c-aux-info.c revision 18334
139833Speter/* Generate information regarding function declarations and definitions based
239833Speter   on information stored in GCC's tree structure.  This code implements the
339833Speter   -aux-info option.
439833Speter   Copyright (C) 1989, 1991, 1994, 1995 Free Software Foundation, Inc.
539833Speter   Contributed by Ron Guilmette (rfg@segfault.us.com).
639833Speter
739833SpeterThis file is part of GNU CC.
839833Speter
939833SpeterGNU CC is free software; you can redistribute it and/or modify
1039833Speterit under the terms of the GNU General Public License as published by
1139833Speterthe Free Software Foundation; either version 2, or (at your option)
1239833Speterany later version.
1339833Speter
1439833SpeterGNU CC is distributed in the hope that it will be useful,
1539833Speterbut WITHOUT ANY WARRANTY; without even the implied warranty of
1639833SpeterMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1739833SpeterGNU General Public License for more details.
1839833Speter
1939833SpeterYou should have received a copy of the GNU General Public License
2039833Speteralong with GNU CC; see the file COPYING.  If not, write to
2139833Speterthe Free Software Foundation, 59 Temple Place - Suite 330,
2239833SpeterBoston, MA 02111-1307, USA.  */
2339833Speter
2439833Speter#include <stdio.h>
2539833Speter#include "config.h"
2639833Speter#include "flags.h"
2739833Speter#include "tree.h"
2839833Speter#include "c-tree.h"
2939833Speter
3039833Speterextern char* xmalloc ();
3139833Speter
3239833Speterenum formals_style_enum {
3339833Speter  ansi,
3439833Speter  k_and_r_names,
3539833Speter  k_and_r_decls
3639833Speter};
3739833Spetertypedef enum formals_style_enum formals_style;
3839833Speter
3939833Speter
4039833Speterstatic char* data_type;
4139833Speter
4239833Speterstatic char * concat ();
4339833Speterstatic char * concat3 ();
4439833Speterstatic char * gen_formal_list_for_type ();
4539833Speterstatic int    deserves_ellipsis ();
4639833Speterstatic char * gen_formal_list_for_func_def ();
4739833Speterstatic char * gen_type ();
4839833Speterstatic char * gen_decl ();
4939833Spetervoid   gen_aux_info_record ();
5039833Speter
5139833Speter/*  Take two strings and mash them together into a newly allocated area.  */
5239833Speter
5339833Speterstatic char*
5439833Speterconcat (s1, s2)
5539833Speter     char* s1;
5639833Speter     char* s2;
5739833Speter{
5839833Speter  int size1, size2;
5939833Speter  char* ret_val;
6039833Speter
6139833Speter  if (!s1)
6239833Speter    s1 = "";
6339833Speter  if (!s2)
6439833Speter    s2 = "";
6539833Speter
6639833Speter  size1 = strlen (s1);
6739833Speter  size2 = strlen (s2);
6839833Speter  ret_val = xmalloc (size1 + size2 + 1);
6939833Speter  strcpy (ret_val, s1);
7039833Speter  strcpy (&ret_val[size1], s2);
7139833Speter  return ret_val;
7239833Speter}
7339833Speter
7439833Speter/*  Take three strings and mash them together into a newly allocated area.  */
7539833Speter
7639833Speterstatic char*
7739833Speterconcat3 (s1, s2, s3)
7839833Speter     char* s1;
7939833Speter     char* s2;
8039833Speter     char* s3;
8139833Speter{
8239833Speter  int size1, size2, size3;
8339833Speter  char* ret_val;
8439833Speter
8539833Speter  if (!s1)
8639833Speter    s1 = "";
8739833Speter  if (!s2)
8839833Speter    s2 = "";
8939833Speter  if (!s3)
9039833Speter    s3 = "";
9139833Speter
9239833Speter  size1 = strlen (s1);
9339833Speter  size2 = strlen (s2);
9439833Speter  size3 = strlen (s3);
9539833Speter  ret_val = xmalloc (size1 + size2 + size3 + 1);
9639833Speter  strcpy (ret_val, s1);
9739833Speter  strcpy (&ret_val[size1], s2);
9839833Speter  strcpy (&ret_val[size1+size2], s3);
9939833Speter  return ret_val;
10039833Speter}
10139833Speter
10239833Speter/* Given a string representing an entire type or an entire declaration
10339833Speter   which only lacks the actual "data-type" specifier (at its left end),
10439833Speter   affix the data-type specifier to the left end of the given type
10539833Speter   specification or object declaration.
