c-typeck.c revision 169689
1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  datum = ref;
1853
1854	  field = TREE_CHAIN (field);
1855	}
1856      while (field);
1857
1858      return ref;
1859    }
1860  else if (code != ERROR_MARK)
1861    error ("request for member %qE in something not a structure or union",
1862	   component);
1863
1864  return error_mark_node;
1865}
1866
1867/* Given an expression PTR for a pointer, return an expression
1868   for the value pointed to.
1869   ERRORSTRING is the name of the operator to appear in error messages.  */
1870
1871tree
1872build_indirect_ref (tree ptr, const char *errorstring)
1873{
1874  tree pointer = default_conversion (ptr);
1875  tree type = TREE_TYPE (pointer);
1876
1877  if (TREE_CODE (type) == POINTER_TYPE)
1878    {
1879      if (TREE_CODE (pointer) == ADDR_EXPR
1880	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881	      == TREE_TYPE (type)))
1882	return TREE_OPERAND (pointer, 0);
1883      else
1884	{
1885	  tree t = TREE_TYPE (type);
1886	  tree ref;
1887
1888	  ref = build1 (INDIRECT_REF, t, pointer);
1889
1890	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891	    {
1892	      error ("dereferencing pointer to incomplete type");
1893	      return error_mark_node;
1894	    }
1895	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896	    warning (0, "dereferencing %<void *%> pointer");
1897
1898	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899	     so that we get the proper error message if the result is used
1900	     to assign to.  Also, &* is supposed to be a no-op.
1901	     And ANSI C seems to specify that the type of the result
1902	     should be the const type.  */
1903	  /* A de-reference of a pointer to const is not a const.  It is valid
1904	     to change it via some other pointer.  */
1905	  TREE_READONLY (ref) = TYPE_READONLY (t);
1906	  TREE_SIDE_EFFECTS (ref)
1907	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909	  return ref;
1910	}
1911    }
1912  else if (TREE_CODE (pointer) != ERROR_MARK)
1913    error ("invalid type argument of %qs", errorstring);
1914  return error_mark_node;
1915}
1916
1917/* This handles expressions of the form "a[i]", which denotes
1918   an array reference.
1919
1920   This is logically equivalent in C to *(a+i), but we may do it differently.
1921   If A is a variable or a member, we generate a primitive ARRAY_REF.
1922   This avoids forcing the array out of registers, and can work on
1923   arrays that are not lvalues (for example, members of structures returned
1924   by functions).  */
1925
1926tree
1927build_array_ref (tree array, tree index)
1928{
1929  bool swapped = false;
1930  if (TREE_TYPE (array) == error_mark_node
1931      || TREE_TYPE (index) == error_mark_node)
1932    return error_mark_node;
1933
1934  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936    {
1937      tree temp;
1938      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940	{
1941	  error ("subscripted value is neither array nor pointer");
1942	  return error_mark_node;
1943	}
1944      temp = array;
1945      array = index;
1946      index = temp;
1947      swapped = true;
1948    }
1949
1950  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951    {
1952      error ("array subscript is not an integer");
1953      return error_mark_node;
1954    }
1955
1956  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957    {
1958      error ("subscripted value is pointer to function");
1959      return error_mark_node;
1960    }
1961
1962  /* ??? Existing practice has been to warn only when the char
1963     index is syntactically the index, not for char[array].  */
1964  if (!swapped)
1965     warn_array_subscript_with_type_char (index);
1966
1967  /* Apply default promotions *after* noticing character types.  */
1968  index = default_conversion (index);
1969
1970  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971
1972  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973    {
1974      tree rval, type;
1975
1976      /* An array that is indexed by a non-constant
1977	 cannot be stored in a register; we must be able to do
1978	 address arithmetic on its address.
1979	 Likewise an array of elements of variable size.  */
1980      if (TREE_CODE (index) != INTEGER_CST
1981	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983	{
1984	  if (!c_mark_addressable (array))
1985	    return error_mark_node;
1986	}
1987      /* An array that is indexed by a constant value which is not within
1988	 the array bounds cannot be stored in a register either; because we
1989	 would get a crash in store_bit_field/extract_bit_field when trying
1990	 to access a non-existent part of the register.  */
1991      if (TREE_CODE (index) == INTEGER_CST
1992	  && TYPE_DOMAIN (TREE_TYPE (array))
1993	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994	{
1995	  if (!c_mark_addressable (array))
1996	    return error_mark_node;
1997	}
1998
1999      if (pedantic)
2000	{
2001	  tree foo = array;
2002	  while (TREE_CODE (foo) == COMPONENT_REF)
2003	    foo = TREE_OPERAND (foo, 0);
2004	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005	    pedwarn ("ISO C forbids subscripting %<register%> array");
2006	  else if (!flag_isoc99 && !lvalue_p (foo))
2007	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008	}
2009
2010      type = TREE_TYPE (TREE_TYPE (array));
2011      if (TREE_CODE (type) != ARRAY_TYPE)
2012	type = TYPE_MAIN_VARIANT (type);
2013      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014      /* Array ref is const/volatile if the array elements are
2015	 or if the array is.  */
2016      TREE_READONLY (rval)
2017	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018	    | TREE_READONLY (array));
2019      TREE_SIDE_EFFECTS (rval)
2020	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021	    | TREE_SIDE_EFFECTS (array));
2022      TREE_THIS_VOLATILE (rval)
2023	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024	    /* This was added by rms on 16 Nov 91.
2025	       It fixes  vol struct foo *a;  a->elts[1]
2026	       in an inline function.
2027	       Hope it doesn't break something else.  */
2028	    | TREE_THIS_VOLATILE (array));
2029      return require_complete_type (fold (rval));
2030    }
2031  else
2032    {
2033      tree ar = default_conversion (array);
2034
2035      if (ar == error_mark_node)
2036	return ar;
2037
2038      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040
2041      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042				 "array indexing");
2043    }
2044}
2045
2046/* Build an external reference to identifier ID.  FUN indicates
2047   whether this will be used for a function call.  LOC is the source
2048   location of the identifier.  */
2049tree
2050build_external_ref (tree id, int fun, location_t loc)
2051{
2052  tree ref;
2053  tree decl = lookup_name (id);
2054
2055  /* In Objective-C, an instance variable (ivar) may be preferred to
2056     whatever lookup_name() found.  */
2057  decl = objc_lookup_ivar (decl, id);
2058
2059  if (decl && decl != error_mark_node)
2060    ref = decl;
2061  else if (fun)
2062    /* Implicit function declaration.  */
2063    ref = implicitly_declare (id);
2064  else if (decl == error_mark_node)
2065    /* Don't complain about something that's already been
2066       complained about.  */
2067    return error_mark_node;
2068  else
2069    {
2070      undeclared_variable (id, loc);
2071      return error_mark_node;
2072    }
2073
2074  if (TREE_TYPE (ref) == error_mark_node)
2075    return error_mark_node;
2076
2077  if (TREE_DEPRECATED (ref))
2078    warn_deprecated_use (ref);
2079
2080  if (!skip_evaluation)
2081    assemble_external (ref);
2082  TREE_USED (ref) = 1;
2083
2084  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085    {
2086      if (!in_sizeof && !in_typeof)
2087	C_DECL_USED (ref) = 1;
2088      else if (DECL_INITIAL (ref) == 0
2089	       && DECL_EXTERNAL (ref)
2090	       && !TREE_PUBLIC (ref))
2091	record_maybe_used_decl (ref);
2092    }
2093
2094  if (TREE_CODE (ref) == CONST_DECL)
2095    {
2096      used_types_insert (TREE_TYPE (ref));
2097      ref = DECL_INITIAL (ref);
2098      TREE_CONSTANT (ref) = 1;
2099      TREE_INVARIANT (ref) = 1;
2100    }
2101  else if (current_function_decl != 0
2102	   && !DECL_FILE_SCOPE_P (current_function_decl)
2103	   && (TREE_CODE (ref) == VAR_DECL
2104	       || TREE_CODE (ref) == PARM_DECL
2105	       || TREE_CODE (ref) == FUNCTION_DECL))
2106    {
2107      tree context = decl_function_context (ref);
2108
2109      if (context != 0 && context != current_function_decl)
2110	DECL_NONLOCAL (ref) = 1;
2111    }
2112
2113  return ref;
2114}
2115
2116/* Record details of decls possibly used inside sizeof or typeof.  */
2117struct maybe_used_decl
2118{
2119  /* The decl.  */
2120  tree decl;
2121  /* The level seen at (in_sizeof + in_typeof).  */
2122  int level;
2123  /* The next one at this level or above, or NULL.  */
2124  struct maybe_used_decl *next;
2125};
2126
2127static struct maybe_used_decl *maybe_used_decls;
2128
2129/* Record that DECL, an undefined static function reference seen
2130   inside sizeof or typeof, might be used if the operand of sizeof is
2131   a VLA type or the operand of typeof is a variably modified
2132   type.  */
2133
2134static void
2135record_maybe_used_decl (tree decl)
2136{
2137  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2138  t->decl = decl;
2139  t->level = in_sizeof + in_typeof;
2140  t->next = maybe_used_decls;
2141  maybe_used_decls = t;
2142}
2143
2144/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2145   USED is false, just discard them.  If it is true, mark them used
2146   (if no longer inside sizeof or typeof) or move them to the next
2147   level up (if still inside sizeof or typeof).  */
2148
2149void
2150pop_maybe_used (bool used)
2151{
2152  struct maybe_used_decl *p = maybe_used_decls;
2153  int cur_level = in_sizeof + in_typeof;
2154  while (p && p->level > cur_level)
2155    {
2156      if (used)
2157	{
2158	  if (cur_level == 0)
2159	    C_DECL_USED (p->decl) = 1;
2160	  else
2161	    p->level = cur_level;
2162	}
2163      p = p->next;
2164    }
2165  if (!used || cur_level == 0)
2166    maybe_used_decls = p;
2167}
2168
2169/* Return the result of sizeof applied to EXPR.  */
2170
2171struct c_expr
2172c_expr_sizeof_expr (struct c_expr expr)
2173{
2174  struct c_expr ret;
2175  if (expr.value == error_mark_node)
2176    {
2177      ret.value = error_mark_node;
2178      ret.original_code = ERROR_MARK;
2179      pop_maybe_used (false);
2180    }
2181  else
2182    {
2183      ret.value = c_sizeof (TREE_TYPE (expr.value));
2184      ret.original_code = ERROR_MARK;
2185      if (c_vla_type_p (TREE_TYPE (expr.value)))
2186	{
2187	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2188	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2189	}
2190      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2191    }
2192  return ret;
2193}
2194
2195/* Return the result of sizeof applied to T, a structure for the type
2196   name passed to sizeof (rather than the type itself).  */
2197
2198struct c_expr
2199c_expr_sizeof_type (struct c_type_name *t)
2200{
2201  tree type;
2202  struct c_expr ret;
2203  type = groktypename (t);
2204  ret.value = c_sizeof (type);
2205  ret.original_code = ERROR_MARK;
2206  pop_maybe_used (type != error_mark_node
2207		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2208  return ret;
2209}
2210
2211/* Build a function call to function FUNCTION with parameters PARAMS.
2212   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2213   TREE_VALUE of each node is a parameter-expression.
2214   FUNCTION's data type may be a function type or a pointer-to-function.  */
2215
2216tree
2217build_function_call (tree function, tree params)
2218{
2219  tree fntype, fundecl = 0;
2220  tree coerced_params;
2221  tree name = NULL_TREE, result;
2222  tree tem;
2223
2224  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2225  STRIP_TYPE_NOPS (function);
2226
2227  /* Convert anything with function type to a pointer-to-function.  */
2228  if (TREE_CODE (function) == FUNCTION_DECL)
2229    {
2230      /* Implement type-directed function overloading for builtins.
2231	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2232	 handle all the type checking.  The result is a complete expression
2233	 that implements this function call.  */
2234      tem = resolve_overloaded_builtin (function, params);
2235      if (tem)
2236	return tem;
2237
2238      name = DECL_NAME (function);
2239      fundecl = function;
2240    }
2241  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2242    function = function_to_pointer_conversion (function);
2243
2244  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2245     expressions, like those used for ObjC messenger dispatches.  */
2246  function = objc_rewrite_function_call (function, params);
2247
2248  fntype = TREE_TYPE (function);
2249
2250  if (TREE_CODE (fntype) == ERROR_MARK)
2251    return error_mark_node;
2252
2253  if (!(TREE_CODE (fntype) == POINTER_TYPE
2254	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2255    {
2256      error ("called object %qE is not a function", function);
2257      return error_mark_node;
2258    }
2259
2260  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2261    current_function_returns_abnormally = 1;
2262
2263  /* fntype now gets the type of function pointed to.  */
2264  fntype = TREE_TYPE (fntype);
2265
2266  /* Check that the function is called through a compatible prototype.
2267     If it is not, replace the call by a trap, wrapped up in a compound
2268     expression if necessary.  This has the nice side-effect to prevent
2269     the tree-inliner from generating invalid assignment trees which may
2270     blow up in the RTL expander later.  */
2271  if ((TREE_CODE (function) == NOP_EXPR
2272       || TREE_CODE (function) == CONVERT_EXPR)
2273      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2274      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2275      && !comptypes (fntype, TREE_TYPE (tem)))
2276    {
2277      tree return_type = TREE_TYPE (fntype);
2278      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2279				       NULL_TREE);
2280
2281      /* This situation leads to run-time undefined behavior.  We can't,
2282	 therefore, simply error unless we can prove that all possible
2283	 executions of the program must execute the code.  */
2284      warning (0, "function called through a non-compatible type");
2285
2286      /* We can, however, treat "undefined" any way we please.
2287	 Call abort to encourage the user to fix the program.  */
2288      inform ("if this code is reached, the program will abort");
2289
2290      if (VOID_TYPE_P (return_type))
2291	return trap;
2292      else
2293	{
2294	  tree rhs;
2295
2296	  if (AGGREGATE_TYPE_P (return_type))
2297	    rhs = build_compound_literal (return_type,
2298					  build_constructor (return_type, 0));
2299	  else
2300	    rhs = fold_convert (return_type, integer_zero_node);
2301
2302	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2303	}
2304    }
2305
2306  /* Convert the parameters to the types declared in the
2307     function prototype, or apply default promotions.  */
2308
2309  coerced_params
2310    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2311
2312  if (coerced_params == error_mark_node)
2313    return error_mark_node;
2314
2315  /* Check that the arguments to the function are valid.  */
2316
2317  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2318			    TYPE_ARG_TYPES (fntype));
2319
2320  if (require_constant_value)
2321    {
2322      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2323					function, coerced_params, NULL_TREE);
2324
2325      if (TREE_CONSTANT (result)
2326	  && (name == NULL_TREE
2327	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2328	pedwarn_init ("initializer element is not constant");
2329    }
2330  else
2331    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2332			  function, coerced_params, NULL_TREE);
2333
2334  if (VOID_TYPE_P (TREE_TYPE (result)))
2335    return result;
2336  return require_complete_type (result);
2337}
2338
2339/* Convert the argument expressions in the list VALUES
2340   to the types in the list TYPELIST.  The result is a list of converted
2341   argument expressions, unless there are too few arguments in which
2342   case it is error_mark_node.
2343
2344   If TYPELIST is exhausted, or when an element has NULL as its type,
2345   perform the default conversions.
2346
2347   PARMLIST is the chain of parm decls for the function being called.
2348   It may be 0, if that info is not available.
2349   It is used only for generating error messages.
2350
2351   FUNCTION is a tree for the called function.  It is used only for
2352   error messages, where it is formatted with %qE.
2353
2354   This is also where warnings about wrong number of args are generated.
2355
2356   Both VALUES and the returned value are chains of TREE_LIST nodes
2357   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2358
2359static tree
2360convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2361{
2362  tree typetail, valtail;
2363  tree result = NULL;
2364  int parmnum;
2365  tree selector;
2366
2367  /* Change pointer to function to the function itself for
2368     diagnostics.  */
2369  if (TREE_CODE (function) == ADDR_EXPR
2370      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2371    function = TREE_OPERAND (function, 0);
2372
2373  /* Handle an ObjC selector specially for diagnostics.  */
2374  selector = objc_message_selector ();
2375
2376  /* Scan the given expressions and types, producing individual
2377     converted arguments and pushing them on RESULT in reverse order.  */
2378
2379  for (valtail = values, typetail = typelist, parmnum = 0;
2380       valtail;
2381       valtail = TREE_CHAIN (valtail), parmnum++)
2382    {
2383      tree type = typetail ? TREE_VALUE (typetail) : 0;
2384      tree val = TREE_VALUE (valtail);
2385      tree rname = function;
2386      int argnum = parmnum + 1;
2387      const char *invalid_func_diag;
2388
2389      if (type == void_type_node)
2390	{
2391	  error ("too many arguments to function %qE", function);
2392	  break;
2393	}
2394
2395      if (selector && argnum > 2)
2396	{
2397	  rname = selector;
2398	  argnum -= 2;
2399	}
2400
2401      STRIP_TYPE_NOPS (val);
2402
2403      val = require_complete_type (val);
2404
2405      if (type != 0)
2406	{
2407	  /* Formal parm type is specified by a function prototype.  */
2408	  tree parmval;
2409
2410	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2411	    {
2412	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2413	      parmval = val;
2414	    }
2415	  else
2416	    {
2417	      /* Optionally warn about conversions that
2418		 differ from the default conversions.  */
2419	      if (warn_conversion || warn_traditional)
2420		{
2421		  unsigned int formal_prec = TYPE_PRECISION (type);
2422
2423		  if (INTEGRAL_TYPE_P (type)
2424		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2425		    warning (0, "passing argument %d of %qE as integer "
2426			     "rather than floating due to prototype",
2427			     argnum, rname);
2428		  if (INTEGRAL_TYPE_P (type)
2429		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2430		    warning (0, "passing argument %d of %qE as integer "
2431			     "rather than complex due to prototype",
2432			     argnum, rname);
2433		  else if (TREE_CODE (type) == COMPLEX_TYPE
2434			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2435		    warning (0, "passing argument %d of %qE as complex "
2436			     "rather than floating due to prototype",
2437			     argnum, rname);
2438		  else if (TREE_CODE (type) == REAL_TYPE
2439			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2440		    warning (0, "passing argument %d of %qE as floating "
2441			     "rather than integer due to prototype",
2442			     argnum, rname);
2443		  else if (TREE_CODE (type) == COMPLEX_TYPE
2444			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2445		    warning (0, "passing argument %d of %qE as complex "
2446			     "rather than integer due to prototype",
2447			     argnum, rname);
2448		  else if (TREE_CODE (type) == REAL_TYPE
2449			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2450		    warning (0, "passing argument %d of %qE as floating "
2451			     "rather than complex due to prototype",
2452			     argnum, rname);
2453		  /* ??? At some point, messages should be written about
2454		     conversions between complex types, but that's too messy
2455		     to do now.  */
2456		  else if (TREE_CODE (type) == REAL_TYPE
2457			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2458		    {
2459		      /* Warn if any argument is passed as `float',
2460			 since without a prototype it would be `double'.  */
2461		      if (formal_prec == TYPE_PRECISION (float_type_node)
2462			  && type != dfloat32_type_node)
2463			warning (0, "passing argument %d of %qE as %<float%> "
2464				 "rather than %<double%> due to prototype",
2465				 argnum, rname);
2466
2467		      /* Warn if mismatch between argument and prototype
2468			 for decimal float types.  Warn of conversions with
2469			 binary float types and of precision narrowing due to
2470			 prototype. */
2471 		      else if (type != TREE_TYPE (val)
2472			       && (type == dfloat32_type_node
2473				   || type == dfloat64_type_node
2474				   || type == dfloat128_type_node
2475				   || TREE_TYPE (val) == dfloat32_type_node
2476				   || TREE_TYPE (val) == dfloat64_type_node
2477				   || TREE_TYPE (val) == dfloat128_type_node)
2478			       && (formal_prec
2479				   <= TYPE_PRECISION (TREE_TYPE (val))
2480				   || (type == dfloat128_type_node
2481				       && (TREE_TYPE (val)
2482					   != dfloat64_type_node
2483					   && (TREE_TYPE (val)
2484					       != dfloat32_type_node)))
2485				   || (type == dfloat64_type_node
2486				       && (TREE_TYPE (val)
2487					   != dfloat32_type_node))))
2488			warning (0, "passing argument %d of %qE as %qT "
2489				 "rather than %qT due to prototype",
2490				 argnum, rname, type, TREE_TYPE (val));
2491
2492		    }
2493		  /* Detect integer changing in width or signedness.
2494		     These warnings are only activated with
2495		     -Wconversion, not with -Wtraditional.  */
2496		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2497			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2498		    {
2499		      tree would_have_been = default_conversion (val);
2500		      tree type1 = TREE_TYPE (would_have_been);
2501
2502		      if (TREE_CODE (type) == ENUMERAL_TYPE
2503			  && (TYPE_MAIN_VARIANT (type)
2504			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2505			/* No warning if function asks for enum
2506			   and the actual arg is that enum type.  */
2507			;
2508		      else if (formal_prec != TYPE_PRECISION (type1))
2509			warning (OPT_Wconversion, "passing argument %d of %qE "
2510				 "with different width due to prototype",
2511				 argnum, rname);
2512		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2513			;
2514		      /* Don't complain if the formal parameter type
2515			 is an enum, because we can't tell now whether
2516			 the value was an enum--even the same enum.  */
2517		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2518			;
2519		      else if (TREE_CODE (val) == INTEGER_CST
2520			       && int_fits_type_p (val, type))
2521			/* Change in signedness doesn't matter
2522			   if a constant value is unaffected.  */
2523			;
2524		      /* If the value is extended from a narrower
2525			 unsigned type, it doesn't matter whether we
2526			 pass it as signed or unsigned; the value
2527			 certainly is the same either way.  */
2528		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2529			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2530			;
2531		      else if (TYPE_UNSIGNED (type))
2532			warning (OPT_Wconversion, "passing argument %d of %qE "
2533				 "as unsigned due to prototype",
2534				 argnum, rname);
2535		      else
2536			warning (OPT_Wconversion, "passing argument %d of %qE "
2537				 "as signed due to prototype", argnum, rname);
2538		    }
2539		}
2540
2541	      parmval = convert_for_assignment (type, val, ic_argpass,
2542						fundecl, function,
2543						parmnum + 1);
2544
2545	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2546		  && INTEGRAL_TYPE_P (type)
2547		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2548		parmval = default_conversion (parmval);
2549	    }
2550	  result = tree_cons (NULL_TREE, parmval, result);
2551	}
2552      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2553	       && (TYPE_PRECISION (TREE_TYPE (val))
2554		   < TYPE_PRECISION (double_type_node))
2555	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2556	/* Convert `float' to `double'.  */
2557	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2558      else if ((invalid_func_diag =
2559		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2560	{
2561	  error (invalid_func_diag);
2562	  return error_mark_node;
2563	}
2564      else
2565	/* Convert `short' and `char' to full-size `int'.  */
2566	result = tree_cons (NULL_TREE, default_conversion (val), result);
2567
2568      if (typetail)
2569	typetail = TREE_CHAIN (typetail);
2570    }
2571
2572  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2573    {
2574      error ("too few arguments to function %qE", function);
2575      return error_mark_node;
2576    }
2577
2578  return nreverse (result);
2579}
2580
2581/* This is the entry point used by the parser to build unary operators
2582   in the input.  CODE, a tree_code, specifies the unary operator, and
2583   ARG is the operand.  For unary plus, the C parser currently uses
2584   CONVERT_EXPR for code.  */
2585
2586struct c_expr
2587parser_build_unary_op (enum tree_code code, struct c_expr arg)
2588{
2589  struct c_expr result;
2590
2591  result.original_code = ERROR_MARK;
2592  result.value = build_unary_op (code, arg.value, 0);
2593  overflow_warning (result.value);
2594  return result;
2595}
2596
2597/* This is the entry point used by the parser to build binary operators
2598   in the input.  CODE, a tree_code, specifies the binary operator, and
2599   ARG1 and ARG2 are the operands.  In addition to constructing the
2600   expression, we check for operands that were written with other binary
2601   operators in a way that is likely to confuse the user.  */
2602
2603struct c_expr
2604parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2605			struct c_expr arg2)
2606{
2607  struct c_expr result;
2608
2609  enum tree_code code1 = arg1.original_code;
2610  enum tree_code code2 = arg2.original_code;
2611
2612  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2613  result.original_code = code;
2614
2615  if (TREE_CODE (result.value) == ERROR_MARK)
2616    return result;
2617
2618  /* Check for cases such as x+y<<z which users are likely
2619     to misinterpret.  */
2620  if (warn_parentheses)
2621    {
2622      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2623	{
2624	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2625	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2626	    warning (OPT_Wparentheses,
2627		     "suggest parentheses around + or - inside shift");
2628	}
2629
2630      if (code == TRUTH_ORIF_EXPR)
2631	{
2632	  if (code1 == TRUTH_ANDIF_EXPR
2633	      || code2 == TRUTH_ANDIF_EXPR)
2634	    warning (OPT_Wparentheses,
2635		     "suggest parentheses around && within ||");
2636	}
2637
2638      if (code == BIT_IOR_EXPR)
2639	{
2640	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2641	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2642	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2643	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2644	    warning (OPT_Wparentheses,
2645		     "suggest parentheses around arithmetic in operand of |");
2646	  /* Check cases like x|y==z */
2647	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2648	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2649	    warning (OPT_Wparentheses,
2650		     "suggest parentheses around comparison in operand of |");
2651	}
2652
2653      if (code == BIT_XOR_EXPR)
2654	{
2655	  if (code1 == BIT_AND_EXPR
2656	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2657	      || code2 == BIT_AND_EXPR
2658	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2659	    warning (OPT_Wparentheses,
2660		     "suggest parentheses around arithmetic in operand of ^");
2661	  /* Check cases like x^y==z */
2662	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2663	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2664	    warning (OPT_Wparentheses,
2665		     "suggest parentheses around comparison in operand of ^");
2666	}
2667
2668      if (code == BIT_AND_EXPR)
2669	{
2670	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2671	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2672	    warning (OPT_Wparentheses,
2673		     "suggest parentheses around + or - in operand of &");
2674	  /* Check cases like x&y==z */
2675	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2676	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2677	    warning (OPT_Wparentheses,
2678		     "suggest parentheses around comparison in operand of &");
2679	}
2680      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2681      if (TREE_CODE_CLASS (code) == tcc_comparison
2682	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2683	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2684	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2685		 "have their mathematical meaning");
2686
2687    }
2688
2689  /* Warn about comparisons against string literals, with the exception
2690     of testing for equality or inequality of a string literal with NULL.  */
2691  if (code == EQ_EXPR || code == NE_EXPR)
2692    {
2693      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2694	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2695	warning (OPT_Waddress,
2696                 "comparison with string literal results in unspecified behaviour");
2697    }
2698  else if (TREE_CODE_CLASS (code) == tcc_comparison
2699	   && (code1 == STRING_CST || code2 == STRING_CST))
2700    warning (OPT_Waddress,
2701             "comparison with string literal results in unspecified behaviour");
2702
2703  overflow_warning (result.value);
2704
2705  return result;
2706}
2707
2708/* Return a tree for the difference of pointers OP0 and OP1.
