c-typeck.c revision 225736
1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  datum = ref;
1853
1854	  field = TREE_CHAIN (field);
1855	}
1856      while (field);
1857
1858      return ref;
1859    }
1860  else if (code != ERROR_MARK)
1861    error ("request for member %qE in something not a structure or union",
1862	   component);
1863
1864  return error_mark_node;
1865}
1866
1867/* Given an expression PTR for a pointer, return an expression
1868   for the value pointed to.
1869   ERRORSTRING is the name of the operator to appear in error messages.  */
1870
1871tree
1872build_indirect_ref (tree ptr, const char *errorstring)
1873{
1874  tree pointer = default_conversion (ptr);
1875  tree type = TREE_TYPE (pointer);
1876
1877  if (TREE_CODE (type) == POINTER_TYPE)
1878    {
1879      if (TREE_CODE (pointer) == ADDR_EXPR
1880	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881	      == TREE_TYPE (type)))
1882	return TREE_OPERAND (pointer, 0);
1883      else
1884	{
1885	  tree t = TREE_TYPE (type);
1886	  tree ref;
1887
1888	  ref = build1 (INDIRECT_REF, t, pointer);
1889
1890	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891	    {
1892	      error ("dereferencing pointer to incomplete type");
1893	      return error_mark_node;
1894	    }
1895	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896	    warning (0, "dereferencing %<void *%> pointer");
1897
1898	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899	     so that we get the proper error message if the result is used
1900	     to assign to.  Also, &* is supposed to be a no-op.
1901	     And ANSI C seems to specify that the type of the result
1902	     should be the const type.  */
1903	  /* A de-reference of a pointer to const is not a const.  It is valid
1904	     to change it via some other pointer.  */
1905	  TREE_READONLY (ref) = TYPE_READONLY (t);
1906	  TREE_SIDE_EFFECTS (ref)
1907	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909	  return ref;
1910	}
1911    }
1912  else if (TREE_CODE (pointer) != ERROR_MARK)
1913    error ("invalid type argument of %qs", errorstring);
1914  return error_mark_node;
1915}
1916
1917/* This handles expressions of the form "a[i]", which denotes
1918   an array reference.
1919
1920   This is logically equivalent in C to *(a+i), but we may do it differently.
1921   If A is a variable or a member, we generate a primitive ARRAY_REF.
1922   This avoids forcing the array out of registers, and can work on
1923   arrays that are not lvalues (for example, members of structures returned
1924   by functions).  */
1925
1926tree
1927build_array_ref (tree array, tree index)
1928{
1929  bool swapped = false;
1930  if (TREE_TYPE (array) == error_mark_node
1931      || TREE_TYPE (index) == error_mark_node)
1932    return error_mark_node;
1933
1934  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936    {
1937      tree temp;
1938      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940	{
1941	  error ("subscripted value is neither array nor pointer");
1942	  return error_mark_node;
1943	}
1944      temp = array;
1945      array = index;
1946      index = temp;
1947      swapped = true;
1948    }
1949
1950  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951    {
1952      error ("array subscript is not an integer");
1953      return error_mark_node;
1954    }
1955
1956  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957    {
1958      error ("subscripted value is pointer to function");
1959      return error_mark_node;
1960    }
1961
1962  /* ??? Existing practice has been to warn only when the char
1963     index is syntactically the index, not for char[array].  */
1964  if (!swapped)
1965     warn_array_subscript_with_type_char (index);
1966
1967  /* Apply default promotions *after* noticing character types.  */
1968  index = default_conversion (index);
1969
1970  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971
1972  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973    {
1974      tree rval, type;
1975
1976      /* An array that is indexed by a non-constant
1977	 cannot be stored in a register; we must be able to do
1978	 address arithmetic on its address.
1979	 Likewise an array of elements of variable size.  */
1980      if (TREE_CODE (index) != INTEGER_CST
1981	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983	{
1984	  if (!c_mark_addressable (array))
1985	    return error_mark_node;
1986	}
1987      /* An array that is indexed by a constant value which is not within
1988	 the array bounds cannot be stored in a register either; because we
1989	 would get a crash in store_bit_field/extract_bit_field when trying
1990	 to access a non-existent part of the register.  */
1991      if (TREE_CODE (index) == INTEGER_CST
1992	  && TYPE_DOMAIN (TREE_TYPE (array))
1993	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994	{
1995	  if (!c_mark_addressable (array))
1996	    return error_mark_node;
1997	}
1998
1999      if (pedantic)
2000	{
2001	  tree foo = array;
2002	  while (TREE_CODE (foo) == COMPONENT_REF)
2003	    foo = TREE_OPERAND (foo, 0);
2004	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005	    pedwarn ("ISO C forbids subscripting %<register%> array");
2006	  else if (!flag_isoc99 && !lvalue_p (foo))
2007	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008	}
2009
2010      type = TREE_TYPE (TREE_TYPE (array));
2011      if (TREE_CODE (type) != ARRAY_TYPE)
2012	type = TYPE_MAIN_VARIANT (type);
2013      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014      /* Array ref is const/volatile if the array elements are
2015	 or if the array is.  */
2016      TREE_READONLY (rval)
2017	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018	    | TREE_READONLY (array));
2019      TREE_SIDE_EFFECTS (rval)
2020	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021	    | TREE_SIDE_EFFECTS (array));
2022      TREE_THIS_VOLATILE (rval)
2023	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024	    /* This was added by rms on 16 Nov 91.
2025	       It fixes  vol struct foo *a;  a->elts[1]
2026	       in an inline function.
2027	       Hope it doesn't break something else.  */
2028	    | TREE_THIS_VOLATILE (array));
2029      return require_complete_type (fold (rval));
2030    }
2031  else
2032    {
2033      tree ar = default_conversion (array);
2034
2035      if (ar == error_mark_node)
2036	return ar;
2037
2038      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040
2041      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042				 "array indexing");
2043    }
2044}
2045
2046/* Build an external reference to identifier ID.  FUN indicates
2047   whether this will be used for a function call.  LOC is the source
2048   location of the identifier.  */
2049tree
2050build_external_ref (tree id, int fun, location_t loc)
2051{
2052  tree ref;
2053  tree decl = lookup_name (id);
2054
2055  /* In Objective-C, an instance variable (ivar) may be preferred to
2056     whatever lookup_name() found.  */
2057  decl = objc_lookup_ivar (decl, id);
2058
2059  if (decl && decl != error_mark_node)
2060    ref = decl;
2061  else if (fun)
2062    /* Implicit function declaration.  */
2063    ref = implicitly_declare (id);
2064  else if (decl == error_mark_node)
2065    /* Don't complain about something that's already been
2066       complained about.  */
2067    return error_mark_node;
2068  else
2069    {
2070      undeclared_variable (id, loc);
2071      return error_mark_node;
2072    }
2073
2074  if (TREE_TYPE (ref) == error_mark_node)
2075    return error_mark_node;
2076
2077  if (TREE_DEPRECATED (ref))
2078    warn_deprecated_use (ref);
2079
2080  if (!skip_evaluation)
2081    assemble_external (ref);
2082  TREE_USED (ref) = 1;
2083
2084  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085    {
2086      if (!in_sizeof && !in_typeof)
2087	C_DECL_USED (ref) = 1;
2088      else if (DECL_INITIAL (ref) == 0
2089	       && DECL_EXTERNAL (ref)
2090	       && !TREE_PUBLIC (ref))
2091	record_maybe_used_decl (ref);
2092    }
2093
2094  if (TREE_CODE (ref) == CONST_DECL)
2095    {
2096      used_types_insert (TREE_TYPE (ref));
2097      ref = DECL_INITIAL (ref);
2098      TREE_CONSTANT (ref) = 1;
2099      TREE_INVARIANT (ref) = 1;
2100    }
2101  else if (current_function_decl != 0
2102	   && !DECL_FILE_SCOPE_P (current_function_decl)
2103	   && (TREE_CODE (ref) == VAR_DECL
2104	       || TREE_CODE (ref) == PARM_DECL
2105	       || TREE_CODE (ref) == FUNCTION_DECL))
2106    {
2107      tree context = decl_function_context (ref);
2108
2109      if (context != 0 && context != current_function_decl)
2110	DECL_NONLOCAL (ref) = 1;
2111    }
2112  /* C99 6.7.4p3: An inline definition of a function with external
2113     linkage ... shall not contain a reference to an identifier with
2114     internal linkage.  */
2115  else if (current_function_decl != 0
2116	   && DECL_DECLARED_INLINE_P (current_function_decl)
2117	   && DECL_EXTERNAL (current_function_decl)
2118	   && VAR_OR_FUNCTION_DECL_P (ref)
2119	   && DECL_FILE_SCOPE_P (ref)
2120	   && pedantic
2121	   && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2122	   && ! TREE_PUBLIC (ref))
2123    pedwarn ("%H%qD is static but used in inline function %qD "
2124	     "which is not static", &loc, ref, current_function_decl);
2125
2126  return ref;
2127}
2128
2129/* Record details of decls possibly used inside sizeof or typeof.  */
2130struct maybe_used_decl
2131{
2132  /* The decl.  */
2133  tree decl;
2134  /* The level seen at (in_sizeof + in_typeof).  */
2135  int level;
2136  /* The next one at this level or above, or NULL.  */
2137  struct maybe_used_decl *next;
2138};
2139
2140static struct maybe_used_decl *maybe_used_decls;
2141
2142/* Record that DECL, an undefined static function reference seen
2143   inside sizeof or typeof, might be used if the operand of sizeof is
2144   a VLA type or the operand of typeof is a variably modified
2145   type.  */
2146
2147static void
2148record_maybe_used_decl (tree decl)
2149{
2150  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2151  t->decl = decl;
2152  t->level = in_sizeof + in_typeof;
2153  t->next = maybe_used_decls;
2154  maybe_used_decls = t;
2155}
2156
2157/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2158   USED is false, just discard them.  If it is true, mark them used
2159   (if no longer inside sizeof or typeof) or move them to the next
2160   level up (if still inside sizeof or typeof).  */
2161
2162void
2163pop_maybe_used (bool used)
2164{
2165  struct maybe_used_decl *p = maybe_used_decls;
2166  int cur_level = in_sizeof + in_typeof;
2167  while (p && p->level > cur_level)
2168    {
2169      if (used)
2170	{
2171	  if (cur_level == 0)
2172	    C_DECL_USED (p->decl) = 1;
2173	  else
2174	    p->level = cur_level;
2175	}
2176      p = p->next;
2177    }
2178  if (!used || cur_level == 0)
2179    maybe_used_decls = p;
2180}
2181
2182/* Return the result of sizeof applied to EXPR.  */
2183
2184struct c_expr
2185c_expr_sizeof_expr (struct c_expr expr)
2186{
2187  struct c_expr ret;
2188  if (expr.value == error_mark_node)
2189    {
2190      ret.value = error_mark_node;
2191      ret.original_code = ERROR_MARK;
2192      pop_maybe_used (false);
2193    }
2194  else
2195    {
2196      ret.value = c_sizeof (TREE_TYPE (expr.value));
2197      ret.original_code = ERROR_MARK;
2198      if (c_vla_type_p (TREE_TYPE (expr.value)))
2199	{
2200	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2201	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2202	}
2203      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2204    }
2205  return ret;
2206}
2207
2208/* Return the result of sizeof applied to T, a structure for the type
2209   name passed to sizeof (rather than the type itself).  */
2210
2211struct c_expr
2212c_expr_sizeof_type (struct c_type_name *t)
2213{
2214  tree type;
2215  struct c_expr ret;
2216  type = groktypename (t);
2217  ret.value = c_sizeof (type);
2218  ret.original_code = ERROR_MARK;
2219  pop_maybe_used (type != error_mark_node
2220		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2221  return ret;
2222}
2223
2224/* Build a function call to function FUNCTION with parameters PARAMS.
2225   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2226   TREE_VALUE of each node is a parameter-expression.
2227   FUNCTION's data type may be a function type or a pointer-to-function.  */
2228
2229tree
2230build_function_call (tree function, tree params)
2231{
2232  tree fntype, fundecl = 0;
2233  tree coerced_params;
2234  tree name = NULL_TREE, result;
2235  tree tem;
2236
2237  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2238  STRIP_TYPE_NOPS (function);
2239
2240  /* Convert anything with function type to a pointer-to-function.  */
2241  if (TREE_CODE (function) == FUNCTION_DECL)
2242    {
2243      /* Implement type-directed function overloading for builtins.
2244	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2245	 handle all the type checking.  The result is a complete expression
2246	 that implements this function call.  */
2247      tem = resolve_overloaded_builtin (function, params);
2248      if (tem)
2249	return tem;
2250
2251      name = DECL_NAME (function);
2252      fundecl = function;
2253    }
2254  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2255    function = function_to_pointer_conversion (function);
2256
2257  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2258     expressions, like those used for ObjC messenger dispatches.  */
2259  function = objc_rewrite_function_call (function, params);
2260
2261  fntype = TREE_TYPE (function);
2262
2263  if (TREE_CODE (fntype) == ERROR_MARK)
2264    return error_mark_node;
2265
2266  if (!(TREE_CODE (fntype) == POINTER_TYPE
2267	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2268    {
2269      error ("called object %qE is not a function", function);
2270      return error_mark_node;
2271    }
2272
2273  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2274    current_function_returns_abnormally = 1;
2275
2276  /* fntype now gets the type of function pointed to.  */
2277  fntype = TREE_TYPE (fntype);
2278
2279  /* Check that the function is called through a compatible prototype.
2280     If it is not, replace the call by a trap, wrapped up in a compound
2281     expression if necessary.  This has the nice side-effect to prevent
2282     the tree-inliner from generating invalid assignment trees which may
2283     blow up in the RTL expander later.  */
2284  if ((TREE_CODE (function) == NOP_EXPR
2285       || TREE_CODE (function) == CONVERT_EXPR)
2286      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2287      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2288      && !comptypes (fntype, TREE_TYPE (tem)))
2289    {
2290      tree return_type = TREE_TYPE (fntype);
2291      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2292				       NULL_TREE);
2293
2294      /* This situation leads to run-time undefined behavior.  We can't,
2295	 therefore, simply error unless we can prove that all possible
2296	 executions of the program must execute the code.  */
2297      warning (0, "function called through a non-compatible type");
2298
2299      /* We can, however, treat "undefined" any way we please.
2300	 Call abort to encourage the user to fix the program.  */
2301      inform ("if this code is reached, the program will abort");
2302
2303      if (VOID_TYPE_P (return_type))
2304	return trap;
2305      else
2306	{
2307	  tree rhs;
2308
2309	  if (AGGREGATE_TYPE_P (return_type))
2310	    rhs = build_compound_literal (return_type,
2311					  build_constructor (return_type, 0));
2312	  else
2313	    rhs = fold_convert (return_type, integer_zero_node);
2314
2315	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2316	}
2317    }
2318
2319  /* Convert the parameters to the types declared in the
2320     function prototype, or apply default promotions.  */
2321
2322  coerced_params
2323    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2324
2325  if (coerced_params == error_mark_node)
2326    return error_mark_node;
2327
2328  /* Check that the arguments to the function are valid.  */
2329
2330  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2331			    TYPE_ARG_TYPES (fntype));
2332
2333  if (require_constant_value)
2334    {
2335      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2336					function, coerced_params, NULL_TREE);
2337
2338      if (TREE_CONSTANT (result)
2339	  && (name == NULL_TREE
2340	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2341	pedwarn_init ("initializer element is not constant");
2342    }
2343  else
2344    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2345			  function, coerced_params, NULL_TREE);
2346
2347  if (VOID_TYPE_P (TREE_TYPE (result)))
2348    return result;
2349  return require_complete_type (result);
2350}
2351
2352/* Convert the argument expressions in the list VALUES
2353   to the types in the list TYPELIST.  The result is a list of converted
2354   argument expressions, unless there are too few arguments in which
2355   case it is error_mark_node.
2356
2357   If TYPELIST is exhausted, or when an element has NULL as its type,
2358   perform the default conversions.
2359
2360   PARMLIST is the chain of parm decls for the function being called.
2361   It may be 0, if that info is not available.
2362   It is used only for generating error messages.
2363
2364   FUNCTION is a tree for the called function.  It is used only for
2365   error messages, where it is formatted with %qE.
2366
2367   This is also where warnings about wrong number of args are generated.
2368
2369   Both VALUES and the returned value are chains of TREE_LIST nodes
2370   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2371
2372static tree
2373convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2374{
2375  tree typetail, valtail;
2376  tree result = NULL;
2377  int parmnum;
2378  tree selector;
2379
2380  /* Change pointer to function to the function itself for
2381     diagnostics.  */
2382  if (TREE_CODE (function) == ADDR_EXPR
2383      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2384    function = TREE_OPERAND (function, 0);
2385
2386  /* Handle an ObjC selector specially for diagnostics.  */
2387  selector = objc_message_selector ();
2388
2389  /* Scan the given expressions and types, producing individual
2390     converted arguments and pushing them on RESULT in reverse order.  */
2391
2392  for (valtail = values, typetail = typelist, parmnum = 0;
2393       valtail;
2394       valtail = TREE_CHAIN (valtail), parmnum++)
2395    {
2396      tree type = typetail ? TREE_VALUE (typetail) : 0;
2397      tree val = TREE_VALUE (valtail);
2398      tree rname = function;
2399      int argnum = parmnum + 1;
2400      const char *invalid_func_diag;
2401
2402      if (type == void_type_node)
2403	{
2404	  error ("too many arguments to function %qE", function);
2405	  break;
2406	}
2407
2408      if (selector && argnum > 2)
2409	{
2410	  rname = selector;
2411	  argnum -= 2;
2412	}
2413
2414      STRIP_TYPE_NOPS (val);
2415
2416      val = require_complete_type (val);
2417
2418      if (type != 0)
2419	{
2420	  /* Formal parm type is specified by a function prototype.  */
2421	  tree parmval;
2422
2423	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2424	    {
2425	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2426	      parmval = val;
2427	    }
2428	  else
2429	    {
2430	      /* Optionally warn about conversions that
2431		 differ from the default conversions.  */
2432	      if (warn_conversion || warn_traditional)
2433		{
2434		  unsigned int formal_prec = TYPE_PRECISION (type);
2435
2436		  if (INTEGRAL_TYPE_P (type)
2437		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2438		    warning (0, "passing argument %d of %qE as integer "
2439			     "rather than floating due to prototype",
2440			     argnum, rname);
2441		  if (INTEGRAL_TYPE_P (type)
2442		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2443		    warning (0, "passing argument %d of %qE as integer "
2444			     "rather than complex due to prototype",
2445			     argnum, rname);
2446		  else if (TREE_CODE (type) == COMPLEX_TYPE
2447			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2448		    warning (0, "passing argument %d of %qE as complex "
2449			     "rather than floating due to prototype",
2450			     argnum, rname);
2451		  else if (TREE_CODE (type) == REAL_TYPE
2452			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2453		    warning (0, "passing argument %d of %qE as floating "
2454			     "rather than integer due to prototype",
2455			     argnum, rname);
2456		  else if (TREE_CODE (type) == COMPLEX_TYPE
2457			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2458		    warning (0, "passing argument %d of %qE as complex "
2459			     "rather than integer due to prototype",
2460			     argnum, rname);
2461		  else if (TREE_CODE (type) == REAL_TYPE
2462			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2463		    warning (0, "passing argument %d of %qE as floating "
2464			     "rather than complex due to prototype",
2465			     argnum, rname);
2466		  /* ??? At some point, messages should be written about
2467		     conversions between complex types, but that's too messy
2468		     to do now.  */
2469		  else if (TREE_CODE (type) == REAL_TYPE
2470			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2471		    {
2472		      /* Warn if any argument is passed as `float',
2473			 since without a prototype it would be `double'.  */
2474		      if (formal_prec == TYPE_PRECISION (float_type_node)
2475			  && type != dfloat32_type_node)
2476			warning (0, "passing argument %d of %qE as %<float%> "
2477				 "rather than %<double%> due to prototype",
2478				 argnum, rname);
2479
2480		      /* Warn if mismatch between argument and prototype
2481			 for decimal float types.  Warn of conversions with
2482			 binary float types and of precision narrowing due to
2483			 prototype. */
2484 		      else if (type != TREE_TYPE (val)
2485			       && (type == dfloat32_type_node
2486				   || type == dfloat64_type_node
2487				   || type == dfloat128_type_node
2488				   || TREE_TYPE (val) == dfloat32_type_node
2489				   || TREE_TYPE (val) == dfloat64_type_node
2490				   || TREE_TYPE (val) == dfloat128_type_node)
2491			       && (formal_prec
2492				   <= TYPE_PRECISION (TREE_TYPE (val))
2493				   || (type == dfloat128_type_node
2494				       && (TREE_TYPE (val)
2495					   != dfloat64_type_node
2496					   && (TREE_TYPE (val)
2497					       != dfloat32_type_node)))
2498				   || (type == dfloat64_type_node
2499				       && (TREE_TYPE (val)
2500					   != dfloat32_type_node))))
2501			warning (0, "passing argument %d of %qE as %qT "
2502				 "rather than %qT due to prototype",
2503				 argnum, rname, type, TREE_TYPE (val));
2504
2505		    }
2506		  /* Detect integer changing in width or signedness.
2507		     These warnings are only activated with
2508		     -Wconversion, not with -Wtraditional.  */
2509		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2510			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2511		    {
2512		      tree would_have_been = default_conversion (val);
2513		      tree type1 = TREE_TYPE (would_have_been);
2514
2515		      if (TREE_CODE (type) == ENUMERAL_TYPE
2516			  && (TYPE_MAIN_VARIANT (type)
2517			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2518			/* No warning if function asks for enum
2519			   and the actual arg is that enum type.  */
2520			;
2521		      else if (formal_prec != TYPE_PRECISION (type1))
2522			warning (OPT_Wconversion, "passing argument %d of %qE "
2523				 "with different width due to prototype",
2524				 argnum, rname);
2525		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2526			;
2527		      /* Don't complain if the formal parameter type
2528			 is an enum, because we can't tell now whether
2529			 the value was an enum--even the same enum.  */
2530		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2531			;
2532		      else if (TREE_CODE (val) == INTEGER_CST
2533			       && int_fits_type_p (val, type))
2534			/* Change in signedness doesn't matter
2535			   if a constant value is unaffected.  */
2536			;
2537		      /* If the value is extended from a narrower
2538			 unsigned type, it doesn't matter whether we
2539			 pass it as signed or unsigned; the value
2540			 certainly is the same either way.  */
2541		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2542			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2543			;
2544		      else if (TYPE_UNSIGNED (type))
2545			warning (OPT_Wconversion, "passing argument %d of %qE "
2546				 "as unsigned due to prototype",
2547				 argnum, rname);
2548		      else
2549			warning (OPT_Wconversion, "passing argument %d of %qE "
2550				 "as signed due to prototype", argnum, rname);
2551		    }
2552		}
2553
2554	      parmval = convert_for_assignment (type, val, ic_argpass,
2555						fundecl, function,
2556						parmnum + 1);
2557
2558	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2559		  && INTEGRAL_TYPE_P (type)
2560		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2561		parmval = default_conversion (parmval);
2562	    }
2563	  result = tree_cons (NULL_TREE, parmval, result);
2564	}
2565      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2566	       && (TYPE_PRECISION (TREE_TYPE (val))
2567		   < TYPE_PRECISION (double_type_node))
2568	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2569	/* Convert `float' to `double'.  */
2570	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2571      else if ((invalid_func_diag =
2572		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2573	{
2574	  error (invalid_func_diag);
2575	  return error_mark_node;
2576	}
2577      else
2578	/* Convert `short' and `char' to full-size `int'.  */
2579	result = tree_cons (NULL_TREE, default_conversion (val), result);
2580
2581      if (typetail)
2582	typetail = TREE_CHAIN (typetail);
2583    }
2584
2585  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2586    {
2587      error ("too few arguments to function %qE", function);
2588      return error_mark_node;
2589    }
2590
2591  return nreverse (result);
2592}
2593
2594/* This is the entry point used by the parser to build unary operators
2595   in the input.  CODE, a tree_code, specifies the unary operator, and
2596   ARG is the operand.  For unary plus, the C parser currently uses
2597   CONVERT_EXPR for code.  */
2598
2599struct c_expr
2600parser_build_unary_op (enum tree_code code, struct c_expr arg)
2601{
2602  struct c_expr result;
2603
2604  result.original_code = ERROR_MARK;
2605  result.value = build_unary_op (code, arg.value, 0);
2606  overflow_warning (result.value);
2607  return result;
2608}
2609
2610/* This is the entry point used by the parser to build binary operators
2611   in the input.  CODE, a tree_code, specifies the binary operator, and
2612   ARG1 and ARG2 are the operands.  In addition to constructing the
2613   expression, we check for operands that were written with other binary
2614   operators in a way that is likely to confuse the user.  */
2615
2616struct c_expr
2617parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2618			struct c_expr arg2)
2619{
2620  struct c_expr result;
2621
2622  enum tree_code code1 = arg1.original_code;
2623  enum tree_code code2 = arg2.original_code;
2624
2625  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2626  result.original_code = code;
2627
2628  if (TREE_CODE (result.value) == ERROR_MARK)
2629    return result;
2630
2631  /* Check for cases such as x+y<<z which users are likely
2632     to misinterpret.  */
2633  if (warn_parentheses)
2634    {
2635      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2636	{
2637	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2638	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2639	    warning (OPT_Wparentheses,
2640		     "suggest parentheses around + or - inside shift");
2641	}
2642
2643      if (code == TRUTH_ORIF_EXPR)
2644	{
2645	  if (code1 == TRUTH_ANDIF_EXPR
2646	      || code2 == TRUTH_ANDIF_EXPR)
2647	    warning (OPT_Wparentheses,
2648		     "suggest parentheses around && within ||");
2649	}
2650
2651      if (code == BIT_IOR_EXPR)
2652	{
2653	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2654	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2655	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2656	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2657	    warning (OPT_Wparentheses,
2658		     "suggest parentheses around arithmetic in operand of |");
2659	  /* Check cases like x|y==z */
2660	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2661	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2662	    warning (OPT_Wparentheses,
2663		     "suggest parentheses around comparison in operand of |");
2664	}
2665
2666      if (code == BIT_XOR_EXPR)
2667	{
2668	  if (code1 == BIT_AND_EXPR
2669	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2670	      || code2 == BIT_AND_EXPR
2671	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2672	    warning (OPT_Wparentheses,
2673		     "suggest parentheses around arithmetic in operand of ^");
2674	  /* Check cases like x^y==z */
2675	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2676	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2677	    warning (OPT_Wparentheses,
2678		     "suggest parentheses around comparison in operand of ^");
2679	}
2680
2681      if (code == BIT_AND_EXPR)
2682	{
2683	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2684	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2685	    warning (OPT_Wparentheses,
2686		     "suggest parentheses around + or - in operand of &");
2687	  /* Check cases like x&y==z */
2688	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2689	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2690	    warning (OPT_Wparentheses,
2691		     "suggest parentheses around comparison in operand of &");
2692	}
2693      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2694      if (TREE_CODE_CLASS (code) == tcc_comparison
2695	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2696	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2697	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2698		 "have their mathematical meaning");
2699
2700    }
2701
2702  /* Warn about comparisons against string literals, with the exception
2703     of testing for equality or inequality of a string literal with NULL.  */
2704  if (code == EQ_EXPR || code == NE_EXPR)
2705    {
2706      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2707	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2708	warning (OPT_Waddress,
2709                 "comparison with string literal results in unspecified behaviour");
2710    }
2711  else if (TREE_CODE_CLASS (code) == tcc_comparison
2712	   && (code1 == STRING_CST || code2 == STRING_CST))
2713    warning (OPT_Waddress,
2714             "comparison with string literal results in unspecified behaviour");
2715
2716  overflow_warning (result.value);
2717
2718  return result;
2719}
2720
2721/* Return a tree for the difference of pointers OP0 and OP1.