10639833Speter
10739833Speter   Because of C language weirdness, the data-type specifier (which normally
10839833Speter   goes in at the very left end) may have to be slipped in just to the
10939833Speter   right of any leading "const" or "volatile" qualifiers (there may be more
11039833Speter   than one).  Actually this may not be strictly necessary because it seems
11139833Speter   that GCC (at least) accepts `<data-type> const foo;' and treats it the
11239833Speter   same as `const <data-type> foo;' but people are accustomed to seeing
11339833Speter   `const char *foo;' and *not* `char const *foo;' so we try to create types
11439833Speter   that look as expected.  */
11539833Speter
11639833Speterstatic char*
11739833Speteraffix_data_type (type_or_decl)
11839833Speter     char *type_or_decl;
11939833Speter{
12039833Speter  char *p = type_or_decl;
12139833Speter  char *qualifiers_then_data_type;
12239833Speter  char saved;
12339833Speter
12439833Speter  /* Skip as many leading const's or volatile's as there are.  */
12539833Speter
12639833Speter  for (;;)
12739833Speter    {
12839833Speter      if (!strncmp (p, "volatile ", 9))
12939833Speter        {
13039833Speter          p += 9;
13139833Speter          continue;
13239833Speter        }
13339833Speter      if (!strncmp (p, "const ", 6))
13439833Speter        {
13539833Speter          p += 6;
13639833Speter          continue;
13739833Speter        }
13839833Speter      break;
13939833Speter    }
14039833Speter
14139833Speter  /* p now points to the place where we can insert the data type.  We have to
14239833Speter     add a blank after the data-type of course.  */
14339833Speter
14439833Speter  if (p == type_or_decl)
14539833Speter    return concat3 (data_type, " ", type_or_decl);
14639833Speter
14739833Speter  saved = *p;
14839833Speter  *p = '\0';
14939833Speter  qualifiers_then_data_type = concat (type_or_decl, data_type);
15039833Speter  *p = saved;
15139833Speter  return concat3 (qualifiers_then_data_type, " ", p);
15239833Speter}
15339833Speter
15439833Speter/* Given a tree node which represents some "function type", generate the
15539833Speter   source code version of a formal parameter list (of some given style) for
15639833Speter   this function type.  Return the whole formal parameter list (including
15739833Speter   a pair of surrounding parens) as a string.   Note that if the style
15839833Speter   we are currently aiming for is non-ansi, then we just return a pair
15939833Speter   of empty parens here. */
16039833Speter
16139833Speterstatic char*
16239833Spetergen_formal_list_for_type (fntype, style)
16339833Speter     tree fntype;
16439833Speter     formals_style style;
16539833Speter{
16639833Speter  char* formal_list = "";
16739833Speter  tree formal_type;
16839833Speter
16939833Speter  if (style != ansi)
17039833Speter    return "()";
17139833Speter
17239833Speter  formal_type = TYPE_ARG_TYPES (fntype);
17339833Speter  while (formal_type && TREE_VALUE (formal_type) != void_type_node)
174    {
175      char* this_type;
176
177      if (*formal_list)
178        formal_list = concat (formal_list, ", ");
179
180      this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
181      formal_list =
182          (strlen (this_type))
183              ? concat (formal_list, affix_data_type (this_type))
184              : concat (formal_list, data_type);
185
186      formal_type = TREE_CHAIN (formal_type);
187    }
188
189  /* If we got to here, then we are trying to generate an ANSI style formal
190     parameters list.
