = 0;
6614	}
6615      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6616	{
6617	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6618	  enum tree_code eltcode = TREE_CODE (elttype);
6619
6620	  /* Accept a string constant to initialize a subarray.  */
6621	  if (value.value != 0
6622	      && eltcode == ARRAY_TYPE
6623	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6624	      && string_flag)
6625	    value.value = orig_value;
6626	  /* Otherwise, if we have come to a subaggregate,
6627	     and we don't have an element of its type, push into it.  */
6628	  else if (value.value != 0
6629		   && value.value != error_mark_node
6630		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6631		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6632		       || eltcode == UNION_TYPE))
6633	    {
6634	      push_init_level (1);
6635	      continue;
6636	    }
6637
6638	  if (constructor_max_index != 0
6639	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6640		  || integer_all_onesp (constructor_max_index)))
6641	    {
6642	      pedwarn_init ("excess elements in array initializer");
6643	      break;
6644	    }
6645
6646	  /* Now output the actual element.  */
6647	  if (value.value)
6648	    {
6649	      push_array_bounds (tree_low_cst (constructor_index, 1));
6650	      output_init_element (value.value, strict_string,
6651				   elttype, constructor_index, 1);
6652	      RESTORE_SPELLING_DEPTH (constructor_depth);
6653	    }
6654
6655	  constructor_index
6656	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6657
6658	  if (!value.value)
6659	    /* If we are doing the bookkeeping for an element that was
6660	       directly output as a constructor, we must update
6661	       constructor_unfilled_index.  */
6662	    constructor_unfilled_index = constructor_index;
6663	}
6664      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6665	{
6666	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6667
6668	 /* Do a basic check of initializer size.  Note that vectors
6669	    always have a fixed size derived from their type.  */
6670	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6671	    {
6672	      pedwarn_init ("excess elements in vector initializer");
6673	      break;
6674	    }
6675
6676	  /* Now output the actual element.  */
6677	  if (value.value)
6678	    output_init_element (value.value, strict_string,
6679				 elttype, constructor_index, 1);
6680
6681	  constructor_index
6682	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6683
6684	  if (!value.value)
6685	    /* If we are doing the bookkeeping for an element that was
6686	       directly output as a constructor, we must update
6687	       constructor_unfilled_index.  */
6688	    constructor_unfilled_index = constructor_index;
6689	}
6690
6691      /* Handle the sole element allowed in a braced initializer
6692	 for a scalar variable.  */
6693      else if (constructor_type != error_mark_node
6694	       && constructor_fields == 0)
6695	{
6696	  pedwarn_init ("excess elements in scalar initializer");
6697	  break;
6698	}
6699      else
6700	{
6701	  if (value.value)
6702	    output_init_element (value.value, strict_string,
6703				 constructor_type, NULL_TREE, 1);
6704	  constructor_fields = 0;
6705	}
6706
6707      /* Handle range initializers either at this level or anywhere higher
6708	 in the designator stack.  */
6709      if (constructor_range_stack)
6710	{
6711	  struct constructor_range_stack *p, *range_stack;
6712	  int finish = 0;
6713
6714	  range_stack = constructor_range_stack;
6715	  constructor_range_stack = 0;
6716	  while (constructor_stack != range_stack->stack)
6717	    {
6718	      gcc_assert (constructor_stack->implicit);
6719	      process_init_element (pop_init_level (1));
6720	    }
6721	  for (p = range_stack;
6722	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6723	       p = p->prev)
6724	    {
6725	      gcc_assert (constructor_stack->implicit);
6726	      process_init_element (pop_init_level (1));
6727	    }
6728
6729	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6730	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6731	    finish = 1;
6732
6733	  while (1)
6734	    {
6735	      constructor_index = p->index;
6736	      constructor_fields = p->fields;
6737	      if (finish && p->range_end && p->index == p->range_start)
6738		{
6739		  finish = 0;
6740		  p->prev = 0;
6741		}
6742	      p = p->next;
6743	      if (!p)
6744		break;
6745	      push_init_level (2);
6746	      p->stack = constructor_stack;
6747	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6748		p->index = p->range_start;
6749	    }
6750
6751	  if (!finish)
6752	    constructor_range_stack = range_stack;
6753	  continue;
6754	}
6755
6756      break;
6757    }
6758
6759  constructor_range_stack = 0;
6760}
6761
6762/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6763   (guaranteed to be 'volatile' or null) and ARGS (represented using
6764   an ASM_EXPR node).  */
6765tree
6766build_asm_stmt (tree cv_qualifier, tree args)
6767{
6768  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6769    ASM_VOLATILE_P (args) = 1;
6770  return add_stmt (args);
6771}
6772
6773/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6774   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6775   SIMPLE indicates whether there was anything at all after the
6776   string in the asm expression -- asm("blah") and asm("blah" : )
6777   are subtly different.  We use a ASM_EXPR node to represent this.  */
6778tree
6779build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6780		bool simple)
6781{
6782  tree tail;
6783  tree args;
6784  int i;
6785  const char *constraint;
6786  const char **oconstraints;
6787  bool allows_mem, allows_reg, is_inout;
6788  int ninputs, noutputs;
6789
6790  ninputs = list_length (inputs);
6791  noutputs = list_length (outputs);
6792  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6793
6794  string = resolve_asm_operand_names (string, outputs, inputs);
6795
6796  /* Remove output conversions that change the type but not the mode.  */
6797  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6798    {
6799      tree output = TREE_VALUE (tail);
6800
6801      /* ??? Really, this should not be here.  Users should be using a
6802	 proper lvalue, dammit.  But there's a long history of using casts
6803	 in the output operands.  In cases like longlong.h, this becomes a
6804	 primitive form of typechecking -- if the cast can be removed, then
6805	 the output operand had a type of the proper width; otherwise we'll
6806	 get an error.  Gross, but ...  */
6807      STRIP_NOPS (output);
6808
6809      if (!lvalue_or_else (output, lv_asm))
6810	output = error_mark_node;
6811
6812      if (output != error_mark_node
6813	  && (TREE_READONLY (output)
6814	      || TYPE_READONLY (TREE_TYPE (output))
6815	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6816		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6817		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6818	readonly_error (output, lv_asm);
6819
6820      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6821      oconstraints[i] = constraint;
6822
6823      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6824				   &allows_mem, &allows_reg, &is_inout))
6825	{
6826	  /* If the operand is going to end up in memory,
6827	     mark it addressable.  */
6828	  if (!allows_reg && !c_mark_addressable (output))
6829	    output = error_mark_node;
6830	}
6831      else
6832	output = error_mark_node;
6833
6834      TREE_VALUE (tail) = output;
6835    }
6836
6837  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6838    {
6839      tree input;
6840
6841      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6842      input = TREE_VALUE (tail);
6843
6844      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6845				  oconstraints, &allows_mem, &allows_reg))
6846	{
6847	  /* If the operand is going to end up in memory,
6848	     mark it addressable.  */
6849	  if (!allows_reg && allows_mem)
6850	    {
6851	      /* Strip the nops as we allow this case.  FIXME, this really
6852		 should be rejected or made deprecated.  */
6853	      STRIP_NOPS (input);
6854	      if (!c_mark_addressable (input))
6855		input = error_mark_node;
6856	  }
6857	}
6858      else
6859	input = error_mark_node;
6860
6861      TREE_VALUE (tail) = input;
6862    }
6863
6864  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6865