2722   The resulting tree has type int.  */
2723
2724static tree
2725pointer_diff (tree op0, tree op1)
2726{
2727  tree restype = ptrdiff_type_node;
2728
2729  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2730  tree con0, con1, lit0, lit1;
2731  tree orig_op1 = op1;
2732
2733  if (pedantic || warn_pointer_arith)
2734    {
2735      if (TREE_CODE (target_type) == VOID_TYPE)
2736	pedwarn ("pointer of type %<void *%> used in subtraction");
2737      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2738	pedwarn ("pointer to a function used in subtraction");
2739    }
2740
2741  /* If the conversion to ptrdiff_type does anything like widening or
2742     converting a partial to an integral mode, we get a convert_expression
2743     that is in the way to do any simplifications.
2744     (fold-const.c doesn't know that the extra bits won't be needed.
2745     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2746     different mode in place.)
2747     So first try to find a common term here 'by hand'; we want to cover
2748     at least the cases that occur in legal static initializers.  */
2749  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2750      && (TYPE_PRECISION (TREE_TYPE (op0))
2751	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2752    con0 = TREE_OPERAND (op0, 0);
2753  else
2754    con0 = op0;
2755  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2756      && (TYPE_PRECISION (TREE_TYPE (op1))
2757	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2758    con1 = TREE_OPERAND (op1, 0);
2759  else
2760    con1 = op1;
2761
2762  if (TREE_CODE (con0) == PLUS_EXPR)
2763    {
2764      lit0 = TREE_OPERAND (con0, 1);
2765      con0 = TREE_OPERAND (con0, 0);
2766    }
2767  else
2768    lit0 = integer_zero_node;
2769
2770  if (TREE_CODE (con1) == PLUS_EXPR)
2771    {
2772      lit1 = TREE_OPERAND (con1, 1);
2773      con1 = TREE_OPERAND (con1, 0);
2774    }
2775  else
2776    lit1 = integer_zero_node;
2777
2778  if (operand_equal_p (con0, con1, 0))
2779    {
2780      op0 = lit0;
2781      op1 = lit1;
2782    }
2783
2784
2785  /* First do the subtraction as integers;
2786     then drop through to build the divide operator.
2787     Do not do default conversions on the minus operator
2788     in case restype is a short type.  */
2789
2790  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2791			 convert (restype, op1), 0);
2792  /* This generates an error if op1 is pointer to incomplete type.  */
2793  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2794    error ("arithmetic on pointer to an incomplete type");
2795
2796  /* This generates an error if op0 is pointer to incomplete type.  */
2797  op1 = c_size_in_bytes (target_type);
2798
2799  /* Divide by the size, in easiest possible way.  */
2800  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2801}
2802
2803/* Construct and perhaps optimize a tree representation
2804   for a unary operation.  CODE, a tree_code, specifies the operation
2805   and XARG is the operand.
2806   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2807   the default promotions (such as from short to int).
2808   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2809   allows non-lvalues; this is only used to handle conversion of non-lvalue
2810   arrays to pointers in C99.  */
2811
2812tree
2813build_unary_op (enum tree_code code, tree xarg, int flag)
2814{
2815  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2816  tree arg = xarg;
2817  tree argtype = 0;
2818  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2819  tree val;
2820  int noconvert = flag;
2821  const char *invalid_op_diag;
2822
2823  if (typecode == ERROR_MARK)
2824    return error_mark_node;
2825  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2826    typecode = INTEGER_TYPE;
2827
2828  if ((invalid_op_diag
2829       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2830    {
2831      error (invalid_op_diag);
2832      return error_mark_node;
2833    }
2834
2835  switch (code)
2836    {
2837    case CONVERT_EXPR:
2838      /* This is used for unary plus, because a CONVERT_EXPR
2839	 is enough to prevent anybody from looking inside for
2840	 associativity, but won't generate any code.  */
2841      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2842	    || typecode == COMPLEX_TYPE
2843	    || typecode == VECTOR_TYPE))
2844	{
2845	  error ("wrong type argument to unary plus");
2846	  return error_mark_node;
2847	}
2848      else if (!noconvert)
2849	arg = default_conversion (arg);
2850      arg = non_lvalue (arg);
2851      break;
2852
2853    case NEGATE_EXPR:
2854      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2855	    || typecode == COMPLEX_TYPE
2856	    || typecode == VECTOR_TYPE))
2857	{
2858	  error ("wrong type argument to unary minus");
2859	  return error_mark_node;
2860	}
2861      else if (!noconvert)
2862	arg = default_conversion (arg);
2863      break;
2864
2865    case BIT_NOT_EXPR:
2866      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2867	{
2868	  if (!noconvert)
2869	    arg = default_conversion (arg);
2870	}
2871      else if (typecode == COMPLEX_TYPE)
2872	{
2873	  code = CONJ_EXPR;
2874	  if (pedantic)
2875	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2876	  if (!noconvert)
2877	    arg = default_conversion (arg);
2878	}
2879      else
2880	{
2881	  error ("wrong type argument to bit-complement");
2882	  return error_mark_node;
2883	}
2884      break;
2885
2886    case ABS_EXPR:
2887      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2888	{
2889	  error ("wrong type argument to abs");
2890	  return error_mark_node;
2891	}
2892      else if (!noconvert)
2893	arg = default_conversion (arg);
2894      break;
2895
2896    case CONJ_EXPR:
2897      /* Conjugating a real value is a no-op, but allow it anyway.  */
2898      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2899	    || typecode == COMPLEX_TYPE))
2900	{
2901	  error ("wrong type argument to conjugation");
2902	  return error_mark_node;
2903	}
2904      else if (!noconvert)
2905	arg = default_conversion (arg);
2906      break;
2907
2908    case TRUTH_NOT_EXPR:
2909      if (typecode != INTEGER_TYPE
2910	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2911	  && typecode != COMPLEX_TYPE)
2912	{
2913	  error ("wrong type argument to unary exclamation mark");
2914	  return error_mark_node;
2915	}
2916      arg = c_objc_common_truthvalue_conversion (arg);
2917      return invert_truthvalue (arg);
2918
2919    case REALPART_EXPR:
2920      if (TREE_CODE (arg) == COMPLEX_CST)
2921	return TREE_REALPART (arg);
2922      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2923	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2924      else
2925	return arg;
2926
2927    case IMAGPART_EXPR:
2928      if (TREE_CODE (arg) == COMPLEX_CST)
2929	return TREE_IMAGPART (arg);
2930      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2931	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2932      else
2933	return convert (TREE_TYPE (arg), integer_zero_node);
2934
2935    case PREINCREMENT_EXPR:
2936    case POSTINCREMENT_EXPR:
2937    case PREDECREMENT_EXPR:
2938    case POSTDECREMENT_EXPR:
2939
2940      /* Increment or decrement the real part of the value,
2941	 and don't change the imaginary part.  */
2942      if (typecode == COMPLEX_TYPE)
2943	{
2944	  tree real, imag;
2945
2946	  if (pedantic)
2947	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2948		     " on complex types");
2949
2950	  arg = stabilize_reference (arg);
2951	  real = build_unary_op (REALPART_EXPR, arg, 1);
2952	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2953	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2954			 build_unary_op (code, real, 1), imag);
2955	}
2956
2957      /* Report invalid types.  */
2958
2959      if (typecode != POINTER_TYPE
2960	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2961	{
2962	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2963	    error ("wrong type argument to increment");
2964	  else
2965	    error ("wrong type argument to decrement");
2966
2967	  return error_mark_node;
2968	}
2969
2970      {
2971	tree inc;
2972	tree result_type = TREE_TYPE (arg);
2973
2974	arg = get_unwidened (arg, 0);
2975	argtype = TREE_TYPE (arg);
2976
2977	/* Compute the increment.  */
2978
2979	if (typecode == POINTER_TYPE)
2980	  {
2981	    /* If pointer target is an undefined struct,
2982	       we just cannot know how to do the arithmetic.  */
2983	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2984	      {
2985		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2986		  error ("increment of pointer to unknown structure");
2987		else
2988		  error ("decrement of pointer to unknown structure");
2989	      }
2990	    else if ((pedantic || warn_pointer_arith)
2991		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2992			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2993	      {
2994		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2995		  pedwarn ("wrong type argument to increment");
2996		else
2997		  pedwarn ("wrong type argument to decrement");
2998	      }
2999
3000	    inc = c_size_in_bytes (TREE_TYPE (result_type));
3001	  }
3002	else
3003	  inc = integer_one_node;
3004
3005	inc = convert (argtype, inc);
3006
3007	/* Complain about anything else that is not a true lvalue.  */
3008	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3009				    || code == POSTINCREMENT_EXPR)
3010				   ? lv_increment
3011				   : lv_decrement)))
3012	  return error_mark_node;
3013
3014	/* Report a read-only lvalue.  */
3015	if (TREE_READONLY (arg))
3016	  {
3017	    readonly_error (arg,
3018			    ((code == PREINCREMENT_EXPR
3019			      || code == POSTINCREMENT_EXPR)
3020			     ? lv_increment : lv_decrement));
3021	    return error_mark_node;
3022	  }
3023
3024	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3025	  val = boolean_increment (code, arg);
3026	else
3027	  val = build2 (code, TREE_TYPE (arg), arg, inc);
3028	TREE_SIDE_EFFECTS (val) = 1;
3029	val = convert (result_type, val);
3030	if (TREE_CODE (val) != code)
3031	  TREE_NO_WARNING (val) = 1;
3032	return val;
3033      }
3034
3035    case ADDR_EXPR:
3036      /* Note that this operation never does default_conversion.  */
3037
3038      /* Let &* cancel out to simplify resulting code.  */
3039      if (TREE_CODE (arg) == INDIRECT_REF)
3040	{
3041	  /* Don't let this be an lvalue.  */
3042	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3043	    return non_lvalue (TREE_OPERAND (arg, 0));
3044	  return TREE_OPERAND (arg, 0);
3045	}
3046
3047      /* For &x[y], return x+y */
3048      if (TREE_CODE (arg) == ARRAY_REF)
3049	{
3050	  tree op0 = TREE_OPERAND (arg, 0);
3051	  if (!c_mark_addressable (op0))
3052	    return error_mark_node;
3053	  return build_binary_op (PLUS_EXPR,
3054				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3055				   ? array_to_pointer_conversion (op0)
3056				   : op0),
3057				  TREE_OPERAND (arg, 1), 1);
3058	}
3059
3060      /* Anything not already handled and not a true memory reference
3061	 or a non-lvalue array is an error.  */
3062      else if (typecode != FUNCTION_TYPE && !flag
3063	       && !lvalue_or_else (arg, lv_addressof))
3064	return error_mark_node;
3065
3066      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3067      argtype = TREE_TYPE (arg);
3068
3069      /* If the lvalue is const or volatile, merge that into the type
3070	 to which the address will point.  Note that you can't get a
3071	 restricted pointer by taking the address of something, so we
3072	 only have to deal with `const' and `volatile' here.  */
3073      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3074	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3075	  argtype = c_build_type_variant (argtype,
3076					  TREE_READONLY (arg),
3077					  TREE_THIS_VOLATILE (arg));
3078
3079      if (!c_mark_addressable (arg))
3080	return error_mark_node;
3081
3082      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3083		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3084
3085      argtype = build_pointer_type (argtype);
3086
3087      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3088	 when we have proper support for integer constant expressions.  */
3089      val = get_base_address (arg);
3090      if (val && TREE_CODE (val) == INDIRECT_REF
3091          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3092	{
3093	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3094
3095	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3096	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3097	}
3098
3099      val = build1 (ADDR_EXPR, argtype, arg);
3100
3101      return val;
3102
3103    default:
3104      gcc_unreachable ();
3105    }
3106
3107  if (argtype == 0)
3108    argtype = TREE_TYPE (arg);
3109  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3110				: fold_build1 (code, argtype, arg);
3111}
3112
3113/* Return nonzero if REF is an lvalue valid for this language.
3114   Lvalues can be assigned, unless their type has TYPE_READONLY.
3115   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3116
3117static int
3118lvalue_p (tree ref)
3119{
3120  enum tree_code code = TREE_CODE (ref);
3121
3122  switch (code)
3123    {
3124    case REALPART_EXPR:
3125    case IMAGPART_EXPR:
3126    case COMPONENT_REF:
3127      return lvalue_p (TREE_OPERAND (ref, 0));
3128
3129    case COMPOUND_LITERAL_EXPR:
3130    case STRING_CST:
3131      return 1;
3132
3133    case INDIRECT_REF:
3134    case ARRAY_REF:
3135    case VAR_DECL:
3136    case PARM_DECL:
3137    case RESULT_DECL:
3138    case ERROR_MARK:
3139      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3140	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3141
3142    case BIND_EXPR:
3143      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3144
3145    default:
3146      return 0;
3147    }
3148}
3149
3150/* Give an error for storing in something that is 'const'.  */
3151
3152static void
3153readonly_error (tree arg, enum lvalue_use use)
3154{
3155  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3156	      || use == lv_asm);
3157  /* Using this macro rather than (for example) arrays of messages
3158     ensures that all the format strings are checked at compile
3159     time.  */
3160#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3161				   : (use == lv_increment ? (I)		\
3162				   : (use == lv_decrement ? (D) : (AS))))
3163  if (TREE_CODE (arg) == COMPONENT_REF)
3164    {
3165      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3166	readonly_error (TREE_OPERAND (arg, 0), use);
3167      else
3168	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3169			     G_("increment of read-only member %qD"),
3170			     G_("decrement of read-only member %qD"),
3171			     G_("read-only member %qD used as %<asm%> output")),
3172	       TREE_OPERAND (arg, 1));
3173    }
3174  else if (TREE_CODE (arg) == VAR_DECL)
3175    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3176			 G_("increment of read-only variable %qD"),
3177			 G_("decrement of read-only variable %qD"),
3178			 G_("read-only variable %qD used as %<asm%> output")),
3179	   arg);
3180  else
3181    error (READONLY_MSG (G_("assignment of read-only location"),
3182			 G_("increment of read-only location"),
3183			 G_("decrement of read-only location"),
3184			 G_("read-only location used as %<asm%> output")));
3185}
3186
3187
3188/* Return nonzero if REF is an lvalue valid for this language;
3189   otherwise, print an error message and return zero.  USE says
3190   how the lvalue is being used and so selects the error message.  */
3191
3192static int
3193lvalue_or_else (tree ref, enum lvalue_use use)
3194{
3195  int win = lvalue_p (ref);
3196
3197  if (!win)
3198    lvalue_error (use);
3199
3200  return win;
3201}
3202
3203/* Mark EXP saying that we need to be able to take the
3204   address of it; it should not be allocated in a register.
3205   Returns true if successful.  */
3206
3207bool
3208c_mark_addressable (tree exp)
3209{
3210  tree x = exp;
3211
3212  while (1)
3213    switch (TREE_CODE (x))
3214      {
3215      case COMPONENT_REF:
3216	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3217	  {
3218	    error
3219	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3220	    return false;
3221	  }
3222
3223	/* ... fall through ...  */
3224
3225      case ADDR_EXPR:
3226      case ARRAY_REF:
3227      case REALPART_EXPR:
3228      case IMAGPART_EXPR:
3229	x = TREE_OPERAND (x, 0);
3230	break;
3231
3232      case COMPOUND_LITERAL_EXPR:
3233      case CONSTRUCTOR:
3234	TREE_ADDRESSABLE (x) = 1;
3235	return true;
3236
3237      case VAR_DECL:
3238      case CONST_DECL:
3239      case PARM_DECL:
3240      case RESULT_DECL:
3241	if (C_DECL_REGISTER (x)
3242	    && DECL_NONLOCAL (x))
3243	  {
3244	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3245	      {
3246		error
3247		  ("global register variable %qD used in nested function", x);
3248		return false;
3249	      }
3250	    pedwarn ("register variable %qD used in nested function", x);
3251	  }
3252	else if (C_DECL_REGISTER (x))
3253	  {
3254	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3255	      error ("address of global register variable %qD requested", x);
3256	    else
3257	      error ("address of register variable %qD requested", x);
3258	    return false;
3259	  }
3260
3261	/* drops in */
3262      case FUNCTION_DECL:
3263	TREE_ADDRESSABLE (x) = 1;
3264	/* drops out */
3265      default:
3266	return true;
3267    }
3268}
3269
3270/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3271
3272tree
3273build_conditional_expr (tree ifexp, tree op1, tree op2)
3274{
3275  tree type1;
3276  tree type2;
3277  enum tree_code code1;
3278  enum tree_code code2;
3279  tree result_type = NULL;
3280  tree orig_op1 = op1, orig_op2 = op2;
3281
3282  /* Promote both alternatives.  */
3283
3284  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3285    op1 = default_conversion (op1);
3286  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3287    op2 = default_conversion (op2);
3288
3289  if (TREE_CODE (ifexp) == ERROR_MARK
3290      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3291      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3292    return error_mark_node;
3293
3294  type1 = TREE_TYPE (op1);
3295  code1 = TREE_CODE (type1);
3296  type2 = TREE_TYPE (op2);
3297  code2 = TREE_CODE (type2);
3298
3299  /* C90 does not permit non-lvalue arrays in conditional expressions.
3300     In C99 they will be pointers by now.  */
3301  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3302    {
3303      error ("non-lvalue array in conditional expression");
3304      return error_mark_node;
3305    }
3306
3307  /* Quickly detect the usual case where op1 and op2 have the same type
3308     after promotion.  */
3309  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3310    {
3311      if (type1 == type2)
3312	result_type = type1;
3313      else
3314	result_type = TYPE_MAIN_VARIANT (type1);
3315    }
3316  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3317	    || code1 == COMPLEX_TYPE)
3318	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3319	       || code2 == COMPLEX_TYPE))
3320    {
3321      result_type = c_common_type (type1, type2);
3322
3323      /* If -Wsign-compare, warn here if type1 and type2 have
3324	 different signedness.  We'll promote the signed to unsigned
3325	 and later code won't know it used to be different.
3326	 Do this check on the original types, so that explicit casts
3327	 will be considered, but default promotions won't.  */
3328      if (warn_sign_compare && !skip_evaluation)
3329	{
3330	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3331	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3332
3333	  if (unsigned_op1 ^ unsigned_op2)
3334	    {
3335	      bool ovf;
3336
3337	      /* Do not warn if the result type is signed, since the
3338		 signed type will only be chosen if it can represent
3339		 all the values of the unsigned type.  */
3340	      if (!TYPE_UNSIGNED (result_type))
3341		/* OK */;
3342	      /* Do not warn if the signed quantity is an unsuffixed
3343		 integer literal (or some static constant expression
3344		 involving such literals) and it is non-negative.  */
3345	      else if ((unsigned_op2
3346			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3347		       || (unsigned_op1
3348			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3349		/* OK */;
3350	      else
3351		warning (0, "signed and unsigned type in conditional expression");
3352	    }
3353	}
3354    }
3355  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3356    {
3357      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3358	pedwarn ("ISO C forbids conditional expr with only one void side");
3359      result_type = void_type_node;
3360    }
3361  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3362    {
3363      if (comp_target_types (type1, type2))
3364	result_type = common_pointer_type (type1, type2);
3365      else if (null_pointer_constant_p (orig_op1))
3366	result_type = qualify_type (type2, type1);
3367      else if (null_pointer_constant_p (orig_op2))
3368	result_type = qualify_type (type1, type2);
3369      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3370	{
3371	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3372	    pedwarn ("ISO C forbids conditional expr between "
3373		     "%<void *%> and function pointer");
3374	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3375							  TREE_TYPE (type2)));
3376	}
3377      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3378	{
3379	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3380	    pedwarn ("ISO C forbids conditional expr between "
3381		     "%<void *%> and function pointer");
3382	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3383							  TREE_TYPE (type1)));
3384	}
3385      else
3386	{
3387	  pedwarn ("pointer type mismatch in conditional expression");
3388	  result_type = build_pointer_type (void_type_node);
3389	}
3390    }
3391  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3392    {
3393      if (!null_pointer_constant_p (orig_op2))
3394	pedwarn ("pointer/integer type mismatch in conditional expression");
3395      else
3396	{
3397	  op2 = null_pointer_node;
3398	}
3399      result_type = type1;
3400    }
3401  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3402    {
3403      if (!null_pointer_constant_p (orig_op1))
3404	pedwarn ("pointer/integer type mismatch in conditional expression");
3405      else
3406	{
3407	  op1 = null_pointer_node;
3408	}
3409      result_type = type2;
3410    }
3411
3412  if (!result_type)
3413    {
3414      if (flag_cond_mismatch)
3415	result_type = void_type_node;
3416      else
3417	{
3418	  error ("type mismatch in conditional expression");
3419	  return error_mark_node;
3420	}
3421    }
3422
3423  /* Merge const and volatile flags of the incoming types.  */
3424  result_type
3425    = build_type_variant (result_type,
3426			  TREE_READONLY (op1) || TREE_READONLY (op2),
3427			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3428
3429  if (result_type != TREE_TYPE (op1))
3430    op1 = convert_and_check (result_type, op1);
3431  if (result_type != TREE_TYPE (op2))
3432    op2 = convert_and_check (result_type, op2);
3433
3434  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3435}
3436
3437/* Return a compound expression that performs two expressions and
3438   returns the value of the second of them.  */
3439
3440tree
3441build_compound_expr (tree expr1, tree expr2)
3442{
3443  if (!TREE_SIDE_EFFECTS (expr1))
3444    {
3445      /* The left-hand operand of a comma expression is like an expression
3446	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3447	 any side-effects, unless it was explicitly cast to (void).  */
3448      if (warn_unused_value)
3449	{
3450	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3451	      && (TREE_CODE (expr1) == NOP_EXPR
3452		  || TREE_CODE (expr1) == CONVERT_EXPR))
3453	    ; /* (void) a, b */
3454	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3455		   && TREE_CODE (expr1) == COMPOUND_EXPR
3456		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3457		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3458	    ; /* (void) a, (void) b, c */
3459	  else
3460	    warning (0, "left-hand operand of comma expression has no effect");
3461	}
3462    }
3463
3464  /* With -Wunused, we should also warn if the left-hand operand does have
3465     side-effects, but computes a value which is not used.  For example, in
3466     `foo() + bar(), baz()' the result of the `+' operator is not used,
3467     so we should issue a warning.  */
3468  else if (warn_unused_value)
3469    warn_if_unused_value (expr1, input_location);
3470
3471  if (expr2 == error_mark_node)
3472    return error_mark_node;
3473
3474  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3475}
3476
3477/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3478
3479tree
3480build_c_cast (tree type, tree expr)
3481{
3482  tree value = expr;
3483
3484  if (type == error_mark_node || expr == error_mark_node)
3485    return error_mark_node;
3486
3487  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3488     only in <protocol> qualifications.  But when constructing cast expressions,
3489     the protocols do matter and must be kept around.  */
3490  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3491    return build1 (NOP_EXPR, type, expr);
3492
3493  type = TYPE_MAIN_VARIANT (type);
3494
3495  if (TREE_CODE (type) == ARRAY_TYPE)
3496    {
3497      error ("cast specifies array type");
3498      return error_mark_node;
3499    }
3500
3501  if (TREE_CODE (type) == FUNCTION_TYPE)
3502    {
3503      error ("cast specifies function type");
3504      return error_mark_node;
3505    }
3506
3507  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3508    {
3509      if (pedantic)
3510	{
3511	  if (TREE_CODE (type) == RECORD_TYPE
3512	      || TREE_CODE (type) == UNION_TYPE)
3513	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3514	}
3515    }
3516  else if (TREE_CODE (type) == UNION_TYPE)
3517    {
3518      tree field;
3519
3520      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3521	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3522		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3523	  break;
3524
3525      if (field)
3526	{
3527	  tree t;
3528
3529	  if (pedantic)
3530	    pedwarn ("ISO C forbids casts to union type");
3531	  t = digest_init (type,
3532			   build_constructor_single (type, field, value),
3533			   true, 0);
3534	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3535	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3536	  return t;
3537	}
3538      error ("cast to union type from type not present in union");
3539      return error_mark_node;
3540    }
3541  else
3542    {
3543      tree otype, ovalue;
3544
3545      if (type == void_type_node)
3546	return build1 (CONVERT_EXPR, type, value);
3547
3548      otype = TREE_TYPE (value);
3549
3550      /* Optionally warn about potentially worrisome casts.  */
3551
3552      if (warn_cast_qual
3553	  && TREE_CODE (type) == POINTER_TYPE
3554	  && TREE_CODE (otype) == POINTER_TYPE)
3555	{
3556	  tree in_type = type;
3557	  tree in_otype = otype;
3558	  int added = 0;
3559	  int discarded = 0;
3560
3561	  /* Check that the qualifiers on IN_TYPE are a superset of
3562	     the qualifiers of IN_OTYPE.  The outermost level of
3563	     POINTER_TYPE nodes is uninteresting and we stop as soon
3564	     as we hit a non-POINTER_TYPE node on either type.  */
3565	  do
3566	    {
3567	      in_otype = TREE_TYPE (in_otype);
3568	      in_type = TREE_TYPE (in_type);
3569
3570	      /* GNU C allows cv-qualified function types.  'const'
3571		 means the function is very pure, 'volatile' means it
3572		 can't return.  We need to warn when such qualifiers
3573		 are added, not when they're taken away.  */
3574	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3575		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3576		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3577	      else
3578		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3579	    }
3580	  while (TREE_CODE (in_type) == POINTER_TYPE
3581		 && TREE_CODE (in_otype) == POINTER_TYPE);
3582
3583	  if (added)
3584	    warning (0, "cast adds new qualifiers to function type");
3585
3586	  if (discarded)
3587	    /* There are qualifiers present in IN_OTYPE that are not
3588	       present in IN_TYPE.  */
3589	    warning (0, "cast discards qualifiers from pointer target type");
3590	}
3591
3592      /* Warn about possible alignment problems.  */
3593      if (STRICT_ALIGNMENT
3594	  && TREE_CODE (type) == POINTER_TYPE
3595	  && TREE_CODE (otype) == POINTER_TYPE
3596	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3597	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3598	  /* Don't warn about opaque types, where the actual alignment
3599	     restriction is unknown.  */
3600	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3601		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3602	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3603	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3604	warning (OPT_Wcast_align,
3605		 "cast increases required alignment of target type");
3606
3607      if (TREE_CODE (type) == INTEGER_TYPE
3608	  && TREE_CODE (otype) == POINTER_TYPE
3609	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3610      /* Unlike conversion of integers to pointers, where the
3611         warning is disabled for converting constants because
3612         of cases such as SIG_*, warn about converting constant
3613         pointers to integers. In some cases it may cause unwanted
3614         sign extension, and a warning is appropriate.  */
3615	warning (OPT_Wpointer_to_int_cast,
3616		 "cast from pointer to integer of different size");
3617
3618      if (TREE_CODE (value) == CALL_EXPR
3619	  && TREE_CODE (type) != TREE_CODE (otype))
3620	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3621		 "to non-matching type %qT", otype, type);
3622
3623      if (TREE_CODE (type) == POINTER_TYPE
3624	  && TREE_CODE (otype) == INTEGER_TYPE
3625	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3626	  /* Don't warn about converting any constant.  */
3627	  && !TREE_CONSTANT (value))
3628	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3629		 "of different size");
3630
3631      strict_aliasing_warning (otype, type, expr);
3632
3633      /* If pedantic, warn for conversions between function and object
3634	 pointer types, except for converting a null pointer constant
3635	 to function pointer type.  */
3636      if (pedantic
3637	  && TREE_CODE (type) == POINTER_TYPE
3638	  && TREE_CODE (otype) == POINTER_TYPE
3639	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3640	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3641	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3642
3643      if (pedantic
3644	  && TREE_CODE (type) == POINTER_TYPE
3645	  && TREE_CODE (otype) == POINTER_TYPE
3646	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3647	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3648	  && !null_pointer_constant_p (value))
3649	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3650
3651      ovalue = value;
3652      value = convert (type, value);
3653
3654      /* Ignore any integer overflow caused by the cast.  */
3655      if (TREE_CODE (value) == INTEGER_CST)
3656	{
3657	  if (CONSTANT_CLASS_P (ovalue)
3658	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3659	    {
3660	      /* Avoid clobbering a shared constant.  */
3661	      value = copy_node (value);
3662	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3663	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3664	    }
3665	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3666	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3667	    value = build_int_cst_wide (TREE_TYPE (value),
3668					TREE_INT_CST_LOW (value),
3669					TREE_INT_CST_HIGH (value));
3670	}
3671    }
3672
3673  /* Don't let a cast be an lvalue.  */
3674  if (value == expr)
3675    value = non_lvalue (value);
3676
3677  return value;
3678}
3679
3680/* Interpret a cast of expression EXPR to type TYPE.  */
3681tree
3682c_cast_expr (struct c_type_name *type_name, tree expr)
3683{
3684  tree type;
3685  int saved_wsp = warn_strict_prototypes;
3686
3687  /* This avoids warnings about unprototyped casts on
3688     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3689  if (TREE_CODE (expr) == INTEGER_CST)
3690    warn_strict_prototypes = 0;
3691  type = groktypename (type_name);
3692  warn_strict_prototypes = saved_wsp;
3693
3694  return build_c_cast (type, expr);
3695}
3696
3697/* Build an assignment expression of lvalue LHS from value RHS.