2709   The resulting tree has type int.  */
2710
2711static tree
2712pointer_diff (tree op0, tree op1)
2713{
2714  tree restype = ptrdiff_type_node;
2715
2716  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2717  tree con0, con1, lit0, lit1;
2718  tree orig_op1 = op1;
2719
2720  if (pedantic || warn_pointer_arith)
2721    {
2722      if (TREE_CODE (target_type) == VOID_TYPE)
2723	pedwarn ("pointer of type %<void *%> used in subtraction");
2724      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2725	pedwarn ("pointer to a function used in subtraction");
2726    }
2727
2728  /* If the conversion to ptrdiff_type does anything like widening or
2729     converting a partial to an integral mode, we get a convert_expression
2730     that is in the way to do any simplifications.
2731     (fold-const.c doesn't know that the extra bits won't be needed.
2732     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2733     different mode in place.)
2734     So first try to find a common term here 'by hand'; we want to cover
2735     at least the cases that occur in legal static initializers.  */
2736  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2737      && (TYPE_PRECISION (TREE_TYPE (op0))
2738	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2739    con0 = TREE_OPERAND (op0, 0);
2740  else
2741    con0 = op0;
2742  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2743      && (TYPE_PRECISION (TREE_TYPE (op1))
2744	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2745    con1 = TREE_OPERAND (op1, 0);
2746  else
2747    con1 = op1;
2748
2749  if (TREE_CODE (con0) == PLUS_EXPR)
2750    {
2751      lit0 = TREE_OPERAND (con0, 1);
2752      con0 = TREE_OPERAND (con0, 0);
2753    }
2754  else
2755    lit0 = integer_zero_node;
2756
2757  if (TREE_CODE (con1) == PLUS_EXPR)
2758    {
2759      lit1 = TREE_OPERAND (con1, 1);
2760      con1 = TREE_OPERAND (con1, 0);
2761    }
2762  else
2763    lit1 = integer_zero_node;
2764
2765  if (operand_equal_p (con0, con1, 0))
2766    {
2767      op0 = lit0;
2768      op1 = lit1;
2769    }
2770
2771
2772  /* First do the subtraction as integers;
2773     then drop through to build the divide operator.
2774     Do not do default conversions on the minus operator
2775     in case restype is a short type.  */
2776
2777  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2778			 convert (restype, op1), 0);
2779  /* This generates an error if op1 is pointer to incomplete type.  */
2780  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2781    error ("arithmetic on pointer to an incomplete type");
2782
2783  /* This generates an error if op0 is pointer to incomplete type.  */
2784  op1 = c_size_in_bytes (target_type);
2785
2786  /* Divide by the size, in easiest possible way.  */
2787  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2788}
2789
2790/* Construct and perhaps optimize a tree representation
2791   for a unary operation.  CODE, a tree_code, specifies the operation
2792   and XARG is the operand.
2793   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2794   the default promotions (such as from short to int).
2795   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2796   allows non-lvalues; this is only used to handle conversion of non-lvalue
2797   arrays to pointers in C99.  */
2798
2799tree
2800build_unary_op (enum tree_code code, tree xarg, int flag)
2801{
2802  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2803  tree arg = xarg;
2804  tree argtype = 0;
2805  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2806  tree val;
2807  int noconvert = flag;
2808  const char *invalid_op_diag;
2809
2810  if (typecode == ERROR_MARK)
2811    return error_mark_node;
2812  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2813    typecode = INTEGER_TYPE;
2814
2815  if ((invalid_op_diag
2816       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2817    {
2818      error (invalid_op_diag);
2819      return error_mark_node;
2820    }
2821
2822  switch (code)
2823    {
2824    case CONVERT_EXPR:
2825      /* This is used for unary plus, because a CONVERT_EXPR
2826	 is enough to prevent anybody from looking inside for
2827	 associativity, but won't generate any code.  */
2828      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2829	    || typecode == COMPLEX_TYPE
2830	    || typecode == VECTOR_TYPE))
2831	{
2832	  error ("wrong type argument to unary plus");
2833	  return error_mark_node;
2834	}
2835      else if (!noconvert)
2836	arg = default_conversion (arg);
2837      arg = non_lvalue (arg);
2838      break;
2839
2840    case NEGATE_EXPR:
2841      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2842	    || typecode == COMPLEX_TYPE
2843	    || typecode == VECTOR_TYPE))
2844	{
2845	  error ("wrong type argument to unary minus");
2846	  return error_mark_node;
2847	}
2848      else if (!noconvert)
2849	arg = default_conversion (arg);
2850      break;
2851
2852    case BIT_NOT_EXPR:
2853      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2854	{
2855	  if (!noconvert)
2856	    arg = default_conversion (arg);
2857	}
2858      else if (typecode == COMPLEX_TYPE)
2859	{
2860	  code = CONJ_EXPR;
2861	  if (pedantic)
2862	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2863	  if (!noconvert)
2864	    arg = default_conversion (arg);
2865	}
2866      else
2867	{
2868	  error ("wrong type argument to bit-complement");
2869	  return error_mark_node;
2870	}
2871      break;
2872
2873    case ABS_EXPR:
2874      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2875	{
2876	  error ("wrong type argument to abs");
2877	  return error_mark_node;
2878	}
2879      else if (!noconvert)
2880	arg = default_conversion (arg);
2881      break;
2882
2883    case CONJ_EXPR:
2884      /* Conjugating a real value is a no-op, but allow it anyway.  */
2885      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2886	    || typecode == COMPLEX_TYPE))
2887	{
2888	  error ("wrong type argument to conjugation");
2889	  return error_mark_node;
2890	}
2891      else if (!noconvert)
2892	arg = default_conversion (arg);
2893      break;
2894
2895    case TRUTH_NOT_EXPR:
2896      if (typecode != INTEGER_TYPE
2897	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2898	  && typecode != COMPLEX_TYPE)
2899	{
2900	  error ("wrong type argument to unary exclamation mark");
2901	  return error_mark_node;
2902	}
2903      arg = c_objc_common_truthvalue_conversion (arg);
2904      return invert_truthvalue (arg);
2905
2906    case REALPART_EXPR:
2907      if (TREE_CODE (arg) == COMPLEX_CST)
2908	return TREE_REALPART (arg);
2909      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2910	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2911      else
2912	return arg;
2913
2914    case IMAGPART_EXPR:
2915      if (TREE_CODE (arg) == COMPLEX_CST)
2916	return TREE_IMAGPART (arg);
2917      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2918	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2919      else
2920	return convert (TREE_TYPE (arg), integer_zero_node);
2921
2922    case PREINCREMENT_EXPR:
2923    case POSTINCREMENT_EXPR:
2924    case PREDECREMENT_EXPR:
2925    case POSTDECREMENT_EXPR:
2926
2927      /* Increment or decrement the real part of the value,
2928	 and don't change the imaginary part.  */
2929      if (typecode == COMPLEX_TYPE)
2930	{
2931	  tree real, imag;
2932
2933	  if (pedantic)
2934	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2935		     " on complex types");
2936
2937	  arg = stabilize_reference (arg);
2938	  real = build_unary_op (REALPART_EXPR, arg, 1);
2939	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2940	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2941			 build_unary_op (code, real, 1), imag);
2942	}
2943
2944      /* Report invalid types.  */
2945
2946      if (typecode != POINTER_TYPE
2947	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2948	{
2949	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2950	    error ("wrong type argument to increment");
2951	  else
2952	    error ("wrong type argument to decrement");
2953
2954	  return error_mark_node;
2955	}
2956
2957      {
2958	tree inc;
2959	tree result_type = TREE_TYPE (arg);
2960
2961	arg = get_unwidened (arg, 0);
2962	argtype = TREE_TYPE (arg);
2963
2964	/* Compute the increment.  */
2965
2966	if (typecode == POINTER_TYPE)
2967	  {
2968	    /* If pointer target is an undefined struct,
2969	       we just cannot know how to do the arithmetic.  */
2970	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2971	      {
2972		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2973		  error ("increment of pointer to unknown structure");
2974		else
2975		  error ("decrement of pointer to unknown structure");
2976	      }
2977	    else if ((pedantic || warn_pointer_arith)
2978		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2979			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2980	      {
2981		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2982		  pedwarn ("wrong type argument to increment");
2983		else
2984		  pedwarn ("wrong type argument to decrement");
2985	      }
2986
2987	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2988	  }
2989	else
2990	  inc = integer_one_node;
2991
2992	inc = convert (argtype, inc);
2993
2994	/* Complain about anything else that is not a true lvalue.  */
2995	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2996				    || code == POSTINCREMENT_EXPR)
2997				   ? lv_increment
2998				   : lv_decrement)))
2999	  return error_mark_node;
3000
3001	/* Report a read-only lvalue.  */
3002	if (TREE_READONLY (arg))
3003	  {
3004	    readonly_error (arg,
3005			    ((code == PREINCREMENT_EXPR
3006			      || code == POSTINCREMENT_EXPR)
3007			     ? lv_increment : lv_decrement));
3008	    return error_mark_node;
3009	  }
3010
3011	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3012	  val = boolean_increment (code, arg);
3013	else
3014	  val = build2 (code, TREE_TYPE (arg), arg, inc);
3015	TREE_SIDE_EFFECTS (val) = 1;
3016	val = convert (result_type, val);
3017	if (TREE_CODE (val) != code)
3018	  TREE_NO_WARNING (val) = 1;
3019	return val;
3020      }
3021
3022    case ADDR_EXPR:
3023      /* Note that this operation never does default_conversion.  */
3024
3025      /* Let &* cancel out to simplify resulting code.  */
3026      if (TREE_CODE (arg) == INDIRECT_REF)
3027	{
3028	  /* Don't let this be an lvalue.  */
3029	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3030	    return non_lvalue (TREE_OPERAND (arg, 0));
3031	  return TREE_OPERAND (arg, 0);
3032	}
3033
3034      /* For &x[y], return x+y */
3035      if (TREE_CODE (arg) == ARRAY_REF)
3036	{
3037	  tree op0 = TREE_OPERAND (arg, 0);
3038	  if (!c_mark_addressable (op0))
3039	    return error_mark_node;
3040	  return build_binary_op (PLUS_EXPR,
3041				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3042				   ? array_to_pointer_conversion (op0)
3043				   : op0),
3044				  TREE_OPERAND (arg, 1), 1);
3045	}
3046
3047      /* Anything not already handled and not a true memory reference
3048	 or a non-lvalue array is an error.  */
3049      else if (typecode != FUNCTION_TYPE && !flag
3050	       && !lvalue_or_else (arg, lv_addressof))
3051	return error_mark_node;
3052
3053      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3054      argtype = TREE_TYPE (arg);
3055
3056      /* If the lvalue is const or volatile, merge that into the type
3057	 to which the address will point.  Note that you can't get a
3058	 restricted pointer by taking the address of something, so we
3059	 only have to deal with `const' and `volatile' here.  */
3060      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3061	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3062	  argtype = c_build_type_variant (argtype,
3063					  TREE_READONLY (arg),
3064					  TREE_THIS_VOLATILE (arg));
3065
3066      if (!c_mark_addressable (arg))
3067	return error_mark_node;
3068
3069      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3070		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3071
3072      argtype = build_pointer_type (argtype);
3073
3074      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3075	 when we have proper support for integer constant expressions.  */
3076      val = get_base_address (arg);
3077      if (val && TREE_CODE (val) == INDIRECT_REF
3078          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3079	{
3080	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3081
3082	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3083	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3084	}
3085
3086      val = build1 (ADDR_EXPR, argtype, arg);
3087
3088      return val;
3089
3090    default:
3091      gcc_unreachable ();
3092    }
3093
3094  if (argtype == 0)
3095    argtype = TREE_TYPE (arg);
3096  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3097				: fold_build1 (code, argtype, arg);
3098}
3099
3100/* Return nonzero if REF is an lvalue valid for this language.
3101   Lvalues can be assigned, unless their type has TYPE_READONLY.
3102   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3103
3104static int
3105lvalue_p (tree ref)
3106{
3107  enum tree_code code = TREE_CODE (ref);
3108
3109  switch (code)
3110    {
3111    case REALPART_EXPR:
3112    case IMAGPART_EXPR:
3113    case COMPONENT_REF:
3114      return lvalue_p (TREE_OPERAND (ref, 0));
3115
3116    case COMPOUND_LITERAL_EXPR:
3117    case STRING_CST:
3118      return 1;
3119
3120    case INDIRECT_REF:
3121    case ARRAY_REF:
3122    case VAR_DECL:
3123    case PARM_DECL:
3124    case RESULT_DECL:
3125    case ERROR_MARK:
3126      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3127	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3128
3129    case BIND_EXPR:
3130      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3131
3132    default:
3133      return 0;
3134    }
3135}
3136
3137/* Give an error for storing in something that is 'const'.  */
3138
3139static void
3140readonly_error (tree arg, enum lvalue_use use)
3141{
3142  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3143	      || use == lv_asm);
3144  /* Using this macro rather than (for example) arrays of messages
3145     ensures that all the format strings are checked at compile
3146     time.  */
3147#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3148				   : (use == lv_increment ? (I)		\
3149				   : (use == lv_decrement ? (D) : (AS))))
3150  if (TREE_CODE (arg) == COMPONENT_REF)
3151    {
3152      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3153	readonly_error (TREE_OPERAND (arg, 0), use);
3154      else
3155	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3156			     G_("increment of read-only member %qD"),
3157			     G_("decrement of read-only member %qD"),
3158			     G_("read-only member %qD used as %<asm%> output")),
3159	       TREE_OPERAND (arg, 1));
3160    }
3161  else if (TREE_CODE (arg) == VAR_DECL)
3162    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3163			 G_("increment of read-only variable %qD"),
3164			 G_("decrement of read-only variable %qD"),
3165			 G_("read-only variable %qD used as %<asm%> output")),
3166	   arg);
3167  else
3168    error (READONLY_MSG (G_("assignment of read-only location"),
3169			 G_("increment of read-only location"),
3170			 G_("decrement of read-only location"),
3171			 G_("read-only location used as %<asm%> output")));
3172}
3173
3174
3175/* Return nonzero if REF is an lvalue valid for this language;
3176   otherwise, print an error message and return zero.  USE says
3177   how the lvalue is being used and so selects the error message.  */
3178
3179static int
3180lvalue_or_else (tree ref, enum lvalue_use use)
3181{
3182  int win = lvalue_p (ref);
3183
3184  if (!win)
3185    lvalue_error (use);
3186
3187  return win;
3188}
3189
3190/* Mark EXP saying that we need to be able to take the
3191   address of it; it should not be allocated in a register.
3192   Returns true if successful.  */
3193
3194bool
3195c_mark_addressable (tree exp)
3196{
3197  tree x = exp;
3198
3199  while (1)
3200    switch (TREE_CODE (x))
3201      {
3202      case COMPONENT_REF:
3203	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3204	  {
3205	    error
3206	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3207	    return false;
3208	  }
3209
3210	/* ... fall through ...  */
3211
3212      case ADDR_EXPR:
3213      case ARRAY_REF:
3214      case REALPART_EXPR:
3215      case IMAGPART_EXPR:
3216	x = TREE_OPERAND (x, 0);
3217	break;
3218
3219      case COMPOUND_LITERAL_EXPR:
3220      case CONSTRUCTOR:
3221	TREE_ADDRESSABLE (x) = 1;
3222	return true;
3223
3224      case VAR_DECL:
3225      case CONST_DECL:
3226      case PARM_DECL:
3227      case RESULT_DECL:
3228	if (C_DECL_REGISTER (x)
3229	    && DECL_NONLOCAL (x))
3230	  {
3231	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3232	      {
3233		error
3234		  ("global register variable %qD used in nested function", x);
3235		return false;
3236	      }
3237	    pedwarn ("register variable %qD used in nested function", x);
3238	  }
3239	else if (C_DECL_REGISTER (x))
3240	  {
3241	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3242	      error ("address of global register variable %qD requested", x);
3243	    else
3244	      error ("address of register variable %qD requested", x);
3245	    return false;
3246	  }
3247
3248	/* drops in */
3249      case FUNCTION_DECL:
3250	TREE_ADDRESSABLE (x) = 1;
3251	/* drops out */
3252      default:
3253	return true;
3254    }
3255}
3256
3257/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3258
3259tree
3260build_conditional_expr (tree ifexp, tree op1, tree op2)
3261{
3262  tree type1;
3263  tree type2;
3264  enum tree_code code1;
3265  enum tree_code code2;
3266  tree result_type = NULL;
3267  tree orig_op1 = op1, orig_op2 = op2;
3268
3269  /* Promote both alternatives.  */
3270
3271  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3272    op1 = default_conversion (op1);
3273  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3274    op2 = default_conversion (op2);
3275
3276  if (TREE_CODE (ifexp) == ERROR_MARK
3277      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3278      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3279    return error_mark_node;
3280
3281  type1 = TREE_TYPE (op1);
3282  code1 = TREE_CODE (type1);
3283  type2 = TREE_TYPE (op2);
3284  code2 = TREE_CODE (type2);
3285
3286  /* C90 does not permit non-lvalue arrays in conditional expressions.
3287     In C99 they will be pointers by now.  */
3288  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3289    {
3290      error ("non-lvalue array in conditional expression");
3291      return error_mark_node;
3292    }
3293
3294  /* Quickly detect the usual case where op1 and op2 have the same type
3295     after promotion.  */
3296  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3297    {
3298      if (type1 == type2)
3299	result_type = type1;
3300      else
3301	result_type = TYPE_MAIN_VARIANT (type1);
3302    }
3303  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3304	    || code1 == COMPLEX_TYPE)
3305	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3306	       || code2 == COMPLEX_TYPE))
3307    {
3308      result_type = c_common_type (type1, type2);
3309
3310      /* If -Wsign-compare, warn here if type1 and type2 have
3311	 different signedness.  We'll promote the signed to unsigned
3312	 and later code won't know it used to be different.
3313	 Do this check on the original types, so that explicit casts
3314	 will be considered, but default promotions won't.  */
3315      if (warn_sign_compare && !skip_evaluation)
3316	{
3317	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3318	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3319
3320	  if (unsigned_op1 ^ unsigned_op2)
3321	    {
3322	      bool ovf;
3323
3324	      /* Do not warn if the result type is signed, since the
3325		 signed type will only be chosen if it can represent
3326		 all the values of the unsigned type.  */
3327	      if (!TYPE_UNSIGNED (result_type))
3328		/* OK */;
3329	      /* Do not warn if the signed quantity is an unsuffixed
3330		 integer literal (or some static constant expression
3331		 involving such literals) and it is non-negative.  */
3332	      else if ((unsigned_op2
3333			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3334		       || (unsigned_op1
3335			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3336		/* OK */;
3337	      else
3338		warning (0, "signed and unsigned type in conditional expression");
3339	    }
3340	}
3341    }
3342  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3343    {
3344      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3345	pedwarn ("ISO C forbids conditional expr with only one void side");
3346      result_type = void_type_node;
3347    }
3348  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3349    {
3350      if (comp_target_types (type1, type2))
3351	result_type = common_pointer_type (type1, type2);
3352      else if (null_pointer_constant_p (orig_op1))
3353	result_type = qualify_type (type2, type1);
3354      else if (null_pointer_constant_p (orig_op2))
3355	result_type = qualify_type (type1, type2);
3356      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3357	{
3358	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3359	    pedwarn ("ISO C forbids conditional expr between "
3360		     "%<void *%> and function pointer");
3361	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3362							  TREE_TYPE (type2)));
3363	}
3364      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3365	{
3366	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3367	    pedwarn ("ISO C forbids conditional expr between "
3368		     "%<void *%> and function pointer");
3369	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3370							  TREE_TYPE (type1)));
3371	}
3372      else
3373	{
3374	  pedwarn ("pointer type mismatch in conditional expression");
3375	  result_type = build_pointer_type (void_type_node);
3376	}
3377    }
3378  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3379    {
3380      if (!null_pointer_constant_p (orig_op2))
3381	pedwarn ("pointer/integer type mismatch in conditional expression");
3382      else
3383	{
3384	  op2 = null_pointer_node;
3385	}
3386      result_type = type1;
3387    }
3388  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3389    {
3390      if (!null_pointer_constant_p (orig_op1))
3391	pedwarn ("pointer/integer type mismatch in conditional expression");
3392      else
3393	{
3394	  op1 = null_pointer_node;
3395	}
3396      result_type = type2;
3397    }
3398
3399  if (!result_type)
3400    {
3401      if (flag_cond_mismatch)
3402	result_type = void_type_node;
3403      else
3404	{
3405	  error ("type mismatch in conditional expression");
3406	  return error_mark_node;
3407	}
3408    }
3409
3410  /* Merge const and volatile flags of the incoming types.  */
3411  result_type
3412    = build_type_variant (result_type,
3413			  TREE_READONLY (op1) || TREE_READONLY (op2),
3414			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3415
3416  if (result_type != TREE_TYPE (op1))
3417    op1 = convert_and_check (result_type, op1);
3418  if (result_type != TREE_TYPE (op2))
3419    op2 = convert_and_check (result_type, op2);
3420
3421  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3422}
3423
3424/* Return a compound expression that performs two expressions and
3425   returns the value of the second of them.  */
3426
3427tree
3428build_compound_expr (tree expr1, tree expr2)
3429{
3430  if (!TREE_SIDE_EFFECTS (expr1))
3431    {
3432      /* The left-hand operand of a comma expression is like an expression
3433	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3434	 any side-effects, unless it was explicitly cast to (void).  */
3435      if (warn_unused_value)
3436	{
3437	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3438	      && (TREE_CODE (expr1) == NOP_EXPR
3439		  || TREE_CODE (expr1) == CONVERT_EXPR))
3440	    ; /* (void) a, b */
3441	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3442		   && TREE_CODE (expr1) == COMPOUND_EXPR
3443		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3444		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3445	    ; /* (void) a, (void) b, c */
3446	  else
3447	    warning (0, "left-hand operand of comma expression has no effect");
3448	}
3449    }
3450
3451  /* With -Wunused, we should also warn if the left-hand operand does have
3452     side-effects, but computes a value which is not used.  For example, in
3453     `foo() + bar(), baz()' the result of the `+' operator is not used,
3454     so we should issue a warning.  */
3455  else if (warn_unused_value)
3456    warn_if_unused_value (expr1, input_location);
3457
3458  if (expr2 == error_mark_node)
3459    return error_mark_node;
3460
3461  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3462}
3463
3464/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3465
3466tree
3467build_c_cast (tree type, tree expr)
3468{
3469  tree value = expr;
3470
3471  if (type == error_mark_node || expr == error_mark_node)
3472    return error_mark_node;
3473
3474  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3475     only in <protocol> qualifications.  But when constructing cast expressions,
3476     the protocols do matter and must be kept around.  */
3477  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3478    return build1 (NOP_EXPR, type, expr);
3479
3480  type = TYPE_MAIN_VARIANT (type);
3481
3482  if (TREE_CODE (type) == ARRAY_TYPE)
3483    {
3484      error ("cast specifies array type");
3485      return error_mark_node;
3486    }
3487
3488  if (TREE_CODE (type) == FUNCTION_TYPE)
3489    {
3490      error ("cast specifies function type");
3491      return error_mark_node;
3492    }
3493
3494  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3495    {
3496      if (pedantic)
3497	{
3498	  if (TREE_CODE (type) == RECORD_TYPE
3499	      || TREE_CODE (type) == UNION_TYPE)
3500	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3501	}
3502    }
3503  else if (TREE_CODE (type) == UNION_TYPE)
3504    {
3505      tree field;
3506
3507      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3508	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3509		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3510	  break;
3511
3512      if (field)
3513	{
3514	  tree t;
3515
3516	  if (pedantic)
3517	    pedwarn ("ISO C forbids casts to union type");
3518	  t = digest_init (type,
3519			   build_constructor_single (type, field, value),
3520			   true, 0);
3521	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3522	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3523	  return t;
3524	}
3525      error ("cast to union type from type not present in union");
3526      return error_mark_node;
3527    }
3528  else
3529    {
3530      tree otype, ovalue;
3531
3532      if (type == void_type_node)
3533	return build1 (CONVERT_EXPR, type, value);
3534
3535      otype = TREE_TYPE (value);
3536
3537      /* Optionally warn about potentially worrisome casts.  */
3538
3539      if (warn_cast_qual
3540	  && TREE_CODE (type) == POINTER_TYPE
3541	  && TREE_CODE (otype) == POINTER_TYPE)
3542	{
3543	  tree in_type = type;
3544	  tree in_otype = otype;
3545	  int added = 0;
3546	  int discarded = 0;
3547
3548	  /* Check that the qualifiers on IN_TYPE are a superset of
3549	     the qualifiers of IN_OTYPE.  The outermost level of
3550	     POINTER_TYPE nodes is uninteresting and we stop as soon
3551	     as we hit a non-POINTER_TYPE node on either type.  */
3552	  do
3553	    {
3554	      in_otype = TREE_TYPE (in_otype);
3555	      in_type = TREE_TYPE (in_type);
3556
3557	      /* GNU C allows cv-qualified function types.  'const'
3558		 means the function is very pure, 'volatile' means it
3559		 can't return.  We need to warn when such qualifiers
3560		 are added, not when they're taken away.  */
3561	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3562		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3563		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3564	      else
3565		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3566	    }
3567	  while (TREE_CODE (in_type) == POINTER_TYPE
3568		 && TREE_CODE (in_otype) == POINTER_TYPE);
3569
3570	  if (added)
3571	    warning (0, "cast adds new qualifiers to function type");
3572
3573	  if (discarded)
3574	    /* There are qualifiers present in IN_OTYPE that are not
3575	       present in IN_TYPE.  */
3576	    warning (0, "cast discards qualifiers from pointer target type");
3577	}
3578
3579      /* Warn about possible alignment problems.  */
3580      if (STRICT_ALIGNMENT
3581	  && TREE_CODE (type) == POINTER_TYPE
3582	  && TREE_CODE (otype) == POINTER_TYPE
3583	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3584	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3585	  /* Don't warn about opaque types, where the actual alignment
3586	     restriction is unknown.  */
3587	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3588		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3589	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3590	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3591	warning (OPT_Wcast_align,
3592		 "cast increases required alignment of target type");
3593
3594      if (TREE_CODE (type) == INTEGER_TYPE
3595	  && TREE_CODE (otype) == POINTER_TYPE
3596	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3597      /* Unlike conversion of integers to pointers, where the
3598         warning is disabled for converting constants because
3599         of cases such as SIG_*, warn about converting constant
3600         pointers to integers. In some cases it may cause unwanted
3601         sign extension, and a warning is appropriate.  */
3602	warning (OPT_Wpointer_to_int_cast,
3603		 "cast from pointer to integer of different size");
3604
3605      if (TREE_CODE (value) == CALL_EXPR
3606	  && TREE_CODE (type) != TREE_CODE (otype))
3607	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3608		 "to non-matching type %qT", otype, type);
3609
3610      if (TREE_CODE (type) == POINTER_TYPE
3611	  && TREE_CODE (otype) == INTEGER_TYPE
3612	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3613	  /* Don't warn about converting any constant.  */
3614	  && !TREE_CONSTANT (value))
3615	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3616		 "of different size");
3617
3618      strict_aliasing_warning (otype, type, expr);
3619
3620      /* If pedantic, warn for conversions between function and object
3621	 pointer types, except for converting a null pointer constant
3622	 to function pointer type.  */
3623      if (pedantic
3624	  && TREE_CODE (type) == POINTER_TYPE
3625	  && TREE_CODE (otype) == POINTER_TYPE
3626	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3627	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3628	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3629
3630      if (pedantic
3631	  && TREE_CODE (type) == POINTER_TYPE
3632	  && TREE_CODE (otype) == POINTER_TYPE
3633	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3634	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3635	  && !null_pointer_constant_p (value))
3636	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3637
3638      ovalue = value;
3639      value = convert (type, value);
3640
3641      /* Ignore any integer overflow caused by the cast.  */
3642      if (TREE_CODE (value) == INTEGER_CST)
3643	{
3644	  if (CONSTANT_CLASS_P (ovalue)
3645	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3646	    {
3647	      /* Avoid clobbering a shared constant.  */
3648	      value = copy_node (value);
3649	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3650	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3651	    }
3652	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3653	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3654	    value = build_int_cst_wide (TREE_TYPE (value),
3655					TREE_INT_CST_LOW (value),
3656					TREE_INT_CST_HIGH (value));
3657	}
3658    }
3659
3660  /* Don't let a cast be an lvalue.  */
3661  if (value == expr)
3662    value = non_lvalue (value);
3663
3664  return value;
3665}
3666
3667/* Interpret a cast of expression EXPR to type TYPE.  */
3668tree
3669c_cast_expr (struct c_type_name *type_name, tree expr)
3670{
3671  tree type;
3672  int saved_wsp = warn_strict_prototypes;
3673
3674  /* This avoids warnings about unprototyped casts on
3675     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3676  if (TREE_CODE (expr) == INTEGER_CST)
3677    warn_strict_prototypes = 0;
3678  type = groktypename (type_name);
3679  warn_strict_prototypes = saved_wsp;
3680
3681  return build_c_cast (type, expr);
3682}
3683
3684/* Build an assignment expression of lvalue LHS from value RHS.