191
192     New style prototyped ANSI formal parameter lists should in theory always
193     contain some stuff between the opening and closing parens, even if it is
194     only "void".
195
196     The brutal truth though is that there is lots of old K&R code out there
197     which contains declarations of "pointer-to-function" parameters and
198     these almost never have fully specified formal parameter lists associated
199     with them.  That is, the pointer-to-function parameters are declared
200     with just empty parameter lists.
201
202     In cases such as these, protoize should really insert *something* into
203     the vacant parameter lists, but what?  It has no basis on which to insert
204     anything in particular.
205
206     Here, we make life easy for protoize by trying to distinguish between
207     K&R empty parameter lists and new-style prototyped parameter lists
208     that actually contain "void".  In the latter case we (obviously) want
209     to output the "void" verbatim, and that what we do.  In the former case,
210     we do our best to give protoize something nice to insert.
211
212     This "something nice" should be something that is still valid (when
213     re-compiled) but something that can clearly indicate to the user that
214     more typing information (for the parameter list) should be added (by
215     hand) at some convenient moment.
216
217     The string chosen here is a comment with question marks in it.  */
218
219  if (!*formal_list)
220    {
221      if (TYPE_ARG_TYPES (fntype))
222        /* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node);  */
223        formal_list = "void";
224      else
225        formal_list = "/* ??? */";
226    }
227  else
228    {
229      /* If there were at least some parameters, and if the formals-types-list
230         petered out to a NULL (i.e. without being terminated by a
231         void_type_node) then we need to tack on an ellipsis.  */
232      if (!formal_type)
233        formal_list = concat (formal_list, ", ...");
234    }
235
236  return concat3 (" (", formal_list, ")");
237}
238
239/* For the generation of an ANSI prototype for a function definition, we have
240   to look at the formal parameter list of the function's own "type" to
241   determine if the function's formal parameter list should end with an
242   ellipsis.  Given a tree node, the following function will return non-zero
243   if the "function type" parameter list should end with an ellipsis.  */
244
245static int
246deserves_ellipsis (fntype)
247     tree fntype;
248{
249  tree formal_type;
250
251  formal_type = TYPE_ARG_TYPES (fntype);
252  while (formal_type && TREE_VALUE (formal_type) != void_type_node)
253    formal_type = TREE_CHAIN (formal_type);
254
255  /* If there were at least some parameters, and if the formals-types-list
256     petered out to a NULL (i.e. without being terminated by a void_type_node)
257     then we need to tack on an ellipsis.  */
258
259  return (!formal_type && TYPE_ARG_TYPES (fntype));
260}
261
262/* Generate a parameter list for a function definition (in some given style).
263
264   Note that this routine has to be separate (and different) from the code that
265   generates the prototype parameter lists for function declarations, because
266   in the case of a function declaration, all we have to go on is a tree node
267   representing the function's own "function type".  This can tell us the types
268   of all of the formal parameters for the function, but it cannot tell us the
269   actual *names* of each of the formal parameters.  We need to output those
270   parameter names for each function definition.
271
272   This routine gets a pointer to a tree node which represents the actual
273   declaration of the given function, and this DECL node has a list of formal
274   parameter (variable) declarations attached to it.  These formal parameter
275   (variable) declaration nodes give us the actual names of the formal
276   parameters for the given function definition.
277
278   This routine returns a string which is the source form for the entire
279   function formal parameter list.  */
280
281static char*
282gen_formal_list_for_func_def (fndecl, style)
283     tree fndecl;
284     formals_style style;
285{
286  char* formal_list = "";
287  tree formal_decl;
288
289  formal_decl = DECL_ARGUMENTS (fndecl);
290  while (formal_decl)
291    {
292      char *this_formal;
293
294      if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
295        formal_list = concat (formal_list, ", ");
296      this_formal = gen_decl (formal_decl, 0, style);
297      if (style == k_and_r_decls)
298        formal_list = concat3 (formal_list, this_formal, "; ");
299      else
300        formal_list = concat (formal_list, this_formal);
301      formal_decl = TREE_CHAIN (formal_decl);
302    }
303  if (style == ansi)
304    {
305      if (!DECL_ARGUMENTS (fndecl))
306        formal_list = concat (formal_list, "void");
307      if (deserves_ellipsis (TREE_TYPE (fndecl)))
308        formal_list = concat (formal_list, ", ...");
309    }
310  if ((style == ansi) || (style == k_and_r_names))
311    formal_list = concat3 (" (", formal_list, ")");
312  return formal_list;
313}
314
315/* Generate a string which is the source code form for a given type (t).  This
316   routine is ugly and complex because the C syntax for declarations is ugly
317   and complex.  This routine is straightforward so long as *no* pointer types,
318   array types, or function types are involved.