3698   MODIFYCODE is the code for a binary operator that we use
3699   to combine the old value of LHS with RHS to get the new value.
3700   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3701
3702tree
3703build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3704{
3705  tree result;
3706  tree newrhs;
3707  tree lhstype = TREE_TYPE (lhs);
3708  tree olhstype = lhstype;
3709
3710  /* Types that aren't fully specified cannot be used in assignments.  */
3711  lhs = require_complete_type (lhs);
3712
3713  /* Avoid duplicate error messages from operands that had errors.  */
3714  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3715    return error_mark_node;
3716
3717  if (!lvalue_or_else (lhs, lv_assign))
3718    return error_mark_node;
3719
3720  STRIP_TYPE_NOPS (rhs);
3721
3722  newrhs = rhs;
3723
3724  /* If a binary op has been requested, combine the old LHS value with the RHS
3725     producing the value we should actually store into the LHS.  */
3726
3727  if (modifycode != NOP_EXPR)
3728    {
3729      lhs = stabilize_reference (lhs);
3730      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3731    }
3732
3733  /* Give an error for storing in something that is 'const'.  */
3734
3735  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3736      || ((TREE_CODE (lhstype) == RECORD_TYPE
3737	   || TREE_CODE (lhstype) == UNION_TYPE)
3738	  && C_TYPE_FIELDS_READONLY (lhstype)))
3739    {
3740      readonly_error (lhs, lv_assign);
3741      return error_mark_node;
3742    }
3743
3744  /* If storing into a structure or union member,
3745     it has probably been given type `int'.
3746     Compute the type that would go with
3747     the actual amount of storage the member occupies.  */
3748
3749  if (TREE_CODE (lhs) == COMPONENT_REF
3750      && (TREE_CODE (lhstype) == INTEGER_TYPE
3751	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3752	  || TREE_CODE (lhstype) == REAL_TYPE
3753	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3754    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3755
3756  /* If storing in a field that is in actuality a short or narrower than one,
3757     we must store in the field in its actual type.  */
3758
3759  if (lhstype != TREE_TYPE (lhs))
3760    {
3761      lhs = copy_node (lhs);
3762      TREE_TYPE (lhs) = lhstype;
3763    }
3764
3765  /* Convert new value to destination type.  */
3766
3767  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3768				   NULL_TREE, NULL_TREE, 0);
3769  if (TREE_CODE (newrhs) == ERROR_MARK)
3770    return error_mark_node;
3771
3772  /* Emit ObjC write barrier, if necessary.  */
3773  if (c_dialect_objc () && flag_objc_gc)
3774    {
3775      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3776      if (result)
3777	return result;
3778    }
3779
3780  /* Scan operands.  */
3781
3782  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3783  TREE_SIDE_EFFECTS (result) = 1;
3784
3785  /* If we got the LHS in a different type for storing in,
3786     convert the result back to the nominal type of LHS
3787     so that the value we return always has the same type
3788     as the LHS argument.  */
3789
3790  if (olhstype == TREE_TYPE (result))
3791    return result;
3792  return convert_for_assignment (olhstype, result, ic_assign,
3793				 NULL_TREE, NULL_TREE, 0);
3794}
3795
3796/* Convert value RHS to type TYPE as preparation for an assignment
3797   to an lvalue of type TYPE.
3798   The real work of conversion is done by `convert'.
3799   The purpose of this function is to generate error messages
3800   for assignments that are not allowed in C.
3801   ERRTYPE says whether it is argument passing, assignment,
3802   initialization or return.
3803
3804   FUNCTION is a tree for the function being called.
3805   PARMNUM is the number of the argument, for printing in error messages.  */
3806
3807static tree
3808convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3809			tree fundecl, tree function, int parmnum)
3810{
3811  enum tree_code codel = TREE_CODE (type);
3812  tree rhstype;
3813  enum tree_code coder;
3814  tree rname = NULL_TREE;
3815  bool objc_ok = false;
3816
3817  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3818    {
3819      tree selector;
3820      /* Change pointer to function to the function itself for
3821	 diagnostics.  */
3822      if (TREE_CODE (function) == ADDR_EXPR
3823	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3824	function = TREE_OPERAND (function, 0);
3825
3826      /* Handle an ObjC selector specially for diagnostics.  */
3827      selector = objc_message_selector ();
3828      rname = function;
3829      if (selector && parmnum > 2)
3830	{
3831	  rname = selector;
3832	  parmnum -= 2;
3833	}
3834    }
3835
3836  /* This macro is used to emit diagnostics to ensure that all format
3837     strings are complete sentences, visible to gettext and checked at
3838     compile time.  */
3839#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3840  do {						\
3841    switch (errtype)				\
3842      {						\
3843      case ic_argpass:				\
3844	pedwarn (AR, parmnum, rname);		\
3845	break;					\
3846      case ic_argpass_nonproto:			\
3847	warning (0, AR, parmnum, rname);		\
3848	break;					\
3849      case ic_assign:				\
3850	pedwarn (AS);				\
3851	break;					\
3852      case ic_init:				\
3853	pedwarn (IN);				\
3854	break;					\
3855      case ic_return:				\
3856	pedwarn (RE);				\
3857	break;					\
3858      default:					\
3859	gcc_unreachable ();			\
3860      }						\
3861  } while (0)
3862
3863  STRIP_TYPE_NOPS (rhs);
3864
3865  if (optimize && TREE_CODE (rhs) == VAR_DECL
3866	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3867    rhs = decl_constant_value_for_broken_optimization (rhs);
3868
3869  rhstype = TREE_TYPE (rhs);
3870  coder = TREE_CODE (rhstype);
3871
3872  if (coder == ERROR_MARK)
3873    return error_mark_node;
3874
3875  if (c_dialect_objc ())
3876    {
3877      int parmno;
3878
3879      switch (errtype)
3880	{
3881	case ic_return:
3882	  parmno = 0;
3883	  break;
3884
3885	case ic_assign:
3886	  parmno = -1;
3887	  break;
3888
3889	case ic_init:
3890	  parmno = -2;
3891	  break;
3892
3893	default:
3894	  parmno = parmnum;
3895	  break;
3896	}
3897
3898      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3899    }
3900
3901  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3902    {
3903      overflow_warning (rhs);
3904      return rhs;
3905    }
3906
3907  if (coder == VOID_TYPE)
3908    {
3909      /* Except for passing an argument to an unprototyped function,
3910	 this is a constraint violation.  When passing an argument to
3911	 an unprototyped function, it is compile-time undefined;
3912	 making it a constraint in that case was rejected in
3913	 DR#252.  */
3914      error ("void value not ignored as it ought to be");
3915      return error_mark_node;
3916    }
3917  /* A type converts to a reference to it.
3918     This code doesn't fully support references, it's just for the
3919     special case of va_start and va_copy.  */
3920  if (codel == REFERENCE_TYPE
3921      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3922    {
3923      if (!lvalue_p (rhs))
3924	{
3925	  error ("cannot pass rvalue to reference parameter");
3926	  return error_mark_node;
3927	}
3928      if (!c_mark_addressable (rhs))
3929	return error_mark_node;
3930      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3931
3932      /* We already know that these two types are compatible, but they
3933	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3934	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3935	 likely to be va_list, a typedef to __builtin_va_list, which
3936	 is different enough that it will cause problems later.  */
3937      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3938	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3939
3940      rhs = build1 (NOP_EXPR, type, rhs);
3941      return rhs;
3942    }
3943  /* Some types can interconvert without explicit casts.  */
3944  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3945	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3946    return convert (type, rhs);
3947  /* Arithmetic types all interconvert, and enum is treated like int.  */
3948  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3949	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3950	    || codel == BOOLEAN_TYPE)
3951	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3952	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3953	       || coder == BOOLEAN_TYPE))
3954    return convert_and_check (type, rhs);
3955
3956  /* Aggregates in different TUs might need conversion.  */
3957  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3958      && codel == coder
3959      && comptypes (type, rhstype))
3960    return convert_and_check (type, rhs);
3961
3962  /* Conversion to a transparent union from its member types.
3963     This applies only to function arguments.  */
3964  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3965      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3966    {
3967      tree memb, marginal_memb = NULL_TREE;
3968
3969      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3970	{
3971	  tree memb_type = TREE_TYPE (memb);
3972
3973	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3974			 TYPE_MAIN_VARIANT (rhstype)))
3975	    break;
3976
3977	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3978	    continue;
3979
3980	  if (coder == POINTER_TYPE)
3981	    {
3982	      tree ttl = TREE_TYPE (memb_type);
3983	      tree ttr = TREE_TYPE (rhstype);
3984
3985	      /* Any non-function converts to a [const][volatile] void *
3986		 and vice versa; otherwise, targets must be the same.
3987		 Meanwhile, the lhs target must have all the qualifiers of
3988		 the rhs.  */
3989	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3990		  || comp_target_types (memb_type, rhstype))
3991		{
3992		  /* If this type won't generate any warnings, use it.  */
3993		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3994		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3995			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3996			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3997			     == TYPE_QUALS (ttr))
3998			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3999			     == TYPE_QUALS (ttl))))
4000		    break;
4001
4002		  /* Keep looking for a better type, but remember this one.  */
4003		  if (!marginal_memb)
4004		    marginal_memb = memb;
4005		}
4006	    }
4007
4008	  /* Can convert integer zero to any pointer type.  */
4009	  if (null_pointer_constant_p (rhs))
4010	    {
4011	      rhs = null_pointer_node;
4012	      break;
4013	    }
4014	}
4015
4016      if (memb || marginal_memb)
4017	{
4018	  if (!memb)
4019	    {
4020	      /* We have only a marginally acceptable member type;
4021		 it needs a warning.  */
4022	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4023	      tree ttr = TREE_TYPE (rhstype);
4024
4025	      /* Const and volatile mean something different for function
4026		 types, so the usual warnings are not appropriate.  */
4027	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4028		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4029		{
4030		  /* Because const and volatile on functions are
4031		     restrictions that say the function will not do
4032		     certain things, it is okay to use a const or volatile
4033		     function where an ordinary one is wanted, but not
4034		     vice-versa.  */
4035		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4036		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4037					    "makes qualified function "
4038					    "pointer from unqualified"),
4039					 G_("assignment makes qualified "
4040					    "function pointer from "
4041					    "unqualified"),
4042					 G_("initialization makes qualified "
4043					    "function pointer from "
4044					    "unqualified"),
4045					 G_("return makes qualified function "
4046					    "pointer from unqualified"));
4047		}
4048	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4049		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4050					"qualifiers from pointer target type"),
4051				     G_("assignment discards qualifiers "
4052					"from pointer target type"),
4053				     G_("initialization discards qualifiers "
4054					"from pointer target type"),
4055				     G_("return discards qualifiers from "
4056					"pointer target type"));
4057
4058	      memb = marginal_memb;
4059	    }
4060
4061	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4062	    pedwarn ("ISO C prohibits argument conversion to union type");
4063
4064	  return build_constructor_single (type, memb, rhs);
4065	}
4066    }
4067
4068  /* Conversions among pointers */
4069  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4070	   && (coder == codel))
4071    {
4072      tree ttl = TREE_TYPE (type);
4073      tree ttr = TREE_TYPE (rhstype);
4074      tree mvl = ttl;
4075      tree mvr = ttr;
4076      bool is_opaque_pointer;
4077      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4078
4079      if (TREE_CODE (mvl) != ARRAY_TYPE)
4080	mvl = TYPE_MAIN_VARIANT (mvl);
4081      if (TREE_CODE (mvr) != ARRAY_TYPE)
4082	mvr = TYPE_MAIN_VARIANT (mvr);
4083      /* Opaque pointers are treated like void pointers.  */
4084      is_opaque_pointer = (targetm.vector_opaque_p (type)
4085			   || targetm.vector_opaque_p (rhstype))
4086	&& TREE_CODE (ttl) == VECTOR_TYPE
4087	&& TREE_CODE (ttr) == VECTOR_TYPE;
4088
4089      /* C++ does not allow the implicit conversion void* -> T*.  However,
4090	 for the purpose of reducing the number of false positives, we
4091	 tolerate the special case of
4092
4093		int *p = NULL;
4094
4095	 where NULL is typically defined in C to be '(void *) 0'.  */
4096      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4097	warning (OPT_Wc___compat, "request for implicit conversion from "
4098		 "%qT to %qT not permitted in C++", rhstype, type);
4099
4100      /* Check if the right-hand side has a format attribute but the
4101	 left-hand side doesn't.  */
4102      if (warn_missing_format_attribute
4103	  && check_missing_format_attribute (type, rhstype))
4104	{
4105	  switch (errtype)
4106	  {
4107	  case ic_argpass:
4108	  case ic_argpass_nonproto:
4109	    warning (OPT_Wmissing_format_attribute,
4110		     "argument %d of %qE might be "
4111		     "a candidate for a format attribute",
4112		     parmnum, rname);
4113	    break;
4114	  case ic_assign:
4115	    warning (OPT_Wmissing_format_attribute,
4116		     "assignment left-hand side might be "
4117		     "a candidate for a format attribute");
4118	    break;
4119	  case ic_init:
4120	    warning (OPT_Wmissing_format_attribute,
4121		     "initialization left-hand side might be "
4122		     "a candidate for a format attribute");
4123	    break;
4124	  case ic_return:
4125	    warning (OPT_Wmissing_format_attribute,
4126		     "return type might be "
4127		     "a candidate for a format attribute");
4128	    break;
4129	  default:
4130	    gcc_unreachable ();
4131	  }
4132	}
4133
4134      /* Any non-function converts to a [const][volatile] void *
4135	 and vice versa; otherwise, targets must be the same.
4136	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4137      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4138	  || (target_cmp = comp_target_types (type, rhstype))
4139	  || is_opaque_pointer
4140	  || (c_common_unsigned_type (mvl)
4141	      == c_common_unsigned_type (mvr)))
4142	{
4143	  if (pedantic
4144	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4145		  ||
4146		  (VOID_TYPE_P (ttr)
4147		   && !null_pointer_constant_p (rhs)
4148		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4149	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4150				    "%qE between function pointer "
4151				    "and %<void *%>"),
4152				 G_("ISO C forbids assignment between "
4153				    "function pointer and %<void *%>"),
4154				 G_("ISO C forbids initialization between "
4155				    "function pointer and %<void *%>"),
4156				 G_("ISO C forbids return between function "
4157				    "pointer and %<void *%>"));
4158	  /* Const and volatile mean something different for function types,
4159	     so the usual warnings are not appropriate.  */
4160	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4161		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4162	    {
4163	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4164		{
4165		  /* Types differing only by the presence of the 'volatile'
4166		     qualifier are acceptable if the 'volatile' has been added
4167		     in by the Objective-C EH machinery.  */
4168		  if (!objc_type_quals_match (ttl, ttr))
4169		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4170					    "qualifiers from pointer target type"),
4171					 G_("assignment discards qualifiers "
4172					    "from pointer target type"),
4173					 G_("initialization discards qualifiers "
4174					    "from pointer target type"),
4175					 G_("return discards qualifiers from "
4176					    "pointer target type"));
4177		}
4178	      /* If this is not a case of ignoring a mismatch in signedness,
4179		 no warning.  */
4180	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4181		       || target_cmp)
4182		;
4183	      /* If there is a mismatch, do warn.  */
4184	      else if (warn_pointer_sign)
4185		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4186					"%d of %qE differ in signedness"),
4187				     G_("pointer targets in assignment "
4188					"differ in signedness"),
4189				     G_("pointer targets in initialization "
4190					"differ in signedness"),
4191				     G_("pointer targets in return differ "
4192					"in signedness"));
4193	    }
4194	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4195		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4196	    {
4197	      /* Because const and volatile on functions are restrictions
4198		 that say the function will not do certain things,
4199		 it is okay to use a const or volatile function
4200		 where an ordinary one is wanted, but not vice-versa.  */
4201	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4202		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4203					"qualified function pointer "
4204					"from unqualified"),
4205				     G_("assignment makes qualified function "
4206					"pointer from unqualified"),
4207				     G_("initialization makes qualified "
4208					"function pointer from unqualified"),
4209				     G_("return makes qualified function "
4210					"pointer from unqualified"));
4211	    }
4212	}
4213      else
4214	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4215	if (!objc_ok)
4216	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4217				  "incompatible pointer type"),
4218			       G_("assignment from incompatible pointer type"),
4219			       G_("initialization from incompatible "
4220				  "pointer type"),
4221			       G_("return from incompatible pointer type"));
4222
4223      return convert (type, rhs);
4224    }
4225  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4226    {
4227      /* ??? This should not be an error when inlining calls to
4228	 unprototyped functions.  */
4229      error ("invalid use of non-lvalue array");
4230      return error_mark_node;
4231    }
4232  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4233    {
4234      /* An explicit constant 0 can convert to a pointer,
4235	 or one that results from arithmetic, even including
4236	 a cast to integer type.  */
4237      if (!null_pointer_constant_p (rhs))
4238	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4239				"pointer from integer without a cast"),
4240			     G_("assignment makes pointer from integer "
4241				"without a cast"),
4242			     G_("initialization makes pointer from "
4243				"integer without a cast"),
4244			     G_("return makes pointer from integer "
4245				"without a cast"));
4246
4247      return convert (type, rhs);
4248    }
4249  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4250    {
4251      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4252			      "from pointer without a cast"),
4253			   G_("assignment makes integer from pointer "
4254			      "without a cast"),
4255			   G_("initialization makes integer from pointer "
4256			      "without a cast"),
4257			   G_("return makes integer from pointer "
4258			      "without a cast"));
4259      return convert (type, rhs);
4260    }
4261  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4262    return convert (type, rhs);
4263
4264  switch (errtype)
4265    {
4266    case ic_argpass:
4267    case ic_argpass_nonproto:
4268      /* ??? This should not be an error when inlining calls to
4269	 unprototyped functions.  */
4270      error ("incompatible type for argument %d of %qE", parmnum, rname);
4271      break;
4272    case ic_assign:
4273      error ("incompatible types in assignment");
4274      break;
4275    case ic_init:
4276      error ("incompatible types in initialization");
4277      break;
4278    case ic_return:
4279      error ("incompatible types in return");
4280      break;
4281    default:
4282      gcc_unreachable ();
4283    }
4284
4285  return error_mark_node;
4286}
4287
4288/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4289   is used for error and warning reporting and indicates which argument
4290   is being processed.  */
4291
4292tree
4293c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4294{
4295  tree ret, type;
4296
4297  /* If FN was prototyped at the call site, the value has been converted
4298     already in convert_arguments.
4299     However, we might see a prototype now that was not in place when
4300     the function call was seen, so check that the VALUE actually matches
4301     PARM before taking an early exit.  */
4302  if (!value
4303      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4304	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4305	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4306    return value;
4307
4308  type = TREE_TYPE (parm);
4309  ret = convert_for_assignment (type, value,
4310				ic_argpass_nonproto, fn,
4311				fn, argnum);
4312  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4313      && INTEGRAL_TYPE_P (type)
4314      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4315    ret = default_conversion (ret);
4316  return ret;
4317}
4318
4319/* If VALUE is a compound expr all of whose expressions are constant, then
4320   return its value.  Otherwise, return error_mark_node.
4321
4322   This is for handling COMPOUND_EXPRs as initializer elements
4323   which is allowed with a warning when -pedantic is specified.  */
4324
4325static tree
4326valid_compound_expr_initializer (tree value, tree endtype)
4327{
4328  if (TREE_CODE (value) == COMPOUND_EXPR)
4329    {
4330      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4331	  == error_mark_node)
4332	return error_mark_node;
4333      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4334					      endtype);
4335    }
4336  else if (!initializer_constant_valid_p (value, endtype))
4337    return error_mark_node;
4338  else
4339    return value;
4340}
4341
4342/* Perform appropriate conversions on the initial value of a variable,
4343   store it in the declaration DECL,
4344   and print any error messages that are appropriate.
4345   If the init is invalid, store an ERROR_MARK.  */
4346
4347void
4348store_init_value (tree decl, tree init)
4349{
4350  tree value, type;
4351
4352  /* If variable's type was invalidly declared, just ignore it.  */
4353
4354  type = TREE_TYPE (decl);
4355  if (TREE_CODE (type) == ERROR_MARK)
4356    return;
4357
4358  /* Digest the specified initializer into an expression.  */
4359
4360  value = digest_init (type, init, true, TREE_STATIC (decl));
4361
4362  /* Store the expression if valid; else report error.  */
4363
4364  if (!in_system_header
4365      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4366    warning (OPT_Wtraditional, "traditional C rejects automatic "
4367	     "aggregate initialization");
4368
4369  DECL_INITIAL (decl) = value;
4370
4371  /* ANSI wants warnings about out-of-range constant initializers.  */
4372  STRIP_TYPE_NOPS (value);
4373  constant_expression_warning (value);
4374
4375  /* Check if we need to set array size from compound literal size.  */
4376  if (TREE_CODE (type) == ARRAY_TYPE
4377      && TYPE_DOMAIN (type) == 0
4378      && value != error_mark_node)
4379    {
4380      tree inside_init = init;
4381
4382      STRIP_TYPE_NOPS (inside_init);
4383      inside_init = fold (inside_init);
4384
4385      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4386	{
4387	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4388
4389	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4390	    {
4391	      /* For int foo[] = (int [3]){1}; we need to set array size
4392		 now since later on array initializer will be just the
4393		 brace enclosed list of the compound literal.  */
4394	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4395	      TREE_TYPE (decl) = type;
4396	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4397	      layout_type (type);
4398	      layout_decl (cldecl, 0);
4399	    }
4400	}
4401    }
4402}
4403
4404/* Methods for storing and printing names for error messages.  */
4405
4406/* Implement a spelling stack that allows components of a name to be pushed
4407   and popped.  Each element on the stack is this structure.  */
4408
4409struct spelling
4410{
4411  int kind;
4412  union
4413    {
4414      unsigned HOST_WIDE_INT i;
4415      const char *s;
4416    } u;
4417};
4418
4419#define SPELLING_STRING 1
4420#define SPELLING_MEMBER 2
4421#define SPELLING_BOUNDS 3
4422
4423static struct spelling *spelling;	/* Next stack element (unused).  */
4424static struct spelling *spelling_base;	/* Spelling stack base.  */
4425static int spelling_size;		/* Size of the spelling stack.  */
4426
4427/* Macros to save and restore the spelling stack around push_... functions.
