c-typeck.c revision 90075
1243830Sdim/* Build expressions with type checking for C compiler.
2226584Sdim   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3226584Sdim   1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4226584Sdim
5226584SdimThis file is part of GCC.
6226584Sdim
7226584SdimGCC is free software; you can redistribute it and/or modify it under
8226584Sdimthe terms of the GNU General Public License as published by the Free
9226584SdimSoftware Foundation; either version 2, or (at your option) any later
10226584Sdimversion.
11226584Sdim
12226584SdimGCC is distributed in the hope that it will be useful, but WITHOUT ANY
13226584SdimWARRANTY; without even the implied warranty of MERCHANTABILITY or
14251662SdimFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15249423Sdimfor more details.
16226584Sdim
17226584SdimYou should have received a copy of the GNU General Public License
18226584Sdimalong with GCC; see the file COPYING.  If not, write to the Free
19226584SdimSoftware Foundation, 59 Temple Place - Suite 330, Boston, MA
20226584Sdim02111-1307, USA.  */
21226584Sdim
22226584Sdim
23226584Sdim/* This file is part of the C front end.
24226584Sdim   It contains routines to build C expressions given their operands,
25226584Sdim   including computing the types of the result, C-specific error checks,
26226584Sdim   and some optimization.
27226584Sdim
28226584Sdim   There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
29226584Sdim   and to process initializations in declarations (since they work
30234353Sdim   like a strange sort of assignment).  */
31226584Sdim
32226584Sdim#include "config.h"
33226584Sdim#include "system.h"
34226584Sdim#include "rtl.h"
35226584Sdim#include "tree.h"
36226584Sdim#include "c-tree.h"
37226584Sdim#include "tm_p.h"
38226584Sdim#include "flags.h"
39226584Sdim#include "output.h"
40226584Sdim#include "expr.h"
41226584Sdim#include "toplev.h"
42226584Sdim#include "intl.h"
43249423Sdim#include "ggc.h"
44226584Sdim#include "target.h"
45226584Sdim
46226584Sdim/* Nonzero if we've already printed a "missing braces around initializer"
47226584Sdim   message within this initializer.  */
48226584Sdimstatic int missing_braces_mentioned;
49226584Sdim
50226584Sdim/* 1 if we explained undeclared var errors.  */
51226584Sdimstatic int undeclared_variable_notice;
52226584Sdim
53226584Sdimstatic tree qualify_type		PARAMS ((tree, tree));
54226584Sdimstatic int comp_target_types		PARAMS ((tree, tree));
55226584Sdimstatic int function_types_compatible_p	PARAMS ((tree, tree));
56226584Sdimstatic int type_lists_compatible_p	PARAMS ((tree, tree));
57226584Sdimstatic tree decl_constant_value_for_broken_optimization PARAMS ((tree));
58226584Sdimstatic tree default_function_array_conversion	PARAMS ((tree));
59226584Sdimstatic tree lookup_field		PARAMS ((tree, tree));
60226584Sdimstatic tree convert_arguments		PARAMS ((tree, tree, tree, tree));
61226584Sdimstatic tree pointer_int_sum		PARAMS ((enum tree_code, tree, tree));
62226584Sdimstatic tree pointer_diff		PARAMS ((tree, tree));
63226584Sdimstatic tree unary_complex_lvalue	PARAMS ((enum tree_code, tree, int));
64226584Sdimstatic void pedantic_lvalue_warning	PARAMS ((enum tree_code));
65226584Sdimstatic tree internal_build_compound_expr PARAMS ((tree, int));
66226584Sdimstatic tree convert_for_assignment	PARAMS ((tree, tree, const char *,
67226584Sdim						 tree, tree, int));
68226584Sdimstatic void warn_for_assignment		PARAMS ((const char *, const char *,
69226584Sdim						 tree, int));
70226584Sdimstatic tree valid_compound_expr_initializer PARAMS ((tree, tree));
71226584Sdimstatic void push_string			PARAMS ((const char *));
72226584Sdimstatic void push_member_name		PARAMS ((tree));
73226584Sdimstatic void push_array_bounds		PARAMS ((int));
74226584Sdimstatic int spelling_length		PARAMS ((void));
75226584Sdimstatic char *print_spelling		PARAMS ((char *));
76226584Sdimstatic void warning_init		PARAMS ((const char *));
77226584Sdimstatic tree digest_init			PARAMS ((tree, tree, int, int));
78226584Sdimstatic void output_init_element		PARAMS ((tree, tree, tree, int));
79226584Sdimstatic void output_pending_init_elements PARAMS ((int));
80226584Sdimstatic int set_designator		PARAMS ((int));
81226584Sdimstatic void push_range_stack		PARAMS ((tree));
82226584Sdimstatic void add_pending_init		PARAMS ((tree, tree));
83226584Sdimstatic void set_nonincremental_init	PARAMS ((void));
84226584Sdimstatic void set_nonincremental_init_from_string	PARAMS ((tree));
85226584Sdimstatic tree find_init_member		PARAMS ((tree));
86226584Sdim
87226584Sdim/* Do `exp = require_complete_type (exp);' to make sure exp
88226584Sdim   does not have an incomplete type.  (That includes void types.)  */
89226584Sdim
90226584Sdimtree
91226584Sdimrequire_complete_type (value)
92226584Sdim     tree value;
93226584Sdim{
94226584Sdim  tree type = TREE_TYPE (value);
95226584Sdim
96226584Sdim  if (value == error_mark_node || type == error_mark_node)
97251662Sdim    return error_mark_node;
98251662Sdim
99251662Sdim  /* First, detect a valid value with a complete type.  */
100251662Sdim  if (COMPLETE_TYPE_P (type))
101251662Sdim    return value;
102251662Sdim
103251662Sdim  incomplete_type_error (value, type);
104251662Sdim  return error_mark_node;
105251662Sdim}
106251662Sdim
107251662Sdim/* Print an error message for invalid use of an incomplete type.
108251662Sdim   VALUE is the expression that was used (or 0 if that isn't known)
109251662Sdim   and TYPE is the type that was invalid.  */
110251662Sdim
111226584Sdimvoid
112251662Sdimincomplete_type_error (value, type)
113251662Sdim     tree value;
114251662Sdim     tree type;
115226584Sdim{
116251662Sdim  const char *type_code_string;
117251662Sdim
118251662Sdim  /* Avoid duplicate error message.  */
119251662Sdim  if (TREE_CODE (type) == ERROR_MARK)
120251662Sdim    return;
121251662Sdim
122251662Sdim  if (value != 0 && (TREE_CODE (value) == VAR_DECL
123251662Sdim		     || TREE_CODE (value) == PARM_DECL))
124251662Sdim    error ("`%s' has an incomplete type",
125251662Sdim	   IDENTIFIER_POINTER (DECL_NAME (value)));
126251662Sdim  else
127251662Sdim    {
128226584Sdim    retry:
129226584Sdim      /* We must print an error message.  Be clever about what it says.  */
130251662Sdim
131226584Sdim      switch (TREE_CODE (type))
132226584Sdim	{
133226584Sdim	case RECORD_TYPE:
134251662Sdim	  type_code_string = "struct";
135251662Sdim	  break;
136251662Sdim
137251662Sdim	case UNION_TYPE:
138251662Sdim	  type_code_string = "union";
139251662Sdim	  break;
140251662Sdim
141251662Sdim	case ENUMERAL_TYPE:
142251662Sdim	  type_code_string = "enum";
143251662Sdim	  break;
144251662Sdim
145251662Sdim	case VOID_TYPE:
146251662Sdim	  error ("invalid use of void expression");
147251662Sdim	  return;
148251662Sdim
149251662Sdim	case ARRAY_TYPE:
150251662Sdim	  if (TYPE_DOMAIN (type))
151251662Sdim	    {
152251662Sdim	      type = TREE_TYPE (type);
153251662Sdim	      goto retry;
154251662Sdim	    }
155251662Sdim	  error ("invalid use of array with unspecified bounds");
156226584Sdim	  return;
157251662Sdim
158251662Sdim	default:
159251662Sdim	  abort ();
160251662Sdim	}
161226584Sdim
162251662Sdim      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
163251662Sdim	error ("invalid use of undefined type `%s %s'",
164251662Sdim	       type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
165251662Sdim      else
166251662Sdim	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
167251662Sdim	error ("invalid use of incomplete typedef `%s'",
168251662Sdim	       IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
169226584Sdim    }
170251662Sdim}
171251662Sdim
172251662Sdim/* Return a variant of TYPE which has all the type qualifiers of LIKE
173251662Sdim   as well as those of TYPE.  */
174251662Sdim
175226584Sdimstatic tree
176226584Sdimqualify_type (type, like)
177251662Sdim     tree type, like;
178226584Sdim{
179226584Sdim  return c_build_qualified_type (type,
180243830Sdim				 TYPE_QUALS (type) | TYPE_QUALS (like));
181243830Sdim}
182243830Sdim
183243830Sdim/* Return the common type of two types.
184243830Sdim   We assume that comptypes has already been done and returned 1;
185243830Sdim   if that isn't so, this may crash.  In particular, we assume that qualifiers
186243830Sdim   match.
187243830Sdim
188243830Sdim   This is the type for the result of most arithmetic operations
189243830Sdim   if the operands have the given two types.  */
190226584Sdim
191226584Sdimtree
192226584Sdimcommon_type (t1, t2)
193226584Sdim     tree t1, t2;
194226584Sdim{
195226584Sdim  enum tree_code code1;
196226584Sdim  enum tree_code code2;
197226584Sdim  tree attributes;
198226584Sdim
199226584Sdim  /* Save time if the two types are the same.  */
200226584Sdim
201226584Sdim  if (t1 == t2) return t1;
202226584Sdim
203226584Sdim  /* If one type is nonsense, use the other.  */
204226584Sdim  if (t1 == error_mark_node)
205226584Sdim    return t2;
206226584Sdim  if (t2 == error_mark_node)
207226584Sdim    return t1;
208226584Sdim
209226584Sdim  /* Merge the attributes.  */
210226584Sdim  attributes = (*targetm.merge_type_attributes) (t1, t2);
211226584Sdim
212226584Sdim  /* Treat an enum type as the unsigned integer type of the same width.  */
213226584Sdim
214226584Sdim  if (TREE_CODE (t1) == ENUMERAL_TYPE)
215226584Sdim    t1 = type_for_size (TYPE_PRECISION (t1), 1);
216226584Sdim  if (TREE_CODE (t2) == ENUMERAL_TYPE)
217226584Sdim    t2 = type_for_size (TYPE_PRECISION (t2), 1);
218226584Sdim
219226584Sdim  code1 = TREE_CODE (t1);
220226584Sdim  code2 = TREE_CODE (t2);
221226584Sdim
222226584Sdim  /* If one type is complex, form the common type of the non-complex
223226584Sdim     components, then make that complex.  Use T1 or T2 if it is the
224226584Sdim     required type.  */
225226584Sdim  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
226226584Sdim    {
227243830Sdim      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
228243830Sdim      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
229243830Sdim      tree subtype = common_type (subtype1, subtype2);
230243830Sdim
231226584Sdim      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
232226584Sdim	return build_type_attribute_variant (t1, attributes);
233249423Sdim      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
234226584Sdim	return build_type_attribute_variant (t2, attributes);
235226584Sdim      else
236226584Sdim	return build_type_attribute_variant (build_complex_type (subtype),
237226584Sdim					     attributes);
238226584Sdim    }
239226584Sdim
240226584Sdim  switch (code1)
241243830Sdim    {
242243830Sdim    case INTEGER_TYPE:
243243830Sdim    case REAL_TYPE:
244226584Sdim      /* If only one is real, use it as the result.  */
245226584Sdim
246226584Sdim      if (code1 == REAL_TYPE && code2 != REAL_TYPE)
247226584Sdim	return build_type_attribute_variant (t1, attributes);
248226584Sdim
249226584Sdim      if (code2 == REAL_TYPE && code1 != REAL_TYPE)
250226584Sdim	return build_type_attribute_variant (t2, attributes);
251226584Sdim
252243830Sdim      /* Both real or both integers; use the one with greater precision.  */
253243830Sdim
254243830Sdim      if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
255226584Sdim	return build_type_attribute_variant (t1, attributes);
256226584Sdim      else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
257226584Sdim	return build_type_attribute_variant (t2, attributes);
258226584Sdim
259226584Sdim      /* Same precision.  Prefer longs to ints even when same size.  */
260226584Sdim
261226584Sdim      if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
262226584Sdim	  || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
263243830Sdim	return build_type_attribute_variant (long_unsigned_type_node,
264243830Sdim					     attributes);
265243830Sdim
266243830Sdim      if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
267226584Sdim	  || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
268226584Sdim	{
269226584Sdim	  /* But preserve unsignedness from the other type,
270226584Sdim	     since long cannot hold all the values of an unsigned int.  */
271226584Sdim	  if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
272226584Sdim	     t1 = long_unsigned_type_node;
273243830Sdim	  else
274243830Sdim	     t1 = long_integer_type_node;
275243830Sdim	  return build_type_attribute_variant (t1, attributes);
276243830Sdim	}
277243830Sdim
278243830Sdim      /* Likewise, prefer long double to double even if same size.  */
279243830Sdim      if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
280243830Sdim	  || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
281243830Sdim	return build_type_attribute_variant (long_double_type_node,
282243830Sdim					     attributes);
283226584Sdim
284243830Sdim      /* Otherwise prefer the unsigned one.  */
285243830Sdim
286226584Sdim      if (TREE_UNSIGNED (t1))
287226584Sdim	return build_type_attribute_variant (t1, attributes);
288243830Sdim      else
289243830Sdim	return build_type_attribute_variant (t2, attributes);
290243830Sdim
291243830Sdim    case POINTER_TYPE:
292243830Sdim      /* For two pointers, do this recursively on the target type,
293243830Sdim	 and combine the qualifiers of the two types' targets.  */
294226584Sdim      /* This code was turned off; I don't know why.
295226584Sdim	 But ANSI C specifies doing this with the qualifiers.
296226584Sdim	 So I turned it on again.  */
297226584Sdim      {
298243830Sdim	tree pointed_to_1 = TREE_TYPE (t1);
299226584Sdim	tree pointed_to_2 = TREE_TYPE (t2);
300226584Sdim	tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
301226584Sdim				   TYPE_MAIN_VARIANT (pointed_to_2));
302226584Sdim	t1 = build_pointer_type (c_build_qualified_type
303239462Sdim				 (target,
304239462Sdim				  TYPE_QUALS (pointed_to_1) |
305239462Sdim				  TYPE_QUALS (pointed_to_2)));
306243830Sdim	return build_type_attribute_variant (t1, attributes);
307243830Sdim      }
308243830Sdim#if 0
309243830Sdim      t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
310243830Sdim      return build_type_attribute_variant (t1, attributes);
311243830Sdim#endif
312243830Sdim
313243830Sdim    case ARRAY_TYPE:
314243830Sdim      {
315243830Sdim	tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
316243830Sdim	/* Save space: see if the result is identical to one of the args.  */
317243830Sdim	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
318243830Sdim	  return build_type_attribute_variant (t1, attributes);
319243830Sdim	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
320239462Sdim	  return build_type_attribute_variant (t2, attributes);
321239462Sdim	/* Merge the element types, and have a size if either arg has one.  */
322239462Sdim	t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
323239462Sdim	return build_type_attribute_variant (t1, attributes);
324239462Sdim      }
325243830Sdim
326243830Sdim    case FUNCTION_TYPE:
327243830Sdim      /* Function types: prefer the one that specified arg types.
328239462Sdim	 If both do, merge the arg types.  Also merge the return types.  */
329239462Sdim      {
330239462Sdim	tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
331243830Sdim	tree p1 = TYPE_ARG_TYPES (t1);
332239462Sdim	tree p2 = TYPE_ARG_TYPES (t2);
333243830Sdim	int len;
334239462Sdim	tree newargs, n;
335243830Sdim	int i;
336239462Sdim
337239462Sdim	/* Save space: see if the result is identical to one of the args.  */
338239462Sdim	if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
339243830Sdim	  return build_type_attribute_variant (t1, attributes);
340239462Sdim	if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
341239462Sdim	  return build_type_attribute_variant (t2, attributes);
342243830Sdim
343243830Sdim	/* Simple way if one arg fails to specify argument types.  */
344239462Sdim	if (TYPE_ARG_TYPES (t1) == 0)
345239462Sdim	 {
346239462Sdim	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
347239462Sdim	   return build_type_attribute_variant (t1, attributes);
348239462Sdim	 }
349243830Sdim	if (TYPE_ARG_TYPES (t2) == 0)
350239462Sdim	 {
351239462Sdim	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
352243830Sdim	   return build_type_attribute_variant (t1, attributes);
353243830Sdim	 }
354239462Sdim
355239462Sdim	/* If both args specify argument types, we must merge the two
356239462Sdim	   lists, argument by argument.  */
357239462Sdim
358239462Sdim	pushlevel (0);
359243830Sdim	declare_parm_level (1);
360243830Sdim
361243830Sdim	len = list_length (p1);
362243830Sdim	newargs = 0;
363243830Sdim
364243830Sdim	for (i = 0; i < len; i++)
365243830Sdim	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
366243830Sdim
367243830Sdim	n = newargs;
368243830Sdim
369243830Sdim	for (; p1;
370243830Sdim	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
371243830Sdim	  {
372243830Sdim	    /* A null type means arg type is not specified.
373243830Sdim	       Take whatever the other function type has.  */
374243830Sdim	    if (TREE_VALUE (p1) == 0)
375243830Sdim	      {
376243830Sdim		TREE_VALUE (n) = TREE_VALUE (p2);
377243830Sdim		goto parm_done;
378243830Sdim	      }
379243830Sdim	    if (TREE_VALUE (p2) == 0)
380243830Sdim	      {
381243830Sdim		TREE_VALUE (n) = TREE_VALUE (p1);
382243830Sdim		goto parm_done;
383243830Sdim	      }
384243830Sdim
385243830Sdim	    /* Given  wait (union {union wait *u; int *i} *)
386243830Sdim	       and  wait (union wait *),
387243830Sdim	       prefer  union wait *  as type of parm.  */
388243830Sdim	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
389243830Sdim		&& TREE_VALUE (p1) != TREE_VALUE (p2))
390243830Sdim	      {
391243830Sdim		tree memb;
392243830Sdim		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
393243830Sdim		     memb; memb = TREE_CHAIN (memb))
394243830Sdim		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
395243830Sdim		    {
396243830Sdim		      TREE_VALUE (n) = TREE_VALUE (p2);
397243830Sdim		      if (pedantic)
398			pedwarn ("function types not truly compatible in ISO C");
399		      goto parm_done;
400		    }
401	      }
402	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
403		&& TREE_VALUE (p2) != TREE_VALUE (p1))
404	      {
405		tree memb;
406		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
407		     memb; memb = TREE_CHAIN (memb))
408		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
409		    {
410		      TREE_VALUE (n) = TREE_VALUE (p1);
411		      if (pedantic)
412			pedwarn ("function types not truly compatible in ISO C");
413		      goto parm_done;
414		    }
415	      }
416	    TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
417	  parm_done: ;
418	  }
419
420	poplevel (0, 0, 0);
421
422	t1 = build_function_type (valtype, newargs);
423	/* ... falls through ...  */
424      }
425
426    default:
427      return build_type_attribute_variant (t1, attributes);
428    }
429
430}
431
432/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
433   or various other operations.  Return 2 if they are compatible
434   but a warning may be needed if you use them together.  */
435
436int
437comptypes (type1, type2)
438     tree type1, type2;
439{
440  tree t1 = type1;
441  tree t2 = type2;
442  int attrval, val;
443
444  /* Suppress errors caused by previously reported errors.  */
445
446  if (t1 == t2 || !t1 || !t2
447      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
448    return 1;
449
450  /* If either type is the internal version of sizetype, return the
451     language version.  */
452  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
453      && TYPE_DOMAIN (t1) != 0)
454    t1 = TYPE_DOMAIN (t1);
455
456  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
457      && TYPE_DOMAIN (t2) != 0)
458    t2 = TYPE_DOMAIN (t2);
459
460  /* Treat an enum type as the integer type of the same width and
461     signedness.  */
462
463  if (TREE_CODE (t1) == ENUMERAL_TYPE)
464    t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
465  if (TREE_CODE (t2) == ENUMERAL_TYPE)
466    t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
467
468  if (t1 == t2)
469    return 1;
470
471  /* Different classes of types can't be compatible.  */
472
473  if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
474
475  /* Qualifiers must match.  */
476
477  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
478    return 0;
479
480  /* Allow for two different type nodes which have essentially the same
481     definition.  Note that we already checked for equality of the type
482     qualifiers (just above).  */
483
484  if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
485    return 1;
486
487  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
488  if (! (attrval = (*targetm.comp_type_attributes) (t1, t2)))
489     return 0;
490
491  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
492  val = 0;
493
494  switch (TREE_CODE (t1))
495    {
496    case POINTER_TYPE:
497      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
498	      ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
499      break;
500
501    case FUNCTION_TYPE:
502      val = function_types_compatible_p (t1, t2);
503      break;
504
505    case ARRAY_TYPE:
506      {
507	tree d1 = TYPE_DOMAIN (t1);
508	tree d2 = TYPE_DOMAIN (t2);
509	bool d1_variable, d2_variable;
510	bool d1_zero, d2_zero;
511	val = 1;
512
513	/* Target types must match incl. qualifiers.  */
514	if (TREE_TYPE (t1) != TREE_TYPE (t2)
515	    && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
516	  return 0;
517
518	/* Sizes must match unless one is missing or variable.  */
519	if (d1 == 0 || d2 == 0 || d1 == d2)
520	  break;
521
522	d1_zero = ! TYPE_MAX_VALUE (d1);
523	d2_zero = ! TYPE_MAX_VALUE (d2);
524
525	d1_variable = (! d1_zero
526		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
527			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
528	d2_variable = (! d2_zero
529		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
530			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
531
532	if (d1_variable || d2_variable)
533	  break;
534	if (d1_zero && d2_zero)
535	  break;
536	if (d1_zero || d2_zero
537	    || ! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
538	    || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
539	  val = 0;
540
541        break;
542      }
543
544    case RECORD_TYPE:
545      if (maybe_objc_comptypes (t1, t2, 0) == 1)
546	val = 1;
547      break;
548
549    default:
550      break;
551    }
552  return attrval == 2 && val == 1 ? 2 : val;
553}
554
555/* Return 1 if TTL and TTR are pointers to types that are equivalent,
556   ignoring their qualifiers.  */
557
558static int
559comp_target_types (ttl, ttr)
560     tree ttl, ttr;
561{
562  int val;
563
564  /* Give maybe_objc_comptypes a crack at letting these types through.  */
565  if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
566    return val;
567
568  val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
569		   TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
570
571  if (val == 2 && pedantic)
572    pedwarn ("types are not quite compatible");
573  return val;
574}
575
576/* Subroutines of `comptypes'.  */
577
578/* Return 1 if two function types F1 and F2 are compatible.
579   If either type specifies no argument types,
580   the other must specify a fixed number of self-promoting arg types.
581   Otherwise, if one type specifies only the number of arguments,
582   the other must specify that number of self-promoting arg types.
583   Otherwise, the argument types must match.  */
584
585static int
586function_types_compatible_p (f1, f2)
587     tree f1, f2;
588{
589  tree args1, args2;
590  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
591  int val = 1;
592  int val1;
593
594  if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
595	|| (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
596    return 0;
597
598  args1 = TYPE_ARG_TYPES (f1);
599  args2 = TYPE_ARG_TYPES (f2);
600
601  /* An unspecified parmlist matches any specified parmlist
602     whose argument types don't need default promotions.  */
603
604  if (args1 == 0)
605    {
606      if (!self_promoting_args_p (args2))
607	return 0;
608      /* If one of these types comes from a non-prototype fn definition,
609	 compare that with the other type's arglist.
610	 If they don't match, ask for a warning (but no error).  */
611      if (TYPE_ACTUAL_ARG_TYPES (f1)
612	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
613	val = 2;
614      return val;
615    }
616  if (args2 == 0)
617    {
618      if (!self_promoting_args_p (args1))
619	return 0;
620      if (TYPE_ACTUAL_ARG_TYPES (f2)
621	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
622	val = 2;
623      return val;
624    }
625
626  /* Both types have argument lists: compare them and propagate results.  */
627  val1 = type_lists_compatible_p (args1, args2);
628  return val1 != 1 ? val1 : val;
629}
630
631/* Check two lists of types for compatibility,
632   returning 0 for incompatible, 1 for compatible,
633   or 2 for compatible with warning.  */
634
635static int
636type_lists_compatible_p (args1, args2)
637     tree args1, args2;
638{
639  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
640  int val = 1;
641  int newval = 0;
642
643  while (1)
644    {
645      if (args1 == 0 && args2 == 0)
646	return val;
647      /* If one list is shorter than the other,
648	 they fail to match.  */
649      if (args1 == 0 || args2 == 0)
650	return 0;
651      /* A null pointer instead of a type
652	 means there is supposed to be an argument
653	 but nothing is specified about what type it has.
654	 So match anything that self-promotes.  */
655      if (TREE_VALUE (args1) == 0)
656	{
657	  if (simple_type_promotes_to (TREE_VALUE (args2)) != NULL_TREE)
658	    return 0;
659	}
660      else if (TREE_VALUE (args2) == 0)
661	{
662	  if (simple_type_promotes_to (TREE_VALUE (args1)) != NULL_TREE)
663	    return 0;
664	}
665      else if (! (newval = comptypes (TYPE_MAIN_VARIANT (TREE_VALUE (args1)),
666				      TYPE_MAIN_VARIANT (TREE_VALUE (args2)))))
667	{
668	  /* Allow  wait (union {union wait *u; int *i} *)
669	     and  wait (union wait *)  to be compatible.  */
670	  if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
671	      && (TYPE_NAME (TREE_VALUE (args1)) == 0
672		  || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
673	      && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
674	      && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
675				     TYPE_SIZE (TREE_VALUE (args2))))
676	    {
677	      tree memb;
678	      for (memb = TYPE_FIELDS (TREE_VALUE (args1));
679		   memb; memb = TREE_CHAIN (memb))
680		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
681		  break;
682	      if (memb == 0)
683		return 0;
684	    }
685	  else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
686		   && (TYPE_NAME (TREE_VALUE (args2)) == 0
687		       || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
688		   && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
689		   && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
690					  TYPE_SIZE (TREE_VALUE (args1))))
691	    {
692	      tree memb;
693	      for (memb = TYPE_FIELDS (TREE_VALUE (args2));
694		   memb; memb = TREE_CHAIN (memb))
695		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
696		  break;
697	      if (memb == 0)
698		return 0;
699	    }
700	  else
701	    return 0;
702	}
703
704      /* comptypes said ok, but record if it said to warn.  */
705      if (newval > val)
706	val = newval;
707
708      args1 = TREE_CHAIN (args1);
709      args2 = TREE_CHAIN (args2);
710    }
711}
712
713/* Compute the value of the `sizeof' operator.  */
714
715tree
716c_sizeof (type)
717     tree type;
718{
719  enum tree_code code = TREE_CODE (type);
720  tree size;
721
722  if (code == FUNCTION_TYPE)
723    {
724      if (pedantic || warn_pointer_arith)
725	pedwarn ("sizeof applied to a function type");
726      size = size_one_node;
727    }
728  else if (code == VOID_TYPE)
729    {
730      if (pedantic || warn_pointer_arith)
731	pedwarn ("sizeof applied to a void type");
732      size = size_one_node;
733    }
734  else if (code == ERROR_MARK)
735    size = size_one_node;
736  else if (!COMPLETE_TYPE_P (type))
737    {
738      error ("sizeof applied to an incomplete type");
739      size = size_zero_node;
740    }
741  else
742    /* Convert in case a char is more than one unit.  */
743    size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
744		       size_int (TYPE_PRECISION (char_type_node)
745			         / BITS_PER_UNIT));
746
747  /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
748     TYPE_IS_SIZETYPE means that certain things (like overflow) will
749     never happen.  However, this node should really have type
750     `size_t', which is just a typedef for an ordinary integer type.  */
751  return fold (build1 (NOP_EXPR, c_size_type_node, size));
752}
753
754tree
755c_sizeof_nowarn (type)
756     tree type;
757{
758  enum tree_code code = TREE_CODE (type);
759  tree size;
760
761  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
762    size = size_one_node;
763  else if (!COMPLETE_TYPE_P (type))
764    size = size_zero_node;
765  else
766    /* Convert in case a char is more than one unit.  */
767    size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
768		       size_int (TYPE_PRECISION (char_type_node)
769			         / BITS_PER_UNIT));
770
771  /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
772     TYPE_IS_SIZETYPE means that certain things (like overflow) will
773     never happen.  However, this node should really have type
774     `size_t', which is just a typedef for an ordinary integer type.  */
775  return fold (build1 (NOP_EXPR, c_size_type_node, size));
776}
777
778/* Compute the size to increment a pointer by.  */
779
780tree
781c_size_in_bytes (type)
782     tree type;
783{
784  enum tree_code code = TREE_CODE (type);
785
786  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
787    return size_one_node;
788
789  if (!COMPLETE_OR_VOID_TYPE_P (type))
790    {
791      error ("arithmetic on pointer to an incomplete type");
792      return size_one_node;
793    }
794
795  /* Convert in case a char is more than one unit.  */
796  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
797		     size_int (TYPE_PRECISION (char_type_node)
798			       / BITS_PER_UNIT));
799}
800
801/* Return either DECL or its known constant value (if it has one).  */
802
803tree
804decl_constant_value (decl)
805     tree decl;
806{
807  if (/* Don't change a variable array bound or initial value to a constant
808	 in a place where a variable is invalid.  */
809      current_function_decl != 0
810      && ! TREE_THIS_VOLATILE (decl)
811      && TREE_READONLY (decl)
812      && DECL_INITIAL (decl) != 0
813      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
814      /* This is invalid if initial value is not constant.