6866  /* asm statements without outputs, including simple ones, are treated
6867     as volatile.  */
6868  ASM_INPUT_P (args) = simple;
6869  ASM_VOLATILE_P (args) = (noutputs == 0);
6870
6871  return args;
6872}
6873
6874/* Generate a goto statement to LABEL.  */
6875
6876tree
6877c_finish_goto_label (tree label)
6878{
6879  tree decl = lookup_label (label);
6880  if (!decl)
6881    return NULL_TREE;
6882
6883  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6884    {
6885      error ("jump into statement expression");
6886      return NULL_TREE;
6887    }
6888
6889  if (C_DECL_UNJUMPABLE_VM (decl))
6890    {
6891      error ("jump into scope of identifier with variably modified type");
6892      return NULL_TREE;
6893    }
6894
6895  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6896    {
6897      /* No jump from outside this statement expression context, so
6898	 record that there is a jump from within this context.  */
6899      struct c_label_list *nlist;
6900      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6901      nlist->next = label_context_stack_se->labels_used;
6902      nlist->label = decl;
6903      label_context_stack_se->labels_used = nlist;
6904    }
6905
6906  if (!C_DECL_UNDEFINABLE_VM (decl))
6907    {
6908      /* No jump from outside this context context of identifiers with
6909	 variably modified type, so record that there is a jump from
6910	 within this context.  */
6911      struct c_label_list *nlist;
6912      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6913      nlist->next = label_context_stack_vm->labels_used;
6914      nlist->label = decl;
6915      label_context_stack_vm->labels_used = nlist;
6916    }
6917
6918  TREE_USED (decl) = 1;
6919  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6920}
6921
6922/* Generate a computed goto statement to EXPR.  */
6923
6924tree
6925c_finish_goto_ptr (tree expr)
6926{
6927  if (pedantic)
6928    pedwarn ("ISO C forbids %<goto *expr;%>");
6929  expr = convert (ptr_type_node, expr);
6930  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6931}
6932
6933/* Generate a C `return' statement.  RETVAL is the expression for what
6934   to return, or a null pointer for `return;' with no value.  */
6935
6936tree
6937c_finish_return (tree retval)
6938{
6939  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6940  bool no_warning = false;
6941
6942  if (TREE_THIS_VOLATILE (current_function_decl))
6943    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6944
6945  if (!retval)
6946    {
6947      current_function_returns_null = 1;
6948      if ((warn_return_type || flag_isoc99)
6949	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6950	{
6951	  pedwarn_c99 ("%<return%> with no value, in "
6952		       "function returning non-void");
6953	  no_warning = true;
6954	}
6955    }
6956  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6957    {
6958      current_function_returns_null = 1;
6959      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6960	pedwarn ("%<return%> with a value, in function returning void");
6961    }
6962  else
6963    {
6964      tree t = convert_for_assignment (valtype, retval, ic_return,
6965				       NULL_TREE, NULL_TREE, 0);
6966      tree res = DECL_RESULT (current_function_decl);
6967      tree inner;
6968
6969      current_function_returns_value = 1;
6970      if (t == error_mark_node)
6971	return NULL_TREE;
6972
6973      inner = t = convert (TREE_TYPE (res), t);
6974
6975      /* Strip any conversions, additions, and subtractions, and see if
6976	 we are returning the address of a local variable.  Warn if so.  */
6977      while (1)
6978	{
6979	  switch (TREE_CODE (inner))
6980	    {
6981	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6982	    case PLUS_EXPR:
6983	      inner = TREE_OPERAND (inner, 0);
6984	      continue;
6985
6986	    case MINUS_EXPR:
6987	      /* If the second operand of the MINUS_EXPR has a pointer
6988		 type (or is converted from it), this may be valid, so
6989		 don't give a warning.  */
6990	      {
6991		tree op1 = TREE_OPERAND (inner, 1);
6992
6993		while (!POINTER_TYPE_P (TREE_TYPE (op1))
6994		       && (TREE_CODE (op1) == NOP_EXPR
6995			   || TREE_CODE (op1) == NON_LVALUE_EXPR
6996			   || TREE_CODE (op1) == CONVERT_EXPR))
6997		  op1 = TREE_OPERAND (op1, 0);
6998
6999		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7000		  break;
7001
7002		inner = TREE_OPERAND (inner, 0);
7003		continue;
7004	      }
7005
7006	    case ADDR_EXPR:
7007	      inner = TREE_OPERAND (inner, 0);
7008
7009	      while (REFERENCE_CLASS_P (inner)
7010		     && TREE_CODE (inner) != INDIRECT_REF)
7011		inner = TREE_OPERAND (inner, 0);
7012
7013	      if (DECL_P (inner)
7014		  && !DECL_EXTERNAL (inner)
7015		  && !TREE_STATIC (inner)
7016		  && DECL_CONTEXT (inner) == current_function_decl)
7017		warning (0, "function returns address of local variable");
7018	      break;
7019
7020	    default:
7021	      break;
7022	    }
7023
7024	  break;
7025	}
7026
7027      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7028    }
7029
7030  ret_stmt = build_stmt (RETURN_EXPR, retval);
7031  TREE_NO_WARNING (ret_stmt) |= no_warning;
7032  return add_stmt (ret_stmt);
7033}
7034
7035struct c_switch {
7036  /* The SWITCH_EXPR being built.  */
7037  tree switch_expr;
7038
7039  /* The original type of the testing expression, i.e. before the
7040     default conversion is applied.  */
7041  tree orig_type;
7042
7043  /* A splay-tree mapping the low element of a case range to the high
7044     element, or NULL_TREE if there is no high element.  Used to
7045     determine whether or not a new case label duplicates an old case
7046     label.  We need a tree, rather than simply a hash table, because
7047     of the GNU case range extension.  */
7048  splay_tree cases;
7049
7050  /* Number of nested statement expressions within this switch
7051     statement; if nonzero, case and default labels may not
7052     appear.  */
7053  unsigned int blocked_stmt_expr;
7054
7055  /* Scope of outermost declarations of identifiers with variably
7056     modified type within this switch statement; if nonzero, case and
7057     default labels may not appear.  */
7058  unsigned int blocked_vm;
7059
7060  /* The next node on the stack.  */
7061  struct c_switch *next;
7062};
7063
7064/* A stack of the currently active switch statements.  The innermost
7065   switch statement is on the top of the stack.  There is no need to
7066   mark the stack for garbage collection because it is only active
7067   during the processing of the body of a function, and we never
7068   collect at that point.  */
7069
7070struct c_switch *c_switch_stack;
7071
7072/* Start a C switch statement, testing expression EXP.  Return the new
7073   SWITCH_EXPR.  */
7074
7075tree
7076c_start_case (tree exp)
7077{
7078  tree orig_type = error_mark_node;
7079  struct c_switch *cs;
7080
7081  if (exp != error_mark_node)
7082    {
7083      orig_type = TREE_TYPE (exp);
7084
7085      if (!INTEGRAL_TYPE_P (orig_type))
7086	{
7087	  if (orig_type != error_mark_node)
7088	    {
7089	      error ("switch quantity not an integer");
7090	      orig_type = error_mark_node;
7091	    }
7092	  exp = integer_zero_node;
7093	}
7094      else
7095	{
7096	  tree type = TYPE_MAIN_VARIANT (orig_type);
7097
7098	  if (!in_system_header
7099	      && (type == long_integer_type_node
7100		  || type == long_unsigned_type_node))
7101	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7102		     "converted to %<int%> in ISO C");
7103
7104	  exp = default_conversion (exp);
7105	}
7106    }
7107
7108  /* Add this new SWITCH_EXPR to the stack.  */
7109  cs = XNEW (struct c_switch);
7110  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7111  cs->orig_type = orig_type;
7112  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7113  cs->blocked_stmt_expr = 0;
7114  cs->blocked_vm = 0;
7115  cs->next = c_switch_stack;
7116  c_switch_stack = cs;
7117
7118  return add_stmt (cs->switch_expr);
7119}
7120
7121/* Process a case label.  */
7122
7123tree
7124do_case (tree low_value, tree high_value)
7125{
7126  tree label = NULL_TREE;
7127
7128  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7129      && !c_switch_stack->blocked_vm)
7130    {
7131      label = c_add_case_label (c_switch_stack->cases,
7132				SWITCH_COND (c_switch_stack->switch_expr),
7133				c_switch_stack->orig_type,