3685   MODIFYCODE is the code for a binary operator that we use
3686   to combine the old value of LHS with RHS to get the new value.
3687   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3688
3689tree
3690build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3691{
3692  tree result;
3693  tree newrhs;
3694  tree lhstype = TREE_TYPE (lhs);
3695  tree olhstype = lhstype;
3696
3697  /* Types that aren't fully specified cannot be used in assignments.  */
3698  lhs = require_complete_type (lhs);
3699
3700  /* Avoid duplicate error messages from operands that had errors.  */
3701  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3702    return error_mark_node;
3703
3704  if (!lvalue_or_else (lhs, lv_assign))
3705    return error_mark_node;
3706
3707  STRIP_TYPE_NOPS (rhs);
3708
3709  newrhs = rhs;
3710
3711  /* If a binary op has been requested, combine the old LHS value with the RHS
3712     producing the value we should actually store into the LHS.  */
3713
3714  if (modifycode != NOP_EXPR)
3715    {
3716      lhs = stabilize_reference (lhs);
3717      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3718    }
3719
3720  /* Give an error for storing in something that is 'const'.  */
3721
3722  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3723      || ((TREE_CODE (lhstype) == RECORD_TYPE
3724	   || TREE_CODE (lhstype) == UNION_TYPE)
3725	  && C_TYPE_FIELDS_READONLY (lhstype)))
3726    {
3727      readonly_error (lhs, lv_assign);
3728      return error_mark_node;
3729    }
3730
3731  /* If storing into a structure or union member,
3732     it has probably been given type `int'.
3733     Compute the type that would go with
3734     the actual amount of storage the member occupies.  */
3735
3736  if (TREE_CODE (lhs) == COMPONENT_REF
3737      && (TREE_CODE (lhstype) == INTEGER_TYPE
3738	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3739	  || TREE_CODE (lhstype) == REAL_TYPE
3740	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3741    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3742
3743  /* If storing in a field that is in actuality a short or narrower than one,
3744     we must store in the field in its actual type.  */
3745
3746  if (lhstype != TREE_TYPE (lhs))
3747    {
3748      lhs = copy_node (lhs);
3749      TREE_TYPE (lhs) = lhstype;
3750    }
3751
3752  /* Convert new value to destination type.  */
3753
3754  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3755				   NULL_TREE, NULL_TREE, 0);
3756  if (TREE_CODE (newrhs) == ERROR_MARK)
3757    return error_mark_node;
3758
3759  /* Emit ObjC write barrier, if necessary.  */
3760  if (c_dialect_objc () && flag_objc_gc)
3761    {
3762      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3763      if (result)
3764	return result;
3765    }
3766
3767  /* Scan operands.  */
3768
3769  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3770  TREE_SIDE_EFFECTS (result) = 1;
3771
3772  /* If we got the LHS in a different type for storing in,
3773     convert the result back to the nominal type of LHS
3774     so that the value we return always has the same type
3775     as the LHS argument.  */
3776
3777  if (olhstype == TREE_TYPE (result))
3778    return result;
3779  return convert_for_assignment (olhstype, result, ic_assign,
3780				 NULL_TREE, NULL_TREE, 0);
3781}
3782
3783/* Convert value RHS to type TYPE as preparation for an assignment
3784   to an lvalue of type TYPE.
3785   The real work of conversion is done by `convert'.
3786   The purpose of this function is to generate error messages
3787   for assignments that are not allowed in C.
3788   ERRTYPE says whether it is argument passing, assignment,
3789   initialization or return.
3790
3791   FUNCTION is a tree for the function being called.
3792   PARMNUM is the number of the argument, for printing in error messages.  */
3793
3794static tree
3795convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3796			tree fundecl, tree function, int parmnum)
3797{
3798  enum tree_code codel = TREE_CODE (type);
3799  tree rhstype;
3800  enum tree_code coder;
3801  tree rname = NULL_TREE;
3802  bool objc_ok = false;
3803
3804  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3805    {
3806      tree selector;
3807      /* Change pointer to function to the function itself for
3808	 diagnostics.  */
3809      if (TREE_CODE (function) == ADDR_EXPR
3810	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3811	function = TREE_OPERAND (function, 0);
3812
3813      /* Handle an ObjC selector specially for diagnostics.  */
3814      selector = objc_message_selector ();
3815      rname = function;
3816      if (selector && parmnum > 2)
3817	{
3818	  rname = selector;
3819	  parmnum -= 2;
3820	}
3821    }
3822
3823  /* This macro is used to emit diagnostics to ensure that all format
3824     strings are complete sentences, visible to gettext and checked at
3825     compile time.  */
3826#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3827  do {						\
3828    switch (errtype)				\
3829      {						\
3830      case ic_argpass:				\
3831	pedwarn (AR, parmnum, rname);		\
3832	break;					\
3833      case ic_argpass_nonproto:			\
3834	warning (0, AR, parmnum, rname);		\
3835	break;					\
3836      case ic_assign:				\
3837	pedwarn (AS);				\
3838	break;					\
3839      case ic_init:				\
3840	pedwarn (IN);				\
3841	break;					\
3842      case ic_return:				\
3843	pedwarn (RE);				\
3844	break;					\
3845      default:					\
3846	gcc_unreachable ();			\
3847      }						\
3848  } while (0)
3849
3850  STRIP_TYPE_NOPS (rhs);
3851
3852  if (optimize && TREE_CODE (rhs) == VAR_DECL
3853	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3854    rhs = decl_constant_value_for_broken_optimization (rhs);
3855
3856  rhstype = TREE_TYPE (rhs);
3857  coder = TREE_CODE (rhstype);
3858
3859  if (coder == ERROR_MARK)
3860    return error_mark_node;
3861
3862  if (c_dialect_objc ())
3863    {
3864      int parmno;
3865
3866      switch (errtype)
3867	{
3868	case ic_return:
3869	  parmno = 0;
3870	  break;
3871
3872	case ic_assign:
3873	  parmno = -1;
3874	  break;
3875
3876	case ic_init:
3877	  parmno = -2;
3878	  break;
3879
3880	default:
3881	  parmno = parmnum;
3882	  break;
3883	}
3884
3885      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3886    }
3887
3888  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3889    {
3890      overflow_warning (rhs);
3891      return rhs;
3892    }
3893
3894  if (coder == VOID_TYPE)
3895    {
3896      /* Except for passing an argument to an unprototyped function,
3897	 this is a constraint violation.  When passing an argument to
3898	 an unprototyped function, it is compile-time undefined;
3899	 making it a constraint in that case was rejected in
3900	 DR#252.  */
3901      error ("void value not ignored as it ought to be");
3902      return error_mark_node;
3903    }
3904  /* A type converts to a reference to it.
3905     This code doesn't fully support references, it's just for the
3906     special case of va_start and va_copy.  */
3907  if (codel == REFERENCE_TYPE
3908      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3909    {
3910      if (!lvalue_p (rhs))
3911	{
3912	  error ("cannot pass rvalue to reference parameter");
3913	  return error_mark_node;
3914	}
3915      if (!c_mark_addressable (rhs))
3916	return error_mark_node;
3917      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3918
3919      /* We already know that these two types are compatible, but they
3920	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3921	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3922	 likely to be va_list, a typedef to __builtin_va_list, which
3923	 is different enough that it will cause problems later.  */
3924      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3925	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3926
3927      rhs = build1 (NOP_EXPR, type, rhs);
3928      return rhs;
3929    }
3930  /* Some types can interconvert without explicit casts.  */
3931  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3932	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3933    return convert (type, rhs);
3934  /* Arithmetic types all interconvert, and enum is treated like int.  */
3935  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3936	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3937	    || codel == BOOLEAN_TYPE)
3938	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3939	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3940	       || coder == BOOLEAN_TYPE))
3941    return convert_and_check (type, rhs);
3942
3943  /* Aggregates in different TUs might need conversion.  */
3944  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3945      && codel == coder
3946      && comptypes (type, rhstype))
3947    return convert_and_check (type, rhs);
3948
3949  /* Conversion to a transparent union from its member types.
3950     This applies only to function arguments.  */
3951  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3952      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3953    {
3954      tree memb, marginal_memb = NULL_TREE;
3955
3956      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3957	{
3958	  tree memb_type = TREE_TYPE (memb);
3959
3960	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3961			 TYPE_MAIN_VARIANT (rhstype)))
3962	    break;
3963
3964	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3965	    continue;
3966
3967	  if (coder == POINTER_TYPE)
3968	    {
3969	      tree ttl = TREE_TYPE (memb_type);
3970	      tree ttr = TREE_TYPE (rhstype);
3971
3972	      /* Any non-function converts to a [const][volatile] void *
3973		 and vice versa; otherwise, targets must be the same.
3974		 Meanwhile, the lhs target must have all the qualifiers of
3975		 the rhs.  */
3976	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3977		  || comp_target_types (memb_type, rhstype))
3978		{
3979		  /* If this type won't generate any warnings, use it.  */
3980		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3981		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3982			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3983			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3984			     == TYPE_QUALS (ttr))
3985			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3986			     == TYPE_QUALS (ttl))))
3987		    break;
3988
3989		  /* Keep looking for a better type, but remember this one.  */
3990		  if (!marginal_memb)
3991		    marginal_memb = memb;
3992		}
3993	    }
3994
3995	  /* Can convert integer zero to any pointer type.  */
3996	  if (null_pointer_constant_p (rhs))
3997	    {
3998	      rhs = null_pointer_node;
3999	      break;
4000	    }
4001	}
4002
4003      if (memb || marginal_memb)
4004	{
4005	  if (!memb)
4006	    {
4007	      /* We have only a marginally acceptable member type;
4008		 it needs a warning.  */
4009	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4010	      tree ttr = TREE_TYPE (rhstype);
4011
4012	      /* Const and volatile mean something different for function
4013		 types, so the usual warnings are not appropriate.  */
4014	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4015		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4016		{
4017		  /* Because const and volatile on functions are
4018		     restrictions that say the function will not do
4019		     certain things, it is okay to use a const or volatile
4020		     function where an ordinary one is wanted, but not
4021		     vice-versa.  */
4022		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4023		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4024					    "makes qualified function "
4025					    "pointer from unqualified"),
4026					 G_("assignment makes qualified "
4027					    "function pointer from "
4028					    "unqualified"),
4029					 G_("initialization makes qualified "
4030					    "function pointer from "
4031					    "unqualified"),
4032					 G_("return makes qualified function "
4033					    "pointer from unqualified"));
4034		}
4035	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4036		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4037					"qualifiers from pointer target type"),
4038				     G_("assignment discards qualifiers "
4039					"from pointer target type"),
4040				     G_("initialization discards qualifiers "
4041					"from pointer target type"),
4042				     G_("return discards qualifiers from "
4043					"pointer target type"));
4044
4045	      memb = marginal_memb;
4046	    }
4047
4048	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4049	    pedwarn ("ISO C prohibits argument conversion to union type");
4050
4051	  return build_constructor_single (type, memb, rhs);
4052	}
4053    }
4054
4055  /* Conversions among pointers */
4056  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4057	   && (coder == codel))
4058    {
4059      tree ttl = TREE_TYPE (type);
4060      tree ttr = TREE_TYPE (rhstype);
4061      tree mvl = ttl;
4062      tree mvr = ttr;
4063      bool is_opaque_pointer;
4064      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4065
4066      if (TREE_CODE (mvl) != ARRAY_TYPE)
4067	mvl = TYPE_MAIN_VARIANT (mvl);
4068      if (TREE_CODE (mvr) != ARRAY_TYPE)
4069	mvr = TYPE_MAIN_VARIANT (mvr);
4070      /* Opaque pointers are treated like void pointers.  */
4071      is_opaque_pointer = (targetm.vector_opaque_p (type)
4072			   || targetm.vector_opaque_p (rhstype))
4073	&& TREE_CODE (ttl) == VECTOR_TYPE
4074	&& TREE_CODE (ttr) == VECTOR_TYPE;
4075
4076      /* C++ does not allow the implicit conversion void* -> T*.  However,
4077	 for the purpose of reducing the number of false positives, we
4078	 tolerate the special case of
4079
4080		int *p = NULL;
4081
4082	 where NULL is typically defined in C to be '(void *) 0'.  */
4083      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4084	warning (OPT_Wc___compat, "request for implicit conversion from "
4085		 "%qT to %qT not permitted in C++", rhstype, type);
4086
4087      /* Check if the right-hand side has a format attribute but the
4088	 left-hand side doesn't.  */
4089      if (warn_missing_format_attribute
4090	  && check_missing_format_attribute (type, rhstype))
4091	{
4092	  switch (errtype)
4093	  {
4094	  case ic_argpass:
4095	  case ic_argpass_nonproto:
4096	    warning (OPT_Wmissing_format_attribute,
4097		     "argument %d of %qE might be "
4098		     "a candidate for a format attribute",
4099		     parmnum, rname);
4100	    break;
4101	  case ic_assign:
4102	    warning (OPT_Wmissing_format_attribute,
4103		     "assignment left-hand side might be "
4104		     "a candidate for a format attribute");
4105	    break;
4106	  case ic_init:
4107	    warning (OPT_Wmissing_format_attribute,
4108		     "initialization left-hand side might be "
4109		     "a candidate for a format attribute");
4110	    break;
4111	  case ic_return:
4112	    warning (OPT_Wmissing_format_attribute,
4113		     "return type might be "
4114		     "a candidate for a format attribute");
4115	    break;
4116	  default:
4117	    gcc_unreachable ();
4118	  }
4119	}
4120
4121      /* Any non-function converts to a [const][volatile] void *
4122	 and vice versa; otherwise, targets must be the same.
4123	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4124      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4125	  || (target_cmp = comp_target_types (type, rhstype))
4126	  || is_opaque_pointer
4127	  || (c_common_unsigned_type (mvl)
4128	      == c_common_unsigned_type (mvr)))
4129	{
4130	  if (pedantic
4131	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4132		  ||
4133		  (VOID_TYPE_P (ttr)
4134		   && !null_pointer_constant_p (rhs)
4135		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4136	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4137				    "%qE between function pointer "
4138				    "and %<void *%>"),
4139				 G_("ISO C forbids assignment between "
4140				    "function pointer and %<void *%>"),
4141				 G_("ISO C forbids initialization between "
4142				    "function pointer and %<void *%>"),
4143				 G_("ISO C forbids return between function "
4144				    "pointer and %<void *%>"));
4145	  /* Const and volatile mean something different for function types,
4146	     so the usual warnings are not appropriate.  */
4147	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4148		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4149	    {
4150	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4151		{
4152		  /* Types differing only by the presence of the 'volatile'
4153		     qualifier are acceptable if the 'volatile' has been added
4154		     in by the Objective-C EH machinery.  */
4155		  if (!objc_type_quals_match (ttl, ttr))
4156		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4157					    "qualifiers from pointer target type"),
4158					 G_("assignment discards qualifiers "
4159					    "from pointer target type"),
4160					 G_("initialization discards qualifiers "
4161					    "from pointer target type"),
4162					 G_("return discards qualifiers from "
4163					    "pointer target type"));
4164		}
4165	      /* If this is not a case of ignoring a mismatch in signedness,
4166		 no warning.  */
4167	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4168		       || target_cmp)
4169		;
4170	      /* If there is a mismatch, do warn.  */
4171	      else if (warn_pointer_sign)
4172		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4173					"%d of %qE differ in signedness"),
4174				     G_("pointer targets in assignment "
4175					"differ in signedness"),
4176				     G_("pointer targets in initialization "
4177					"differ in signedness"),
4178				     G_("pointer targets in return differ "
4179					"in signedness"));
4180	    }
4181	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4182		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4183	    {
4184	      /* Because const and volatile on functions are restrictions
4185		 that say the function will not do certain things,
4186		 it is okay to use a const or volatile function
4187		 where an ordinary one is wanted, but not vice-versa.  */
4188	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4189		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4190					"qualified function pointer "
4191					"from unqualified"),
4192				     G_("assignment makes qualified function "
4193					"pointer from unqualified"),
4194				     G_("initialization makes qualified "
4195					"function pointer from unqualified"),
4196				     G_("return makes qualified function "
4197					"pointer from unqualified"));
4198	    }
4199	}
4200      else
4201	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4202	if (!objc_ok)
4203	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4204				  "incompatible pointer type"),
4205			       G_("assignment from incompatible pointer type"),
4206			       G_("initialization from incompatible "
4207				  "pointer type"),
4208			       G_("return from incompatible pointer type"));
4209
4210      return convert (type, rhs);
4211    }
4212  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4213    {
4214      /* ??? This should not be an error when inlining calls to
4215	 unprototyped functions.  */
4216      error ("invalid use of non-lvalue array");
4217      return error_mark_node;
4218    }
4219  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4220    {
4221      /* An explicit constant 0 can convert to a pointer,
4222	 or one that results from arithmetic, even including
4223	 a cast to integer type.  */
4224      if (!null_pointer_constant_p (rhs))
4225	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4226				"pointer from integer without a cast"),
4227			     G_("assignment makes pointer from integer "
4228				"without a cast"),
4229			     G_("initialization makes pointer from "
4230				"integer without a cast"),
4231			     G_("return makes pointer from integer "
4232				"without a cast"));
4233
4234      return convert (type, rhs);
4235    }
4236  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4237    {
4238      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4239			      "from pointer without a cast"),
4240			   G_("assignment makes integer from pointer "
4241			      "without a cast"),
4242			   G_("initialization makes integer from pointer "
4243			      "without a cast"),
4244			   G_("return makes integer from pointer "
4245			      "without a cast"));
4246      return convert (type, rhs);
4247    }
4248  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4249    return convert (type, rhs);
4250
4251  switch (errtype)
4252    {
4253    case ic_argpass:
4254    case ic_argpass_nonproto:
4255      /* ??? This should not be an error when inlining calls to
4256	 unprototyped functions.  */
4257      error ("incompatible type for argument %d of %qE", parmnum, rname);
4258      break;
4259    case ic_assign:
4260      error ("incompatible types in assignment");
4261      break;
4262    case ic_init:
4263      error ("incompatible types in initialization");
4264      break;
4265    case ic_return:
4266      error ("incompatible types in return");
4267      break;
4268    default:
4269      gcc_unreachable ();
4270    }
4271
4272  return error_mark_node;
4273}
4274
4275/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4276   is used for error and warning reporting and indicates which argument
4277   is being processed.  */
4278
4279tree
4280c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4281{
4282  tree ret, type;
4283
4284  /* If FN was prototyped at the call site, the value has been converted
4285     already in convert_arguments.
4286     However, we might see a prototype now that was not in place when
4287     the function call was seen, so check that the VALUE actually matches
4288     PARM before taking an early exit.  */
4289  if (!value
4290      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4291	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4292	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4293    return value;
4294
4295  type = TREE_TYPE (parm);
4296  ret = convert_for_assignment (type, value,
4297				ic_argpass_nonproto, fn,
4298				fn, argnum);
4299  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4300      && INTEGRAL_TYPE_P (type)
4301      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4302    ret = default_conversion (ret);
4303  return ret;
4304}
4305
4306/* If VALUE is a compound expr all of whose expressions are constant, then
4307   return its value.  Otherwise, return error_mark_node.
4308
4309   This is for handling COMPOUND_EXPRs as initializer elements
4310   which is allowed with a warning when -pedantic is specified.  */
4311
4312static tree
4313valid_compound_expr_initializer (tree value, tree endtype)
4314{
4315  if (TREE_CODE (value) == COMPOUND_EXPR)
4316    {
4317      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4318	  == error_mark_node)
4319	return error_mark_node;
4320      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4321					      endtype);
4322    }
4323  else if (!initializer_constant_valid_p (value, endtype))
4324    return error_mark_node;
4325  else
4326    return value;
4327}
4328
4329/* Perform appropriate conversions on the initial value of a variable,
4330   store it in the declaration DECL,
4331   and print any error messages that are appropriate.
4332   If the init is invalid, store an ERROR_MARK.  */
4333
4334void
4335store_init_value (tree decl, tree init)
4336{
4337  tree value, type;
4338
4339  /* If variable's type was invalidly declared, just ignore it.  */
4340
4341  type = TREE_TYPE (decl);
4342  if (TREE_CODE (type) == ERROR_MARK)
4343    return;
4344
4345  /* Digest the specified initializer into an expression.  */
4346
4347  value = digest_init (type, init, true, TREE_STATIC (decl));
4348
4349  /* Store the expression if valid; else report error.  */
4350
4351  if (!in_system_header
4352      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4353    warning (OPT_Wtraditional, "traditional C rejects automatic "
4354	     "aggregate initialization");
4355
4356  DECL_INITIAL (decl) = value;
4357
4358  /* ANSI wants warnings about out-of-range constant initializers.  */
4359  STRIP_TYPE_NOPS (value);
4360  constant_expression_warning (value);
4361
4362  /* Check if we need to set array size from compound literal size.  */
4363  if (TREE_CODE (type) == ARRAY_TYPE
4364      && TYPE_DOMAIN (type) == 0
4365      && value != error_mark_node)
4366    {
4367      tree inside_init = init;
4368
4369      STRIP_TYPE_NOPS (inside_init);
4370      inside_init = fold (inside_init);
4371
4372      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4373	{
4374	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4375
4376	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4377	    {
4378	      /* For int foo[] = (int [3]){1}; we need to set array size
4379		 now since later on array initializer will be just the
4380		 brace enclosed list of the compound literal.  */
4381	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4382	      TREE_TYPE (decl) = type;
4383	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4384	      layout_type (type);
4385	      layout_decl (cldecl, 0);
4386	    }
4387	}
4388    }
4389}
4390
4391/* Methods for storing and printing names for error messages.  */
4392
4393/* Implement a spelling stack that allows components of a name to be pushed
4394   and popped.  Each element on the stack is this structure.  */
4395
4396struct spelling
4397{
4398  int kind;
4399  union
4400    {
4401      unsigned HOST_WIDE_INT i;
4402      const char *s;
4403    } u;
4404};
4405
4406#define SPELLING_STRING 1
4407#define SPELLING_MEMBER 2
4408#define SPELLING_BOUNDS 3
4409
4410static struct spelling *spelling;	/* Next stack element (unused).  */
4411static struct spelling *spelling_base;	/* Spelling stack base.  */
4412static int spelling_size;		/* Size of the spelling stack.  */
4413
4414/* Macros to save and restore the spelling stack around push_... functions.