319
320   In the simple cases, this routine will return the (string) value which was
321   passed in as the "ret_val" argument.  Usually, this starts out either as an
322   empty string, or as the name of the declared item (i.e. the formal function
323   parameter variable).
324
325   This routine will also return with the global variable "data_type" set to
326   some string value which is the "basic" data-type of the given complete type.
327   This "data_type" string can be concatenated onto the front of the returned
328   string after this routine returns to its caller.
329
330   In complicated cases involving pointer types, array types, or function
331   types, the C declaration syntax requires an "inside out" approach, i.e. if
332   you have a type which is a "pointer-to-function" type, you need to handle
333   the "pointer" part first, but it also has to be "innermost" (relative to
334   the declaration stuff for the "function" type).  Thus, is this case, you
335   must prepend a "(*" and append a ")" to the name of the item (i.e. formal
336   variable).  Then you must append and prepend the other info for the
337   "function type" part of the overall type.
338
339   To handle the "innermost precedence" rules of complicated C declarators, we
340   do the following (in this routine).  The input parameter called "ret_val"
341   is treated as a "seed".  Each time gen_type is called (perhaps recursively)
342   some additional strings may be appended or prepended (or both) to the "seed"
343   string.  If yet another (lower) level of the GCC tree exists for the given
344   type (as in the case of a pointer type, an array type, or a function type)
345   then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
346   this recursive invocation may again "wrap" the (new) seed with yet more
347   declarator stuff, by appending, prepending (or both).  By the time the
348   recursion bottoms out, the "seed value" at that point will have a value
349   which is (almost) the complete source version of the declarator (except
350   for the data_type info).  Thus, this deepest "seed" value is simply passed
351   back up through all of the recursive calls until it is given (as the return
352   value) to the initial caller of the gen_type() routine.  All that remains
353   to do at this point is for the initial caller to prepend the "data_type"
354   string onto the returned "seed".  */
355
356static char*
357gen_type (ret_val, t, style)
358     char* ret_val;
359     tree t;
360     formals_style style;
361{
362  tree chain_p;
363
364  if (TYPE_NAME (t) && DECL_NAME (TYPE_NAME (t)))
365    data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
366  else
367    {
368      switch (TREE_CODE (t))
369        {
370        case POINTER_TYPE:
371          if (TYPE_READONLY (t))
372            ret_val = concat ("const ", ret_val);
373          if (TYPE_VOLATILE (t))
374            ret_val = concat ("volatile ", ret_val);
375
376          ret_val = concat ("*", ret_val);
377
378	  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
379	    ret_val = concat3 ("(", ret_val, ")");
380
381          ret_val = gen_type (ret_val, TREE_TYPE (t), style);
382
383          return ret_val;
384
385        case ARRAY_TYPE:
386	  if (TYPE_SIZE (t) == 0 || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
387	    ret_val = gen_type (concat (ret_val, "[]"), TREE_TYPE (t), style);
388	  else if (int_size_in_bytes (t) == 0)
389	    ret_val = gen_type (concat (ret_val, "[0]"), TREE_TYPE (t), style);
390	  else
391	    {
392	      int size = (int_size_in_bytes (t) / int_size_in_bytes (TREE_TYPE (t)));
393	      char buff[10];
394	      sprintf (buff, "[%d]", size);