7134				low_value, high_value);
7135      if (label == error_mark_node)
7136	label = NULL_TREE;
7137    }
7138  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7139    {
7140      if (low_value)
7141	error ("case label in statement expression not containing "
7142	       "enclosing switch statement");
7143      else
7144	error ("%<default%> label in statement expression not containing "
7145	       "enclosing switch statement");
7146    }
7147  else if (c_switch_stack && c_switch_stack->blocked_vm)
7148    {
7149      if (low_value)
7150	error ("case label in scope of identifier with variably modified "
7151	       "type not containing enclosing switch statement");
7152      else
7153	error ("%<default%> label in scope of identifier with variably "
7154	       "modified type not containing enclosing switch statement");
7155    }
7156  else if (low_value)
7157    error ("case label not within a switch statement");
7158  else
7159    error ("%<default%> label not within a switch statement");
7160
7161  return label;
7162}
7163
7164/* Finish the switch statement.  */
7165
7166void
7167c_finish_case (tree body)
7168{
7169  struct c_switch *cs = c_switch_stack;
7170  location_t switch_location;
7171
7172  SWITCH_BODY (cs->switch_expr) = body;
7173
7174  /* We must not be within a statement expression nested in the switch
7175     at this point; we might, however, be within the scope of an
7176     identifier with variably modified type nested in the switch.  */
7177  gcc_assert (!cs->blocked_stmt_expr);
7178
7179  /* Emit warnings as needed.  */
7180  if (EXPR_HAS_LOCATION (cs->switch_expr))
7181    switch_location = EXPR_LOCATION (cs->switch_expr);
7182  else
7183    switch_location = input_location;
7184  c_do_switch_warnings (cs->cases, switch_location,
7185			TREE_TYPE (cs->switch_expr),
7186			SWITCH_COND (cs->switch_expr));
7187
7188  /* Pop the stack.  */
7189  c_switch_stack = cs->next;
7190  splay_tree_delete (cs->cases);
7191  XDELETE (cs);
7192}
7193
7194/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7195   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7196   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7197   statement, and was not surrounded with parenthesis.  */
7198
7199void
7200c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7201		  tree else_block, bool nested_if)
7202{
7203  tree stmt;
7204
7205  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7206  if (warn_parentheses && nested_if && else_block == NULL)
7207    {
7208      tree inner_if = then_block;
7209
7210      /* We know from the grammar productions that there is an IF nested
7211	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7212	 it might not be exactly THEN_BLOCK, but should be the last
7213	 non-container statement within.  */
7214      while (1)
7215	switch (TREE_CODE (inner_if))
7216	  {
7217	  case COND_EXPR:
7218	    goto found;
7219	  case BIND_EXPR:
7220	    inner_if = BIND_EXPR_BODY (inner_if);
7221	    break;
7222	  case STATEMENT_LIST:
7223	    inner_if = expr_last (then_block);
7224	    break;
7225	  case TRY_FINALLY_EXPR:
7226	  case TRY_CATCH_EXPR:
7227	    inner_if = TREE_OPERAND (inner_if, 0);
7228	    break;
7229	  default:
7230	    gcc_unreachable ();
7231	  }
7232    found:
7233
7234      if (COND_EXPR_ELSE (inner_if))
7235	 warning (OPT_Wparentheses,
7236		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7237		  &if_locus);
7238    }
7239
7240  empty_body_warning (then_block, else_block);
7241
7242  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7243  SET_EXPR_LOCATION (stmt, if_locus);
7244  add_stmt (stmt);
7245}
7246
7247/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7248   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7249   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7250   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7251   the continue label.  Everything is allowed to be NULL.  */
7252
7253void
7254c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7255	       tree blab, tree clab, bool cond_is_first)
7256{
7257  tree entry = NULL, exit = NULL, t;
7258
7259  /* If the condition is zero don't generate a loop construct.  */
7260  if (cond && integer_zerop (cond))
7261    {
7262      if (cond_is_first)
7263	{
7264	  t = build_and_jump (&blab);
7265	  SET_EXPR_LOCATION (t, start_locus);
7266	  add_stmt (t);
7267	}
7268    }
7269  else
7270    {
7271      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7272
7273      /* If we have an exit condition, then we build an IF with gotos either
7274	 out of the loop, or to the top of it.  If there's no exit condition,
7275	 then we just build a jump back to the top.  */
7276      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7277
7278      if (cond && !integer_nonzerop (cond))
7279	{
7280	  /* Canonicalize the loop condition to the end.  This means
7281	     generating a branch to the loop condition.  Reuse the
7282	     continue label, if possible.  */
7283	  if (cond_is_first)
7284	    {
7285	      if (incr || !clab)
7286		{
7287		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7288		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7289		}
7290	      else
7291		t = build1 (GOTO_EXPR, void_type_node, clab);
7292	      SET_EXPR_LOCATION (t, start_locus);
7293	      add_stmt (t);
7294	    }
7295
7296	  t = build_and_jump (&blab);
7297	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7298	  if (cond_is_first)
7299	    SET_EXPR_LOCATION (exit, start_locus);
7300	  else
7301	    SET_EXPR_LOCATION (exit, input_location);
7302	}
7303
7304      add_stmt (top);
7305    }
7306
7307  if (body)
7308    add_stmt (body);
7309  if (clab)
7310    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7311  if (incr)
7312    add_stmt (incr);
7313  if (entry)
7314    add_stmt (entry);
7315  if (exit)
7316    add_stmt (exit);
7317  if (blab)
7318    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7319}
7320
7321tree
7322c_finish_bc_stmt (tree *label_p, bool is_break)
7323{
7324  bool skip;
7325  tree label = *label_p;
7326
7327  /* In switch statements break is sometimes stylistically used after
7328     a return statement.  This can lead to spurious warnings about
7329     control reaching the end of a non-void function when it is
7330     inlined.  Note that we are calling block_may_fallthru with
7331     language specific tree nodes; this works because
7332     block_may_fallthru returns true when given something it does not
7333     understand.  */
7334  skip = !block_may_fallthru (cur_stmt_list);
7335
7336  if (!label)
7337    {
7338      if (!skip)
7339	*label_p = label = create_artificial_label ();
7340    }
7341  else if (TREE_CODE (label) == LABEL_DECL)
7342    ;
7343  else switch (TREE_INT_CST_LOW (label))
7344    {
7345    case 0:
7346      if (is_break)
7347	error ("break statement not within loop or switch");
7348      else
7349	error ("continue statement not within a loop");
7350      return NULL_TREE;
7351
7352    case 1:
7353      gcc_assert (is_break);
7354      error ("break statement used with OpenMP for loop");
7355      return NULL_TREE;
7356
7357    default:
7358      gcc_unreachable ();
7359    }
7360
7361  if (skip)
7362    return NULL_TREE;
7363
7364  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7365}
7366
7367/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7368
7369static void
7370emit_side_effect_warnings (tree expr)
7371{
7372  if (expr == error_mark_node)
7373    ;
7374  else if (!TREE_SIDE_EFFECTS (expr))
7375    {
7376      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7377	warning (0, "%Hstatement with no effect",
7378		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7379    }
7380  else if (warn_unused_value)
7381    warn_if_unused_value (expr, input_location);
7382}
7383
7384/* Process an expression as if it were a complete statement.  Emit
7385   diagnostics, but do not call ADD_STMT.  */
7386
7387tree
7388c_process_expr_stmt (tree expr)
7389{
7390  if (!expr)
7391    return NULL_TREE;
7392
7393  if (warn_sequence_point)
7394    verify_sequence_points (expr);
7395
7396  if (TREE_TYPE (expr) != error_mark_node
7397      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7398      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7399    error ("expression statement has incomplete type");
7400
7401  /* If we're not processing a statement expression, warn about unused values.
