1214152Sed//===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===//
2214152Sed//
3214152Sed//                     The LLVM Compiler Infrastructure
4214152Sed//
5222656Sed// This file is dual licensed under the MIT and the University of Illinois Open
6222656Sed// Source Licenses. See LICENSE.TXT for details.
7214152Sed//
8214152Sed//===----------------------------------------------------------------------===//
9214152Sed//
10214152Sed// This file implements a fairly generic conversion from a narrower to a wider
11214152Sed// IEEE-754 floating-point type.  The constants and types defined following the
12214152Sed// includes below parameterize the conversion.
13214152Sed//
14214152Sed// This routine can be trivially adapted to support conversions from
15214152Sed// half-precision or to quad-precision. It does not support types that don't
16214152Sed// use the usual IEEE-754 interchange formats; specifically, some work would be
17214152Sed// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
18214152Sed// double-double format.
19214152Sed//
20214152Sed// Note please, however, that this implementation is only intended to support
21214152Sed// *widening* operations; if you need to convert to a *narrower* floating-point
22214152Sed// type (e.g. double -> float), then this routine will not do what you want it
23214152Sed// to.
24214152Sed//
25214152Sed// It also requires that integer types at least as large as both formats
26214152Sed// are available on the target platform; this may pose a problem when trying
27214152Sed// to add support for quad on some 32-bit systems, for example.  You also may
28214152Sed// run into trouble finding an appropriate CLZ function for wide source types;
29214152Sed// you will likely need to roll your own on some platforms.
30214152Sed//
31214152Sed// Finally, the following assumptions are made:
32214152Sed//
33214152Sed// 1. floating-point types and integer types have the same endianness on the
34214152Sed//    target platform
35214152Sed//
36214152Sed// 2. quiet NaNs, if supported, are indicated by the leading bit of the
37214152Sed//    significand field being set
38214152Sed//
39214152Sed//===----------------------------------------------------------------------===//
40214152Sed
41236011Smarius#include "int_lib.h"
42214152Sed
43214152Sedtypedef float src_t;
44214152Sedtypedef uint32_t src_rep_t;
45214152Sed#define SRC_REP_C UINT32_C
46214152Sedstatic const int srcSigBits = 23;
47214152Sed#define src_rep_t_clz __builtin_clz
48214152Sed
49214152Sedtypedef double dst_t;
50214152Sedtypedef uint64_t dst_rep_t;
51214152Sed#define DST_REP_C UINT64_C
52214152Sedstatic const int dstSigBits = 52;
53214152Sed
54214152Sed// End of specialization parameters.  Two helper routines for conversion to and
55214152Sed// from the representation of floating-point data as integer values follow.
56214152Sed
57214152Sedstatic inline src_rep_t srcToRep(src_t x) {
58214152Sed    const union { src_t f; src_rep_t i; } rep = {.f = x};
59214152Sed    return rep.i;
60214152Sed}
61214152Sed
62214152Sedstatic inline dst_t dstFromRep(dst_rep_t x) {
63214152Sed    const union { dst_t f; dst_rep_t i; } rep = {.i = x};
64214152Sed    return rep.f;
65214152Sed}
66214152Sed
67214152Sed// End helper routines.  Conversion implementation follows.
68214152Sed
69263560SdimARM_EABI_FNALIAS(f2d, extendsfdf2)
70222656Sed
71214152Seddst_t __extendsfdf2(src_t a) {
72214152Sed
73214152Sed    // Various constants whose values follow from the type parameters.
74214152Sed    // Any reasonable optimizer will fold and propagate all of these.
75214152Sed    const int srcBits = sizeof(src_t)*CHAR_BIT;
76214152Sed    const int srcExpBits = srcBits - srcSigBits - 1;
77214152Sed    const int srcInfExp = (1 << srcExpBits) - 1;
78214152Sed    const int srcExpBias = srcInfExp >> 1;
79214152Sed
80214152Sed    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
81214152Sed    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
82214152Sed    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
83214152Sed    const src_rep_t srcAbsMask = srcSignMask - 1;
84214152Sed    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
85214152Sed    const src_rep_t srcNaNCode = srcQNaN - 1;
86214152Sed
87214152Sed    const int dstBits = sizeof(dst_t)*CHAR_BIT;
88214152Sed    const int dstExpBits = dstBits - dstSigBits - 1;
89214152Sed    const int dstInfExp = (1 << dstExpBits) - 1;
90214152Sed    const int dstExpBias = dstInfExp >> 1;
91214152Sed
92214152Sed    const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
93214152Sed
94214152Sed    // Break a into a sign and representation of the absolute value
95214152Sed    const src_rep_t aRep = srcToRep(a);
96214152Sed    const src_rep_t aAbs = aRep & srcAbsMask;
97214152Sed    const src_rep_t sign = aRep & srcSignMask;
98214152Sed    dst_rep_t absResult;
99214152Sed
100214152Sed    if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) {
101214152Sed        // a is a normal number.
102214152Sed        // Extend to the destination type by shifting the significand and
103214152Sed        // exponent into the proper position and rebiasing the exponent.
104214152Sed        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
105214152Sed        absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
106214152Sed    }
107214152Sed
108214152Sed    else if (aAbs >= srcInfinity) {
109214152Sed        // a is NaN or infinity.
110214152Sed        // Conjure the result by beginning with infinity, then setting the qNaN
111214152Sed        // bit (if needed) and right-aligning the rest of the trailing NaN
112214152Sed        // payload field.
113214152Sed        absResult = (dst_rep_t)dstInfExp << dstSigBits;
114214152Sed        absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
115214152Sed        absResult |= aAbs & srcNaNCode;
116214152Sed    }
117214152Sed
118214152Sed    else if (aAbs) {
119214152Sed        // a is denormal.
120214152Sed        // renormalize the significand and clear the leading bit, then insert
121214152Sed        // the correct adjusted exponent in the destination type.
122214152Sed        const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
123214152Sed        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
124214152Sed        absResult ^= dstMinNormal;
125214152Sed        const int resultExponent = dstExpBias - srcExpBias - scale + 1;
126214152Sed        absResult |= (dst_rep_t)resultExponent << dstSigBits;
127214152Sed    }
128214152Sed
129214152Sed    else {
130214152Sed        // a is zero.
131214152Sed        absResult = 0;
132214152Sed    }
133214152Sed
134214152Sed    // Apply the signbit to (dst_t)abs(a).
135214152Sed    const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
136214152Sed    return dstFromRep(result);
137214152Sed}
138