395	      ret_val = gen_type (concat (ret_val, buff),
396				  TREE_TYPE (t), style);
397	    }
398          break;
399
400        case FUNCTION_TYPE:
401          ret_val = gen_type (concat (ret_val, gen_formal_list_for_type (t, style)), TREE_TYPE (t), style);
402          break;
403
404        case IDENTIFIER_NODE:
405          data_type = IDENTIFIER_POINTER (t);
406          break;
407
408	/* The following three cases are complicated by the fact that a
409           user may do something really stupid, like creating a brand new
410           "anonymous" type specification in a formal argument list (or as
411           part of a function return type specification).  For example:
412
413		int f (enum { red, green, blue } color);
414
415	   In such cases, we have no name that we can put into the prototype
416	   to represent the (anonymous) type.  Thus, we have to generate the
417	   whole darn type specification.  Yuck!  */
418
419        case RECORD_TYPE:
420	  if (TYPE_NAME (t))
421	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
422	  else
423	    {
424	      data_type = "";
425	      chain_p = TYPE_FIELDS (t);
426	      while (chain_p)
427		{
428		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi));
429		  chain_p = TREE_CHAIN (chain_p);
430		  data_type = concat (data_type, "; ");
431		}
432	      data_type = concat3 ("{ ", data_type, "}");
433	    }
434	  data_type = concat ("struct ", data_type);
435	  break;
436
437        case UNION_TYPE:
438	  if (TYPE_NAME (t))
439	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
440	  else
441	    {
442	      data_type = "";
443	      chain_p = TYPE_FIELDS (t);
444	      while (chain_p)
445		{
446		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi));
447		  chain_p = TREE_CHAIN (chain_p);
448		  data_type = concat (data_type, "; ");
449		}
450	      data_type = concat3 ("{ ", data_type, "}");
451	    }
452	  data_type = concat ("union ", data_type);
453	  break;
454
455        case ENUMERAL_TYPE:
456	  if (TYPE_NAME (t))
457	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
458	  else
459	    {
460	      data_type = "";
461	      chain_p = TYPE_VALUES (t);
462	      while (chain_p)
463		{
464		  data_type = concat (data_type,
465			IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)));
466		  chain_p = TREE_CHAIN (chain_p);
467		  if (chain_p)
468		    data_type = concat (data_type, ", ");
469		}
470	      data_type = concat3 ("{ ", data_type, " }");
471	    }
472	  data_type = concat ("enum ", data_type);
473	  break;
474
475        case TYPE_DECL:
476          data_type = IDENTIFIER_POINTER (DECL_NAME (t));
477          break;
478
479        case INTEGER_TYPE:
480          data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
481          /* Normally, `unsigned' is part of the deal.  Not so if it comes
482    	     with `const' or `volatile'.  */
483          if (TREE_UNSIGNED (t) && (TYPE_READONLY (t) || TYPE_VOLATILE (t)))
484    	    data_type = concat ("unsigned ", data_type);
485	  break;
486
487        case REAL_TYPE:
488          data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
489          break;
490
491        case VOID_TYPE:
492          data_type = "void";
493          break;
494
495	case ERROR_MARK:
496	  data_type = "[ERROR]";
497	  break;
498
499        default:
500          abort ();
501        }
502    }
503  if (TYPE_READONLY (t))
504    ret_val = concat ("const ", ret_val);
505  if (TYPE_VOLATILE (t))
506    ret_val = concat ("volatile ", ret_val);
507  return ret_val;
508}
509
510/* Generate a string (source) representation of an entire entity declaration
511   (using some particular style for function types).