4415   Alternative to SAVE_SPELLING_STACK.  */
4416
4417#define SPELLING_DEPTH() (spelling - spelling_base)
4418#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4419
4420/* Push an element on the spelling stack with type KIND and assign VALUE
4421   to MEMBER.  */
4422
4423#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4424{									\
4425  int depth = SPELLING_DEPTH ();					\
4426									\
4427  if (depth >= spelling_size)						\
4428    {									\
4429      spelling_size += 10;						\
4430      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4431				  spelling_size);			\
4432      RESTORE_SPELLING_DEPTH (depth);					\
4433    }									\
4434									\
4435  spelling->kind = (KIND);						\
4436  spelling->MEMBER = (VALUE);						\
4437  spelling++;								\
4438}
4439
4440/* Push STRING on the stack.  Printed literally.  */
4441
4442static void
4443push_string (const char *string)
4444{
4445  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4446}
4447
4448/* Push a member name on the stack.  Printed as '.' STRING.  */
4449
4450static void
4451push_member_name (tree decl)
4452{
4453  const char *const string
4454    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4455  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4456}
4457
4458/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4459
4460static void
4461push_array_bounds (unsigned HOST_WIDE_INT bounds)
4462{
4463  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4464}
4465
4466/* Compute the maximum size in bytes of the printed spelling.  */
4467
4468static int
4469spelling_length (void)
4470{
4471  int size = 0;
4472  struct spelling *p;
4473
4474  for (p = spelling_base; p < spelling; p++)
4475    {
4476      if (p->kind == SPELLING_BOUNDS)
4477	size += 25;
4478      else
4479	size += strlen (p->u.s) + 1;
4480    }
4481
4482  return size;
4483}
4484
4485/* Print the spelling to BUFFER and return it.  */
4486
4487static char *
4488print_spelling (char *buffer)
4489{
4490  char *d = buffer;
4491  struct spelling *p;
4492
4493  for (p = spelling_base; p < spelling; p++)
4494    if (p->kind == SPELLING_BOUNDS)
4495      {
4496	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4497	d += strlen (d);
4498      }
4499    else
4500      {
4501	const char *s;
4502	if (p->kind == SPELLING_MEMBER)
4503	  *d++ = '.';
4504	for (s = p->u.s; (*d = *s++); d++)
4505	  ;
4506      }
4507  *d++ = '\0';
4508  return buffer;
4509}
4510
4511/* Issue an error message for a bad initializer component.
4512   MSGID identifies the message.
4513   The component name is taken from the spelling stack.  */
4514
4515void
4516error_init (const char *msgid)
4517{
4518  char *ofwhat;
4519
4520  error ("%s", _(msgid));
4521  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4522  if (*ofwhat)
4523    error ("(near initialization for %qs)", ofwhat);
4524}
4525
4526/* Issue a pedantic warning for a bad initializer component.
4527   MSGID identifies the message.
4528   The component name is taken from the spelling stack.  */
4529
4530void
4531pedwarn_init (const char *msgid)
4532{
4533  char *ofwhat;
4534
4535  pedwarn ("%s", _(msgid));
4536  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4537  if (*ofwhat)
4538    pedwarn ("(near initialization for %qs)", ofwhat);
4539}
4540
4541/* Issue a warning for a bad initializer component.
4542   MSGID identifies the message.
4543   The component name is taken from the spelling stack.  */
4544
4545static void
4546warning_init (const char *msgid)
4547{
4548  char *ofwhat;
4549
4550  warning (0, "%s", _(msgid));
4551  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4552  if (*ofwhat)
4553    warning (0, "(near initialization for %qs)", ofwhat);
4554}
4555
4556/* If TYPE is an array type and EXPR is a parenthesized string
4557   constant, warn if pedantic that EXPR is being used to initialize an
4558   object of type TYPE.  */
4559
4560void
4561maybe_warn_string_init (tree type, struct c_expr expr)
4562{
4563  if (pedantic
4564      && TREE_CODE (type) == ARRAY_TYPE
4565      && TREE_CODE (expr.value) == STRING_CST
4566      && expr.original_code != STRING_CST)
4567    pedwarn_init ("array initialized from parenthesized string constant");
4568}
4569
4570/* Digest the parser output INIT as an initializer for type TYPE.
4571   Return a C expression of type TYPE to represent the initial value.
4572
4573   If INIT is a string constant, STRICT_STRING is true if it is
4574   unparenthesized or we should not warn here for it being parenthesized.
4575   For other types of INIT, STRICT_STRING is not used.
4576
4577   REQUIRE_CONSTANT requests an error if non-constant initializers or
4578   elements are seen.  */
4579
4580static tree
4581digest_init (tree type, tree init, bool strict_string, int require_constant)
4582{
4583  enum tree_code code = TREE_CODE (type);
4584  tree inside_init = init;
4585
4586  if (type == error_mark_node
4587      || !init
4588      || init == error_mark_node
4589      || TREE_TYPE (init) == error_mark_node)
4590    return error_mark_node;
4591
4592  STRIP_TYPE_NOPS (inside_init);
4593
4594  inside_init = fold (inside_init);
4595
4596  /* Initialization of an array of chars from a string constant
4597     optionally enclosed in braces.  */
4598
4599  if (code == ARRAY_TYPE && inside_init
4600      && TREE_CODE (inside_init) == STRING_CST)
4601    {
4602      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4603      /* Note that an array could be both an array of character type
4604	 and an array of wchar_t if wchar_t is signed char or unsigned
4605	 char.  */
4606      bool char_array = (typ1 == char_type_node
4607			 || typ1 == signed_char_type_node
4608			 || typ1 == unsigned_char_type_node);
4609      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4610      if (char_array || wchar_array)
4611	{
4612	  struct c_expr expr;
4613	  bool char_string;
4614	  expr.value = inside_init;
4615	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4616	  maybe_warn_string_init (type, expr);
4617
4618	  char_string
4619	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4620	       == char_type_node);
4621
4622	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4623			 TYPE_MAIN_VARIANT (type)))
4624	    return inside_init;
4625
4626	  if (!wchar_array && !char_string)
4627	    {
4628	      error_init ("char-array initialized from wide string");
4629	      return error_mark_node;
4630	    }
4631	  if (char_string && !char_array)
4632	    {
4633	      error_init ("wchar_t-array initialized from non-wide string");
4634	      return error_mark_node;
4635	    }
4636
4637	  TREE_TYPE (inside_init) = type;
4638	  if (TYPE_DOMAIN (type) != 0
4639	      && TYPE_SIZE (type) != 0
4640	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4641	      /* Subtract 1 (or sizeof (wchar_t))
4642		 because it's ok to ignore the terminating null char
4643		 that is counted in the length of the constant.  */
4644	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4645				       TREE_STRING_LENGTH (inside_init)
4646				       - ((TYPE_PRECISION (typ1)
4647					   != TYPE_PRECISION (char_type_node))
4648					  ? (TYPE_PRECISION (wchar_type_node)
4649					     / BITS_PER_UNIT)
4650					  : 1)))
4651	    pedwarn_init ("initializer-string for array of chars is too long");
4652
4653	  return inside_init;
4654	}
4655      else if (INTEGRAL_TYPE_P (typ1))
4656	{
4657	  error_init ("array of inappropriate type initialized "
4658		      "from string constant");
4659	  return error_mark_node;
4660	}
4661    }
4662
4663  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4664     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4665     below and handle as a constructor.  */
4666  if (code == VECTOR_TYPE
4667      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4668      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4669      && TREE_CONSTANT (inside_init))
4670    {
4671      if (TREE_CODE (inside_init) == VECTOR_CST
4672	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4673			TYPE_MAIN_VARIANT (type)))
4674	return inside_init;
4675
4676      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4677	{
4678	  unsigned HOST_WIDE_INT ix;
4679	  tree value;
4680	  bool constant_p = true;
4681
4682	  /* Iterate through elements and check if all constructor
4683	     elements are *_CSTs.  */
4684	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4685	    if (!CONSTANT_CLASS_P (value))
4686	      {
4687		constant_p = false;
4688		break;
4689	      }
4690
4691	  if (constant_p)
4692	    return build_vector_from_ctor (type,
4693					   CONSTRUCTOR_ELTS (inside_init));
4694	}
4695    }
4696
4697  /* Any type can be initialized
4698     from an expression of the same type, optionally with braces.  */
4699
4700  if (inside_init && TREE_TYPE (inside_init) != 0
4701      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4702		     TYPE_MAIN_VARIANT (type))
4703	  || (code == ARRAY_TYPE
4704	      && comptypes (TREE_TYPE (inside_init), type))
4705	  || (code == VECTOR_TYPE
4706	      && comptypes (TREE_TYPE (inside_init), type))
4707	  || (code == POINTER_TYPE
4708	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4709	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4710			    TREE_TYPE (type)))))
4711    {
4712      if (code == POINTER_TYPE)
4713	{
4714	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4715	    {
4716	      if (TREE_CODE (inside_init) == STRING_CST
4717		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4718		inside_init = array_to_pointer_conversion (inside_init);
4719	      else
4720		{
4721		  error_init ("invalid use of non-lvalue array");
4722		  return error_mark_node;
4723		}
4724	    }
4725	}
4726
4727      if (code == VECTOR_TYPE)
4728	/* Although the types are compatible, we may require a
4729	   conversion.  */
4730	inside_init = convert (type, inside_init);
4731
4732      if (require_constant
4733	  && (code == VECTOR_TYPE || !flag_isoc99)
4734	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4735	{
4736	  /* As an extension, allow initializing objects with static storage
4737	     duration with compound literals (which are then treated just as
4738	     the brace enclosed list they contain).  Also allow this for
4739	     vectors, as we can only assign them with compound literals.  */
4740	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4741	  inside_init = DECL_INITIAL (decl);
4742	}
4743
4744      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4745	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4746	{
4747	  error_init ("array initialized from non-constant array expression");
4748	  return error_mark_node;
4749	}
4750
4751      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4752	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4753
4754      /* Compound expressions can only occur here if -pedantic or
4755	 -pedantic-errors is specified.  In the later case, we always want
4756	 an error.  In the former case, we simply want a warning.  */
4757      if (require_constant && pedantic
4758	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4759	{
4760	  inside_init
4761	    = valid_compound_expr_initializer (inside_init,
4762					       TREE_TYPE (inside_init));
4763	  if (inside_init == error_mark_node)
4764	    error_init ("initializer element is not constant");
4765	  else
4766	    pedwarn_init ("initializer element is not constant");
4767	  if (flag_pedantic_errors)
4768	    inside_init = error_mark_node;
4769	}
4770      else if (require_constant
4771	       && !initializer_constant_valid_p (inside_init,
4772						 TREE_TYPE (inside_init)))
4773	{
4774	  error_init ("initializer element is not constant");
4775	  inside_init = error_mark_node;
4776	}
4777
4778      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4779      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4780	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4781					      NULL_TREE, 0);
4782      return inside_init;
4783    }
4784
4785  /* Handle scalar types, including conversions.  */
4786
4787  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4788      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4789      || code == VECTOR_TYPE)
4790    {
4791      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4792	  && (TREE_CODE (init) == STRING_CST
4793	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4794	init = array_to_pointer_conversion (init);
4795      inside_init
4796	= convert_for_assignment (type, init, ic_init,
4797				  NULL_TREE, NULL_TREE, 0);
4798
4799      /* Check to see if we have already given an error message.  */
4800      if (inside_init == error_mark_node)
4801	;
4802      else if (require_constant && !TREE_CONSTANT (inside_init))
4803	{
4804	  error_init ("initializer element is not constant");
4805	  inside_init = error_mark_node;
4806	}
4807      else if (require_constant
4808	       && !initializer_constant_valid_p (inside_init,
4809						 TREE_TYPE (inside_init)))
4810	{
4811	  error_init ("initializer element is not computable at load time");
4812	  inside_init = error_mark_node;
4813	}
4814
4815      return inside_init;
4816    }
4817
4818  /* Come here only for records and arrays.  */
4819
4820  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4821    {
4822      error_init ("variable-sized object may not be initialized");
4823      return error_mark_node;
4824    }
4825
4826  error_init ("invalid initializer");
4827  return error_mark_node;
4828}
4829
4830/* Handle initializers that use braces.  */
4831
4832/* Type of object we are accumulating a constructor for.
4833   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4834static tree constructor_type;
4835
4836/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4837   left to fill.  */
4838static tree constructor_fields;
4839
4840/* For an ARRAY_TYPE, this is the specified index
4841   at which to store the next element we get.  */
4842static tree constructor_index;
4843
4844/* For an ARRAY_TYPE, this is the maximum index.  */
4845static tree constructor_max_index;
4846
4847/* For a RECORD_TYPE, this is the first field not yet written out.  */
4848static tree constructor_unfilled_fields;
4849
4850/* For an ARRAY_TYPE, this is the index of the first element
4851   not yet written out.  */
4852static tree constructor_unfilled_index;
4853
4854/* In a RECORD_TYPE, the byte index of the next consecutive field.
4855   This is so we can generate gaps between fields, when appropriate.  */
4856static tree constructor_bit_index;
4857
4858/* If we are saving up the elements rather than allocating them,
4859   this is the list of elements so far (in reverse order,
4860   most recent first).  */
4861static VEC(constructor_elt,gc) *constructor_elements;
4862
4863/* 1 if constructor should be incrementally stored into a constructor chain,
4864   0 if all the elements should be kept in AVL tree.  */
4865static int constructor_incremental;
4866
4867/* 1 if so far this constructor's elements are all compile-time constants.  */
4868static int constructor_constant;
4869
4870/* 1 if so far this constructor's elements are all valid address constants.  */
4871static int constructor_simple;
4872
4873/* 1 if this constructor is erroneous so far.  */
4874static int constructor_erroneous;
4875
4876/* Structure for managing pending initializer elements, organized as an
4877   AVL tree.  */
4878
4879struct init_node
4880{
4881  struct init_node *left, *right;
4882  struct init_node *parent;
4883  int balance;
4884  tree purpose;
4885  tree value;
4886};
4887
4888/* Tree of pending elements at this constructor level.
4889   These are elements encountered out of order
4890   which belong at places we haven't reached yet in actually
4891   writing the output.
4892   Will never hold tree nodes across GC runs.  */
4893static struct init_node *constructor_pending_elts;
4894
4895/* The SPELLING_DEPTH of this constructor.  */
4896static int constructor_depth;
4897
4898/* DECL node for which an initializer is being read.
4899   0 means we are reading a constructor expression
4900   such as (struct foo) {...}.  */
4901static tree constructor_decl;
4902
4903/* Nonzero if this is an initializer for a top-level decl.  */
4904static int constructor_top_level;
4905
4906/* Nonzero if there were any member designators in this initializer.  */
4907static int constructor_designated;
4908
4909/* Nesting depth of designator list.  */
4910static int designator_depth;
4911
4912/* Nonzero if there were diagnosed errors in this designator list.  */
4913static int designator_erroneous;
4914
4915
4916/* This stack has a level for each implicit or explicit level of
4917   structuring in the initializer, including the outermost one.  It
4918   saves the values of most of the variables above.  */
4919
4920struct constructor_range_stack;
4921
4922struct constructor_stack
4923{
4924  struct constructor_stack *next;
4925  tree type;
4926  tree fields;
4927  tree index;
4928  tree max_index;
4929  tree unfilled_index;
4930  tree unfilled_fields;
4931  tree bit_index;
4932  VEC(constructor_elt,gc) *elements;
4933  struct init_node *pending_elts;
4934  int offset;
4935  int depth;
4936  /* If value nonzero, this value should replace the entire
4937     constructor at this level.  */
4938  struct c_expr replacement_value;
4939  struct constructor_range_stack *range_stack;
4940  char constant;
4941  char simple;
4942  char implicit;
4943  char erroneous;
4944  char outer;
4945  char incremental;
4946  char designated;
4947};
4948
4949static struct constructor_stack *constructor_stack;
4950
4951/* This stack represents designators from some range designator up to
4952   the last designator in the list.  */
4953
4954struct constructor_range_stack
4955{
4956  struct constructor_range_stack *next, *prev;
4957  struct constructor_stack *stack;
4958  tree range_start;
4959  tree index;
4960  tree range_end;
4961  tree fields;
4962};
4963
4964static struct constructor_range_stack *constructor_range_stack;
4965
4966/* This stack records separate initializers that are nested.
4967   Nested initializers can't happen in ANSI C, but GNU C allows them
4968   in cases like { ... (struct foo) { ... } ... }.  */
4969
4970struct initializer_stack
4971{
4972  struct initializer_stack *next;
4973  tree decl;
4974  struct constructor_stack *constructor_stack;
4975  struct constructor_range_stack *constructor_range_stack;
4976  VEC(constructor_elt,gc) *elements;
4977  struct spelling *spelling;
4978  struct spelling *spelling_base;
4979  int spelling_size;
4980  char top_level;
4981  char require_constant_value;
4982  char require_constant_elements;
4983};
4984
4985static struct initializer_stack *initializer_stack;
4986
4987/* Prepare to parse and output the initializer for variable DECL.  */
4988
4989void
4990start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4991{
4992  const char *locus;
4993  struct initializer_stack *p = XNEW (struct initializer_stack);
4994
4995  p->decl = constructor_decl;
4996  p->require_constant_value = require_constant_value;
4997  p->require_constant_elements = require_constant_elements;
4998  p->constructor_stack = constructor_stack;
4999  p->constructor_range_stack = constructor_range_stack;
5000  p->elements = constructor_elements;
5001  p->spelling = spelling;
5002  p->spelling_base = spelling_base;
5003  p->spelling_size = spelling_size;
5004  p->top_level = constructor_top_level;
5005  p->next = initializer_stack;
5006  initializer_stack = p;
5007
5008  constructor_decl = decl;
5009  constructor_designated = 0;
5010  constructor_top_level = top_level;
5011
5012  if (decl != 0 && decl != error_mark_node)
5013    {
5014      require_constant_value = TREE_STATIC (decl);
5015      require_constant_elements
5016	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5017	   /* For a scalar, you can always use any value to initialize,
5018	      even within braces.  */
5019	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5020	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5021	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5022	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5023      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5024    }
5025  else
5026    {
5027      require_constant_value = 0;
5028      require_constant_elements = 0;
5029      locus = "(anonymous)";
5030    }
5031
5032  constructor_stack = 0;
5033  constructor_range_stack = 0;
5034
5035  missing_braces_mentioned = 0;
5036
5037  spelling_base = 0;
5038  spelling_size = 0;
5039  RESTORE_SPELLING_DEPTH (0);
5040
5041  if (locus)
5042    push_string (locus);
5043}
5044
5045void
5046finish_init (void)
5047{
5048  struct initializer_stack *p = initializer_stack;
5049
5050  /* Free the whole constructor stack of this initializer.  */
5051  while (constructor_stack)
5052    {
5053      struct constructor_stack *q = constructor_stack;
5054      constructor_stack = q->next;
5055      free (q);
5056    }
5057
5058  gcc_assert (!constructor_range_stack);
5059
5060  /* Pop back to the data of the outer initializer (if any).  */
5061  free (spelling_base);
5062
5063  constructor_decl = p->decl;
5064  require_constant_value = p->require_constant_value;
5065  require_constant_elements = p->require_constant_elements;
5066  constructor_stack = p->constructor_stack;
5067  constructor_range_stack = p->constructor_range_stack;
5068  constructor_elements = p->elements;
5069  spelling = p->spelling;
5070  spelling_base = p->spelling_base;
5071  spelling_size = p->spelling_size;
5072  constructor_top_level = p->top_level;
5073  initializer_stack = p->next;
5074  free (p);
5075}
5076
5077/* Call here when we see the initializer is surrounded by braces.
5078   This is instead of a call to push_init_level;
5079   it is matched by a call to pop_init_level.
5080
5081   TYPE is the type to initialize, for a constructor expression.
5082   For an initializer for a decl, TYPE is zero.  */
5083
5084void
5085really_start_incremental_init (tree type)
5086{
5087  struct constructor_stack *p = XNEW (struct constructor_stack);
5088
5089  if (type == 0)
5090    type = TREE_TYPE (constructor_decl);
5091
5092  if (targetm.vector_opaque_p (type))
5093    error ("opaque vector types cannot be initialized");
5094
5095  p->type = constructor_type;
5096  p->fields = constructor_fields;
5097  p->index = constructor_index;
5098  p->max_index = constructor_max_index;
5099  p->unfilled_index = constructor_unfilled_index;
5100  p->unfilled_fields = constructor_unfilled_fields;
5101  p->bit_index = constructor_bit_index;
5102  p->elements = constructor_elements;
5103  p->constant = constructor_constant;
5104  p->simple = constructor_simple;
5105  p->erroneous = constructor_erroneous;
5106  p->pending_elts = constructor_pending_elts;
5107  p->depth = constructor_depth;
5108  p->replacement_value.value = 0;
5109  p->replacement_value.original_code = ERROR_MARK;
5110  p->implicit = 0;
5111  p->range_stack = 0;
5112  p->outer = 0;
5113  p->incremental = constructor_incremental;
5114  p->designated = constructor_designated;
5115  p->next = 0;
5116  constructor_stack = p;
5117
5118  constructor_constant = 1;
5119  constructor_simple = 1;
5120  constructor_depth = SPELLING_DEPTH ();
5121  constructor_elements = 0;
5122  constructor_pending_elts = 0;
5123  constructor_type = type;
5124  constructor_incremental = 1;
5125  constructor_designated = 0;
5126  designator_depth = 0;
5127  designator_erroneous = 0;
5128
5129  if (TREE_CODE (constructor_type) == RECORD_TYPE
5130      || TREE_CODE (constructor_type) == UNION_TYPE)
5131    {
5132      constructor_fields = TYPE_FIELDS (constructor_type);
5133      /* Skip any nameless bit fields at the beginning.  */
5134      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5135	     && DECL_NAME (constructor_fields) == 0)
5136	constructor_fields = TREE_CHAIN (constructor_fields);
5137
5138      constructor_unfilled_fields = constructor_fields;
5139      constructor_bit_index = bitsize_zero_node;
5140    }
5141  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5142    {
5143      if (TYPE_DOMAIN (constructor_type))
5144	{
5145	  constructor_max_index
5146	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5147
5148	  /* Detect non-empty initializations of zero-length arrays.  */
5149	  if (constructor_max_index == NULL_TREE
5150	      && TYPE_SIZE (constructor_type))
5151	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5152
5153	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5154	     to initialize VLAs will cause a proper error; avoid tree
5155	     checking errors as well by setting a safe value.  */
5156	  if (constructor_max_index
5157	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5158	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5159
5160	  constructor_index
5161	    = convert (bitsizetype,
5162		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5163	}
5164      else
5165	{
5166	  constructor_index = bitsize_zero_node;
5167	  constructor_max_index = NULL_TREE;
5168	}
5169
5170      constructor_unfilled_index = constructor_index;
5171    }
5172  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5173    {
5174      /* Vectors are like simple fixed-size arrays.  */
5175      constructor_max_index =
5176	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5177      constructor_index = bitsize_zero_node;
5178      constructor_unfilled_index = constructor_index;
5179    }
5180  else
5181    {
5182      /* Handle the case of int x = {5}; */
5183      constructor_fields = constructor_type;
5184      constructor_unfilled_fields = constructor_type;
5185    }
5186}
5187
5188/* Push down into a subobject, for initialization.