4428   Alternative to SAVE_SPELLING_STACK.  */
4429
4430#define SPELLING_DEPTH() (spelling - spelling_base)
4431#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4432
4433/* Push an element on the spelling stack with type KIND and assign VALUE
4434   to MEMBER.  */
4435
4436#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4437{									\
4438  int depth = SPELLING_DEPTH ();					\
4439									\
4440  if (depth >= spelling_size)						\
4441    {									\
4442      spelling_size += 10;						\
4443      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4444				  spelling_size);			\
4445      RESTORE_SPELLING_DEPTH (depth);					\
4446    }									\
4447									\
4448  spelling->kind = (KIND);						\
4449  spelling->MEMBER = (VALUE);						\
4450  spelling++;								\
4451}
4452
4453/* Push STRING on the stack.  Printed literally.  */
4454
4455static void
4456push_string (const char *string)
4457{
4458  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4459}
4460
4461/* Push a member name on the stack.  Printed as '.' STRING.  */
4462
4463static void
4464push_member_name (tree decl)
4465{
4466  const char *const string
4467    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4468  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4469}
4470
4471/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4472
4473static void
4474push_array_bounds (unsigned HOST_WIDE_INT bounds)
4475{
4476  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4477}
4478
4479/* Compute the maximum size in bytes of the printed spelling.  */
4480
4481static int
4482spelling_length (void)
4483{
4484  int size = 0;
4485  struct spelling *p;
4486
4487  for (p = spelling_base; p < spelling; p++)
4488    {
4489      if (p->kind == SPELLING_BOUNDS)
4490	size += 25;
4491      else
4492	size += strlen (p->u.s) + 1;
4493    }
4494
4495  return size;
4496}
4497
4498/* Print the spelling to BUFFER and return it.  */
4499
4500static char *
4501print_spelling (char *buffer)
4502{
4503  char *d = buffer;
4504  struct spelling *p;
4505
4506  for (p = spelling_base; p < spelling; p++)
4507    if (p->kind == SPELLING_BOUNDS)
4508      {
4509	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4510	d += strlen (d);
4511      }
4512    else
4513      {
4514	const char *s;
4515	if (p->kind == SPELLING_MEMBER)
4516	  *d++ = '.';
4517	for (s = p->u.s; (*d = *s++); d++)
4518	  ;
4519      }
4520  *d++ = '\0';
4521  return buffer;
4522}
4523
4524/* Issue an error message for a bad initializer component.
4525   MSGID identifies the message.
4526   The component name is taken from the spelling stack.  */
4527
4528void
4529error_init (const char *msgid)
4530{
4531  char *ofwhat;
4532
4533  error ("%s", _(msgid));
4534  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4535  if (*ofwhat)
4536    error ("(near initialization for %qs)", ofwhat);
4537}
4538
4539/* Issue a pedantic warning for a bad initializer component.
4540   MSGID identifies the message.
4541   The component name is taken from the spelling stack.  */
4542
4543void
4544pedwarn_init (const char *msgid)
4545{
4546  char *ofwhat;
4547
4548  pedwarn ("%s", _(msgid));
4549  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4550  if (*ofwhat)
4551    pedwarn ("(near initialization for %qs)", ofwhat);
4552}
4553
4554/* Issue a warning for a bad initializer component.
4555   MSGID identifies the message.
4556   The component name is taken from the spelling stack.  */
4557
4558static void
4559warning_init (const char *msgid)
4560{
4561  char *ofwhat;
4562
4563  warning (0, "%s", _(msgid));
4564  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4565  if (*ofwhat)
4566    warning (0, "(near initialization for %qs)", ofwhat);
4567}
4568
4569/* If TYPE is an array type and EXPR is a parenthesized string
4570   constant, warn if pedantic that EXPR is being used to initialize an
4571   object of type TYPE.  */
4572
4573void
4574maybe_warn_string_init (tree type, struct c_expr expr)
4575{
4576  if (pedantic
4577      && TREE_CODE (type) == ARRAY_TYPE
4578      && TREE_CODE (expr.value) == STRING_CST
4579      && expr.original_code != STRING_CST)
4580    pedwarn_init ("array initialized from parenthesized string constant");
4581}
4582
4583/* Digest the parser output INIT as an initializer for type TYPE.
4584   Return a C expression of type TYPE to represent the initial value.
4585
4586   If INIT is a string constant, STRICT_STRING is true if it is
4587   unparenthesized or we should not warn here for it being parenthesized.
4588   For other types of INIT, STRICT_STRING is not used.
4589
4590   REQUIRE_CONSTANT requests an error if non-constant initializers or
4591   elements are seen.  */
4592
4593static tree
4594digest_init (tree type, tree init, bool strict_string, int require_constant)
4595{
4596  enum tree_code code = TREE_CODE (type);
4597  tree inside_init = init;
4598
4599  if (type == error_mark_node
4600      || !init
4601      || init == error_mark_node
4602      || TREE_TYPE (init) == error_mark_node)
4603    return error_mark_node;
4604
4605  STRIP_TYPE_NOPS (inside_init);
4606
4607  inside_init = fold (inside_init);
4608
4609  /* Initialization of an array of chars from a string constant
4610     optionally enclosed in braces.  */
4611
4612  if (code == ARRAY_TYPE && inside_init
4613      && TREE_CODE (inside_init) == STRING_CST)
4614    {
4615      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4616      /* Note that an array could be both an array of character type
4617	 and an array of wchar_t if wchar_t is signed char or unsigned
4618	 char.  */
4619      bool char_array = (typ1 == char_type_node
4620			 || typ1 == signed_char_type_node
4621			 || typ1 == unsigned_char_type_node);
4622      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4623      if (char_array || wchar_array)
4624	{
4625	  struct c_expr expr;
4626	  bool char_string;
4627	  expr.value = inside_init;
4628	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4629	  maybe_warn_string_init (type, expr);
4630
4631	  char_string
4632	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4633	       == char_type_node);
4634
4635	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4636			 TYPE_MAIN_VARIANT (type)))
4637	    return inside_init;
4638
4639	  if (!wchar_array && !char_string)
4640	    {
4641	      error_init ("char-array initialized from wide string");
4642	      return error_mark_node;
4643	    }
4644	  if (char_string && !char_array)
4645	    {
4646	      error_init ("wchar_t-array initialized from non-wide string");
4647	      return error_mark_node;
4648	    }
4649
4650	  TREE_TYPE (inside_init) = type;
4651	  if (TYPE_DOMAIN (type) != 0
4652	      && TYPE_SIZE (type) != 0
4653	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4654	      /* Subtract 1 (or sizeof (wchar_t))
4655		 because it's ok to ignore the terminating null char
4656		 that is counted in the length of the constant.  */
4657	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4658				       TREE_STRING_LENGTH (inside_init)
4659				       - ((TYPE_PRECISION (typ1)
4660					   != TYPE_PRECISION (char_type_node))
4661					  ? (TYPE_PRECISION (wchar_type_node)
4662					     / BITS_PER_UNIT)
4663					  : 1)))
4664	    pedwarn_init ("initializer-string for array of chars is too long");
4665
4666	  return inside_init;
4667	}
4668      else if (INTEGRAL_TYPE_P (typ1))
4669	{
4670	  error_init ("array of inappropriate type initialized "
4671		      "from string constant");
4672	  return error_mark_node;
4673	}
4674    }
4675
4676  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4677     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4678     below and handle as a constructor.  */
4679  if (code == VECTOR_TYPE
4680      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4681      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4682      && TREE_CONSTANT (inside_init))
4683    {
4684      if (TREE_CODE (inside_init) == VECTOR_CST
4685	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4686			TYPE_MAIN_VARIANT (type)))
4687	return inside_init;
4688
4689      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4690	{
4691	  unsigned HOST_WIDE_INT ix;
4692	  tree value;
4693	  bool constant_p = true;
4694
4695	  /* Iterate through elements and check if all constructor
4696	     elements are *_CSTs.  */
4697	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4698	    if (!CONSTANT_CLASS_P (value))
4699	      {
4700		constant_p = false;
4701		break;
4702	      }
4703
4704	  if (constant_p)
4705	    return build_vector_from_ctor (type,
4706					   CONSTRUCTOR_ELTS (inside_init));
4707	}
4708    }
4709
4710  /* Any type can be initialized
4711     from an expression of the same type, optionally with braces.  */
4712
4713  if (inside_init && TREE_TYPE (inside_init) != 0
4714      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4715		     TYPE_MAIN_VARIANT (type))
4716	  || (code == ARRAY_TYPE
4717	      && comptypes (TREE_TYPE (inside_init), type))
4718	  || (code == VECTOR_TYPE
4719	      && comptypes (TREE_TYPE (inside_init), type))
4720	  || (code == POINTER_TYPE
4721	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4722	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4723			    TREE_TYPE (type)))))
4724    {
4725      if (code == POINTER_TYPE)
4726	{
4727	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4728	    {
4729	      if (TREE_CODE (inside_init) == STRING_CST
4730		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4731		inside_init = array_to_pointer_conversion (inside_init);
4732	      else
4733		{
4734		  error_init ("invalid use of non-lvalue array");
4735		  return error_mark_node;
4736		}
4737	    }
4738	}
4739
4740      if (code == VECTOR_TYPE)
4741	/* Although the types are compatible, we may require a
4742	   conversion.  */
4743	inside_init = convert (type, inside_init);
4744
4745      if (require_constant
4746	  && (code == VECTOR_TYPE || !flag_isoc99)
4747	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4748	{
4749	  /* As an extension, allow initializing objects with static storage
4750	     duration with compound literals (which are then treated just as
4751	     the brace enclosed list they contain).  Also allow this for
4752	     vectors, as we can only assign them with compound literals.  */
4753	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4754	  inside_init = DECL_INITIAL (decl);
4755	}
4756
4757      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4758	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4759	{
4760	  error_init ("array initialized from non-constant array expression");
4761	  return error_mark_node;
4762	}
4763
4764      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4765	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4766
4767      /* Compound expressions can only occur here if -pedantic or
4768	 -pedantic-errors is specified.  In the later case, we always want
4769	 an error.  In the former case, we simply want a warning.  */
4770      if (require_constant && pedantic
4771	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4772	{
4773	  inside_init
4774	    = valid_compound_expr_initializer (inside_init,
4775					       TREE_TYPE (inside_init));
4776	  if (inside_init == error_mark_node)
4777	    error_init ("initializer element is not constant");
4778	  else
4779	    pedwarn_init ("initializer element is not constant");
4780	  if (flag_pedantic_errors)
4781	    inside_init = error_mark_node;
4782	}
4783      else if (require_constant
4784	       && !initializer_constant_valid_p (inside_init,
4785						 TREE_TYPE (inside_init)))
4786	{
4787	  error_init ("initializer element is not constant");
4788	  inside_init = error_mark_node;
4789	}
4790
4791      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4792      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4793	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4794					      NULL_TREE, 0);
4795      return inside_init;
4796    }
4797
4798  /* Handle scalar types, including conversions.  */
4799
4800  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4801      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4802      || code == VECTOR_TYPE)
4803    {
4804      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4805	  && (TREE_CODE (init) == STRING_CST
4806	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4807	init = array_to_pointer_conversion (init);
4808      inside_init
4809	= convert_for_assignment (type, init, ic_init,
4810				  NULL_TREE, NULL_TREE, 0);
4811
4812      /* Check to see if we have already given an error message.  */
4813      if (inside_init == error_mark_node)
4814	;
4815      else if (require_constant && !TREE_CONSTANT (inside_init))
4816	{
4817	  error_init ("initializer element is not constant");
4818	  inside_init = error_mark_node;
4819	}
4820      else if (require_constant
4821	       && !initializer_constant_valid_p (inside_init,
4822						 TREE_TYPE (inside_init)))
4823	{
4824	  error_init ("initializer element is not computable at load time");
4825	  inside_init = error_mark_node;
4826	}
4827
4828      return inside_init;
4829    }
4830
4831  /* Come here only for records and arrays.  */
4832
4833  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4834    {
4835      error_init ("variable-sized object may not be initialized");
4836      return error_mark_node;
4837    }
4838
4839  error_init ("invalid initializer");
4840  return error_mark_node;
4841}
4842
4843/* Handle initializers that use braces.  */
4844
4845/* Type of object we are accumulating a constructor for.
4846   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4847static tree constructor_type;
4848
4849/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4850   left to fill.  */
4851static tree constructor_fields;
4852
4853/* For an ARRAY_TYPE, this is the specified index
4854   at which to store the next element we get.  */
4855static tree constructor_index;
4856
4857/* For an ARRAY_TYPE, this is the maximum index.  */
4858static tree constructor_max_index;
4859
4860/* For a RECORD_TYPE, this is the first field not yet written out.  */
4861static tree constructor_unfilled_fields;
4862
4863/* For an ARRAY_TYPE, this is the index of the first element
4864   not yet written out.  */
4865static tree constructor_unfilled_index;
4866
4867/* In a RECORD_TYPE, the byte index of the next consecutive field.
4868   This is so we can generate gaps between fields, when appropriate.  */
4869static tree constructor_bit_index;
4870
4871/* If we are saving up the elements rather than allocating them,
4872   this is the list of elements so far (in reverse order,
4873   most recent first).  */
4874static VEC(constructor_elt,gc) *constructor_elements;
4875
4876/* 1 if constructor should be incrementally stored into a constructor chain,
4877   0 if all the elements should be kept in AVL tree.  */
4878static int constructor_incremental;
4879
4880/* 1 if so far this constructor's elements are all compile-time constants.  */
4881static int constructor_constant;
4882
4883/* 1 if so far this constructor's elements are all valid address constants.  */
4884static int constructor_simple;
4885
4886/* 1 if this constructor is erroneous so far.  */
4887static int constructor_erroneous;
4888
4889/* Structure for managing pending initializer elements, organized as an
4890   AVL tree.  */
4891
4892struct init_node
4893{
4894  struct init_node *left, *right;
4895  struct init_node *parent;
4896  int balance;
4897  tree purpose;
4898  tree value;
4899};
4900
4901/* Tree of pending elements at this constructor level.
4902   These are elements encountered out of order
4903   which belong at places we haven't reached yet in actually
4904   writing the output.
4905   Will never hold tree nodes across GC runs.  */
4906static struct init_node *constructor_pending_elts;
4907
4908/* The SPELLING_DEPTH of this constructor.  */
4909static int constructor_depth;
4910
4911/* DECL node for which an initializer is being read.
4912   0 means we are reading a constructor expression
4913   such as (struct foo) {...}.  */
4914static tree constructor_decl;
4915
4916/* Nonzero if this is an initializer for a top-level decl.  */
4917static int constructor_top_level;
4918
4919/* Nonzero if there were any member designators in this initializer.  */
4920static int constructor_designated;
4921
4922/* Nesting depth of designator list.  */
4923static int designator_depth;
4924
4925/* Nonzero if there were diagnosed errors in this designator list.  */
4926static int designator_erroneous;
4927
4928
4929/* This stack has a level for each implicit or explicit level of
4930   structuring in the initializer, including the outermost one.  It
4931   saves the values of most of the variables above.  */
4932
4933struct constructor_range_stack;
4934
4935struct constructor_stack
4936{
4937  struct constructor_stack *next;
4938  tree type;
4939  tree fields;
4940  tree index;
4941  tree max_index;
4942  tree unfilled_index;
4943  tree unfilled_fields;
4944  tree bit_index;
4945  VEC(constructor_elt,gc) *elements;
4946  struct init_node *pending_elts;
4947  int offset;
4948  int depth;
4949  /* If value nonzero, this value should replace the entire
4950     constructor at this level.  */
4951  struct c_expr replacement_value;
4952  struct constructor_range_stack *range_stack;
4953  char constant;
4954  char simple;
4955  char implicit;
4956  char erroneous;
4957  char outer;
4958  char incremental;
4959  char designated;
4960};
4961
4962static struct constructor_stack *constructor_stack;
4963
4964/* This stack represents designators from some range designator up to
4965   the last designator in the list.  */
4966
4967struct constructor_range_stack
4968{
4969  struct constructor_range_stack *next, *prev;
4970  struct constructor_stack *stack;
4971  tree range_start;
4972  tree index;
4973  tree range_end;
4974  tree fields;
4975};
4976
4977static struct constructor_range_stack *constructor_range_stack;
4978
4979/* This stack records separate initializers that are nested.
4980   Nested initializers can't happen in ANSI C, but GNU C allows them
4981   in cases like { ... (struct foo) { ... } ... }.  */
4982
4983struct initializer_stack
4984{
4985  struct initializer_stack *next;
4986  tree decl;
4987  struct constructor_stack *constructor_stack;
4988  struct constructor_range_stack *constructor_range_stack;
4989  VEC(constructor_elt,gc) *elements;
4990  struct spelling *spelling;
4991  struct spelling *spelling_base;
4992  int spelling_size;
4993  char top_level;
4994  char require_constant_value;
4995  char require_constant_elements;
4996};
4997
4998static struct initializer_stack *initializer_stack;
4999
5000/* Prepare to parse and output the initializer for variable DECL.  */
5001
5002void
5003start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5004{
5005  const char *locus;
5006  struct initializer_stack *p = XNEW (struct initializer_stack);
5007
5008  p->decl = constructor_decl;
5009  p->require_constant_value = require_constant_value;
5010  p->require_constant_elements = require_constant_elements;
5011  p->constructor_stack = constructor_stack;
5012  p->constructor_range_stack = constructor_range_stack;
5013  p->elements = constructor_elements;
5014  p->spelling = spelling;
5015  p->spelling_base = spelling_base;
5016  p->spelling_size = spelling_size;
5017  p->top_level = constructor_top_level;
5018  p->next = initializer_stack;
5019  initializer_stack = p;
5020
5021  constructor_decl = decl;
5022  constructor_designated = 0;
5023  constructor_top_level = top_level;
5024
5025  if (decl != 0 && decl != error_mark_node)
5026    {
5027      require_constant_value = TREE_STATIC (decl);
5028      require_constant_elements
5029	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5030	   /* For a scalar, you can always use any value to initialize,
5031	      even within braces.  */
5032	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5033	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5034	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5035	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5036      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5037    }
5038  else
5039    {
5040      require_constant_value = 0;
5041      require_constant_elements = 0;
5042      locus = "(anonymous)";
5043    }
5044
5045  constructor_stack = 0;
5046  constructor_range_stack = 0;
5047
5048  missing_braces_mentioned = 0;
5049
5050  spelling_base = 0;
5051  spelling_size = 0;
5052  RESTORE_SPELLING_DEPTH (0);
5053
5054  if (locus)
5055    push_string (locus);
5056}
5057
5058void
5059finish_init (void)
5060{
5061  struct initializer_stack *p = initializer_stack;
5062
5063  /* Free the whole constructor stack of this initializer.  */
5064  while (constructor_stack)
5065    {
5066      struct constructor_stack *q = constructor_stack;
5067      constructor_stack = q->next;
5068      free (q);
5069    }
5070
5071  gcc_assert (!constructor_range_stack);
5072
5073  /* Pop back to the data of the outer initializer (if any).  */
5074  free (spelling_base);
5075
5076  constructor_decl = p->decl;
5077  require_constant_value = p->require_constant_value;
5078  require_constant_elements = p->require_constant_elements;
5079  constructor_stack = p->constructor_stack;
5080  constructor_range_stack = p->constructor_range_stack;
5081  constructor_elements = p->elements;
5082  spelling = p->spelling;
5083  spelling_base = p->spelling_base;
5084  spelling_size = p->spelling_size;
5085  constructor_top_level = p->top_level;
5086  initializer_stack = p->next;
5087  free (p);
5088}
5089
5090/* Call here when we see the initializer is surrounded by braces.
5091   This is instead of a call to push_init_level;
5092   it is matched by a call to pop_init_level.
5093
5094   TYPE is the type to initialize, for a constructor expression.
5095   For an initializer for a decl, TYPE is zero.  */
5096
5097void
5098really_start_incremental_init (tree type)
5099{
5100  struct constructor_stack *p = XNEW (struct constructor_stack);
5101
5102  if (type == 0)
5103    type = TREE_TYPE (constructor_decl);
5104
5105  if (targetm.vector_opaque_p (type))
5106    error ("opaque vector types cannot be initialized");
5107
5108  p->type = constructor_type;
5109  p->fields = constructor_fields;
5110  p->index = constructor_index;
5111  p->max_index = constructor_max_index;
5112  p->unfilled_index = constructor_unfilled_index;
5113  p->unfilled_fields = constructor_unfilled_fields;
5114  p->bit_index = constructor_bit_index;
5115  p->elements = constructor_elements;
5116  p->constant = constructor_constant;
5117  p->simple = constructor_simple;
5118  p->erroneous = constructor_erroneous;
5119  p->pending_elts = constructor_pending_elts;
5120  p->depth = constructor_depth;
5121  p->replacement_value.value = 0;
5122  p->replacement_value.original_code = ERROR_MARK;
5123  p->implicit = 0;
5124  p->range_stack = 0;
5125  p->outer = 0;
5126  p->incremental = constructor_incremental;
5127  p->designated = constructor_designated;
5128  p->next = 0;
5129  constructor_stack = p;
5130
5131  constructor_constant = 1;
5132  constructor_simple = 1;
5133  constructor_depth = SPELLING_DEPTH ();
5134  constructor_elements = 0;
5135  constructor_pending_elts = 0;
5136  constructor_type = type;
5137  constructor_incremental = 1;
5138  constructor_designated = 0;
5139  designator_depth = 0;
5140  designator_erroneous = 0;
5141
5142  if (TREE_CODE (constructor_type) == RECORD_TYPE
5143      || TREE_CODE (constructor_type) == UNION_TYPE)
5144    {
5145      constructor_fields = TYPE_FIELDS (constructor_type);
5146      /* Skip any nameless bit fields at the beginning.  */
5147      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5148	     && DECL_NAME (constructor_fields) == 0)
5149	constructor_fields = TREE_CHAIN (constructor_fields);
5150
5151      constructor_unfilled_fields = constructor_fields;
5152      constructor_bit_index = bitsize_zero_node;
5153    }
5154  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5155    {
5156      if (TYPE_DOMAIN (constructor_type))
5157	{
5158	  constructor_max_index
5159	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5160
5161	  /* Detect non-empty initializations of zero-length arrays.  */
5162	  if (constructor_max_index == NULL_TREE
5163	      && TYPE_SIZE (constructor_type))
5164	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5165
5166	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5167	     to initialize VLAs will cause a proper error; avoid tree
5168	     checking errors as well by setting a safe value.  */
5169	  if (constructor_max_index
5170	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5171	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5172
5173	  constructor_index
5174	    = convert (bitsizetype,
5175		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5176	}
5177      else
5178	{
5179	  constructor_index = bitsize_zero_node;
5180	  constructor_max_index = NULL_TREE;
5181	}
5182
5183      constructor_unfilled_index = constructor_index;
5184    }
5185  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5186    {
5187      /* Vectors are like simple fixed-size arrays.  */
5188      constructor_max_index =
5189	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5190      constructor_index = bitsize_zero_node;
5191      constructor_unfilled_index = constructor_index;
5192    }
5193  else
5194    {
5195      /* Handle the case of int x = {5}; */
5196      constructor_fields = constructor_type;
5197      constructor_unfilled_fields = constructor_type;
5198    }
5199}
5200
5201/* Push down into a subobject, for initialization.