815	 If it has either a function call, a memory reference,
816	 or a variable, then re-evaluating it could give different results.  */
817      && TREE_CONSTANT (DECL_INITIAL (decl))
818      /* Check for cases where this is sub-optimal, even though valid.  */
819      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
820    return DECL_INITIAL (decl);
821  return decl;
822}
823
824/* Return either DECL or its known constant value (if it has one), but
825   return DECL if pedantic or DECL has mode BLKmode.  This is for
826   bug-compatibility with the old behavior of decl_constant_value
827   (before GCC 3.0); every use of this function is a bug and it should
828   be removed before GCC 3.1.  It is not appropriate to use pedantic
829   in a way that affects optimization, and BLKmode is probably not the
830   right test for avoiding misoptimizations either.  */
831
832static tree
833decl_constant_value_for_broken_optimization (decl)
834     tree decl;
835{
836  if (pedantic || DECL_MODE (decl) == BLKmode)
837    return decl;
838  else
839    return decl_constant_value (decl);
840}
841
842
843/* Perform the default conversion of arrays and functions to pointers.
844   Return the result of converting EXP.  For any other expression, just
845   return EXP.  */
846
847static tree
848default_function_array_conversion (exp)
849     tree exp;
850{
851  tree orig_exp;
852  tree type = TREE_TYPE (exp);
853  enum tree_code code = TREE_CODE (type);
854  int not_lvalue = 0;
855
856  /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
857     an lvalue.
858
859     Do not use STRIP_NOPS here!  It will remove conversions from pointer
860     to integer and cause infinite recursion.  */
861  orig_exp = exp;
862  while (TREE_CODE (exp) == NON_LVALUE_EXPR
863	 || (TREE_CODE (exp) == NOP_EXPR
864	     && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
865    {
866      if (TREE_CODE (exp) == NON_LVALUE_EXPR)
867	not_lvalue = 1;
868      exp = TREE_OPERAND (exp, 0);
869    }
870
871  /* Preserve the original expression code.  */
872  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
873    C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
874
875  if (code == FUNCTION_TYPE)
876    {
877      return build_unary_op (ADDR_EXPR, exp, 0);
878    }
879  if (code == ARRAY_TYPE)
880    {
881      tree adr;
882      tree restype = TREE_TYPE (type);
883      tree ptrtype;
884      int constp = 0;
885      int volatilep = 0;
886      int lvalue_array_p;
887
888      if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
889	{
890	  constp = TREE_READONLY (exp);
891	  volatilep = TREE_THIS_VOLATILE (exp);
892	}
893
894      if (TYPE_QUALS (type) || constp || volatilep)
895	restype
896	  = c_build_qualified_type (restype,
897				    TYPE_QUALS (type)
898				    | (constp * TYPE_QUAL_CONST)
899				    | (volatilep * TYPE_QUAL_VOLATILE));
900
901      if (TREE_CODE (exp) == INDIRECT_REF)
902	return convert (TYPE_POINTER_TO (restype),
903			TREE_OPERAND (exp, 0));
904
905      if (TREE_CODE (exp) == COMPOUND_EXPR)
906	{
907	  tree op1 = default_conversion (TREE_OPERAND (exp, 1));
908	  return build (COMPOUND_EXPR, TREE_TYPE (op1),
909			TREE_OPERAND (exp, 0), op1);
910	}
911
912      lvalue_array_p = !not_lvalue && lvalue_p (exp);
913      if (!flag_isoc99 && !lvalue_array_p)
914	{
915	  /* Before C99, non-lvalue arrays do not decay to pointers.
916	     Normally, using such an array would be invalid; but it can
917	     be used correctly inside sizeof or as a statement expression.
918	     Thus, do not give an error here; an error will result later.  */
919	  return exp;
920	}
921
922      ptrtype = build_pointer_type (restype);
923
924      if (TREE_CODE (exp) == VAR_DECL)
925	{
926	  /* ??? This is not really quite correct
927	     in that the type of the operand of ADDR_EXPR
928	     is not the target type of the type of the ADDR_EXPR itself.
929	     Question is, can this lossage be avoided?  */
930	  adr = build1 (ADDR_EXPR, ptrtype, exp);
931	  if (mark_addressable (exp) == 0)
932	    return error_mark_node;
933	  TREE_CONSTANT (adr) = staticp (exp);
934	  TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
935	  return adr;
936	}
937      /* This way is better for a COMPONENT_REF since it can
938	 simplify the offset for a component.  */
939      adr = build_unary_op (ADDR_EXPR, exp, 1);
940      return convert (ptrtype, adr);
941    }
942  return exp;
943}
944
945/* Perform default promotions for C data used in expressions.
946   Arrays and functions are converted to pointers;
947   enumeral types or short or char, to int.
948   In addition, manifest constants symbols are replaced by their values.  */
949
950tree
951default_conversion (exp)
952     tree exp;
953{
954  tree orig_exp;
955  tree type = TREE_TYPE (exp);
956  enum tree_code code = TREE_CODE (type);
957
958  if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
959    return default_function_array_conversion (exp);
960
961  /* Constants can be used directly unless they're not loadable.  */
962  if (TREE_CODE (exp) == CONST_DECL)
963    exp = DECL_INITIAL (exp);
964
965  /* Replace a nonvolatile const static variable with its value unless
966     it is an array, in which case we must be sure that taking the
967     address of the array produces consistent results.  */
968  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
969    {
970      exp = decl_constant_value_for_broken_optimization (exp);
971      type = TREE_TYPE (exp);
972    }
973
974  /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
975     an lvalue.
976
977     Do not use STRIP_NOPS here!  It will remove conversions from pointer
978     to integer and cause infinite recursion.  */
979  orig_exp = exp;
980  while (TREE_CODE (exp) == NON_LVALUE_EXPR
981	 || (TREE_CODE (exp) == NOP_EXPR
982	     && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
983    exp = TREE_OPERAND (exp, 0);
984
985  /* Preserve the original expression code.  */
986  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
987    C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
988
989  /* Normally convert enums to int,
990     but convert wide enums to something wider.  */
991  if (code == ENUMERAL_TYPE)
992    {
993      type = type_for_size (MAX (TYPE_PRECISION (type),
994				 TYPE_PRECISION (integer_type_node)),
995			    ((flag_traditional
996			      || (TYPE_PRECISION (type)
997				  >= TYPE_PRECISION (integer_type_node)))
998			     && TREE_UNSIGNED (type)));
999
1000      return convert (type, exp);
1001    }
1002
1003  if (TREE_CODE (exp) == COMPONENT_REF
1004      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1005      /* If it's thinner than an int, promote it like a
1006	 c_promoting_integer_type_p, otherwise leave it alone.  */
1007      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1008			       TYPE_PRECISION (integer_type_node)))
1009    return convert (flag_traditional && TREE_UNSIGNED (type)
1010		    ? unsigned_type_node : integer_type_node,
1011		    exp);
1012
1013  if (c_promoting_integer_type_p (type))
1014    {
1015      /* Traditionally, unsignedness is preserved in default promotions.
1016         Also preserve unsignedness if not really getting any wider.  */
1017      if (TREE_UNSIGNED (type)
1018	  && (flag_traditional
1019	      || TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
1020	return convert (unsigned_type_node, exp);
1021
1022      return convert (integer_type_node, exp);
1023    }
1024
1025  if (flag_traditional && !flag_allow_single_precision
1026      && TYPE_MAIN_VARIANT (type) == float_type_node)
1027    return convert (double_type_node, exp);
1028
1029  if (code == VOID_TYPE)
1030    {
1031      error ("void value not ignored as it ought to be");
1032      return error_mark_node;
1033    }
1034  return exp;
1035}
1036
1037/* Look up COMPONENT in a structure or union DECL.
1038
1039   If the component name is not found, returns NULL_TREE.  Otherwise,
1040   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1041   stepping down the chain to the component, which is in the last
1042   TREE_VALUE of the list.  Normally the list is of length one, but if
1043   the component is embedded within (nested) anonymous structures or
1044   unions, the list steps down the chain to the component.  */
1045
1046static tree
1047lookup_field (decl, component)
1048     tree decl, component;
1049{
1050  tree type = TREE_TYPE (decl);
1051  tree field;
1052
1053  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1054     to the field elements.  Use a binary search on this array to quickly
1055     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1056     will always be set for structures which have many elements.  */
1057
1058  if (TYPE_LANG_SPECIFIC (type))
1059    {
1060      int bot, top, half;
1061      tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1062
1063      field = TYPE_FIELDS (type);
1064      bot = 0;
1065      top = TYPE_LANG_SPECIFIC (type)->len;
1066      while (top - bot > 1)
1067	{
1068	  half = (top - bot + 1) >> 1;
1069	  field = field_array[bot+half];
1070
1071	  if (DECL_NAME (field) == NULL_TREE)
1072	    {
1073	      /* Step through all anon unions in linear fashion.  */
1074	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1075		{
1076		  field = field_array[bot++];
1077		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1078		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1079		    {
1080		      tree anon = lookup_field (field, component);
1081
1082		      if (anon)
1083			return tree_cons (NULL_TREE, field, anon);
1084		    }
1085		}
1086
1087	      /* Entire record is only anon unions.  */
1088	      if (bot > top)
1089		return NULL_TREE;
1090
1091	      /* Restart the binary search, with new lower bound.  */
1092	      continue;
1093	    }
1094
1095	  if (DECL_NAME (field) == component)
1096	    break;
1097	  if (DECL_NAME (field) < component)
1098	    bot += half;
1099	  else
1100	    top = bot + half;
1101	}
1102
1103      if (DECL_NAME (field_array[bot]) == component)
1104	field = field_array[bot];
1105      else if (DECL_NAME (field) != component)
1106	return NULL_TREE;
1107    }
1108  else
1109    {
1110      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1111	{
1112	  if (DECL_NAME (field) == NULL_TREE
1113	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1114		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1115	    {
1116	      tree anon = lookup_field (field, component);
1117
1118	      if (anon)
1119		return tree_cons (NULL_TREE, field, anon);
1120	    }
1121
1122	  if (DECL_NAME (field) == component)
1123	    break;
1124	}
1125
1126      if (field == NULL_TREE)
1127	return NULL_TREE;
1128    }
1129
1130  return tree_cons (NULL_TREE, field, NULL_TREE);
1131}
1132
1133/* Make an expression to refer to the COMPONENT field of
1134   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1135
1136tree
1137build_component_ref (datum, component)
1138     tree datum, component;
1139{
1140  tree type = TREE_TYPE (datum);
1141  enum tree_code code = TREE_CODE (type);
1142  tree field = NULL;
1143  tree ref;
1144
1145  /* If DATUM is a COMPOUND_EXPR, move our reference inside it.
1146     If pedantic ensure that the arguments are not lvalues; otherwise,
1147     if the component is an array, it would wrongly decay to a pointer in
1148     C89 mode.
1149     We cannot do this with a COND_EXPR, because in a conditional expression
1150     the default promotions are applied to both sides, and this would yield
1151     the wrong type of the result; for example, if the components have
1152     type "char".  */
1153  switch (TREE_CODE (datum))
1154    {
1155    case COMPOUND_EXPR:
1156      {
1157	tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1158	return build (COMPOUND_EXPR, TREE_TYPE (value),
1159		      TREE_OPERAND (datum, 0), pedantic_non_lvalue (value));
1160      }
1161    default:
1162      break;
1163    }
1164
1165  /* See if there is a field or component with name COMPONENT.  */
1166
1167  if (code == RECORD_TYPE || code == UNION_TYPE)
1168    {
1169      if (!COMPLETE_TYPE_P (type))
1170	{
1171	  incomplete_type_error (NULL_TREE, type);
1172	  return error_mark_node;
1173	}
1174
1175      field = lookup_field (datum, component);
1176
1177      if (!field)
1178	{
1179	  error ("%s has no member named `%s'",
1180		 code == RECORD_TYPE ? "structure" : "union",
1181		 IDENTIFIER_POINTER (component));
1182	  return error_mark_node;
1183	}
1184
1185      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1186	 This might be better solved in future the way the C++ front
1187	 end does it - by giving the anonymous entities each a
1188	 separate name and type, and then have build_component_ref
1189	 recursively call itself.  We can't do that here.  */
1190      for (; field; field = TREE_CHAIN (field))
1191	{
1192	  tree subdatum = TREE_VALUE (field);
1193
1194	  if (TREE_TYPE (subdatum) == error_mark_node)
1195	    return error_mark_node;
1196
1197	  ref = build (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum);
1198	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1199	    TREE_READONLY (ref) = 1;
1200	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1201	    TREE_THIS_VOLATILE (ref) = 1;
1202
1203	  if (TREE_DEPRECATED (subdatum))
1204	    warn_deprecated_use (subdatum);
1205
1206	  datum = ref;
1207	}
1208
1209      return ref;
1210    }
1211  else if (code != ERROR_MARK)
1212    error ("request for member `%s' in something not a structure or union",
1213	    IDENTIFIER_POINTER (component));
1214
1215  return error_mark_node;
1216}
1217
1218/* Given an expression PTR for a pointer, return an expression
1219   for the value pointed to.
1220   ERRORSTRING is the name of the operator to appear in error messages.  */
1221
1222tree
1223build_indirect_ref (ptr, errorstring)
1224     tree ptr;
1225     const char *errorstring;
1226{
1227  tree pointer = default_conversion (ptr);
1228  tree type = TREE_TYPE (pointer);
1229
1230  if (TREE_CODE (type) == POINTER_TYPE)
1231    {
1232      if (TREE_CODE (pointer) == ADDR_EXPR
1233	  && !flag_volatile
1234	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1235	      == TREE_TYPE (type)))
1236	return TREE_OPERAND (pointer, 0);
1237      else
1238	{
1239	  tree t = TREE_TYPE (type);
1240	  tree ref = build1 (INDIRECT_REF, TYPE_MAIN_VARIANT (t), pointer);
1241
1242	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1243	    {
1244	      error ("dereferencing pointer to incomplete type");
1245	      return error_mark_node;
1246	    }
1247	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1248	    warning ("dereferencing `void *' pointer");
1249
1250	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1251	     so that we get the proper error message if the result is used
1252	     to assign to.  Also, &* is supposed to be a no-op.
1253	     And ANSI C seems to specify that the type of the result
1254	     should be the const type.  */
1255	  /* A de-reference of a pointer to const is not a const.  It is valid
1256	     to change it via some other pointer.  */
1257	  TREE_READONLY (ref) = TYPE_READONLY (t);
1258	  TREE_SIDE_EFFECTS (ref)
1259	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1260	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1261	  return ref;
1262	}
1263    }
1264  else if (TREE_CODE (pointer) != ERROR_MARK)
1265    error ("invalid type argument of `%s'", errorstring);
1266  return error_mark_node;
1267}
1268
1269/* This handles expressions of the form "a[i]", which denotes
1270   an array reference.
1271
1272   This is logically equivalent in C to *(a+i), but we may do it differently.
1273   If A is a variable or a member, we generate a primitive ARRAY_REF.
1274   This avoids forcing the array out of registers, and can work on
1275   arrays that are not lvalues (for example, members of structures returned
1276   by functions).  */
1277
1278tree
1279build_array_ref (array, index)
1280     tree array, index;
1281{
1282  if (index == 0)
1283    {
1284      error ("subscript missing in array reference");
1285      return error_mark_node;
1286    }
1287
1288  if (TREE_TYPE (array) == error_mark_node
1289      || TREE_TYPE (index) == error_mark_node)
1290    return error_mark_node;
1291
1292  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1293      && TREE_CODE (array) != INDIRECT_REF)
1294    {
1295      tree rval, type;
1296
1297      /* Subscripting with type char is likely to lose
1298	 on a machine where chars are signed.
1299	 So warn on any machine, but optionally.
1300	 Don't warn for unsigned char since that type is safe.
1301	 Don't warn for signed char because anyone who uses that
1302	 must have done so deliberately.  */
1303      if (warn_char_subscripts
1304	  && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1305	warning ("array subscript has type `char'");
1306
1307      /* Apply default promotions *after* noticing character types.  */
1308      index = default_conversion (index);
1309
1310      /* Require integer *after* promotion, for sake of enums.  */
1311      if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1312	{
1313	  error ("array subscript is not an integer");
1314	  return error_mark_node;
1315	}
1316
1317      /* An array that is indexed by a non-constant
1318	 cannot be stored in a register; we must be able to do
1319	 address arithmetic on its address.
1320	 Likewise an array of elements of variable size.  */
1321      if (TREE_CODE (index) != INTEGER_CST
1322	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1323	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1324	{
1325	  if (mark_addressable (array) == 0)
1326	    return error_mark_node;
1327	}
1328      /* An array that is indexed by a constant value which is not within
1329	 the array bounds cannot be stored in a register either; because we
1330	 would get a crash in store_bit_field/extract_bit_field when trying
1331	 to access a non-existent part of the register.  */
1332      if (TREE_CODE (index) == INTEGER_CST
1333	  && TYPE_VALUES (TREE_TYPE (array))
1334	  && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1335	{
1336	  if (mark_addressable (array) == 0)
1337	    return error_mark_node;
1338	}
1339
1340      if (pedantic)
1341	{
1342	  tree foo = array;
1343	  while (TREE_CODE (foo) == COMPONENT_REF)
1344	    foo = TREE_OPERAND (foo, 0);
1345	  if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1346	    pedwarn ("ISO C forbids subscripting `register' array");
1347	  else if (! flag_isoc99 && ! lvalue_p (foo))
1348	    pedwarn ("ISO C89 forbids subscripting non-lvalue array");
1349	}
1350
1351      type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1352      rval = build (ARRAY_REF, type, array, index);
1353      /* Array ref is const/volatile if the array elements are
1354         or if the array is.  */
1355      TREE_READONLY (rval)
1356	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1357	    | TREE_READONLY (array));
1358      TREE_SIDE_EFFECTS (rval)
1359	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1360	    | TREE_SIDE_EFFECTS (array));
1361      TREE_THIS_VOLATILE (rval)
1362	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1363	    /* This was added by rms on 16 Nov 91.
1364	       It fixes  vol struct foo *a;  a->elts[1]
1365	       in an inline function.
1366	       Hope it doesn't break something else.  */
1367	    | TREE_THIS_VOLATILE (array));
1368      return require_complete_type (fold (rval));
1369    }
1370
1371  {
1372    tree ar = default_conversion (array);
1373    tree ind = default_conversion (index);
1374
1375    /* Do the same warning check as above, but only on the part that's
1376       syntactically the index and only if it is also semantically
1377       the index.  */
1378    if (warn_char_subscripts
1379	&& TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1380	&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1381      warning ("subscript has type `char'");
1382
1383    /* Put the integer in IND to simplify error checking.  */
1384    if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1385      {
1386	tree temp = ar;
1387	ar = ind;
1388	ind = temp;
1389      }
1390
1391    if (ar == error_mark_node)
1392      return ar;
1393
1394    if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1395	|| TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1396      {
1397	error ("subscripted value is neither array nor pointer");
1398	return error_mark_node;
1399      }
1400    if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1401      {
1402	error ("array subscript is not an integer");
1403	return error_mark_node;
1404      }
1405
1406    return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1407			       "array indexing");
1408  }
1409}
1410
1411/* Build an external reference to identifier ID.  FUN indicates
1412   whether this will be used for a function call.  */
1413tree
1414build_external_ref (id, fun)
1415     tree id;
1416     int fun;
1417{
1418  tree ref;
1419  tree decl = lookup_name (id);
1420  tree objc_ivar = lookup_objc_ivar (id);
1421
1422  if (decl && TREE_DEPRECATED (decl))
1423    warn_deprecated_use (decl);
1424
1425  if (!decl || decl == error_mark_node || C_DECL_ANTICIPATED (decl))
1426    {
1427      if (objc_ivar)
1428	ref = objc_ivar;
1429      else if (fun)
1430	{
1431	  if (!decl || decl == error_mark_node)
1432	    /* Ordinary implicit function declaration.  */
1433	    ref = implicitly_declare (id);
1434	  else
1435	    {
1436	      /* Implicit declaration of built-in function.  Don't
1437		 change the built-in declaration, but don't let this
1438		 go by silently, either.  */
1439	      implicit_decl_warning (id);
1440
1441	      /* only issue this warning once */
1442	      C_DECL_ANTICIPATED (decl) = 0;
1443	      ref = decl;
1444	    }
1445	}
1446      else
1447	{
1448	  /* Reference to undeclared variable, including reference to
1449	     builtin outside of function-call context.  */
1450	  if (current_function_decl == 0)
1451	    error ("`%s' undeclared here (not in a function)",
1452		   IDENTIFIER_POINTER (id));
1453	  else
1454	    {
1455	      if (IDENTIFIER_GLOBAL_VALUE (id) != error_mark_node
1456		  || IDENTIFIER_ERROR_LOCUS (id) != current_function_decl)
1457		{
1458		  error ("`%s' undeclared (first use in this function)",
1459			 IDENTIFIER_POINTER (id));
1460
1461		  if (! undeclared_variable_notice)
1462		    {
1463		      error ("(Each undeclared identifier is reported only once");
1464		      error ("for each function it appears in.)");
1465		      undeclared_variable_notice = 1;
1466		    }
1467		}
1468	      IDENTIFIER_GLOBAL_VALUE (id) = error_mark_node;
1469	      IDENTIFIER_ERROR_LOCUS (id) = current_function_decl;
1470	    }
1471	  return error_mark_node;
1472	}
1473    }
1474  else
1475    {
1476      /* Properly declared variable or function reference.  */
1477      if (!objc_ivar)
1478	ref = decl;
1479      else if (decl != objc_ivar && IDENTIFIER_LOCAL_VALUE (id))
1480	{
1481	  warning ("local declaration of `%s' hides instance variable",
1482		   IDENTIFIER_POINTER (id));
1483	  ref = decl;
1484	}
1485      else
1486	ref = objc_ivar;
1487    }
1488
1489  if (TREE_TYPE (ref) == error_mark_node)
1490    return error_mark_node;
1491
1492  assemble_external (ref);
1493  TREE_USED (ref) = 1;
1494
1495  if (TREE_CODE (ref) == CONST_DECL)
1496    {
1497      ref = DECL_INITIAL (ref);
1498      TREE_CONSTANT (ref) = 1;
1499    }
1500
1501  return ref;
1502}
1503
1504/* Build a function call to function FUNCTION with parameters PARAMS.
1505   PARAMS is a list--a chain of TREE_LIST nodes--in which the
1506   TREE_VALUE of each node is a parameter-expression.
1507   FUNCTION's data type may be a function type or a pointer-to-function.  */
1508
1509tree
1510build_function_call (function, params)
1511     tree function, params;
1512{
1513  tree fntype, fundecl = 0;
1514  tree coerced_params;
1515  tree name = NULL_TREE, assembler_name = NULL_TREE, result;
1516
1517  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
1518  STRIP_TYPE_NOPS (function);
1519
1520  /* Convert anything with function type to a pointer-to-function.  */
1521  if (TREE_CODE (function) == FUNCTION_DECL)
1522    {
1523      name = DECL_NAME (function);
1524      assembler_name = DECL_ASSEMBLER_NAME (function);
1525
1526      /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1527	 (because calling an inline function does not mean the function
1528	 needs to be separately compiled).  */
1529      fntype = build_type_variant (TREE_TYPE (function),
1530				   TREE_READONLY (function),
1531				   TREE_THIS_VOLATILE (function));
1532      fundecl = function;
1533      function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1534    }
1535  else
1536    function = default_conversion (function);
1537
1538  fntype = TREE_TYPE (function);
1539
1540  if (TREE_CODE (fntype) == ERROR_MARK)
1541    return error_mark_node;
1542
1543  if (!(TREE_CODE (fntype) == POINTER_TYPE
1544	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1545    {
1546      error ("called object is not a function");
1547      return error_mark_node;
1548    }
1549
1550  /* fntype now gets the type of function pointed to.  */
1551  fntype = TREE_TYPE (fntype);
1552
1553  /* Convert the parameters to the types declared in the
1554     function prototype, or apply default promotions.  */
1555
1556  coerced_params
1557    = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1558
1559  /* Check for errors in format strings.  */
1560
1561  if (warn_format)
1562    check_function_format (NULL, TYPE_ATTRIBUTES (fntype), coerced_params);
1563
1564  /* Recognize certain built-in functions so we can make tree-codes
1565     other than CALL_EXPR.  We do this when it enables fold-const.c
1566     to do something useful.  */
1567
1568  if (TREE_CODE (function) == ADDR_EXPR
1569      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1570      && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1571    {
1572      result = expand_tree_builtin (TREE_OPERAND (function, 0),
1573				    params, coerced_params);
1574      if (result)
1575	return result;
1576    }
1577
1578  result = build (CALL_EXPR, TREE_TYPE (fntype),
1579		  function, coerced_params, NULL_TREE);
1580  TREE_SIDE_EFFECTS (result) = 1;
1581  result = fold (result);
1582
1583  if (VOID_TYPE_P (TREE_TYPE (result)))
1584    return result;
1585  return require_complete_type (result);
1586}
1587
1588/* Convert the argument expressions in the list VALUES
1589   to the types in the list TYPELIST.  The result is a list of converted
1590   argument expressions.
1591
1592   If TYPELIST is exhausted, or when an element has NULL as its type,
1593   perform the default conversions.
1594
1595   PARMLIST is the chain of parm decls for the function being called.
1596   It may be 0, if that info is not available.
1597   It is used only for generating error messages.
1598
1599   NAME is an IDENTIFIER_NODE or 0.  It is used only for error messages.
1600
1601   This is also where warnings about wrong number of args are generated.
1602
1603   Both VALUES and the returned value are chains of TREE_LIST nodes
1604   with the elements of the list in the TREE_VALUE slots of those nodes.  */
1605
1606static tree
1607convert_arguments (typelist, values, name, fundecl)
1608     tree typelist, values, name, fundecl;
1609{
1610  tree typetail, valtail;
1611  tree result = NULL;
1612  int parmnum;
1613
1614  /* Scan the given expressions and types, producing individual
1615     converted arguments and pushing them on RESULT in reverse order.  */
1616
1617  for (valtail = values, typetail = typelist, parmnum = 0;
1618       valtail;
1619       valtail = TREE_CHAIN (valtail), parmnum++)
1620    {
1621      tree type = typetail ? TREE_VALUE (typetail) : 0;
1622      tree val = TREE_VALUE (valtail);
1623
1624      if (type == void_type_node)
1625	{
1626	  if (name)
1627	    error ("too many arguments to function `%s'",
1628		   IDENTIFIER_POINTER (name));
1629	  else
1630	    error ("too many arguments to function");
1631	  break;
1632	}
1633
1634      /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
1635      /* Do not use STRIP_NOPS here!  We do not want an enumerator with value 0
1636	 to convert automatically to a pointer.  */
1637      if (TREE_CODE (val) == NON_LVALUE_EXPR)
1638	val = TREE_OPERAND (val, 0);
1639
1640      val = default_function_array_conversion (val);
1641
1642      val = require_complete_type (val);
1643
1644      if (type != 0)
1645	{
1646	  /* Formal parm type is specified by a function prototype.  */
1647	  tree parmval;
1648
1649	  if (!COMPLETE_TYPE_P (type))
1650	    {
1651	      error ("type of formal parameter %d is incomplete", parmnum + 1);
1652	      parmval = val;
1653	    }
1654	  else
1655	    {
1656	      /* Optionally warn about conversions that
1657		 differ from the default conversions.  */
1658	      if (warn_conversion || warn_traditional)
1659		{
1660		  int formal_prec = TYPE_PRECISION (type);
1661
1662		  if (INTEGRAL_TYPE_P (type)
1663		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1664		    warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1665		  if (INTEGRAL_TYPE_P (type)
1666		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1667		    warn_for_assignment ("%s as integer rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1668		  else if (TREE_CODE (type) == COMPLEX_TYPE
1669			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1670		    warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1671		  else if (TREE_CODE (type) == REAL_TYPE
1672			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1673		    warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1674		  else if (TREE_CODE (type) == COMPLEX_TYPE
1675			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1676		    warn_for_assignment ("%s as complex rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1677		  else if (TREE_CODE (type) == REAL_TYPE
1678			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1679		    warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1680		  /* ??? At some point, messages should be written about
1681		     conversions between complex types, but that's too messy
1682		     to do now.  */
1683		  else if (TREE_CODE (type) == REAL_TYPE
1684			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1685		    {
1686		      /* Warn if any argument is passed as `float',
1687			 since without a prototype it would be `double'.  */
1688		      if (formal_prec == TYPE_PRECISION (float_type_node))
1689			warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1690		    }
1691		  /* Detect integer changing in width or signedness.