7402     Warnings for statement expressions will be emitted later, once we figure
7403     out which is the result.  */
7404  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7405      && (extra_warnings || warn_unused_value))
7406    emit_side_effect_warnings (expr);
7407
7408  /* If the expression is not of a type to which we cannot assign a line
7409     number, wrap the thing in a no-op NOP_EXPR.  */
7410  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7411    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7412
7413  if (EXPR_P (expr))
7414    SET_EXPR_LOCATION (expr, input_location);
7415
7416  return expr;
7417}
7418
7419/* Emit an expression as a statement.  */
7420
7421tree
7422c_finish_expr_stmt (tree expr)
7423{
7424  if (expr)
7425    return add_stmt (c_process_expr_stmt (expr));
7426  else
7427    return NULL;
7428}
7429
7430/* Do the opposite and emit a statement as an expression.  To begin,
7431   create a new binding level and return it.  */
7432
7433tree
7434c_begin_stmt_expr (void)
7435{
7436  tree ret;
7437  struct c_label_context_se *nstack;
7438  struct c_label_list *glist;
7439
7440  /* We must force a BLOCK for this level so that, if it is not expanded
7441     later, there is a way to turn off the entire subtree of blocks that
7442     are contained in it.  */
7443  keep_next_level ();
7444  ret = c_begin_compound_stmt (true);
7445  if (c_switch_stack)
7446    {
7447      c_switch_stack->blocked_stmt_expr++;
7448      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7449    }
7450  for (glist = label_context_stack_se->labels_used;
7451       glist != NULL;
7452       glist = glist->next)
7453    {
7454      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7455    }
7456  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7457  nstack->labels_def = NULL;
7458  nstack->labels_used = NULL;
7459  nstack->next = label_context_stack_se;
7460  label_context_stack_se = nstack;
7461
7462  /* Mark the current statement list as belonging to a statement list.  */
7463  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7464
7465  return ret;
7466}
7467
7468tree
7469c_finish_stmt_expr (tree body)
7470{
7471  tree last, type, tmp, val;
7472  tree *last_p;
7473  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7474
7475  body = c_end_compound_stmt (body, true);
7476  if (c_switch_stack)
7477    {
7478      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7479      c_switch_stack->blocked_stmt_expr--;
7480    }
7481  /* It is no longer possible to jump to labels defined within this
7482     statement expression.  */
7483  for (dlist = label_context_stack_se->labels_def;
7484       dlist != NULL;
7485       dlist = dlist->next)
7486    {
7487      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7488    }
7489  /* It is again possible to define labels with a goto just outside
7490     this statement expression.  */
7491  for (glist = label_context_stack_se->next->labels_used;
7492       glist != NULL;
7493       glist = glist->next)
7494    {
7495      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7496      glist_prev = glist;
7497    }
7498  if (glist_prev != NULL)
7499    glist_prev->next = label_context_stack_se->labels_used;
7500  else
7501    label_context_stack_se->next->labels_used
7502      = label_context_stack_se->labels_used;
7503  label_context_stack_se = label_context_stack_se->next;
7504
7505  /* Locate the last statement in BODY.  See c_end_compound_stmt
7506     about always returning a BIND_EXPR.  */
7507  last_p = &BIND_EXPR_BODY (body);
7508  last = BIND_EXPR_BODY (body);
7509
7510 continue_searching:
7511  if (TREE_CODE (last) == STATEMENT_LIST)
7512    {
7513      tree_stmt_iterator i;
7514
7515      /* This can happen with degenerate cases like ({ }).  No value.  */
7516      if (!TREE_SIDE_EFFECTS (last))
7517	return body;
7518
7519      /* If we're supposed to generate side effects warnings, process
7520	 all of the statements except the last.  */
7521      if (extra_warnings || warn_unused_value)
7522	{
7523	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7524	    emit_side_effect_warnings (tsi_stmt (i));
7525	}
7526      else
7527	i = tsi_last (last);
7528      last_p = tsi_stmt_ptr (i);
7529      last = *last_p;
7530    }
7531
7532  /* If the end of the list is exception related, then the list was split
7533     by a call to push_cleanup.  Continue searching.  */
7534  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7535      || TREE_CODE (last) == TRY_CATCH_EXPR)
7536    {
7537      last_p = &TREE_OPERAND (last, 0);
7538      last = *last_p;
7539      goto continue_searching;
7540    }
7541
7542  /* In the case that the BIND_EXPR is not necessary, return the
7543     expression out from inside it.  */
7544  if (last == error_mark_node
7545      || (last == BIND_EXPR_BODY (body)
7546	  && BIND_EXPR_VARS (body) == NULL))
7547    {
7548      /* Do not warn if the return value of a statement expression is
7549	 unused.  */
7550      if (EXPR_P (last))
7551	TREE_NO_WARNING (last) = 1;
7552      return last;
7553    }
7554
7555  /* Extract the type of said expression.  */
7556  type = TREE_TYPE (last);
7557
7558  /* If we're not returning a value at all, then the BIND_EXPR that
7559     we already have is a fine expression to return.  */
7560  if (!type || VOID_TYPE_P (type))
7561    return body;
7562
7563  /* Now that we've located the expression containing the value, it seems
7564     silly to make voidify_wrapper_expr repeat the process.  Create a
7565     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7566  tmp = create_tmp_var_raw (type, NULL);
7567
7568  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7569     tree_expr_nonnegative_p giving up immediately.  */
7570  val = last;
7571  if (TREE_CODE (val) == NOP_EXPR
7572      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7573    val = TREE_OPERAND (val, 0);
7574
7575  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7576  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7577
7578  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7579}
7580
7581/* Begin the scope of an identifier of variably modified type, scope
7582   number SCOPE.  Jumping from outside this scope to inside it is not
7583   permitted.  */
7584
7585void
7586c_begin_vm_scope (unsigned int scope)
7587{
7588  struct c_label_context_vm *nstack;
7589  struct c_label_list *glist;
7590
7591  gcc_assert (scope > 0);
7592
7593  /* At file_scope, we don't have to do any processing.  */
7594  if (label_context_stack_vm == NULL)
7595    return;
7596
7597  if (c_switch_stack && !c_switch_stack->blocked_vm)
7598    c_switch_stack->blocked_vm = scope;
7599  for (glist = label_context_stack_vm->labels_used;
7600       glist != NULL;
7601       glist = glist->next)
7602    {
7603      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7604    }
7605  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7606  nstack->labels_def = NULL;
7607  nstack->labels_used = NULL;
7608  nstack->scope = scope;
7609  nstack->next = label_context_stack_vm;
7610  label_context_stack_vm = nstack;
7611}
7612
7613/* End a scope which may contain identifiers of variably modified
7614   type, scope number SCOPE.  */
7615
7616void
7617c_end_vm_scope (unsigned int scope)
7618{
7619  if (label_context_stack_vm == NULL)
7620    return;
7621  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7622    c_switch_stack->blocked_vm = 0;
7623  /* We may have a number of nested scopes of identifiers with
7624     variably modified type, all at this depth.  Pop each in turn.  */
7625  while (label_context_stack_vm->scope == scope)
7626    {
7627      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7628
7629      /* It is no longer possible to jump to labels defined within this
7630	 scope.  */
7631      for (dlist = label_context_stack_vm->labels_def;
7632	   dlist != NULL;
7633	   dlist = dlist->next)
7634	{
7635	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7636	}
7637      /* It is again possible to define labels with a goto just outside
7638	 this scope.  */
7639      for (glist = label_context_stack_vm->next->labels_used;
7640	   glist != NULL;
7641	   glist = glist->next)
7642	{
7643	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7644	  glist_prev = glist;
7645	}
7646      if (glist_prev != NULL)
7647	glist_prev->next = label_context_stack_vm->labels_used;
7648      else
7649	label_context_stack_vm->next->labels_used
7650	  = label_context_stack_vm->labels_used;
7651      label_context_stack_vm = label_context_stack_vm->next;
7652    }
7653}
7654
7655/* Begin and end compound statements.  This is as simple as pushing
7656   and popping new statement lists from the tree.  */
7657
7658tree
7659c_begin_compound_stmt (bool do_scope)
7660{
7661  tree stmt = push_stmt_list ();
7662  if (do_scope)
7663    push_scope ();
7664  return stmt;
7665}
7666
7667tree
7668c_end_compound_stmt (tree stmt, bool do_scope)
7669{
7670  tree block = NULL;
7671
7672  if (do_scope)
7673    {
7674      if (c_dialect_objc ())
7675	objc_clear_super_receiver ();
7676      block = pop_scope ();
7677    }
7678
7679  stmt = pop_stmt_list (stmt);
7680  stmt = c_build_bind_expr (block, stmt);
7681
7682  /* If this compound statement is nested immediately inside a statement
7683     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7684     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7685     STATEMENT_LISTs merge, and thus we can lose track of what statement
7686     was really last.  */
7687  if (cur_stmt_list
7688      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7689      && TREE_CODE (stmt) != BIND_EXPR)
7690    {
7691      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7692      TREE_SIDE_EFFECTS (stmt) = 1;
7693    }
7694
7695  return stmt;
7696}
7697
7698/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7699   when the current scope is exited.  EH_ONLY is true when this is not
7700   meant to apply to normal control flow transfer.  */
7701
7702void
7703push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7704{
7705  enum tree_code code;
7706  tree stmt, list;
7707  bool stmt_expr;
7708
7709  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7710  stmt = build_stmt (code, NULL, cleanup);
7711  add_stmt (stmt);
7712  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7713  list = push_stmt_list ();
7714  TREE_OPERAND (stmt, 0) = list;
7715  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7716}
7717
7718/* Build a binary-operation expression without default conversions.
