README.txt revision 222656
1Compiler-RT
2================================
3
4This directory and its subdirectories contain source code for the compiler
5support routines.
6
7Compiler-RT is open source software. You may freely distribute it under the
8terms of the license agreement found in LICENSE.txt.
9
10================================
11
12This is a replacement library for libgcc.  Each function is contained
13in its own file.  Each function has a corresponding unit test under
14test/Unit.
15
16A rudimentary script to test each file is in the file called
17test/Unit/test.
18
19Here is the specification for this library:
20
21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23Here is a synopsis of the contents of this library:
24
25typedef      int si_int;
26typedef unsigned su_int;
27
28typedef          long long di_int;
29typedef unsigned long long du_int;
30
31// Integral bit manipulation
32
33di_int __ashldi3(di_int a, si_int b);      // a << b
34ti_int __ashlti3(ti_int a, si_int b);      // a << b
35
36di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
37ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
38di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
39ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
40
41si_int __clzsi2(si_int a);  // count leading zeros
42si_int __clzdi2(di_int a);  // count leading zeros
43si_int __clzti2(ti_int a);  // count leading zeros
44si_int __ctzsi2(si_int a);  // count trailing zeros
45si_int __ctzdi2(di_int a);  // count trailing zeros
46si_int __ctzti2(ti_int a);  // count trailing zeros
47
48si_int __ffsdi2(di_int a);  // find least significant 1 bit
49si_int __ffsti2(ti_int a);  // find least significant 1 bit
50
51si_int __paritysi2(si_int a);  // bit parity
52si_int __paritydi2(di_int a);  // bit parity
53si_int __parityti2(ti_int a);  // bit parity
54
55si_int __popcountsi2(si_int a);  // bit population
56si_int __popcountdi2(di_int a);  // bit population
57si_int __popcountti2(ti_int a);  // bit population
58
59uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
60uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
61
62// Integral arithmetic
63
64di_int __negdi2    (di_int a);                         // -a
65ti_int __negti2    (ti_int a);                         // -a
66di_int __muldi3    (di_int a, di_int b);               // a * b
67ti_int __multi3    (ti_int a, ti_int b);               // a * b
68si_int __divsi3    (si_int a, si_int b);               // a / b   signed
69di_int __divdi3    (di_int a, di_int b);               // a / b   signed
70ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
71su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
72du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
73tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
74si_int __modsi3    (si_int a, si_int b);               // a % b   signed
75di_int __moddi3    (di_int a, di_int b);               // a % b   signed
76ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
77su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
78du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
79tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
80du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
81tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
82su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
83si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
84
85
86
87//  Integral arithmetic with trapping overflow
88
89si_int __absvsi2(si_int a);           // abs(a)
90di_int __absvdi2(di_int a);           // abs(a)
91ti_int __absvti2(ti_int a);           // abs(a)
92
93si_int __negvsi2(si_int a);           // -a
94di_int __negvdi2(di_int a);           // -a
95ti_int __negvti2(ti_int a);           // -a
96
97si_int __addvsi3(si_int a, si_int b);  // a + b
98di_int __addvdi3(di_int a, di_int b);  // a + b
99ti_int __addvti3(ti_int a, ti_int b);  // a + b
100
101si_int __subvsi3(si_int a, si_int b);  // a - b
102di_int __subvdi3(di_int a, di_int b);  // a - b
103ti_int __subvti3(ti_int a, ti_int b);  // a - b
104
105si_int __mulvsi3(si_int a, si_int b);  // a * b
106di_int __mulvdi3(di_int a, di_int b);  // a * b
107ti_int __mulvti3(ti_int a, ti_int b);  // a * b
108
109//  Integral comparison: a  < b -> 0
110//                       a == b -> 1
111//                       a  > b -> 2
112
113si_int __cmpdi2 (di_int a, di_int b);
114si_int __cmpti2 (ti_int a, ti_int b);
115si_int __ucmpdi2(du_int a, du_int b);