1692		     These warnings are only activated with
1693		     -Wconversion, not with -Wtraditional.  */
1694		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
1695			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1696		    {
1697		      tree would_have_been = default_conversion (val);
1698		      tree type1 = TREE_TYPE (would_have_been);
1699
1700		      if (TREE_CODE (type) == ENUMERAL_TYPE
1701			  && (TYPE_MAIN_VARIANT (type)
1702			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1703			/* No warning if function asks for enum
1704			   and the actual arg is that enum type.  */
1705			;
1706		      else if (formal_prec != TYPE_PRECISION (type1))
1707			warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1708		      else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1709			;
1710		      /* Don't complain if the formal parameter type
1711			 is an enum, because we can't tell now whether
1712			 the value was an enum--even the same enum.  */
1713		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
1714			;
1715		      else if (TREE_CODE (val) == INTEGER_CST
1716			       && int_fits_type_p (val, type))
1717			/* Change in signedness doesn't matter
1718			   if a constant value is unaffected.  */
1719			;
1720		      /* Likewise for a constant in a NOP_EXPR.  */
1721		      else if (TREE_CODE (val) == NOP_EXPR
1722			       && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1723			       && int_fits_type_p (TREE_OPERAND (val, 0), type))
1724			;
1725#if 0 /* We never get such tree structure here.  */
1726		      else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1727			       && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1728			       && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1729			/* Change in signedness doesn't matter
1730			   if an enum value is unaffected.  */
1731			;
1732#endif
1733		      /* If the value is extended from a narrower
1734			 unsigned type, it doesn't matter whether we
1735			 pass it as signed or unsigned; the value
1736			 certainly is the same either way.  */
1737		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1738			       && TREE_UNSIGNED (TREE_TYPE (val)))
1739			;
1740		      else if (TREE_UNSIGNED (type))
1741			warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1742		      else
1743			warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1744		    }
1745		}
1746
1747	      parmval = convert_for_assignment (type, val,
1748					        (char *) 0, /* arg passing  */
1749						fundecl, name, parmnum + 1);
1750
1751	      if (PROMOTE_PROTOTYPES
1752		  && INTEGRAL_TYPE_P (type)
1753		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1754		parmval = default_conversion (parmval);
1755	    }
1756	  result = tree_cons (NULL_TREE, parmval, result);
1757	}
1758      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1759               && (TYPE_PRECISION (TREE_TYPE (val))
1760	           < TYPE_PRECISION (double_type_node)))
1761	/* Convert `float' to `double'.  */
1762	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1763      else
1764	/* Convert `short' and `char' to full-size `int'.  */
1765	result = tree_cons (NULL_TREE, default_conversion (val), result);
1766
1767      if (typetail)
1768	typetail = TREE_CHAIN (typetail);
1769    }
1770
1771  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1772    {
1773      if (name)
1774	error ("too few arguments to function `%s'",
1775	       IDENTIFIER_POINTER (name));
1776      else
1777	error ("too few arguments to function");
1778    }
1779
1780  return nreverse (result);
1781}
1782
1783/* This is the entry point used by the parser
1784   for binary operators in the input.
1785   In addition to constructing the expression,
1786   we check for operands that were written with other binary operators
1787   in a way that is likely to confuse the user.  */
1788
1789tree
1790parser_build_binary_op (code, arg1, arg2)
1791     enum tree_code code;
1792     tree arg1, arg2;
1793{
1794  tree result = build_binary_op (code, arg1, arg2, 1);
1795
1796  char class;
1797  char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1798  char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1799  enum tree_code code1 = ERROR_MARK;
1800  enum tree_code code2 = ERROR_MARK;
1801
1802  if (TREE_CODE (result) == ERROR_MARK)
1803    return error_mark_node;
1804
1805  if (IS_EXPR_CODE_CLASS (class1))
1806    code1 = C_EXP_ORIGINAL_CODE (arg1);
1807  if (IS_EXPR_CODE_CLASS (class2))
1808    code2 = C_EXP_ORIGINAL_CODE (arg2);
1809
1810  /* Check for cases such as x+y<<z which users are likely
1811     to misinterpret.  If parens are used, C_EXP_ORIGINAL_CODE
1812     is cleared to prevent these warnings.  */
1813  if (warn_parentheses)
1814    {
1815      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1816	{
1817	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1818	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1819	    warning ("suggest parentheses around + or - inside shift");
1820	}
1821
1822      if (code == TRUTH_ORIF_EXPR)
1823	{
1824	  if (code1 == TRUTH_ANDIF_EXPR
1825	      || code2 == TRUTH_ANDIF_EXPR)
1826	    warning ("suggest parentheses around && within ||");
1827	}
1828
1829      if (code == BIT_IOR_EXPR)
1830	{
1831	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1832	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1833	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1834	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1835	    warning ("suggest parentheses around arithmetic in operand of |");
1836	  /* Check cases like x|y==z */
1837	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1838	    warning ("suggest parentheses around comparison in operand of |");
1839	}
1840
1841      if (code == BIT_XOR_EXPR)
1842	{
1843	  if (code1 == BIT_AND_EXPR
1844	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1845	      || code2 == BIT_AND_EXPR
1846	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1847	    warning ("suggest parentheses around arithmetic in operand of ^");
1848	  /* Check cases like x^y==z */
1849	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1850	    warning ("suggest parentheses around comparison in operand of ^");
1851	}
1852
1853      if (code == BIT_AND_EXPR)
1854	{
1855	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1856	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1857	    warning ("suggest parentheses around + or - in operand of &");
1858	  /* Check cases like x&y==z */
1859	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1860	    warning ("suggest parentheses around comparison in operand of &");
1861	}
1862    }
1863
1864  /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
1865  if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1866      && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1867    warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1868
1869  unsigned_conversion_warning (result, arg1);
1870  unsigned_conversion_warning (result, arg2);
1871  overflow_warning (result);
1872
1873  class = TREE_CODE_CLASS (TREE_CODE (result));
1874
1875  /* Record the code that was specified in the source,
1876     for the sake of warnings about confusing nesting.  */
1877  if (IS_EXPR_CODE_CLASS (class))
1878    C_SET_EXP_ORIGINAL_CODE (result, code);
1879  else
1880    {
1881      int flag = TREE_CONSTANT (result);
1882      /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1883	 so that convert_for_assignment wouldn't strip it.
1884	 That way, we got warnings for things like p = (1 - 1).
1885	 But it turns out we should not get those warnings.  */
1886      result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1887      C_SET_EXP_ORIGINAL_CODE (result, code);
1888      TREE_CONSTANT (result) = flag;
1889    }
1890
1891  return result;
1892}
1893
1894/* Build a binary-operation expression without default conversions.
1895   CODE is the kind of expression to build.
1896   This function differs from `build' in several ways:
1897   the data type of the result is computed and recorded in it,
1898   warnings are generated if arg data types are invalid,
1899   special handling for addition and subtraction of pointers is known,
1900   and some optimization is done (operations on narrow ints
1901   are done in the narrower type when that gives the same result).
1902   Constant folding is also done before the result is returned.
1903
1904   Note that the operands will never have enumeral types, or function
1905   or array types, because either they will have the default conversions
1906   performed or they have both just been converted to some other type in which
1907   the arithmetic is to be done.  */
1908
1909tree
1910build_binary_op (code, orig_op0, orig_op1, convert_p)
1911     enum tree_code code;
1912     tree orig_op0, orig_op1;
1913     int convert_p;
1914{
1915  tree type0, type1;
1916  enum tree_code code0, code1;
1917  tree op0, op1;
1918
1919  /* Expression code to give to the expression when it is built.
1920     Normally this is CODE, which is what the caller asked for,
1921     but in some special cases we change it.  */
1922  enum tree_code resultcode = code;
1923
1924  /* Data type in which the computation is to be performed.
1925     In the simplest cases this is the common type of the arguments.  */
1926  tree result_type = NULL;
1927
1928  /* Nonzero means operands have already been type-converted
1929     in whatever way is necessary.
1930     Zero means they need to be converted to RESULT_TYPE.  */
1931  int converted = 0;
1932
1933  /* Nonzero means create the expression with this type, rather than
1934     RESULT_TYPE.  */
1935  tree build_type = 0;
1936
1937  /* Nonzero means after finally constructing the expression
1938     convert it to this type.  */
1939  tree final_type = 0;
1940
1941  /* Nonzero if this is an operation like MIN or MAX which can
1942     safely be computed in short if both args are promoted shorts.
1943     Also implies COMMON.
1944     -1 indicates a bitwise operation; this makes a difference
1945     in the exact conditions for when it is safe to do the operation
1946     in a narrower mode.  */
1947  int shorten = 0;
1948
1949  /* Nonzero if this is a comparison operation;
1950     if both args are promoted shorts, compare the original shorts.
1951     Also implies COMMON.  */
1952  int short_compare = 0;
1953
1954  /* Nonzero if this is a right-shift operation, which can be computed on the
1955     original short and then promoted if the operand is a promoted short.  */
1956  int short_shift = 0;
1957
1958  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
1959  int common = 0;
1960
1961  if (convert_p)
1962    {
1963      op0 = default_conversion (orig_op0);
1964      op1 = default_conversion (orig_op1);
1965    }
1966  else
1967    {
1968      op0 = orig_op0;
1969      op1 = orig_op1;
1970    }
1971
1972  type0 = TREE_TYPE (op0);
1973  type1 = TREE_TYPE (op1);
1974
1975  /* The expression codes of the data types of the arguments tell us
1976     whether the arguments are integers, floating, pointers, etc.  */
1977  code0 = TREE_CODE (type0);
1978  code1 = TREE_CODE (type1);
1979
1980  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
1981  STRIP_TYPE_NOPS (op0);
1982  STRIP_TYPE_NOPS (op1);
1983
1984  /* If an error was already reported for one of the arguments,
1985     avoid reporting another error.  */
1986
1987  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
1988    return error_mark_node;
1989
1990  switch (code)
1991    {
1992    case PLUS_EXPR:
1993      /* Handle the pointer + int case.  */
1994      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1995	return pointer_int_sum (PLUS_EXPR, op0, op1);
1996      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
1997	return pointer_int_sum (PLUS_EXPR, op1, op0);
1998      else
1999	common = 1;
2000      break;
2001
2002    case MINUS_EXPR:
2003      /* Subtraction of two similar pointers.
2004	 We must subtract them as integers, then divide by object size.  */
2005      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
2006	  && comp_target_types (type0, type1))
2007	return pointer_diff (op0, op1);
2008      /* Handle pointer minus int.  Just like pointer plus int.  */
2009      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2010	return pointer_int_sum (MINUS_EXPR, op0, op1);
2011      else
2012	common = 1;
2013      break;
2014
2015    case MULT_EXPR:
2016      common = 1;
2017      break;
2018
2019    case TRUNC_DIV_EXPR:
2020    case CEIL_DIV_EXPR:
2021    case FLOOR_DIV_EXPR:
2022    case ROUND_DIV_EXPR:
2023    case EXACT_DIV_EXPR:
2024      /* Floating point division by zero is a legitimate way to obtain
2025	 infinities and NaNs.  */
2026      if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2027	warning ("division by zero");
2028
2029      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2030	   || code0 == COMPLEX_TYPE)
2031	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2032	      || code1 == COMPLEX_TYPE))
2033	{
2034	  if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2035	    resultcode = RDIV_EXPR;
2036	  else
2037	    /* Although it would be tempting to shorten always here, that
2038	       loses on some targets, since the modulo instruction is
2039	       undefined if the quotient can't be represented in the
2040	       computation mode.  We shorten only if unsigned or if
2041	       dividing by something we know != -1.  */
2042	    shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2043		       || (TREE_CODE (op1) == INTEGER_CST
2044			   && ! integer_all_onesp (op1)));
2045	  common = 1;
2046	}
2047      break;
2048
2049    case BIT_AND_EXPR:
2050    case BIT_ANDTC_EXPR:
2051    case BIT_IOR_EXPR:
2052    case BIT_XOR_EXPR:
2053      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2054	shorten = -1;
2055      /* If one operand is a constant, and the other is a short type
2056	 that has been converted to an int,
2057	 really do the work in the short type and then convert the
2058	 result to int.  If we are lucky, the constant will be 0 or 1
2059	 in the short type, making the entire operation go away.  */
2060      if (TREE_CODE (op0) == INTEGER_CST
2061	  && TREE_CODE (op1) == NOP_EXPR
2062	  && TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
2063	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
2064	{
2065	  final_type = result_type;
2066	  op1 = TREE_OPERAND (op1, 0);
2067	  result_type = TREE_TYPE (op1);
2068	}
2069      if (TREE_CODE (op1) == INTEGER_CST
2070	  && TREE_CODE (op0) == NOP_EXPR
2071	  && TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
2072	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
2073	{
2074	  final_type = result_type;
2075	  op0 = TREE_OPERAND (op0, 0);
2076	  result_type = TREE_TYPE (op0);
2077	}
2078      break;
2079
2080    case TRUNC_MOD_EXPR:
2081    case FLOOR_MOD_EXPR:
2082      if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2083	warning ("division by zero");
2084
2085      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2086	{
2087	  /* Although it would be tempting to shorten always here, that loses
2088	     on some targets, since the modulo instruction is undefined if the
2089	     quotient can't be represented in the computation mode.  We shorten
2090	     only if unsigned or if dividing by something we know != -1.  */
2091	  shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2092		     || (TREE_CODE (op1) == INTEGER_CST
2093			 && ! integer_all_onesp (op1)));
2094	  common = 1;
2095	}
2096      break;
2097
2098    case TRUTH_ANDIF_EXPR:
2099    case TRUTH_ORIF_EXPR:
2100    case TRUTH_AND_EXPR:
2101    case TRUTH_OR_EXPR:
2102    case TRUTH_XOR_EXPR:
2103      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2104	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2105	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2106	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2107	{
2108	  /* Result of these operations is always an int,
2109	     but that does not mean the operands should be
2110	     converted to ints!  */
2111	  result_type = integer_type_node;
2112	  op0 = truthvalue_conversion (op0);
2113	  op1 = truthvalue_conversion (op1);
2114	  converted = 1;
2115	}
2116      break;
2117
2118      /* Shift operations: result has same type as first operand;
2119	 always convert second operand to int.
2120	 Also set SHORT_SHIFT if shifting rightward.  */
2121
2122    case RSHIFT_EXPR:
2123      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2124	{
2125	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2126	    {
2127	      if (tree_int_cst_sgn (op1) < 0)
2128		warning ("right shift count is negative");
2129	      else
2130		{
2131		  if (! integer_zerop (op1))
2132		    short_shift = 1;
2133
2134		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2135		    warning ("right shift count >= width of type");
2136		}
2137	    }
2138
2139	  /* Use the type of the value to be shifted.
2140	     This is what most traditional C compilers do.  */
2141	  result_type = type0;
2142	  /* Unless traditional, convert the shift-count to an integer,
2143	     regardless of size of value being shifted.  */
2144	  if (! flag_traditional)
2145	    {
2146	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2147		op1 = convert (integer_type_node, op1);
2148	      /* Avoid converting op1 to result_type later.  */
2149	      converted = 1;
2150	    }
2151	}
2152      break;
2153
2154    case LSHIFT_EXPR:
2155      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2156	{
2157	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2158	    {
2159	      if (tree_int_cst_sgn (op1) < 0)
2160		warning ("left shift count is negative");
2161
2162	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2163		warning ("left shift count >= width of type");
2164	    }
2165
2166	  /* Use the type of the value to be shifted.
2167	     This is what most traditional C compilers do.  */
2168	  result_type = type0;
2169	  /* Unless traditional, convert the shift-count to an integer,
2170	     regardless of size of value being shifted.  */
2171	  if (! flag_traditional)
2172	    {
2173	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2174		op1 = convert (integer_type_node, op1);
2175	      /* Avoid converting op1 to result_type later.  */
2176	      converted = 1;
2177	    }
2178	}
2179      break;
2180
2181    case RROTATE_EXPR:
2182    case LROTATE_EXPR:
2183      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2184	{
2185	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2186	    {
2187	      if (tree_int_cst_sgn (op1) < 0)
2188		warning ("shift count is negative");
2189	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2190		warning ("shift count >= width of type");
2191	    }
2192
2193	  /* Use the type of the value to be shifted.
2194	     This is what most traditional C compilers do.  */
2195	  result_type = type0;
2196	  /* Unless traditional, convert the shift-count to an integer,
2197	     regardless of size of value being shifted.  */
2198	  if (! flag_traditional)
2199	    {
2200	      if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2201		op1 = convert (integer_type_node, op1);
2202	      /* Avoid converting op1 to result_type later.  */
2203	      converted = 1;
2204	    }
2205	}
2206      break;
2207
2208    case EQ_EXPR:
2209    case NE_EXPR:
2210      if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
2211	warning ("comparing floating point with == or != is unsafe");
2212      /* Result of comparison is always int,
2213	 but don't convert the args to int!  */
2214      build_type = integer_type_node;
2215      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2216	   || code0 == COMPLEX_TYPE)
2217	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2218	      || code1 == COMPLEX_TYPE))
2219	short_compare = 1;
2220      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2221	{
2222	  tree tt0 = TREE_TYPE (type0);
2223	  tree tt1 = TREE_TYPE (type1);
2224	  /* Anything compares with void *.  void * compares with anything.
2225	     Otherwise, the targets must be compatible
2226	     and both must be object or both incomplete.  */
2227	  if (comp_target_types (type0, type1))
2228	    result_type = common_type (type0, type1);
2229	  else if (VOID_TYPE_P (tt0))
2230	    {
2231	      /* op0 != orig_op0 detects the case of something
2232		 whose value is 0 but which isn't a valid null ptr const.  */
2233	      if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2234		  && TREE_CODE (tt1) == FUNCTION_TYPE)
2235		pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2236	    }
2237	  else if (VOID_TYPE_P (tt1))
2238	    {
2239	      if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2240		  && TREE_CODE (tt0) == FUNCTION_TYPE)
2241		pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2242	    }
2243	  else
2244	    pedwarn ("comparison of distinct pointer types lacks a cast");
2245
2246	  if (result_type == NULL_TREE)
2247	    result_type = ptr_type_node;
2248	}
2249      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2250	       && integer_zerop (op1))
2251	result_type = type0;
2252      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2253	       && integer_zerop (op0))
2254	result_type = type1;
2255      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2256	{
2257	  result_type = type0;
2258	  if (! flag_traditional)
2259	    pedwarn ("comparison between pointer and integer");
2260	}
2261      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2262	{
2263	  result_type = type1;
2264	  if (! flag_traditional)
2265	    pedwarn ("comparison between pointer and integer");
2266	}
2267      break;
2268
2269    case MAX_EXPR:
2270    case MIN_EXPR:
2271      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2272	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2273	shorten = 1;
2274      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2275	{
2276	  if (comp_target_types (type0, type1))
2277	    {
2278	      result_type = common_type (type0, type1);
2279	      if (pedantic
2280		  && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2281		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2282	    }
2283	  else
2284	    {
2285	      result_type = ptr_type_node;
2286	      pedwarn ("comparison of distinct pointer types lacks a cast");
2287	    }
2288	}
2289      break;
2290
2291    case LE_EXPR:
2292    case GE_EXPR:
2293    case LT_EXPR:
2294    case GT_EXPR:
2295      build_type = integer_type_node;
2296      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2297	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2298	short_compare = 1;
2299      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2300	{
2301	  if (comp_target_types (type0, type1))
2302	    {
2303	      result_type = common_type (type0, type1);
2304	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
2305		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
2306		pedwarn ("comparison of complete and incomplete pointers");
2307	      else if (pedantic
2308		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2309		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2310	    }
2311	  else
2312	    {
2313	      result_type = ptr_type_node;
2314	      pedwarn ("comparison of distinct pointer types lacks a cast");
2315	    }
2316	}
2317      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2318	       && integer_zerop (op1))
2319	{
2320	  result_type = type0;
2321	  if (pedantic || extra_warnings)
2322	    pedwarn ("ordered comparison of pointer with integer zero");
2323	}
2324      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2325	       && integer_zerop (op0))
2326	{
2327	  result_type = type1;
2328	  if (pedantic)
2329	    pedwarn ("ordered comparison of pointer with integer zero");
2330	}
2331      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2332	{
2333	  result_type = type0;
2334	  if (! flag_traditional)
2335	    pedwarn ("comparison between pointer and integer");
2336	}
2337      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2338	{
2339	  result_type = type1;
2340	  if (! flag_traditional)
2341	    pedwarn ("comparison between pointer and integer");
2342	}
2343      break;
2344
2345    case UNORDERED_EXPR:
2346    case ORDERED_EXPR:
2347    case UNLT_EXPR:
2348    case UNLE_EXPR:
2349    case UNGT_EXPR:
2350    case UNGE_EXPR:
2351    case UNEQ_EXPR:
2352      build_type = integer_type_node;
2353      if (code0 != REAL_TYPE || code1 != REAL_TYPE)
2354	{
2355	  error ("unordered comparison on non-floating point argument");
2356	  return error_mark_node;
2357	}
2358      common = 1;
2359      break;
2360
2361    default:
2362      break;
2363    }
2364
2365  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2366      &&
2367      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2368    {
2369      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2370
2371      if (shorten || common || short_compare)
2372	result_type = common_type (type0, type1);
2373
2374      /* For certain operations (which identify themselves by shorten != 0)
2375	 if both args were extended from the same smaller type,
2376	 do the arithmetic in that type and then extend.
2377
2378	 shorten !=0 and !=1 indicates a bitwise operation.
2379	 For them, this optimization is safe only if
2380	 both args are zero-extended or both are sign-extended.
2381	 Otherwise, we might change the result.
2382	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2383	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
2384
2385      if (shorten && none_complex)
2386	{
2387	  int unsigned0, unsigned1;
2388	  tree arg0 = get_narrower (op0, &unsigned0);
2389	  tree arg1 = get_narrower (op1, &unsigned1);
2390	  /* UNS is 1 if the operation to be done is an unsigned one.  */
2391	  int uns = TREE_UNSIGNED (result_type);
2392	  tree type;
2393
2394	  final_type = result_type;
2395
2396	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2397	     but it *requires* conversion to FINAL_TYPE.  */
2398
2399	  if ((TYPE_PRECISION (TREE_TYPE (op0))
2400	       == TYPE_PRECISION (TREE_TYPE (arg0)))
2401	      && TREE_TYPE (op0) != final_type)
2402	    unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2403	  if ((TYPE_PRECISION (TREE_TYPE (op1))
2404	       == TYPE_PRECISION (TREE_TYPE (arg1)))
2405	      && TREE_TYPE (op1) != final_type)
2406	    unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2407
2408	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
2409
2410	  /* For bitwise operations, signedness of nominal type
2411	     does not matter.  Consider only how operands were extended.  */
2412	  if (shorten == -1)
2413	    uns = unsigned0;
2414
2415	  /* Note that in all three cases below we refrain from optimizing
2416	     an unsigned operation on sign-extended args.
2417	     That would not be valid.  */
2418
2419	  /* Both args variable: if both extended in same way
2420	     from same width, do it in that width.
2421	     Do it unsigned if args were zero-extended.  */
2422	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
2423	       < TYPE_PRECISION (result_type))
2424	      && (TYPE_PRECISION (TREE_TYPE (arg1))
2425		  == TYPE_PRECISION (TREE_TYPE (arg0)))
2426	      && unsigned0 == unsigned1
2427	      && (unsigned0 || !uns))
2428	    result_type
2429	      = signed_or_unsigned_type (unsigned0,
2430					 common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2431	  else if (TREE_CODE (arg0) == INTEGER_CST
2432		   && (unsigned1 || !uns)
2433		   && (TYPE_PRECISION (TREE_TYPE (arg1))
2434		       < TYPE_PRECISION (result_type))
2435		   && (type = signed_or_unsigned_type (unsigned1,
2436						       TREE_TYPE (arg1)),
2437		       int_fits_type_p (arg0, type)))
2438	    result_type = type;
2439	  else if (TREE_CODE (arg1) == INTEGER_CST
2440		   && (unsigned0 || !uns)
2441		   && (TYPE_PRECISION (TREE_TYPE (arg0))
2442		       < TYPE_PRECISION (result_type))
2443		   && (type = signed_or_unsigned_type (unsigned0,
2444						       TREE_TYPE (arg0)),
2445		       int_fits_type_p (arg1, type)))
2446	    result_type = type;
2447	}
2448
2449      /* Shifts can be shortened if shifting right.  */
2450
2451      if (short_shift)
2452	{
2453	  int unsigned_arg;
2454	  tree arg0 = get_narrower (op0, &unsigned_arg);
2455
2456	  final_type = result_type;
2457
2458	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
2459	    unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2460
2461	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2462	      /* We can shorten only if the shift count is less than the
2463		 number of bits in the smaller type size.  */
2464	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
2465	      /* We cannot drop an unsigned shift after sign-extension.  */
2466	      && (!TREE_UNSIGNED (final_type) || unsigned_arg))
2467	    {
2468	      /* Do an unsigned shift if the operand was zero-extended.  */
2469	      result_type
2470		= signed_or_unsigned_type (unsigned_arg, TREE_TYPE (arg0));
2471	      /* Convert value-to-be-shifted to that type.  */
2472	      if (TREE_TYPE (op0) != result_type)
2473		op0 = convert (result_type, op0);
2474	      converted = 1;
2475	    }
2476	}
2477
2478      /* Comparison operations are shortened too but differently.
2479	 They identify themselves by setting short_compare = 1.  */
2480
2481      if (short_compare)
2482	{
2483	  /* Don't write &op0, etc., because that would prevent op0
2484	     from being kept in a register.
2485	     Instead, make copies of the our local variables and
2486	     pass the copies by reference, then copy them back afterward.  */
2487	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2488	  enum tree_code xresultcode = resultcode;
2489	  tree val
2490	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2491
2492	  if (val != 0)
2493	    return val;
2494
2495	  op0 = xop0, op1 = xop1;
2496	  converted = 1;
2497	  resultcode = xresultcode;
2498
2499	  if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2500	      && skip_evaluation == 0)
2501	    {
2502	      int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2503	      int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2504	      int unsignedp0, unsignedp1;
2505	      tree primop0 = get_narrower (op0, &unsignedp0);
2506	      tree primop1 = get_narrower (op1, &unsignedp1);
2507
2508	      xop0 = orig_op0;
2509	      xop1 = orig_op1;
2510	      STRIP_TYPE_NOPS (xop0);
2511	      STRIP_TYPE_NOPS (xop1);
2512
2513	      /* Give warnings for comparisons between signed and unsigned
2514		 quantities that may fail.
2515
2516		 Do the checking based on the original operand trees, so that
2517		 casts will be considered, but default promotions won't be.
2518
2519		 Do not warn if the comparison is being done in a signed type,
2520		 since the signed type will only be chosen if it can represent
2521		 all the values of the unsigned type.  */
2522	      if (! TREE_UNSIGNED (result_type))
2523		/* OK */;
2524              /* Do not warn if both operands are the same signedness.  */
2525              else if (op0_signed == op1_signed)
2526                /* OK */;
2527	      else
2528		{
2529		  tree sop, uop;
2530
2531		  if (op0_signed)
2532		    sop = xop0, uop = xop1;
2533		  else
2534		    sop = xop1, uop = xop0;
2535
2536		  /* Do not warn if the signed quantity is an
2537		     unsuffixed integer literal (or some static
2538		     constant expression involving such literals or a
2539		     conditional expression involving such literals)
2540		     and it is non-negative.  */
2541		  if (tree_expr_nonnegative_p (sop))
2542		    /* OK */;
2543		  /* Do not warn if the comparison is an equality operation,
2544		     the unsigned quantity is an integral constant, and it
2545		     would fit in the result if the result were signed.  */
2546		  else if (TREE_CODE (uop) == INTEGER_CST
2547			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
2548			   && int_fits_type_p (uop, signed_type (result_type)))
2549		    /* OK */;
2550		  /* Do not warn if the unsigned quantity is an enumeration
2551		     constant and its maximum value would fit in the result
2552		     if the result were signed.  */
2553		  else if (TREE_CODE (uop) == INTEGER_CST
2554			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
2555			   && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE(uop)),
2556					       signed_type (result_type)))
2557		    /* OK */;
2558		  else
2559		    warning ("comparison between signed and unsigned");
2560		}
2561
2562	      /* Warn if two unsigned values are being compared in a size
2563		 larger than their original size, and one (and only one) is the
2564		 result of a `~' operator.  This comparison will always fail.