7719   CODE is the kind of expression to build.
7720   This function differs from `build' in several ways:
7721   the data type of the result is computed and recorded in it,
7722   warnings are generated if arg data types are invalid,
7723   special handling for addition and subtraction of pointers is known,
7724   and some optimization is done (operations on narrow ints
7725   are done in the narrower type when that gives the same result).
7726   Constant folding is also done before the result is returned.
7727
7728   Note that the operands will never have enumeral types, or function
7729   or array types, because either they will have the default conversions
7730   performed or they have both just been converted to some other type in which
7731   the arithmetic is to be done.  */
7732
7733tree
7734build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7735		 int convert_p)
7736{
7737  tree type0, type1;
7738  enum tree_code code0, code1;
7739  tree op0, op1;
7740  const char *invalid_op_diag;
7741
7742  /* Expression code to give to the expression when it is built.
7743     Normally this is CODE, which is what the caller asked for,
7744     but in some special cases we change it.  */
7745  enum tree_code resultcode = code;
7746
7747  /* Data type in which the computation is to be performed.
7748     In the simplest cases this is the common type of the arguments.  */
7749  tree result_type = NULL;
7750
7751  /* Nonzero means operands have already been type-converted
7752     in whatever way is necessary.
7753     Zero means they need to be converted to RESULT_TYPE.  */
7754  int converted = 0;
7755
7756  /* Nonzero means create the expression with this type, rather than
7757     RESULT_TYPE.  */
7758  tree build_type = 0;
7759
7760  /* Nonzero means after finally constructing the expression
7761     convert it to this type.  */
7762  tree final_type = 0;
7763
7764  /* Nonzero if this is an operation like MIN or MAX which can
7765     safely be computed in short if both args are promoted shorts.
7766     Also implies COMMON.
7767     -1 indicates a bitwise operation; this makes a difference
7768     in the exact conditions for when it is safe to do the operation
7769     in a narrower mode.  */
7770  int shorten = 0;
7771
7772  /* Nonzero if this is a comparison operation;
7773     if both args are promoted shorts, compare the original shorts.
7774     Also implies COMMON.  */
7775  int short_compare = 0;
7776
7777  /* Nonzero if this is a right-shift operation, which can be computed on the
7778     original short and then promoted if the operand is a promoted short.  */
7779  int short_shift = 0;
7780
7781  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7782  int common = 0;
7783
7784  /* True means types are compatible as far as ObjC is concerned.  */
7785  bool objc_ok;
7786
7787  if (convert_p)
7788    {
7789      op0 = default_conversion (orig_op0);
7790      op1 = default_conversion (orig_op1);
7791    }
7792  else
7793    {
7794      op0 = orig_op0;
7795      op1 = orig_op1;
7796    }
7797
7798  type0 = TREE_TYPE (op0);
7799  type1 = TREE_TYPE (op1);
7800
7801  /* The expression codes of the data types of the arguments tell us
7802     whether the arguments are integers, floating, pointers, etc.  */
7803  code0 = TREE_CODE (type0);
7804  code1 = TREE_CODE (type1);
7805
7806  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7807  STRIP_TYPE_NOPS (op0);
7808  STRIP_TYPE_NOPS (op1);
7809
7810  /* If an error was already reported for one of the arguments,
7811     avoid reporting another error.  */
7812
7813  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7814    return error_mark_node;
7815
7816  if ((invalid_op_diag
7817       = targetm.invalid_binary_op (code, type0, type1)))
7818    {
7819      error (invalid_op_diag);
7820      return error_mark_node;
7821    }
7822
7823  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7824
7825  switch (code)
7826    {
7827    case PLUS_EXPR:
7828      /* Handle the pointer + int case.  */
7829      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7830	return pointer_int_sum (PLUS_EXPR, op0, op1);
7831      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7832	return pointer_int_sum (PLUS_EXPR, op1, op0);
7833      else
7834	common = 1;
7835      break;
7836
7837    case MINUS_EXPR:
7838      /* Subtraction of two similar pointers.
7839	 We must subtract them as integers, then divide by object size.  */
7840      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7841	  && comp_target_types (type0, type1))
7842	return pointer_diff (op0, op1);
7843      /* Handle pointer minus int.  Just like pointer plus int.  */
7844      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7845	return pointer_int_sum (MINUS_EXPR, op0, op1);
7846      else
7847	common = 1;
7848      break;
7849
7850    case MULT_EXPR:
7851      common = 1;
7852      break;
7853
7854    case TRUNC_DIV_EXPR:
7855    case CEIL_DIV_EXPR:
7856    case FLOOR_DIV_EXPR:
7857    case ROUND_DIV_EXPR:
7858    case EXACT_DIV_EXPR:
7859      /* Floating point division by zero is a legitimate way to obtain
7860	 infinities and NaNs.  */
7861      if (skip_evaluation == 0 && integer_zerop (op1))
7862	warning (OPT_Wdiv_by_zero, "division by zero");
7863
7864      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7865	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7866	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7867	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7868	{
7869	  enum tree_code tcode0 = code0, tcode1 = code1;
7870
7871	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7872	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7873	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7874	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7875
7876	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7877	    resultcode = RDIV_EXPR;
7878	  else
7879	    /* Although it would be tempting to shorten always here, that
7880	       loses on some targets, since the modulo instruction is
7881	       undefined if the quotient can't be represented in the
7882	       computation mode.  We shorten only if unsigned or if
7883	       dividing by something we know != -1.  */
7884	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7885		       || (TREE_CODE (op1) == INTEGER_CST
7886			   && !integer_all_onesp (op1)));
7887	  common = 1;
7888	}
7889      break;
7890
7891    case BIT_AND_EXPR:
7892    case BIT_IOR_EXPR:
7893    case BIT_XOR_EXPR:
7894      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7895	shorten = -1;
7896      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7897	common = 1;
7898      break;
7899
7900    case TRUNC_MOD_EXPR:
7901    case FLOOR_MOD_EXPR:
7902      if (skip_evaluation == 0 && integer_zerop (op1))
7903	warning (OPT_Wdiv_by_zero, "division by zero");
7904
7905      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7906	{
7907	  /* Although it would be tempting to shorten always here, that loses
7908	     on some targets, since the modulo instruction is undefined if the
7909	     quotient can't be represented in the computation mode.  We shorten
7910	     only if unsigned or if dividing by something we know != -1.  */
7911	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7912		     || (TREE_CODE (op1) == INTEGER_CST
7913			 && !integer_all_onesp (op1)));
7914	  common = 1;
7915	}
7916      break;
7917
7918    case TRUTH_ANDIF_EXPR:
7919    case TRUTH_ORIF_EXPR:
7920    case TRUTH_AND_EXPR:
7921    case TRUTH_OR_EXPR:
7922    case TRUTH_XOR_EXPR:
7923      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7924	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7925	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7926	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7927	{
7928	  /* Result of these operations is always an int,
7929	     but that does not mean the operands should be
7930	     converted to ints!  */
7931	  result_type = integer_type_node;
7932	  op0 = c_common_truthvalue_conversion (op0);
7933	  op1 = c_common_truthvalue_conversion (op1);
7934	  converted = 1;
7935	}
7936      break;
7937
7938      /* Shift operations: result has same type as first operand;
7939	 always convert second operand to int.