5189   If this is for an explicit set of braces, IMPLICIT is 0.
5190   If it is because the next element belongs at a lower level,
5191   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5192
5193void
5194push_init_level (int implicit)
5195{
5196  struct constructor_stack *p;
5197  tree value = NULL_TREE;
5198
5199  /* If we've exhausted any levels that didn't have braces,
5200     pop them now.  If implicit == 1, this will have been done in
5201     process_init_element; do not repeat it here because in the case
5202     of excess initializers for an empty aggregate this leads to an
5203     infinite cycle of popping a level and immediately recreating
5204     it.  */
5205  if (implicit != 1)
5206    {
5207      while (constructor_stack->implicit)
5208	{
5209	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5210	       || TREE_CODE (constructor_type) == UNION_TYPE)
5211	      && constructor_fields == 0)
5212	    process_init_element (pop_init_level (1));
5213	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5214		   && constructor_max_index
5215		   && tree_int_cst_lt (constructor_max_index,
5216				       constructor_index))
5217	    process_init_element (pop_init_level (1));
5218	  else
5219	    break;
5220	}
5221    }
5222
5223  /* Unless this is an explicit brace, we need to preserve previous
5224     content if any.  */
5225  if (implicit)
5226    {
5227      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5228	   || TREE_CODE (constructor_type) == UNION_TYPE)
5229	  && constructor_fields)
5230	value = find_init_member (constructor_fields);
5231      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5232	value = find_init_member (constructor_index);
5233    }
5234
5235  p = XNEW (struct constructor_stack);
5236  p->type = constructor_type;
5237  p->fields = constructor_fields;
5238  p->index = constructor_index;
5239  p->max_index = constructor_max_index;
5240  p->unfilled_index = constructor_unfilled_index;
5241  p->unfilled_fields = constructor_unfilled_fields;
5242  p->bit_index = constructor_bit_index;
5243  p->elements = constructor_elements;
5244  p->constant = constructor_constant;
5245  p->simple = constructor_simple;
5246  p->erroneous = constructor_erroneous;
5247  p->pending_elts = constructor_pending_elts;
5248  p->depth = constructor_depth;
5249  p->replacement_value.value = 0;
5250  p->replacement_value.original_code = ERROR_MARK;
5251  p->implicit = implicit;
5252  p->outer = 0;
5253  p->incremental = constructor_incremental;
5254  p->designated = constructor_designated;
5255  p->next = constructor_stack;
5256  p->range_stack = 0;
5257  constructor_stack = p;
5258
5259  constructor_constant = 1;
5260  constructor_simple = 1;
5261  constructor_depth = SPELLING_DEPTH ();
5262  constructor_elements = 0;
5263  constructor_incremental = 1;
5264  constructor_designated = 0;
5265  constructor_pending_elts = 0;
5266  if (!implicit)
5267    {
5268      p->range_stack = constructor_range_stack;
5269      constructor_range_stack = 0;
5270      designator_depth = 0;
5271      designator_erroneous = 0;
5272    }
5273
5274  /* Don't die if an entire brace-pair level is superfluous
5275     in the containing level.  */
5276  if (constructor_type == 0)
5277    ;
5278  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5279	   || TREE_CODE (constructor_type) == UNION_TYPE)
5280    {
5281      /* Don't die if there are extra init elts at the end.  */
5282      if (constructor_fields == 0)
5283	constructor_type = 0;
5284      else
5285	{
5286	  constructor_type = TREE_TYPE (constructor_fields);
5287	  push_member_name (constructor_fields);
5288	  constructor_depth++;
5289	}
5290    }
5291  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5292    {
5293      constructor_type = TREE_TYPE (constructor_type);
5294      push_array_bounds (tree_low_cst (constructor_index, 1));
5295      constructor_depth++;
5296    }
5297
5298  if (constructor_type == 0)
5299    {
5300      error_init ("extra brace group at end of initializer");
5301      constructor_fields = 0;
5302      constructor_unfilled_fields = 0;
5303      return;
5304    }
5305
5306  if (value && TREE_CODE (value) == CONSTRUCTOR)
5307    {
5308      constructor_constant = TREE_CONSTANT (value);
5309      constructor_simple = TREE_STATIC (value);
5310      constructor_elements = CONSTRUCTOR_ELTS (value);
5311      if (!VEC_empty (constructor_elt, constructor_elements)
5312	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5313	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5314	set_nonincremental_init ();
5315    }
5316
5317  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5318    {
5319      missing_braces_mentioned = 1;
5320      warning_init ("missing braces around initializer");
5321    }
5322
5323  if (TREE_CODE (constructor_type) == RECORD_TYPE
5324	   || TREE_CODE (constructor_type) == UNION_TYPE)
5325    {
5326      constructor_fields = TYPE_FIELDS (constructor_type);
5327      /* Skip any nameless bit fields at the beginning.  */
5328      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5329	     && DECL_NAME (constructor_fields) == 0)
5330	constructor_fields = TREE_CHAIN (constructor_fields);
5331
5332      constructor_unfilled_fields = constructor_fields;
5333      constructor_bit_index = bitsize_zero_node;
5334    }
5335  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5336    {
5337      /* Vectors are like simple fixed-size arrays.  */
5338      constructor_max_index =
5339	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5340      constructor_index = convert (bitsizetype, integer_zero_node);
5341      constructor_unfilled_index = constructor_index;
5342    }
5343  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5344    {
5345      if (TYPE_DOMAIN (constructor_type))
5346	{
5347	  constructor_max_index
5348	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5349
5350	  /* Detect non-empty initializations of zero-length arrays.  */
5351	  if (constructor_max_index == NULL_TREE
5352	      && TYPE_SIZE (constructor_type))
5353	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5354
5355	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5356	     to initialize VLAs will cause a proper error; avoid tree
5357	     checking errors as well by setting a safe value.  */
5358	  if (constructor_max_index
5359	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5360	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5361
5362	  constructor_index
5363	    = convert (bitsizetype,
5364		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5365	}
5366      else
5367	constructor_index = bitsize_zero_node;
5368
5369      constructor_unfilled_index = constructor_index;
5370      if (value && TREE_CODE (value) == STRING_CST)
5371	{
5372	  /* We need to split the char/wchar array into individual
5373	     characters, so that we don't have to special case it
5374	     everywhere.  */
5375	  set_nonincremental_init_from_string (value);
5376	}
5377    }
5378  else
5379    {
5380      if (constructor_type != error_mark_node)
5381	warning_init ("braces around scalar initializer");
5382      constructor_fields = constructor_type;
5383      constructor_unfilled_fields = constructor_type;
5384    }
5385}
5386
5387/* At the end of an implicit or explicit brace level,
5388   finish up that level of constructor.  If a single expression
5389   with redundant braces initialized that level, return the
5390   c_expr structure for that expression.  Otherwise, the original_code
5391   element is set to ERROR_MARK.
5392   If we were outputting the elements as they are read, return 0 as the value
5393   from inner levels (process_init_element ignores that),
5394   but return error_mark_node as the value from the outermost level
5395   (that's what we want to put in DECL_INITIAL).
5396   Otherwise, return a CONSTRUCTOR expression as the value.  */
5397
5398struct c_expr
5399pop_init_level (int implicit)
5400{
5401  struct constructor_stack *p;
5402  struct c_expr ret;
5403  ret.value = 0;
5404  ret.original_code = ERROR_MARK;
5405
5406  if (implicit == 0)
5407    {
5408      /* When we come to an explicit close brace,
5409	 pop any inner levels that didn't have explicit braces.  */
5410      while (constructor_stack->implicit)
5411	process_init_element (pop_init_level (1));
5412
5413      gcc_assert (!constructor_range_stack);
5414    }
5415
5416  /* Now output all pending elements.  */
5417  constructor_incremental = 1;
5418  output_pending_init_elements (1);
5419
5420  p = constructor_stack;
5421
5422  /* Error for initializing a flexible array member, or a zero-length
5423     array member in an inappropriate context.  */
5424  if (constructor_type && constructor_fields
5425      && TREE_CODE (constructor_type) == ARRAY_TYPE
5426      && TYPE_DOMAIN (constructor_type)
5427      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5428    {
5429      /* Silently discard empty initializations.  The parser will
5430	 already have pedwarned for empty brackets.  */
5431      if (integer_zerop (constructor_unfilled_index))
5432	constructor_type = NULL_TREE;
5433      else
5434	{
5435	  gcc_assert (!TYPE_SIZE (constructor_type));
5436
5437	  if (constructor_depth > 2)
5438	    error_init ("initialization of flexible array member in a nested context");
5439	  else if (pedantic)
5440	    pedwarn_init ("initialization of a flexible array member");
5441
5442	  /* We have already issued an error message for the existence
5443	     of a flexible array member not at the end of the structure.
5444	     Discard the initializer so that we do not die later.  */
5445	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5446	    constructor_type = NULL_TREE;
5447	}
5448    }
5449
5450  /* Warn when some struct elements are implicitly initialized to zero.  */
5451  if (warn_missing_field_initializers
5452      && constructor_type
5453      && TREE_CODE (constructor_type) == RECORD_TYPE
5454      && constructor_unfilled_fields)
5455    {
5456	/* Do not warn for flexible array members or zero-length arrays.  */
5457	while (constructor_unfilled_fields
5458	       && (!DECL_SIZE (constructor_unfilled_fields)
5459		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5460	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5461
5462	/* Do not warn if this level of the initializer uses member
5463	   designators; it is likely to be deliberate.  */
5464	if (constructor_unfilled_fields && !constructor_designated)
5465	  {
5466	    push_member_name (constructor_unfilled_fields);
5467	    warning_init ("missing initializer");
5468	    RESTORE_SPELLING_DEPTH (constructor_depth);
5469	  }
5470    }
5471
5472  /* Pad out the end of the structure.  */
5473  if (p->replacement_value.value)
5474    /* If this closes a superfluous brace pair,
5475       just pass out the element between them.  */
5476    ret = p->replacement_value;
5477  else if (constructor_type == 0)
5478    ;
5479  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5480	   && TREE_CODE (constructor_type) != UNION_TYPE
5481	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5482	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5483    {
5484      /* A nonincremental scalar initializer--just return
5485	 the element, after verifying there is just one.  */
5486      if (VEC_empty (constructor_elt,constructor_elements))
5487	{
5488	  if (!constructor_erroneous)
5489	    error_init ("empty scalar initializer");
5490	  ret.value = error_mark_node;
5491	}
5492      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5493	{
5494	  error_init ("extra elements in scalar initializer");
5495	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5496	}
5497      else
5498	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5499    }
5500  else
5501    {
5502      if (constructor_erroneous)
5503	ret.value = error_mark_node;
5504      else
5505	{
5506	  ret.value = build_constructor (constructor_type,
5507					 constructor_elements);
5508	  if (constructor_constant)
5509	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5510	  if (constructor_constant && constructor_simple)
5511	    TREE_STATIC (ret.value) = 1;
5512	}
5513    }
5514
5515  constructor_type = p->type;
5516  constructor_fields = p->fields;
5517  constructor_index = p->index;
5518  constructor_max_index = p->max_index;
5519  constructor_unfilled_index = p->unfilled_index;
5520  constructor_unfilled_fields = p->unfilled_fields;
5521  constructor_bit_index = p->bit_index;
5522  constructor_elements = p->elements;
5523  constructor_constant = p->constant;
5524  constructor_simple = p->simple;
5525  constructor_erroneous = p->erroneous;
5526  constructor_incremental = p->incremental;
5527  constructor_designated = p->designated;
5528  constructor_pending_elts = p->pending_elts;
5529  constructor_depth = p->depth;
5530  if (!p->implicit)
5531    constructor_range_stack = p->range_stack;
5532  RESTORE_SPELLING_DEPTH (constructor_depth);
5533
5534  constructor_stack = p->next;
5535  free (p);
5536
5537  if (ret.value == 0 && constructor_stack == 0)
5538    ret.value = error_mark_node;
5539  return ret;
5540}
5541
5542/* Common handling for both array range and field name designators.
5543   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5544
5545static int
5546set_designator (int array)
5547{
5548  tree subtype;
5549  enum tree_code subcode;
5550
5551  /* Don't die if an entire brace-pair level is superfluous
5552     in the containing level.  */
5553  if (constructor_type == 0)
5554    return 1;
5555
5556  /* If there were errors in this designator list already, bail out
5557     silently.  */
5558  if (designator_erroneous)
5559    return 1;
5560
5561  if (!designator_depth)
5562    {
5563      gcc_assert (!constructor_range_stack);
5564
5565      /* Designator list starts at the level of closest explicit
5566	 braces.  */
5567      while (constructor_stack->implicit)
5568	process_init_element (pop_init_level (1));
5569      constructor_designated = 1;
5570      return 0;
5571    }
5572
5573  switch (TREE_CODE (constructor_type))
5574    {
5575    case  RECORD_TYPE:
5576    case  UNION_TYPE:
5577      subtype = TREE_TYPE (constructor_fields);
5578      if (subtype != error_mark_node)
5579	subtype = TYPE_MAIN_VARIANT (subtype);
5580      break;
5581    case ARRAY_TYPE:
5582      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5583      break;
5584    default:
5585      gcc_unreachable ();
5586    }
5587
5588  subcode = TREE_CODE (subtype);
5589  if (array && subcode != ARRAY_TYPE)
5590    {
5591      error_init ("array index in non-array initializer");
5592      return 1;
5593    }
5594  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5595    {
5596      error_init ("field name not in record or union initializer");
5597      return 1;
5598    }
5599
5600  constructor_designated = 1;
5601  push_init_level (2);
5602  return 0;
5603}
5604
5605/* If there are range designators in designator list, push a new designator
5606   to constructor_range_stack.  RANGE_END is end of such stack range or
5607   NULL_TREE if there is no range designator at this level.  */
5608
5609static void
5610push_range_stack (tree range_end)
5611{
5612  struct constructor_range_stack *p;
5613
5614  p = GGC_NEW (struct constructor_range_stack);
5615  p->prev = constructor_range_stack;
5616  p->next = 0;
5617  p->fields = constructor_fields;
5618  p->range_start = constructor_index;
5619  p->index = constructor_index;
5620  p->stack = constructor_stack;
5621  p->range_end = range_end;
5622  if (constructor_range_stack)
5623    constructor_range_stack->next = p;
5624  constructor_range_stack = p;
5625}
5626
5627/* Within an array initializer, specify the next index to be initialized.
5628   FIRST is that index.  If LAST is nonzero, then initialize a range
5629   of indices, running from FIRST through LAST.  */
5630
5631void
5632set_init_index (tree first, tree last)
5633{
5634  if (set_designator (1))
5635    return;
5636
5637  designator_erroneous = 1;
5638
5639  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5640      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5641    {
5642      error_init ("array index in initializer not of integer type");
5643      return;
5644    }
5645
5646  if (TREE_CODE (first) != INTEGER_CST)
5647    error_init ("nonconstant array index in initializer");
5648  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5649    error_init ("nonconstant array index in initializer");
5650  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5651    error_init ("array index in non-array initializer");
5652  else if (tree_int_cst_sgn (first) == -1)
5653    error_init ("array index in initializer exceeds array bounds");
5654  else if (constructor_max_index
5655	   && tree_int_cst_lt (constructor_max_index, first))
5656    error_init ("array index in initializer exceeds array bounds");
5657  else
5658    {
5659      constructor_index = convert (bitsizetype, first);
5660
5661      if (last)
5662	{
5663	  if (tree_int_cst_equal (first, last))
5664	    last = 0;
5665	  else if (tree_int_cst_lt (last, first))
5666	    {
5667	      error_init ("empty index range in initializer");
5668	      last = 0;
5669	    }
5670	  else
5671	    {
5672	      last = convert (bitsizetype, last);
5673	      if (constructor_max_index != 0
5674		  && tree_int_cst_lt (constructor_max_index, last))
5675		{
5676		  error_init ("array index range in initializer exceeds array bounds");
5677		  last = 0;
5678		}
5679	    }
5680	}
5681
5682      designator_depth++;
5683      designator_erroneous = 0;
5684      if (constructor_range_stack || last)
5685	push_range_stack (last);
5686    }
5687}
5688
5689/* Within a struct initializer, specify the next field to be initialized.  */
5690
5691void
5692set_init_label (tree fieldname)
5693{
5694  tree tail;
5695
5696  if (set_designator (0))
5697    return;
5698
5699  designator_erroneous = 1;
5700
5701  if (TREE_CODE (constructor_type) != RECORD_TYPE
5702      && TREE_CODE (constructor_type) != UNION_TYPE)
5703    {
5704      error_init ("field name not in record or union initializer");
5705      return;
5706    }
5707
5708  for (tail = TYPE_FIELDS (constructor_type); tail;
5709       tail = TREE_CHAIN (tail))
5710    {
5711      if (DECL_NAME (tail) == fieldname)
5712	break;
5713    }
5714
5715  if (tail == 0)
5716    error ("unknown field %qE specified in initializer", fieldname);
5717  else
5718    {
5719      constructor_fields = tail;
5720      designator_depth++;
5721      designator_erroneous = 0;
5722      if (constructor_range_stack)
5723	push_range_stack (NULL_TREE);
5724    }
5725}
5726
5727/* Add a new initializer to the tree of pending initializers.  PURPOSE
5728   identifies the initializer, either array index or field in a structure.
5729   VALUE is the value of that index or field.  */
5730
5731static void
5732add_pending_init (tree purpose, tree value)
5733{
5734  struct init_node *p, **q, *r;
5735
5736  q = &constructor_pending_elts;
5737  p = 0;
5738
5739  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5740    {
5741      while (*q != 0)
5742	{
5743	  p = *q;
5744	  if (tree_int_cst_lt (purpose, p->purpose))
5745	    q = &p->left;
5746	  else if (tree_int_cst_lt (p->purpose, purpose))
5747	    q = &p->right;
5748	  else
5749	    {
5750	      if (TREE_SIDE_EFFECTS (p->value))
5751		warning_init ("initialized field with side-effects overwritten");
5752	      else if (warn_override_init)
5753		warning_init ("initialized field overwritten");
5754	      p->value = value;
5755	      return;
5756	    }
5757	}
5758    }
5759  else
5760    {
5761      tree bitpos;
5762
5763      bitpos = bit_position (purpose);
5764      while (*q != NULL)
5765	{
5766	  p = *q;
5767	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5768	    q = &p->left;
5769	  else if (p->purpose != purpose)
5770	    q = &p->right;
5771	  else
5772	    {
5773	      if (TREE_SIDE_EFFECTS (p->value))
5774		warning_init ("initialized field with side-effects overwritten");
5775	      else if (warn_override_init)
5776		warning_init ("initialized field overwritten");
5777	      p->value = value;
5778	      return;
5779	    }
5780	}
5781    }
5782
5783  r = GGC_NEW (struct init_node);
5784  r->purpose = purpose;
5785  r->value = value;
5786
5787  *q = r;
5788  r->parent = p;
5789  r->left = 0;
5790  r->right = 0;
5791  r->balance = 0;
5792
5793  while (p)
5794    {
5795      struct init_node *s;
5796
5797      if (r == p->left)
5798	{
5799	  if (p->balance == 0)
5800	    p->balance = -1;
5801	  else if (p->balance < 0)
5802	    {
5803	      if (r->balance < 0)
5804		{
5805		  /* L rotation.  */
5806		  p->left = r->right;
5807		  if (p->left)
5808		    p->left->parent = p;
5809		  r->right = p;
5810
5811		  p->balance = 0;
5812		  r->balance = 0;
5813
5814		  s = p->parent;
5815		  p->parent = r;
5816		  r->parent = s;
5817		  if (s)
5818		    {
5819		      if (s->left == p)
5820			s->left = r;
5821		      else
5822			s->right = r;
5823		    }
5824		  else
5825		    constructor_pending_elts = r;
5826		}
5827	      else
5828		{
5829		  /* LR rotation.  */
5830		  struct init_node *t = r->right;
5831
5832		  r->right = t->left;
5833		  if (r->right)
5834		    r->right->parent = r;
5835		  t->left = r;
5836
5837		  p->left = t->right;
5838		  if (p->left)
5839		    p->left->parent = p;
5840		  t->right = p;
5841
5842		  p->balance = t->balance < 0;
5843		  r->balance = -(t->balance > 0);
5844		  t->balance = 0;
5845
5846		  s = p->parent;
5847		  p->parent = t;
5848		  r->parent = t;
5849		  t->parent = s;
5850		  if (s)
5851		    {
5852		      if (s->left == p)
5853			s->left = t;
5854		      else
5855			s->right = t;
5856		    }
5857		  else
5858		    constructor_pending_elts = t;
5859		}
5860	      break;
5861	    }
5862	  else
5863	    {
5864	      /* p->balance == +1; growth of left side balances the node.  */
5865	      p->balance = 0;
5866	      break;
5867	    }
5868	}
5869      else /* r == p->right */
5870	{
5871	  if (p->balance == 0)
5872	    /* Growth propagation from right side.  */
5873	    p->balance++;
5874	  else if (p->balance > 0)
5875	    {
5876	      if (r->balance > 0)
5877		{
5878		  /* R rotation.  */
5879		  p->right = r->left;
5880		  if (p->right)
5881		    p->right->parent = p;
5882		  r->left = p;
5883
5884		  p->balance = 0;
5885		  r->balance = 0;
5886
5887		  s = p->parent;
5888		  p->parent = r;
5889		  r->parent = s;
5890		  if (s)
5891		    {
5892		      if (s->left == p)
5893			s->left = r;
5894		      else
5895			s->right = r;
5896		    }
5897		  else
5898		    constructor_pending_elts = r;
5899		}
5900	      else /* r->balance == -1 */
5901		{
5902		  /* RL rotation */
5903		  struct init_node *t = r->left;
5904
5905		  r->left = t->right;
5906		  if (r->left)
5907		    r->left->parent = r;
5908		  t->right = r;
5909
5910		  p->right = t->left;
5911		  if (p->right)
5912		    p->right->parent = p;
5913		  t->left = p;
5914
5915		  r->balance = (t->balance < 0);
5916		  p->balance = -(t->balance > 0);
5917		  t->balance = 0;
5918
5919		  s = p->parent;
5920		  p->parent = t;
5921		  r->parent = t;
5922		  t->parent = s;
5923		  if (s)
5924		    {
5925		      if (s->left == p)
5926			s->left = t;
5927		      else
5928			s->right = t;
5929		    }
5930		  else
5931		    constructor_pending_elts = t;
5932		}
5933	      break;
5934	    }
5935	  else
5936	    {
5937	      /* p->balance == -1; growth of right side balances the node.  */
5938	      p->balance = 0;
5939	      break;
5940	    }
5941	}
5942
5943      r = p;
5944      p = p->parent;
5945    }
5946}
5947
5948/* Build AVL tree from a sorted chain.  */
5949
5950static void
5951set_nonincremental_init (void)
5952{
5953  unsigned HOST_WIDE_INT ix;
5954  tree index, value;
5955
5956  if (TREE_CODE (constructor_type) != RECORD_TYPE
5957      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5958    return;
5959
5960  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5961    add_pending_init (index, value);
5962  constructor_elements = 0;
5963  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5964    {
5965      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5966      /* Skip any nameless bit fields at the beginning.  */
5967      while (constructor_unfilled_fields != 0
5968	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5969	     && DECL_NAME (constructor_unfilled_fields) == 0)
5970	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5971
5972    }
5973  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5974    {
5975      if (TYPE_DOMAIN (constructor_type))
5976	constructor_unfilled_index
5977	    = convert (bitsizetype,
5978		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5979      else
5980	constructor_unfilled_index = bitsize_zero_node;
5981    }
5982  constructor_incremental = 0;
5983}
5984
5985/* Build AVL tree from a string constant.  */
5986
5987static void
5988set_nonincremental_init_from_string (tree str)
5989{
5990  tree value, purpose, type;
5991  HOST_WIDE_INT val[2];
5992  const char *p, *end;
5993  int byte, wchar_bytes, charwidth, bitpos;
5994
5995  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5996
5997  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5998      == TYPE_PRECISION (char_type_node))
5999    wchar_bytes = 1;
6000  else
6001    {
6002      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6003		  == TYPE_PRECISION (wchar_type_node));
6004      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6005    }
6006  charwidth = TYPE_PRECISION (char_type_node);
6007  type = TREE_TYPE (constructor_type);
6008  p = TREE_STRING_POINTER (str);
6009  end = p + TREE_STRING_LENGTH (str);
6010
6011  for (purpose = bitsize_zero_node;
6012       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6013       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6014    {
6015      if (wchar_bytes == 1)
6016	{
6017	  val[1] = (unsigned char) *p++;
6018	  val[0] = 0;
6019	}
6020      else
6021	{
6022	  val[0] = 0;
6023	  val[1] = 0;
6024	  for (byte = 0; byte < wchar_bytes; byte++)
6025	    {
6026	      if (BYTES_BIG_ENDIAN)
6027		bitpos = (wchar_bytes - byte - 1) * charwidth;
6028	      else
6029		bitpos = byte * charwidth;
6030	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6031		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6032		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6033	    }
6034	}
6035
6036      if (!TYPE_UNSIGNED (type))
6037	{
6038	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6039	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6040	    {
6041	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6042		{
6043		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6044		  val[0] = -1;
6045		}
6046	    }
6047	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6048	    {
6049	      if (val[1] < 0)
6050		val[0] = -1;
6051	    }
6052	  else if (val[0] & (((HOST_WIDE_INT) 1)
6053			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6054	    val[0] |= ((HOST_WIDE_INT) -1)
6055		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6056	}
6057
6058      value = build_int_cst_wide (type, val[1], val[0]);
6059      add_pending_init (purpose, value);
6060    }
6061
6062  constructor_incremental = 0;
6063}
6064
6065/* Return value of FIELD in pending initializer or zero if the field was
6066   not initialized yet.  */
6067
6068static tree
6069find_init_member (tree field)
6070{
6071  struct init_node *p;
6072
6073  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6074    {
6075      if (constructor_incremental
6076	  && tree_int_cst_lt (field, constructor_unfilled_index))
6077	set_nonincremental_init ();
6078
6079      p = constructor_pending_elts;
6080      while (p)
6081	{
6082	  if (tree_int_cst_lt (field, p->purpose))
6083	    p = p->left;
6084	  else if (tree_int_cst_lt (p->purpose, field))
6085	    p = p->right;
6086	  else
6087	    return p->value;
6088	}
6089    }
6090  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6091    {
6092      tree bitpos = bit_position (field);
6093
6094      if (constructor_incremental
6095	  && (!constructor_unfilled_fields
6096	      || tree_int_cst_lt (bitpos,
6097				  bit_position (constructor_unfilled_fields))))
6098	set_nonincremental_init ();
6099
6100      p = constructor_pending_elts;
6101      while (p)
6102	{
6103	  if (field == p->purpose)
6104	    return p->value;
6105	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6106	    p = p->left;
6107	  else
6108	    p = p->right;
6109	}
6110    }
6111  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6112    {
6113      if (!VEC_empty (constructor_elt, constructor_elements)
6114	  && (VEC_last (constructor_elt, constructor_elements)->index
6115	      == field))
6116	return VEC_last (constructor_elt, constructor_elements)->value;
6117    }
6118  return 0;
6119}
6120
6121/* "Output" the next constructor element.
6122   At top level, really output it to assembler code now.
6123   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6124   TYPE is the data type that the containing data type wants here.
6125   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6126   If VALUE is a string constant, STRICT_STRING is true if it is
6127   unparenthesized or we should not warn here for it being parenthesized.