2565
2566		 Also warn if one operand is a constant, and the constant
2567		 does not have all bits set that are set in the ~ operand
2568		 when it is extended.  */
2569
2570	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2571		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2572		{
2573		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2574		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2575					    &unsignedp0);
2576		  else
2577		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2578					    &unsignedp1);
2579
2580		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
2581		    {
2582		      tree primop;
2583		      HOST_WIDE_INT constant, mask;
2584		      int unsignedp, bits;
2585
2586		      if (host_integerp (primop0, 0))
2587			{
2588			  primop = primop1;
2589			  unsignedp = unsignedp1;
2590			  constant = tree_low_cst (primop0, 0);
2591			}
2592		      else
2593			{
2594			  primop = primop0;
2595			  unsignedp = unsignedp0;
2596			  constant = tree_low_cst (primop1, 0);
2597			}
2598
2599		      bits = TYPE_PRECISION (TREE_TYPE (primop));
2600		      if (bits < TYPE_PRECISION (result_type)
2601			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
2602			{
2603			  mask = (~ (HOST_WIDE_INT) 0) << bits;
2604			  if ((mask & constant) != mask)
2605			    warning ("comparison of promoted ~unsigned with constant");
2606			}
2607		    }
2608		  else if (unsignedp0 && unsignedp1
2609			   && (TYPE_PRECISION (TREE_TYPE (primop0))
2610			       < TYPE_PRECISION (result_type))
2611			   && (TYPE_PRECISION (TREE_TYPE (primop1))
2612			       < TYPE_PRECISION (result_type)))
2613		    warning ("comparison of promoted ~unsigned with unsigned");
2614		}
2615	    }
2616	}
2617    }
2618
2619  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2620     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2621     Then the expression will be built.
2622     It will be given type FINAL_TYPE if that is nonzero;
2623     otherwise, it will be given type RESULT_TYPE.  */
2624
2625  if (!result_type)
2626    {
2627      binary_op_error (code);
2628      return error_mark_node;
2629    }
2630
2631  if (! converted)
2632    {
2633      if (TREE_TYPE (op0) != result_type)
2634	op0 = convert (result_type, op0);
2635      if (TREE_TYPE (op1) != result_type)
2636	op1 = convert (result_type, op1);
2637    }
2638
2639  if (build_type == NULL_TREE)
2640    build_type = result_type;
2641
2642  {
2643    tree result = build (resultcode, build_type, op0, op1);
2644    tree folded;
2645
2646    folded = fold (result);
2647    if (folded == result)
2648      TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2649    if (final_type != 0)
2650      return convert (final_type, folded);
2651    return folded;
2652  }
2653}
2654
2655/* Return a tree for the sum or difference (RESULTCODE says which)
2656   of pointer PTROP and integer INTOP.  */
2657
2658static tree
2659pointer_int_sum (resultcode, ptrop, intop)
2660     enum tree_code resultcode;
2661     tree ptrop, intop;
2662{
2663  tree size_exp;
2664
2665  tree result;
2666  tree folded;
2667
2668  /* The result is a pointer of the same type that is being added.  */
2669
2670  tree result_type = TREE_TYPE (ptrop);
2671
2672  if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
2673    {
2674      if (pedantic || warn_pointer_arith)
2675	pedwarn ("pointer of type `void *' used in arithmetic");
2676      size_exp = integer_one_node;
2677    }
2678  else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
2679    {
2680      if (pedantic || warn_pointer_arith)
2681	pedwarn ("pointer to a function used in arithmetic");
2682      size_exp = integer_one_node;
2683    }
2684  else
2685    size_exp = c_size_in_bytes (TREE_TYPE (result_type));
2686
2687  /* If what we are about to multiply by the size of the elements
2688     contains a constant term, apply distributive law
2689     and multiply that constant term separately.
2690     This helps produce common subexpressions.  */
2691
2692  if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
2693      && ! TREE_CONSTANT (intop)
2694      && TREE_CONSTANT (TREE_OPERAND (intop, 1))
2695      && TREE_CONSTANT (size_exp)
2696      /* If the constant comes from pointer subtraction,
2697	 skip this optimization--it would cause an error.  */
2698      && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
2699      /* If the constant is unsigned, and smaller than the pointer size,
2700	 then we must skip this optimization.  This is because it could cause
2701	 an overflow error if the constant is negative but INTOP is not.  */
2702      && (! TREE_UNSIGNED (TREE_TYPE (intop))
2703	  || (TYPE_PRECISION (TREE_TYPE (intop))
2704	      == TYPE_PRECISION (TREE_TYPE (ptrop)))))
2705    {
2706      enum tree_code subcode = resultcode;
2707      tree int_type = TREE_TYPE (intop);
2708      if (TREE_CODE (intop) == MINUS_EXPR)
2709	subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
2710      /* Convert both subexpression types to the type of intop,
2711	 because weird cases involving pointer arithmetic
2712	 can result in a sum or difference with different type args.  */
2713      ptrop = build_binary_op (subcode, ptrop,
2714			       convert (int_type, TREE_OPERAND (intop, 1)), 1);
2715      intop = convert (int_type, TREE_OPERAND (intop, 0));
2716    }
2717
2718  /* Convert the integer argument to a type the same size as sizetype
2719     so the multiply won't overflow spuriously.  */
2720
2721  if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
2722      || TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
2723    intop = convert (type_for_size (TYPE_PRECISION (sizetype),
2724				    TREE_UNSIGNED (sizetype)), intop);
2725
2726  /* Replace the integer argument with a suitable product by the object size.
2727     Do this multiplication as signed, then convert to the appropriate
2728     pointer type (actually unsigned integral).  */
2729
2730  intop = convert (result_type,
2731		   build_binary_op (MULT_EXPR, intop,
2732				    convert (TREE_TYPE (intop), size_exp), 1));
2733
2734  /* Create the sum or difference.  */
2735
2736  result = build (resultcode, result_type, ptrop, intop);
2737
2738  folded = fold (result);
2739  if (folded == result)
2740    TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
2741  return folded;
2742}
2743
2744/* Return a tree for the difference of pointers OP0 and OP1.
2745   The resulting tree has type int.  */
2746
2747static tree
2748pointer_diff (op0, op1)
2749     tree op0, op1;
2750{
2751  tree result, folded;
2752  tree restype = ptrdiff_type_node;
2753
2754  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2755  tree con0, con1, lit0, lit1;
2756  tree orig_op1 = op1;
2757
2758  if (pedantic || warn_pointer_arith)
2759    {
2760      if (TREE_CODE (target_type) == VOID_TYPE)
2761	pedwarn ("pointer of type `void *' used in subtraction");
2762      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2763	pedwarn ("pointer to a function used in subtraction");
2764    }
2765
2766  /* If the conversion to ptrdiff_type does anything like widening or
2767     converting a partial to an integral mode, we get a convert_expression
2768     that is in the way to do any simplifications.
2769     (fold-const.c doesn't know that the extra bits won't be needed.
2770     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2771     different mode in place.)
2772     So first try to find a common term here 'by hand'; we want to cover
2773     at least the cases that occur in legal static initializers.  */
2774  con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2775  con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2776
2777  if (TREE_CODE (con0) == PLUS_EXPR)
2778    {
2779      lit0 = TREE_OPERAND (con0, 1);
2780      con0 = TREE_OPERAND (con0, 0);
2781    }
2782  else
2783    lit0 = integer_zero_node;
2784
2785  if (TREE_CODE (con1) == PLUS_EXPR)
2786    {
2787      lit1 = TREE_OPERAND (con1, 1);
2788      con1 = TREE_OPERAND (con1, 0);
2789    }
2790  else
2791    lit1 = integer_zero_node;
2792
2793  if (operand_equal_p (con0, con1, 0))
2794    {
2795      op0 = lit0;
2796      op1 = lit1;
2797    }
2798
2799
2800  /* First do the subtraction as integers;
2801     then drop through to build the divide operator.
2802     Do not do default conversions on the minus operator
2803     in case restype is a short type.  */
2804
2805  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2806			 convert (restype, op1), 0);
2807  /* This generates an error if op1 is pointer to incomplete type.  */
2808  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2809    error ("arithmetic on pointer to an incomplete type");
2810
2811  /* This generates an error if op0 is pointer to incomplete type.  */
2812  op1 = c_size_in_bytes (target_type);
2813
2814  /* Divide by the size, in easiest possible way.  */
2815
2816  result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2817
2818  folded = fold (result);
2819  if (folded == result)
2820    TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2821  return folded;
2822}
2823
2824/* Construct and perhaps optimize a tree representation
2825   for a unary operation.  CODE, a tree_code, specifies the operation
2826   and XARG is the operand.
2827   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2828   the default promotions (such as from short to int).
2829   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2830   allows non-lvalues; this is only used to handle conversion of non-lvalue
2831   arrays to pointers in C99.  */
2832
2833tree
2834build_unary_op (code, xarg, flag)
2835     enum tree_code code;
2836     tree xarg;
2837     int flag;
2838{
2839  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2840  tree arg = xarg;
2841  tree argtype = 0;
2842  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2843  tree val;
2844  int noconvert = flag;
2845
2846  if (typecode == ERROR_MARK)
2847    return error_mark_node;
2848  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2849    typecode = INTEGER_TYPE;
2850
2851  switch (code)
2852    {
2853    case CONVERT_EXPR:
2854      /* This is used for unary plus, because a CONVERT_EXPR
2855	 is enough to prevent anybody from looking inside for
2856	 associativity, but won't generate any code.  */
2857      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2858	    || typecode == COMPLEX_TYPE))
2859	{
2860	  error ("wrong type argument to unary plus");
2861	  return error_mark_node;
2862	}
2863      else if (!noconvert)
2864	arg = default_conversion (arg);
2865      break;
2866
2867    case NEGATE_EXPR:
2868      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2869	    || typecode == COMPLEX_TYPE))
2870	{
2871	  error ("wrong type argument to unary minus");
2872	  return error_mark_node;
2873	}
2874      else if (!noconvert)
2875	arg = default_conversion (arg);
2876      break;
2877
2878    case BIT_NOT_EXPR:
2879      if (typecode == COMPLEX_TYPE)
2880	{
2881	  code = CONJ_EXPR;
2882	  if (pedantic)
2883	    pedwarn ("ISO C does not support `~' for complex conjugation");
2884	  if (!noconvert)
2885	    arg = default_conversion (arg);
2886	}
2887      else if (typecode != INTEGER_TYPE)
2888	{
2889	  error ("wrong type argument to bit-complement");
2890	  return error_mark_node;
2891	}
2892      else if (!noconvert)
2893	arg = default_conversion (arg);
2894      break;
2895
2896    case ABS_EXPR:
2897      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2898	    || typecode == COMPLEX_TYPE))
2899	{
2900	  error ("wrong type argument to abs");
2901	  return error_mark_node;
2902	}
2903      else if (!noconvert)
2904	arg = default_conversion (arg);
2905      break;
2906
2907    case CONJ_EXPR:
2908      /* Conjugating a real value is a no-op, but allow it anyway.  */
2909      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2910	    || typecode == COMPLEX_TYPE))
2911	{
2912	  error ("wrong type argument to conjugation");
2913	  return error_mark_node;
2914	}
2915      else if (!noconvert)
2916	arg = default_conversion (arg);
2917      break;
2918
2919    case TRUTH_NOT_EXPR:
2920      if (typecode != INTEGER_TYPE
2921	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2922	  && typecode != COMPLEX_TYPE
2923	  /* These will convert to a pointer.  */
2924	  && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2925	{
2926	  error ("wrong type argument to unary exclamation mark");
2927	  return error_mark_node;
2928	}
2929      arg = truthvalue_conversion (arg);
2930      return invert_truthvalue (arg);
2931
2932    case NOP_EXPR:
2933      break;
2934
2935    case REALPART_EXPR:
2936      if (TREE_CODE (arg) == COMPLEX_CST)
2937	return TREE_REALPART (arg);
2938      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2939	return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2940      else
2941	return arg;
2942
2943    case IMAGPART_EXPR:
2944      if (TREE_CODE (arg) == COMPLEX_CST)
2945	return TREE_IMAGPART (arg);
2946      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2947	return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2948      else
2949	return convert (TREE_TYPE (arg), integer_zero_node);
2950
2951    case PREINCREMENT_EXPR:
2952    case POSTINCREMENT_EXPR:
2953    case PREDECREMENT_EXPR:
2954    case POSTDECREMENT_EXPR:
2955      /* Handle complex lvalues (when permitted)
2956	 by reduction to simpler cases.  */
2957
2958      val = unary_complex_lvalue (code, arg, 0);
2959      if (val != 0)
2960	return val;
2961
2962      /* Increment or decrement the real part of the value,
2963	 and don't change the imaginary part.  */
2964      if (typecode == COMPLEX_TYPE)
2965	{
2966	  tree real, imag;
2967
2968	  if (pedantic)
2969	    pedwarn ("ISO C does not support `++' and `--' on complex types");
2970
2971	  arg = stabilize_reference (arg);
2972	  real = build_unary_op (REALPART_EXPR, arg, 1);
2973	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2974	  return build (COMPLEX_EXPR, TREE_TYPE (arg),
2975			build_unary_op (code, real, 1), imag);
2976	}
2977
2978      /* Report invalid types.  */
2979
2980      if (typecode != POINTER_TYPE
2981	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2982	{
2983	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2984            error ("wrong type argument to increment");
2985          else
2986            error ("wrong type argument to decrement");
2987
2988	  return error_mark_node;
2989	}
2990
2991      {
2992	tree inc;
2993	tree result_type = TREE_TYPE (arg);
2994
2995	arg = get_unwidened (arg, 0);
2996	argtype = TREE_TYPE (arg);
2997
2998	/* Compute the increment.  */
2999
3000	if (typecode == POINTER_TYPE)
3001	  {
3002	    /* If pointer target is an undefined struct,
3003	       we just cannot know how to do the arithmetic.  */
3004	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3005	      {
3006		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3007		  error ("increment of pointer to unknown structure");
3008		else
3009		  error ("decrement of pointer to unknown structure");
3010	      }
3011	    else if ((pedantic || warn_pointer_arith)
3012		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3013			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
3014              {
3015		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3016		  pedwarn ("wrong type argument to increment");
3017		else
3018		  pedwarn ("wrong type argument to decrement");
3019	      }
3020
3021	    inc = c_size_in_bytes (TREE_TYPE (result_type));
3022	  }
3023	else
3024	  inc = integer_one_node;
3025
3026	inc = convert (argtype, inc);
3027
3028	/* Handle incrementing a cast-expression.  */
3029
3030	while (1)
3031	  switch (TREE_CODE (arg))
3032	    {
3033	    case NOP_EXPR:
3034	    case CONVERT_EXPR:
3035	    case FLOAT_EXPR:
3036	    case FIX_TRUNC_EXPR:
3037	    case FIX_FLOOR_EXPR:
3038	    case FIX_ROUND_EXPR:
3039	    case FIX_CEIL_EXPR:
3040	      pedantic_lvalue_warning (CONVERT_EXPR);
3041	      /* If the real type has the same machine representation
3042		 as the type it is cast to, we can make better output
3043		 by adding directly to the inside of the cast.  */
3044	      if ((TREE_CODE (TREE_TYPE (arg))
3045		   == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
3046		  && (TYPE_MODE (TREE_TYPE (arg))
3047		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
3048		arg = TREE_OPERAND (arg, 0);
3049	      else
3050		{
3051		  tree incremented, modify, value;
3052		  if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3053		    value = boolean_increment (code, arg);
3054		  else
3055		    {
3056		      arg = stabilize_reference (arg);
3057		      if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
3058			value = arg;
3059		      else
3060			value = save_expr (arg);
3061		      incremented = build (((code == PREINCREMENT_EXPR
3062					     || code == POSTINCREMENT_EXPR)
3063					    ? PLUS_EXPR : MINUS_EXPR),
3064					   argtype, value, inc);
3065		      TREE_SIDE_EFFECTS (incremented) = 1;
3066		      modify = build_modify_expr (arg, NOP_EXPR, incremented);
3067		      value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
3068		    }
3069		  TREE_USED (value) = 1;
3070		  return value;
3071		}
3072	      break;
3073
3074	    default:
3075	      goto give_up;
3076	    }
3077      give_up:
3078
3079	/* Complain about anything else that is not a true lvalue.  */
3080	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3081				    || code == POSTINCREMENT_EXPR)
3082				   ? "invalid lvalue in increment"
3083				   : "invalid lvalue in decrement")))
3084	  return error_mark_node;
3085
3086	/* Report a read-only lvalue.  */
3087	if (TREE_READONLY (arg))
3088	  readonly_warning (arg,
3089			    ((code == PREINCREMENT_EXPR
3090			      || code == POSTINCREMENT_EXPR)
3091			     ? "increment" : "decrement"));
3092
3093	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3094	  val = boolean_increment (code, arg);
3095	else
3096	  val = build (code, TREE_TYPE (arg), arg, inc);
3097	TREE_SIDE_EFFECTS (val) = 1;
3098	val = convert (result_type, val);
3099	if (TREE_CODE (val) != code)
3100	  TREE_NO_UNUSED_WARNING (val) = 1;
3101	return val;
3102      }
3103
3104    case ADDR_EXPR:
3105      /* Note that this operation never does default_conversion.  */
3106
3107      /* Let &* cancel out to simplify resulting code.  */
3108      if (TREE_CODE (arg) == INDIRECT_REF)
3109	{
3110	  /* Don't let this be an lvalue.  */
3111	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3112	    return non_lvalue (TREE_OPERAND (arg, 0));
3113	  return TREE_OPERAND (arg, 0);
3114	}
3115
3116      /* For &x[y], return x+y */
3117      if (TREE_CODE (arg) == ARRAY_REF)
3118	{
3119	  if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
3120	    return error_mark_node;
3121	  return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
3122				  TREE_OPERAND (arg, 1), 1);
3123	}
3124
3125      /* Handle complex lvalues (when permitted)
3126	 by reduction to simpler cases.  */
3127      val = unary_complex_lvalue (code, arg, flag);
3128      if (val != 0)
3129	return val;
3130
3131#if 0 /* Turned off because inconsistent;
3132	 float f; *&(int)f = 3.4 stores in int format
3133	 whereas (int)f = 3.4 stores in float format.  */
3134      /* Address of a cast is just a cast of the address
3135	 of the operand of the cast.  */
3136      switch (TREE_CODE (arg))
3137	{
3138	case NOP_EXPR:
3139	case CONVERT_EXPR:
3140	case FLOAT_EXPR:
3141	case FIX_TRUNC_EXPR:
3142	case FIX_FLOOR_EXPR:
3143	case FIX_ROUND_EXPR:
3144	case FIX_CEIL_EXPR:
3145	  if (pedantic)
3146	    pedwarn ("ISO C forbids the address of a cast expression");
3147	  return convert (build_pointer_type (TREE_TYPE (arg)),
3148			  build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3149					  0));
3150	}
3151#endif
3152
3153      /* Anything not already handled and not a true memory reference
3154	 or a non-lvalue array is an error.  */
3155      else if (typecode != FUNCTION_TYPE && !flag
3156	       && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
3157	return error_mark_node;
3158
3159      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3160      argtype = TREE_TYPE (arg);
3161
3162      /* If the lvalue is const or volatile, merge that into the type
3163         to which the address will point.  Note that you can't get a
3164	 restricted pointer by taking the address of something, so we
3165	 only have to deal with `const' and `volatile' here.  */
3166      if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3167	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3168	  argtype = c_build_type_variant (argtype,
3169					  TREE_READONLY (arg),
3170					  TREE_THIS_VOLATILE (arg));
3171
3172      argtype = build_pointer_type (argtype);
3173
3174      if (mark_addressable (arg) == 0)
3175	return error_mark_node;
3176
3177      {
3178	tree addr;
3179
3180	if (TREE_CODE (arg) == COMPONENT_REF)
3181	  {
3182	    tree field = TREE_OPERAND (arg, 1);
3183
3184	    addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), flag);
3185
3186	    if (DECL_C_BIT_FIELD (field))
3187	      {
3188		error ("attempt to take address of bit-field structure member `%s'",
3189		       IDENTIFIER_POINTER (DECL_NAME (field)));
3190		return error_mark_node;
3191	      }
3192
3193	    addr = fold (build (PLUS_EXPR, argtype,
3194				convert (argtype, addr),
3195				convert (argtype, byte_position (field))));
3196	  }
3197	else
3198	  addr = build1 (code, argtype, arg);
3199
3200	/* Address of a static or external variable or
3201	   file-scope function counts as a constant.  */
3202	if (staticp (arg)
3203	    && ! (TREE_CODE (arg) == FUNCTION_DECL
3204		  && DECL_CONTEXT (arg) != 0))
3205	  TREE_CONSTANT (addr) = 1;
3206	return addr;
3207      }
3208
3209    default:
3210      break;
3211    }
3212
3213  if (argtype == 0)
3214    argtype = TREE_TYPE (arg);
3215  return fold (build1 (code, argtype, arg));
3216}
3217
3218#if 0
3219/* If CONVERSIONS is a conversion expression or a nested sequence of such,
3220   convert ARG with the same conversions in the same order
3221   and return the result.  */
3222
3223static tree
3224convert_sequence (conversions, arg)
3225     tree conversions;
3226     tree arg;
3227{
3228  switch (TREE_CODE (conversions))
3229    {
3230    case NOP_EXPR:
3231    case CONVERT_EXPR:
3232    case FLOAT_EXPR:
3233    case FIX_TRUNC_EXPR:
3234    case FIX_FLOOR_EXPR:
3235    case FIX_ROUND_EXPR:
3236    case FIX_CEIL_EXPR:
3237      return convert (TREE_TYPE (conversions),
3238		      convert_sequence (TREE_OPERAND (conversions, 0),
3239					arg));
3240
3241    default:
3242      return arg;
3243    }
3244}
3245#endif /* 0 */
3246
3247/* Return nonzero if REF is an lvalue valid for this language.
3248   Lvalues can be assigned, unless their type has TYPE_READONLY.
3249   Lvalues can have their address taken, unless they have DECL_REGISTER.  */
3250
3251int
3252lvalue_p (ref)
3253     tree ref;
3254{
3255  enum tree_code code = TREE_CODE (ref);
3256
3257  switch (code)
3258    {
3259    case REALPART_EXPR:
3260    case IMAGPART_EXPR:
3261    case COMPONENT_REF:
3262      return lvalue_p (TREE_OPERAND (ref, 0));
3263
3264    case COMPOUND_LITERAL_EXPR:
3265    case STRING_CST:
3266      return 1;
3267
3268    case INDIRECT_REF:
3269    case ARRAY_REF:
3270    case VAR_DECL:
3271    case PARM_DECL:
3272    case RESULT_DECL:
3273    case ERROR_MARK:
3274      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3275	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3276
3277    case BIND_EXPR:
3278    case RTL_EXPR:
3279      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3280
3281    default:
3282      return 0;
3283    }
3284}
3285
3286/* Return nonzero if REF is an lvalue valid for this language;
3287   otherwise, print an error message and return zero.  */
3288
3289int
3290lvalue_or_else (ref, msgid)
3291     tree ref;
3292     const char *msgid;
3293{
3294  int win = lvalue_p (ref);
3295
3296  if (! win)
3297    error ("%s", msgid);
3298
3299  return win;
3300}
3301
3302/* Apply unary lvalue-demanding operator CODE to the expression ARG
3303   for certain kinds of expressions which are not really lvalues
3304   but which we can accept as lvalues.  If FLAG is nonzero, then
3305   non-lvalues are OK since we may be converting a non-lvalue array to
3306   a pointer in C99.
3307
3308   If ARG is not a kind of expression we can handle, return zero.  */
3309
3310static tree
3311unary_complex_lvalue (code, arg, flag)
3312     enum tree_code code;
3313     tree arg;
3314     int flag;
3315{
3316  /* Handle (a, b) used as an "lvalue".  */
3317  if (TREE_CODE (arg) == COMPOUND_EXPR)
3318    {
3319      tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3320
3321      /* If this returns a function type, it isn't really being used as
3322	 an lvalue, so don't issue a warning about it.  */
3323      if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3324	pedantic_lvalue_warning (COMPOUND_EXPR);
3325
3326      return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3327		    TREE_OPERAND (arg, 0), real_result);
3328    }
3329
3330  /* Handle (a ? b : c) used as an "lvalue".  */
3331  if (TREE_CODE (arg) == COND_EXPR)
3332    {
3333      if (!flag)
3334	pedantic_lvalue_warning (COND_EXPR);
3335      if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3336	pedantic_lvalue_warning (COMPOUND_EXPR);
3337
3338      return (build_conditional_expr
3339	      (TREE_OPERAND (arg, 0),
3340	       build_unary_op (code, TREE_OPERAND (arg, 1), flag),
3341	       build_unary_op (code, TREE_OPERAND (arg, 2), flag)));
3342    }
3343
3344  return 0;
3345}
3346
3347/* If pedantic, warn about improper lvalue.   CODE is either COND_EXPR
3348   COMPOUND_EXPR, or CONVERT_EXPR (for casts).  */
3349
3350static void
3351pedantic_lvalue_warning (code)
3352     enum tree_code code;
3353{
3354  if (pedantic)
3355    switch (code)
3356      {
3357      case COND_EXPR:
3358	pedwarn ("ISO C forbids use of conditional expressions as lvalues");
3359	break;
3360      case COMPOUND_EXPR:
3361	pedwarn ("ISO C forbids use of compound expressions as lvalues");
3362	break;
3363      default:
3364	pedwarn ("ISO C forbids use of cast expressions as lvalues");
3365	break;
3366      }
3367}
3368
3369/* Warn about storing in something that is `const'.  */
3370
3371void
3372readonly_warning (arg, msgid)
3373     tree arg;
3374     const char *msgid;
3375{
3376  if (TREE_CODE (arg) == COMPONENT_REF)
3377    {
3378      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3379	readonly_warning (TREE_OPERAND (arg, 0), msgid);
3380      else
3381	pedwarn ("%s of read-only member `%s'", _(msgid),
3382		 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3383    }
3384  else if (TREE_CODE (arg) == VAR_DECL)
3385    pedwarn ("%s of read-only variable `%s'", _(msgid),
3386	     IDENTIFIER_POINTER (DECL_NAME (arg)));
3387  else
3388    pedwarn ("%s of read-only location", _(msgid));
3389}
3390
3391/* Mark EXP saying that we need to be able to take the
3392   address of it; it should not be allocated in a register.
3393   Value is 1 if successful.  */
3394
3395int
3396mark_addressable (exp)
3397     tree exp;
3398{
3399  tree x = exp;
3400  while (1)
3401    switch (TREE_CODE (x))
3402      {
3403      case COMPONENT_REF:
3404	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3405	  {
3406	    error ("cannot take address of bit-field `%s'",
3407		   IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3408	    return 0;
3409	  }
3410
3411	/* ... fall through ...  */
3412
3413      case ADDR_EXPR:
3414      case ARRAY_REF:
3415      case REALPART_EXPR:
3416      case IMAGPART_EXPR:
3417	x = TREE_OPERAND (x, 0);
3418	break;
3419
3420      case COMPOUND_LITERAL_EXPR:
3421      case CONSTRUCTOR:
3422	TREE_ADDRESSABLE (x) = 1;
3423	return 1;
3424
3425      case VAR_DECL:
3426      case CONST_DECL:
3427      case PARM_DECL:
3428      case RESULT_DECL:
3429	if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3430	    && DECL_NONLOCAL (x))
3431	  {
3432	    if (TREE_PUBLIC (x))
3433	      {
3434		error ("global register variable `%s' used in nested function",
3435		       IDENTIFIER_POINTER (DECL_NAME (x)));
3436		return 0;
3437	      }
3438	    pedwarn ("register variable `%s' used in nested function",
3439		     IDENTIFIER_POINTER (DECL_NAME (x)));
3440	  }
3441	else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3442	  {
3443	    if (TREE_PUBLIC (x))
3444	      {
3445		error ("address of global register variable `%s' requested",
3446		       IDENTIFIER_POINTER (DECL_NAME (x)));
3447		return 0;
3448	      }
3449
3450	    /* If we are making this addressable due to its having
3451	       volatile components, give a different error message.  Also
3452	       handle the case of an unnamed parameter by not trying
3453	       to give the name.  */
3454
3455	    else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3456	      {
3457		error ("cannot put object with volatile field into register");
3458		return 0;
3459	      }
3460
3461	    pedwarn ("address of register variable `%s' requested",
3462		     IDENTIFIER_POINTER (DECL_NAME (x)));
3463	  }
3464	put_var_into_stack (x);
3465
3466	/* drops in */
3467      case FUNCTION_DECL:
3468	TREE_ADDRESSABLE (x) = 1;
3469#if 0  /* poplevel deals with this now.  */
3470	if (DECL_CONTEXT (x) == 0)
3471	  TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3472#endif
3473
3474      default:
3475	return 1;
3476    }
3477}
3478
3479/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3480
3481tree
3482build_conditional_expr (ifexp, op1, op2)
3483     tree ifexp, op1, op2;
3484{
3485  tree type1;
3486  tree type2;
3487  enum tree_code code1;
3488  enum tree_code code2;
3489  tree result_type = NULL;
3490  tree orig_op1 = op1, orig_op2 = op2;
3491
3492  ifexp = truthvalue_conversion (default_conversion (ifexp));
3493
3494#if 0 /* Produces wrong result if within sizeof.  */
3495  /* Don't promote the operands separately if they promote
3496     the same way.  Return the unpromoted type and let the combined
3497     value get promoted if necessary.  */
3498
3499  if (TREE_TYPE (op1) == TREE_TYPE (op2)
3500      && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3501      && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3502      && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3503    {
3504      if (TREE_CODE (ifexp) == INTEGER_CST)
3505	return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3506
3507      return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3508    }
3509#endif
3510
3511  /* Promote both alternatives.  */
3512
3513  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3514    op1 = default_conversion (op1);
3515  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3516    op2 = default_conversion (op2);
3517
3518  if (TREE_CODE (ifexp) == ERROR_MARK
3519      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3520      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3521    return error_mark_node;
3522
3523  type1 = TREE_TYPE (op1);
3524  code1 = TREE_CODE (type1);
3525  type2 = TREE_TYPE (op2);
3526  code2 = TREE_CODE (type2);
3527
3528  /* Quickly detect the usual case where op1 and op2 have the same type
3529     after promotion.  */
3530  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3531    {
3532      if (type1 == type2)
3533	result_type = type1;
3534      else
3535	result_type = TYPE_MAIN_VARIANT (type1);
3536    }
3537  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3538            || code1 == COMPLEX_TYPE)
3539           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3540               || code2 == COMPLEX_TYPE))
3541    {
3542      result_type = common_type (type1, type2);
3543
3544      /* If -Wsign-compare, warn here if type1 and type2 have
3545	 different signedness.  We'll promote the signed to unsigned
3546	 and later code won't know it used to be different.