5202   If this is for an explicit set of braces, IMPLICIT is 0.
5203   If it is because the next element belongs at a lower level,
5204   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5205
5206void
5207push_init_level (int implicit)
5208{
5209  struct constructor_stack *p;
5210  tree value = NULL_TREE;
5211
5212  /* If we've exhausted any levels that didn't have braces,
5213     pop them now.  If implicit == 1, this will have been done in
5214     process_init_element; do not repeat it here because in the case
5215     of excess initializers for an empty aggregate this leads to an
5216     infinite cycle of popping a level and immediately recreating
5217     it.  */
5218  if (implicit != 1)
5219    {
5220      while (constructor_stack->implicit)
5221	{
5222	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5223	       || TREE_CODE (constructor_type) == UNION_TYPE)
5224	      && constructor_fields == 0)
5225	    process_init_element (pop_init_level (1));
5226	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5227		   && constructor_max_index
5228		   && tree_int_cst_lt (constructor_max_index,
5229				       constructor_index))
5230	    process_init_element (pop_init_level (1));
5231	  else
5232	    break;
5233	}
5234    }
5235
5236  /* Unless this is an explicit brace, we need to preserve previous
5237     content if any.  */
5238  if (implicit)
5239    {
5240      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5241	   || TREE_CODE (constructor_type) == UNION_TYPE)
5242	  && constructor_fields)
5243	value = find_init_member (constructor_fields);
5244      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5245	value = find_init_member (constructor_index);
5246    }
5247
5248  p = XNEW (struct constructor_stack);
5249  p->type = constructor_type;
5250  p->fields = constructor_fields;
5251  p->index = constructor_index;
5252  p->max_index = constructor_max_index;
5253  p->unfilled_index = constructor_unfilled_index;
5254  p->unfilled_fields = constructor_unfilled_fields;
5255  p->bit_index = constructor_bit_index;
5256  p->elements = constructor_elements;
5257  p->constant = constructor_constant;
5258  p->simple = constructor_simple;
5259  p->erroneous = constructor_erroneous;
5260  p->pending_elts = constructor_pending_elts;
5261  p->depth = constructor_depth;
5262  p->replacement_value.value = 0;
5263  p->replacement_value.original_code = ERROR_MARK;
5264  p->implicit = implicit;
5265  p->outer = 0;
5266  p->incremental = constructor_incremental;
5267  p->designated = constructor_designated;
5268  p->next = constructor_stack;
5269  p->range_stack = 0;
5270  constructor_stack = p;
5271
5272  constructor_constant = 1;
5273  constructor_simple = 1;
5274  constructor_depth = SPELLING_DEPTH ();
5275  constructor_elements = 0;
5276  constructor_incremental = 1;
5277  constructor_designated = 0;
5278  constructor_pending_elts = 0;
5279  if (!implicit)
5280    {
5281      p->range_stack = constructor_range_stack;
5282      constructor_range_stack = 0;
5283      designator_depth = 0;
5284      designator_erroneous = 0;
5285    }
5286
5287  /* Don't die if an entire brace-pair level is superfluous
5288     in the containing level.  */
5289  if (constructor_type == 0)
5290    ;
5291  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5292	   || TREE_CODE (constructor_type) == UNION_TYPE)
5293    {
5294      /* Don't die if there are extra init elts at the end.  */
5295      if (constructor_fields == 0)
5296	constructor_type = 0;
5297      else
5298	{
5299	  constructor_type = TREE_TYPE (constructor_fields);
5300	  push_member_name (constructor_fields);
5301	  constructor_depth++;
5302	}
5303    }
5304  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5305    {
5306      constructor_type = TREE_TYPE (constructor_type);
5307      push_array_bounds (tree_low_cst (constructor_index, 1));
5308      constructor_depth++;
5309    }
5310
5311  if (constructor_type == 0)
5312    {
5313      error_init ("extra brace group at end of initializer");
5314      constructor_fields = 0;
5315      constructor_unfilled_fields = 0;
5316      return;
5317    }
5318
5319  if (value && TREE_CODE (value) == CONSTRUCTOR)
5320    {
5321      constructor_constant = TREE_CONSTANT (value);
5322      constructor_simple = TREE_STATIC (value);
5323      constructor_elements = CONSTRUCTOR_ELTS (value);
5324      if (!VEC_empty (constructor_elt, constructor_elements)
5325	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5326	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5327	set_nonincremental_init ();
5328    }
5329
5330  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5331    {
5332      missing_braces_mentioned = 1;
5333      warning_init ("missing braces around initializer");
5334    }
5335
5336  if (TREE_CODE (constructor_type) == RECORD_TYPE
5337	   || TREE_CODE (constructor_type) == UNION_TYPE)
5338    {
5339      constructor_fields = TYPE_FIELDS (constructor_type);
5340      /* Skip any nameless bit fields at the beginning.  */
5341      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5342	     && DECL_NAME (constructor_fields) == 0)
5343	constructor_fields = TREE_CHAIN (constructor_fields);
5344
5345      constructor_unfilled_fields = constructor_fields;
5346      constructor_bit_index = bitsize_zero_node;
5347    }
5348  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5349    {
5350      /* Vectors are like simple fixed-size arrays.  */
5351      constructor_max_index =
5352	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5353      constructor_index = convert (bitsizetype, integer_zero_node);
5354      constructor_unfilled_index = constructor_index;
5355    }
5356  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5357    {
5358      if (TYPE_DOMAIN (constructor_type))
5359	{
5360	  constructor_max_index
5361	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5362
5363	  /* Detect non-empty initializations of zero-length arrays.  */
5364	  if (constructor_max_index == NULL_TREE
5365	      && TYPE_SIZE (constructor_type))
5366	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5367
5368	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5369	     to initialize VLAs will cause a proper error; avoid tree
5370	     checking errors as well by setting a safe value.  */
5371	  if (constructor_max_index
5372	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5373	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5374
5375	  constructor_index
5376	    = convert (bitsizetype,
5377		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5378	}
5379      else
5380	constructor_index = bitsize_zero_node;
5381
5382      constructor_unfilled_index = constructor_index;
5383      if (value && TREE_CODE (value) == STRING_CST)
5384	{
5385	  /* We need to split the char/wchar array into individual
5386	     characters, so that we don't have to special case it
5387	     everywhere.  */
5388	  set_nonincremental_init_from_string (value);
5389	}
5390    }
5391  else
5392    {
5393      if (constructor_type != error_mark_node)
5394	warning_init ("braces around scalar initializer");
5395      constructor_fields = constructor_type;
5396      constructor_unfilled_fields = constructor_type;
5397    }
5398}
5399
5400/* At the end of an implicit or explicit brace level,
5401   finish up that level of constructor.  If a single expression
5402   with redundant braces initialized that level, return the
5403   c_expr structure for that expression.  Otherwise, the original_code
5404   element is set to ERROR_MARK.
5405   If we were outputting the elements as they are read, return 0 as the value
5406   from inner levels (process_init_element ignores that),
5407   but return error_mark_node as the value from the outermost level
5408   (that's what we want to put in DECL_INITIAL).
5409   Otherwise, return a CONSTRUCTOR expression as the value.  */
5410
5411struct c_expr
5412pop_init_level (int implicit)
5413{
5414  struct constructor_stack *p;
5415  struct c_expr ret;
5416  ret.value = 0;
5417  ret.original_code = ERROR_MARK;
5418
5419  if (implicit == 0)
5420    {
5421      /* When we come to an explicit close brace,
5422	 pop any inner levels that didn't have explicit braces.  */
5423      while (constructor_stack->implicit)
5424	process_init_element (pop_init_level (1));
5425
5426      gcc_assert (!constructor_range_stack);
5427    }
5428
5429  /* Now output all pending elements.  */
5430  constructor_incremental = 1;
5431  output_pending_init_elements (1);
5432
5433  p = constructor_stack;
5434
5435  /* Error for initializing a flexible array member, or a zero-length
5436     array member in an inappropriate context.  */
5437  if (constructor_type && constructor_fields
5438      && TREE_CODE (constructor_type) == ARRAY_TYPE
5439      && TYPE_DOMAIN (constructor_type)
5440      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5441    {
5442      /* Silently discard empty initializations.  The parser will
5443	 already have pedwarned for empty brackets.  */
5444      if (integer_zerop (constructor_unfilled_index))
5445	constructor_type = NULL_TREE;
5446      else
5447	{
5448	  gcc_assert (!TYPE_SIZE (constructor_type));
5449
5450	  if (constructor_depth > 2)
5451	    error_init ("initialization of flexible array member in a nested context");
5452	  else if (pedantic)
5453	    pedwarn_init ("initialization of a flexible array member");
5454
5455	  /* We have already issued an error message for the existence
5456	     of a flexible array member not at the end of the structure.
5457	     Discard the initializer so that we do not die later.  */
5458	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5459	    constructor_type = NULL_TREE;
5460	}
5461    }
5462
5463  /* Warn when some struct elements are implicitly initialized to zero.  */
5464  if (warn_missing_field_initializers
5465      && constructor_type
5466      && TREE_CODE (constructor_type) == RECORD_TYPE
5467      && constructor_unfilled_fields)
5468    {
5469	/* Do not warn for flexible array members or zero-length arrays.  */
5470	while (constructor_unfilled_fields
5471	       && (!DECL_SIZE (constructor_unfilled_fields)
5472		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5473	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5474
5475	/* Do not warn if this level of the initializer uses member
5476	   designators; it is likely to be deliberate.  */
5477	if (constructor_unfilled_fields && !constructor_designated)
5478	  {
5479	    push_member_name (constructor_unfilled_fields);
5480	    warning_init ("missing initializer");
5481	    RESTORE_SPELLING_DEPTH (constructor_depth);
5482	  }
5483    }
5484
5485  /* Pad out the end of the structure.  */
5486  if (p->replacement_value.value)
5487    /* If this closes a superfluous brace pair,
5488       just pass out the element between them.  */
5489    ret = p->replacement_value;
5490  else if (constructor_type == 0)
5491    ;
5492  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5493	   && TREE_CODE (constructor_type) != UNION_TYPE
5494	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5495	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5496    {
5497      /* A nonincremental scalar initializer--just return
5498	 the element, after verifying there is just one.  */
5499      if (VEC_empty (constructor_elt,constructor_elements))
5500	{
5501	  if (!constructor_erroneous)
5502	    error_init ("empty scalar initializer");
5503	  ret.value = error_mark_node;
5504	}
5505      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5506	{
5507	  error_init ("extra elements in scalar initializer");
5508	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5509	}
5510      else
5511	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5512    }
5513  else
5514    {
5515      if (constructor_erroneous)
5516	ret.value = error_mark_node;
5517      else
5518	{
5519	  ret.value = build_constructor (constructor_type,
5520					 constructor_elements);
5521	  if (constructor_constant)
5522	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5523	  if (constructor_constant && constructor_simple)
5524	    TREE_STATIC (ret.value) = 1;
5525	}
5526    }
5527
5528  constructor_type = p->type;
5529  constructor_fields = p->fields;
5530  constructor_index = p->index;
5531  constructor_max_index = p->max_index;
5532  constructor_unfilled_index = p->unfilled_index;
5533  constructor_unfilled_fields = p->unfilled_fields;
5534  constructor_bit_index = p->bit_index;
5535  constructor_elements = p->elements;
5536  constructor_constant = p->constant;
5537  constructor_simple = p->simple;
5538  constructor_erroneous = p->erroneous;
5539  constructor_incremental = p->incremental;
5540  constructor_designated = p->designated;
5541  constructor_pending_elts = p->pending_elts;
5542  constructor_depth = p->depth;
5543  if (!p->implicit)
5544    constructor_range_stack = p->range_stack;
5545  RESTORE_SPELLING_DEPTH (constructor_depth);
5546
5547  constructor_stack = p->next;
5548  free (p);
5549
5550  if (ret.value == 0 && constructor_stack == 0)
5551    ret.value = error_mark_node;
5552  return ret;
5553}
5554
5555/* Common handling for both array range and field name designators.
5556   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5557
5558static int
5559set_designator (int array)
5560{
5561  tree subtype;
5562  enum tree_code subcode;
5563
5564  /* Don't die if an entire brace-pair level is superfluous
5565     in the containing level.  */
5566  if (constructor_type == 0)
5567    return 1;
5568
5569  /* If there were errors in this designator list already, bail out
5570     silently.  */
5571  if (designator_erroneous)
5572    return 1;
5573
5574  if (!designator_depth)
5575    {
5576      gcc_assert (!constructor_range_stack);
5577
5578      /* Designator list starts at the level of closest explicit
5579	 braces.  */
5580      while (constructor_stack->implicit)
5581	process_init_element (pop_init_level (1));
5582      constructor_designated = 1;
5583      return 0;
5584    }
5585
5586  switch (TREE_CODE (constructor_type))
5587    {
5588    case  RECORD_TYPE:
5589    case  UNION_TYPE:
5590      subtype = TREE_TYPE (constructor_fields);
5591      if (subtype != error_mark_node)
5592	subtype = TYPE_MAIN_VARIANT (subtype);
5593      break;
5594    case ARRAY_TYPE:
5595      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5596      break;
5597    default:
5598      gcc_unreachable ();
5599    }
5600
5601  subcode = TREE_CODE (subtype);
5602  if (array && subcode != ARRAY_TYPE)
5603    {
5604      error_init ("array index in non-array initializer");
5605      return 1;
5606    }
5607  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5608    {
5609      error_init ("field name not in record or union initializer");
5610      return 1;
5611    }
5612
5613  constructor_designated = 1;
5614  push_init_level (2);
5615  return 0;
5616}
5617
5618/* If there are range designators in designator list, push a new designator
5619   to constructor_range_stack.  RANGE_END is end of such stack range or
5620   NULL_TREE if there is no range designator at this level.  */
5621
5622static void
5623push_range_stack (tree range_end)
5624{
5625  struct constructor_range_stack *p;
5626
5627  p = GGC_NEW (struct constructor_range_stack);
5628  p->prev = constructor_range_stack;
5629  p->next = 0;
5630  p->fields = constructor_fields;
5631  p->range_start = constructor_index;
5632  p->index = constructor_index;
5633  p->stack = constructor_stack;
5634  p->range_end = range_end;
5635  if (constructor_range_stack)
5636    constructor_range_stack->next = p;
5637  constructor_range_stack = p;
5638}
5639
5640/* Within an array initializer, specify the next index to be initialized.
5641   FIRST is that index.  If LAST is nonzero, then initialize a range
5642   of indices, running from FIRST through LAST.  */
5643
5644void
5645set_init_index (tree first, tree last)
5646{
5647  if (set_designator (1))
5648    return;
5649
5650  designator_erroneous = 1;
5651
5652  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5653      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5654    {
5655      error_init ("array index in initializer not of integer type");
5656      return;
5657    }
5658
5659  if (TREE_CODE (first) != INTEGER_CST)
5660    error_init ("nonconstant array index in initializer");
5661  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5662    error_init ("nonconstant array index in initializer");
5663  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5664    error_init ("array index in non-array initializer");
5665  else if (tree_int_cst_sgn (first) == -1)
5666    error_init ("array index in initializer exceeds array bounds");
5667  else if (constructor_max_index
5668	   && tree_int_cst_lt (constructor_max_index, first))
5669    error_init ("array index in initializer exceeds array bounds");
5670  else
5671    {
5672      constructor_index = convert (bitsizetype, first);
5673
5674      if (last)
5675	{
5676	  if (tree_int_cst_equal (first, last))
5677	    last = 0;
5678	  else if (tree_int_cst_lt (last, first))
5679	    {
5680	      error_init ("empty index range in initializer");
5681	      last = 0;
5682	    }
5683	  else
5684	    {
5685	      last = convert (bitsizetype, last);
5686	      if (constructor_max_index != 0
5687		  && tree_int_cst_lt (constructor_max_index, last))
5688		{
5689		  error_init ("array index range in initializer exceeds array bounds");
5690		  last = 0;
5691		}
5692	    }
5693	}
5694
5695      designator_depth++;
5696      designator_erroneous = 0;
5697      if (constructor_range_stack || last)
5698	push_range_stack (last);
5699    }
5700}
5701
5702/* Within a struct initializer, specify the next field to be initialized.  */
5703
5704void
5705set_init_label (tree fieldname)
5706{
5707  tree tail;
5708
5709  if (set_designator (0))
5710    return;
5711
5712  designator_erroneous = 1;
5713
5714  if (TREE_CODE (constructor_type) != RECORD_TYPE
5715      && TREE_CODE (constructor_type) != UNION_TYPE)
5716    {
5717      error_init ("field name not in record or union initializer");
5718      return;
5719    }
5720
5721  for (tail = TYPE_FIELDS (constructor_type); tail;
5722       tail = TREE_CHAIN (tail))
5723    {
5724      if (DECL_NAME (tail) == fieldname)
5725	break;
5726    }
5727
5728  if (tail == 0)
5729    error ("unknown field %qE specified in initializer", fieldname);
5730  else
5731    {
5732      constructor_fields = tail;
5733      designator_depth++;
5734      designator_erroneous = 0;
5735      if (constructor_range_stack)
5736	push_range_stack (NULL_TREE);
5737    }
5738}
5739
5740/* Add a new initializer to the tree of pending initializers.  PURPOSE
5741   identifies the initializer, either array index or field in a structure.
5742   VALUE is the value of that index or field.  */
5743
5744static void
5745add_pending_init (tree purpose, tree value)
5746{
5747  struct init_node *p, **q, *r;
5748
5749  q = &constructor_pending_elts;
5750  p = 0;
5751
5752  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5753    {
5754      while (*q != 0)
5755	{
5756	  p = *q;
5757	  if (tree_int_cst_lt (purpose, p->purpose))
5758	    q = &p->left;
5759	  else if (tree_int_cst_lt (p->purpose, purpose))
5760	    q = &p->right;
5761	  else
5762	    {
5763	      if (TREE_SIDE_EFFECTS (p->value))
5764		warning_init ("initialized field with side-effects overwritten");
5765	      else if (warn_override_init)
5766		warning_init ("initialized field overwritten");
5767	      p->value = value;
5768	      return;
5769	    }
5770	}
5771    }
5772  else
5773    {
5774      tree bitpos;
5775
5776      bitpos = bit_position (purpose);
5777      while (*q != NULL)
5778	{
5779	  p = *q;
5780	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5781	    q = &p->left;
5782	  else if (p->purpose != purpose)
5783	    q = &p->right;
5784	  else
5785	    {
5786	      if (TREE_SIDE_EFFECTS (p->value))
5787		warning_init ("initialized field with side-effects overwritten");
5788	      else if (warn_override_init)
5789		warning_init ("initialized field overwritten");
5790	      p->value = value;
5791	      return;
5792	    }
5793	}
5794    }
5795
5796  r = GGC_NEW (struct init_node);
5797  r->purpose = purpose;
5798  r->value = value;
5799
5800  *q = r;
5801  r->parent = p;
5802  r->left = 0;
5803  r->right = 0;
5804  r->balance = 0;
5805
5806  while (p)
5807    {
5808      struct init_node *s;
5809
5810      if (r == p->left)
5811	{
5812	  if (p->balance == 0)
5813	    p->balance = -1;
5814	  else if (p->balance < 0)
5815	    {
5816	      if (r->balance < 0)
5817		{
5818		  /* L rotation.  */
5819		  p->left = r->right;
5820		  if (p->left)
5821		    p->left->parent = p;
5822		  r->right = p;
5823
5824		  p->balance = 0;
5825		  r->balance = 0;
5826
5827		  s = p->parent;
5828		  p->parent = r;
5829		  r->parent = s;
5830		  if (s)
5831		    {
5832		      if (s->left == p)
5833			s->left = r;
5834		      else
5835			s->right = r;
5836		    }
5837		  else
5838		    constructor_pending_elts = r;
5839		}
5840	      else
5841		{
5842		  /* LR rotation.  */
5843		  struct init_node *t = r->right;
5844
5845		  r->right = t->left;
5846		  if (r->right)
5847		    r->right->parent = r;
5848		  t->left = r;
5849
5850		  p->left = t->right;
5851		  if (p->left)
5852		    p->left->parent = p;
5853		  t->right = p;
5854
5855		  p->balance = t->balance < 0;
5856		  r->balance = -(t->balance > 0);
5857		  t->balance = 0;
5858
5859		  s = p->parent;
5860		  p->parent = t;
5861		  r->parent = t;
5862		  t->parent = s;
5863		  if (s)
5864		    {
5865		      if (s->left == p)
5866			s->left = t;
5867		      else
5868			s->right = t;
5869		    }
5870		  else
5871		    constructor_pending_elts = t;
5872		}
5873	      break;
5874	    }
5875	  else
5876	    {
5877	      /* p->balance == +1; growth of left side balances the node.  */
5878	      p->balance = 0;
5879	      break;
5880	    }
5881	}
5882      else /* r == p->right */
5883	{
5884	  if (p->balance == 0)
5885	    /* Growth propagation from right side.  */
5886	    p->balance++;
5887	  else if (p->balance > 0)
5888	    {
5889	      if (r->balance > 0)
5890		{
5891		  /* R rotation.  */
5892		  p->right = r->left;
5893		  if (p->right)
5894		    p->right->parent = p;
5895		  r->left = p;
5896
5897		  p->balance = 0;
5898		  r->balance = 0;
5899
5900		  s = p->parent;
5901		  p->parent = r;
5902		  r->parent = s;
5903		  if (s)
5904		    {
5905		      if (s->left == p)
5906			s->left = r;
5907		      else
5908			s->right = r;
5909		    }
5910		  else
5911		    constructor_pending_elts = r;
5912		}
5913	      else /* r->balance == -1 */
5914		{
5915		  /* RL rotation */
5916		  struct init_node *t = r->left;
5917
5918		  r->left = t->right;
5919		  if (r->left)
5920		    r->left->parent = r;
5921		  t->right = r;
5922
5923		  p->right = t->left;
5924		  if (p->right)
5925		    p->right->parent = p;
5926		  t->left = p;
5927
5928		  r->balance = (t->balance < 0);
5929		  p->balance = -(t->balance > 0);
5930		  t->balance = 0;
5931
5932		  s = p->parent;
5933		  p->parent = t;
5934		  r->parent = t;
5935		  t->parent = s;
5936		  if (s)
5937		    {
5938		      if (s->left == p)
5939			s->left = t;
5940		      else
5941			s->right = t;
5942		    }
5943		  else
5944		    constructor_pending_elts = t;
5945		}
5946	      break;
5947	    }
5948	  else
5949	    {
5950	      /* p->balance == -1; growth of right side balances the node.  */
5951	      p->balance = 0;
5952	      break;
5953	    }
5954	}
5955
5956      r = p;
5957      p = p->parent;
5958    }
5959}
5960
5961/* Build AVL tree from a sorted chain.  */
5962
5963static void
5964set_nonincremental_init (void)
5965{
5966  unsigned HOST_WIDE_INT ix;
5967  tree index, value;
5968
5969  if (TREE_CODE (constructor_type) != RECORD_TYPE
5970      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5971    return;
5972
5973  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5974    add_pending_init (index, value);
5975  constructor_elements = 0;
5976  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5977    {
5978      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5979      /* Skip any nameless bit fields at the beginning.  */
5980      while (constructor_unfilled_fields != 0
5981	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5982	     && DECL_NAME (constructor_unfilled_fields) == 0)
5983	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5984
5985    }
5986  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5987    {
5988      if (TYPE_DOMAIN (constructor_type))
5989	constructor_unfilled_index
5990	    = convert (bitsizetype,
5991		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5992      else
5993	constructor_unfilled_index = bitsize_zero_node;
5994    }
5995  constructor_incremental = 0;
5996}
5997
5998/* Build AVL tree from a string constant.  */
5999
6000static void
6001set_nonincremental_init_from_string (tree str)
6002{
6003  tree value, purpose, type;
6004  HOST_WIDE_INT val[2];
6005  const char *p, *end;
6006  int byte, wchar_bytes, charwidth, bitpos;
6007
6008  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6009
6010  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6011      == TYPE_PRECISION (char_type_node))
6012    wchar_bytes = 1;
6013  else
6014    {
6015      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6016		  == TYPE_PRECISION (wchar_type_node));
6017      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6018    }
6019  charwidth = TYPE_PRECISION (char_type_node);
6020  type = TREE_TYPE (constructor_type);
6021  p = TREE_STRING_POINTER (str);
6022  end = p + TREE_STRING_LENGTH (str);
6023
6024  for (purpose = bitsize_zero_node;
6025       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6026       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6027    {
6028      if (wchar_bytes == 1)
6029	{
6030	  val[1] = (unsigned char) *p++;
6031	  val[0] = 0;
6032	}
6033      else
6034	{
6035	  val[0] = 0;
6036	  val[1] = 0;
6037	  for (byte = 0; byte < wchar_bytes; byte++)
6038	    {
6039	      if (BYTES_BIG_ENDIAN)
6040		bitpos = (wchar_bytes - byte - 1) * charwidth;
6041	      else
6042		bitpos = byte * charwidth;
6043	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6044		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6045		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6046	    }
6047	}
6048
6049      if (!TYPE_UNSIGNED (type))
6050	{
6051	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6052	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6053	    {
6054	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6055		{
6056		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6057		  val[0] = -1;
6058		}
6059	    }
6060	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6061	    {
6062	      if (val[1] < 0)
6063		val[0] = -1;
6064	    }
6065	  else if (val[0] & (((HOST_WIDE_INT) 1)
6066			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6067	    val[0] |= ((HOST_WIDE_INT) -1)
6068		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6069	}
6070
6071      value = build_int_cst_wide (type, val[1], val[0]);
6072      add_pending_init (purpose, value);
6073    }
6074
6075  constructor_incremental = 0;
6076}
6077
6078/* Return value of FIELD in pending initializer or zero if the field was
6079   not initialized yet.  */
6080
6081static tree
6082find_init_member (tree field)
6083{
6084  struct init_node *p;
6085
6086  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6087    {
6088      if (constructor_incremental
6089	  && tree_int_cst_lt (field, constructor_unfilled_index))
6090	set_nonincremental_init ();
6091
6092      p = constructor_pending_elts;
6093      while (p)
6094	{
6095	  if (tree_int_cst_lt (field, p->purpose))
6096	    p = p->left;
6097	  else if (tree_int_cst_lt (p->purpose, field))
6098	    p = p->right;
6099	  else
6100	    return p->value;
6101	}
6102    }
6103  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6104    {
6105      tree bitpos = bit_position (field);
6106
6107      if (constructor_incremental
6108	  && (!constructor_unfilled_fields
6109	      || tree_int_cst_lt (bitpos,
6110				  bit_position (constructor_unfilled_fields))))
6111	set_nonincremental_init ();
6112
6113      p = constructor_pending_elts;
6114      while (p)
6115	{
6116	  if (field == p->purpose)
6117	    return p->value;
6118	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6119	    p = p->left;
6120	  else
6121	    p = p->right;
6122	}
6123    }
6124  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6125    {
6126      if (!VEC_empty (constructor_elt, constructor_elements)
6127	  && (VEC_last (constructor_elt, constructor_elements)->index
6128	      == field))
6129	return VEC_last (constructor_elt, constructor_elements)->value;
6130    }
6131  return 0;
6132}
6133
6134/* "Output" the next constructor element.
6135   At top level, really output it to assembler code now.
6136   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6137   TYPE is the data type that the containing data type wants here.
6138   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6139   If VALUE is a string constant, STRICT_STRING is true if it is
6140   unparenthesized or we should not warn here for it being parenthesized.