6128   For other types of VALUE, STRICT_STRING is not used.
6129
6130   PENDING if non-nil means output pending elements that belong
6131   right after this element.  (PENDING is normally 1;
6132   it is 0 while outputting pending elements, to avoid recursion.)  */
6133
6134static void
6135output_init_element (tree value, bool strict_string, tree type, tree field,
6136		     int pending)
6137{
6138  constructor_elt *celt;
6139
6140  if (type == error_mark_node || value == error_mark_node)
6141    {
6142      constructor_erroneous = 1;
6143      return;
6144    }
6145  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6146      && (TREE_CODE (value) == STRING_CST
6147	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6148      && !(TREE_CODE (value) == STRING_CST
6149	   && TREE_CODE (type) == ARRAY_TYPE
6150	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6151      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6152		     TYPE_MAIN_VARIANT (type)))
6153    value = array_to_pointer_conversion (value);
6154
6155  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6156      && require_constant_value && !flag_isoc99 && pending)
6157    {
6158      /* As an extension, allow initializing objects with static storage
6159	 duration with compound literals (which are then treated just as
6160	 the brace enclosed list they contain).  */
6161      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6162      value = DECL_INITIAL (decl);
6163    }
6164
6165  if (value == error_mark_node)
6166    constructor_erroneous = 1;
6167  else if (!TREE_CONSTANT (value))
6168    constructor_constant = 0;
6169  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6170	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6171		|| TREE_CODE (constructor_type) == UNION_TYPE)
6172	       && DECL_C_BIT_FIELD (field)
6173	       && TREE_CODE (value) != INTEGER_CST))
6174    constructor_simple = 0;
6175
6176  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6177    {
6178      if (require_constant_value)
6179	{
6180	  error_init ("initializer element is not constant");
6181	  value = error_mark_node;
6182	}
6183      else if (require_constant_elements)
6184	pedwarn ("initializer element is not computable at load time");
6185    }
6186
6187  /* If this field is empty (and not at the end of structure),
6188     don't do anything other than checking the initializer.  */
6189  if (field
6190      && (TREE_TYPE (field) == error_mark_node
6191	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6192	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6193	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6194		  || TREE_CHAIN (field)))))
6195    return;
6196
6197  value = digest_init (type, value, strict_string, require_constant_value);
6198  if (value == error_mark_node)
6199    {
6200      constructor_erroneous = 1;
6201      return;
6202    }
6203
6204  /* If this element doesn't come next in sequence,
6205     put it on constructor_pending_elts.  */
6206  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6207      && (!constructor_incremental
6208	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6209    {
6210      if (constructor_incremental
6211	  && tree_int_cst_lt (field, constructor_unfilled_index))
6212	set_nonincremental_init ();
6213
6214      add_pending_init (field, value);
6215      return;
6216    }
6217  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6218	   && (!constructor_incremental
6219	       || field != constructor_unfilled_fields))
6220    {
6221      /* We do this for records but not for unions.  In a union,
6222	 no matter which field is specified, it can be initialized
6223	 right away since it starts at the beginning of the union.  */
6224      if (constructor_incremental)
6225	{
6226	  if (!constructor_unfilled_fields)
6227	    set_nonincremental_init ();
6228	  else
6229	    {
6230	      tree bitpos, unfillpos;
6231
6232	      bitpos = bit_position (field);
6233	      unfillpos = bit_position (constructor_unfilled_fields);
6234
6235	      if (tree_int_cst_lt (bitpos, unfillpos))
6236		set_nonincremental_init ();
6237	    }
6238	}
6239
6240      add_pending_init (field, value);
6241      return;
6242    }
6243  else if (TREE_CODE (constructor_type) == UNION_TYPE
6244	   && !VEC_empty (constructor_elt, constructor_elements))
6245    {
6246      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6247				       constructor_elements)->value))
6248	warning_init ("initialized field with side-effects overwritten");
6249      else if (warn_override_init)
6250	warning_init ("initialized field overwritten");
6251
6252      /* We can have just one union field set.  */
6253      constructor_elements = 0;
6254    }
6255
6256  /* Otherwise, output this element either to
6257     constructor_elements or to the assembler file.  */
6258
6259  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6260  celt->index = field;
6261  celt->value = value;
6262
6263  /* Advance the variable that indicates sequential elements output.  */
6264  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6265    constructor_unfilled_index
6266      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6267		    bitsize_one_node);
6268  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6269    {
6270      constructor_unfilled_fields
6271	= TREE_CHAIN (constructor_unfilled_fields);
6272
6273      /* Skip any nameless bit fields.  */
6274      while (constructor_unfilled_fields != 0
6275	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6276	     && DECL_NAME (constructor_unfilled_fields) == 0)
6277	constructor_unfilled_fields =
6278	  TREE_CHAIN (constructor_unfilled_fields);
6279    }
6280  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6281    constructor_unfilled_fields = 0;
6282
6283  /* Now output any pending elements which have become next.  */
6284  if (pending)
6285    output_pending_init_elements (0);
6286}
6287
6288/* Output any pending elements which have become next.
6289   As we output elements, constructor_unfilled_{fields,index}
6290   advances, which may cause other elements to become next;
6291   if so, they too are output.
6292
6293   If ALL is 0, we return when there are
6294   no more pending elements to output now.
6295
6296   If ALL is 1, we output space as necessary so that
6297   we can output all the pending elements.  */
6298
6299static void
6300output_pending_init_elements (int all)
6301{
6302  struct init_node *elt = constructor_pending_elts;
6303  tree next;
6304
6305 retry:
6306
6307  /* Look through the whole pending tree.
6308     If we find an element that should be output now,
6309     output it.  Otherwise, set NEXT to the element
6310     that comes first among those still pending.  */
6311
6312  next = 0;
6313  while (elt)
6314    {
6315      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6316	{
6317	  if (tree_int_cst_equal (elt->purpose,
6318				  constructor_unfilled_index))
6319	    output_init_element (elt->value, true,
6320				 TREE_TYPE (constructor_type),
6321				 constructor_unfilled_index, 0);
6322	  else if (tree_int_cst_lt (constructor_unfilled_index,
6323				    elt->purpose))
6324	    {
6325	      /* Advance to the next smaller node.  */
6326	      if (elt->left)
6327		elt = elt->left;
6328	      else
6329		{
6330		  /* We have reached the smallest node bigger than the
6331		     current unfilled index.  Fill the space first.  */
6332		  next = elt->purpose;
6333		  break;
6334		}
6335	    }
6336	  else
6337	    {
6338	      /* Advance to the next bigger node.  */
6339	      if (elt->right)
6340		elt = elt->right;
6341	      else
6342		{
6343		  /* We have reached the biggest node in a subtree.  Find
6344		     the parent of it, which is the next bigger node.  */
6345		  while (elt->parent && elt->parent->right == elt)
6346		    elt = elt->parent;
6347		  elt = elt->parent;
6348		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6349					      elt->purpose))
6350		    {
6351		      next = elt->purpose;
6352		      break;
6353		    }
6354		}
6355	    }
6356	}
6357      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6358	       || TREE_CODE (constructor_type) == UNION_TYPE)
6359	{
6360	  tree ctor_unfilled_bitpos, elt_bitpos;
6361
6362	  /* If the current record is complete we are done.  */
6363	  if (constructor_unfilled_fields == 0)
6364	    break;
6365
6366	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6367	  elt_bitpos = bit_position (elt->purpose);
6368	  /* We can't compare fields here because there might be empty
6369	     fields in between.  */
6370	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6371	    {
6372	      constructor_unfilled_fields = elt->purpose;
6373	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6374				   elt->purpose, 0);
6375	    }
6376	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6377	    {
6378	      /* Advance to the next smaller node.  */
6379	      if (elt->left)
6380		elt = elt->left;
6381	      else
6382		{
6383		  /* We have reached the smallest node bigger than the
6384		     current unfilled field.  Fill the space first.  */
6385		  next = elt->purpose;
6386		  break;
6387		}
6388	    }
6389	  else
6390	    {
6391	      /* Advance to the next bigger node.  */
6392	      if (elt->right)
6393		elt = elt->right;
6394	      else
6395		{
6396		  /* We have reached the biggest node in a subtree.  Find
6397		     the parent of it, which is the next bigger node.  */
6398		  while (elt->parent && elt->parent->right == elt)
6399		    elt = elt->parent;
6400		  elt = elt->parent;
6401		  if (elt
6402		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6403					   bit_position (elt->purpose))))
6404		    {
6405		      next = elt->purpose;
6406		      break;
6407		    }
6408		}
6409	    }
6410	}
6411    }
6412
6413  /* Ordinarily return, but not if we want to output all
6414     and there are elements left.  */
6415  if (!(all && next != 0))
6416    return;
6417
6418  /* If it's not incremental, just skip over the gap, so that after
6419     jumping to retry we will output the next successive element.  */
6420  if (TREE_CODE (constructor_type) == RECORD_TYPE
6421      || TREE_CODE (constructor_type) == UNION_TYPE)
6422    constructor_unfilled_fields = next;
6423  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6424    constructor_unfilled_index = next;
6425
6426  /* ELT now points to the node in the pending tree with the next
6427     initializer to output.  */
6428  goto retry;
6429}
6430
6431/* Add one non-braced element to the current constructor level.
6432   This adjusts the current position within the constructor's type.
6433   This may also start or terminate implicit levels
6434   to handle a partly-braced initializer.
6435
6436   Once this has found the correct level for the new element,
6437   it calls output_init_element.  */
6438
6439void
6440process_init_element (struct c_expr value)
6441{
6442  tree orig_value = value.value;
6443  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6444  bool strict_string = value.original_code == STRING_CST;
6445
6446  designator_depth = 0;
6447  designator_erroneous = 0;
6448
6449  /* Handle superfluous braces around string cst as in
6450     char x[] = {"foo"}; */
6451  if (string_flag
6452      && constructor_type
6453      && TREE_CODE (constructor_type) == ARRAY_TYPE
6454      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6455      && integer_zerop (constructor_unfilled_index))
6456    {
6457      if (constructor_stack->replacement_value.value)
6458	error_init ("excess elements in char array initializer");
6459      constructor_stack->replacement_value = value;
6460      return;
6461    }
6462
6463  if (constructor_stack->replacement_value.value != 0)
6464    {
6465      error_init ("excess elements in struct initializer");
6466      return;
6467    }
6468
6469  /* Ignore elements of a brace group if it is entirely superfluous
6470     and has already been diagnosed.  */
6471  if (constructor_type == 0)
6472    return;
6473
6474  /* If we've exhausted any levels that didn't have braces,
6475     pop them now.  */
6476  while (constructor_stack->implicit)
6477    {
6478      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6479	   || TREE_CODE (constructor_type) == UNION_TYPE)
6480	  && constructor_fields == 0)
6481	process_init_element (pop_init_level (1));
6482      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6483	       && (constructor_max_index == 0
6484		   || tree_int_cst_lt (constructor_max_index,
6485				       constructor_index)))
6486	process_init_element (pop_init_level (1));
6487      else
6488	break;
6489    }
6490
6491  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6492  if (constructor_range_stack)
6493    {
6494      /* If value is a compound literal and we'll be just using its
6495	 content, don't put it into a SAVE_EXPR.  */
6496      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6497	  || !require_constant_value
6498	  || flag_isoc99)
6499	value.value = save_expr (value.value);
6500    }
6501
6502  while (1)
6503    {
6504      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6505	{
6506	  tree fieldtype;
6507	  enum tree_code fieldcode;
6508
6509	  if (constructor_fields == 0)
6510	    {
6511	      pedwarn_init ("excess elements in struct initializer");
6512	      break;
6513	    }
6514
6515	  fieldtype = TREE_TYPE (constructor_fields);
6516	  if (fieldtype != error_mark_node)
6517	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6518	  fieldcode = TREE_CODE (fieldtype);
6519
6520	  /* Error for non-static initialization of a flexible array member.  */
6521	  if (fieldcode == ARRAY_TYPE
6522	      && !require_constant_value
6523	      && TYPE_SIZE (fieldtype) == NULL_TREE
6524	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6525	    {
6526	      error_init ("non-static initialization of a flexible array member");
6527	      break;
6528	    }
6529
6530	  /* Accept a string constant to initialize a subarray.  */
6531	  if (value.value != 0
6532	      && fieldcode == ARRAY_TYPE
6533	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6534	      && string_flag)
6535	    value.value = orig_value;
6536	  /* Otherwise, if we have come to a subaggregate,
6537	     and we don't have an element of its type, push into it.  */
6538	  else if (value.value != 0
6539		   && value.value != error_mark_node
6540		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6541		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6542		       || fieldcode == UNION_TYPE))
6543	    {
6544	      push_init_level (1);
6545	      continue;
6546	    }
6547
6548	  if (value.value)
6549	    {
6550	      push_member_name (constructor_fields);
6551	      output_init_element (value.value, strict_string,
6552				   fieldtype, constructor_fields, 1);
6553	      RESTORE_SPELLING_DEPTH (constructor_depth);
6554	    }
6555	  else
6556	    /* Do the bookkeeping for an element that was
6557	       directly output as a constructor.  */
6558	    {
6559	      /* For a record, keep track of end position of last field.  */
6560	      if (DECL_SIZE (constructor_fields))
6561		constructor_bit_index
6562		  = size_binop (PLUS_EXPR,
6563				bit_position (constructor_fields),
6564				DECL_SIZE (constructor_fields));
6565
6566	      /* If the current field was the first one not yet written out,
6567		 it isn't now, so update.  */
6568	      if (constructor_unfilled_fields == constructor_fields)
6569		{
6570		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6571		  /* Skip any nameless bit fields.  */
6572		  while (constructor_unfilled_fields != 0
6573			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6574			 && DECL_NAME (constructor_unfilled_fields) == 0)
6575		    constructor_unfilled_fields =
6576		      TREE_CHAIN (constructor_unfilled_fields);
6577		}
6578	    }
6579
6580	  constructor_fields = TREE_CHAIN (constructor_fields);
6581	  /* Skip any nameless bit fields at the beginning.  */
6582	  while (constructor_fields != 0
6583		 && DECL_C_BIT_FIELD (constructor_fields)
6584		 && DECL_NAME (constructor_fields) == 0)
6585	    constructor_fields = TREE_CHAIN (constructor_fields);
6586	}
6587      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6588	{
6589	  tree fieldtype;
6590	  enum tree_code fieldcode;
6591
6592	  if (constructor_fields == 0)
6593	    {
6594	      pedwarn_init ("excess elements in union initializer");
6595	      break;
6596	    }
6597
6598	  fieldtype = TREE_TYPE (constructor_fields);
6599	  if (fieldtype != error_mark_node)
6600	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6601	  fieldcode = TREE_CODE (fieldtype);
6602
6603	  /* Warn that traditional C rejects initialization of unions.
6604	     We skip the warning if the value is zero.  This is done
6605	     under the assumption that the zero initializer in user
6606	     code appears conditioned on e.g. __STDC__ to avoid
6607	     "missing initializer" warnings and relies on default
6608	     initialization to zero in the traditional C case.
6609	     We also skip the warning if the initializer is designated,
6610	     again on the assumption that this must be conditional on
6611	     __STDC__ anyway (and we've already complained about the
6612	     member-designator already).  */
6613	  if (!in_system_header && !constructor_designated
6614	      && !(value.value && (integer_zerop (value.value)
6615				   || real_zerop (value.value))))
6616	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6617		     "of unions");
6618
6619	  /* Accept a string constant to initialize a subarray.  */
6620	  if (value.value != 0
6621	      && fieldcode == ARRAY_TYPE
6622	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6623	      && string_flag)
6624	    value.value = orig_value;
6625	  /* Otherwise, if we have come to a subaggregate,
6626	     and we don't have an element of its type, push into it.  */
6627	  else if (value.value != 0
6628		   && value.value != error_mark_node
6629		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6630		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6631		       || fieldcode == UNION_TYPE))
6632	    {
6633	      push_init_level (1);
6634	      continue;
6635	    }
6636
6637	  if (value.value)
6638	    {
6639	      push_member_name (constructor_fields);
6640	      output_init_element (value.value, strict_string,
6641				   fieldtype, constructor_fields, 1);
6642	      RESTORE_SPELLING_DEPTH (constructor_depth);
6643	    }
6644	  else
6645	    /* Do the bookkeeping for an element that was
6646	       directly output as a constructor.  */
6647	    {
6648	      constructor_bit_index = DECL_SIZE (constructor_fields);
6649	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6650	    }
6651
6652	  constructor_fields = 0;
6653	}
6654      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6655	{
6656	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6657	  enum tree_code eltcode = TREE_CODE (elttype);
6658
6659	  /* Accept a string constant to initialize a subarray.  */
6660	  if (value.value != 0
6661	      && eltcode == ARRAY_TYPE
6662	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6663	      && string_flag)
6664	    value.value = orig_value;
6665	  /* Otherwise, if we have come to a subaggregate,
6666	     and we don't have an element of its type, push into it.  */
6667	  else if (value.value != 0
6668		   && value.value != error_mark_node
6669		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6670		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6671		       || eltcode == UNION_TYPE))
6672	    {
6673	      push_init_level (1);
6674	      continue;
6675	    }
6676
6677	  if (constructor_max_index != 0
6678	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6679		  || integer_all_onesp (constructor_max_index)))
6680	    {
6681	      pedwarn_init ("excess elements in array initializer");
6682	      break;
6683	    }
6684
6685	  /* Now output the actual element.  */
6686	  if (value.value)
6687	    {
6688	      push_array_bounds (tree_low_cst (constructor_index, 1));
6689	      output_init_element (value.value, strict_string,
6690				   elttype, constructor_index, 1);
6691	      RESTORE_SPELLING_DEPTH (constructor_depth);
6692	    }
6693
6694	  constructor_index
6695	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6696
6697	  if (!value.value)
6698	    /* If we are doing the bookkeeping for an element that was
6699	       directly output as a constructor, we must update
6700	       constructor_unfilled_index.  */
6701	    constructor_unfilled_index = constructor_index;
6702	}
6703      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6704	{
6705	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6706
6707	 /* Do a basic check of initializer size.  Note that vectors
6708	    always have a fixed size derived from their type.  */
6709	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6710	    {
6711	      pedwarn_init ("excess elements in vector initializer");
6712	      break;
6713	    }
6714
6715	  /* Now output the actual element.  */
6716	  if (value.value)
6717	    output_init_element (value.value, strict_string,
6718				 elttype, constructor_index, 1);
6719
6720	  constructor_index
6721	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6722
6723	  if (!value.value)
6724	    /* If we are doing the bookkeeping for an element that was
6725	       directly output as a constructor, we must update
6726	       constructor_unfilled_index.  */
6727	    constructor_unfilled_index = constructor_index;
6728	}
6729
6730      /* Handle the sole element allowed in a braced initializer
6731	 for a scalar variable.  */
6732      else if (constructor_type != error_mark_node
6733	       && constructor_fields == 0)
6734	{
6735	  pedwarn_init ("excess elements in scalar initializer");
6736	  break;
6737	}
6738      else
6739	{
6740	  if (value.value)
6741	    output_init_element (value.value, strict_string,
6742				 constructor_type, NULL_TREE, 1);
6743	  constructor_fields = 0;
6744	}
6745
6746      /* Handle range initializers either at this level or anywhere higher
6747	 in the designator stack.  */
6748      if (constructor_range_stack)
6749	{
6750	  struct constructor_range_stack *p, *range_stack;
6751	  int finish = 0;
6752
6753	  range_stack = constructor_range_stack;
6754	  constructor_range_stack = 0;
6755	  while (constructor_stack != range_stack->stack)
6756	    {
6757	      gcc_assert (constructor_stack->implicit);
6758	      process_init_element (pop_init_level (1));
6759	    }
6760	  for (p = range_stack;
6761	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6762	       p = p->prev)
6763	    {
6764	      gcc_assert (constructor_stack->implicit);
6765	      process_init_element (pop_init_level (1));
6766	    }
6767
6768	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6769	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6770	    finish = 1;
6771
6772	  while (1)
6773	    {
6774	      constructor_index = p->index;
6775	      constructor_fields = p->fields;
6776	      if (finish && p->range_end && p->index == p->range_start)
6777		{
6778		  finish = 0;
6779		  p->prev = 0;
6780		}
6781	      p = p->next;
6782	      if (!p)
6783		break;
6784	      push_init_level (2);
6785	      p->stack = constructor_stack;
6786	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6787		p->index = p->range_start;
6788	    }
6789
6790	  if (!finish)
6791	    constructor_range_stack = range_stack;
6792	  continue;
6793	}
6794
6795      break;
6796    }
6797
6798  constructor_range_stack = 0;
6799}
6800
6801/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6802   (guaranteed to be 'volatile' or null) and ARGS (represented using
6803   an ASM_EXPR node).  */
6804tree
6805build_asm_stmt (tree cv_qualifier, tree args)
6806{
6807  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6808    ASM_VOLATILE_P (args) = 1;
6809  return add_stmt (args);
6810}
6811
6812/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6813   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6814   SIMPLE indicates whether there was anything at all after the
6815   string in the asm expression -- asm("blah") and asm("blah" : )
6816   are subtly different.  We use a ASM_EXPR node to represent this.  */
6817tree
6818build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6819		bool simple)
6820{
6821  tree tail;
6822  tree args;
6823  int i;
6824  const char *constraint;
6825  const char **oconstraints;
6826  bool allows_mem, allows_reg, is_inout;
6827  int ninputs, noutputs;
6828
6829  ninputs = list_length (inputs);
6830  noutputs = list_length (outputs);
6831  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6832
6833  string = resolve_asm_operand_names (string, outputs, inputs);
6834
6835  /* Remove output conversions that change the type but not the mode.  */
6836  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6837    {
6838      tree output = TREE_VALUE (tail);
6839
6840      /* ??? Really, this should not be here.  Users should be using a
6841	 proper lvalue, dammit.  But there's a long history of using casts
6842	 in the output operands.  In cases like longlong.h, this becomes a
6843	 primitive form of typechecking -- if the cast can be removed, then
6844	 the output operand had a type of the proper width; otherwise we'll
6845	 get an error.  Gross, but ...  */
6846      STRIP_NOPS (output);
6847
6848      if (!lvalue_or_else (output, lv_asm))
6849	output = error_mark_node;
6850
6851      if (output != error_mark_node
6852	  && (TREE_READONLY (output)
6853	      || TYPE_READONLY (TREE_TYPE (output))
6854	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6855		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6856		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6857	readonly_error (output, lv_asm);
6858
6859      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6860      oconstraints[i] = constraint;
6861
6862      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6863				   &allows_mem, &allows_reg, &is_inout))
6864	{
6865	  /* If the operand is going to end up in memory,
6866	     mark it addressable.  */
6867	  if (!allows_reg && !c_mark_addressable (output))
6868	    output = error_mark_node;
6869	}
6870      else
6871	output = error_mark_node;
6872
6873      TREE_VALUE (tail) = output;
6874    }
6875
6876  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6877    {
6878      tree input;
6879
6880      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6881      input = TREE_VALUE (tail);
6882
6883      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6884				  oconstraints, &allows_mem, &allows_reg))
6885	{
6886	  /* If the operand is going to end up in memory,
6887	     mark it addressable.  */
6888	  if (!allows_reg && allows_mem)
6889	    {
6890	      /* Strip the nops as we allow this case.  FIXME, this really
6891		 should be rejected or made deprecated.  */
6892	      STRIP_NOPS (input);
6893	      if (!c_mark_addressable (input))
6894		input = error_mark_node;
6895	  }
6896	}
6897      else
6898	input = error_mark_node;
6899
6900      TREE_VALUE (tail) = input;
6901    }
6902
6903  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6904
6905  /* asm statements without outputs, including simple ones, are treated
6906     as volatile.  */
6907  ASM_INPUT_P (args) = simple;
6908  ASM_VOLATILE_P (args) = (noutputs == 0);
6909
6910  return args;
6911}
6912
6913/* Generate a goto statement to LABEL.  */
6914
6915tree
6916c_finish_goto_label (tree label)
6917{
6918  tree decl = lookup_label (label);
6919  if (!decl)
6920    return NULL_TREE;
6921
6922  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6923    {
6924      error ("jump into statement expression");
6925      return NULL_TREE;
6926    }
6927
6928  if (C_DECL_UNJUMPABLE_VM (decl))
6929    {
6930      error ("jump into scope of identifier with variably modified type");
6931      return NULL_TREE;
6932    }
6933
6934  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6935    {
6936      /* No jump from outside this statement expression context, so
6937	 record that there is a jump from within this context.  */
6938      struct c_label_list *nlist;
6939      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6940      nlist->next = label_context_stack_se->labels_used;
6941      nlist->label = decl;
6942      label_context_stack_se->labels_used = nlist;
6943    }
6944
6945  if (!C_DECL_UNDEFINABLE_VM (decl))
6946    {
6947      /* No jump from outside this context context of identifiers with
6948	 variably modified type, so record that there is a jump from
6949	 within this context.  */
6950      struct c_label_list *nlist;
6951      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6952      nlist->next = label_context_stack_vm->labels_used;
6953      nlist->label = decl;
6954      label_context_stack_vm->labels_used = nlist;
6955    }
6956
6957  TREE_USED (decl) = 1;
6958  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6959}
6960
6961/* Generate a computed goto statement to EXPR.  */
6962
6963tree
6964c_finish_goto_ptr (tree expr)
6965{
6966  if (pedantic)
6967    pedwarn ("ISO C forbids %<goto *expr;%>");
6968  expr = convert (ptr_type_node, expr);
6969  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6970}
6971
6972/* Generate a C `return' statement.  RETVAL is the expression for what
6973   to return, or a null pointer for `return;' with no value.  */
6974
6975tree
6976c_finish_return (tree retval)
6977{