3547	 Do this check on the original types, so that explicit casts
3548	 will be considered, but default promotions won't.  */
3549      if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare)
3550	  && !skip_evaluation)
3551	{
3552	  int unsigned_op1 = TREE_UNSIGNED (TREE_TYPE (orig_op1));
3553	  int unsigned_op2 = TREE_UNSIGNED (TREE_TYPE (orig_op2));
3554
3555	  if (unsigned_op1 ^ unsigned_op2)
3556	    {
3557	      /* Do not warn if the result type is signed, since the
3558		 signed type will only be chosen if it can represent
3559		 all the values of the unsigned type.  */
3560	      if (! TREE_UNSIGNED (result_type))
3561		/* OK */;
3562	      /* Do not warn if the signed quantity is an unsuffixed
3563		 integer literal (or some static constant expression
3564		 involving such literals) and it is non-negative.  */
3565	      else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3566		       || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3567		/* OK */;
3568	      else
3569		warning ("signed and unsigned type in conditional expression");
3570	    }
3571	}
3572    }
3573  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3574    {
3575      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3576	pedwarn ("ISO C forbids conditional expr with only one void side");
3577      result_type = void_type_node;
3578    }
3579  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3580    {
3581      if (comp_target_types (type1, type2))
3582	result_type = common_type (type1, type2);
3583      else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3584	       && TREE_CODE (orig_op1) != NOP_EXPR)
3585	result_type = qualify_type (type2, type1);
3586      else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3587	       && TREE_CODE (orig_op2) != NOP_EXPR)
3588	result_type = qualify_type (type1, type2);
3589      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3590	{
3591	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3592	    pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3593	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3594							  TREE_TYPE (type2)));
3595	}
3596      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3597	{
3598	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3599	    pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3600	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3601							  TREE_TYPE (type1)));
3602	}
3603      else
3604	{
3605	  pedwarn ("pointer type mismatch in conditional expression");
3606	  result_type = build_pointer_type (void_type_node);
3607	}
3608    }
3609  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3610    {
3611      if (! integer_zerop (op2))
3612	pedwarn ("pointer/integer type mismatch in conditional expression");
3613      else
3614	{
3615	  op2 = null_pointer_node;
3616	}
3617      result_type = type1;
3618    }
3619  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3620    {
3621      if (!integer_zerop (op1))
3622	pedwarn ("pointer/integer type mismatch in conditional expression");
3623      else
3624	{
3625	  op1 = null_pointer_node;
3626	}
3627      result_type = type2;
3628    }
3629
3630  if (!result_type)
3631    {
3632      if (flag_cond_mismatch)
3633	result_type = void_type_node;
3634      else
3635	{
3636	  error ("type mismatch in conditional expression");
3637	  return error_mark_node;
3638	}
3639    }
3640
3641  /* Merge const and volatile flags of the incoming types.  */
3642  result_type
3643    = build_type_variant (result_type,
3644			  TREE_READONLY (op1) || TREE_READONLY (op2),
3645			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3646
3647  if (result_type != TREE_TYPE (op1))
3648    op1 = convert_and_check (result_type, op1);
3649  if (result_type != TREE_TYPE (op2))
3650    op2 = convert_and_check (result_type, op2);
3651
3652  if (TREE_CODE (ifexp) == INTEGER_CST)
3653    return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3654
3655  return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3656}
3657
3658/* Given a list of expressions, return a compound expression
3659   that performs them all and returns the value of the last of them.  */
3660
3661tree
3662build_compound_expr (list)
3663     tree list;
3664{
3665  return internal_build_compound_expr (list, TRUE);
3666}
3667
3668static tree
3669internal_build_compound_expr (list, first_p)
3670     tree list;
3671     int first_p;
3672{
3673  tree rest;
3674
3675  if (TREE_CHAIN (list) == 0)
3676    {
3677      /* Convert arrays and functions to pointers when there
3678	 really is a comma operator.  */
3679      if (!first_p)
3680	TREE_VALUE (list)
3681	  = default_function_array_conversion (TREE_VALUE (list));
3682
3683#if 0 /* If something inside inhibited lvalueness, we should not override.  */
3684      /* Consider (x, y+0), which is not an lvalue since y+0 is not.  */
3685
3686      /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3687      if (TREE_CODE (list) == NON_LVALUE_EXPR)
3688	list = TREE_OPERAND (list, 0);
3689#endif
3690
3691      /* Don't let (0, 0) be null pointer constant.  */
3692      if (!first_p && integer_zerop (TREE_VALUE (list)))
3693	return non_lvalue (TREE_VALUE (list));
3694      return TREE_VALUE (list);
3695    }
3696
3697  rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3698
3699  if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3700    {
3701      /* The left-hand operand of a comma expression is like an expression
3702         statement: with -W or -Wunused, we should warn if it doesn't have
3703	 any side-effects, unless it was explicitly cast to (void).  */
3704      if ((extra_warnings || warn_unused_value)
3705           && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3706                && VOID_TYPE_P (TREE_TYPE (TREE_VALUE (list)))))
3707        warning ("left-hand operand of comma expression has no effect");
3708
3709      /* When pedantic, a compound expression can be neither an lvalue
3710         nor an integer constant expression.  */
3711      if (! pedantic)
3712        return rest;
3713    }
3714
3715  /* With -Wunused, we should also warn if the left-hand operand does have
3716     side-effects, but computes a value which is not used.  For example, in
3717     `foo() + bar(), baz()' the result of the `+' operator is not used,
3718     so we should issue a warning.  */
3719  else if (warn_unused_value)
3720    warn_if_unused_value (TREE_VALUE (list));
3721
3722  return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3723}
3724
3725/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3726
3727tree
3728build_c_cast (type, expr)
3729     tree type;
3730     tree expr;
3731{
3732  tree value = expr;
3733
3734  if (type == error_mark_node || expr == error_mark_node)
3735    return error_mark_node;
3736  type = TYPE_MAIN_VARIANT (type);
3737
3738#if 0
3739  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3740  if (TREE_CODE (value) == NON_LVALUE_EXPR)
3741    value = TREE_OPERAND (value, 0);
3742#endif
3743
3744  if (TREE_CODE (type) == ARRAY_TYPE)
3745    {
3746      error ("cast specifies array type");
3747      return error_mark_node;
3748    }
3749
3750  if (TREE_CODE (type) == FUNCTION_TYPE)
3751    {
3752      error ("cast specifies function type");
3753      return error_mark_node;
3754    }
3755
3756  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3757    {
3758      if (pedantic)
3759	{
3760	  if (TREE_CODE (type) == RECORD_TYPE
3761	      || TREE_CODE (type) == UNION_TYPE)
3762	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3763	}
3764    }
3765  else if (TREE_CODE (type) == UNION_TYPE)
3766    {
3767      tree field;
3768      value = default_function_array_conversion (value);
3769
3770      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3771	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3772		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3773	  break;
3774
3775      if (field)
3776	{
3777	  const char *name;
3778	  tree t;
3779
3780	  if (pedantic)
3781	    pedwarn ("ISO C forbids casts to union type");
3782	  if (TYPE_NAME (type) != 0)
3783	    {
3784	      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3785		name = IDENTIFIER_POINTER (TYPE_NAME (type));
3786	      else
3787		name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3788	    }
3789	  else
3790	    name = "";
3791	  t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3792					build_tree_list (field, value)),
3793			   0, 0);
3794	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3795	  return t;
3796	}
3797      error ("cast to union type from type not present in union");
3798      return error_mark_node;
3799    }
3800  else
3801    {
3802      tree otype, ovalue;
3803
3804      /* If casting to void, avoid the error that would come
3805	 from default_conversion in the case of a non-lvalue array.  */
3806      if (type == void_type_node)
3807	return build1 (CONVERT_EXPR, type, value);
3808
3809      /* Convert functions and arrays to pointers,
3810	 but don't convert any other types.  */
3811      value = default_function_array_conversion (value);
3812      otype = TREE_TYPE (value);
3813
3814      /* Optionally warn about potentially worrisome casts.  */
3815
3816      if (warn_cast_qual
3817	  && TREE_CODE (type) == POINTER_TYPE
3818	  && TREE_CODE (otype) == POINTER_TYPE)
3819	{
3820	  tree in_type = type;
3821	  tree in_otype = otype;
3822	  int warn = 0;
3823
3824	  /* Check that the qualifiers on IN_TYPE are a superset of
3825	     the qualifiers of IN_OTYPE.  The outermost level of
3826	     POINTER_TYPE nodes is uninteresting and we stop as soon
3827	     as we hit a non-POINTER_TYPE node on either type.  */
3828	  do
3829	    {
3830	      in_otype = TREE_TYPE (in_otype);
3831	      in_type = TREE_TYPE (in_type);
3832	      warn |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3833	    }
3834	  while (TREE_CODE (in_type) == POINTER_TYPE
3835		 && TREE_CODE (in_otype) == POINTER_TYPE);
3836
3837	  if (warn)
3838	    /* There are qualifiers present in IN_OTYPE that are not
3839	       present in IN_TYPE.  */
3840	    warning ("cast discards qualifiers from pointer target type");
3841	}
3842
3843      /* Warn about possible alignment problems.  */
3844      if (STRICT_ALIGNMENT && warn_cast_align
3845	  && TREE_CODE (type) == POINTER_TYPE
3846	  && TREE_CODE (otype) == POINTER_TYPE
3847	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3848	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3849	  /* Don't warn about opaque types, where the actual alignment
3850	     restriction is unknown.  */
3851	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3852		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3853	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3854	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3855	warning ("cast increases required alignment of target type");
3856
3857      if (TREE_CODE (type) == INTEGER_TYPE
3858	  && TREE_CODE (otype) == POINTER_TYPE
3859	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3860	  && !TREE_CONSTANT (value))
3861	warning ("cast from pointer to integer of different size");
3862
3863      if (warn_bad_function_cast
3864	  && TREE_CODE (value) == CALL_EXPR
3865	  && TREE_CODE (type) != TREE_CODE (otype))
3866	warning ("cast does not match function type");
3867
3868      if (TREE_CODE (type) == POINTER_TYPE
3869	  && TREE_CODE (otype) == INTEGER_TYPE
3870	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3871	  /* Don't warn about converting any constant.  */
3872	  && !TREE_CONSTANT (value))
3873	warning ("cast to pointer from integer of different size");
3874
3875      ovalue = value;
3876      value = convert (type, value);
3877
3878      /* Ignore any integer overflow caused by the cast.  */
3879      if (TREE_CODE (value) == INTEGER_CST)
3880	{
3881	  TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3882	  TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3883	}
3884    }
3885
3886  /* Pedantically, don't let (void *) (FOO *) 0 be a null pointer constant.  */
3887  if (pedantic && TREE_CODE (value) == INTEGER_CST
3888      && TREE_CODE (expr) == INTEGER_CST
3889      && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3890    value = non_lvalue (value);
3891
3892  /* If pedantic, don't let a cast be an lvalue.  */
3893  if (value == expr && pedantic)
3894    value = non_lvalue (value);
3895
3896  return value;
3897}
3898
3899/* Interpret a cast of expression EXPR to type TYPE.  */
3900tree
3901c_cast_expr (type, expr)
3902     tree type, expr;
3903{
3904  int saved_wsp = warn_strict_prototypes;
3905
3906  /* This avoids warnings about unprototyped casts on
3907     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3908  if (TREE_CODE (expr) == INTEGER_CST)
3909    warn_strict_prototypes = 0;
3910  type = groktypename (type);
3911  warn_strict_prototypes = saved_wsp;
3912
3913  return build_c_cast (type, expr);
3914}
3915
3916
3917/* Build an assignment expression of lvalue LHS from value RHS.
3918   MODIFYCODE is the code for a binary operator that we use
3919   to combine the old value of LHS with RHS to get the new value.
3920   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3921
3922tree
3923build_modify_expr (lhs, modifycode, rhs)
3924     tree lhs, rhs;
3925     enum tree_code modifycode;
3926{
3927  tree result;
3928  tree newrhs;
3929  tree lhstype = TREE_TYPE (lhs);
3930  tree olhstype = lhstype;
3931
3932  /* Types that aren't fully specified cannot be used in assignments.  */
3933  lhs = require_complete_type (lhs);
3934
3935  /* Avoid duplicate error messages from operands that had errors.  */
3936  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3937    return error_mark_node;
3938
3939  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
3940  /* Do not use STRIP_NOPS here.  We do not want an enumerator
3941     whose value is 0 to count as a null pointer constant.  */
3942  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3943    rhs = TREE_OPERAND (rhs, 0);
3944
3945  newrhs = rhs;
3946
3947  /* Handle control structure constructs used as "lvalues".  */
3948
3949  switch (TREE_CODE (lhs))
3950    {
3951      /* Handle (a, b) used as an "lvalue".  */
3952    case COMPOUND_EXPR:
3953      pedantic_lvalue_warning (COMPOUND_EXPR);
3954      newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3955      if (TREE_CODE (newrhs) == ERROR_MARK)
3956	return error_mark_node;
3957      return build (COMPOUND_EXPR, lhstype,
3958		    TREE_OPERAND (lhs, 0), newrhs);
3959
3960      /* Handle (a ? b : c) used as an "lvalue".  */
3961    case COND_EXPR:
3962      pedantic_lvalue_warning (COND_EXPR);
3963      rhs = save_expr (rhs);
3964      {
3965	/* Produce (a ? (b = rhs) : (c = rhs))
3966	   except that the RHS goes through a save-expr
3967	   so the code to compute it is only emitted once.  */
3968	tree cond
3969	  = build_conditional_expr (TREE_OPERAND (lhs, 0),
3970				    build_modify_expr (TREE_OPERAND (lhs, 1),
3971						       modifycode, rhs),
3972				    build_modify_expr (TREE_OPERAND (lhs, 2),
3973						       modifycode, rhs));
3974	if (TREE_CODE (cond) == ERROR_MARK)
3975	  return cond;
3976	/* Make sure the code to compute the rhs comes out
3977	   before the split.  */
3978	return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3979		      /* But cast it to void to avoid an "unused" error.  */
3980		      convert (void_type_node, rhs), cond);
3981      }
3982    default:
3983      break;
3984    }
3985
3986  /* If a binary op has been requested, combine the old LHS value with the RHS
3987     producing the value we should actually store into the LHS.  */
3988
3989  if (modifycode != NOP_EXPR)
3990    {
3991      lhs = stabilize_reference (lhs);
3992      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3993    }
3994
3995  /* Handle a cast used as an "lvalue".
3996     We have already performed any binary operator using the value as cast.
3997     Now convert the result to the cast type of the lhs,
3998     and then true type of the lhs and store it there;
3999     then convert result back to the cast type to be the value
4000     of the assignment.  */
4001
4002  switch (TREE_CODE (lhs))
4003    {
4004    case NOP_EXPR:
4005    case CONVERT_EXPR:
4006    case FLOAT_EXPR:
4007    case FIX_TRUNC_EXPR:
4008    case FIX_FLOOR_EXPR:
4009    case FIX_ROUND_EXPR:
4010    case FIX_CEIL_EXPR:
4011      newrhs = default_function_array_conversion (newrhs);
4012      {
4013	tree inner_lhs = TREE_OPERAND (lhs, 0);
4014	tree result;
4015	result = build_modify_expr (inner_lhs, NOP_EXPR,
4016				    convert (TREE_TYPE (inner_lhs),
4017					     convert (lhstype, newrhs)));
4018	if (TREE_CODE (result) == ERROR_MARK)
4019	  return result;
4020	pedantic_lvalue_warning (CONVERT_EXPR);
4021	return convert (TREE_TYPE (lhs), result);
4022      }
4023
4024    default:
4025      break;
4026    }
4027
4028  /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
4029     Reject anything strange now.  */
4030
4031  if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
4032    return error_mark_node;
4033
4034  /* Warn about storing in something that is `const'.  */
4035
4036  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
4037      || ((TREE_CODE (lhstype) == RECORD_TYPE
4038	   || TREE_CODE (lhstype) == UNION_TYPE)
4039	  && C_TYPE_FIELDS_READONLY (lhstype)))
4040    readonly_warning (lhs, "assignment");
4041
4042  /* If storing into a structure or union member,
4043     it has probably been given type `int'.
4044     Compute the type that would go with
4045     the actual amount of storage the member occupies.  */
4046
4047  if (TREE_CODE (lhs) == COMPONENT_REF
4048      && (TREE_CODE (lhstype) == INTEGER_TYPE
4049	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
4050	  || TREE_CODE (lhstype) == REAL_TYPE
4051	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
4052    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
4053
4054  /* If storing in a field that is in actuality a short or narrower than one,
4055     we must store in the field in its actual type.  */
4056
4057  if (lhstype != TREE_TYPE (lhs))
4058    {
4059      lhs = copy_node (lhs);
4060      TREE_TYPE (lhs) = lhstype;
4061    }
4062
4063  /* Convert new value to destination type.  */
4064
4065  newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
4066				   NULL_TREE, NULL_TREE, 0);
4067  if (TREE_CODE (newrhs) == ERROR_MARK)
4068    return error_mark_node;
4069
4070  /* Scan operands */
4071
4072  result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
4073  TREE_SIDE_EFFECTS (result) = 1;
4074
4075  /* If we got the LHS in a different type for storing in,
4076     convert the result back to the nominal type of LHS
4077     so that the value we return always has the same type
4078     as the LHS argument.  */
4079
4080  if (olhstype == TREE_TYPE (result))
4081    return result;
4082  return convert_for_assignment (olhstype, result, _("assignment"),
4083				 NULL_TREE, NULL_TREE, 0);
4084}
4085
4086/* Convert value RHS to type TYPE as preparation for an assignment
4087   to an lvalue of type TYPE.
4088   The real work of conversion is done by `convert'.
4089   The purpose of this function is to generate error messages
4090   for assignments that are not allowed in C.
4091   ERRTYPE is a string to use in error messages:
4092   "assignment", "return", etc.  If it is null, this is parameter passing
4093   for a function call (and different error messages are output).
4094
4095   FUNNAME is the name of the function being called,
4096   as an IDENTIFIER_NODE, or null.
4097   PARMNUM is the number of the argument, for printing in error messages.  */
4098
4099static tree
4100convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
4101     tree type, rhs;
4102     const char *errtype;
4103     tree fundecl, funname;
4104     int parmnum;
4105{
4106  enum tree_code codel = TREE_CODE (type);
4107  tree rhstype;
4108  enum tree_code coder;
4109
4110  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
4111  /* Do not use STRIP_NOPS here.  We do not want an enumerator
4112     whose value is 0 to count as a null pointer constant.  */
4113  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
4114    rhs = TREE_OPERAND (rhs, 0);
4115
4116  if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
4117      || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4118    rhs = default_conversion (rhs);
4119  else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4120    rhs = decl_constant_value_for_broken_optimization (rhs);
4121
4122  rhstype = TREE_TYPE (rhs);
4123  coder = TREE_CODE (rhstype);
4124
4125  if (coder == ERROR_MARK)
4126    return error_mark_node;
4127
4128  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4129    {
4130      overflow_warning (rhs);
4131      /* Check for Objective-C protocols.  This will issue a warning if
4132	 there are protocol violations.  No need to use the return value.  */
4133      maybe_objc_comptypes (type, rhstype, 0);
4134      return rhs;
4135    }
4136
4137  if (coder == VOID_TYPE)
4138    {
4139      error ("void value not ignored as it ought to be");
4140      return error_mark_node;
4141    }
4142  /* A type converts to a reference to it.
4143     This code doesn't fully support references, it's just for the
4144     special case of va_start and va_copy.  */
4145  if (codel == REFERENCE_TYPE
4146      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4147    {
4148      if (mark_addressable (rhs) == 0)
4149	return error_mark_node;
4150      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4151
4152      /* We already know that these two types are compatible, but they
4153	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
4154	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4155	 likely to be va_list, a typedef to __builtin_va_list, which
4156	 is different enough that it will cause problems later.  */
4157      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4158	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4159
4160      rhs = build1 (NOP_EXPR, type, rhs);
4161      return rhs;
4162    }
4163  /* Arithmetic types all interconvert, and enum is treated like int.  */
4164  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4165	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4166	    || codel == BOOLEAN_TYPE)
4167	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
4168	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4169	       || coder == BOOLEAN_TYPE))
4170    return convert_and_check (type, rhs);
4171
4172  /* Conversion to a transparent union from its member types.
4173     This applies only to function arguments.  */
4174  else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4175    {
4176      tree memb_types;
4177      tree marginal_memb_type = 0;
4178
4179      for (memb_types = TYPE_FIELDS (type); memb_types;
4180	   memb_types = TREE_CHAIN (memb_types))
4181	{
4182	  tree memb_type = TREE_TYPE (memb_types);
4183
4184	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4185			 TYPE_MAIN_VARIANT (rhstype)))
4186	    break;
4187
4188	  if (TREE_CODE (memb_type) != POINTER_TYPE)
4189	    continue;
4190
4191	  if (coder == POINTER_TYPE)
4192	    {
4193	      tree ttl = TREE_TYPE (memb_type);
4194	      tree ttr = TREE_TYPE (rhstype);
4195
4196	      /* Any non-function converts to a [const][volatile] void *
4197		 and vice versa; otherwise, targets must be the same.
4198		 Meanwhile, the lhs target must have all the qualifiers of
4199		 the rhs.  */
4200	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4201		  || comp_target_types (memb_type, rhstype))
4202		{
4203		  /* If this type won't generate any warnings, use it.  */
4204		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4205		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
4206			   && TREE_CODE (ttl) == FUNCTION_TYPE)
4207			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4208			     == TYPE_QUALS (ttr))
4209			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4210			     == TYPE_QUALS (ttl))))
4211		    break;
4212
4213		  /* Keep looking for a better type, but remember this one.  */
4214		  if (! marginal_memb_type)
4215		    marginal_memb_type = memb_type;
4216		}
4217	    }
4218
4219	  /* Can convert integer zero to any pointer type.  */
4220	  if (integer_zerop (rhs)
4221	      || (TREE_CODE (rhs) == NOP_EXPR
4222		  && integer_zerop (TREE_OPERAND (rhs, 0))))
4223	    {
4224	      rhs = null_pointer_node;
4225	      break;
4226	    }
4227	}
4228
4229      if (memb_types || marginal_memb_type)
4230	{
4231	  if (! memb_types)
4232	    {
4233	      /* We have only a marginally acceptable member type;
4234		 it needs a warning.  */
4235	      tree ttl = TREE_TYPE (marginal_memb_type);
4236	      tree ttr = TREE_TYPE (rhstype);
4237
4238	      /* Const and volatile mean something different for function
4239		 types, so the usual warnings are not appropriate.  */
4240	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4241		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4242		{
4243		  /* Because const and volatile on functions are
4244		     restrictions that say the function will not do
4245		     certain things, it is okay to use a const or volatile
4246		     function where an ordinary one is wanted, but not
4247		     vice-versa.  */
4248		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4249		    warn_for_assignment ("%s makes qualified function pointer from unqualified",
4250					 errtype, funname, parmnum);
4251		}
4252	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4253		warn_for_assignment ("%s discards qualifiers from pointer target type",
4254				     errtype, funname,
4255				     parmnum);
4256	    }
4257
4258	  if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4259	    pedwarn ("ISO C prohibits argument conversion to union type");
4260
4261	  return build1 (NOP_EXPR, type, rhs);
4262	}
4263    }
4264
4265  /* Conversions among pointers */
4266  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4267	   && (coder == POINTER_TYPE || coder == REFERENCE_TYPE))
4268    {
4269      tree ttl = TREE_TYPE (type);
4270      tree ttr = TREE_TYPE (rhstype);
4271
4272      /* Any non-function converts to a [const][volatile] void *
4273	 and vice versa; otherwise, targets must be the same.
4274	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4275      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4276	  || comp_target_types (type, rhstype)
4277	  || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
4278	      == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4279	{
4280	  if (pedantic
4281	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4282		  ||
4283		  (VOID_TYPE_P (ttr)
4284		   /* Check TREE_CODE to catch cases like (void *) (char *) 0
4285		      which are not ANSI null ptr constants.  */
4286		   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4287		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4288	    warn_for_assignment ("ISO C forbids %s between function pointer and `void *'",
4289				 errtype, funname, parmnum);
4290	  /* Const and volatile mean something different for function types,
4291	     so the usual warnings are not appropriate.  */
4292	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4293		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4294	    {
4295	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4296		warn_for_assignment ("%s discards qualifiers from pointer target type",
4297				     errtype, funname, parmnum);
4298	      /* If this is not a case of ignoring a mismatch in signedness,
4299		 no warning.  */
4300	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4301		       || comp_target_types (type, rhstype))
4302		;
4303	      /* If there is a mismatch, do warn.  */
4304	      else if (pedantic)
4305		warn_for_assignment ("pointer targets in %s differ in signedness",
4306				     errtype, funname, parmnum);
4307	    }
4308	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4309		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4310	    {
4311	      /* Because const and volatile on functions are restrictions
4312		 that say the function will not do certain things,
4313		 it is okay to use a const or volatile function
4314		 where an ordinary one is wanted, but not vice-versa.  */
4315	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4316		warn_for_assignment ("%s makes qualified function pointer from unqualified",
4317				     errtype, funname, parmnum);
4318	    }
4319	}
4320      else
4321	warn_for_assignment ("%s from incompatible pointer type",
4322			     errtype, funname, parmnum);
4323      return convert (type, rhs);
4324    }
4325  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4326    {
4327      /* An explicit constant 0 can convert to a pointer,
4328	 or one that results from arithmetic, even including
4329	 a cast to integer type.  */
4330      if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4331	  &&
4332	  ! (TREE_CODE (rhs) == NOP_EXPR
4333	     && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4334	     && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4335	     && integer_zerop (TREE_OPERAND (rhs, 0))))
4336	{
4337	  warn_for_assignment ("%s makes pointer from integer without a cast",
4338			       errtype, funname, parmnum);
4339	  return convert (type, rhs);
4340	}
4341      return null_pointer_node;
4342    }
4343  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4344    {
4345      warn_for_assignment ("%s makes integer from pointer without a cast",
4346			   errtype, funname, parmnum);
4347      return convert (type, rhs);
4348    }
4349  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4350    return convert (type, rhs);
4351
4352  if (!errtype)
4353    {
4354      if (funname)
4355 	{
4356 	  tree selector = maybe_building_objc_message_expr ();
4357
4358 	  if (selector && parmnum > 2)
4359 	    error ("incompatible type for argument %d of `%s'",
4360		   parmnum - 2, IDENTIFIER_POINTER (selector));
4361 	  else
4362	    error ("incompatible type for argument %d of `%s'",
4363		   parmnum, IDENTIFIER_POINTER (funname));
4364	}
4365      else
4366	error ("incompatible type for argument %d of indirect function call",
4367	       parmnum);
4368    }
4369  else
4370    error ("incompatible types in %s", errtype);
4371
4372  return error_mark_node;
4373}
4374
4375/* Print a warning using MSGID.