116si_int __ucmpti2(tu_int a, tu_int b);
117
118//  Integral / floating point conversion
119
120di_int __fixsfdi(      float a);
121di_int __fixdfdi(     double a);
122di_int __fixxfdi(long double a);
123
124ti_int __fixsfti(      float a);
125ti_int __fixdfti(     double a);
126ti_int __fixxfti(long double a);
127uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
128
129su_int __fixunssfsi(      float a);
130su_int __fixunsdfsi(     double a);
131su_int __fixunsxfsi(long double a);
132
133du_int __fixunssfdi(      float a);
134du_int __fixunsdfdi(     double a);
135du_int __fixunsxfdi(long double a);
136
137tu_int __fixunssfti(      float a);
138tu_int __fixunsdfti(     double a);
139tu_int __fixunsxfti(long double a);
140uint64_t __fixunstfdi(long double input);  // ppc only
141
142float       __floatdisf(di_int a);
143double      __floatdidf(di_int a);
144long double __floatdixf(di_int a);
145long double __floatditf(int64_t a);        // ppc only
146
147float       __floattisf(ti_int a);
148double      __floattidf(ti_int a);
149long double __floattixf(ti_int a);
150
151float       __floatundisf(du_int a);
152double      __floatundidf(du_int a);
153long double __floatundixf(du_int a);
154long double __floatunditf(uint64_t a);     // ppc only
155
156float       __floatuntisf(tu_int a);
157double      __floatuntidf(tu_int a);
158long double __floatuntixf(tu_int a);
159
160//  Floating point raised to integer power
161
162float       __powisf2(      float a, si_int b);  // a ^ b
163double      __powidf2(     double a, si_int b);  // a ^ b
164long double __powixf2(long double a, si_int b);  // a ^ b
165long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
166
167//  Complex arithmetic
168
169//  (a + ib) * (c + id)
170
171      float _Complex __mulsc3( float a,  float b,  float c,  float d);
172     double _Complex __muldc3(double a, double b, double c, double d);
173long double _Complex __mulxc3(long double a, long double b,
174                              long double c, long double d);
175long double _Complex __multc3(long double a, long double b,
176                              long double c, long double d); // ppc only
177
178//  (a + ib) / (c + id)
179
180      float _Complex __divsc3( float a,  float b,  float c,  float d);
181     double _Complex __divdc3(double a, double b, double c, double d);
182long double _Complex __divxc3(long double a, long double b,
183                              long double c, long double d);
184long double _Complex __divtc3(long double a, long double b,
185                              long double c, long double d);  // ppc only
186
187
188//         Runtime support
189
190// __clear_cache() is used to tell process that new instructions have been
191// written to an address range.  Necessary on processors that do not have
192// a unified instuction and data cache.
193void __clear_cache(void* start, void* end);
194
195// __enable_execute_stack() is used with nested functions when a trampoline
196// function is written onto the stack and that page range needs to be made
197// executable.
198void __enable_execute_stack(void* addr);
199
200// __gcc_personality_v0() is normally only called by the system unwinder.
201// C code (as opposed to C++) normally does not need a personality function
202// because there are no catch clauses or destructors to be run.  But there
203// is a C language extension __attribute__((cleanup(func))) which marks local
204// variables as needing the cleanup function "func" to be run when the
205// variable goes out of scope.  That includes when an exception is thrown,
206// so a personality handler is needed.  
207_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
208         uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
209         _Unwind_Context_t context);
210
211// for use with some implementations of assert() in <assert.h>
212void __eprintf(const char* format, const char* assertion_expression,
213				const char* line, const char* file);
214				
215
216
217//   Power PC specific functions
218
219// There is no C interface to the saveFP/restFP functions.  They are helper
220// functions called by the prolog and epilog of functions that need to save
221// a number of non-volatile float point registers.  
222saveFP
223restFP
224
225// PowerPC has a standard template for trampoline functions.  This function
226// generates a custom trampoline function with the specific realFunc
227// and localsPtr values.