6141   For other types of VALUE, STRICT_STRING is not used.
6142
6143   PENDING if non-nil means output pending elements that belong
6144   right after this element.  (PENDING is normally 1;
6145   it is 0 while outputting pending elements, to avoid recursion.)  */
6146
6147static void
6148output_init_element (tree value, bool strict_string, tree type, tree field,
6149		     int pending)
6150{
6151  constructor_elt *celt;
6152
6153  if (type == error_mark_node || value == error_mark_node)
6154    {
6155      constructor_erroneous = 1;
6156      return;
6157    }
6158  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6159      && (TREE_CODE (value) == STRING_CST
6160	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6161      && !(TREE_CODE (value) == STRING_CST
6162	   && TREE_CODE (type) == ARRAY_TYPE
6163	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6164      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6165		     TYPE_MAIN_VARIANT (type)))
6166    value = array_to_pointer_conversion (value);
6167
6168  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6169      && require_constant_value && !flag_isoc99 && pending)
6170    {
6171      /* As an extension, allow initializing objects with static storage
6172	 duration with compound literals (which are then treated just as
6173	 the brace enclosed list they contain).  */
6174      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6175      value = DECL_INITIAL (decl);
6176    }
6177
6178  if (value == error_mark_node)
6179    constructor_erroneous = 1;
6180  else if (!TREE_CONSTANT (value))
6181    constructor_constant = 0;
6182  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6183	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6184		|| TREE_CODE (constructor_type) == UNION_TYPE)
6185	       && DECL_C_BIT_FIELD (field)
6186	       && TREE_CODE (value) != INTEGER_CST))
6187    constructor_simple = 0;
6188
6189  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6190    {
6191      if (require_constant_value)
6192	{
6193	  error_init ("initializer element is not constant");
6194	  value = error_mark_node;
6195	}
6196      else if (require_constant_elements)
6197	pedwarn ("initializer element is not computable at load time");
6198    }
6199
6200  /* If this field is empty (and not at the end of structure),
6201     don't do anything other than checking the initializer.  */
6202  if (field
6203      && (TREE_TYPE (field) == error_mark_node
6204	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6205	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6206	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6207		  || TREE_CHAIN (field)))))
6208    return;
6209
6210  value = digest_init (type, value, strict_string, require_constant_value);
6211  if (value == error_mark_node)
6212    {
6213      constructor_erroneous = 1;
6214      return;
6215    }
6216
6217  /* If this element doesn't come next in sequence,
6218     put it on constructor_pending_elts.  */
6219  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6220      && (!constructor_incremental
6221	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6222    {
6223      if (constructor_incremental
6224	  && tree_int_cst_lt (field, constructor_unfilled_index))
6225	set_nonincremental_init ();
6226
6227      add_pending_init (field, value);
6228      return;
6229    }
6230  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6231	   && (!constructor_incremental
6232	       || field != constructor_unfilled_fields))
6233    {
6234      /* We do this for records but not for unions.  In a union,
6235	 no matter which field is specified, it can be initialized
6236	 right away since it starts at the beginning of the union.  */
6237      if (constructor_incremental)
6238	{
6239	  if (!constructor_unfilled_fields)
6240	    set_nonincremental_init ();
6241	  else
6242	    {
6243	      tree bitpos, unfillpos;
6244
6245	      bitpos = bit_position (field);
6246	      unfillpos = bit_position (constructor_unfilled_fields);
6247
6248	      if (tree_int_cst_lt (bitpos, unfillpos))
6249		set_nonincremental_init ();
6250	    }
6251	}
6252
6253      add_pending_init (field, value);
6254      return;
6255    }
6256  else if (TREE_CODE (constructor_type) == UNION_TYPE
6257	   && !VEC_empty (constructor_elt, constructor_elements))
6258    {
6259      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6260				       constructor_elements)->value))
6261	warning_init ("initialized field with side-effects overwritten");
6262      else if (warn_override_init)
6263	warning_init ("initialized field overwritten");
6264
6265      /* We can have just one union field set.  */
6266      constructor_elements = 0;
6267    }
6268
6269  /* Otherwise, output this element either to
6270     constructor_elements or to the assembler file.  */
6271
6272  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6273  celt->index = field;
6274  celt->value = value;
6275
6276  /* Advance the variable that indicates sequential elements output.  */
6277  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6278    constructor_unfilled_index
6279      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6280		    bitsize_one_node);
6281  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6282    {
6283      constructor_unfilled_fields
6284	= TREE_CHAIN (constructor_unfilled_fields);
6285
6286      /* Skip any nameless bit fields.  */
6287      while (constructor_unfilled_fields != 0
6288	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6289	     && DECL_NAME (constructor_unfilled_fields) == 0)
6290	constructor_unfilled_fields =
6291	  TREE_CHAIN (constructor_unfilled_fields);
6292    }
6293  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6294    constructor_unfilled_fields = 0;
6295
6296  /* Now output any pending elements which have become next.  */
6297  if (pending)
6298    output_pending_init_elements (0);
6299}
6300
6301/* Output any pending elements which have become next.
6302   As we output elements, constructor_unfilled_{fields,index}
6303   advances, which may cause other elements to become next;
6304   if so, they too are output.
6305
6306   If ALL is 0, we return when there are
6307   no more pending elements to output now.
6308
6309   If ALL is 1, we output space as necessary so that
6310   we can output all the pending elements.  */
6311
6312static void
6313output_pending_init_elements (int all)
6314{
6315  struct init_node *elt = constructor_pending_elts;
6316  tree next;
6317
6318 retry:
6319
6320  /* Look through the whole pending tree.
6321     If we find an element that should be output now,
6322     output it.  Otherwise, set NEXT to the element
6323     that comes first among those still pending.  */
6324
6325  next = 0;
6326  while (elt)
6327    {
6328      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6329	{
6330	  if (tree_int_cst_equal (elt->purpose,
6331				  constructor_unfilled_index))
6332	    output_init_element (elt->value, true,
6333				 TREE_TYPE (constructor_type),
6334				 constructor_unfilled_index, 0);
6335	  else if (tree_int_cst_lt (constructor_unfilled_index,
6336				    elt->purpose))
6337	    {
6338	      /* Advance to the next smaller node.  */
6339	      if (elt->left)
6340		elt = elt->left;
6341	      else
6342		{
6343		  /* We have reached the smallest node bigger than the
6344		     current unfilled index.  Fill the space first.  */
6345		  next = elt->purpose;
6346		  break;
6347		}
6348	    }
6349	  else
6350	    {
6351	      /* Advance to the next bigger node.  */
6352	      if (elt->right)
6353		elt = elt->right;
6354	      else
6355		{
6356		  /* We have reached the biggest node in a subtree.  Find
6357		     the parent of it, which is the next bigger node.  */
6358		  while (elt->parent && elt->parent->right == elt)
6359		    elt = elt->parent;
6360		  elt = elt->parent;
6361		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6362					      elt->purpose))
6363		    {
6364		      next = elt->purpose;
6365		      break;
6366		    }
6367		}
6368	    }
6369	}
6370      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6371	       || TREE_CODE (constructor_type) == UNION_TYPE)
6372	{
6373	  tree ctor_unfilled_bitpos, elt_bitpos;
6374
6375	  /* If the current record is complete we are done.  */
6376	  if (constructor_unfilled_fields == 0)
6377	    break;
6378
6379	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6380	  elt_bitpos = bit_position (elt->purpose);
6381	  /* We can't compare fields here because there might be empty
6382	     fields in between.  */
6383	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6384	    {
6385	      constructor_unfilled_fields = elt->purpose;
6386	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6387				   elt->purpose, 0);
6388	    }
6389	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6390	    {
6391	      /* Advance to the next smaller node.  */
6392	      if (elt->left)
6393		elt = elt->left;
6394	      else
6395		{
6396		  /* We have reached the smallest node bigger than the
6397		     current unfilled field.  Fill the space first.  */
6398		  next = elt->purpose;
6399		  break;
6400		}
6401	    }
6402	  else
6403	    {
6404	      /* Advance to the next bigger node.  */
6405	      if (elt->right)
6406		elt = elt->right;
6407	      else
6408		{
6409		  /* We have reached the biggest node in a subtree.  Find
6410		     the parent of it, which is the next bigger node.  */
6411		  while (elt->parent && elt->parent->right == elt)
6412		    elt = elt->parent;
6413		  elt = elt->parent;
6414		  if (elt
6415		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6416					   bit_position (elt->purpose))))
6417		    {
6418		      next = elt->purpose;
6419		      break;
6420		    }
6421		}
6422	    }
6423	}
6424    }
6425
6426  /* Ordinarily return, but not if we want to output all
6427     and there are elements left.  */
6428  if (!(all && next != 0))
6429    return;
6430
6431  /* If it's not incremental, just skip over the gap, so that after
6432     jumping to retry we will output the next successive element.  */
6433  if (TREE_CODE (constructor_type) == RECORD_TYPE
6434      || TREE_CODE (constructor_type) == UNION_TYPE)
6435    constructor_unfilled_fields = next;
6436  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6437    constructor_unfilled_index = next;
6438
6439  /* ELT now points to the node in the pending tree with the next
6440     initializer to output.  */
6441  goto retry;
6442}
6443
6444/* Add one non-braced element to the current constructor level.
6445   This adjusts the current position within the constructor's type.
6446   This may also start or terminate implicit levels
6447   to handle a partly-braced initializer.
6448
6449   Once this has found the correct level for the new element,
6450   it calls output_init_element.  */
6451
6452void
6453process_init_element (struct c_expr value)
6454{
6455  tree orig_value = value.value;
6456  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6457  bool strict_string = value.original_code == STRING_CST;
6458
6459  designator_depth = 0;
6460  designator_erroneous = 0;
6461
6462  /* Handle superfluous braces around string cst as in
6463     char x[] = {"foo"}; */
6464  if (string_flag
6465      && constructor_type
6466      && TREE_CODE (constructor_type) == ARRAY_TYPE
6467      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6468      && integer_zerop (constructor_unfilled_index))
6469    {
6470      if (constructor_stack->replacement_value.value)
6471	error_init ("excess elements in char array initializer");
6472      constructor_stack->replacement_value = value;
6473      return;
6474    }
6475
6476  if (constructor_stack->replacement_value.value != 0)
6477    {
6478      error_init ("excess elements in struct initializer");
6479      return;
6480    }
6481
6482  /* Ignore elements of a brace group if it is entirely superfluous
6483     and has already been diagnosed.  */
6484  if (constructor_type == 0)
6485    return;
6486
6487  /* If we've exhausted any levels that didn't have braces,
6488     pop them now.  */
6489  while (constructor_stack->implicit)
6490    {
6491      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6492	   || TREE_CODE (constructor_type) == UNION_TYPE)
6493	  && constructor_fields == 0)
6494	process_init_element (pop_init_level (1));
6495      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6496	       && (constructor_max_index == 0
6497		   || tree_int_cst_lt (constructor_max_index,
6498				       constructor_index)))
6499	process_init_element (pop_init_level (1));
6500      else
6501	break;
6502    }
6503
6504  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6505  if (constructor_range_stack)
6506    {
6507      /* If value is a compound literal and we'll be just using its
6508	 content, don't put it into a SAVE_EXPR.  */
6509      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6510	  || !require_constant_value
6511	  || flag_isoc99)
6512	value.value = save_expr (value.value);
6513    }
6514
6515  while (1)
6516    {
6517      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6518	{
6519	  tree fieldtype;
6520	  enum tree_code fieldcode;
6521
6522	  if (constructor_fields == 0)
6523	    {
6524	      pedwarn_init ("excess elements in struct initializer");
6525	      break;
6526	    }
6527
6528	  fieldtype = TREE_TYPE (constructor_fields);
6529	  if (fieldtype != error_mark_node)
6530	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6531	  fieldcode = TREE_CODE (fieldtype);
6532
6533	  /* Error for non-static initialization of a flexible array member.  */
6534	  if (fieldcode == ARRAY_TYPE
6535	      && !require_constant_value
6536	      && TYPE_SIZE (fieldtype) == NULL_TREE
6537	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6538	    {
6539	      error_init ("non-static initialization of a flexible array member");
6540	      break;
6541	    }
6542
6543	  /* Accept a string constant to initialize a subarray.  */
6544	  if (value.value != 0
6545	      && fieldcode == ARRAY_TYPE
6546	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6547	      && string_flag)
6548	    value.value = orig_value;
6549	  /* Otherwise, if we have come to a subaggregate,
6550	     and we don't have an element of its type, push into it.  */
6551	  else if (value.value != 0
6552		   && value.value != error_mark_node
6553		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6554		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6555		       || fieldcode == UNION_TYPE))
6556	    {
6557	      push_init_level (1);
6558	      continue;
6559	    }
6560
6561	  if (value.value)
6562	    {
6563	      push_member_name (constructor_fields);
6564	      output_init_element (value.value, strict_string,
6565				   fieldtype, constructor_fields, 1);
6566	      RESTORE_SPELLING_DEPTH (constructor_depth);
6567	    }
6568	  else
6569	    /* Do the bookkeeping for an element that was
6570	       directly output as a constructor.  */
6571	    {
6572	      /* For a record, keep track of end position of last field.  */
6573	      if (DECL_SIZE (constructor_fields))
6574		constructor_bit_index
6575		  = size_binop (PLUS_EXPR,
6576				bit_position (constructor_fields),
6577				DECL_SIZE (constructor_fields));
6578
6579	      /* If the current field was the first one not yet written out,
6580		 it isn't now, so update.  */
6581	      if (constructor_unfilled_fields == constructor_fields)
6582		{
6583		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6584		  /* Skip any nameless bit fields.  */
6585		  while (constructor_unfilled_fields != 0
6586			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6587			 && DECL_NAME (constructor_unfilled_fields) == 0)
6588		    constructor_unfilled_fields =
6589		      TREE_CHAIN (constructor_unfilled_fields);
6590		}
6591	    }
6592
6593	  constructor_fields = TREE_CHAIN (constructor_fields);
6594	  /* Skip any nameless bit fields at the beginning.  */
6595	  while (constructor_fields != 0
6596		 && DECL_C_BIT_FIELD (constructor_fields)
6597		 && DECL_NAME (constructor_fields) == 0)
6598	    constructor_fields = TREE_CHAIN (constructor_fields);
6599	}
6600      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6601	{
6602	  tree fieldtype;
6603	  enum tree_code fieldcode;
6604
6605	  if (constructor_fields == 0)
6606	    {
6607	      pedwarn_init ("excess elements in union initializer");
6608	      break;
6609	    }
6610
6611	  fieldtype = TREE_TYPE (constructor_fields);
6612	  if (fieldtype != error_mark_node)
6613	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6614	  fieldcode = TREE_CODE (fieldtype);
6615
6616	  /* Warn that traditional C rejects initialization of unions.
6617	     We skip the warning if the value is zero.  This is done
6618	     under the assumption that the zero initializer in user
6619	     code appears conditioned on e.g. __STDC__ to avoid
6620	     "missing initializer" warnings and relies on default
6621	     initialization to zero in the traditional C case.
6622	     We also skip the warning if the initializer is designated,
6623	     again on the assumption that this must be conditional on
6624	     __STDC__ anyway (and we've already complained about the
6625	     member-designator already).  */
6626	  if (!in_system_header && !constructor_designated
6627	      && !(value.value && (integer_zerop (value.value)
6628				   || real_zerop (value.value))))
6629	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6630		     "of unions");
6631
6632	  /* Accept a string constant to initialize a subarray.  */
6633	  if (value.value != 0
6634	      && fieldcode == ARRAY_TYPE
6635	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6636	      && string_flag)
6637	    value.value = orig_value;
6638	  /* Otherwise, if we have come to a subaggregate,
6639	     and we don't have an element of its type, push into it.  */
6640	  else if (value.value != 0
6641		   && value.value != error_mark_node
6642		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6643		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6644		       || fieldcode == UNION_TYPE))
6645	    {
6646	      push_init_level (1);
6647	      continue;
6648	    }
6649
6650	  if (value.value)
6651	    {
6652	      push_member_name (constructor_fields);
6653	      output_init_element (value.value, strict_string,
6654				   fieldtype, constructor_fields, 1);
6655	      RESTORE_SPELLING_DEPTH (constructor_depth);
6656	    }
6657	  else
6658	    /* Do the bookkeeping for an element that was
6659	       directly output as a constructor.  */
6660	    {
6661	      constructor_bit_index = DECL_SIZE (constructor_fields);
6662	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6663	    }
6664
6665	  constructor_fields = 0;
6666	}
6667      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6668	{
6669	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6670	  enum tree_code eltcode = TREE_CODE (elttype);
6671
6672	  /* Accept a string constant to initialize a subarray.  */
6673	  if (value.value != 0
6674	      && eltcode == ARRAY_TYPE
6675	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6676	      && string_flag)
6677	    value.value = orig_value;
6678	  /* Otherwise, if we have come to a subaggregate,
6679	     and we don't have an element of its type, push into it.  */
6680	  else if (value.value != 0
6681		   && value.value != error_mark_node
6682		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6683		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6684		       || eltcode == UNION_TYPE))
6685	    {
6686	      push_init_level (1);
6687	      continue;
6688	    }
6689
6690	  if (constructor_max_index != 0
6691	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6692		  || integer_all_onesp (constructor_max_index)))
6693	    {
6694	      pedwarn_init ("excess elements in array initializer");
6695	      break;
6696	    }
6697
6698	  /* Now output the actual element.  */
6699	  if (value.value)
6700	    {
6701	      push_array_bounds (tree_low_cst (constructor_index, 1));
6702	      output_init_element (value.value, strict_string,
6703				   elttype, constructor_index, 1);
6704	      RESTORE_SPELLING_DEPTH (constructor_depth);
6705	    }
6706
6707	  constructor_index
6708	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6709
6710	  if (!value.value)
6711	    /* If we are doing the bookkeeping for an element that was
6712	       directly output as a constructor, we must update
6713	       constructor_unfilled_index.  */
6714	    constructor_unfilled_index = constructor_index;
6715	}
6716      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6717	{
6718	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6719
6720	 /* Do a basic check of initializer size.  Note that vectors
6721	    always have a fixed size derived from their type.  */
6722	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6723	    {
6724	      pedwarn_init ("excess elements in vector initializer");
6725	      break;
6726	    }
6727
6728	  /* Now output the actual element.  */
6729	  if (value.value)
6730	    output_init_element (value.value, strict_string,
6731				 elttype, constructor_index, 1);
6732
6733	  constructor_index
6734	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6735
6736	  if (!value.value)
6737	    /* If we are doing the bookkeeping for an element that was
6738	       directly output as a constructor, we must update
6739	       constructor_unfilled_index.  */
6740	    constructor_unfilled_index = constructor_index;
6741	}
6742
6743      /* Handle the sole element allowed in a braced initializer
6744	 for a scalar variable.  */
6745      else if (constructor_type != error_mark_node
6746	       && constructor_fields == 0)
6747	{
6748	  pedwarn_init ("excess elements in scalar initializer");
6749	  break;
6750	}
6751      else
6752	{
6753	  if (value.value)
6754	    output_init_element (value.value, strict_string,
6755				 constructor_type, NULL_TREE, 1);
6756	  constructor_fields = 0;
6757	}
6758
6759      /* Handle range initializers either at this level or anywhere higher
6760	 in the designator stack.  */
6761      if (constructor_range_stack)
6762	{
6763	  struct constructor_range_stack *p, *range_stack;
6764	  int finish = 0;
6765
6766	  range_stack = constructor_range_stack;
6767	  constructor_range_stack = 0;
6768	  while (constructor_stack != range_stack->stack)
6769	    {
6770	      gcc_assert (constructor_stack->implicit);
6771	      process_init_element (pop_init_level (1));
6772	    }
6773	  for (p = range_stack;
6774	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6775	       p = p->prev)
6776	    {
6777	      gcc_assert (constructor_stack->implicit);
6778	      process_init_element (pop_init_level (1));
6779	    }
6780
6781	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6782	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6783	    finish = 1;
6784
6785	  while (1)
6786	    {
6787	      constructor_index = p->index;
6788	      constructor_fields = p->fields;
6789	      if (finish && p->range_end && p->index == p->range_start)
6790		{
6791		  finish = 0;
6792		  p->prev = 0;
6793		}
6794	      p = p->next;
6795	      if (!p)
6796		break;
6797	      push_init_level (2);
6798	      p->stack = constructor_stack;
6799	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6800		p->index = p->range_start;
6801	    }
6802
6803	  if (!finish)
6804	    constructor_range_stack = range_stack;
6805	  continue;
6806	}
6807
6808      break;
6809    }
6810
6811  constructor_range_stack = 0;
6812}
6813
6814/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6815   (guaranteed to be 'volatile' or null) and ARGS (represented using
6816   an ASM_EXPR node).  */
6817tree
6818build_asm_stmt (tree cv_qualifier, tree args)
6819{
6820  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6821    ASM_VOLATILE_P (args) = 1;
6822  return add_stmt (args);
6823}
6824
6825/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6826   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6827   SIMPLE indicates whether there was anything at all after the
6828   string in the asm expression -- asm("blah") and asm("blah" : )
6829   are subtly different.  We use a ASM_EXPR node to represent this.  */
6830tree
6831build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6832		bool simple)
6833{
6834  tree tail;
6835  tree args;
6836  int i;
6837  const char *constraint;
6838  const char **oconstraints;
6839  bool allows_mem, allows_reg, is_inout;
6840  int ninputs, noutputs;
6841
6842  ninputs = list_length (inputs);
6843  noutputs = list_length (outputs);
6844  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6845
6846  string = resolve_asm_operand_names (string, outputs, inputs);
6847
6848  /* Remove output conversions that change the type but not the mode.  */
6849  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6850    {
6851      tree output = TREE_VALUE (tail);
6852
6853      /* ??? Really, this should not be here.  Users should be using a
6854	 proper lvalue, dammit.  But there's a long history of using casts
6855	 in the output operands.  In cases like longlong.h, this becomes a
6856	 primitive form of typechecking -- if the cast can be removed, then
6857	 the output operand had a type of the proper width; otherwise we'll
6858	 get an error.  Gross, but ...  */
6859      STRIP_NOPS (output);
6860
6861      if (!lvalue_or_else (output, lv_asm))
6862	output = error_mark_node;
6863
6864      if (output != error_mark_node
6865	  && (TREE_READONLY (output)
6866	      || TYPE_READONLY (TREE_TYPE (output))
6867	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6868		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6869		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6870	readonly_error (output, lv_asm);
6871
6872      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6873      oconstraints[i] = constraint;
6874
6875      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6876				   &allows_mem, &allows_reg, &is_inout))
6877	{
6878	  /* If the operand is going to end up in memory,
6879	     mark it addressable.  */
6880	  if (!allows_reg && !c_mark_addressable (output))
6881	    output = error_mark_node;
6882	}
6883      else
6884	output = error_mark_node;
6885
6886      TREE_VALUE (tail) = output;
6887    }
6888
6889  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6890    {
6891      tree input;
6892
6893      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6894      input = TREE_VALUE (tail);
6895
6896      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6897				  oconstraints, &allows_mem, &allows_reg))
6898	{
6899	  /* If the operand is going to end up in memory,
6900	     mark it addressable.  */
6901	  if (!allows_reg && allows_mem)
6902	    {
6903	      /* Strip the nops as we allow this case.  FIXME, this really
6904		 should be rejected or made deprecated.  */
6905	      STRIP_NOPS (input);
6906	      if (!c_mark_addressable (input))
6907		input = error_mark_node;
6908	  }
6909	}
6910      else
6911	input = error_mark_node;
6912
6913      TREE_VALUE (tail) = input;
6914    }
6915
6916  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6917
6918  /* asm statements without outputs, including simple ones, are treated
6919     as volatile.  */
6920  ASM_INPUT_P (args) = simple;
6921  ASM_VOLATILE_P (args) = (noutputs == 0);
6922
6923  return args;
6924}
6925
6926/* Generate a goto statement to LABEL.  */
6927
6928tree
6929c_finish_goto_label (tree label)
6930{
6931  tree decl = lookup_label (label);
6932  if (!decl)
6933    return NULL_TREE;
6934
6935  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6936    {
6937      error ("jump into statement expression");
6938      return NULL_TREE;
6939    }
6940
6941  if (C_DECL_UNJUMPABLE_VM (decl))
6942    {
6943      error ("jump into scope of identifier with variably modified type");
6944      return NULL_TREE;
6945    }
6946
6947  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6948    {
6949      /* No jump from outside this statement expression context, so
6950	 record that there is a jump from within this context.  */
6951      struct c_label_list *nlist;
6952      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6953      nlist->next = label_context_stack_se->labels_used;
6954      nlist->label = decl;
6955      label_context_stack_se->labels_used = nlist;
6956    }
6957
6958  if (!C_DECL_UNDEFINABLE_VM (decl))
6959    {
6960      /* No jump from outside this context context of identifiers with
6961	 variably modified type, so record that there is a jump from
6962	 within this context.  */
6963      struct c_label_list *nlist;
6964      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6965      nlist->next = label_context_stack_vm->labels_used;
6966      nlist->label = decl;
6967      label_context_stack_vm->labels_used = nlist;
6968    }
6969
6970  TREE_USED (decl) = 1;
6971  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6972}
6973
6974/* Generate a computed goto statement to EXPR.  */
6975
6976tree
6977c_finish_goto_ptr (tree expr)
6978{
6979  if (pedantic)
6980    pedwarn ("ISO C forbids %<goto *expr;%>");
6981  expr = convert (ptr_type_node, expr);
6982  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6983}
6984
6985/* Generate a C `return' statement.  RETVAL is the expression for what
6986   to return, or a null pointer for `return;' with no value.  */
6987
6988tree
6989c_finish_return (tree retval)
6990{