4376   It gets OPNAME as its one parameter.
4377   If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4378   FUNCTION and ARGNUM are handled specially if we are building an
4379   Objective-C selector.  */
4380
4381static void
4382warn_for_assignment (msgid, opname, function, argnum)
4383     const char *msgid;
4384     const char *opname;
4385     tree function;
4386     int argnum;
4387{
4388  if (opname == 0)
4389    {
4390      tree selector = maybe_building_objc_message_expr ();
4391      char * new_opname;
4392
4393      if (selector && argnum > 2)
4394	{
4395	  function = selector;
4396	  argnum -= 2;
4397	}
4398      if (function)
4399	{
4400	  /* Function name is known; supply it.  */
4401	  const char *const argstring = _("passing arg %d of `%s'");
4402	  new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4403					+ strlen (argstring) + 1 + 25
4404					/*%d*/ + 1);
4405	  sprintf (new_opname, argstring, argnum,
4406		   IDENTIFIER_POINTER (function));
4407	}
4408      else
4409	{
4410	  /* Function name unknown (call through ptr); just give arg number.  */
4411	  const char *const argnofun = _("passing arg %d of pointer to function");
4412	  new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4413	  sprintf (new_opname, argnofun, argnum);
4414	}
4415      opname = new_opname;
4416    }
4417  pedwarn (msgid, opname);
4418}
4419
4420/* If VALUE is a compound expr all of whose expressions are constant, then
4421   return its value.  Otherwise, return error_mark_node.
4422
4423   This is for handling COMPOUND_EXPRs as initializer elements
4424   which is allowed with a warning when -pedantic is specified.  */
4425
4426static tree
4427valid_compound_expr_initializer (value, endtype)
4428     tree value;
4429     tree endtype;
4430{
4431  if (TREE_CODE (value) == COMPOUND_EXPR)
4432    {
4433      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4434	  == error_mark_node)
4435	return error_mark_node;
4436      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4437					      endtype);
4438    }
4439  else if (! TREE_CONSTANT (value)
4440	   && ! initializer_constant_valid_p (value, endtype))
4441    return error_mark_node;
4442  else
4443    return value;
4444}
4445
4446/* Perform appropriate conversions on the initial value of a variable,
4447   store it in the declaration DECL,
4448   and print any error messages that are appropriate.
4449   If the init is invalid, store an ERROR_MARK.  */
4450
4451void
4452store_init_value (decl, init)
4453     tree decl, init;
4454{
4455  tree value, type;
4456
4457  /* If variable's type was invalidly declared, just ignore it.  */
4458
4459  type = TREE_TYPE (decl);
4460  if (TREE_CODE (type) == ERROR_MARK)
4461    return;
4462
4463  /* Digest the specified initializer into an expression.  */
4464
4465  value = digest_init (type, init, TREE_STATIC (decl),
4466		       TREE_STATIC (decl) || (pedantic && !flag_isoc99));
4467
4468  /* Store the expression if valid; else report error.  */
4469
4470#if 0
4471  /* Note that this is the only place we can detect the error
4472     in a case such as   struct foo bar = (struct foo) { x, y };
4473     where there is one initial value which is a constructor expression.  */
4474  if (value == error_mark_node)
4475    ;
4476  else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4477    {
4478      error ("initializer for static variable is not constant");
4479      value = error_mark_node;
4480    }
4481  else if (TREE_STATIC (decl)
4482	   && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4483    {
4484      error ("initializer for static variable uses complicated arithmetic");
4485      value = error_mark_node;
4486    }
4487  else
4488    {
4489      if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4490	{
4491	  if (! TREE_CONSTANT (value))
4492	    pedwarn ("aggregate initializer is not constant");
4493	  else if (! TREE_STATIC (value))
4494	    pedwarn ("aggregate initializer uses complicated arithmetic");
4495	}
4496    }
4497#endif
4498
4499  if (warn_traditional && !in_system_header
4500      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && ! TREE_STATIC (decl))
4501    warning ("traditional C rejects automatic aggregate initialization");
4502
4503  DECL_INITIAL (decl) = value;
4504
4505  /* ANSI wants warnings about out-of-range constant initializers.  */
4506  STRIP_TYPE_NOPS (value);
4507  constant_expression_warning (value);
4508
4509  /* Check if we need to set array size from compound literal size.  */
4510  if (TREE_CODE (type) == ARRAY_TYPE
4511      && TYPE_DOMAIN (type) == 0
4512      && value != error_mark_node)
4513    {
4514      tree inside_init = init;
4515
4516      if (TREE_CODE (init) == NON_LVALUE_EXPR)
4517	inside_init = TREE_OPERAND (init, 0);
4518      inside_init = fold (inside_init);
4519
4520      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4521	{
4522	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4523
4524	  if (TYPE_DOMAIN (TREE_TYPE (decl)))
4525	    {
4526	      /* For int foo[] = (int [3]){1}; we need to set array size
4527		 now since later on array initializer will be just the
4528		 brace enclosed list of the compound literal.  */
4529	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4530	      layout_type (type);
4531	      layout_decl (decl, 0);
4532	    }
4533	}
4534    }
4535}
4536
4537/* Methods for storing and printing names for error messages.  */
4538
4539/* Implement a spelling stack that allows components of a name to be pushed
4540   and popped.  Each element on the stack is this structure.  */
4541
4542struct spelling
4543{
4544  int kind;
4545  union
4546    {
4547      int i;
4548      const char *s;
4549    } u;
4550};
4551
4552#define SPELLING_STRING 1
4553#define SPELLING_MEMBER 2
4554#define SPELLING_BOUNDS 3
4555
4556static struct spelling *spelling;	/* Next stack element (unused).  */
4557static struct spelling *spelling_base;	/* Spelling stack base.  */
4558static int spelling_size;		/* Size of the spelling stack.  */
4559
4560/* Macros to save and restore the spelling stack around push_... functions.
4561   Alternative to SAVE_SPELLING_STACK.  */
4562
4563#define SPELLING_DEPTH() (spelling - spelling_base)
4564#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4565
4566/* Save and restore the spelling stack around arbitrary C code.  */
4567
4568#define SAVE_SPELLING_DEPTH(code)		\
4569{						\
4570  int __depth = SPELLING_DEPTH ();		\
4571  code;						\
4572  RESTORE_SPELLING_DEPTH (__depth);		\
4573}
4574
4575/* Push an element on the spelling stack with type KIND and assign VALUE
4576   to MEMBER.  */
4577
4578#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4579{									\
4580  int depth = SPELLING_DEPTH ();					\
4581									\
4582  if (depth >= spelling_size)						\
4583    {									\
4584      spelling_size += 10;						\
4585      if (spelling_base == 0)						\
4586	spelling_base							\
4587	  = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling));	\
4588      else								\
4589        spelling_base							\
4590	  = (struct spelling *) xrealloc (spelling_base,		\
4591					  spelling_size * sizeof (struct spelling));	\
4592      RESTORE_SPELLING_DEPTH (depth);					\
4593    }									\
4594									\
4595  spelling->kind = (KIND);						\
4596  spelling->MEMBER = (VALUE);						\
4597  spelling++;								\
4598}
4599
4600/* Push STRING on the stack.  Printed literally.  */
4601
4602static void
4603push_string (string)
4604     const char *string;
4605{
4606  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4607}
4608
4609/* Push a member name on the stack.  Printed as '.' STRING.  */
4610
4611static void
4612push_member_name (decl)
4613     tree decl;
4614
4615{
4616  const char *const string
4617    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4618  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4619}
4620
4621/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4622
4623static void
4624push_array_bounds (bounds)
4625     int bounds;
4626{
4627  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4628}
4629
4630/* Compute the maximum size in bytes of the printed spelling.  */
4631
4632static int
4633spelling_length ()
4634{
4635  int size = 0;
4636  struct spelling *p;
4637
4638  for (p = spelling_base; p < spelling; p++)
4639    {
4640      if (p->kind == SPELLING_BOUNDS)
4641	size += 25;
4642      else
4643	size += strlen (p->u.s) + 1;
4644    }
4645
4646  return size;
4647}
4648
4649/* Print the spelling to BUFFER and return it.  */
4650
4651static char *
4652print_spelling (buffer)
4653     char *buffer;
4654{
4655  char *d = buffer;
4656  struct spelling *p;
4657
4658  for (p = spelling_base; p < spelling; p++)
4659    if (p->kind == SPELLING_BOUNDS)
4660      {
4661	sprintf (d, "[%d]", p->u.i);
4662	d += strlen (d);
4663      }
4664    else
4665      {
4666	const char *s;
4667	if (p->kind == SPELLING_MEMBER)
4668	  *d++ = '.';
4669	for (s = p->u.s; (*d = *s++); d++)
4670	  ;
4671      }
4672  *d++ = '\0';
4673  return buffer;
4674}
4675
4676/* Issue an error message for a bad initializer component.
4677   MSGID identifies the message.
4678   The component name is taken from the spelling stack.  */
4679
4680void
4681error_init (msgid)
4682     const char *msgid;
4683{
4684  char *ofwhat;
4685
4686  error ("%s", _(msgid));
4687  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4688  if (*ofwhat)
4689    error ("(near initialization for `%s')", ofwhat);
4690}
4691
4692/* Issue a pedantic warning for a bad initializer component.
4693   MSGID identifies the message.
4694   The component name is taken from the spelling stack.  */
4695
4696void
4697pedwarn_init (msgid)
4698     const char *msgid;
4699{
4700  char *ofwhat;
4701
4702  pedwarn ("%s", _(msgid));
4703  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4704  if (*ofwhat)
4705    pedwarn ("(near initialization for `%s')", ofwhat);
4706}
4707
4708/* Issue a warning for a bad initializer component.
4709   MSGID identifies the message.
4710   The component name is taken from the spelling stack.  */
4711
4712static void
4713warning_init (msgid)
4714     const char *msgid;
4715{
4716  char *ofwhat;
4717
4718  warning ("%s", _(msgid));
4719  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4720  if (*ofwhat)
4721    warning ("(near initialization for `%s')", ofwhat);
4722}
4723
4724/* Digest the parser output INIT as an initializer for type TYPE.
4725   Return a C expression of type TYPE to represent the initial value.
4726
4727   The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
4728   if non-constant initializers or elements are seen.  CONSTRUCTOR_CONSTANT
4729   applies only to elements of constructors.  */
4730
4731static tree
4732digest_init (type, init, require_constant, constructor_constant)
4733     tree type, init;
4734     int require_constant, constructor_constant;
4735{
4736  enum tree_code code = TREE_CODE (type);
4737  tree inside_init = init;
4738
4739  if (type == error_mark_node
4740      || init == error_mark_node
4741      || TREE_TYPE (init) == error_mark_node)
4742    return error_mark_node;
4743
4744  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
4745  /* Do not use STRIP_NOPS here.  We do not want an enumerator
4746     whose value is 0 to count as a null pointer constant.  */
4747  if (TREE_CODE (init) == NON_LVALUE_EXPR)
4748    inside_init = TREE_OPERAND (init, 0);
4749
4750  inside_init = fold (inside_init);
4751
4752  /* Initialization of an array of chars from a string constant
4753     optionally enclosed in braces.  */
4754
4755  if (code == ARRAY_TYPE)
4756    {
4757      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4758      if ((typ1 == char_type_node
4759	   || typ1 == signed_char_type_node
4760	   || typ1 == unsigned_char_type_node
4761	   || typ1 == unsigned_wchar_type_node
4762	   || typ1 == signed_wchar_type_node)
4763	  && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4764	{
4765	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4766			 TYPE_MAIN_VARIANT (type)))
4767	    return inside_init;
4768
4769	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4770	       != char_type_node)
4771	      && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4772	    {
4773	      error_init ("char-array initialized from wide string");
4774	      return error_mark_node;
4775	    }
4776	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4777	       == char_type_node)
4778	      && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4779	    {
4780	      error_init ("int-array initialized from non-wide string");
4781	      return error_mark_node;
4782	    }
4783
4784	  TREE_TYPE (inside_init) = type;
4785	  if (TYPE_DOMAIN (type) != 0
4786	      && TYPE_SIZE (type) != 0
4787	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4788	      /* Subtract 1 (or sizeof (wchar_t))
4789		 because it's ok to ignore the terminating null char
4790		 that is counted in the length of the constant.  */
4791	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4792				       TREE_STRING_LENGTH (inside_init)
4793				       - ((TYPE_PRECISION (typ1)
4794					   != TYPE_PRECISION (char_type_node))
4795					  ? (TYPE_PRECISION (wchar_type_node)
4796					     / BITS_PER_UNIT)
4797					  : 1)))
4798	    pedwarn_init ("initializer-string for array of chars is too long");
4799
4800	  return inside_init;
4801	}
4802    }
4803
4804  /* Any type can be initialized
4805     from an expression of the same type, optionally with braces.  */
4806
4807  if (inside_init && TREE_TYPE (inside_init) != 0
4808      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4809		     TYPE_MAIN_VARIANT (type))
4810	  || (code == ARRAY_TYPE
4811	      && comptypes (TREE_TYPE (inside_init), type))
4812	  || (code == POINTER_TYPE
4813	      && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4814		  || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4815	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4816			    TREE_TYPE (type)))))
4817    {
4818      if (code == POINTER_TYPE)
4819	inside_init = default_function_array_conversion (inside_init);
4820
4821      if (require_constant && !flag_isoc99
4822	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4823	{
4824	  /* As an extension, allow initializing objects with static storage
4825	     duration with compound literals (which are then treated just as
4826	     the brace enclosed list they contain).  */
4827	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4828	  inside_init = DECL_INITIAL (decl);
4829	}
4830
4831      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4832	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4833	{
4834	  error_init ("array initialized from non-constant array expression");
4835	  return error_mark_node;
4836	}
4837
4838      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4839	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4840
4841      /* Compound expressions can only occur here if -pedantic or
4842	 -pedantic-errors is specified.  In the later case, we always want
4843	 an error.  In the former case, we simply want a warning.  */
4844      if (require_constant && pedantic
4845	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4846	{
4847	  inside_init
4848	    = valid_compound_expr_initializer (inside_init,
4849					       TREE_TYPE (inside_init));
4850	  if (inside_init == error_mark_node)
4851	    error_init ("initializer element is not constant");
4852	  else
4853	    pedwarn_init ("initializer element is not constant");
4854	  if (flag_pedantic_errors)
4855	    inside_init = error_mark_node;
4856	}
4857      else if (require_constant
4858	       && (!TREE_CONSTANT (inside_init)
4859		   /* This test catches things like `7 / 0' which
4860		      result in an expression for which TREE_CONSTANT
4861		      is true, but which is not actually something
4862		      that is a legal constant.  We really should not
4863		      be using this function, because it is a part of
4864		      the back-end.  Instead, the expression should
4865		      already have been turned into ERROR_MARK_NODE.  */
4866		   || !initializer_constant_valid_p (inside_init,
4867						     TREE_TYPE (inside_init))))
4868	{
4869	  error_init ("initializer element is not constant");
4870	  inside_init = error_mark_node;
4871	}
4872
4873      return inside_init;
4874    }
4875
4876  /* Handle scalar types, including conversions.  */
4877
4878  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4879      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE)
4880    {
4881      /* Note that convert_for_assignment calls default_conversion
4882	 for arrays and functions.  We must not call it in the
4883	 case where inside_init is a null pointer constant.  */
4884      inside_init
4885	= convert_for_assignment (type, init, _("initialization"),
4886				  NULL_TREE, NULL_TREE, 0);
4887
4888      if (require_constant && ! TREE_CONSTANT (inside_init))
4889	{
4890	  error_init ("initializer element is not constant");
4891	  inside_init = error_mark_node;
4892	}
4893      else if (require_constant
4894	       && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4895	{
4896	  error_init ("initializer element is not computable at load time");
4897	  inside_init = error_mark_node;
4898	}
4899
4900      return inside_init;
4901    }
4902
4903  /* Come here only for records and arrays.  */
4904
4905  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4906    {
4907      error_init ("variable-sized object may not be initialized");
4908      return error_mark_node;
4909    }
4910
4911  /* Traditionally, you can write  struct foo x = 0;
4912     and it initializes the first element of x to 0.  */
4913  if (flag_traditional)
4914    {
4915      tree top = 0, prev = 0, otype = type;
4916      while (TREE_CODE (type) == RECORD_TYPE
4917	     || TREE_CODE (type) == ARRAY_TYPE
4918	     || TREE_CODE (type) == QUAL_UNION_TYPE
4919	     || TREE_CODE (type) == UNION_TYPE)
4920	{
4921	  tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
4922	  if (prev == 0)
4923	    top = temp;
4924	  else
4925	    TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
4926	  prev = temp;
4927	  if (TREE_CODE (type) == ARRAY_TYPE)
4928	    type = TREE_TYPE (type);
4929	  else if (TYPE_FIELDS (type))
4930	    type = TREE_TYPE (TYPE_FIELDS (type));
4931	  else
4932	    {
4933	      error_init ("invalid initializer");
4934	      return error_mark_node;
4935	    }
4936	}
4937
4938      if (otype != type)
4939	{
4940	  TREE_OPERAND (prev, 1)
4941	    = build_tree_list (NULL_TREE,
4942			       digest_init (type, init, require_constant,
4943					    constructor_constant));
4944	  return top;
4945	}
4946      else
4947	return error_mark_node;
4948    }
4949  error_init ("invalid initializer");
4950  return error_mark_node;
4951}
4952
4953/* Handle initializers that use braces.  */
4954
4955/* Type of object we are accumulating a constructor for.
4956   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4957static tree constructor_type;
4958
4959/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4960   left to fill.  */
4961static tree constructor_fields;
4962
4963/* For an ARRAY_TYPE, this is the specified index
4964   at which to store the next element we get.  */
4965static tree constructor_index;
4966
4967/* For an ARRAY_TYPE, this is the maximum index.  */
4968static tree constructor_max_index;
4969
4970/* For a RECORD_TYPE, this is the first field not yet written out.  */
4971static tree constructor_unfilled_fields;
4972
4973/* For an ARRAY_TYPE, this is the index of the first element
4974   not yet written out.  */
4975static tree constructor_unfilled_index;
4976
4977/* In a RECORD_TYPE, the byte index of the next consecutive field.
4978   This is so we can generate gaps between fields, when appropriate.  */
4979static tree constructor_bit_index;
4980
4981/* If we are saving up the elements rather than allocating them,
4982   this is the list of elements so far (in reverse order,
4983   most recent first).  */
4984static tree constructor_elements;
4985
4986/* 1 if constructor should be incrementally stored into a constructor chain,
4987   0 if all the elements should be kept in AVL tree.  */
4988static int constructor_incremental;
4989
4990/* 1 if so far this constructor's elements are all compile-time constants.  */
4991static int constructor_constant;
4992
4993/* 1 if so far this constructor's elements are all valid address constants.  */
4994static int constructor_simple;
4995
4996/* 1 if this constructor is erroneous so far.  */
4997static int constructor_erroneous;
4998
4999/* 1 if have called defer_addressed_constants.  */
5000static int constructor_subconstants_deferred;
5001
5002/* Structure for managing pending initializer elements, organized as an
5003   AVL tree.  */
5004
5005struct init_node
5006{
5007  struct init_node *left, *right;
5008  struct init_node *parent;
5009  int balance;
5010  tree purpose;
5011  tree value;
5012};
5013
5014/* Tree of pending elements at this constructor level.
5015   These are elements encountered out of order
5016   which belong at places we haven't reached yet in actually
5017   writing the output.
5018   Will never hold tree nodes across GC runs.  */
5019static struct init_node *constructor_pending_elts;
5020
5021/* The SPELLING_DEPTH of this constructor.  */
5022static int constructor_depth;
5023
5024/* 0 if implicitly pushing constructor levels is allowed.  */
5025int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages.  */
5026
5027static int require_constant_value;
5028static int require_constant_elements;
5029
5030/* DECL node for which an initializer is being read.
5031   0 means we are reading a constructor expression
5032   such as (struct foo) {...}.  */
5033static tree constructor_decl;
5034
5035/* start_init saves the ASMSPEC arg here for really_start_incremental_init.  */
5036static const char *constructor_asmspec;
5037
5038/* Nonzero if this is an initializer for a top-level decl.  */
5039static int constructor_top_level;
5040
5041/* Nonzero if there were any member designators in this initializer.  */
5042static int constructor_designated;
5043
5044/* Nesting depth of designator list.  */
5045static int designator_depth;
5046
5047/* Nonzero if there were diagnosed errors in this designator list.  */
5048static int designator_errorneous;
5049
5050
5051/* This stack has a level for each implicit or explicit level of
5052   structuring in the initializer, including the outermost one.  It
5053   saves the values of most of the variables above.  */
5054
5055struct constructor_range_stack;
5056
5057struct constructor_stack
5058{
5059  struct constructor_stack *next;
5060  tree type;
5061  tree fields;
5062  tree index;
5063  tree max_index;
5064  tree unfilled_index;
5065  tree unfilled_fields;
5066  tree bit_index;
5067  tree elements;
5068  struct init_node *pending_elts;
5069  int offset;
5070  int depth;
5071  /* If nonzero, this value should replace the entire
5072     constructor at this level.  */
5073  tree replacement_value;
5074  struct constructor_range_stack *range_stack;
5075  char constant;
5076  char simple;
5077  char implicit;
5078  char erroneous;
5079  char outer;
5080  char incremental;
5081  char designated;
5082};
5083
5084struct constructor_stack *constructor_stack;
5085
5086/* This stack represents designators from some range designator up to
5087   the last designator in the list.  */
5088
5089struct constructor_range_stack
5090{
5091  struct constructor_range_stack *next, *prev;
5092  struct constructor_stack *stack;
5093  tree range_start;
5094  tree index;
5095  tree range_end;
5096  tree fields;
5097};
5098
5099struct constructor_range_stack *constructor_range_stack;
5100
5101/* This stack records separate initializers that are nested.
5102   Nested initializers can't happen in ANSI C, but GNU C allows them
5103   in cases like { ... (struct foo) { ... } ... }.  */
5104
5105struct initializer_stack
5106{
5107  struct initializer_stack *next;
5108  tree decl;
5109  const char *asmspec;
5110  struct constructor_stack *constructor_stack;
5111  struct constructor_range_stack *constructor_range_stack;
5112  tree elements;
5113  struct spelling *spelling;
5114  struct spelling *spelling_base;
5115  int spelling_size;
5116  char top_level;
5117  char require_constant_value;
5118  char require_constant_elements;
5119  char deferred;
5120};
5121
5122struct initializer_stack *initializer_stack;
5123
5124/* Prepare to parse and output the initializer for variable DECL.  */
5125
5126void
5127start_init (decl, asmspec_tree, top_level)
5128     tree decl;
5129     tree asmspec_tree;
5130     int top_level;
5131{
5132  const char *locus;
5133  struct initializer_stack *p
5134    = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
5135  const char *asmspec = 0;
5136
5137  if (asmspec_tree)
5138    asmspec = TREE_STRING_POINTER (asmspec_tree);
5139
5140  p->decl = constructor_decl;
5141  p->asmspec = constructor_asmspec;
5142  p->require_constant_value = require_constant_value;
5143  p->require_constant_elements = require_constant_elements;
5144  p->constructor_stack = constructor_stack;
5145  p->constructor_range_stack = constructor_range_stack;
5146  p->elements = constructor_elements;
5147  p->spelling = spelling;
5148  p->spelling_base = spelling_base;
5149  p->spelling_size = spelling_size;
5150  p->deferred = constructor_subconstants_deferred;
5151  p->top_level = constructor_top_level;
5152  p->next = initializer_stack;
5153  initializer_stack = p;
5154
5155  constructor_decl = decl;
5156  constructor_asmspec = asmspec;
5157  constructor_subconstants_deferred = 0;
5158  constructor_designated = 0;
5159  constructor_top_level = top_level;
5160
5161  if (decl != 0)
5162    {
5163      require_constant_value = TREE_STATIC (decl);
5164      require_constant_elements
5165	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5166	   /* For a scalar, you can always use any value to initialize,
5167	      even within braces.  */
5168	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5169	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5170	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5171	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5172      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5173    }
5174  else
5175    {
5176      require_constant_value = 0;
5177      require_constant_elements = 0;
5178      locus = "(anonymous)";
5179    }
5180
5181  constructor_stack = 0;
5182  constructor_range_stack = 0;
5183
5184  missing_braces_mentioned = 0;
5185
5186  spelling_base = 0;
5187  spelling_size = 0;
5188  RESTORE_SPELLING_DEPTH (0);
5189
5190  if (locus)
5191    push_string (locus);
5192}
5193
5194void
5195finish_init ()
5196{
5197  struct initializer_stack *p = initializer_stack;
5198
5199  /* Output subconstants (string constants, usually)
5200     that were referenced within this initializer and saved up.
5201     Must do this if and only if we called defer_addressed_constants.  */
5202  if (constructor_subconstants_deferred)
5203    output_deferred_addressed_constants ();
5204
5205  /* Free the whole constructor stack of this initializer.  */
5206  while (constructor_stack)
5207    {
5208      struct constructor_stack *q = constructor_stack;
5209      constructor_stack = q->next;
5210      free (q);
5211    }
5212
5213  if (constructor_range_stack)
5214    abort ();
5215
5216  /* Pop back to the data of the outer initializer (if any).  */
5217  constructor_decl = p->decl;
5218  constructor_asmspec = p->asmspec;
5219  require_constant_value = p->require_constant_value;
5220  require_constant_elements = p->require_constant_elements;
5221  constructor_stack = p->constructor_stack;
5222  constructor_range_stack = p->constructor_range_stack;
5223  constructor_elements = p->elements;
5224  spelling = p->spelling;
5225  spelling_base = p->spelling_base;
5226  spelling_size = p->spelling_size;
5227  constructor_subconstants_deferred = p->deferred;
5228  constructor_top_level = p->top_level;
5229  initializer_stack = p->next;
5230  free (p);
5231}
5232
5233/* Call here when we see the initializer is surrounded by braces.
5234   This is instead of a call to push_init_level;
5235   it is matched by a call to pop_init_level.
5236
5237   TYPE is the type to initialize, for a constructor expression.
5238   For an initializer for a decl, TYPE is zero.  */
5239
5240void
5241really_start_incremental_init (type)
5242     tree type;
5243{
5244  struct constructor_stack *p
5245    = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5246
5247  if (type == 0)
5248    type = TREE_TYPE (constructor_decl);
5249
5250  p->type = constructor_type;
5251  p->fields = constructor_fields;
5252  p->index = constructor_index;
5253  p->max_index = constructor_max_index;
5254  p->unfilled_index = constructor_unfilled_index;
5255  p->unfilled_fields = constructor_unfilled_fields;
5256  p->bit_index = constructor_bit_index;
5257  p->elements = constructor_elements;
5258  p->constant = constructor_constant;
5259  p->simple = constructor_simple;
5260  p->erroneous = constructor_erroneous;
5261  p->pending_elts = constructor_pending_elts;
5262  p->depth = constructor_depth;
5263  p->replacement_value = 0;
5264  p->implicit = 0;
5265  p->range_stack = 0;
5266  p->outer = 0;
5267  p->incremental = constructor_incremental;
5268  p->designated = constructor_designated;
5269  p->next = 0;
5270  constructor_stack = p;
5271
5272  constructor_constant = 1;
5273  constructor_simple = 1;
5274  constructor_depth = SPELLING_DEPTH ();
5275  constructor_elements = 0;
5276  constructor_pending_elts = 0;
5277  constructor_type = type;
5278  constructor_incremental = 1;
5279  constructor_designated = 0;
5280  designator_depth = 0;
5281  designator_errorneous = 0;
5282
5283  if (TREE_CODE (constructor_type) == RECORD_TYPE
5284      || TREE_CODE (constructor_type) == UNION_TYPE)
5285    {
5286      constructor_fields = TYPE_FIELDS (constructor_type);
5287      /* Skip any nameless bit fields at the beginning.  */
5288      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5289	     && DECL_NAME (constructor_fields) == 0)
5290	constructor_fields = TREE_CHAIN (constructor_fields);
5291
5292      constructor_unfilled_fields = constructor_fields;
5293      constructor_bit_index = bitsize_zero_node;
5294    }
5295  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5296    {
5297      if (TYPE_DOMAIN (constructor_type))
5298	{
5299	  constructor_max_index
5300	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5301
5302	  /* Detect non-empty initializations of zero-length arrays.  */
5303	  if (constructor_max_index == NULL_TREE
5304	      && TYPE_SIZE (constructor_type))
5305	    constructor_max_index = build_int_2 (-1, -1);
5306
5307	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5308	     to initialize VLAs will cause an proper error; avoid tree
5309	     checking errors as well by setting a safe value.  */
5310	  if (constructor_max_index
5311	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5312	    constructor_max_index = build_int_2 (-1, -1);
5313
5314	  constructor_index
5315	    = convert (bitsizetype,
5316		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5317	}
5318      else
5319	constructor_index = bitsize_zero_node;
5320
5321      constructor_unfilled_index = constructor_index;
5322    }
5323  else
5324    {
5325      /* Handle the case of int x = {5}; */
5326      constructor_fields = constructor_type;
5327      constructor_unfilled_fields = constructor_type;
5328    }
5329}
5330
5331/* Push down into a subobject, for initialization.