6978  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6979  bool no_warning = false;
6980
6981  if (TREE_THIS_VOLATILE (current_function_decl))
6982    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6983
6984  if (!retval)
6985    {
6986      current_function_returns_null = 1;
6987      if ((warn_return_type || flag_isoc99)
6988	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6989	{
6990	  pedwarn_c99 ("%<return%> with no value, in "
6991		       "function returning non-void");
6992	  no_warning = true;
6993	}
6994    }
6995  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6996    {
6997      current_function_returns_null = 1;
6998      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6999	pedwarn ("%<return%> with a value, in function returning void");
7000    }
7001  else
7002    {
7003      tree t = convert_for_assignment (valtype, retval, ic_return,
7004				       NULL_TREE, NULL_TREE, 0);
7005      tree res = DECL_RESULT (current_function_decl);
7006      tree inner;
7007
7008      current_function_returns_value = 1;
7009      if (t == error_mark_node)
7010	return NULL_TREE;
7011
7012      inner = t = convert (TREE_TYPE (res), t);
7013
7014      /* Strip any conversions, additions, and subtractions, and see if
7015	 we are returning the address of a local variable.  Warn if so.  */
7016      while (1)
7017	{
7018	  switch (TREE_CODE (inner))
7019	    {
7020	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7021	    case PLUS_EXPR:
7022	      inner = TREE_OPERAND (inner, 0);
7023	      continue;
7024
7025	    case MINUS_EXPR:
7026	      /* If the second operand of the MINUS_EXPR has a pointer
7027		 type (or is converted from it), this may be valid, so
7028		 don't give a warning.  */
7029	      {
7030		tree op1 = TREE_OPERAND (inner, 1);
7031
7032		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7033		       && (TREE_CODE (op1) == NOP_EXPR
7034			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7035			   || TREE_CODE (op1) == CONVERT_EXPR))
7036		  op1 = TREE_OPERAND (op1, 0);
7037
7038		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7039		  break;
7040
7041		inner = TREE_OPERAND (inner, 0);
7042		continue;
7043	      }
7044
7045	    case ADDR_EXPR:
7046	      inner = TREE_OPERAND (inner, 0);
7047
7048	      while (REFERENCE_CLASS_P (inner)
7049		     && TREE_CODE (inner) != INDIRECT_REF)
7050		inner = TREE_OPERAND (inner, 0);
7051
7052	      if (DECL_P (inner)
7053		  && !DECL_EXTERNAL (inner)
7054		  && !TREE_STATIC (inner)
7055		  && DECL_CONTEXT (inner) == current_function_decl)
7056		warning (0, "function returns address of local variable");
7057	      break;
7058
7059	    default:
7060	      break;
7061	    }
7062
7063	  break;
7064	}
7065
7066      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7067    }
7068
7069  ret_stmt = build_stmt (RETURN_EXPR, retval);
7070  TREE_NO_WARNING (ret_stmt) |= no_warning;
7071  return add_stmt (ret_stmt);
7072}
7073
7074struct c_switch {
7075  /* The SWITCH_EXPR being built.  */
7076  tree switch_expr;
7077
7078  /* The original type of the testing expression, i.e. before the
7079     default conversion is applied.  */
7080  tree orig_type;
7081
7082  /* A splay-tree mapping the low element of a case range to the high
7083     element, or NULL_TREE if there is no high element.  Used to
7084     determine whether or not a new case label duplicates an old case
7085     label.  We need a tree, rather than simply a hash table, because
7086     of the GNU case range extension.  */
7087  splay_tree cases;
7088
7089  /* Number of nested statement expressions within this switch
7090     statement; if nonzero, case and default labels may not
7091     appear.  */
7092  unsigned int blocked_stmt_expr;
7093
7094  /* Scope of outermost declarations of identifiers with variably
7095     modified type within this switch statement; if nonzero, case and
7096     default labels may not appear.  */
7097  unsigned int blocked_vm;
7098
7099  /* The next node on the stack.  */
7100  struct c_switch *next;
7101};
7102
7103/* A stack of the currently active switch statements.  The innermost
7104   switch statement is on the top of the stack.  There is no need to
7105   mark the stack for garbage collection because it is only active
7106   during the processing of the body of a function, and we never
7107   collect at that point.  */
7108
7109struct c_switch *c_switch_stack;
7110
7111/* Start a C switch statement, testing expression EXP.  Return the new
7112   SWITCH_EXPR.  */
7113
7114tree
7115c_start_case (tree exp)
7116{
7117  tree orig_type = error_mark_node;
7118  struct c_switch *cs;
7119
7120  if (exp != error_mark_node)
7121    {
7122      orig_type = TREE_TYPE (exp);
7123
7124      if (!INTEGRAL_TYPE_P (orig_type))
7125	{
7126	  if (orig_type != error_mark_node)
7127	    {
7128	      error ("switch quantity not an integer");
7129	      orig_type = error_mark_node;
7130	    }
7131	  exp = integer_zero_node;
7132	}
7133      else
7134	{
7135	  tree type = TYPE_MAIN_VARIANT (orig_type);
7136
7137	  if (!in_system_header
7138	      && (type == long_integer_type_node
7139		  || type == long_unsigned_type_node))
7140	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7141		     "converted to %<int%> in ISO C");
7142
7143	  exp = default_conversion (exp);
7144	}
7145    }
7146
7147  /* Add this new SWITCH_EXPR to the stack.  */
7148  cs = XNEW (struct c_switch);
7149  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7150  cs->orig_type = orig_type;
7151  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7152  cs->blocked_stmt_expr = 0;
7153  cs->blocked_vm = 0;
7154  cs->next = c_switch_stack;
7155  c_switch_stack = cs;
7156
7157  return add_stmt (cs->switch_expr);
7158}
7159
7160/* Process a case label.  */
7161
7162tree
7163do_case (tree low_value, tree high_value)
7164{
7165  tree label = NULL_TREE;
7166
7167  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7168      && !c_switch_stack->blocked_vm)
7169    {
7170      label = c_add_case_label (c_switch_stack->cases,
7171				SWITCH_COND (c_switch_stack->switch_expr),
7172				c_switch_stack->orig_type,
7173				low_value, high_value);
7174      if (label == error_mark_node)
7175	label = NULL_TREE;
7176    }
7177  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7178    {
7179      if (low_value)
7180	error ("case label in statement expression not containing "
7181	       "enclosing switch statement");
7182      else
7183	error ("%<default%> label in statement expression not containing "
7184	       "enclosing switch statement");
7185    }
7186  else if (c_switch_stack && c_switch_stack->blocked_vm)
7187    {
7188      if (low_value)
7189	error ("case label in scope of identifier with variably modified "
7190	       "type not containing enclosing switch statement");
7191      else
7192	error ("%<default%> label in scope of identifier with variably "
7193	       "modified type not containing enclosing switch statement");
7194    }
7195  else if (low_value)
7196    error ("case label not within a switch statement");
7197  else
7198    error ("%<default%> label not within a switch statement");
7199
7200  return label;
7201}
7202
7203/* Finish the switch statement.  */
7204
7205void
7206c_finish_case (tree body)
7207{
7208  struct c_switch *cs = c_switch_stack;
7209  location_t switch_location;
7210
7211  SWITCH_BODY (cs->switch_expr) = body;
7212
7213  /* We must not be within a statement expression nested in the switch
7214     at this point; we might, however, be within the scope of an
7215     identifier with variably modified type nested in the switch.  */
7216  gcc_assert (!cs->blocked_stmt_expr);
7217
7218  /* Emit warnings as needed.  */
7219  if (EXPR_HAS_LOCATION (cs->switch_expr))
7220    switch_location = EXPR_LOCATION (cs->switch_expr);
7221  else
7222    switch_location = input_location;
7223  c_do_switch_warnings (cs->cases, switch_location,
7224			TREE_TYPE (cs->switch_expr),
7225			SWITCH_COND (cs->switch_expr));
7226
7227  /* Pop the stack.  */
7228  c_switch_stack = cs->next;
7229  splay_tree_delete (cs->cases);
7230  XDELETE (cs);
7231}
7232
7233/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7234   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7235   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7236   statement, and was not surrounded with parenthesis.  */
7237
7238void
7239c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7240		  tree else_block, bool nested_if)
7241{
7242  tree stmt;
7243
7244  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7245  if (warn_parentheses && nested_if && else_block == NULL)
7246    {
7247      tree inner_if = then_block;
7248
7249      /* We know from the grammar productions that there is an IF nested
7250	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7251	 it might not be exactly THEN_BLOCK, but should be the last
7252	 non-container statement within.  */
7253      while (1)
7254	switch (TREE_CODE (inner_if))
7255	  {
7256	  case COND_EXPR:
7257	    goto found;
7258	  case BIND_EXPR:
7259	    inner_if = BIND_EXPR_BODY (inner_if);
7260	    break;
7261	  case STATEMENT_LIST:
7262	    inner_if = expr_last (then_block);
7263	    break;
7264	  case TRY_FINALLY_EXPR:
7265	  case TRY_CATCH_EXPR:
7266	    inner_if = TREE_OPERAND (inner_if, 0);
7267	    break;
7268	  default:
7269	    gcc_unreachable ();
7270	  }
7271    found:
7272
7273      if (COND_EXPR_ELSE (inner_if))
7274	 warning (OPT_Wparentheses,
7275		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7276		  &if_locus);
7277    }
7278
7279  empty_body_warning (then_block, else_block);
7280
7281  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7282  SET_EXPR_LOCATION (stmt, if_locus);
7283  add_stmt (stmt);
7284}
7285
7286/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7287   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7288   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7289   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7290   the continue label.  Everything is allowed to be NULL.  */
7291
7292void
7293c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7294	       tree blab, tree clab, bool cond_is_first)
7295{
7296  tree entry = NULL, exit = NULL, t;
7297
7298  /* If the condition is zero don't generate a loop construct.  */
7299  if (cond && integer_zerop (cond))
7300    {
7301      if (cond_is_first)
7302	{
7303	  t = build_and_jump (&blab);
7304	  SET_EXPR_LOCATION (t, start_locus);
7305	  add_stmt (t);
7306	}
7307    }
7308  else
7309    {
7310      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7311
7312      /* If we have an exit condition, then we build an IF with gotos either
7313	 out of the loop, or to the top of it.  If there's no exit condition,
7314	 then we just build a jump back to the top.  */
7315      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7316
7317      if (cond && !integer_nonzerop (cond))
7318	{
7319	  /* Canonicalize the loop condition to the end.  This means
7320	     generating a branch to the loop condition.  Reuse the
7321	     continue label, if possible.  */
7322	  if (cond_is_first)
7323	    {
7324	      if (incr || !clab)
7325		{
7326		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7327		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7328		}
7329	      else
7330		t = build1 (GOTO_EXPR, void_type_node, clab);
7331	      SET_EXPR_LOCATION (t, start_locus);
7332	      add_stmt (t);
7333	    }
7334
7335	  t = build_and_jump (&blab);
7336	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7337	  if (cond_is_first)
7338	    SET_EXPR_LOCATION (exit, start_locus);
7339	  else
7340	    SET_EXPR_LOCATION (exit, input_location);
7341	}
7342
7343      add_stmt (top);
7344    }
7345
7346  if (body)
7347    add_stmt (body);
7348  if (clab)
7349    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7350  if (incr)
7351    add_stmt (incr);
7352  if (entry)
7353    add_stmt (entry);
7354  if (exit)
7355    add_stmt (exit);
7356  if (blab)
7357    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7358}
7359
7360tree
7361c_finish_bc_stmt (tree *label_p, bool is_break)
7362{
7363  bool skip;
7364  tree label = *label_p;
7365
7366  /* In switch statements break is sometimes stylistically used after
7367     a return statement.  This can lead to spurious warnings about
7368     control reaching the end of a non-void function when it is
7369     inlined.  Note that we are calling block_may_fallthru with
7370     language specific tree nodes; this works because
7371     block_may_fallthru returns true when given something it does not
7372     understand.  */
7373  skip = !block_may_fallthru (cur_stmt_list);
7374
7375  if (!label)
7376    {
7377      if (!skip)
7378	*label_p = label = create_artificial_label ();
7379    }
7380  else if (TREE_CODE (label) == LABEL_DECL)
7381    ;
7382  else switch (TREE_INT_CST_LOW (label))
7383    {
7384    case 0:
7385      if (is_break)
7386	error ("break statement not within loop or switch");
7387      else
7388	error ("continue statement not within a loop");
7389      return NULL_TREE;
7390
7391    case 1:
7392      gcc_assert (is_break);
7393      error ("break statement used with OpenMP for loop");
7394      return NULL_TREE;
7395
7396    default:
7397      gcc_unreachable ();
7398    }
7399
7400  if (skip)
7401    return NULL_TREE;
7402
7403  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7404}
7405
7406/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7407
7408static void
7409emit_side_effect_warnings (tree expr)
7410{
7411  if (expr == error_mark_node)
7412    ;
7413  else if (!TREE_SIDE_EFFECTS (expr))
7414    {
7415      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7416	warning (0, "%Hstatement with no effect",
7417		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7418    }
7419  else if (warn_unused_value)
7420    warn_if_unused_value (expr, input_location);
7421}
7422
7423/* Process an expression as if it were a complete statement.  Emit
7424   diagnostics, but do not call ADD_STMT.  */
7425
7426tree
7427c_process_expr_stmt (tree expr)
7428{
7429  if (!expr)
7430    return NULL_TREE;
7431
7432  if (warn_sequence_point)
7433    verify_sequence_points (expr);
7434
7435  if (TREE_TYPE (expr) != error_mark_node
7436      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7437      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7438    error ("expression statement has incomplete type");
7439
7440  /* If we're not processing a statement expression, warn about unused values.
7441     Warnings for statement expressions will be emitted later, once we figure
7442     out which is the result.  */
7443  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7444      && (extra_warnings || warn_unused_value))
7445    emit_side_effect_warnings (expr);
7446
7447  /* If the expression is not of a type to which we cannot assign a line
7448     number, wrap the thing in a no-op NOP_EXPR.  */
7449  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7450    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7451
7452  if (EXPR_P (expr))
7453    SET_EXPR_LOCATION (expr, input_location);
7454
7455  return expr;
7456}
7457
7458/* Emit an expression as a statement.  */
7459
7460tree
7461c_finish_expr_stmt (tree expr)
7462{
7463  if (expr)
7464    return add_stmt (c_process_expr_stmt (expr));
7465  else
7466    return NULL;
7467}
7468
7469/* Do the opposite and emit a statement as an expression.  To begin,
7470   create a new binding level and return it.  */
7471
7472tree
7473c_begin_stmt_expr (void)
7474{
7475  tree ret;
7476  struct c_label_context_se *nstack;
7477  struct c_label_list *glist;
7478
7479  /* We must force a BLOCK for this level so that, if it is not expanded
7480     later, there is a way to turn off the entire subtree of blocks that
7481     are contained in it.  */
7482  keep_next_level ();
7483  ret = c_begin_compound_stmt (true);
7484  if (c_switch_stack)
7485    {
7486      c_switch_stack->blocked_stmt_expr++;
7487      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7488    }
7489  for (glist = label_context_stack_se->labels_used;
7490       glist != NULL;
7491       glist = glist->next)
7492    {
7493      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7494    }
7495  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7496  nstack->labels_def = NULL;
7497  nstack->labels_used = NULL;
7498  nstack->next = label_context_stack_se;
7499  label_context_stack_se = nstack;
7500
7501  /* Mark the current statement list as belonging to a statement list.  */
7502  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7503
7504  return ret;
7505}
7506
7507tree
7508c_finish_stmt_expr (tree body)
7509{
7510  tree last, type, tmp, val;
7511  tree *last_p;
7512  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7513
7514  body = c_end_compound_stmt (body, true);
7515  if (c_switch_stack)
7516    {
7517      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7518      c_switch_stack->blocked_stmt_expr--;
7519    }
7520  /* It is no longer possible to jump to labels defined within this
7521     statement expression.  */
7522  for (dlist = label_context_stack_se->labels_def;
7523       dlist != NULL;
7524       dlist = dlist->next)
7525    {
7526      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7527    }
7528  /* It is again possible to define labels with a goto just outside
7529     this statement expression.  */
7530  for (glist = label_context_stack_se->next->labels_used;
7531       glist != NULL;
7532       glist = glist->next)
7533    {
7534      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7535      glist_prev = glist;
7536    }
7537  if (glist_prev != NULL)
7538    glist_prev->next = label_context_stack_se->labels_used;
7539  else
7540    label_context_stack_se->next->labels_used
7541      = label_context_stack_se->labels_used;
7542  label_context_stack_se = label_context_stack_se->next;
7543
7544  /* Locate the last statement in BODY.  See c_end_compound_stmt
7545     about always returning a BIND_EXPR.  */
7546  last_p = &BIND_EXPR_BODY (body);
7547  last = BIND_EXPR_BODY (body);
7548
7549 continue_searching:
7550  if (TREE_CODE (last) == STATEMENT_LIST)
7551    {
7552      tree_stmt_iterator i;
7553
7554      /* This can happen with degenerate cases like ({ }).  No value.  */
7555      if (!TREE_SIDE_EFFECTS (last))
7556	return body;
7557
7558      /* If we're supposed to generate side effects warnings, process
7559	 all of the statements except the last.  */
7560      if (extra_warnings || warn_unused_value)
7561	{
7562	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7563	    emit_side_effect_warnings (tsi_stmt (i));
7564	}
7565      else
7566	i = tsi_last (last);
7567      last_p = tsi_stmt_ptr (i);
7568      last = *last_p;
7569    }
7570
7571  /* If the end of the list is exception related, then the list was split
7572     by a call to push_cleanup.  Continue searching.  */
7573  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7574      || TREE_CODE (last) == TRY_CATCH_EXPR)
7575    {
7576      last_p = &TREE_OPERAND (last, 0);
7577      last = *last_p;
7578      goto continue_searching;
7579    }
7580
7581  /* In the case that the BIND_EXPR is not necessary, return the
7582     expression out from inside it.  */
7583  if (last == error_mark_node
7584      || (last == BIND_EXPR_BODY (body)
7585	  && BIND_EXPR_VARS (body) == NULL))
7586    {
7587      /* Do not warn if the return value of a statement expression is
7588	 unused.  */
7589      if (EXPR_P (last))
7590	TREE_NO_WARNING (last) = 1;
7591      return last;
7592    }
7593
7594  /* Extract the type of said expression.  */
7595  type = TREE_TYPE (last);
7596
7597  /* If we're not returning a value at all, then the BIND_EXPR that
7598     we already have is a fine expression to return.  */
7599  if (!type || VOID_TYPE_P (type))
7600    return body;
7601
7602  /* Now that we've located the expression containing the value, it seems
7603     silly to make voidify_wrapper_expr repeat the process.  Create a
7604     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7605  tmp = create_tmp_var_raw (type, NULL);
7606
7607  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7608     tree_expr_nonnegative_p giving up immediately.  */
7609  val = last;
7610  if (TREE_CODE (val) == NOP_EXPR
7611      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7612    val = TREE_OPERAND (val, 0);
7613
7614  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7615  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7616
7617  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7618}
7619
7620/* Begin the scope of an identifier of variably modified type, scope
7621   number SCOPE.  Jumping from outside this scope to inside it is not
7622   permitted.  */
7623
7624void
7625c_begin_vm_scope (unsigned int scope)
7626{
7627  struct c_label_context_vm *nstack;
7628  struct c_label_list *glist;
7629
7630  gcc_assert (scope > 0);
7631
7632  /* At file_scope, we don't have to do any processing.  */
7633  if (label_context_stack_vm == NULL)
7634    return;
7635
7636  if (c_switch_stack && !c_switch_stack->blocked_vm)
7637    c_switch_stack->blocked_vm = scope;
7638  for (glist = label_context_stack_vm->labels_used;
7639       glist != NULL;
7640       glist = glist->next)
7641    {
7642      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7643    }
7644  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7645  nstack->labels_def = NULL;
7646  nstack->labels_used = NULL;
7647  nstack->scope = scope;
7648  nstack->next = label_context_stack_vm;
7649  label_context_stack_vm = nstack;
7650}
7651
7652/* End a scope which may contain identifiers of variably modified
7653   type, scope number SCOPE.  */
7654
7655void
7656c_end_vm_scope (unsigned int scope)
7657{
7658  if (label_context_stack_vm == NULL)
7659    return;
7660  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7661    c_switch_stack->blocked_vm = 0;
7662  /* We may have a number of nested scopes of identifiers with
7663     variably modified type, all at this depth.  Pop each in turn.  */
7664  while (label_context_stack_vm->scope == scope)
7665    {
7666      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7667
7668      /* It is no longer possible to jump to labels defined within this
7669	 scope.  */
7670      for (dlist = label_context_stack_vm->labels_def;
7671	   dlist != NULL;
7672	   dlist = dlist->next)
7673	{
7674	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7675	}
7676      /* It is again possible to define labels with a goto just outside
7677	 this scope.  */
7678      for (glist = label_context_stack_vm->next->labels_used;
7679	   glist != NULL;
7680	   glist = glist->next)
7681	{
7682	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7683	  glist_prev = glist;
7684	}
7685      if (glist_prev != NULL)
7686	glist_prev->next = label_context_stack_vm->labels_used;
7687      else
7688	label_context_stack_vm->next->labels_used
7689	  = label_context_stack_vm->labels_used;
7690      label_context_stack_vm = label_context_stack_vm->next;
7691    }
7692}
7693
7694/* Begin and end compound statements.  This is as simple as pushing
7695   and popping new statement lists from the tree.  */
7696
7697tree
7698c_begin_compound_stmt (bool do_scope)
7699{
7700  tree stmt = push_stmt_list ();
7701  if (do_scope)
7702    push_scope ();
7703  return stmt;
7704}
7705
7706tree
7707c_end_compound_stmt (tree stmt, bool do_scope)
7708{
7709  tree block = NULL;
7710
7711  if (do_scope)
7712    {
7713      if (c_dialect_objc ())
7714	objc_clear_super_receiver ();
7715      block = pop_scope ();
7716    }
7717
7718  stmt = pop_stmt_list (stmt);
7719  stmt = c_build_bind_expr (block, stmt);
7720
7721  /* If this compound statement is nested immediately inside a statement
7722     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7723     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7724     STATEMENT_LISTs merge, and thus we can lose track of what statement
7725     was really last.  */
7726  if (cur_stmt_list
7727      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7728      && TREE_CODE (stmt) != BIND_EXPR)
7729    {
7730      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7731      TREE_SIDE_EFFECTS (stmt) = 1;
7732    }
7733
7734  return stmt;
7735}
7736
7737/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7738   when the current scope is exited.  EH_ONLY is true when this is not
7739   meant to apply to normal control flow transfer.  */
7740
7741void
7742push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7743{
7744  enum tree_code code;
7745  tree stmt, list;
7746  bool stmt_expr;
7747
7748  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7749  stmt = build_stmt (code, NULL, cleanup);
7750  add_stmt (stmt);
7751  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7752  list = push_stmt_list ();
7753  TREE_OPERAND (stmt, 0) = list;
7754  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7755}
7756
7757/* Build a binary-operation expression without default conversions.
7758   CODE is the kind of expression to build.
7759   This function differs from `build' in several ways:
7760   the data type of the result is computed and recorded in it,
7761   warnings are generated if arg data types are invalid,
7762   special handling for addition and subtraction of pointers is known,
7763   and some optimization is done (operations on narrow ints
7764   are done in the narrower type when that gives the same result).
7765   Constant folding is also done before the result is returned.
7766
7767   Note that the operands will never have enumeral types, or function
7768   or array types, because either they will have the default conversions
7769   performed or they have both just been converted to some other type in which
7770   the arithmetic is to be done.  */
7771
7772tree
7773build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7774		 int convert_p)
7775{
7776  tree type0, type1;
7777  enum tree_code code0, code1;
7778  tree op0, op1;
7779  const char *invalid_op_diag;
7780
7781  /* Expression code to give to the expression when it is built.
7782     Normally this is CODE, which is what the caller asked for,
7783     but in some special cases we change it.  */
7784  enum tree_code resultcode = code;
7785
7786  /* Data type in which the computation is to be performed.
7787     In the simplest cases this is the common type of the arguments.  */
7788  tree result_type = NULL;
7789
7790  /* Nonzero means operands have already been type-converted
7791     in whatever way is necessary.
7792     Zero means they need to be converted to RESULT_TYPE.  */
7793  int converted = 0;
7794
7795  /* Nonzero means create the expression with this type, rather than
7796     RESULT_TYPE.  */
7797  tree build_type = 0;
7798
7799  /* Nonzero means after finally constructing the expression
7800     convert it to this type.  */
7801  tree final_type = 0;
7802
7803  /* Nonzero if this is an operation like MIN or MAX which can
7804     safely be computed in short if both args are promoted shorts.
7805     Also implies COMMON.
7806     -1 indicates a bitwise operation; this makes a difference
7807     in the exact conditions for when it is safe to do the operation
7808     in a narrower mode.  */
7809  int shorten = 0;
7810
7811  /* Nonzero if this is a comparison operation;
7812     if both args are promoted shorts, compare the original shorts.
7813     Also implies COMMON.  */
7814  int short_compare = 0;
7815
7816  /* Nonzero if this is a right-shift operation, which can be computed on the
7817     original short and then promoted if the operand is a promoted short.  */
7818  int short_shift = 0;
7819
7820  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7821  int common = 0;
7822
7823  /* True means types are compatible as far as ObjC is concerned.  */
7824  bool objc_ok;
7825
7826  if (convert_p)
7827    {
7828      op0 = default_conversion (orig_op0);
7829      op1 = default_conversion (orig_op1);
7830    }
7831  else
7832    {
7833      op0 = orig_op0;
7834      op1 = orig_op1;
7835    }
7836
7837  type0 = TREE_TYPE (op0);
7838  type1 = TREE_TYPE (op1);
7839
7840  /* The expression codes of the data types of the arguments tell us
7841     whether the arguments are integers, floating, pointers, etc.  */
7842  code0 = TREE_CODE (type0);
7843  code1 = TREE_CODE (type1);
7844
7845  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7846  STRIP_TYPE_NOPS (op0);
7847  STRIP_TYPE_NOPS (op1);
7848
7849  /* If an error was already reported for one of the arguments,
7850     avoid reporting another error.  */
7851
7852  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7853    return error_mark_node;
7854
7855  if ((invalid_op_diag
7856       = targetm.invalid_binary_op (code, type0, type1)))
7857    {
7858      error (invalid_op_diag);
7859      return error_mark_node;
7860    }
7861
7862  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7863
7864  switch (code)
7865    {
7866    case PLUS_EXPR:
7867      /* Handle the pointer + int case.  */
7868      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7869	return pointer_int_sum (PLUS_EXPR, op0, op1);
7870      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7871	return pointer_int_sum (PLUS_EXPR, op1, op0);
7872      else
7873	common = 1;
7874      break;
7875
7876    case MINUS_EXPR:
7877      /* Subtraction of two similar pointers.