7940	 Also set SHORT_SHIFT if shifting rightward.  */
7941
7942    case RSHIFT_EXPR:
7943      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7944	{
7945	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7946	    {
7947	      if (tree_int_cst_sgn (op1) < 0)
7948		warning (0, "right shift count is negative");
7949	      else
7950		{
7951		  if (!integer_zerop (op1))
7952		    short_shift = 1;
7953
7954		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7955		    warning (0, "right shift count >= width of type");
7956		}
7957	    }
7958
7959	  /* Use the type of the value to be shifted.  */
7960	  result_type = type0;
7961	  /* Convert the shift-count to an integer, regardless of size
7962	     of value being shifted.  */
7963	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7964	    op1 = convert (integer_type_node, op1);
7965	  /* Avoid converting op1 to result_type later.  */
7966	  converted = 1;
7967	}
7968      break;
7969
7970    case LSHIFT_EXPR:
7971      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7972	{
7973	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7974	    {
7975	      if (tree_int_cst_sgn (op1) < 0)
7976		warning (0, "left shift count is negative");
7977
7978	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7979		warning (0, "left shift count >= width of type");
7980	    }
7981
7982	  /* Use the type of the value to be shifted.  */
7983	  result_type = type0;
7984	  /* Convert the shift-count to an integer, regardless of size
7985	     of value being shifted.  */
7986	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7987	    op1 = convert (integer_type_node, op1);
7988	  /* Avoid converting op1 to result_type later.  */
7989	  converted = 1;
7990	}
7991      break;
7992
7993    case EQ_EXPR:
7994    case NE_EXPR:
7995      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7996	warning (OPT_Wfloat_equal,
7997		 "comparing floating point with == or != is unsafe");
7998      /* Result of comparison is always int,
7999	 but don't convert the args to int!  */
8000      build_type = integer_type_node;
8001      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8002	   || code0 == COMPLEX_TYPE)
8003	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8004	      || code1 == COMPLEX_TYPE))
8005	short_compare = 1;
8006      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8007	{
8008	  tree tt0 = TREE_TYPE (type0);
8009	  tree tt1 = TREE_TYPE (type1);
8010	  /* Anything compares with void *.  void * compares with anything.
8011	     Otherwise, the targets must be compatible
8012	     and both must be object or both incomplete.  */
8013	  if (comp_target_types (type0, type1))
8014	    result_type = common_pointer_type (type0, type1);
8015	  else if (VOID_TYPE_P (tt0))
8016	    {
8017	      /* op0 != orig_op0 detects the case of something
8018		 whose value is 0 but which isn't a valid null ptr const.  */
8019	      if (pedantic && !null_pointer_constant_p (orig_op0)
8020		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8021		pedwarn ("ISO C forbids comparison of %<void *%>"
8022			 " with function pointer");
8023	    }
8024	  else if (VOID_TYPE_P (tt1))
8025	    {
8026	      if (pedantic && !null_pointer_constant_p (orig_op1)
8027		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8028		pedwarn ("ISO C forbids comparison of %<void *%>"
8029			 " with function pointer");
8030	    }
8031	  else
8032	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8033	    if (!objc_ok)
8034	      pedwarn ("comparison of distinct pointer types lacks a cast");
8035
8036	  if (result_type == NULL_TREE)
8037	    result_type = ptr_type_node;
8038	}
8039      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8040	{
8041	  if (TREE_CODE (op0) == ADDR_EXPR
8042	      && DECL_P (TREE_OPERAND (op0, 0))
8043	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8044		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8045		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8046	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8047		     TREE_OPERAND (op0, 0));
8048	  result_type = type0;
8049	}
8050      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8051	{
8052	  if (TREE_CODE (op1) == ADDR_EXPR
8053	      && DECL_P (TREE_OPERAND (op1, 0))
8054	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8055		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8056		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8057	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8058		     TREE_OPERAND (op1, 0));
8059	  result_type = type1;
8060	}
8061      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8062	{
8063	  result_type = type0;
8064	  pedwarn ("comparison between pointer and integer");
8065	}
8066      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8067	{
8068	  result_type = type1;
8069	  pedwarn ("comparison between pointer and integer");
8070	}
8071      break;
8072
8073    case LE_EXPR:
8074    case GE_EXPR:
8075    case LT_EXPR:
8076    case GT_EXPR:
8077      build_type = integer_type_node;
8078      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8079	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8080	short_compare = 1;
8081      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8082	{
8083	  if (comp_target_types (type0, type1))
8084	    {
8085	      result_type = common_pointer_type (type0, type1);
8086	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8087		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8088		pedwarn ("comparison of complete and incomplete pointers");
8089	      else if (pedantic
8090		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8091		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8092	    }
8093	  else
8094	    {
8095	      result_type = ptr_type_node;
8096	      pedwarn ("comparison of distinct pointer types lacks a cast");
8097	    }
8098	}
8099      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8100	{
8101	  result_type = type0;
8102	  if (pedantic || extra_warnings)
8103	    pedwarn ("ordered comparison of pointer with integer zero");
8104	}
8105      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8106	{
8107	  result_type = type1;
8108	  if (pedantic)
8109	    pedwarn ("ordered comparison of pointer with integer zero");
8110	}
8111      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8112	{
8113	  result_type = type0;
8114	  pedwarn ("comparison between pointer and integer");
8115	}
8116      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8117	{
8118	  result_type = type1;
8119	  pedwarn ("comparison between pointer and integer");
8120	}
8121      break;
8122
8123    default:
8124      gcc_unreachable ();
8125    }
8126
8127  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8128    return error_mark_node;
8129
8130  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8131      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8132	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8133						    TREE_TYPE (type1))))
8134    {
8135      binary_op_error (code);
8136      return error_mark_node;
8137    }
8138
8139  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8140       || code0 == VECTOR_TYPE)
8141      &&
8142      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8143       || code1 == VECTOR_TYPE))
8144    {
8145      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8146
8147      if (shorten || common || short_compare)
8148	result_type = c_common_type (type0, type1);
8149
8150      /* For certain operations (which identify themselves by shorten != 0)
8151	 if both args were extended from the same smaller type,
8152	 do the arithmetic in that type and then extend.
8153
8154	 shorten !=0 and !=1 indicates a bitwise operation.
8155	 For them, this optimization is safe only if
8156	 both args are zero-extended or both are sign-extended.
8157	 Otherwise, we might change the result.
8158	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8159	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8160
8161      if (shorten && none_complex)
8162	{
8163	  int unsigned0, unsigned1;
8164	  tree arg0, arg1;
8165	  int uns;
8166	  tree type;
8167
8168	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8169	     excessive narrowing when we call get_narrower below.  For
8170	     example, suppose that OP0 is of unsigned int extended
8171	     from signed char and that RESULT_TYPE is long long int.
8172	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8173	     like
8174
8175	       (long long int) (unsigned int) signed_char
8176
8177	     which get_narrower would narrow down to
8178
8179	       (unsigned int) signed char
8180
8181	     If we do not cast OP0 first, get_narrower would return
8182	     signed_char, which is inconsistent with the case of the
8183	     explicit cast.  */
8184	  op0 = convert (result_type, op0);
8185	  op1 = convert (result_type, op1);
8186
8187	  arg0 = get_narrower (op0, &unsigned0);
8188	  arg1 = get_narrower (op1, &unsigned1);
8189
8190	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8191	  uns = TYPE_UNSIGNED (result_type);
8192
8193	  final_type = result_type;
8194
8195	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8196	     but it *requires* conversion to FINAL_TYPE.  */
8197
8198	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8199	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8200	      && TREE_TYPE (op0) != final_type)
8201	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8202	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8203	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8204	      && TREE_TYPE (op1) != final_type)
8205	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8206
8207	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8208
8209	  /* For bitwise operations, signedness of nominal type
8210	     does not matter.  Consider only how operands were extended.  */
8211	  if (shorten == -1)
8212	    uns = unsigned0;
8213
8214	  /* Note that in all three cases below we refrain from optimizing
8215	     an unsigned operation on sign-extended args.