5332   If this is for an explicit set of braces, IMPLICIT is 0.
5333   If it is because the next element belongs at a lower level,
5334   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5335
5336void
5337push_init_level (implicit)
5338     int implicit;
5339{
5340  struct constructor_stack *p;
5341  tree value = NULL_TREE;
5342
5343  /* If we've exhausted any levels that didn't have braces,
5344     pop them now.  */
5345  while (constructor_stack->implicit)
5346    {
5347      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5348	   || TREE_CODE (constructor_type) == UNION_TYPE)
5349	  && constructor_fields == 0)
5350	process_init_element (pop_init_level (1));
5351      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5352	       && tree_int_cst_lt (constructor_max_index, constructor_index))
5353	process_init_element (pop_init_level (1));
5354      else
5355	break;
5356    }
5357
5358  /* Unless this is an explicit brace, we need to preserve previous
5359     content if any.  */
5360  if (implicit)
5361    {
5362      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5363	   || TREE_CODE (constructor_type) == UNION_TYPE)
5364	  && constructor_fields)
5365	value = find_init_member (constructor_fields);
5366      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5367	value = find_init_member (constructor_index);
5368    }
5369
5370  p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5371  p->type = constructor_type;
5372  p->fields = constructor_fields;
5373  p->index = constructor_index;
5374  p->max_index = constructor_max_index;
5375  p->unfilled_index = constructor_unfilled_index;
5376  p->unfilled_fields = constructor_unfilled_fields;
5377  p->bit_index = constructor_bit_index;
5378  p->elements = constructor_elements;
5379  p->constant = constructor_constant;
5380  p->simple = constructor_simple;
5381  p->erroneous = constructor_erroneous;
5382  p->pending_elts = constructor_pending_elts;
5383  p->depth = constructor_depth;
5384  p->replacement_value = 0;
5385  p->implicit = implicit;
5386  p->outer = 0;
5387  p->incremental = constructor_incremental;
5388  p->designated = constructor_designated;
5389  p->next = constructor_stack;
5390  p->range_stack = 0;
5391  constructor_stack = p;
5392
5393  constructor_constant = 1;
5394  constructor_simple = 1;
5395  constructor_depth = SPELLING_DEPTH ();
5396  constructor_elements = 0;
5397  constructor_incremental = 1;
5398  constructor_designated = 0;
5399  constructor_pending_elts = 0;
5400  if (!implicit)
5401    {
5402      p->range_stack = constructor_range_stack;
5403      constructor_range_stack = 0;
5404      designator_depth = 0;
5405      designator_errorneous = 0;
5406    }
5407
5408  /* Don't die if an entire brace-pair level is superfluous
5409     in the containing level.  */
5410  if (constructor_type == 0)
5411    ;
5412  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5413	   || TREE_CODE (constructor_type) == UNION_TYPE)
5414    {
5415      /* Don't die if there are extra init elts at the end.  */
5416      if (constructor_fields == 0)
5417	constructor_type = 0;
5418      else
5419	{
5420	  constructor_type = TREE_TYPE (constructor_fields);
5421	  push_member_name (constructor_fields);
5422	  constructor_depth++;
5423	}
5424    }
5425  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5426    {
5427      constructor_type = TREE_TYPE (constructor_type);
5428      push_array_bounds (tree_low_cst (constructor_index, 0));
5429      constructor_depth++;
5430    }
5431
5432  if (constructor_type == 0)
5433    {
5434      error_init ("extra brace group at end of initializer");
5435      constructor_fields = 0;
5436      constructor_unfilled_fields = 0;
5437      return;
5438    }
5439
5440  if (value && TREE_CODE (value) == CONSTRUCTOR)
5441    {
5442      constructor_constant = TREE_CONSTANT (value);
5443      constructor_simple = TREE_STATIC (value);
5444      constructor_elements = TREE_OPERAND (value, 1);
5445      if (constructor_elements
5446	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5447	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5448	set_nonincremental_init ();
5449    }
5450
5451  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5452    {
5453      missing_braces_mentioned = 1;
5454      warning_init ("missing braces around initializer");
5455    }
5456
5457  if (TREE_CODE (constructor_type) == RECORD_TYPE
5458	   || TREE_CODE (constructor_type) == UNION_TYPE)
5459    {
5460      constructor_fields = TYPE_FIELDS (constructor_type);
5461      /* Skip any nameless bit fields at the beginning.  */
5462      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5463	     && DECL_NAME (constructor_fields) == 0)
5464	constructor_fields = TREE_CHAIN (constructor_fields);
5465
5466      constructor_unfilled_fields = constructor_fields;
5467      constructor_bit_index = bitsize_zero_node;
5468    }
5469  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5470    {
5471      if (TYPE_DOMAIN (constructor_type))
5472	{
5473	  constructor_max_index
5474	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5475
5476	  /* Detect non-empty initializations of zero-length arrays.  */
5477	  if (constructor_max_index == NULL_TREE
5478	      && TYPE_SIZE (constructor_type))
5479	    constructor_max_index = build_int_2 (-1, -1);
5480
5481	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5482	     to initialize VLAs will cause an proper error; avoid tree
5483	     checking errors as well by setting a safe value.  */
5484	  if (constructor_max_index
5485	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5486	    constructor_max_index = build_int_2 (-1, -1);
5487
5488	  constructor_index
5489	    = convert (bitsizetype,
5490		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5491	}
5492      else
5493	constructor_index = bitsize_zero_node;
5494
5495      constructor_unfilled_index = constructor_index;
5496      if (value && TREE_CODE (value) == STRING_CST)
5497	{
5498	  /* We need to split the char/wchar array into individual
5499	     characters, so that we don't have to special case it
5500	     everywhere.  */
5501	  set_nonincremental_init_from_string (value);
5502	}
5503    }
5504  else
5505    {
5506      warning_init ("braces around scalar initializer");
5507      constructor_fields = constructor_type;
5508      constructor_unfilled_fields = constructor_type;
5509    }
5510}
5511
5512/* At the end of an implicit or explicit brace level,
5513   finish up that level of constructor.
5514   If we were outputting the elements as they are read, return 0
5515   from inner levels (process_init_element ignores that),
5516   but return error_mark_node from the outermost level
5517   (that's what we want to put in DECL_INITIAL).
5518   Otherwise, return a CONSTRUCTOR expression.  */
5519
5520tree
5521pop_init_level (implicit)
5522     int implicit;
5523{
5524  struct constructor_stack *p;
5525  tree constructor = 0;
5526
5527  if (implicit == 0)
5528    {
5529      /* When we come to an explicit close brace,
5530	 pop any inner levels that didn't have explicit braces.  */
5531      while (constructor_stack->implicit)
5532	process_init_element (pop_init_level (1));
5533
5534      if (constructor_range_stack)
5535	abort ();
5536    }
5537
5538  p = constructor_stack;
5539
5540  /* Error for initializing a flexible array member, or a zero-length
5541     array member in an inappropriate context.  */
5542  if (constructor_type && constructor_fields
5543      && TREE_CODE (constructor_type) == ARRAY_TYPE
5544      && TYPE_DOMAIN (constructor_type)
5545      && ! TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5546    {
5547      /* Silently discard empty initializations.  The parser will
5548	 already have pedwarned for empty brackets.  */
5549      if (integer_zerop (constructor_unfilled_index))
5550	constructor_type = NULL_TREE;
5551      else if (! TYPE_SIZE (constructor_type))
5552	{
5553	  if (constructor_depth > 2)
5554	    error_init ("initialization of flexible array member in a nested context");
5555	  else if (pedantic)
5556	    pedwarn_init ("initialization of a flexible array member");
5557
5558	  /* We have already issued an error message for the existence
5559	     of a flexible array member not at the end of the structure.
5560	     Discard the initializer so that we do not abort later.  */
5561	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5562	    constructor_type = NULL_TREE;
5563	}
5564      else
5565	/* Zero-length arrays are no longer special, so we should no longer
5566	   get here.  */
5567	abort ();
5568    }
5569
5570  /* Warn when some struct elements are implicitly initialized to zero.  */
5571  if (extra_warnings
5572      && constructor_type
5573      && TREE_CODE (constructor_type) == RECORD_TYPE
5574      && constructor_unfilled_fields)
5575    {
5576	/* Do not warn for flexible array members or zero-length arrays.  */
5577	while (constructor_unfilled_fields
5578	       && (! DECL_SIZE (constructor_unfilled_fields)
5579		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5580	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5581
5582	/* Do not warn if this level of the initializer uses member
5583	   designators; it is likely to be deliberate.  */
5584	if (constructor_unfilled_fields && !constructor_designated)
5585	  {
5586	    push_member_name (constructor_unfilled_fields);
5587	    warning_init ("missing initializer");
5588	    RESTORE_SPELLING_DEPTH (constructor_depth);
5589	  }
5590    }
5591
5592  /* Now output all pending elements.  */
5593  constructor_incremental = 1;
5594  output_pending_init_elements (1);
5595
5596  /* Pad out the end of the structure.  */
5597  if (p->replacement_value)
5598    /* If this closes a superfluous brace pair,
5599       just pass out the element between them.  */
5600    constructor = p->replacement_value;
5601  else if (constructor_type == 0)
5602    ;
5603  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5604	   && TREE_CODE (constructor_type) != UNION_TYPE
5605	   && TREE_CODE (constructor_type) != ARRAY_TYPE)
5606    {
5607      /* A nonincremental scalar initializer--just return
5608	 the element, after verifying there is just one.  */
5609      if (constructor_elements == 0)
5610	{
5611	  if (!constructor_erroneous)
5612	    error_init ("empty scalar initializer");
5613	  constructor = error_mark_node;
5614	}
5615      else if (TREE_CHAIN (constructor_elements) != 0)
5616	{
5617	  error_init ("extra elements in scalar initializer");
5618	  constructor = TREE_VALUE (constructor_elements);
5619	}
5620      else
5621	constructor = TREE_VALUE (constructor_elements);
5622    }
5623  else
5624    {
5625      if (constructor_erroneous)
5626	constructor = error_mark_node;
5627      else
5628	{
5629	  constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5630			       nreverse (constructor_elements));
5631	  if (constructor_constant)
5632	    TREE_CONSTANT (constructor) = 1;
5633	  if (constructor_constant && constructor_simple)
5634	    TREE_STATIC (constructor) = 1;
5635	}
5636    }
5637
5638  constructor_type = p->type;
5639  constructor_fields = p->fields;
5640  constructor_index = p->index;
5641  constructor_max_index = p->max_index;
5642  constructor_unfilled_index = p->unfilled_index;
5643  constructor_unfilled_fields = p->unfilled_fields;
5644  constructor_bit_index = p->bit_index;
5645  constructor_elements = p->elements;
5646  constructor_constant = p->constant;
5647  constructor_simple = p->simple;
5648  constructor_erroneous = p->erroneous;
5649  constructor_incremental = p->incremental;
5650  constructor_designated = p->designated;
5651  constructor_pending_elts = p->pending_elts;
5652  constructor_depth = p->depth;
5653  if (!p->implicit)
5654    constructor_range_stack = p->range_stack;
5655  RESTORE_SPELLING_DEPTH (constructor_depth);
5656
5657  constructor_stack = p->next;
5658  free (p);
5659
5660  if (constructor == 0)
5661    {
5662      if (constructor_stack == 0)
5663	return error_mark_node;
5664      return NULL_TREE;
5665    }
5666  return constructor;
5667}
5668
5669/* Common handling for both array range and field name designators.
5670   ARRAY argument is non-zero for array ranges.  Returns zero for success.  */
5671
5672static int
5673set_designator (array)
5674     int array;
5675{
5676  tree subtype;
5677  enum tree_code subcode;
5678
5679  /* Don't die if an entire brace-pair level is superfluous
5680     in the containing level.  */
5681  if (constructor_type == 0)
5682    return 1;
5683
5684  /* If there were errors in this designator list already, bail out silently.  */
5685  if (designator_errorneous)
5686    return 1;
5687
5688  if (!designator_depth)
5689    {
5690      if (constructor_range_stack)
5691	abort ();
5692
5693      /* Designator list starts at the level of closest explicit
5694	 braces.  */
5695      while (constructor_stack->implicit)
5696	process_init_element (pop_init_level (1));
5697      constructor_designated = 1;
5698      return 0;
5699    }
5700
5701  if (constructor_no_implicit)
5702    {
5703      error_init ("initialization designators may not nest");
5704      return 1;
5705    }
5706
5707  if (TREE_CODE (constructor_type) == RECORD_TYPE
5708      || TREE_CODE (constructor_type) == UNION_TYPE)
5709    {
5710      subtype = TREE_TYPE (constructor_fields);
5711      if (subtype != error_mark_node)
5712	subtype = TYPE_MAIN_VARIANT (subtype);
5713    }
5714  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5715    {
5716      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5717    }
5718  else
5719    abort ();
5720
5721  subcode = TREE_CODE (subtype);
5722  if (array && subcode != ARRAY_TYPE)
5723    {
5724      error_init ("array index in non-array initializer");
5725      return 1;
5726    }
5727  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5728    {
5729      error_init ("field name not in record or union initializer");
5730      return 1;
5731    }
5732
5733  constructor_designated = 1;
5734  push_init_level (2);
5735  return 0;
5736}
5737
5738/* If there are range designators in designator list, push a new designator
5739   to constructor_range_stack.  RANGE_END is end of such stack range or
5740   NULL_TREE if there is no range designator at this level.  */
5741
5742static void
5743push_range_stack (range_end)
5744     tree range_end;
5745{
5746  struct constructor_range_stack *p;
5747
5748  p = (struct constructor_range_stack *)
5749      ggc_alloc (sizeof (struct constructor_range_stack));
5750  p->prev = constructor_range_stack;
5751  p->next = 0;
5752  p->fields = constructor_fields;
5753  p->range_start = constructor_index;
5754  p->index = constructor_index;
5755  p->stack = constructor_stack;
5756  p->range_end = range_end;
5757  if (constructor_range_stack)
5758    constructor_range_stack->next = p;
5759  constructor_range_stack = p;
5760}
5761
5762/* Within an array initializer, specify the next index to be initialized.
5763   FIRST is that index.  If LAST is nonzero, then initialize a range
5764   of indices, running from FIRST through LAST.  */
5765
5766void
5767set_init_index (first, last)
5768     tree first, last;
5769{
5770  if (set_designator (1))
5771    return;
5772
5773  designator_errorneous = 1;
5774
5775  while ((TREE_CODE (first) == NOP_EXPR
5776	  || TREE_CODE (first) == CONVERT_EXPR
5777	  || TREE_CODE (first) == NON_LVALUE_EXPR)
5778	 && (TYPE_MODE (TREE_TYPE (first))
5779	     == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5780    first = TREE_OPERAND (first, 0);
5781
5782  if (last)
5783    while ((TREE_CODE (last) == NOP_EXPR
5784	    || TREE_CODE (last) == CONVERT_EXPR
5785	    || TREE_CODE (last) == NON_LVALUE_EXPR)
5786	   && (TYPE_MODE (TREE_TYPE (last))
5787	       == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5788      last = TREE_OPERAND (last, 0);
5789
5790  if (TREE_CODE (first) != INTEGER_CST)
5791    error_init ("nonconstant array index in initializer");
5792  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5793    error_init ("nonconstant array index in initializer");
5794  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5795    error_init ("array index in non-array initializer");
5796  else if (constructor_max_index
5797	   && tree_int_cst_lt (constructor_max_index, first))
5798    error_init ("array index in initializer exceeds array bounds");
5799  else
5800    {
5801      constructor_index = convert (bitsizetype, first);
5802
5803      if (last)
5804	{
5805	  if (tree_int_cst_equal (first, last))
5806	    last = 0;
5807	  else if (tree_int_cst_lt (last, first))
5808	    {
5809	      error_init ("empty index range in initializer");
5810	      last = 0;
5811	    }
5812	  else
5813	    {
5814	      last = convert (bitsizetype, last);
5815	      if (constructor_max_index != 0
5816		  && tree_int_cst_lt (constructor_max_index, last))
5817		{
5818		  error_init ("array index range in initializer exceeds array bounds");
5819		  last = 0;
5820		}
5821	    }
5822	}
5823
5824      designator_depth++;
5825      designator_errorneous = 0;
5826      if (constructor_range_stack || last)
5827	push_range_stack (last);
5828    }
5829}
5830
5831/* Within a struct initializer, specify the next field to be initialized.  */
5832
5833void
5834set_init_label (fieldname)
5835     tree fieldname;
5836{
5837  tree tail;
5838
5839  if (set_designator (0))
5840    return;
5841
5842  designator_errorneous = 1;
5843
5844  if (TREE_CODE (constructor_type) != RECORD_TYPE
5845      && TREE_CODE (constructor_type) != UNION_TYPE)
5846    {
5847      error_init ("field name not in record or union initializer");
5848      return;
5849    }
5850
5851  for (tail = TYPE_FIELDS (constructor_type); tail;
5852       tail = TREE_CHAIN (tail))
5853    {
5854      if (DECL_NAME (tail) == fieldname)
5855	break;
5856    }
5857
5858  if (tail == 0)
5859    error ("unknown field `%s' specified in initializer",
5860	   IDENTIFIER_POINTER (fieldname));
5861  else
5862    {
5863      constructor_fields = tail;
5864      designator_depth++;
5865      designator_errorneous = 0;
5866      if (constructor_range_stack)
5867	push_range_stack (NULL_TREE);
5868    }
5869}
5870
5871/* Add a new initializer to the tree of pending initializers.  PURPOSE
5872   identifies the initializer, either array index or field in a structure.
5873   VALUE is the value of that index or field.  */
5874
5875static void
5876add_pending_init (purpose, value)
5877     tree purpose, value;
5878{
5879  struct init_node *p, **q, *r;
5880
5881  q = &constructor_pending_elts;
5882  p = 0;
5883
5884  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5885    {
5886      while (*q != 0)
5887	{
5888	  p = *q;
5889	  if (tree_int_cst_lt (purpose, p->purpose))
5890	    q = &p->left;
5891	  else if (tree_int_cst_lt (p->purpose, purpose))
5892	    q = &p->right;
5893	  else
5894	    {
5895	      if (TREE_SIDE_EFFECTS (p->value))
5896		warning_init ("initialized field with side-effects overwritten");
5897	      p->value = value;
5898	      return;
5899	    }
5900	}
5901    }
5902  else
5903    {
5904      tree bitpos;
5905
5906      bitpos = bit_position (purpose);
5907      while (*q != NULL)
5908	{
5909	  p = *q;
5910	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5911	    q = &p->left;
5912	  else if (p->purpose != purpose)
5913	    q = &p->right;
5914	  else
5915	    {
5916	      if (TREE_SIDE_EFFECTS (p->value))
5917		warning_init ("initialized field with side-effects overwritten");
5918	      p->value = value;
5919	      return;
5920	    }
5921	}
5922    }
5923
5924  r = (struct init_node *) ggc_alloc (sizeof (struct init_node));
5925  r->purpose = purpose;
5926  r->value = value;
5927
5928  *q = r;
5929  r->parent = p;
5930  r->left = 0;
5931  r->right = 0;
5932  r->balance = 0;
5933
5934  while (p)
5935    {
5936      struct init_node *s;
5937
5938      if (r == p->left)
5939	{
5940	  if (p->balance == 0)
5941	    p->balance = -1;
5942	  else if (p->balance < 0)
5943	    {
5944	      if (r->balance < 0)
5945		{
5946		  /* L rotation.  */
5947		  p->left = r->right;
5948		  if (p->left)
5949		    p->left->parent = p;
5950		  r->right = p;
5951
5952		  p->balance = 0;
5953		  r->balance = 0;
5954
5955		  s = p->parent;
5956		  p->parent = r;
5957		  r->parent = s;
5958		  if (s)
5959		    {
5960		      if (s->left == p)
5961			s->left = r;
5962		      else
5963			s->right = r;
5964		    }
5965		  else
5966		    constructor_pending_elts = r;
5967		}
5968	      else
5969		{
5970		  /* LR rotation.  */
5971		  struct init_node *t = r->right;
5972
5973		  r->right = t->left;
5974		  if (r->right)
5975		    r->right->parent = r;
5976		  t->left = r;
5977
5978		  p->left = t->right;
5979		  if (p->left)
5980		    p->left->parent = p;
5981		  t->right = p;
5982
5983		  p->balance = t->balance < 0;
5984		  r->balance = -(t->balance > 0);
5985		  t->balance = 0;
5986
5987		  s = p->parent;
5988		  p->parent = t;
5989		  r->parent = t;
5990		  t->parent = s;
5991		  if (s)
5992		    {
5993		      if (s->left == p)
5994			s->left = t;
5995		      else
5996			s->right = t;
5997		    }
5998		  else
5999		    constructor_pending_elts = t;
6000		}
6001	      break;
6002	    }
6003	  else
6004	    {
6005	      /* p->balance == +1; growth of left side balances the node.  */
6006	      p->balance = 0;
6007	      break;
6008	    }
6009	}
6010      else /* r == p->right */
6011	{
6012	  if (p->balance == 0)
6013	    /* Growth propagation from right side.  */
6014	    p->balance++;
6015	  else if (p->balance > 0)
6016	    {
6017	      if (r->balance > 0)
6018		{
6019		  /* R rotation.  */
6020		  p->right = r->left;
6021		  if (p->right)
6022		    p->right->parent = p;
6023		  r->left = p;
6024
6025		  p->balance = 0;
6026		  r->balance = 0;
6027
6028		  s = p->parent;
6029		  p->parent = r;
6030		  r->parent = s;
6031		  if (s)
6032		    {
6033		      if (s->left == p)
6034			s->left = r;
6035		      else
6036			s->right = r;
6037		    }
6038		  else
6039		    constructor_pending_elts = r;
6040		}
6041	      else /* r->balance == -1 */
6042		{
6043		  /* RL rotation */
6044		  struct init_node *t = r->left;
6045
6046		  r->left = t->right;
6047		  if (r->left)
6048		    r->left->parent = r;
6049		  t->right = r;
6050
6051		  p->right = t->left;
6052		  if (p->right)
6053		    p->right->parent = p;
6054		  t->left = p;
6055
6056		  r->balance = (t->balance < 0);
6057		  p->balance = -(t->balance > 0);
6058		  t->balance = 0;
6059
6060		  s = p->parent;
6061		  p->parent = t;
6062		  r->parent = t;
6063		  t->parent = s;
6064		  if (s)
6065		    {
6066		      if (s->left == p)
6067			s->left = t;
6068		      else
6069			s->right = t;
6070		    }
6071		  else
6072		    constructor_pending_elts = t;
6073		}
6074	      break;
6075	    }
6076	  else
6077	    {
6078	      /* p->balance == -1; growth of right side balances the node.  */
6079	      p->balance = 0;
6080	      break;
6081	    }
6082	}
6083
6084      r = p;
6085      p = p->parent;
6086    }
6087}
6088
6089/* Build AVL tree from a sorted chain.  */
6090
6091static void
6092set_nonincremental_init ()
6093{
6094  tree chain;
6095
6096  if (TREE_CODE (constructor_type) != RECORD_TYPE
6097      && TREE_CODE (constructor_type) != ARRAY_TYPE)
6098    return;
6099
6100  for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
6101    add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
6102  constructor_elements = 0;
6103  if (TREE_CODE (constructor_type) == RECORD_TYPE)
6104    {
6105      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6106      /* Skip any nameless bit fields at the beginning.  */
6107      while (constructor_unfilled_fields != 0
6108	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6109	     && DECL_NAME (constructor_unfilled_fields) == 0)
6110	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6111
6112    }
6113  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6114    {
6115      if (TYPE_DOMAIN (constructor_type))
6116	constructor_unfilled_index
6117	    = convert (bitsizetype,
6118		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6119      else
6120	constructor_unfilled_index = bitsize_zero_node;
6121    }
6122  constructor_incremental = 0;
6123}
6124
6125/* Build AVL tree from a string constant.  */
6126
6127static void
6128set_nonincremental_init_from_string (str)
6129     tree str;
6130{
6131  tree value, purpose, type;
6132  HOST_WIDE_INT val[2];
6133  const char *p, *end;
6134  int byte, wchar_bytes, charwidth, bitpos;
6135
6136  if (TREE_CODE (constructor_type) != ARRAY_TYPE)
6137    abort ();
6138
6139  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6140      == TYPE_PRECISION (char_type_node))
6141    wchar_bytes = 1;
6142  else if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6143	   == TYPE_PRECISION (wchar_type_node))
6144    wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6145  else
6146    abort ();
6147
6148  charwidth = TYPE_PRECISION (char_type_node);
6149  type = TREE_TYPE (constructor_type);
6150  p = TREE_STRING_POINTER (str);
6151  end = p + TREE_STRING_LENGTH (str);
6152
6153  for (purpose = bitsize_zero_node;
6154       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6155       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6156    {
6157      if (wchar_bytes == 1)
6158	{
6159	  val[1] = (unsigned char) *p++;
6160	  val[0] = 0;
6161	}
6162      else
6163	{
6164	  val[0] = 0;
6165	  val[1] = 0;
6166	  for (byte = 0; byte < wchar_bytes; byte++)
6167	    {
6168	      if (BYTES_BIG_ENDIAN)
6169		bitpos = (wchar_bytes - byte - 1) * charwidth;
6170	      else
6171		bitpos = byte * charwidth;
6172	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6173		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6174		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6175	    }
6176	}
6177
6178      if (!TREE_UNSIGNED (type))
6179	{
6180	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6181	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6182	    {
6183	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6184		{
6185		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6186		  val[0] = -1;
6187		}
6188	    }
6189	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6190	    {
6191	      if (val[1] < 0)
6192	        val[0] = -1;
6193	    }
6194	  else if (val[0] & (((HOST_WIDE_INT) 1)
6195			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6196	    val[0] |= ((HOST_WIDE_INT) -1)
6197		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6198	}
6199
6200      value = build_int_2 (val[1], val[0]);
6201      TREE_TYPE (value) = type;
6202      add_pending_init (purpose, value);
6203    }
6204
6205  constructor_incremental = 0;
6206}
6207
6208/* Return value of FIELD in pending initializer or zero if the field was
6209   not initialized yet.  */
6210
6211static tree
6212find_init_member (field)
6213     tree field;
6214{
6215  struct init_node *p;
6216
6217  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6218    {
6219      if (constructor_incremental
6220	  && tree_int_cst_lt (field, constructor_unfilled_index))
6221	set_nonincremental_init ();
6222
6223      p = constructor_pending_elts;
6224      while (p)
6225	{
6226	  if (tree_int_cst_lt (field, p->purpose))
6227	    p = p->left;
6228	  else if (tree_int_cst_lt (p->purpose, field))
6229	    p = p->right;
6230	  else
6231	    return p->value;
6232	}
6233    }
6234  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6235    {
6236      tree bitpos = bit_position (field);
6237
6238      if (constructor_incremental
6239	  && (!constructor_unfilled_fields
6240	      || tree_int_cst_lt (bitpos,
6241				  bit_position (constructor_unfilled_fields))))
6242	set_nonincremental_init ();
6243
6244      p = constructor_pending_elts;
6245      while (p)
6246	{
6247	  if (field == p->purpose)
6248	    return p->value;
6249	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6250	    p = p->left;
6251	  else
6252	    p = p->right;
6253	}
6254    }
6255  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6256    {
6257      if (constructor_elements
6258	  && TREE_PURPOSE (constructor_elements) == field)
6259	return TREE_VALUE (constructor_elements);
6260    }
6261  return 0;
6262}
6263
6264/* "Output" the next constructor element.
6265   At top level, really output it to assembler code now.
6266   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6267   TYPE is the data type that the containing data type wants here.