6991  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6992  bool no_warning = false;
6993
6994  if (TREE_THIS_VOLATILE (current_function_decl))
6995    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6996
6997  if (!retval)
6998    {
6999      current_function_returns_null = 1;
7000      if ((warn_return_type || flag_isoc99)
7001	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7002	{
7003	  pedwarn_c99 ("%<return%> with no value, in "
7004		       "function returning non-void");
7005	  no_warning = true;
7006	}
7007    }
7008  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7009    {
7010      current_function_returns_null = 1;
7011      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7012	pedwarn ("%<return%> with a value, in function returning void");
7013    }
7014  else
7015    {
7016      tree t = convert_for_assignment (valtype, retval, ic_return,
7017				       NULL_TREE, NULL_TREE, 0);
7018      tree res = DECL_RESULT (current_function_decl);
7019      tree inner;
7020
7021      current_function_returns_value = 1;
7022      if (t == error_mark_node)
7023	return NULL_TREE;
7024
7025      inner = t = convert (TREE_TYPE (res), t);
7026
7027      /* Strip any conversions, additions, and subtractions, and see if
7028	 we are returning the address of a local variable.  Warn if so.  */
7029      while (1)
7030	{
7031	  switch (TREE_CODE (inner))
7032	    {
7033	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7034	    case PLUS_EXPR:
7035	      inner = TREE_OPERAND (inner, 0);
7036	      continue;
7037
7038	    case MINUS_EXPR:
7039	      /* If the second operand of the MINUS_EXPR has a pointer
7040		 type (or is converted from it), this may be valid, so
7041		 don't give a warning.  */
7042	      {
7043		tree op1 = TREE_OPERAND (inner, 1);
7044
7045		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7046		       && (TREE_CODE (op1) == NOP_EXPR
7047			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7048			   || TREE_CODE (op1) == CONVERT_EXPR))
7049		  op1 = TREE_OPERAND (op1, 0);
7050
7051		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7052		  break;
7053
7054		inner = TREE_OPERAND (inner, 0);
7055		continue;
7056	      }
7057
7058	    case ADDR_EXPR:
7059	      inner = TREE_OPERAND (inner, 0);
7060
7061	      while (REFERENCE_CLASS_P (inner)
7062		     && TREE_CODE (inner) != INDIRECT_REF)
7063		inner = TREE_OPERAND (inner, 0);
7064
7065	      if (DECL_P (inner)
7066		  && !DECL_EXTERNAL (inner)
7067		  && !TREE_STATIC (inner)
7068		  && DECL_CONTEXT (inner) == current_function_decl)
7069		warning (0, "function returns address of local variable");
7070	      break;
7071
7072	    default:
7073	      break;
7074	    }
7075
7076	  break;
7077	}
7078
7079      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7080    }
7081
7082  ret_stmt = build_stmt (RETURN_EXPR, retval);
7083  TREE_NO_WARNING (ret_stmt) |= no_warning;
7084  return add_stmt (ret_stmt);
7085}
7086
7087struct c_switch {
7088  /* The SWITCH_EXPR being built.  */
7089  tree switch_expr;
7090
7091  /* The original type of the testing expression, i.e. before the
7092     default conversion is applied.  */
7093  tree orig_type;
7094
7095  /* A splay-tree mapping the low element of a case range to the high
7096     element, or NULL_TREE if there is no high element.  Used to
7097     determine whether or not a new case label duplicates an old case
7098     label.  We need a tree, rather than simply a hash table, because
7099     of the GNU case range extension.  */
7100  splay_tree cases;
7101
7102  /* Number of nested statement expressions within this switch
7103     statement; if nonzero, case and default labels may not
7104     appear.  */
7105  unsigned int blocked_stmt_expr;
7106
7107  /* Scope of outermost declarations of identifiers with variably
7108     modified type within this switch statement; if nonzero, case and
7109     default labels may not appear.  */
7110  unsigned int blocked_vm;
7111
7112  /* The next node on the stack.  */
7113  struct c_switch *next;
7114};
7115
7116/* A stack of the currently active switch statements.  The innermost
7117   switch statement is on the top of the stack.  There is no need to
7118   mark the stack for garbage collection because it is only active
7119   during the processing of the body of a function, and we never
7120   collect at that point.  */
7121
7122struct c_switch *c_switch_stack;
7123
7124/* Start a C switch statement, testing expression EXP.  Return the new
7125   SWITCH_EXPR.  */
7126
7127tree
7128c_start_case (tree exp)
7129{
7130  tree orig_type = error_mark_node;
7131  struct c_switch *cs;
7132
7133  if (exp != error_mark_node)
7134    {
7135      orig_type = TREE_TYPE (exp);
7136
7137      if (!INTEGRAL_TYPE_P (orig_type))
7138	{
7139	  if (orig_type != error_mark_node)
7140	    {
7141	      error ("switch quantity not an integer");
7142	      orig_type = error_mark_node;
7143	    }
7144	  exp = integer_zero_node;
7145	}
7146      else
7147	{
7148	  tree type = TYPE_MAIN_VARIANT (orig_type);
7149
7150	  if (!in_system_header
7151	      && (type == long_integer_type_node
7152		  || type == long_unsigned_type_node))
7153	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7154		     "converted to %<int%> in ISO C");
7155
7156	  exp = default_conversion (exp);
7157	}
7158    }
7159
7160  /* Add this new SWITCH_EXPR to the stack.  */
7161  cs = XNEW (struct c_switch);
7162  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7163  cs->orig_type = orig_type;
7164  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7165  cs->blocked_stmt_expr = 0;
7166  cs->blocked_vm = 0;
7167  cs->next = c_switch_stack;
7168  c_switch_stack = cs;
7169
7170  return add_stmt (cs->switch_expr);
7171}
7172
7173/* Process a case label.  */
7174
7175tree
7176do_case (tree low_value, tree high_value)
7177{
7178  tree label = NULL_TREE;
7179
7180  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7181      && !c_switch_stack->blocked_vm)
7182    {
7183      label = c_add_case_label (c_switch_stack->cases,
7184				SWITCH_COND (c_switch_stack->switch_expr),
7185				c_switch_stack->orig_type,
7186				low_value, high_value);
7187      if (label == error_mark_node)
7188	label = NULL_TREE;
7189    }
7190  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7191    {
7192      if (low_value)
7193	error ("case label in statement expression not containing "
7194	       "enclosing switch statement");
7195      else
7196	error ("%<default%> label in statement expression not containing "
7197	       "enclosing switch statement");
7198    }
7199  else if (c_switch_stack && c_switch_stack->blocked_vm)
7200    {
7201      if (low_value)
7202	error ("case label in scope of identifier with variably modified "
7203	       "type not containing enclosing switch statement");
7204      else
7205	error ("%<default%> label in scope of identifier with variably "
7206	       "modified type not containing enclosing switch statement");
7207    }
7208  else if (low_value)
7209    error ("case label not within a switch statement");
7210  else
7211    error ("%<default%> label not within a switch statement");
7212
7213  return label;
7214}
7215
7216/* Finish the switch statement.  */
7217
7218void
7219c_finish_case (tree body)
7220{
7221  struct c_switch *cs = c_switch_stack;
7222  location_t switch_location;
7223
7224  SWITCH_BODY (cs->switch_expr) = body;
7225
7226  /* We must not be within a statement expression nested in the switch
7227     at this point; we might, however, be within the scope of an
7228     identifier with variably modified type nested in the switch.  */
7229  gcc_assert (!cs->blocked_stmt_expr);
7230
7231  /* Emit warnings as needed.  */
7232  if (EXPR_HAS_LOCATION (cs->switch_expr))
7233    switch_location = EXPR_LOCATION (cs->switch_expr);
7234  else
7235    switch_location = input_location;
7236  c_do_switch_warnings (cs->cases, switch_location,
7237			TREE_TYPE (cs->switch_expr),
7238			SWITCH_COND (cs->switch_expr));
7239
7240  /* Pop the stack.  */
7241  c_switch_stack = cs->next;
7242  splay_tree_delete (cs->cases);
7243  XDELETE (cs);
7244}
7245
7246/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7247   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7248   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7249   statement, and was not surrounded with parenthesis.  */
7250
7251void
7252c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7253		  tree else_block, bool nested_if)
7254{
7255  tree stmt;
7256
7257  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7258  if (warn_parentheses && nested_if && else_block == NULL)
7259    {
7260      tree inner_if = then_block;
7261
7262      /* We know from the grammar productions that there is an IF nested
7263	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7264	 it might not be exactly THEN_BLOCK, but should be the last
7265	 non-container statement within.  */
7266      while (1)
7267	switch (TREE_CODE (inner_if))
7268	  {
7269	  case COND_EXPR:
7270	    goto found;
7271	  case BIND_EXPR:
7272	    inner_if = BIND_EXPR_BODY (inner_if);
7273	    break;
7274	  case STATEMENT_LIST:
7275	    inner_if = expr_last (then_block);
7276	    break;
7277	  case TRY_FINALLY_EXPR:
7278	  case TRY_CATCH_EXPR:
7279	    inner_if = TREE_OPERAND (inner_if, 0);
7280	    break;
7281	  default:
7282	    gcc_unreachable ();
7283	  }
7284    found:
7285
7286      if (COND_EXPR_ELSE (inner_if))
7287	 warning (OPT_Wparentheses,
7288		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7289		  &if_locus);
7290    }
7291
7292  empty_body_warning (then_block, else_block);
7293
7294  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7295  SET_EXPR_LOCATION (stmt, if_locus);
7296  add_stmt (stmt);
7297}
7298
7299/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7300   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7301   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7302   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7303   the continue label.  Everything is allowed to be NULL.  */
7304
7305void
7306c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7307	       tree blab, tree clab, bool cond_is_first)
7308{
7309  tree entry = NULL, exit = NULL, t;
7310
7311  /* If the condition is zero don't generate a loop construct.  */
7312  if (cond && integer_zerop (cond))
7313    {
7314      if (cond_is_first)
7315	{
7316	  t = build_and_jump (&blab);
7317	  SET_EXPR_LOCATION (t, start_locus);
7318	  add_stmt (t);
7319	}
7320    }
7321  else
7322    {
7323      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7324
7325      /* If we have an exit condition, then we build an IF with gotos either
7326	 out of the loop, or to the top of it.  If there's no exit condition,
7327	 then we just build a jump back to the top.  */
7328      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7329
7330      if (cond && !integer_nonzerop (cond))
7331	{
7332	  /* Canonicalize the loop condition to the end.  This means
7333	     generating a branch to the loop condition.  Reuse the
7334	     continue label, if possible.  */
7335	  if (cond_is_first)
7336	    {
7337	      if (incr || !clab)
7338		{
7339		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7340		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7341		}
7342	      else
7343		t = build1 (GOTO_EXPR, void_type_node, clab);
7344	      SET_EXPR_LOCATION (t, start_locus);
7345	      add_stmt (t);
7346	    }
7347
7348	  t = build_and_jump (&blab);
7349	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7350	  if (cond_is_first)
7351	    SET_EXPR_LOCATION (exit, start_locus);
7352	  else
7353	    SET_EXPR_LOCATION (exit, input_location);
7354	}
7355
7356      add_stmt (top);
7357    }
7358
7359  if (body)
7360    add_stmt (body);
7361  if (clab)
7362    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7363  if (incr)
7364    add_stmt (incr);
7365  if (entry)
7366    add_stmt (entry);
7367  if (exit)
7368    add_stmt (exit);
7369  if (blab)
7370    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7371}
7372
7373tree
7374c_finish_bc_stmt (tree *label_p, bool is_break)
7375{
7376  bool skip;
7377  tree label = *label_p;
7378
7379  /* In switch statements break is sometimes stylistically used after
7380     a return statement.  This can lead to spurious warnings about
7381     control reaching the end of a non-void function when it is
7382     inlined.  Note that we are calling block_may_fallthru with
7383     language specific tree nodes; this works because
7384     block_may_fallthru returns true when given something it does not
7385     understand.  */
7386  skip = !block_may_fallthru (cur_stmt_list);
7387
7388  if (!label)
7389    {
7390      if (!skip)
7391	*label_p = label = create_artificial_label ();
7392    }
7393  else if (TREE_CODE (label) == LABEL_DECL)
7394    ;
7395  else switch (TREE_INT_CST_LOW (label))
7396    {
7397    case 0:
7398      if (is_break)
7399	error ("break statement not within loop or switch");
7400      else
7401	error ("continue statement not within a loop");
7402      return NULL_TREE;
7403
7404    case 1:
7405      gcc_assert (is_break);
7406      error ("break statement used with OpenMP for loop");
7407      return NULL_TREE;
7408
7409    default:
7410      gcc_unreachable ();
7411    }
7412
7413  if (skip)
7414    return NULL_TREE;
7415
7416  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7417}
7418
7419/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7420
7421static void
7422emit_side_effect_warnings (tree expr)
7423{
7424  if (expr == error_mark_node)
7425    ;
7426  else if (!TREE_SIDE_EFFECTS (expr))
7427    {
7428      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7429	warning (0, "%Hstatement with no effect",
7430		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7431    }
7432  else if (warn_unused_value)
7433    warn_if_unused_value (expr, input_location);
7434}
7435
7436/* Process an expression as if it were a complete statement.  Emit
7437   diagnostics, but do not call ADD_STMT.  */
7438
7439tree
7440c_process_expr_stmt (tree expr)
7441{
7442  if (!expr)
7443    return NULL_TREE;
7444
7445  if (warn_sequence_point)
7446    verify_sequence_points (expr);
7447
7448  if (TREE_TYPE (expr) != error_mark_node
7449      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7450      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7451    error ("expression statement has incomplete type");
7452
7453  /* If we're not processing a statement expression, warn about unused values.
7454     Warnings for statement expressions will be emitted later, once we figure
7455     out which is the result.  */
7456  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7457      && (extra_warnings || warn_unused_value))
7458    emit_side_effect_warnings (expr);
7459
7460  /* If the expression is not of a type to which we cannot assign a line
7461     number, wrap the thing in a no-op NOP_EXPR.  */
7462  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7463    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7464
7465  if (EXPR_P (expr))
7466    SET_EXPR_LOCATION (expr, input_location);
7467
7468  return expr;
7469}
7470
7471/* Emit an expression as a statement.  */
7472
7473tree
7474c_finish_expr_stmt (tree expr)
7475{
7476  if (expr)
7477    return add_stmt (c_process_expr_stmt (expr));
7478  else
7479    return NULL;
7480}
7481
7482/* Do the opposite and emit a statement as an expression.  To begin,
7483   create a new binding level and return it.  */
7484
7485tree
7486c_begin_stmt_expr (void)
7487{
7488  tree ret;
7489  struct c_label_context_se *nstack;
7490  struct c_label_list *glist;
7491
7492  /* We must force a BLOCK for this level so that, if it is not expanded
7493     later, there is a way to turn off the entire subtree of blocks that
7494     are contained in it.  */
7495  keep_next_level ();
7496  ret = c_begin_compound_stmt (true);
7497  if (c_switch_stack)
7498    {
7499      c_switch_stack->blocked_stmt_expr++;
7500      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7501    }
7502  for (glist = label_context_stack_se->labels_used;
7503       glist != NULL;
7504       glist = glist->next)
7505    {
7506      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7507    }
7508  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7509  nstack->labels_def = NULL;
7510  nstack->labels_used = NULL;
7511  nstack->next = label_context_stack_se;
7512  label_context_stack_se = nstack;
7513
7514  /* Mark the current statement list as belonging to a statement list.  */
7515  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7516
7517  return ret;
7518}
7519
7520tree
7521c_finish_stmt_expr (tree body)
7522{
7523  tree last, type, tmp, val;
7524  tree *last_p;
7525  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7526
7527  body = c_end_compound_stmt (body, true);
7528  if (c_switch_stack)
7529    {
7530      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7531      c_switch_stack->blocked_stmt_expr--;
7532    }
7533  /* It is no longer possible to jump to labels defined within this
7534     statement expression.  */
7535  for (dlist = label_context_stack_se->labels_def;
7536       dlist != NULL;
7537       dlist = dlist->next)
7538    {
7539      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7540    }
7541  /* It is again possible to define labels with a goto just outside
7542     this statement expression.  */
7543  for (glist = label_context_stack_se->next->labels_used;
7544       glist != NULL;
7545       glist = glist->next)
7546    {
7547      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7548      glist_prev = glist;
7549    }
7550  if (glist_prev != NULL)
7551    glist_prev->next = label_context_stack_se->labels_used;
7552  else
7553    label_context_stack_se->next->labels_used
7554      = label_context_stack_se->labels_used;
7555  label_context_stack_se = label_context_stack_se->next;
7556
7557  /* Locate the last statement in BODY.  See c_end_compound_stmt
7558     about always returning a BIND_EXPR.  */
7559  last_p = &BIND_EXPR_BODY (body);
7560  last = BIND_EXPR_BODY (body);
7561
7562 continue_searching:
7563  if (TREE_CODE (last) == STATEMENT_LIST)
7564    {
7565      tree_stmt_iterator i;
7566
7567      /* This can happen with degenerate cases like ({ }).  No value.  */
7568      if (!TREE_SIDE_EFFECTS (last))
7569	return body;
7570
7571      /* If we're supposed to generate side effects warnings, process
7572	 all of the statements except the last.  */
7573      if (extra_warnings || warn_unused_value)
7574	{
7575	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7576	    emit_side_effect_warnings (tsi_stmt (i));
7577	}
7578      else
7579	i = tsi_last (last);
7580      last_p = tsi_stmt_ptr (i);
7581      last = *last_p;
7582    }
7583
7584  /* If the end of the list is exception related, then the list was split
7585     by a call to push_cleanup.  Continue searching.  */
7586  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7587      || TREE_CODE (last) == TRY_CATCH_EXPR)
7588    {
7589      last_p = &TREE_OPERAND (last, 0);
7590      last = *last_p;
7591      goto continue_searching;
7592    }
7593
7594  /* In the case that the BIND_EXPR is not necessary, return the
7595     expression out from inside it.  */
7596  if (last == error_mark_node
7597      || (last == BIND_EXPR_BODY (body)
7598	  && BIND_EXPR_VARS (body) == NULL))
7599    {
7600      /* Do not warn if the return value of a statement expression is
7601	 unused.  */
7602      if (EXPR_P (last))
7603	TREE_NO_WARNING (last) = 1;
7604      return last;
7605    }
7606
7607  /* Extract the type of said expression.  */
7608  type = TREE_TYPE (last);
7609
7610  /* If we're not returning a value at all, then the BIND_EXPR that
7611     we already have is a fine expression to return.  */
7612  if (!type || VOID_TYPE_P (type))
7613    return body;
7614
7615  /* Now that we've located the expression containing the value, it seems
7616     silly to make voidify_wrapper_expr repeat the process.  Create a
7617     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7618  tmp = create_tmp_var_raw (type, NULL);
7619
7620  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7621     tree_expr_nonnegative_p giving up immediately.  */
7622  val = last;
7623  if (TREE_CODE (val) == NOP_EXPR
7624      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7625    val = TREE_OPERAND (val, 0);
7626
7627  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7628  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7629
7630  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7631}
7632
7633/* Begin the scope of an identifier of variably modified type, scope
7634   number SCOPE.  Jumping from outside this scope to inside it is not
7635   permitted.  */
7636
7637void
7638c_begin_vm_scope (unsigned int scope)
7639{
7640  struct c_label_context_vm *nstack;
7641  struct c_label_list *glist;
7642
7643  gcc_assert (scope > 0);
7644
7645  /* At file_scope, we don't have to do any processing.  */
7646  if (label_context_stack_vm == NULL)
7647    return;
7648
7649  if (c_switch_stack && !c_switch_stack->blocked_vm)
7650    c_switch_stack->blocked_vm = scope;
7651  for (glist = label_context_stack_vm->labels_used;
7652       glist != NULL;
7653       glist = glist->next)
7654    {
7655      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7656    }
7657  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7658  nstack->labels_def = NULL;
7659  nstack->labels_used = NULL;
7660  nstack->scope = scope;
7661  nstack->next = label_context_stack_vm;
7662  label_context_stack_vm = nstack;
7663}
7664
7665/* End a scope which may contain identifiers of variably modified
7666   type, scope number SCOPE.  */
7667
7668void
7669c_end_vm_scope (unsigned int scope)
7670{
7671  if (label_context_stack_vm == NULL)
7672    return;
7673  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7674    c_switch_stack->blocked_vm = 0;
7675  /* We may have a number of nested scopes of identifiers with
7676     variably modified type, all at this depth.  Pop each in turn.  */
7677  while (label_context_stack_vm->scope == scope)
7678    {
7679      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7680
7681      /* It is no longer possible to jump to labels defined within this
7682	 scope.  */
7683      for (dlist = label_context_stack_vm->labels_def;
7684	   dlist != NULL;
7685	   dlist = dlist->next)
7686	{
7687	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7688	}
7689      /* It is again possible to define labels with a goto just outside
7690	 this scope.  */
7691      for (glist = label_context_stack_vm->next->labels_used;
7692	   glist != NULL;
7693	   glist = glist->next)
7694	{
7695	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7696	  glist_prev = glist;
7697	}
7698      if (glist_prev != NULL)
7699	glist_prev->next = label_context_stack_vm->labels_used;
7700      else
7701	label_context_stack_vm->next->labels_used
7702	  = label_context_stack_vm->labels_used;
7703      label_context_stack_vm = label_context_stack_vm->next;
7704    }
7705}
7706
7707/* Begin and end compound statements.  This is as simple as pushing
7708   and popping new statement lists from the tree.  */
7709
7710tree
7711c_begin_compound_stmt (bool do_scope)
7712{
7713  tree stmt = push_stmt_list ();
7714  if (do_scope)
7715    push_scope ();
7716  return stmt;
7717}
7718
7719tree
7720c_end_compound_stmt (tree stmt, bool do_scope)
7721{
7722  tree block = NULL;
7723
7724  if (do_scope)
7725    {
7726      if (c_dialect_objc ())
7727	objc_clear_super_receiver ();
7728      block = pop_scope ();
7729    }
7730
7731  stmt = pop_stmt_list (stmt);
7732  stmt = c_build_bind_expr (block, stmt);
7733
7734  /* If this compound statement is nested immediately inside a statement
7735     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7736     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7737     STATEMENT_LISTs merge, and thus we can lose track of what statement
7738     was really last.  */
7739  if (cur_stmt_list
7740      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7741      && TREE_CODE (stmt) != BIND_EXPR)
7742    {
7743      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7744      TREE_SIDE_EFFECTS (stmt) = 1;
7745    }
7746
7747  return stmt;
7748}
7749
7750/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7751   when the current scope is exited.  EH_ONLY is true when this is not
7752   meant to apply to normal control flow transfer.  */
7753
7754void
7755push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7756{
7757  enum tree_code code;
7758  tree stmt, list;
7759  bool stmt_expr;
7760
7761  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7762  stmt = build_stmt (code, NULL, cleanup);
7763  add_stmt (stmt);
7764  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7765  list = push_stmt_list ();
7766  TREE_OPERAND (stmt, 0) = list;
7767  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7768}
7769
7770/* Build a binary-operation expression without default conversions.
7771   CODE is the kind of expression to build.
7772   This function differs from `build' in several ways:
7773   the data type of the result is computed and recorded in it,
7774   warnings are generated if arg data types are invalid,
7775   special handling for addition and subtraction of pointers is known,
7776   and some optimization is done (operations on narrow ints
7777   are done in the narrower type when that gives the same result).
7778   Constant folding is also done before the result is returned.
7779
7780   Note that the operands will never have enumeral types, or function
7781   or array types, because either they will have the default conversions
7782   performed or they have both just been converted to some other type in which
7783   the arithmetic is to be done.  */
7784
7785tree
7786build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7787		 int convert_p)
7788{
7789  tree type0, type1;
7790  enum tree_code code0, code1;
7791  tree op0, op1;
7792  const char *invalid_op_diag;
7793
7794  /* Expression code to give to the expression when it is built.
7795     Normally this is CODE, which is what the caller asked for,
7796     but in some special cases we change it.  */
7797  enum tree_code resultcode = code;
7798
7799  /* Data type in which the computation is to be performed.
7800     In the simplest cases this is the common type of the arguments.  */
7801  tree result_type = NULL;
7802
7803  /* Nonzero means operands have already been type-converted
7804     in whatever way is necessary.
7805     Zero means they need to be converted to RESULT_TYPE.  */
7806  int converted = 0;
7807
7808  /* Nonzero means create the expression with this type, rather than
7809     RESULT_TYPE.  */
7810  tree build_type = 0;
7811
7812  /* Nonzero means after finally constructing the expression
7813     convert it to this type.  */
7814  tree final_type = 0;
7815
7816  /* Nonzero if this is an operation like MIN or MAX which can
7817     safely be computed in short if both args are promoted shorts.
7818     Also implies COMMON.
7819     -1 indicates a bitwise operation; this makes a difference
7820     in the exact conditions for when it is safe to do the operation
7821     in a narrower mode.  */
7822  int shorten = 0;
7823
7824  /* Nonzero if this is a comparison operation;
7825     if both args are promoted shorts, compare the original shorts.
7826     Also implies COMMON.  */
7827  int short_compare = 0;
7828
7829  /* Nonzero if this is a right-shift operation, which can be computed on the
7830     original short and then promoted if the operand is a promoted short.  */
7831  int short_shift = 0;
7832
7833  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7834  int common = 0;
7835
7836  /* True means types are compatible as far as ObjC is concerned.  */
7837  bool objc_ok;
7838
7839  if (convert_p)
7840    {
7841      op0 = default_conversion (orig_op0);
7842      op1 = default_conversion (orig_op1);
7843    }
7844  else
7845    {
7846      op0 = orig_op0;
7847      op1 = orig_op1;
7848    }
7849
7850  type0 = TREE_TYPE (op0);
7851  type1 = TREE_TYPE (op1);
7852
7853  /* The expression codes of the data types of the arguments tell us
7854     whether the arguments are integers, floating, pointers, etc.  */
7855  code0 = TREE_CODE (type0);
7856  code1 = TREE_CODE (type1);
7857
7858  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7859  STRIP_TYPE_NOPS (op0);
7860  STRIP_TYPE_NOPS (op1);
7861
7862  /* If an error was already reported for one of the arguments,
7863     avoid reporting another error.  */
7864
7865  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7866    return error_mark_node;
7867
7868  if ((invalid_op_diag
7869       = targetm.invalid_binary_op (code, type0, type1)))
7870    {
7871      error (invalid_op_diag);
7872      return error_mark_node;
7873    }
7874
7875  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7876
7877  switch (code)
7878    {
7879    case PLUS_EXPR:
7880      /* Handle the pointer + int case.  */
7881      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7882	return pointer_int_sum (PLUS_EXPR, op0, op1);
7883      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7884	return pointer_int_sum (PLUS_EXPR, op1, op0);
7885      else
7886	common = 1;
7887      break;
7888
7889    case MINUS_EXPR:
7890      /* Subtraction of two similar pointers.