8216	     That would not be valid.  */
8217
8218	  /* Both args variable: if both extended in same way
8219	     from same width, do it in that width.
8220	     Do it unsigned if args were zero-extended.  */
8221	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8222	       < TYPE_PRECISION (result_type))
8223	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8224		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8225	      && unsigned0 == unsigned1
8226	      && (unsigned0 || !uns))
8227	    result_type
8228	      = c_common_signed_or_unsigned_type
8229	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8230	  else if (TREE_CODE (arg0) == INTEGER_CST
8231		   && (unsigned1 || !uns)
8232		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8233		       < TYPE_PRECISION (result_type))
8234		   && (type
8235		       = c_common_signed_or_unsigned_type (unsigned1,
8236							   TREE_TYPE (arg1)),
8237		       int_fits_type_p (arg0, type)))
8238	    result_type = type;
8239	  else if (TREE_CODE (arg1) == INTEGER_CST
8240		   && (unsigned0 || !uns)
8241		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8242		       < TYPE_PRECISION (result_type))
8243		   && (type
8244		       = c_common_signed_or_unsigned_type (unsigned0,
8245							   TREE_TYPE (arg0)),
8246		       int_fits_type_p (arg1, type)))
8247	    result_type = type;
8248	}
8249
8250      /* Shifts can be shortened if shifting right.  */
8251
8252      if (short_shift)
8253	{
8254	  int unsigned_arg;
8255	  tree arg0 = get_narrower (op0, &unsigned_arg);
8256
8257	  final_type = result_type;
8258
8259	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8260	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8261
8262	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8263	      /* We can shorten only if the shift count is less than the
8264		 number of bits in the smaller type size.  */
8265	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8266	      /* We cannot drop an unsigned shift after sign-extension.  */
8267	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8268	    {
8269	      /* Do an unsigned shift if the operand was zero-extended.  */
8270	      result_type
8271		= c_common_signed_or_unsigned_type (unsigned_arg,
8272						    TREE_TYPE (arg0));
8273	      /* Convert value-to-be-shifted to that type.  */
8274	      if (TREE_TYPE (op0) != result_type)
8275		op0 = convert (result_type, op0);
8276	      converted = 1;
8277	    }
8278	}
8279
8280      /* Comparison operations are shortened too but differently.
8281	 They identify themselves by setting short_compare = 1.  */
8282
8283      if (short_compare)
8284	{
8285	  /* Don't write &op0, etc., because that would prevent op0
8286	     from being kept in a register.
8287	     Instead, make copies of the our local variables and
8288	     pass the copies by reference, then copy them back afterward.  */
8289	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8290	  enum tree_code xresultcode = resultcode;
8291	  tree val
8292	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8293
8294	  if (val != 0)
8295	    return val;
8296
8297	  op0 = xop0, op1 = xop1;
8298	  converted = 1;
8299	  resultcode = xresultcode;
8300
8301	  if (warn_sign_compare && skip_evaluation == 0)
8302	    {
8303	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8304	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8305	      int unsignedp0, unsignedp1;
8306	      tree primop0 = get_narrower (op0, &unsignedp0);
8307	      tree primop1 = get_narrower (op1, &unsignedp1);
8308
8309	      xop0 = orig_op0;
8310	      xop1 = orig_op1;
8311	      STRIP_TYPE_NOPS (xop0);
8312	      STRIP_TYPE_NOPS (xop1);
8313
8314	      /* Give warnings for comparisons between signed and unsigned
8315		 quantities that may fail.
8316
8317		 Do the checking based on the original operand trees, so that
8318		 casts will be considered, but default promotions won't be.
8319
8320		 Do not warn if the comparison is being done in a signed type,
8321		 since the signed type will only be chosen if it can represent
8322		 all the values of the unsigned type.  */
8323	      if (!TYPE_UNSIGNED (result_type))
8324		/* OK */;
8325	      /* Do not warn if both operands are the same signedness.  */
8326	      else if (op0_signed == op1_signed)
8327		/* OK */;
8328	      else
8329		{
8330		  tree sop, uop;
8331		  bool ovf;
8332
8333		  if (op0_signed)
8334		    sop = xop0, uop = xop1;
8335		  else
8336		    sop = xop1, uop = xop0;
8337
8338		  /* Do not warn if the signed quantity is an
8339		     unsuffixed integer literal (or some static
8340		     constant expression involving such literals or a
8341		     conditional expression involving such literals)
8342		     and it is non-negative.  */
8343		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8344		    /* OK */;
8345		  /* Do not warn if the comparison is an equality operation,
8346		     the unsigned quantity is an integral constant, and it
8347		     would fit in the result if the result were signed.  */
8348		  else if (TREE_CODE (uop) == INTEGER_CST
8349			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8350			   && int_fits_type_p
8351			   (uop, c_common_signed_type (result_type)))
8352		    /* OK */;
8353		  /* Do not warn if the unsigned quantity is an enumeration
8354		     constant and its maximum value would fit in the result
8355		     if the result were signed.  */
8356		  else if (TREE_CODE (uop) == INTEGER_CST
8357			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8358			   && int_fits_type_p
8359			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8360			    c_common_signed_type (result_type)))
8361		    /* OK */;
8362		  else
8363		    warning (0, "comparison between signed and unsigned");
8364		}
8365
8366	      /* Warn if two unsigned values are being compared in a size
8367		 larger than their original size, and one (and only one) is the
8368		 result of a `~' operator.  This comparison will always fail.
8369
8370		 Also warn if one operand is a constant, and the constant
8371		 does not have all bits set that are set in the ~ operand
8372		 when it is extended.  */
8373
8374	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8375		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8376		{
8377		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8378		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8379					    &unsignedp0);
8380		  else
8381		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8382					    &unsignedp1);
8383
8384		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8385		    {
8386		      tree primop;
8387		      HOST_WIDE_INT constant, mask;
8388		      int unsignedp, bits;
8389
8390		      if (host_integerp (primop0, 0))
8391			{
8392			  primop = primop1;
8393			  unsignedp = unsignedp1;
8394			  constant = tree_low_cst (primop0, 0);
8395			}
8396		      else
8397			{
8398			  primop = primop0;
8399			  unsignedp = unsignedp0;
8400			  constant = tree_low_cst (primop1, 0);
8401			}
8402
8403		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8404		      if (bits < TYPE_PRECISION (result_type)
8405			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8406			{
8407			  mask = (~(HOST_WIDE_INT) 0) << bits;
8408			  if ((mask & constant) != mask)
8409			    warning (0, "comparison of promoted ~unsigned with constant");
8410			}
8411		    }
8412		  else if (unsignedp0 && unsignedp1
8413			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8414			       < TYPE_PRECISION (result_type))
8415			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8416			       < TYPE_PRECISION (result_type)))
8417		    warning (0, "comparison of promoted ~unsigned with unsigned");
8418		}
8419	    }
8420	}
8421    }
8422
8423  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8424     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8425     Then the expression will be built.