6268   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6269
6270   PENDING if non-nil means output pending elements that belong
6271   right after this element.  (PENDING is normally 1;
6272   it is 0 while outputting pending elements, to avoid recursion.)  */
6273
6274static void
6275output_init_element (value, type, field, pending)
6276     tree value, type, field;
6277     int pending;
6278{
6279  if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6280      || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6281	  && !(TREE_CODE (value) == STRING_CST
6282	       && TREE_CODE (type) == ARRAY_TYPE
6283	       && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6284	  && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6285			 TYPE_MAIN_VARIANT (type))))
6286    value = default_conversion (value);
6287
6288  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6289      && require_constant_value && !flag_isoc99 && pending)
6290    {
6291      /* As an extension, allow initializing objects with static storage
6292	 duration with compound literals (which are then treated just as
6293	 the brace enclosed list they contain).  */
6294      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6295      value = DECL_INITIAL (decl);
6296    }
6297
6298  if (value == error_mark_node)
6299    constructor_erroneous = 1;
6300  else if (!TREE_CONSTANT (value))
6301    constructor_constant = 0;
6302  else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6303	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6304		|| TREE_CODE (constructor_type) == UNION_TYPE)
6305	       && DECL_C_BIT_FIELD (field)
6306	       && TREE_CODE (value) != INTEGER_CST))
6307    constructor_simple = 0;
6308
6309  if (require_constant_value && ! TREE_CONSTANT (value))
6310    {
6311      error_init ("initializer element is not constant");
6312      value = error_mark_node;
6313    }
6314  else if (require_constant_elements
6315	   && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6316    pedwarn ("initializer element is not computable at load time");
6317
6318  /* If this field is empty (and not at the end of structure),
6319     don't do anything other than checking the initializer.  */
6320  if (field
6321      && (TREE_TYPE (field) == error_mark_node
6322	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6323	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6324	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6325		  || TREE_CHAIN (field)))))
6326    return;
6327
6328  value = digest_init (type, value, require_constant_value,
6329		       require_constant_elements);
6330  if (value == error_mark_node)
6331    {
6332      constructor_erroneous = 1;
6333      return;
6334    }
6335
6336  /* If this element doesn't come next in sequence,
6337     put it on constructor_pending_elts.  */
6338  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6339      && (!constructor_incremental
6340	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6341    {
6342      if (constructor_incremental
6343	  && tree_int_cst_lt (field, constructor_unfilled_index))
6344	set_nonincremental_init ();
6345
6346      add_pending_init (field, value);
6347      return;
6348    }
6349  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6350	   && (!constructor_incremental
6351	       || field != constructor_unfilled_fields))
6352    {
6353      /* We do this for records but not for unions.  In a union,
6354	 no matter which field is specified, it can be initialized
6355	 right away since it starts at the beginning of the union.  */
6356      if (constructor_incremental)
6357	{
6358	  if (!constructor_unfilled_fields)
6359	    set_nonincremental_init ();
6360	  else
6361	    {
6362	      tree bitpos, unfillpos;
6363
6364	      bitpos = bit_position (field);
6365	      unfillpos = bit_position (constructor_unfilled_fields);
6366
6367	      if (tree_int_cst_lt (bitpos, unfillpos))
6368		set_nonincremental_init ();
6369	    }
6370	}
6371
6372      add_pending_init (field, value);
6373      return;
6374    }
6375  else if (TREE_CODE (constructor_type) == UNION_TYPE
6376	   && constructor_elements)
6377    {
6378      if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
6379	warning_init ("initialized field with side-effects overwritten");
6380
6381      /* We can have just one union field set.  */
6382      constructor_elements = 0;
6383    }
6384
6385  /* Otherwise, output this element either to
6386     constructor_elements or to the assembler file.  */
6387
6388  if (field && TREE_CODE (field) == INTEGER_CST)
6389    field = copy_node (field);
6390  constructor_elements
6391    = tree_cons (field, value, constructor_elements);
6392
6393  /* Advance the variable that indicates sequential elements output.  */
6394  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6395    constructor_unfilled_index
6396      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6397		    bitsize_one_node);
6398  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6399    {
6400      constructor_unfilled_fields
6401	= TREE_CHAIN (constructor_unfilled_fields);
6402
6403      /* Skip any nameless bit fields.  */
6404      while (constructor_unfilled_fields != 0
6405	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6406	     && DECL_NAME (constructor_unfilled_fields) == 0)
6407	constructor_unfilled_fields =
6408	  TREE_CHAIN (constructor_unfilled_fields);
6409    }
6410  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6411    constructor_unfilled_fields = 0;
6412
6413  /* Now output any pending elements which have become next.  */
6414  if (pending)
6415    output_pending_init_elements (0);
6416}
6417
6418/* Output any pending elements which have become next.
6419   As we output elements, constructor_unfilled_{fields,index}
6420   advances, which may cause other elements to become next;
6421   if so, they too are output.
6422
6423   If ALL is 0, we return when there are
6424   no more pending elements to output now.
6425
6426   If ALL is 1, we output space as necessary so that
6427   we can output all the pending elements.  */
6428
6429static void
6430output_pending_init_elements (all)
6431     int all;
6432{
6433  struct init_node *elt = constructor_pending_elts;
6434  tree next;
6435
6436 retry:
6437
6438  /* Look thru the whole pending tree.
6439     If we find an element that should be output now,
6440     output it.  Otherwise, set NEXT to the element
6441     that comes first among those still pending.  */
6442
6443  next = 0;
6444  while (elt)
6445    {
6446      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6447	{
6448	  if (tree_int_cst_equal (elt->purpose,
6449				  constructor_unfilled_index))
6450	    output_init_element (elt->value,
6451				 TREE_TYPE (constructor_type),
6452				 constructor_unfilled_index, 0);
6453	  else if (tree_int_cst_lt (constructor_unfilled_index,
6454				    elt->purpose))
6455	    {
6456	      /* Advance to the next smaller node.  */
6457	      if (elt->left)
6458		elt = elt->left;
6459	      else
6460		{
6461		  /* We have reached the smallest node bigger than the
6462		     current unfilled index.  Fill the space first.  */
6463		  next = elt->purpose;
6464		  break;
6465		}
6466	    }
6467	  else
6468	    {
6469	      /* Advance to the next bigger node.  */
6470	      if (elt->right)
6471		elt = elt->right;
6472	      else
6473		{
6474		  /* We have reached the biggest node in a subtree.  Find
6475		     the parent of it, which is the next bigger node.  */
6476		  while (elt->parent && elt->parent->right == elt)
6477		    elt = elt->parent;
6478		  elt = elt->parent;
6479		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6480					      elt->purpose))
6481		    {
6482		      next = elt->purpose;
6483		      break;
6484		    }
6485		}
6486	    }
6487	}
6488      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6489	       || TREE_CODE (constructor_type) == UNION_TYPE)
6490	{
6491	  tree ctor_unfilled_bitpos, elt_bitpos;
6492
6493	  /* If the current record is complete we are done.  */
6494	  if (constructor_unfilled_fields == 0)
6495	    break;
6496
6497	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6498	  elt_bitpos = bit_position (elt->purpose);
6499	  /* We can't compare fields here because there might be empty
6500	     fields in between.  */
6501	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6502	    {
6503	      constructor_unfilled_fields = elt->purpose;
6504	      output_init_element (elt->value, TREE_TYPE (elt->purpose),
6505				   elt->purpose, 0);
6506	    }
6507	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6508	    {
6509	      /* Advance to the next smaller node.  */
6510	      if (elt->left)
6511		elt = elt->left;
6512	      else
6513		{
6514		  /* We have reached the smallest node bigger than the
6515		     current unfilled field.  Fill the space first.  */
6516		  next = elt->purpose;
6517		  break;
6518		}
6519	    }
6520	  else
6521	    {
6522	      /* Advance to the next bigger node.  */
6523	      if (elt->right)
6524		elt = elt->right;
6525	      else
6526		{
6527		  /* We have reached the biggest node in a subtree.  Find
6528		     the parent of it, which is the next bigger node.  */
6529		  while (elt->parent && elt->parent->right == elt)
6530		    elt = elt->parent;
6531		  elt = elt->parent;
6532		  if (elt
6533		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6534					   bit_position (elt->purpose))))
6535		    {
6536		      next = elt->purpose;
6537		      break;
6538		    }
6539		}
6540	    }
6541	}
6542    }
6543
6544  /* Ordinarily return, but not if we want to output all
6545     and there are elements left.  */
6546  if (! (all && next != 0))
6547    return;
6548
6549  /* If it's not incremental, just skip over the gap, so that after
6550     jumping to retry we will output the next successive element.  */
6551  if (TREE_CODE (constructor_type) == RECORD_TYPE
6552      || TREE_CODE (constructor_type) == UNION_TYPE)
6553    constructor_unfilled_fields = next;
6554  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6555    constructor_unfilled_index = next;
6556
6557  /* ELT now points to the node in the pending tree with the next
6558     initializer to output.  */
6559  goto retry;
6560}
6561
6562/* Add one non-braced element to the current constructor level.
6563   This adjusts the current position within the constructor's type.
6564   This may also start or terminate implicit levels
6565   to handle a partly-braced initializer.
6566
6567   Once this has found the correct level for the new element,
6568   it calls output_init_element.  */
6569
6570void
6571process_init_element (value)
6572     tree value;
6573{
6574  tree orig_value = value;
6575  int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6576
6577  designator_depth = 0;
6578  designator_errorneous = 0;
6579
6580  /* Handle superfluous braces around string cst as in
6581     char x[] = {"foo"}; */
6582  if (string_flag
6583      && constructor_type
6584      && TREE_CODE (constructor_type) == ARRAY_TYPE
6585      && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6586      && integer_zerop (constructor_unfilled_index))
6587    {
6588      if (constructor_stack->replacement_value)
6589        error_init ("excess elements in char array initializer");
6590      constructor_stack->replacement_value = value;
6591      return;
6592    }
6593
6594  if (constructor_stack->replacement_value != 0)
6595    {
6596      error_init ("excess elements in struct initializer");
6597      return;
6598    }
6599
6600  /* Ignore elements of a brace group if it is entirely superfluous
6601     and has already been diagnosed.  */
6602  if (constructor_type == 0)
6603    return;
6604
6605  /* If we've exhausted any levels that didn't have braces,
6606     pop them now.  */
6607  while (constructor_stack->implicit)
6608    {
6609      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6610	   || TREE_CODE (constructor_type) == UNION_TYPE)
6611	  && constructor_fields == 0)
6612	process_init_element (pop_init_level (1));
6613      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6614	       && (constructor_max_index == 0
6615		   || tree_int_cst_lt (constructor_max_index,
6616				       constructor_index)))
6617	process_init_element (pop_init_level (1));
6618      else
6619	break;
6620    }
6621
6622  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6623  if (constructor_range_stack)
6624    {
6625      /* If value is a compound literal and we'll be just using its
6626	 content, don't put it into a SAVE_EXPR.  */
6627      if (TREE_CODE (value) != COMPOUND_LITERAL_EXPR
6628	  || !require_constant_value
6629	  || flag_isoc99)
6630	value = save_expr (value);
6631    }
6632
6633  while (1)
6634    {
6635      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6636	{
6637	  tree fieldtype;
6638	  enum tree_code fieldcode;
6639
6640	  if (constructor_fields == 0)
6641	    {
6642	      pedwarn_init ("excess elements in struct initializer");
6643	      break;
6644	    }
6645
6646	  fieldtype = TREE_TYPE (constructor_fields);
6647	  if (fieldtype != error_mark_node)
6648	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6649	  fieldcode = TREE_CODE (fieldtype);
6650
6651	  /* Accept a string constant to initialize a subarray.  */
6652	  if (value != 0
6653	      && fieldcode == ARRAY_TYPE
6654	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6655	      && string_flag)
6656	    value = orig_value;
6657	  /* Otherwise, if we have come to a subaggregate,
6658	     and we don't have an element of its type, push into it.  */
6659	  else if (value != 0 && !constructor_no_implicit
6660		   && value != error_mark_node
6661		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6662		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6663		       || fieldcode == UNION_TYPE))
6664	    {
6665	      push_init_level (1);
6666	      continue;
6667	    }
6668
6669	  if (value)
6670	    {
6671	      push_member_name (constructor_fields);
6672	      output_init_element (value, fieldtype, constructor_fields, 1);
6673	      RESTORE_SPELLING_DEPTH (constructor_depth);
6674	    }
6675	  else
6676	    /* Do the bookkeeping for an element that was
6677	       directly output as a constructor.  */
6678	    {
6679	      /* For a record, keep track of end position of last field.  */
6680	      if (DECL_SIZE (constructor_fields))
6681	        constructor_bit_index
6682		  = size_binop (PLUS_EXPR,
6683			        bit_position (constructor_fields),
6684			        DECL_SIZE (constructor_fields));
6685
6686	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6687	      /* Skip any nameless bit fields.  */
6688	      while (constructor_unfilled_fields != 0
6689		     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6690		     && DECL_NAME (constructor_unfilled_fields) == 0)
6691		constructor_unfilled_fields =
6692		  TREE_CHAIN (constructor_unfilled_fields);
6693	    }
6694
6695	  constructor_fields = TREE_CHAIN (constructor_fields);
6696	  /* Skip any nameless bit fields at the beginning.  */
6697	  while (constructor_fields != 0
6698		 && DECL_C_BIT_FIELD (constructor_fields)
6699		 && DECL_NAME (constructor_fields) == 0)
6700	    constructor_fields = TREE_CHAIN (constructor_fields);
6701	}
6702      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6703	{
6704	  tree fieldtype;
6705	  enum tree_code fieldcode;
6706
6707	  if (constructor_fields == 0)
6708	    {
6709	      pedwarn_init ("excess elements in union initializer");
6710	      break;
6711	    }
6712
6713	  fieldtype = TREE_TYPE (constructor_fields);
6714	  if (fieldtype != error_mark_node)
6715	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6716	  fieldcode = TREE_CODE (fieldtype);
6717
6718	  /* Warn that traditional C rejects initialization of unions.
6719	     We skip the warning if the value is zero.  This is done
6720	     under the assumption that the zero initializer in user
6721	     code appears conditioned on e.g. __STDC__ to avoid
6722	     "missing initializer" warnings and relies on default
6723	     initialization to zero in the traditional C case.
6724	     We also skip the warning if the initializer is designated,
6725	     again on the assumption that this must be conditional on
6726	     __STDC__ anyway (and we've already complained about the
6727	     member-designator already).  */
6728	  if (warn_traditional && !in_system_header && !constructor_designated
6729	      && !(value && (integer_zerop (value) || real_zerop (value))))
6730	    warning ("traditional C rejects initialization of unions");
6731
6732	  /* Accept a string constant to initialize a subarray.  */
6733	  if (value != 0
6734	      && fieldcode == ARRAY_TYPE
6735	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6736	      && string_flag)
6737	    value = orig_value;
6738	  /* Otherwise, if we have come to a subaggregate,
6739	     and we don't have an element of its type, push into it.  */
6740	  else if (value != 0 && !constructor_no_implicit
6741		   && value != error_mark_node
6742		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6743		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6744		       || fieldcode == UNION_TYPE))
6745	    {
6746	      push_init_level (1);
6747	      continue;
6748	    }
6749
6750	  if (value)
6751	    {
6752	      push_member_name (constructor_fields);
6753	      output_init_element (value, fieldtype, constructor_fields, 1);
6754	      RESTORE_SPELLING_DEPTH (constructor_depth);
6755	    }
6756	  else
6757	    /* Do the bookkeeping for an element that was
6758	       directly output as a constructor.  */
6759	    {
6760	      constructor_bit_index = DECL_SIZE (constructor_fields);
6761	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6762	    }
6763
6764	  constructor_fields = 0;
6765	}
6766      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6767	{
6768	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6769	  enum tree_code eltcode = TREE_CODE (elttype);
6770
6771	  /* Accept a string constant to initialize a subarray.  */
6772	  if (value != 0
6773	      && eltcode == ARRAY_TYPE
6774	      && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6775	      && string_flag)
6776	    value = orig_value;
6777	  /* Otherwise, if we have come to a subaggregate,
6778	     and we don't have an element of its type, push into it.  */
6779	  else if (value != 0 && !constructor_no_implicit
6780		   && value != error_mark_node
6781		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6782		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6783		       || eltcode == UNION_TYPE))
6784	    {
6785	      push_init_level (1);
6786	      continue;
6787	    }
6788
6789	  if (constructor_max_index != 0
6790	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6791		  || integer_all_onesp (constructor_max_index)))
6792	    {
6793	      pedwarn_init ("excess elements in array initializer");
6794	      break;
6795	    }
6796
6797	  /* Now output the actual element.  */
6798	  if (value)
6799	    {
6800	      push_array_bounds (tree_low_cst (constructor_index, 0));
6801	      output_init_element (value, elttype, constructor_index, 1);
6802	      RESTORE_SPELLING_DEPTH (constructor_depth);
6803	    }
6804
6805	  constructor_index
6806	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6807
6808	  if (! value)
6809	    /* If we are doing the bookkeeping for an element that was
6810	       directly output as a constructor, we must update
6811	       constructor_unfilled_index.  */
6812	    constructor_unfilled_index = constructor_index;
6813	}
6814
6815      /* Handle the sole element allowed in a braced initializer
6816	 for a scalar variable.  */
6817      else if (constructor_fields == 0)
6818	{
6819	  pedwarn_init ("excess elements in scalar initializer");
6820	  break;
6821	}
6822      else
6823	{
6824	  if (value)
6825	    output_init_element (value, constructor_type, NULL_TREE, 1);
6826	  constructor_fields = 0;
6827	}
6828
6829      /* Handle range initializers either at this level or anywhere higher
6830	 in the designator stack.  */
6831      if (constructor_range_stack)
6832	{
6833	  struct constructor_range_stack *p, *range_stack;
6834	  int finish = 0;
6835
6836	  range_stack = constructor_range_stack;
6837	  constructor_range_stack = 0;
6838	  while (constructor_stack != range_stack->stack)
6839	    {
6840	      if (!constructor_stack->implicit)
6841		abort ();
6842	      process_init_element (pop_init_level (1));
6843	    }
6844	  for (p = range_stack;
6845	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6846	       p = p->prev)
6847	    {
6848	      if (!constructor_stack->implicit)
6849		abort ();
6850	      process_init_element (pop_init_level (1));
6851	    }
6852
6853	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6854	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6855	    finish = 1;
6856
6857	  while (1)
6858	    {
6859	      constructor_index = p->index;
6860	      constructor_fields = p->fields;
6861	      if (finish && p->range_end && p->index == p->range_start)
6862		{
6863		  finish = 0;
6864		  p->prev = 0;
6865		}
6866	      p = p->next;
6867	      if (!p)
6868		break;
6869	      push_init_level (2);
6870	      p->stack = constructor_stack;
6871	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6872		p->index = p->range_start;
6873	    }
6874
6875	  if (!finish)
6876	    constructor_range_stack = range_stack;
6877	  continue;
6878	}
6879
6880      break;
6881    }
6882
6883  constructor_range_stack = 0;
6884}
6885
6886/* Build a simple asm-statement, from one string literal.  */
6887tree
6888simple_asm_stmt (expr)
6889     tree expr;
6890{
6891  STRIP_NOPS (expr);
6892
6893  if (TREE_CODE (expr) == ADDR_EXPR)
6894    expr = TREE_OPERAND (expr, 0);
6895
6896  if (TREE_CODE (expr) == STRING_CST)
6897    {
6898      tree stmt;
6899
6900      if (TREE_CHAIN (expr))
6901	expr = combine_strings (expr);
6902      stmt = add_stmt (build_stmt (ASM_STMT, NULL_TREE, expr,
6903				   NULL_TREE, NULL_TREE,
6904				   NULL_TREE));
6905      ASM_INPUT_P (stmt) = 1;
6906      return stmt;
6907    }
6908
6909  error ("argument of `asm' is not a constant string");
6910  return NULL_TREE;
6911}
6912
6913/* Build an asm-statement, whose components are a CV_QUALIFIER, a
6914   STRING, some OUTPUTS, some INPUTS, and some CLOBBERS.  */
6915
6916tree
6917build_asm_stmt (cv_qualifier, string, outputs, inputs, clobbers)
6918     tree cv_qualifier;
6919     tree string;
6920     tree outputs;
6921     tree inputs;
6922     tree clobbers;
6923{
6924  tree tail;
6925
6926  if (TREE_CHAIN (string))
6927    string = combine_strings (string);
6928  if (TREE_CODE (string) != STRING_CST)
6929    {
6930      error ("asm template is not a string constant");
6931      return NULL_TREE;
6932    }
6933
6934  if (cv_qualifier != NULL_TREE
6935      && cv_qualifier != ridpointers[(int) RID_VOLATILE])
6936    {
6937      warning ("%s qualifier ignored on asm",
6938	       IDENTIFIER_POINTER (cv_qualifier));
6939      cv_qualifier = NULL_TREE;
6940    }
6941
6942  /* We can remove output conversions that change the type,
6943     but not the mode.  */
6944  for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6945    {
6946      tree output = TREE_VALUE (tail);
6947
6948      STRIP_NOPS (output);
6949      TREE_VALUE (tail) = output;
6950
6951      /* Allow conversions as LHS here.  build_modify_expr as called below
6952	 will do the right thing with them.  */
6953      while (TREE_CODE (output) == NOP_EXPR
6954	     || TREE_CODE (output) == CONVERT_EXPR
6955	     || TREE_CODE (output) == FLOAT_EXPR
6956	     || TREE_CODE (output) == FIX_TRUNC_EXPR
6957	     || TREE_CODE (output) == FIX_FLOOR_EXPR
6958	     || TREE_CODE (output) == FIX_ROUND_EXPR
6959	     || TREE_CODE (output) == FIX_CEIL_EXPR)
6960	output = TREE_OPERAND (output, 0);
6961
6962      lvalue_or_else (TREE_VALUE (tail), "invalid lvalue in asm statement");
6963    }
6964
6965  /* Remove output conversions that change the type but not the mode.  */
6966  for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6967    {
6968      tree output = TREE_VALUE (tail);
6969      STRIP_NOPS (output);
6970      TREE_VALUE (tail) = output;
6971    }
6972
6973  /* Perform default conversions on array and function inputs.
6974     Don't do this for other types as it would screw up operands
6975     expected to be in memory.  */
6976  for (tail = inputs; tail; tail = TREE_CHAIN (tail))
6977    TREE_VALUE (tail) = default_function_array_conversion (TREE_VALUE (tail));
6978
6979  return add_stmt (build_stmt (ASM_STMT, cv_qualifier, string,
6980			       outputs, inputs, clobbers));
6981}
6982
6983/* Expand an ASM statement with operands, handling output operands
6984   that are not variables or INDIRECT_REFS by transforming such
6985   cases into cases that expand_asm_operands can handle.
6986
6987   Arguments are same as for expand_asm_operands.  */
6988
6989void
6990c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6991     tree string, outputs, inputs, clobbers;
6992     int vol;
6993     const char *filename;
6994     int line;
6995{
6996  int noutputs = list_length (outputs);
6997  int i;
6998  /* o[I] is the place that output number I should be written.  */
6999  tree *o = (tree *) alloca (noutputs * sizeof (tree));
7000  tree tail;
7001
7002  /* Record the contents of OUTPUTS before it is modified.  */
7003  for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
7004    o[i] = TREE_VALUE (tail);
7005
7006  /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
7007     OUTPUTS some trees for where the values were actually stored.  */
7008  expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
7009
7010  /* Copy all the intermediate outputs into the specified outputs.  */
7011  for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
7012    {
7013      if (o[i] != TREE_VALUE (tail))
7014	{
7015	  expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
7016		       NULL_RTX, VOIDmode, EXPAND_NORMAL);
7017	  free_temp_slots ();
7018
7019	  /* Restore the original value so that it's correct the next
7020	     time we expand this function.  */
7021	  TREE_VALUE (tail) = o[i];
7022	}
7023      /* Detect modification of read-only values.
7024	 (Otherwise done by build_modify_expr.)  */
7025      else
7026	{
7027	  tree type = TREE_TYPE (o[i]);
7028	  if (TREE_READONLY (o[i])
7029	      || TYPE_READONLY (type)
7030	      || ((TREE_CODE (type) == RECORD_TYPE
7031		   || TREE_CODE (type) == UNION_TYPE)
7032		  && C_TYPE_FIELDS_READONLY (type)))
7033	    readonly_warning (o[i], "modification by `asm'");
7034	}
7035    }
7036
7037  /* Those MODIFY_EXPRs could do autoincrements.  */
7038  emit_queue ();
7039}
7040
7041/* Expand a C `return' statement.
7042   RETVAL is the expression for what to return,
7043   or a null pointer for `return;' with no value.  */
7044
7045tree
7046c_expand_return (retval)
7047     tree retval;
7048{
7049  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
7050
7051  if (TREE_THIS_VOLATILE (current_function_decl))
7052    warning ("function declared `noreturn' has a `return' statement");
7053
7054  if (!retval)
7055    {
7056      current_function_returns_null = 1;
7057      if ((warn_return_type || flag_isoc99)
7058	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7059	pedwarn_c99 ("`return' with no value, in function returning non-void");
7060    }
7061  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7062    {
7063      current_function_returns_null = 1;
7064      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7065	pedwarn ("`return' with a value, in function returning void");
7066    }
7067  else
7068    {
7069      tree t = convert_for_assignment (valtype, retval, _("return"),
7070				       NULL_TREE, NULL_TREE, 0);
7071      tree res = DECL_RESULT (current_function_decl);
7072      tree inner;
7073
7074      if (t == error_mark_node)
7075	return NULL_TREE;
7076
7077      inner = t = convert (TREE_TYPE (res), t);
7078
7079      /* Strip any conversions, additions, and subtractions, and see if
7080	 we are returning the address of a local variable.  Warn if so.  */
7081      while (1)
7082	{
7083	  switch (TREE_CODE (inner))
7084	    {
7085	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7086	    case PLUS_EXPR:
7087	      inner = TREE_OPERAND (inner, 0);
7088	      continue;
7089
7090	    case MINUS_EXPR:
7091	      /* If the second operand of the MINUS_EXPR has a pointer
7092		 type (or is converted from it), this may be valid, so
7093		 don't give a warning.  */
7094	      {
7095		tree op1 = TREE_OPERAND (inner, 1);
7096
7097		while (! POINTER_TYPE_P (TREE_TYPE (op1))
7098		       && (TREE_CODE (op1) == NOP_EXPR
7099			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7100			   || TREE_CODE (op1) == CONVERT_EXPR))
7101		  op1 = TREE_OPERAND (op1, 0);
7102
7103		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7104		  break;
7105
7106		inner = TREE_OPERAND (inner, 0);
7107		continue;
7108	      }
7109
7110	    case ADDR_EXPR:
7111	      inner = TREE_OPERAND (inner, 0);
7112
7113	      while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
7114		inner = TREE_OPERAND (inner, 0);
7115
7116	      if (TREE_CODE (inner) == VAR_DECL
7117		  && ! DECL_EXTERNAL (inner)
7118		  && ! TREE_STATIC (inner)
7119		  && DECL_CONTEXT (inner) == current_function_decl)
7120		warning ("function returns address of local variable");
7121	      break;
7122
7123	    default:
7124	      break;
7125	    }
7126
7127	  break;
7128	}
7129
7130      retval = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
7131      current_function_returns_value = 1;
7132    }
7133
7134 return add_stmt (build_return_stmt (retval));
7135}
7136
7137struct c_switch {
7138  /* The SWITCH_STMT being built.  */
7139  tree switch_stmt;
7140  /* A splay-tree mapping the low element of a case range to the high
7141     element, or NULL_TREE if there is no high element.  Used to
7142     determine whether or not a new case label duplicates an old case
7143     label.  We need a tree, rather than simply a hash table, because
7144     of the GNU case range extension.  */
7145  splay_tree cases;
7146  /* The next node on the stack.  */
7147  struct c_switch *next;
7148};
7149
7150/* A stack of the currently active switch statements.  The innermost
7151   switch statement is on the top of the stack.  There is no need to
7152   mark the stack for garbage collection because it is only active
7153   during the processing of the body of a function, and we never
7154   collect at that point.  */
7155
7156static struct c_switch *switch_stack;
7157
7158/* Start a C switch statement, testing expression EXP.  Return the new
7159   SWITCH_STMT.  */
7160
7161tree
7162c_start_case (exp)
7163     tree exp;
7164{
7165  enum tree_code code;
7166  tree type;
7167  struct c_switch *cs;
7168
7169  if (exp != error_mark_node)
7170    {
7171      code = TREE_CODE (TREE_TYPE (exp));
7172      type = TREE_TYPE (exp);
7173
7174      if (! INTEGRAL_TYPE_P (type)
7175	  && code != ERROR_MARK)
7176	{
7177	  error ("switch quantity not an integer");
7178	  exp = integer_zero_node;
7179	}
7180      else
7181	{
7182	  type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7183
7184	  if (warn_traditional && !in_system_header
7185	      && (type == long_integer_type_node
7186		  || type == long_unsigned_type_node))
7187	    warning ("`long' switch expression not converted to `int' in ISO C");
7188
7189	  exp = default_conversion (exp);
7190	  type = TREE_TYPE (exp);
7191	}
7192    }
7193
7194  /* Add this new SWITCH_STMT to the stack.  */
7195  cs = (struct c_switch *) xmalloc (sizeof (*cs));
7196  cs->switch_stmt = build_stmt (SWITCH_STMT, exp, NULL_TREE, NULL_TREE);
7197  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7198  cs->next = switch_stack;
7199  switch_stack = cs;
7200
7201  return add_stmt (switch_stack->switch_stmt);
7202}
7203
7204/* Process a case label.  */
7205
7206tree
7207do_case (low_value, high_value)
7208     tree low_value;
7209     tree high_value;
7210{
7211  tree label = NULL_TREE;
7212
7213  if (switch_stack)
7214    {
7215      label = c_add_case_label (switch_stack->cases,
7216				SWITCH_COND (switch_stack->switch_stmt),
7217				low_value, high_value);
7218      if (label == error_mark_node)
7219	label = NULL_TREE;
7220    }
7221  else if (low_value)
7222    error ("case label not within a switch statement");
7223  else
7224    error ("`default' label not within a switch statement");
7225
7226  return label;
7227}
7228
7229/* Finish the switch statement.  */
7230
7231void
7232c_finish_case ()
7233{
7234  struct c_switch *cs = switch_stack;
7235
7236  RECHAIN_STMTS (cs->switch_stmt, SWITCH_BODY (cs->switch_stmt));
7237
7238  /* Pop the stack.  */
7239  switch_stack = switch_stack->next;
7240  splay_tree_delete (cs->cases);
7241  free (cs);
7242}
7243