1222656Sed// This file is dual licensed under the MIT and the University of Illinois Open
2222656Sed// Source Licenses. See LICENSE.TXT for details.
3214152Sed
4214152Sed#include "../assembly.h"
5214152Sed
6214152Sed// di_int __moddi3(di_int a, di_int b);
7214152Sed
8214152Sed// result = remainder of a / b.
9214152Sed// both inputs and the output are 64-bit signed integers.
10214152Sed// This will do whatever the underlying hardware is set to do on division by zero.
11214152Sed// No other exceptions are generated, as the divide cannot overflow.
12214152Sed//
13214152Sed// This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
14214152Sed// on x86_64.  The performance goal is ~40 cycles per divide, which is faster than
15214152Sed// currently possible via simulation of integer divides on the x87 unit.
16214152Sed//
17214152Sed
18214152Sed// Stephen Canon, December 2008
19214152Sed
20214152Sed#ifdef __i386__
21214152Sed
22214152Sed.text
23214152Sed.align 4
24214152SedDEFINE_COMPILERRT_FUNCTION(__moddi3)
25214152Sed
26214152Sed/* This is currently implemented by wrapping the unsigned modulus up in an absolute
27214152Sed   value.  This could certainly be improved upon. */
28214152Sed
29214152Sed	pushl		%esi
30214152Sed	movl	 20(%esp),			%edx	// high word of b
31214152Sed	movl	 16(%esp),			%eax	// low word of b
32214152Sed	movl		%edx,			%ecx
33214152Sed	sarl		$31,			%ecx	// (b < 0) ? -1 : 0
34214152Sed	xorl		%ecx,			%eax
35214152Sed	xorl		%ecx,			%edx	// EDX:EAX = (b < 0) ? not(b) : b
36214152Sed	subl		%ecx,			%eax
37214152Sed	sbbl		%ecx,			%edx	// EDX:EAX = abs(b)
38214152Sed	movl		%edx,		 20(%esp)
39214152Sed	movl		%eax,		 16(%esp)	// store abs(b) back to stack
40214152Sed
41214152Sed	movl	 12(%esp),			%edx	// high word of b
42214152Sed	movl	  8(%esp),			%eax	// low word of b
43214152Sed	movl		%edx,			%ecx
44214152Sed	sarl		$31,			%ecx	// (a < 0) ? -1 : 0
45214152Sed	xorl		%ecx,			%eax
46214152Sed	xorl		%ecx,			%edx	// EDX:EAX = (a < 0) ? not(a) : a
47214152Sed	subl		%ecx,			%eax
48214152Sed	sbbl		%ecx,			%edx	// EDX:EAX = abs(a)
49214152Sed	movl		%edx,		 12(%esp)
50214152Sed	movl		%eax,		  8(%esp)	// store abs(a) back to stack
51214152Sed	movl		%ecx,			%esi	// set aside sign of a
52214152Sed
53214152Sed	pushl		%ebx
54214152Sed	movl	 24(%esp),			%ebx	// Find the index i of the leading bit in b.
55214152Sed	bsrl		%ebx,			%ecx	// If the high word of b is zero, jump to
56214152Sed	jz			9f						// the code to handle that special case [9].
57214152Sed
58214152Sed	/* High word of b is known to be non-zero on this branch */
59214152Sed
60214152Sed	movl	 20(%esp),			%eax	// Construct bhi, containing bits [1+i:32+i] of b
61214152Sed
62214152Sed	shrl		%cl,			%eax	// Practically, this means that bhi is given by:
63214152Sed	shrl		%eax					//
64214152Sed	notl		%ecx					//		bhi = (high word of b) << (31 - i) |
65214152Sed	shll		%cl,			%ebx	//			  (low word of b) >> (1 + i)
66214152Sed	orl			%eax,			%ebx	//
67214152Sed	movl	 16(%esp),			%edx	// Load the high and low words of a, and jump
68214152Sed	movl	 12(%esp),			%eax	// to [2] if the high word is larger than bhi
69214152Sed	cmpl		%ebx,			%edx	// to avoid overflowing the upcoming divide.