8426     It will be given type FINAL_TYPE if that is nonzero;
8427     otherwise, it will be given type RESULT_TYPE.  */
8428
8429  if (!result_type)
8430    {
8431      binary_op_error (code);
8432      return error_mark_node;
8433    }
8434
8435  if (!converted)
8436    {
8437      if (TREE_TYPE (op0) != result_type)
8438	op0 = convert_and_check (result_type, op0);
8439      if (TREE_TYPE (op1) != result_type)
8440	op1 = convert_and_check (result_type, op1);
8441
8442      /* This can happen if one operand has a vector type, and the other
8443	 has a different type.  */
8444      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8445	return error_mark_node;
8446    }
8447
8448  if (build_type == NULL_TREE)
8449    build_type = result_type;
8450
8451  {
8452    /* Treat expressions in initializers specially as they can't trap.  */
8453    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8454								    build_type,
8455								    op0, op1)
8456					 : fold_build2 (resultcode, build_type,
8457							op0, op1);
8458
8459    if (final_type != 0)
8460      result = convert (final_type, result);
8461    return result;
8462  }
8463}
8464
8465
8466/* Convert EXPR to be a truth-value, validating its type for this
8467   purpose.  */
8468
8469tree
8470c_objc_common_truthvalue_conversion (tree expr)
8471{
8472  switch (TREE_CODE (TREE_TYPE (expr)))
8473    {
8474    case ARRAY_TYPE:
8475      error ("used array that cannot be converted to pointer where scalar is required");
8476      return error_mark_node;
8477
8478    case RECORD_TYPE:
8479      error ("used struct type value where scalar is required");
8480      return error_mark_node;
8481
8482    case UNION_TYPE:
8483      error ("used union type value where scalar is required");
8484      return error_mark_node;
8485
8486    case FUNCTION_TYPE:
8487      gcc_unreachable ();
8488
8489    default:
8490      break;
8491    }
8492
8493  /* ??? Should we also give an error for void and vectors rather than
8494     leaving those to give errors later?  */
8495  return c_common_truthvalue_conversion (expr);
8496}
8497
8498
8499/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8500   required.  */
8501
8502tree
8503c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8504		bool *ti ATTRIBUTE_UNUSED, bool *se)
8505{
8506  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8507    {
8508      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8509      /* Executing a compound literal inside a function reinitializes
8510	 it.  */
8511      if (!TREE_STATIC (decl))
8512	*se = true;
8513      return decl;
8514    }
8515  else
8516    return expr;
8517}
8518
8519/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8520
8521tree
8522c_begin_omp_parallel (void)
8523{
8524  tree block;
8525
8526  keep_next_level ();
8527  block = c_begin_compound_stmt (true);
8528
8529  return block;
8530}
8531
8532tree
8533c_finish_omp_parallel (tree clauses, tree block)
8534{
8535  tree stmt;
8536
8537  block = c_end_compound_stmt (block, true);
8538
8539  stmt = make_node (OMP_PARALLEL);
8540  TREE_TYPE (stmt) = void_type_node;
8541  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8542  OMP_PARALLEL_BODY (stmt) = block;
8543
8544  return add_stmt (stmt);
8545}
8546
8547/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8548   Remove any elements from the list that are invalid.  */
8549
8550tree
8551c_finish_omp_clauses (tree clauses)
8552{
8553  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8554  tree c, t, *pc = &clauses;
8555  const char *name;
8556
8557  bitmap_obstack_initialize (NULL);
8558  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8559  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8560  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8561
8562  for (pc = &clauses, c = clauses; c ; c = *pc)
8563    {
8564      bool remove = false;
8565      bool need_complete = false;
8566      bool need_implicitly_determined = false;
8567
8568      switch (OMP_CLAUSE_CODE (c))
8569	{
8570	case OMP_CLAUSE_SHARED:
8571	  name = "shared";
8572	  need_implicitly_determined = true;
8573	  goto check_dup_generic;
8574
8575	case OMP_CLAUSE_PRIVATE:
8576	  name = "private";
8577	  need_complete = true;
8578	  need_implicitly_determined = true;
8579	  goto check_dup_generic;
8580
8581	case OMP_CLAUSE_REDUCTION:
8582	  name = "reduction";
8583	  need_implicitly_determined = true;
8584	  t = OMP_CLAUSE_DECL (c);
8585	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8586	      || POINTER_TYPE_P (TREE_TYPE (t)))
8587	    {
8588	      error ("%qE has invalid type for %<reduction%>", t);
8589	      remove = true;
8590	    }
8591	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8592	    {
8593	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8594	      const char *r_name = NULL;
8595
8596	      switch (r_code)
8597		{
8598		case PLUS_EXPR:
8599		case MULT_EXPR:
8600		case MINUS_EXPR:
8601		  break;
8602		case BIT_AND_EXPR:
8603		  r_name = "&";
8604		  break;
8605		case BIT_XOR_EXPR:
8606		  r_name = "^";
8607		  break;
8608		case BIT_IOR_EXPR:
8609		  r_name = "|";
8610		  break;
8611		case TRUTH_ANDIF_EXPR:
8612		  r_name = "&&";
8613		  break;
8614		case TRUTH_ORIF_EXPR:
8615		  r_name = "||";
8616		  break;
8617		default:
8618		  gcc_unreachable ();
8619		}
8620	      if (r_name)
8621		{
8622		  error ("%qE has invalid type for %<reduction(%s)%>",
8623			 t, r_name);
8624		  remove = true;
8625		}
8626	    }
8627	  goto check_dup_generic;
8628
8629	case OMP_CLAUSE_COPYPRIVATE:
8630	  name = "copyprivate";
8631	  goto check_dup_generic;
8632
8633	case OMP_CLAUSE_COPYIN:
8634	  name = "copyin";
8635	  t = OMP_CLAUSE_DECL (c);
8636	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8637	    {
8638	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8639	      remove = true;
8640	    }
8641	  goto check_dup_generic;
8642
8643	check_dup_generic:
8644	  t = OMP_CLAUSE_DECL (c);
8645	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8646	    {
8647	      error ("%qE is not a variable in clause %qs", t, name);
8648	      remove = true;
8649	    }
8650	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8651		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8652		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8653	    {
8654	      error ("%qE appears more than once in data clauses", t);
8655	      remove = true;
8656	    }
8657	  else
8658	    bitmap_set_bit (&generic_head, DECL_UID (t));
8659	  break;
8660
8661	case OMP_CLAUSE_FIRSTPRIVATE:
8662	  name = "firstprivate";
8663	  t = OMP_CLAUSE_DECL (c);
8664	  need_complete = true;
8665	  need_implicitly_determined = true;
8666	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8667	    {
8668	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8669	      remove = true;
8670	    }
8671	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8672		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8673	    {
8674	      error ("%qE appears more than once in data clauses", t);
8675	      remove = true;
8676	    }
8677	  else
8678	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8679	  break;
8680
8681	case OMP_CLAUSE_LASTPRIVATE:
8682	  name = "lastprivate";
8683	  t = OMP_CLAUSE_DECL (c);
8684	  need_complete = true;
8685	  need_implicitly_determined = true;
8686	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8687	    {
8688	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8689	      remove = true;
8690	    }
8691	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8692		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8693	    {
8694	      error ("%qE appears more than once in data clauses", t);
8695	      remove = true;
8696	    }
8697	  else
8698	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8699	  break;
8700
8701	case OMP_CLAUSE_IF:
8702	case OMP_CLAUSE_NUM_THREADS:
8703	case OMP_CLAUSE_SCHEDULE:
8704	case OMP_CLAUSE_NOWAIT:
8705	case OMP_CLAUSE_ORDERED:
8706	case OMP_CLAUSE_DEFAULT:
8707	  pc = &OMP_CLAUSE_CHAIN (c);
8708	  continue;
8709
8710	default:
8711	  gcc_unreachable ();
8712	}
8713
8714      if (!remove)
8715	{
8716	  t = OMP_CLAUSE_DECL (c);
8717
8718	  if (need_complete)
8719	    {
8720	      t = require_complete_type (t);
8721	      if (t == error_mark_node)
8722		remove = true;
8723	    }
8724
8725	  if (need_implicitly_determined)
8726	    {
8727	      const char *share_name = NULL;
8728
8729	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8730		share_name = "threadprivate";
8731	      else switch (c_omp_predetermined_sharing (t))
8732		{
8733		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8734		  break;
8735		case OMP_CLAUSE_DEFAULT_SHARED:
8736		  share_name = "shared";
8737		  break;
8738		case OMP_CLAUSE_DEFAULT_PRIVATE:
8739		  share_name = "private";
8740		  break;
8741		default:
8742		  gcc_unreachable ();
8743		}
8744	      if (share_name)
8745		{
8746		  error ("%qE is predetermined %qs for %qs",
8747			 t, share_name, name);
8748		  remove = true;
8749		}
8750	    }
8751	}
8752
8753      if (remove)
8754	*pc = OMP_CLAUSE_CHAIN (c);
8755      else
8756	pc = &OMP_CLAUSE_CHAIN (c);
8757    }
8758
8759  bitmap_obstack_release (NULL);
8760  return clauses;
8761}
8762