extendsfdf2.c revision 214152
1//===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a fairly generic conversion from a narrower to a wider
11// IEEE-754 floating-point type.  The constants and types defined following the
12// includes below parameterize the conversion.
13//
14// This routine can be trivially adapted to support conversions from
15// half-precision or to quad-precision. It does not support types that don't
16// use the usual IEEE-754 interchange formats; specifically, some work would be
17// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
18// double-double format.
19//
20// Note please, however, that this implementation is only intended to support
21// *widening* operations; if you need to convert to a *narrower* floating-point
22// type (e.g. double -> float), then this routine will not do what you want it
23// to.
24//
25// It also requires that integer types at least as large as both formats
26// are available on the target platform; this may pose a problem when trying
27// to add support for quad on some 32-bit systems, for example.  You also may
28// run into trouble finding an appropriate CLZ function for wide source types;
29// you will likely need to roll your own on some platforms.
30//
31// Finally, the following assumptions are made:
32//
33// 1. floating-point types and integer types have the same endianness on the
34//    target platform
35//
36// 2. quiet NaNs, if supported, are indicated by the leading bit of the
37//    significand field being set
38//
39//===----------------------------------------------------------------------===//
40
41#include <stdint.h>
42#include <limits.h>
43
44typedef float src_t;
45typedef uint32_t src_rep_t;
46#define SRC_REP_C UINT32_C
47static const int srcSigBits = 23;
48#define src_rep_t_clz __builtin_clz
49
50typedef double dst_t;
51typedef uint64_t dst_rep_t;
52#define DST_REP_C UINT64_C
53static const int dstSigBits = 52;
54
55// End of specialization parameters.  Two helper routines for conversion to and
56// from the representation of floating-point data as integer values follow.
57
58static inline src_rep_t srcToRep(src_t x) {
59    const union { src_t f; src_rep_t i; } rep = {.f = x};
60    return rep.i;
61}
62
63static inline dst_t dstFromRep(dst_rep_t x) {
64    const union { dst_t f; dst_rep_t i; } rep = {.i = x};
65    return rep.f;
66}
67
68// End helper routines.  Conversion implementation follows.
69
70dst_t __extendsfdf2(src_t a) {
71
72    // Various constants whose values follow from the type parameters.
73    // Any reasonable optimizer will fold and propagate all of these.
74    const int srcBits = sizeof(src_t)*CHAR_BIT;
75    const int srcExpBits = srcBits - srcSigBits - 1;
76    const int srcInfExp = (1 << srcExpBits) - 1;
77    const int srcExpBias = srcInfExp >> 1;
78
79    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
80    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
81    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
82    const src_rep_t srcAbsMask = srcSignMask - 1;
83    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
84    const src_rep_t srcNaNCode = srcQNaN - 1;
85
86    const int dstBits = sizeof(dst_t)*CHAR_BIT;
87    const int dstExpBits = dstBits - dstSigBits - 1;
88    const int dstInfExp = (1 << dstExpBits) - 1;
89    const int dstExpBias = dstInfExp >> 1;
90
91    const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
92
93    // Break a into a sign and representation of the absolute value
94    const src_rep_t aRep = srcToRep(a);
95    const src_rep_t aAbs = aRep & srcAbsMask;
96    const src_rep_t sign = aRep & srcSignMask;
97    dst_rep_t absResult;
98
99    if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) {
100        // a is a normal number.
101        // Extend to the destination type by shifting the significand and
102        // exponent into the proper position and rebiasing the exponent.
103        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
104        absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
105    }
106
107    else if (aAbs >= srcInfinity) {
108        // a is NaN or infinity.
109        // Conjure the result by beginning with infinity, then setting the qNaN
110        // bit (if needed) and right-aligning the rest of the trailing NaN
111        // payload field.
112        absResult = (dst_rep_t)dstInfExp << dstSigBits;
113        absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
114        absResult |= aAbs & srcNaNCode;
115    }
116
117    else if (aAbs) {
118        // a is denormal.
119        // renormalize the significand and clear the leading bit, then insert
120        // the correct adjusted exponent in the destination type.
121        const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
122        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
123        absResult ^= dstMinNormal;
124        const int resultExponent = dstExpBias - srcExpBias - scale + 1;
125        absResult |= (dst_rep_t)resultExponent << dstSigBits;
126    }
127
128    else {
129        // a is zero.
130        absResult = 0;
131    }
132
133    // Apply the signbit to (dst_t)abs(a).
134    const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
135    return dstFromRep(result);
136}
137