70214152Sed	jae			2f
71214152Sed
72214152Sed	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
73214152Sed
74214152Sed	divl		%ebx					// eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
75214152Sed
76214152Sed	pushl		%edi
77214152Sed	notl		%ecx
78214152Sed	shrl		%eax
79214152Sed	shrl		%cl,			%eax	// q = qs >> (1 + i)
80214152Sed	movl		%eax,			%edi
81214152Sed	mull	 24(%esp)					// q*blo
82214152Sed	movl	 16(%esp),			%ebx
83214152Sed	movl	 20(%esp),			%ecx	// ECX:EBX = a
84214152Sed	subl		%eax,			%ebx
85214152Sed	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
86214152Sed	movl	 28(%esp),			%eax
87214152Sed	imull		%edi,			%eax	// q*bhi
88214152Sed	subl		%eax,			%ecx	// ECX:EBX = a - q*b
89214152Sed
90214152Sed	jnc			1f						// if positive, this is the result.
91214152Sed	addl	 24(%esp),			%ebx	// otherwise
92214152Sed	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
93214152Sed1:	movl		%ebx,			%eax
94214152Sed	movl		%ecx,			%edx
95214152Sed
96214152Sed	addl		%esi,			%eax	// Restore correct sign to result
97214152Sed	adcl		%esi,			%edx
98214152Sed	xorl		%esi,			%eax
99214152Sed	xorl		%esi,			%edx
100214152Sed	popl		%edi					// Restore callee-save registers
101214152Sed	popl		%ebx
102214152Sed	popl		%esi
103214152Sed	retl								// Return
104214152Sed
105214152Sed2:	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
106214152Sed
107214152Sed	subl		%ebx,			%edx	// subtract bhi from ahi so that divide will not
108214152Sed	divl		%ebx					// overflow, and find q and r such that
109214152Sed										//
110214152Sed										//		ahi:alo = (1:q)*bhi + r
111214152Sed										//
112214152Sed										// Note that q is a number in (31-i).(1+i)
113214152Sed										// fix point.
114214152Sed
115214152Sed	pushl		%edi
116214152Sed	notl		%ecx
117214152Sed	shrl		%eax
118214152Sed	orl			$0x80000000,	%eax
119214152Sed	shrl		%cl,			%eax	// q = (1:qs) >> (1 + i)
120214152Sed	movl		%eax,			%edi
121214152Sed	mull	 24(%esp)					// q*blo
122214152Sed	movl	 16(%esp),			%ebx
123214152Sed	movl	 20(%esp),			%ecx	// ECX:EBX = a
124214152Sed	subl		%eax,			%ebx
125214152Sed	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
126214152Sed	movl	 28(%esp),			%eax
127214152Sed	imull		%edi,			%eax	// q*bhi
128214152Sed	subl		%eax,			%ecx	// ECX:EBX = a - q*b
129214152Sed
130214152Sed	jnc			3f						// if positive, this is the result.
131214152Sed	addl	 24(%esp),			%ebx	// otherwise
132214152Sed	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
133214152Sed3:	movl		%ebx,			%eax
134214152Sed	movl		%ecx,			%edx
135214152Sed
136214152Sed	addl		%esi,			%eax	// Restore correct sign to result
137214152Sed	adcl		%esi,			%edx
138214152Sed	xorl		%esi,			%eax
139214152Sed	xorl		%esi,			%edx
140214152Sed	popl		%edi					// Restore callee-save registers
141214152Sed	popl		%ebx
142214152Sed	popl		%esi
143214152Sed	retl								// Return
144214152Sed
145214152Sed9:	/* High word of b is zero on this branch */
146214152Sed
147214152Sed	movl	 16(%esp),			%eax	// Find qhi and rhi such that
148214152Sed	movl	 20(%esp),			%ecx	//
149214152Sed	xorl		%edx,			%edx	//		ahi = qhi*b + rhi	with	0 ��� rhi < b
150214152Sed	divl		%ecx					//
151214152Sed	movl		%eax,			%ebx	//
152214152Sed	movl	 12(%esp),			%eax	// Find rlo such that
153214152Sed	divl		%ecx					//
154214152Sed	movl		%edx,			%eax	//		rhi:alo = qlo*b + rlo  with 0 ��� rlo < b
155214152Sed	popl		%ebx					//
156214152Sed	xorl		%edx,			%edx	// and return 0:rlo
157214152Sed
158214152Sed	addl		%esi,			%eax	// Restore correct sign to result
159214152Sed	adcl		%esi,			%edx
160214152Sed	xorl		%esi,			%eax
161214152Sed	xorl		%esi,			%edx
162214152Sed	popl		%esi
163214152Sed	retl								// Return
164214152Sed
165214152Sed
166214152Sed#endif // __i386__
167