7891	 We must subtract them as integers, then divide by object size.  */
7892      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7893	  && comp_target_types (type0, type1))
7894	return pointer_diff (op0, op1);
7895      /* Handle pointer minus int.  Just like pointer plus int.  */
7896      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7897	return pointer_int_sum (MINUS_EXPR, op0, op1);
7898      else
7899	common = 1;
7900      break;
7901
7902    case MULT_EXPR:
7903      common = 1;
7904      break;
7905
7906    case TRUNC_DIV_EXPR:
7907    case CEIL_DIV_EXPR:
7908    case FLOOR_DIV_EXPR:
7909    case ROUND_DIV_EXPR:
7910    case EXACT_DIV_EXPR:
7911      /* Floating point division by zero is a legitimate way to obtain
7912	 infinities and NaNs.  */
7913      if (skip_evaluation == 0 && integer_zerop (op1))
7914	warning (OPT_Wdiv_by_zero, "division by zero");
7915
7916      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7917	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7918	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7919	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7920	{
7921	  enum tree_code tcode0 = code0, tcode1 = code1;
7922
7923	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7924	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7925	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7926	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7927
7928	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7929	    resultcode = RDIV_EXPR;
7930	  else
7931	    /* Although it would be tempting to shorten always here, that
7932	       loses on some targets, since the modulo instruction is
7933	       undefined if the quotient can't be represented in the
7934	       computation mode.  We shorten only if unsigned or if
7935	       dividing by something we know != -1.  */
7936	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7937		       || (TREE_CODE (op1) == INTEGER_CST
7938			   && !integer_all_onesp (op1)));
7939	  common = 1;
7940	}
7941      break;
7942
7943    case BIT_AND_EXPR:
7944    case BIT_IOR_EXPR:
7945    case BIT_XOR_EXPR:
7946      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7947	shorten = -1;
7948      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7949	common = 1;
7950      break;
7951
7952    case TRUNC_MOD_EXPR:
7953    case FLOOR_MOD_EXPR:
7954      if (skip_evaluation == 0 && integer_zerop (op1))
7955	warning (OPT_Wdiv_by_zero, "division by zero");
7956
7957      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7958	{
7959	  /* Although it would be tempting to shorten always here, that loses
7960	     on some targets, since the modulo instruction is undefined if the
7961	     quotient can't be represented in the computation mode.  We shorten
7962	     only if unsigned or if dividing by something we know != -1.  */
7963	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7964		     || (TREE_CODE (op1) == INTEGER_CST
7965			 && !integer_all_onesp (op1)));
7966	  common = 1;
7967	}
7968      break;
7969
7970    case TRUTH_ANDIF_EXPR:
7971    case TRUTH_ORIF_EXPR:
7972    case TRUTH_AND_EXPR:
7973    case TRUTH_OR_EXPR:
7974    case TRUTH_XOR_EXPR:
7975      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7976	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7977	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7978	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7979	{
7980	  /* Result of these operations is always an int,
7981	     but that does not mean the operands should be
7982	     converted to ints!  */
7983	  result_type = integer_type_node;
7984	  op0 = c_common_truthvalue_conversion (op0);
7985	  op1 = c_common_truthvalue_conversion (op1);
7986	  converted = 1;
7987	}
7988      break;
7989
7990      /* Shift operations: result has same type as first operand;
7991	 always convert second operand to int.
7992	 Also set SHORT_SHIFT if shifting rightward.  */
7993
7994    case RSHIFT_EXPR:
7995      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7996	{
7997	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7998	    {
7999	      if (tree_int_cst_sgn (op1) < 0)
8000		warning (0, "right shift count is negative");
8001	      else
8002		{
8003		  if (!integer_zerop (op1))
8004		    short_shift = 1;
8005
8006		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8007		    warning (0, "right shift count >= width of type");
8008		}
8009	    }
8010
8011	  /* Use the type of the value to be shifted.  */
8012	  result_type = type0;
8013	  /* Convert the shift-count to an integer, regardless of size
8014	     of value being shifted.  */
8015	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8016	    op1 = convert (integer_type_node, op1);
8017	  /* Avoid converting op1 to result_type later.  */
8018	  converted = 1;
8019	}
8020      break;
8021
8022    case LSHIFT_EXPR:
8023      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8024	{
8025	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8026	    {
8027	      if (tree_int_cst_sgn (op1) < 0)
8028		warning (0, "left shift count is negative");
8029
8030	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8031		warning (0, "left shift count >= width of type");
8032	    }
8033
8034	  /* Use the type of the value to be shifted.  */
8035	  result_type = type0;
8036	  /* Convert the shift-count to an integer, regardless of size
8037	     of value being shifted.  */
8038	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8039	    op1 = convert (integer_type_node, op1);
8040	  /* Avoid converting op1 to result_type later.  */
8041	  converted = 1;
8042	}
8043      break;
8044
8045    case EQ_EXPR:
8046    case NE_EXPR:
8047      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8048	warning (OPT_Wfloat_equal,
8049		 "comparing floating point with == or != is unsafe");
8050      /* Result of comparison is always int,
8051	 but don't convert the args to int!  */
8052      build_type = integer_type_node;
8053      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8054	   || code0 == COMPLEX_TYPE)
8055	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8056	      || code1 == COMPLEX_TYPE))
8057	short_compare = 1;
8058      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8059	{
8060	  tree tt0 = TREE_TYPE (type0);
8061	  tree tt1 = TREE_TYPE (type1);
8062	  /* Anything compares with void *.  void * compares with anything.
8063	     Otherwise, the targets must be compatible
8064	     and both must be object or both incomplete.  */
8065	  if (comp_target_types (type0, type1))
8066	    result_type = common_pointer_type (type0, type1);
8067	  else if (VOID_TYPE_P (tt0))
8068	    {
8069	      /* op0 != orig_op0 detects the case of something
8070		 whose value is 0 but which isn't a valid null ptr const.  */
8071	      if (pedantic && !null_pointer_constant_p (orig_op0)
8072		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8073		pedwarn ("ISO C forbids comparison of %<void *%>"
8074			 " with function pointer");
8075	    }
8076	  else if (VOID_TYPE_P (tt1))
8077	    {
8078	      if (pedantic && !null_pointer_constant_p (orig_op1)
8079		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8080		pedwarn ("ISO C forbids comparison of %<void *%>"
8081			 " with function pointer");
8082	    }
8083	  else
8084	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8085	    if (!objc_ok)
8086	      pedwarn ("comparison of distinct pointer types lacks a cast");
8087
8088	  if (result_type == NULL_TREE)
8089	    result_type = ptr_type_node;
8090	}
8091      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8092	{
8093	  if (TREE_CODE (op0) == ADDR_EXPR
8094	      && DECL_P (TREE_OPERAND (op0, 0))
8095	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8096		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8097		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8098	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8099		     TREE_OPERAND (op0, 0));
8100	  result_type = type0;
8101	}
8102      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8103	{
8104	  if (TREE_CODE (op1) == ADDR_EXPR
8105	      && DECL_P (TREE_OPERAND (op1, 0))
8106	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8107		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8108		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8109	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8110		     TREE_OPERAND (op1, 0));
8111	  result_type = type1;
8112	}
8113      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8114	{
8115	  result_type = type0;
8116	  pedwarn ("comparison between pointer and integer");
8117	}
8118      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8119	{
8120	  result_type = type1;
8121	  pedwarn ("comparison between pointer and integer");
8122	}
8123      break;
8124
8125    case LE_EXPR:
8126    case GE_EXPR:
8127    case LT_EXPR:
8128    case GT_EXPR:
8129      build_type = integer_type_node;
8130      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8131	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8132	short_compare = 1;
8133      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8134	{
8135	  if (comp_target_types (type0, type1))
8136	    {
8137	      result_type = common_pointer_type (type0, type1);
8138	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8139		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8140		pedwarn ("comparison of complete and incomplete pointers");
8141	      else if (pedantic
8142		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8143		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8144	    }
8145	  else
8146	    {
8147	      result_type = ptr_type_node;
8148	      pedwarn ("comparison of distinct pointer types lacks a cast");
8149	    }
8150	}
8151      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8152	{
8153	  result_type = type0;
8154	  if (pedantic || extra_warnings)
8155	    pedwarn ("ordered comparison of pointer with integer zero");
8156	}
8157      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8158	{
8159	  result_type = type1;
8160	  if (pedantic)
8161	    pedwarn ("ordered comparison of pointer with integer zero");
8162	}
8163      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8164	{
8165	  result_type = type0;
8166	  pedwarn ("comparison between pointer and integer");
8167	}
8168      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8169	{
8170	  result_type = type1;
8171	  pedwarn ("comparison between pointer and integer");
8172	}
8173      break;
8174
8175    default:
8176      gcc_unreachable ();
8177    }
8178
8179  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8180    return error_mark_node;
8181
8182  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8183      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8184	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8185						    TREE_TYPE (type1))))
8186    {
8187      binary_op_error (code);
8188      return error_mark_node;
8189    }
8190
8191  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8192       || code0 == VECTOR_TYPE)
8193      &&
8194      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8195       || code1 == VECTOR_TYPE))
8196    {
8197      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8198
8199      if (shorten || common || short_compare)
8200	result_type = c_common_type (type0, type1);
8201
8202      /* For certain operations (which identify themselves by shorten != 0)
8203	 if both args were extended from the same smaller type,
8204	 do the arithmetic in that type and then extend.
8205
8206	 shorten !=0 and !=1 indicates a bitwise operation.
8207	 For them, this optimization is safe only if
8208	 both args are zero-extended or both are sign-extended.
8209	 Otherwise, we might change the result.
8210	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8211	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8212
8213      if (shorten && none_complex)
8214	{
8215	  int unsigned0, unsigned1;
8216	  tree arg0, arg1;
8217	  int uns;
8218	  tree type;
8219
8220	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8221	     excessive narrowing when we call get_narrower below.  For
8222	     example, suppose that OP0 is of unsigned int extended
8223	     from signed char and that RESULT_TYPE is long long int.
8224	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8225	     like
8226
8227	       (long long int) (unsigned int) signed_char
8228
8229	     which get_narrower would narrow down to
8230
8231	       (unsigned int) signed char
8232
8233	     If we do not cast OP0 first, get_narrower would return
8234	     signed_char, which is inconsistent with the case of the
8235	     explicit cast.  */
8236	  op0 = convert (result_type, op0);
8237	  op1 = convert (result_type, op1);
8238
8239	  arg0 = get_narrower (op0, &unsigned0);
8240	  arg1 = get_narrower (op1, &unsigned1);
8241
8242	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8243	  uns = TYPE_UNSIGNED (result_type);
8244
8245	  final_type = result_type;
8246
8247	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8248	     but it *requires* conversion to FINAL_TYPE.  */
8249
8250	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8251	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8252	      && TREE_TYPE (op0) != final_type)
8253	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8254	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8255	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8256	      && TREE_TYPE (op1) != final_type)
8257	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8258
8259	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8260
8261	  /* For bitwise operations, signedness of nominal type
8262	     does not matter.  Consider only how operands were extended.  */
8263	  if (shorten == -1)
8264	    uns = unsigned0;
8265
8266	  /* Note that in all three cases below we refrain from optimizing
8267	     an unsigned operation on sign-extended args.
8268	     That would not be valid.  */
8269
8270	  /* Both args variable: if both extended in same way
8271	     from same width, do it in that width.
8272	     Do it unsigned if args were zero-extended.  */
8273	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8274	       < TYPE_PRECISION (result_type))
8275	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8276		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8277	      && unsigned0 == unsigned1
8278	      && (unsigned0 || !uns))
8279	    result_type
8280	      = c_common_signed_or_unsigned_type
8281	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8282	  else if (TREE_CODE (arg0) == INTEGER_CST
8283		   && (unsigned1 || !uns)
8284		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8285		       < TYPE_PRECISION (result_type))
8286		   && (type
8287		       = c_common_signed_or_unsigned_type (unsigned1,
8288							   TREE_TYPE (arg1)),
8289		       int_fits_type_p (arg0, type)))
8290	    result_type = type;
8291	  else if (TREE_CODE (arg1) == INTEGER_CST
8292		   && (unsigned0 || !uns)
8293		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8294		       < TYPE_PRECISION (result_type))
8295		   && (type
8296		       = c_common_signed_or_unsigned_type (unsigned0,
8297							   TREE_TYPE (arg0)),
8298		       int_fits_type_p (arg1, type)))
8299	    result_type = type;
8300	}
8301
8302      /* Shifts can be shortened if shifting right.  */
8303
8304      if (short_shift)
8305	{
8306	  int unsigned_arg;
8307	  tree arg0 = get_narrower (op0, &unsigned_arg);
8308
8309	  final_type = result_type;
8310
8311	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8312	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8313
8314	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8315	      /* We can shorten only if the shift count is less than the
8316		 number of bits in the smaller type size.  */
8317	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8318	      /* We cannot drop an unsigned shift after sign-extension.  */
8319	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8320	    {
8321	      /* Do an unsigned shift if the operand was zero-extended.  */
8322	      result_type
8323		= c_common_signed_or_unsigned_type (unsigned_arg,
8324						    TREE_TYPE (arg0));
8325	      /* Convert value-to-be-shifted to that type.  */
8326	      if (TREE_TYPE (op0) != result_type)
8327		op0 = convert (result_type, op0);
8328	      converted = 1;
8329	    }
8330	}
8331
8332      /* Comparison operations are shortened too but differently.
8333	 They identify themselves by setting short_compare = 1.  */
8334
8335      if (short_compare)
8336	{
8337	  /* Don't write &op0, etc., because that would prevent op0
8338	     from being kept in a register.
8339	     Instead, make copies of the our local variables and
8340	     pass the copies by reference, then copy them back afterward.  */
8341	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8342	  enum tree_code xresultcode = resultcode;
8343	  tree val
8344	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8345
8346	  if (val != 0)
8347	    return val;
8348
8349	  op0 = xop0, op1 = xop1;
8350	  converted = 1;
8351	  resultcode = xresultcode;
8352
8353	  if (warn_sign_compare && skip_evaluation == 0)
8354	    {
8355	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8356	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8357	      int unsignedp0, unsignedp1;
8358	      tree primop0 = get_narrower (op0, &unsignedp0);
8359	      tree primop1 = get_narrower (op1, &unsignedp1);
8360
8361	      xop0 = orig_op0;
8362	      xop1 = orig_op1;
8363	      STRIP_TYPE_NOPS (xop0);
8364	      STRIP_TYPE_NOPS (xop1);
8365
8366	      /* Give warnings for comparisons between signed and unsigned
8367		 quantities that may fail.
8368
8369		 Do the checking based on the original operand trees, so that
8370		 casts will be considered, but default promotions won't be.
8371
8372		 Do not warn if the comparison is being done in a signed type,
8373		 since the signed type will only be chosen if it can represent
8374		 all the values of the unsigned type.  */
8375	      if (!TYPE_UNSIGNED (result_type))
8376		/* OK */;
8377	      /* Do not warn if both operands are the same signedness.  */
8378	      else if (op0_signed == op1_signed)
8379		/* OK */;
8380	      else
8381		{
8382		  tree sop, uop;
8383		  bool ovf;
8384
8385		  if (op0_signed)
8386		    sop = xop0, uop = xop1;
8387		  else
8388		    sop = xop1, uop = xop0;
8389
8390		  /* Do not warn if the signed quantity is an
8391		     unsuffixed integer literal (or some static
8392		     constant expression involving such literals or a
8393		     conditional expression involving such literals)
8394		     and it is non-negative.  */
8395		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8396		    /* OK */;
8397		  /* Do not warn if the comparison is an equality operation,
8398		     the unsigned quantity is an integral constant, and it
8399		     would fit in the result if the result were signed.  */
8400		  else if (TREE_CODE (uop) == INTEGER_CST
8401			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8402			   && int_fits_type_p
8403			   (uop, c_common_signed_type (result_type)))
8404		    /* OK */;
8405		  /* Do not warn if the unsigned quantity is an enumeration
8406		     constant and its maximum value would fit in the result
8407		     if the result were signed.  */
8408		  else if (TREE_CODE (uop) == INTEGER_CST
8409			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8410			   && int_fits_type_p
8411			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8412			    c_common_signed_type (result_type)))
8413		    /* OK */;
8414		  else
8415		    warning (0, "comparison between signed and unsigned");
8416		}
8417
8418	      /* Warn if two unsigned values are being compared in a size
8419		 larger than their original size, and one (and only one) is the
8420		 result of a `~' operator.  This comparison will always fail.
8421
8422		 Also warn if one operand is a constant, and the constant
8423		 does not have all bits set that are set in the ~ operand
8424		 when it is extended.  */
8425
8426	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8427		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8428		{
8429		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8430		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8431					    &unsignedp0);
8432		  else
8433		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8434					    &unsignedp1);
8435
8436		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8437		    {
8438		      tree primop;
8439		      HOST_WIDE_INT constant, mask;
8440		      int unsignedp, bits;
8441
8442		      if (host_integerp (primop0, 0))
8443			{
8444			  primop = primop1;
8445			  unsignedp = unsignedp1;
8446			  constant = tree_low_cst (primop0, 0);
8447			}
8448		      else
8449			{
8450			  primop = primop0;
8451			  unsignedp = unsignedp0;
8452			  constant = tree_low_cst (primop1, 0);
8453			}
8454
8455		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8456		      if (bits < TYPE_PRECISION (result_type)
8457			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8458			{
8459			  mask = (~(HOST_WIDE_INT) 0) << bits;
8460			  if ((mask & constant) != mask)
8461			    warning (0, "comparison of promoted ~unsigned with constant");
8462			}
8463		    }
8464		  else if (unsignedp0 && unsignedp1
8465			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8466			       < TYPE_PRECISION (result_type))
8467			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8468			       < TYPE_PRECISION (result_type)))
8469		    warning (0, "comparison of promoted ~unsigned with unsigned");
8470		}
8471	    }
8472	}
8473    }
8474
8475  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8476     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8477     Then the expression will be built.
8478     It will be given type FINAL_TYPE if that is nonzero;
8479     otherwise, it will be given type RESULT_TYPE.  */
8480
8481  if (!result_type)
8482    {
8483      binary_op_error (code);
8484      return error_mark_node;
8485    }
8486
8487  if (!converted)
8488    {
8489      if (TREE_TYPE (op0) != result_type)
8490	op0 = convert_and_check (result_type, op0);
8491      if (TREE_TYPE (op1) != result_type)
8492	op1 = convert_and_check (result_type, op1);
8493
8494      /* This can happen if one operand has a vector type, and the other
8495	 has a different type.  */
8496      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8497	return error_mark_node;
8498    }
8499
8500  if (build_type == NULL_TREE)
8501    build_type = result_type;
8502
8503  {
8504    /* Treat expressions in initializers specially as they can't trap.  */
8505    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8506								    build_type,
8507								    op0, op1)
8508					 : fold_build2 (resultcode, build_type,
8509							op0, op1);
8510
8511    if (final_type != 0)
8512      result = convert (final_type, result);
8513    return result;
8514  }
8515}
8516
8517
8518/* Convert EXPR to be a truth-value, validating its type for this
8519   purpose.  */
8520
8521tree
8522c_objc_common_truthvalue_conversion (tree expr)
8523{
8524  switch (TREE_CODE (TREE_TYPE (expr)))
8525    {
8526    case ARRAY_TYPE:
8527      error ("used array that cannot be converted to pointer where scalar is required");
8528      return error_mark_node;
8529
8530    case RECORD_TYPE:
8531      error ("used struct type value where scalar is required");
8532      return error_mark_node;
8533
8534    case UNION_TYPE:
8535      error ("used union type value where scalar is required");
8536      return error_mark_node;
8537
8538    case FUNCTION_TYPE:
8539      gcc_unreachable ();
8540
8541    default:
8542      break;
8543    }
8544
8545  /* ??? Should we also give an error for void and vectors rather than
8546     leaving those to give errors later?  */
8547  return c_common_truthvalue_conversion (expr);
8548}
8549
8550
8551/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8552   required.  */
8553
8554tree
8555c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8556		bool *ti ATTRIBUTE_UNUSED, bool *se)
8557{
8558  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8559    {
8560      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8561      /* Executing a compound literal inside a function reinitializes
8562	 it.  */
8563      if (!TREE_STATIC (decl))
8564	*se = true;
8565      return decl;
8566    }
8567  else
8568    return expr;
8569}
8570
8571/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8572
8573tree
8574c_begin_omp_parallel (void)
8575{
8576  tree block;
8577
8578  keep_next_level ();
8579  block = c_begin_compound_stmt (true);
8580
8581  return block;
8582}
8583
8584tree
8585c_finish_omp_parallel (tree clauses, tree block)
8586{
8587  tree stmt;
8588
8589  block = c_end_compound_stmt (block, true);
8590
8591  stmt = make_node (OMP_PARALLEL);
8592  TREE_TYPE (stmt) = void_type_node;
8593  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8594  OMP_PARALLEL_BODY (stmt) = block;
8595
8596  return add_stmt (stmt);
8597}
8598
8599/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8600   Remove any elements from the list that are invalid.  */
8601
8602tree
8603c_finish_omp_clauses (tree clauses)
8604{
8605  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8606  tree c, t, *pc = &clauses;
8607  const char *name;
8608
8609  bitmap_obstack_initialize (NULL);
8610  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8611  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8612  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8613
8614  for (pc = &clauses, c = clauses; c ; c = *pc)
8615    {
8616      bool remove = false;
8617      bool need_complete = false;
8618      bool need_implicitly_determined = false;
8619
8620      switch (OMP_CLAUSE_CODE (c))
8621	{
8622	case OMP_CLAUSE_SHARED:
8623	  name = "shared";
8624	  need_implicitly_determined = true;
8625	  goto check_dup_generic;
8626
8627	case OMP_CLAUSE_PRIVATE:
8628	  name = "private";
8629	  need_complete = true;
8630	  need_implicitly_determined = true;
8631	  goto check_dup_generic;
8632
8633	case OMP_CLAUSE_REDUCTION:
8634	  name = "reduction";
8635	  need_implicitly_determined = true;
8636	  t = OMP_CLAUSE_DECL (c);
8637	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8638	      || POINTER_TYPE_P (TREE_TYPE (t)))
8639	    {
8640	      error ("%qE has invalid type for %<reduction%>", t);
8641	      remove = true;
8642	    }
8643	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8644	    {
8645	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8646	      const char *r_name = NULL;
8647
8648	      switch (r_code)
8649		{
8650		case PLUS_EXPR:
8651		case MULT_EXPR:
8652		case MINUS_EXPR:
8653		  break;
8654		case BIT_AND_EXPR:
8655		  r_name = "&";
8656		  break;
8657		case BIT_XOR_EXPR:
8658		  r_name = "^";
8659		  break;
8660		case BIT_IOR_EXPR:
8661		  r_name = "|";
8662		  break;
8663		case TRUTH_ANDIF_EXPR:
8664		  r_name = "&&";
8665		  break;
8666		case TRUTH_ORIF_EXPR:
8667		  r_name = "||";
8668		  break;
8669		default:
8670		  gcc_unreachable ();
8671		}
8672	      if (r_name)
8673		{
8674		  error ("%qE has invalid type for %<reduction(%s)%>",
8675			 t, r_name);
8676		  remove = true;
8677		}
8678	    }
8679	  goto check_dup_generic;
8680
8681	case OMP_CLAUSE_COPYPRIVATE:
8682	  name = "copyprivate";
8683	  goto check_dup_generic;
8684
8685	case OMP_CLAUSE_COPYIN:
8686	  name = "copyin";
8687	  t = OMP_CLAUSE_DECL (c);
8688	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8689	    {
8690	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8691	      remove = true;
8692	    }
8693	  goto check_dup_generic;
8694
8695	check_dup_generic:
8696	  t = OMP_CLAUSE_DECL (c);
8697	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8698	    {
8699	      error ("%qE is not a variable in clause %qs", t, name);
8700	      remove = true;
8701	    }
8702	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8703		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8704		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8705	    {
8706	      error ("%qE appears more than once in data clauses", t);
8707	      remove = true;
8708	    }
8709	  else
8710	    bitmap_set_bit (&generic_head, DECL_UID (t));
8711	  break;
8712
8713	case OMP_CLAUSE_FIRSTPRIVATE:
8714	  name = "firstprivate";
8715	  t = OMP_CLAUSE_DECL (c);
8716	  need_complete = true;
8717	  need_implicitly_determined = true;
8718	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8719	    {
8720	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8721	      remove = true;
8722	    }
8723	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8724		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8725	    {
8726	      error ("%qE appears more than once in data clauses", t);
8727	      remove = true;
8728	    }
8729	  else
8730	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8731	  break;
8732
8733	case OMP_CLAUSE_LASTPRIVATE:
8734	  name = "lastprivate";
8735	  t = OMP_CLAUSE_DECL (c);
8736	  need_complete = true;
8737	  need_implicitly_determined = true;
8738	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8739	    {
8740	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8741	      remove = true;
8742	    }
8743	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8744		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8745	    {
8746	      error ("%qE appears more than once in data clauses", t);
8747	      remove = true;
8748	    }
8749	  else
8750	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8751	  break;
8752
8753	case OMP_CLAUSE_IF:
8754	case OMP_CLAUSE_NUM_THREADS:
8755	case OMP_CLAUSE_SCHEDULE:
8756	case OMP_CLAUSE_NOWAIT:
8757	case OMP_CLAUSE_ORDERED:
8758	case OMP_CLAUSE_DEFAULT:
8759	  pc = &OMP_CLAUSE_CHAIN (c);
8760	  continue;
8761
8762	default:
8763	  gcc_unreachable ();
8764	}
8765
8766      if (!remove)
8767	{
8768	  t = OMP_CLAUSE_DECL (c);
8769
8770	  if (need_complete)
8771	    {
8772	      t = require_complete_type (t);
8773	      if (t == error_mark_node)
8774		remove = true;
8775	    }
8776
8777	  if (need_implicitly_determined)
8778	    {
8779	      const char *share_name = NULL;
8780
8781	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8782		share_name = "threadprivate";
8783	      else switch (c_omp_predetermined_sharing (t))
8784		{
8785		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8786		  break;
8787		case OMP_CLAUSE_DEFAULT_SHARED:
8788		  share_name = "shared";
8789		  break;
8790		case OMP_CLAUSE_DEFAULT_PRIVATE:
8791		  share_name = "private";
8792		  break;
8793		default:
8794		  gcc_unreachable ();
8795		}
8796	      if (share_name)
8797		{
8798		  error ("%qE is predetermined %qs for %qs",
8799			 t, share_name, name);
8800		  remove = true;
8801		}
8802	    }
8803	}
8804
8805      if (remove)
8806	*pc = OMP_CLAUSE_CHAIN (c);
8807      else
8808	pc = &OMP_CLAUSE_CHAIN (c);
8809    }
8810
8811  bitmap_obstack_release (NULL);
8812  return clauses;
8813}
8814