7878	 We must subtract them as integers, then divide by object size.  */
7879      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7880	  && comp_target_types (type0, type1))
7881	return pointer_diff (op0, op1);
7882      /* Handle pointer minus int.  Just like pointer plus int.  */
7883      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7884	return pointer_int_sum (MINUS_EXPR, op0, op1);
7885      else
7886	common = 1;
7887      break;
7888
7889    case MULT_EXPR:
7890      common = 1;
7891      break;
7892
7893    case TRUNC_DIV_EXPR:
7894    case CEIL_DIV_EXPR:
7895    case FLOOR_DIV_EXPR:
7896    case ROUND_DIV_EXPR:
7897    case EXACT_DIV_EXPR:
7898      /* Floating point division by zero is a legitimate way to obtain
7899	 infinities and NaNs.  */
7900      if (skip_evaluation == 0 && integer_zerop (op1))
7901	warning (OPT_Wdiv_by_zero, "division by zero");
7902
7903      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7904	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7905	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7906	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7907	{
7908	  enum tree_code tcode0 = code0, tcode1 = code1;
7909
7910	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7911	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7912	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7913	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7914
7915	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7916	    resultcode = RDIV_EXPR;
7917	  else
7918	    /* Although it would be tempting to shorten always here, that
7919	       loses on some targets, since the modulo instruction is
7920	       undefined if the quotient can't be represented in the
7921	       computation mode.  We shorten only if unsigned or if
7922	       dividing by something we know != -1.  */
7923	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7924		       || (TREE_CODE (op1) == INTEGER_CST
7925			   && !integer_all_onesp (op1)));
7926	  common = 1;
7927	}
7928      break;
7929
7930    case BIT_AND_EXPR:
7931    case BIT_IOR_EXPR:
7932    case BIT_XOR_EXPR:
7933      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7934	shorten = -1;
7935      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7936	common = 1;
7937      break;
7938
7939    case TRUNC_MOD_EXPR:
7940    case FLOOR_MOD_EXPR:
7941      if (skip_evaluation == 0 && integer_zerop (op1))
7942	warning (OPT_Wdiv_by_zero, "division by zero");
7943
7944      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7945	{
7946	  /* Although it would be tempting to shorten always here, that loses
7947	     on some targets, since the modulo instruction is undefined if the
7948	     quotient can't be represented in the computation mode.  We shorten
7949	     only if unsigned or if dividing by something we know != -1.  */
7950	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7951		     || (TREE_CODE (op1) == INTEGER_CST
7952			 && !integer_all_onesp (op1)));
7953	  common = 1;
7954	}
7955      break;
7956
7957    case TRUTH_ANDIF_EXPR:
7958    case TRUTH_ORIF_EXPR:
7959    case TRUTH_AND_EXPR:
7960    case TRUTH_OR_EXPR:
7961    case TRUTH_XOR_EXPR:
7962      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7963	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7964	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7965	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7966	{
7967	  /* Result of these operations is always an int,
7968	     but that does not mean the operands should be
7969	     converted to ints!  */
7970	  result_type = integer_type_node;
7971	  op0 = c_common_truthvalue_conversion (op0);
7972	  op1 = c_common_truthvalue_conversion (op1);
7973	  converted = 1;
7974	}
7975      break;
7976
7977      /* Shift operations: result has same type as first operand;
7978	 always convert second operand to int.
7979	 Also set SHORT_SHIFT if shifting rightward.  */
7980
7981    case RSHIFT_EXPR:
7982      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7983	{
7984	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7985	    {
7986	      if (tree_int_cst_sgn (op1) < 0)
7987		warning (0, "right shift count is negative");
7988	      else
7989		{
7990		  if (!integer_zerop (op1))
7991		    short_shift = 1;
7992
7993		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7994		    warning (0, "right shift count >= width of type");
7995		}
7996	    }
7997
7998	  /* Use the type of the value to be shifted.  */
7999	  result_type = type0;
8000	  /* Convert the shift-count to an integer, regardless of size
8001	     of value being shifted.  */
8002	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8003	    op1 = convert (integer_type_node, op1);
8004	  /* Avoid converting op1 to result_type later.  */
8005	  converted = 1;
8006	}
8007      break;
8008
8009    case LSHIFT_EXPR:
8010      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8011	{
8012	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8013	    {
8014	      if (tree_int_cst_sgn (op1) < 0)
8015		warning (0, "left shift count is negative");
8016
8017	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8018		warning (0, "left shift count >= width of type");
8019	    }
8020
8021	  /* Use the type of the value to be shifted.  */
8022	  result_type = type0;
8023	  /* Convert the shift-count to an integer, regardless of size
8024	     of value being shifted.  */
8025	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8026	    op1 = convert (integer_type_node, op1);
8027	  /* Avoid converting op1 to result_type later.  */
8028	  converted = 1;
8029	}
8030      break;
8031
8032    case EQ_EXPR:
8033    case NE_EXPR:
8034      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8035	warning (OPT_Wfloat_equal,
8036		 "comparing floating point with == or != is unsafe");
8037      /* Result of comparison is always int,
8038	 but don't convert the args to int!  */
8039      build_type = integer_type_node;
8040      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8041	   || code0 == COMPLEX_TYPE)
8042	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8043	      || code1 == COMPLEX_TYPE))
8044	short_compare = 1;
8045      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8046	{
8047	  tree tt0 = TREE_TYPE (type0);
8048	  tree tt1 = TREE_TYPE (type1);
8049	  /* Anything compares with void *.  void * compares with anything.
8050	     Otherwise, the targets must be compatible
8051	     and both must be object or both incomplete.  */
8052	  if (comp_target_types (type0, type1))
8053	    result_type = common_pointer_type (type0, type1);
8054	  else if (VOID_TYPE_P (tt0))
8055	    {
8056	      /* op0 != orig_op0 detects the case of something
8057		 whose value is 0 but which isn't a valid null ptr const.  */
8058	      if (pedantic && !null_pointer_constant_p (orig_op0)
8059		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8060		pedwarn ("ISO C forbids comparison of %<void *%>"
8061			 " with function pointer");
8062	    }
8063	  else if (VOID_TYPE_P (tt1))
8064	    {
8065	      if (pedantic && !null_pointer_constant_p (orig_op1)
8066		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8067		pedwarn ("ISO C forbids comparison of %<void *%>"
8068			 " with function pointer");
8069	    }
8070	  else
8071	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8072	    if (!objc_ok)
8073	      pedwarn ("comparison of distinct pointer types lacks a cast");
8074
8075	  if (result_type == NULL_TREE)
8076	    result_type = ptr_type_node;
8077	}
8078      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8079	{
8080	  if (TREE_CODE (op0) == ADDR_EXPR
8081	      && DECL_P (TREE_OPERAND (op0, 0))
8082	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8083		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8084		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8085	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8086		     TREE_OPERAND (op0, 0));
8087	  result_type = type0;
8088	}
8089      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8090	{
8091	  if (TREE_CODE (op1) == ADDR_EXPR
8092	      && DECL_P (TREE_OPERAND (op1, 0))
8093	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8094		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8095		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8096	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8097		     TREE_OPERAND (op1, 0));
8098	  result_type = type1;
8099	}
8100      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8101	{
8102	  result_type = type0;
8103	  pedwarn ("comparison between pointer and integer");
8104	}
8105      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8106	{
8107	  result_type = type1;
8108	  pedwarn ("comparison between pointer and integer");
8109	}
8110      break;
8111
8112    case LE_EXPR:
8113    case GE_EXPR:
8114    case LT_EXPR:
8115    case GT_EXPR:
8116      build_type = integer_type_node;
8117      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8118	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8119	short_compare = 1;
8120      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8121	{
8122	  if (comp_target_types (type0, type1))
8123	    {
8124	      result_type = common_pointer_type (type0, type1);
8125	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8126		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8127		pedwarn ("comparison of complete and incomplete pointers");
8128	      else if (pedantic
8129		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8130		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8131	    }
8132	  else
8133	    {
8134	      result_type = ptr_type_node;
8135	      pedwarn ("comparison of distinct pointer types lacks a cast");
8136	    }
8137	}
8138      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8139	{
8140	  result_type = type0;
8141	  if (pedantic || extra_warnings)
8142	    pedwarn ("ordered comparison of pointer with integer zero");
8143	}
8144      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8145	{
8146	  result_type = type1;
8147	  if (pedantic)
8148	    pedwarn ("ordered comparison of pointer with integer zero");
8149	}
8150      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8151	{
8152	  result_type = type0;
8153	  pedwarn ("comparison between pointer and integer");
8154	}
8155      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8156	{
8157	  result_type = type1;
8158	  pedwarn ("comparison between pointer and integer");
8159	}
8160      break;
8161
8162    default:
8163      gcc_unreachable ();
8164    }
8165
8166  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8167    return error_mark_node;
8168
8169  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8170      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8171	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8172						    TREE_TYPE (type1))))
8173    {
8174      binary_op_error (code);
8175      return error_mark_node;
8176    }
8177
8178  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8179       || code0 == VECTOR_TYPE)
8180      &&
8181      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8182       || code1 == VECTOR_TYPE))
8183    {
8184      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8185
8186      if (shorten || common || short_compare)
8187	result_type = c_common_type (type0, type1);
8188
8189      /* For certain operations (which identify themselves by shorten != 0)
8190	 if both args were extended from the same smaller type,
8191	 do the arithmetic in that type and then extend.
8192
8193	 shorten !=0 and !=1 indicates a bitwise operation.
8194	 For them, this optimization is safe only if
8195	 both args are zero-extended or both are sign-extended.
8196	 Otherwise, we might change the result.
8197	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8198	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8199
8200      if (shorten && none_complex)
8201	{
8202	  int unsigned0, unsigned1;
8203	  tree arg0, arg1;
8204	  int uns;
8205	  tree type;
8206
8207	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8208	     excessive narrowing when we call get_narrower below.  For
8209	     example, suppose that OP0 is of unsigned int extended
8210	     from signed char and that RESULT_TYPE is long long int.
8211	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8212	     like
8213
8214	       (long long int) (unsigned int) signed_char
8215
8216	     which get_narrower would narrow down to
8217
8218	       (unsigned int) signed char
8219
8220	     If we do not cast OP0 first, get_narrower would return
8221	     signed_char, which is inconsistent with the case of the
8222	     explicit cast.  */
8223	  op0 = convert (result_type, op0);
8224	  op1 = convert (result_type, op1);
8225
8226	  arg0 = get_narrower (op0, &unsigned0);
8227	  arg1 = get_narrower (op1, &unsigned1);
8228
8229	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8230	  uns = TYPE_UNSIGNED (result_type);
8231
8232	  final_type = result_type;
8233
8234	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8235	     but it *requires* conversion to FINAL_TYPE.  */
8236
8237	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8238	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8239	      && TREE_TYPE (op0) != final_type)
8240	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8241	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8242	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8243	      && TREE_TYPE (op1) != final_type)
8244	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8245
8246	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8247
8248	  /* For bitwise operations, signedness of nominal type
8249	     does not matter.  Consider only how operands were extended.  */
8250	  if (shorten == -1)
8251	    uns = unsigned0;
8252
8253	  /* Note that in all three cases below we refrain from optimizing
8254	     an unsigned operation on sign-extended args.
8255	     That would not be valid.  */
8256
8257	  /* Both args variable: if both extended in same way
8258	     from same width, do it in that width.
8259	     Do it unsigned if args were zero-extended.  */
8260	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8261	       < TYPE_PRECISION (result_type))
8262	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8263		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8264	      && unsigned0 == unsigned1
8265	      && (unsigned0 || !uns))
8266	    result_type
8267	      = c_common_signed_or_unsigned_type
8268	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8269	  else if (TREE_CODE (arg0) == INTEGER_CST
8270		   && (unsigned1 || !uns)
8271		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8272		       < TYPE_PRECISION (result_type))
8273		   && (type
8274		       = c_common_signed_or_unsigned_type (unsigned1,
8275							   TREE_TYPE (arg1)),
8276		       int_fits_type_p (arg0, type)))
8277	    result_type = type;
8278	  else if (TREE_CODE (arg1) == INTEGER_CST
8279		   && (unsigned0 || !uns)
8280		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8281		       < TYPE_PRECISION (result_type))
8282		   && (type
8283		       = c_common_signed_or_unsigned_type (unsigned0,
8284							   TREE_TYPE (arg0)),
8285		       int_fits_type_p (arg1, type)))
8286	    result_type = type;
8287	}
8288
8289      /* Shifts can be shortened if shifting right.  */
8290
8291      if (short_shift)
8292	{
8293	  int unsigned_arg;
8294	  tree arg0 = get_narrower (op0, &unsigned_arg);
8295
8296	  final_type = result_type;
8297
8298	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8299	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8300
8301	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8302	      /* We can shorten only if the shift count is less than the
8303		 number of bits in the smaller type size.  */
8304	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8305	      /* We cannot drop an unsigned shift after sign-extension.  */
8306	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8307	    {
8308	      /* Do an unsigned shift if the operand was zero-extended.  */
8309	      result_type
8310		= c_common_signed_or_unsigned_type (unsigned_arg,
8311						    TREE_TYPE (arg0));
8312	      /* Convert value-to-be-shifted to that type.  */
8313	      if (TREE_TYPE (op0) != result_type)
8314		op0 = convert (result_type, op0);
8315	      converted = 1;
8316	    }
8317	}
8318
8319      /* Comparison operations are shortened too but differently.
8320	 They identify themselves by setting short_compare = 1.  */
8321
8322      if (short_compare)
8323	{
8324	  /* Don't write &op0, etc., because that would prevent op0
8325	     from being kept in a register.
8326	     Instead, make copies of the our local variables and
8327	     pass the copies by reference, then copy them back afterward.  */
8328	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8329	  enum tree_code xresultcode = resultcode;
8330	  tree val
8331	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8332
8333	  if (val != 0)
8334	    return val;
8335
8336	  op0 = xop0, op1 = xop1;
8337	  converted = 1;
8338	  resultcode = xresultcode;
8339
8340	  if (warn_sign_compare && skip_evaluation == 0)
8341	    {
8342	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8343	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8344	      int unsignedp0, unsignedp1;
8345	      tree primop0 = get_narrower (op0, &unsignedp0);
8346	      tree primop1 = get_narrower (op1, &unsignedp1);
8347
8348	      xop0 = orig_op0;
8349	      xop1 = orig_op1;
8350	      STRIP_TYPE_NOPS (xop0);
8351	      STRIP_TYPE_NOPS (xop1);
8352
8353	      /* Give warnings for comparisons between signed and unsigned
8354		 quantities that may fail.
8355
8356		 Do the checking based on the original operand trees, so that
8357		 casts will be considered, but default promotions won't be.
8358
8359		 Do not warn if the comparison is being done in a signed type,
8360		 since the signed type will only be chosen if it can represent
8361		 all the values of the unsigned type.  */
8362	      if (!TYPE_UNSIGNED (result_type))
8363		/* OK */;
8364	      /* Do not warn if both operands are the same signedness.  */
8365	      else if (op0_signed == op1_signed)
8366		/* OK */;
8367	      else
8368		{
8369		  tree sop, uop;
8370		  bool ovf;
8371
8372		  if (op0_signed)
8373		    sop = xop0, uop = xop1;
8374		  else
8375		    sop = xop1, uop = xop0;
8376
8377		  /* Do not warn if the signed quantity is an
8378		     unsuffixed integer literal (or some static
8379		     constant expression involving such literals or a
8380		     conditional expression involving such literals)
8381		     and it is non-negative.  */
8382		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8383		    /* OK */;
8384		  /* Do not warn if the comparison is an equality operation,
8385		     the unsigned quantity is an integral constant, and it
8386		     would fit in the result if the result were signed.  */
8387		  else if (TREE_CODE (uop) == INTEGER_CST
8388			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8389			   && int_fits_type_p
8390			   (uop, c_common_signed_type (result_type)))
8391		    /* OK */;
8392		  /* Do not warn if the unsigned quantity is an enumeration
8393		     constant and its maximum value would fit in the result
8394		     if the result were signed.  */
8395		  else if (TREE_CODE (uop) == INTEGER_CST
8396			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8397			   && int_fits_type_p
8398			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8399			    c_common_signed_type (result_type)))
8400		    /* OK */;
8401		  else
8402		    warning (0, "comparison between signed and unsigned");
8403		}
8404
8405	      /* Warn if two unsigned values are being compared in a size
8406		 larger than their original size, and one (and only one) is the
8407		 result of a `~' operator.  This comparison will always fail.
8408
8409		 Also warn if one operand is a constant, and the constant
8410		 does not have all bits set that are set in the ~ operand
8411		 when it is extended.  */
8412
8413	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8414		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8415		{
8416		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8417		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8418					    &unsignedp0);
8419		  else
8420		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8421					    &unsignedp1);
8422
8423		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8424		    {
8425		      tree primop;
8426		      HOST_WIDE_INT constant, mask;
8427		      int unsignedp, bits;
8428
8429		      if (host_integerp (primop0, 0))
8430			{
8431			  primop = primop1;
8432			  unsignedp = unsignedp1;
8433			  constant = tree_low_cst (primop0, 0);
8434			}
8435		      else
8436			{
8437			  primop = primop0;
8438			  unsignedp = unsignedp0;
8439			  constant = tree_low_cst (primop1, 0);
8440			}
8441
8442		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8443		      if (bits < TYPE_PRECISION (result_type)
8444			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8445			{
8446			  mask = (~(HOST_WIDE_INT) 0) << bits;
8447			  if ((mask & constant) != mask)
8448			    warning (0, "comparison of promoted ~unsigned with constant");
8449			}
8450		    }
8451		  else if (unsignedp0 && unsignedp1
8452			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8453			       < TYPE_PRECISION (result_type))
8454			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8455			       < TYPE_PRECISION (result_type)))
8456		    warning (0, "comparison of promoted ~unsigned with unsigned");
8457		}
8458	    }
8459	}
8460    }
8461
8462  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8463     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8464     Then the expression will be built.
8465     It will be given type FINAL_TYPE if that is nonzero;
8466     otherwise, it will be given type RESULT_TYPE.  */
8467
8468  if (!result_type)
8469    {
8470      binary_op_error (code);
8471      return error_mark_node;
8472    }
8473
8474  if (!converted)
8475    {
8476      if (TREE_TYPE (op0) != result_type)
8477	op0 = convert_and_check (result_type, op0);
8478      if (TREE_TYPE (op1) != result_type)
8479	op1 = convert_and_check (result_type, op1);
8480
8481      /* This can happen if one operand has a vector type, and the other
8482	 has a different type.  */
8483      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8484	return error_mark_node;
8485    }
8486
8487  if (build_type == NULL_TREE)
8488    build_type = result_type;
8489
8490  {
8491    /* Treat expressions in initializers specially as they can't trap.  */
8492    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8493								    build_type,
8494								    op0, op1)
8495					 : fold_build2 (resultcode, build_type,
8496							op0, op1);
8497
8498    if (final_type != 0)
8499      result = convert (final_type, result);
8500    return result;
8501  }
8502}
8503
8504
8505/* Convert EXPR to be a truth-value, validating its type for this
8506   purpose.  */
8507
8508tree
8509c_objc_common_truthvalue_conversion (tree expr)
8510{
8511  switch (TREE_CODE (TREE_TYPE (expr)))
8512    {
8513    case ARRAY_TYPE:
8514      error ("used array that cannot be converted to pointer where scalar is required");
8515      return error_mark_node;
8516
8517    case RECORD_TYPE:
8518      error ("used struct type value where scalar is required");
8519      return error_mark_node;
8520
8521    case UNION_TYPE:
8522      error ("used union type value where scalar is required");
8523      return error_mark_node;
8524
8525    case FUNCTION_TYPE:
8526      gcc_unreachable ();
8527
8528    default:
8529      break;
8530    }
8531
8532  /* ??? Should we also give an error for void and vectors rather than
8533     leaving those to give errors later?  */
8534  return c_common_truthvalue_conversion (expr);
8535}
8536
8537
8538/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8539   required.  */
8540
8541tree
8542c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8543		bool *ti ATTRIBUTE_UNUSED, bool *se)
8544{
8545  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8546    {
8547      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8548      /* Executing a compound literal inside a function reinitializes
8549	 it.  */
8550      if (!TREE_STATIC (decl))
8551	*se = true;
8552      return decl;
8553    }
8554  else
8555    return expr;
8556}
8557
8558/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8559
8560tree
8561c_begin_omp_parallel (void)
8562{
8563  tree block;
8564
8565  keep_next_level ();
8566  block = c_begin_compound_stmt (true);
8567
8568  return block;
8569}
8570
8571tree
8572c_finish_omp_parallel (tree clauses, tree block)
8573{
8574  tree stmt;
8575
8576  block = c_end_compound_stmt (block, true);
8577
8578  stmt = make_node (OMP_PARALLEL);
8579  TREE_TYPE (stmt) = void_type_node;
8580  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8581  OMP_PARALLEL_BODY (stmt) = block;
8582
8583  return add_stmt (stmt);
8584}
8585
8586/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8587   Remove any elements from the list that are invalid.  */
8588
8589tree
8590c_finish_omp_clauses (tree clauses)
8591{
8592  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8593  tree c, t, *pc = &clauses;
8594  const char *name;
8595
8596  bitmap_obstack_initialize (NULL);
8597  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8598  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8599  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8600
8601  for (pc = &clauses, c = clauses; c ; c = *pc)
8602    {
8603      bool remove = false;
8604      bool need_complete = false;
8605      bool need_implicitly_determined = false;
8606
8607      switch (OMP_CLAUSE_CODE (c))
8608	{
8609	case OMP_CLAUSE_SHARED:
8610	  name = "shared";
8611	  need_implicitly_determined = true;
8612	  goto check_dup_generic;
8613
8614	case OMP_CLAUSE_PRIVATE:
8615	  name = "private";
8616	  need_complete = true;
8617	  need_implicitly_determined = true;
8618	  goto check_dup_generic;
8619
8620	case OMP_CLAUSE_REDUCTION:
8621	  name = "reduction";
8622	  need_implicitly_determined = true;
8623	  t = OMP_CLAUSE_DECL (c);
8624	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8625	      || POINTER_TYPE_P (TREE_TYPE (t)))
8626	    {
8627	      error ("%qE has invalid type for %<reduction%>", t);
8628	      remove = true;
8629	    }
8630	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8631	    {
8632	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8633	      const char *r_name = NULL;
8634
8635	      switch (r_code)
8636		{
8637		case PLUS_EXPR:
8638		case MULT_EXPR:
8639		case MINUS_EXPR:
8640		  break;
8641		case BIT_AND_EXPR:
8642		  r_name = "&";
8643		  break;
8644		case BIT_XOR_EXPR:
8645		  r_name = "^";
8646		  break;
8647		case BIT_IOR_EXPR:
8648		  r_name = "|";
8649		  break;
8650		case TRUTH_ANDIF_EXPR:
8651		  r_name = "&&";
8652		  break;
8653		case TRUTH_ORIF_EXPR:
8654		  r_name = "||";
8655		  break;
8656		default:
8657		  gcc_unreachable ();
8658		}
8659	      if (r_name)
8660		{
8661		  error ("%qE has invalid type for %<reduction(%s)%>",
8662			 t, r_name);
8663		  remove = true;
8664		}
8665	    }
8666	  goto check_dup_generic;
8667
8668	case OMP_CLAUSE_COPYPRIVATE:
8669	  name = "copyprivate";
8670	  goto check_dup_generic;
8671
8672	case OMP_CLAUSE_COPYIN:
8673	  name = "copyin";
8674	  t = OMP_CLAUSE_DECL (c);
8675	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8676	    {
8677	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8678	      remove = true;
8679	    }
8680	  goto check_dup_generic;
8681
8682	check_dup_generic:
8683	  t = OMP_CLAUSE_DECL (c);
8684	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8685	    {
8686	      error ("%qE is not a variable in clause %qs", t, name);
8687	      remove = true;
8688	    }
8689	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8690		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8691		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8692	    {
8693	      error ("%qE appears more than once in data clauses", t);
8694	      remove = true;
8695	    }
8696	  else
8697	    bitmap_set_bit (&generic_head, DECL_UID (t));
8698	  break;
8699
8700	case OMP_CLAUSE_FIRSTPRIVATE:
8701	  name = "firstprivate";
8702	  t = OMP_CLAUSE_DECL (c);
8703	  need_complete = true;
8704	  need_implicitly_determined = true;
8705	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8706	    {
8707	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8708	      remove = true;
8709	    }
8710	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8711		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8712	    {
8713	      error ("%qE appears more than once in data clauses", t);
8714	      remove = true;
8715	    }
8716	  else
8717	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8718	  break;
8719
8720	case OMP_CLAUSE_LASTPRIVATE:
8721	  name = "lastprivate";
8722	  t = OMP_CLAUSE_DECL (c);
8723	  need_complete = true;
8724	  need_implicitly_determined = true;
8725	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8726	    {
8727	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8728	      remove = true;
8729	    }
8730	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8731		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8732	    {
8733	      error ("%qE appears more than once in data clauses", t);
8734	      remove = true;
8735	    }
8736	  else
8737	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8738	  break;
8739
8740	case OMP_CLAUSE_IF:
8741	case OMP_CLAUSE_NUM_THREADS:
8742	case OMP_CLAUSE_SCHEDULE:
8743	case OMP_CLAUSE_NOWAIT:
8744	case OMP_CLAUSE_ORDERED:
8745	case OMP_CLAUSE_DEFAULT:
8746	  pc = &OMP_CLAUSE_CHAIN (c);
8747	  continue;
8748
8749	default:
8750	  gcc_unreachable ();
8751	}
8752
8753      if (!remove)
8754	{
8755	  t = OMP_CLAUSE_DECL (c);
8756
8757	  if (need_complete)
8758	    {
8759	      t = require_complete_type (t);
8760	      if (t == error_mark_node)
8761		remove = true;
8762	    }
8763
8764	  if (need_implicitly_determined)
8765	    {
8766	      const char *share_name = NULL;
8767
8768	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8769		share_name = "threadprivate";
8770	      else switch (c_omp_predetermined_sharing (t))
8771		{
8772		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8773		  break;
8774		case OMP_CLAUSE_DEFAULT_SHARED:
8775		  share_name = "shared";
8776		  break;
8777		case OMP_CLAUSE_DEFAULT_PRIVATE:
8778		  share_name = "private";
8779		  break;
8780		default:
8781		  gcc_unreachable ();
8782		}
8783	      if (share_name)
8784		{
8785		  error ("%qE is predetermined %qs for %qs",
8786			 t, share_name, name);
8787		  remove = true;
8788		}
8789	    }
8790	}
8791
8792      if (remove)
8793	*pc = OMP_CLAUSE_CHAIN (c);
8794      else
8795	pc = &OMP_CLAUSE_CHAIN (c);
8796    }
8797
8798  bitmap_obstack_release (NULL);
8799  return clauses;
8800}
8801