228void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
229                                const void* realFunc, void* localsPtr);
230
231// adds two 128-bit double-double precision values ( x + y )
232long double __gcc_qadd(long double x, long double y);  
233
234// subtracts two 128-bit double-double precision values ( x - y )
235long double __gcc_qsub(long double x, long double y); 
236
237// multiples two 128-bit double-double precision values ( x * y )
238long double __gcc_qmul(long double x, long double y);  
239
240// divides two 128-bit double-double precision values ( x / y )
241long double __gcc_qdiv(long double a, long double b);  
242
243
244//    ARM specific functions
245
246// There is no C interface to the switch* functions.  These helper functions
247// are only needed by Thumb1 code for efficient switch table generation.
248switch16
249switch32
250switch8
251switchu8
252
253// There is no C interface to the *_vfp_d8_d15_regs functions.  There are
254// called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
255// SJLJ for exceptions, each function with a catch clause or destuctors needs
256// to save and restore all registers in it prolog and epliog.  But there is 
257// no way to access vector and high float registers from thumb1 code, so the 
258// compiler must add call outs to these helper functions in the prolog and 
259// epilog.
260restore_vfp_d8_d15_regs
261save_vfp_d8_d15_regs
262
263
264// Note: long ago ARM processors did not have floating point hardware support.
265// Floating point was done in software and floating point parameters were 
266// passed in integer registers.  When hardware support was added for floating
267// point, new *vfp functions were added to do the same operations but with 
268// floating point parameters in floating point registers.
269
270// Undocumented functions
271
272float  __addsf3vfp(float a, float b);   // Appears to return a + b
273double __adddf3vfp(double a, double b); // Appears to return a + b
274float  __divsf3vfp(float a, float b);   // Appears to return a / b
275double __divdf3vfp(double a, double b); // Appears to return a / b
276int    __eqsf2vfp(float a, float b);    // Appears to return  one
277                                        //     iff a == b and neither is NaN.
278int    __eqdf2vfp(double a, double b);  // Appears to return  one
279                                        //     iff a == b and neither is NaN.
280double __extendsfdf2vfp(float a);       // Appears to convert from
281                                        //     float to double.
282int    __fixdfsivfp(double a);          // Appears to convert from
283                                        //     double to int.
284int    __fixsfsivfp(float a);           // Appears to convert from
285                                        //     float to int.
286unsigned int __fixunssfsivfp(float a);  // Appears to convert from
287                                        //     float to unsigned int.
288unsigned int __fixunsdfsivfp(double a); // Appears to convert from
289                                        //     double to unsigned int.
290double __floatsidfvfp(int a);           // Appears to convert from
291                                        //     int to double.
292float __floatsisfvfp(int a);            // Appears to convert from
293                                        //     int to float.
294double __floatunssidfvfp(unsigned int a); // Appears to convert from
295                                        //     unisgned int to double.
296float __floatunssisfvfp(unsigned int a); // Appears to convert from
297                                        //     unisgned int to float.
298int __gedf2vfp(double a, double b);     // Appears to return __gedf2
299                                        //     (a >= b)
300int __gesf2vfp(float a, float b);       // Appears to return __gesf2
301                                        //     (a >= b)
302int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
303                                        //     (a > b)
304int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
305                                        //     (a > b)
306int __ledf2vfp(double a, double b);     // Appears to return __ledf2
307                                        //     (a <= b)
308int __lesf2vfp(float a, float b);       // Appears to return __lesf2
309                                        //     (a <= b)
310int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
311                                        //     (a < b)
312int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
313                                        //     (a < b)
314double __muldf3vfp(double a, double b); // Appears to return a * b
315float __mulsf3vfp(float a, float b);    // Appears to return a * b
316int __nedf2vfp(double a, double b);     // Appears to return __nedf2
317                                        //     (a != b)
318double __negdf2vfp(double a);           // Appears to return -a
319float __negsf2vfp(float a);             // Appears to return -a
320float __negsf2vfp(float a);             // Appears to return -a
321double __subdf3vfp(double a, double b); // Appears to return a - b
322float __subsf3vfp(float a, float b);    // Appears to return a - b
323float __truncdfsf2vfp(double a);        // Appears to convert from
324                                        //     double to float.
325int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
326int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
327
328
329Preconditions are listed for each function at the definition when there are any.
330Any preconditions reflect the specification at
331http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
332
333Assumptions are listed in "int_lib.h", and in individual files.  Where possible
334assumptions are checked at compile time.
335