512
513   The given entity may be either a variable or a function.
514
515   If the "is_func_definition" parameter is non-zero, assume that the thing
516   we are generating a declaration for is a FUNCTION_DECL node which is
517   associated with a function definition.  In this case, we can assume that
518   an attached list of DECL nodes for function formal arguments is present.  */
519
520static char*
521gen_decl (decl, is_func_definition, style)
522     tree decl;
523     int is_func_definition;
524     formals_style style;
525{
526  char* ret_val;
527
528  if (DECL_NAME (decl))
529    ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
530  else
531    ret_val = "";
532
533  /* If we are just generating a list of names of formal parameters, we can
534     simply return the formal parameter name (with no typing information
535     attached to it) now.  */
536
537  if (style == k_and_r_names)
538    return ret_val;
539
540  /* Note that for the declaration of some entity (either a function or a
541     data object, like for instance a parameter) if the entity itself was
542     declared as either const or volatile, then const and volatile properties
543     are associated with just the declaration of the entity, and *not* with
544     the `type' of the entity.  Thus, for such declared entities, we have to
545     generate the qualifiers here.  */
546
547  if (TREE_THIS_VOLATILE (decl))
548    ret_val = concat ("volatile ", ret_val);
549  if (TREE_READONLY (decl))
550    ret_val = concat ("const ", ret_val);
551
552  data_type = "";
553
554  /* For FUNCTION_DECL nodes, there are two possible cases here.  First, if
555     this FUNCTION_DECL node was generated from a function "definition", then
556     we will have a list of DECL_NODE's, one for each of the function's formal
557     parameters.  In this case, we can print out not only the types of each
558     formal, but also each formal's name.  In the second case, this
559     FUNCTION_DECL node came from an actual function declaration (and *not*
560     a definition).  In this case, we do nothing here because the formal
561     argument type-list will be output later, when the "type" of the function
562     is added to the string we are building.  Note that the ANSI-style formal
563     parameter list is considered to be a (suffix) part of the "type" of the
564     function.  */
565
566  if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
567    {
568      ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi));
569
570      /* Since we have already added in the formals list stuff, here we don't
571         add the whole "type" of the function we are considering (which
572         would include its parameter-list info), rather, we only add in
573         the "type" of the "type" of the function, which is really just
574         the return-type of the function (and does not include the parameter
575         list info).  */
576
577      ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
578    }
579  else
580    ret_val = gen_type (ret_val, TREE_TYPE (decl), style);
581
582  ret_val = affix_data_type (ret_val);
583
584  if (DECL_REGISTER (decl))
585    ret_val = concat ("register ", ret_val);
586  if (TREE_PUBLIC (decl))
587    ret_val = concat ("extern ", ret_val);
588  if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
589    ret_val = concat ("static ", ret_val);
590
591  return ret_val;
592}
593
594extern FILE* aux_info_file;
595
596/* Generate and write a new line of info to the aux-info (.X) file.  This
597   routine is called once for each function declaration, and once for each
598   function definition (even the implicit ones).  */
599
600void
601gen_aux_info_record (fndecl, is_definition, is_implicit, is_prototyped)
602     tree fndecl;
603     int is_definition;
604     int is_implicit;
605     int is_prototyped;
606{
607  if (flag_gen_aux_info)
608    {
609      static int compiled_from_record = 0;
610
611      /* Each output .X file must have a header line.  Write one now if we
612	 have not yet done so.  */
613
614      if (! compiled_from_record++)
615	{
616	  /* The first line tells which directory file names are relative to.
617	     Currently, -aux-info works only for files in the working
618	     directory, so just use a `.' as a placeholder for now.  */
619	  fprintf (aux_info_file, "/* compiled from: . */\n");
620	}
621
622      /* Write the actual line of auxiliary info.  */
623
624      fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
625	       DECL_SOURCE_FILE (fndecl),
626	       DECL_SOURCE_LINE (fndecl),
627	       (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
628	       (is_definition) ? 'F' : 'C',
629	       gen_decl (fndecl, is_definition, ansi));
630
631      /* If this is an explicit function declaration, we need to also write
632	 out an old-style (i.e. K&R) function header, just in case the user
633	 wants to run unprotoize.  */
634
635      if (is_definition)
636	{
637	  fprintf (aux_info_file, " /*%s %s*/",
638		   gen_formal_list_for_func_def (fndecl, k_and_r_names),
639		   gen_formal_list_for_func_def (fndecl, k_and_r_decls));
640	}
641
642      fprintf (aux_info_file, "\n");
643    }
644}
645