ctfmerge.c revision 178529
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * Given several files containing CTF data, merge and uniquify that data into
30 * a single CTF section in an output file.
31 *
32 * Merges can proceed independently.  As such, we perform the merges in parallel
33 * using a worker thread model.  A given glob of CTF data (either all of the CTF
34 * data from a single input file, or the result of one or more merges) can only
35 * be involved in a single merge at any given time, so the process decreases in
36 * parallelism, especially towards the end, as more and more files are
37 * consolidated, finally resulting in a single merge of two large CTF graphs.
38 * Unfortunately, the last merge is also the slowest, as the two graphs being
39 * merged are each the product of merges of half of the input files.
40 *
41 * The algorithm consists of two phases, described in detail below.  The first
42 * phase entails the merging of CTF data in groups of eight.  The second phase
43 * takes the results of Phase I, and merges them two at a time.  This disparity
44 * is due to an observation that the merge time increases at least quadratically
45 * with the size of the CTF data being merged.  As such, merges of CTF graphs
46 * newly read from input files are much faster than merges of CTF graphs that
47 * are themselves the results of prior merges.
48 *
49 * A further complication is the need to ensure the repeatability of CTF merges.
50 * That is, a merge should produce the same output every time, given the same
51 * input.  In both phases, this consistency requirement is met by imposing an
52 * ordering on the merge process, thus ensuring that a given set of input files
53 * are merged in the same order every time.
54 *
55 *   Phase I
56 *
57 *   The main thread reads the input files one by one, transforming the CTF
58 *   data they contain into tdata structures.  When a given file has been read
59 *   and parsed, it is placed on the work queue for retrieval by worker threads.
60 *
61 *   Central to Phase I is the Work In Progress (wip) array, which is used to
62 *   merge batches of files in a predictable order.  Files are read by the main
63 *   thread, and are merged into wip array elements in round-robin order.  When
64 *   the number of files merged into a given array slot equals the batch size,
65 *   the merged CTF graph in that array is added to the done slot in order by
66 *   array slot.
67 *
68 *   For example, consider a case where we have five input files, a batch size
69 *   of two, a wip array size of two, and two worker threads (T1 and T2).
70 *
71 *    1. The wip array elements are assigned initial batch numbers 0 and 1.
72 *    2. T1 reads an input file from the input queue (wq_queue).  This is the
73 *       first input file, so it is placed into wip[0].  The second file is
74 *       similarly read and placed into wip[1].  The wip array slots now contain
75 *       one file each (wip_nmerged == 1).
76 *    3. T1 reads the third input file, which it merges into wip[0].  The
77 *       number of files in wip[0] is equal to the batch size.
78 *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
79 *       is now full too.
80 *    5. T2 attempts to place the contents of wip[1] on the done queue
81 *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82 *       Batch 0 needs to be on the done queue before batch 1 can be added, so
83 *       T2 blocks on wip[1]'s cv.
84 *    6. T1 attempts to place the contents of wip[0] on the done queue, and
85 *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
86 *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
87 *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88 *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
89 *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
90 *       restarts.
91 *
92 *   The above process continues until all input files have been consumed.  At
93 *   this point, a pair of barriers are used to allow a single thread to move
94 *   any partial batches from the wip array to the done array in batch ID order.
95 *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96 *   begins.
97 *
98 *	Locking Semantics (Phase I)
99 *
100 *	The input queue (wq_queue) and the done queue (wq_done_queue) are
101 *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
102 *	array slots are protected by their own mutexes, which must be grabbed
103 *	before releasing the input queue lock.  The wip array lock is dropped
104 *	when the thread restarts the loop.  If the array slot was full, the
105 *	array lock will be held while the slot contents are added to the done
106 *	queue.  The done queue lock is used to protect the wip slot cv's.
107 *
108 *	The pow number is protected by the queue lock.  The master batch ID
109 *	and last completed batch (wq_lastdonebatch) counters are protected *in
110 *	Phase I* by the done queue lock.
111 *
112 *   Phase II
113 *
114 *   When Phase II begins, the queue consists of the merged batches from the
115 *   first phase.  Assume we have five batches:
116 *
117 *	Q:	a b c d e
118 *
119 *   Using the same batch ID mechanism we used in Phase I, but without the wip
120 *   array, worker threads remove two entries at a time from the beginning of
121 *   the queue.  These two entries are merged, and are added back to the tail
122 *   of the queue, as follows:
123 *
124 *	Q:	a b c d e	# start
125 *	Q:	c d e ab	# a, b removed, merged, added to end
126 *	Q:	e ab cd		# c, d removed, merged, added to end
127 *	Q:	cd eab		# e, ab removed, merged, added to end
128 *	Q:	cdeab		# cd, eab removed, merged, added to end
129 *
130 *   When one entry remains on the queue, with no merges outstanding, Phase II
131 *   finishes.  We pre-determine the stopping point by pre-calculating the
132 *   number of nodes that will appear on the list.  In the example above, the
133 *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
134 *   signaling the main thread via wq_done_cv.
135 *
136 *	Locking Semantics (Phase II)
137 *
138 *	The queue (wq_queue), ninqueue, and the master batch ID and last
139 *	completed batch counters are protected by wq_queue_lock.  The done
140 *	queue and corresponding lock are unused in Phase II as is the wip array.
141 *
142 *   Uniquification
143 *
144 *   We want the CTF data that goes into a given module to be as small as
145 *   possible.  For example, we don't want it to contain any type data that may
146 *   be present in another common module.  As such, after creating the master
147 *   tdata_t for a given module, we can, if requested by the user, uniquify it
148 *   against the tdata_t from another module (genunix in the case of the SunOS
149 *   kernel).  We perform a merge between the tdata_t for this module and the
150 *   tdata_t from genunix.  Nodes found in this module that are not present in
151 *   genunix are added to a third tdata_t - the uniquified tdata_t.
152 *
153 *   Additive Merges
154 *
155 *   In some cases, for example if we are issuing a new version of a common
156 *   module in a patch, we need to make sure that the CTF data already present
157 *   in that module does not change.  Changes to this data would void the CTF
158 *   data in any module that uniquified against the common module.  To preserve
159 *   the existing data, we can perform what is known as an additive merge.  In
160 *   this case, a final uniquification is performed against the CTF data in the
161 *   previous version of the module.  The result will be the placement of new
162 *   and changed data after the existing data, thus preserving the existing type
163 *   ID space.
164 *
165 *   Saving the result
166 *
167 *   When the merges are complete, the resulting tdata_t is placed into the
168 *   output file, replacing the .SUNW_ctf section (if any) already in that file.
169 *
170 * The person who changes the merging thread code in this file without updating
171 * this comment will not live to see the stock hit five.
172 */
173
174#include <stdio.h>
175#include <stdlib.h>
176#include <unistd.h>
177#include <pthread.h>
178#include <assert.h>
179#include <synch.h>
180#include <signal.h>
181#include <libgen.h>
182#include <string.h>
183#include <errno.h>
184#include <alloca.h>
185#include <sys/param.h>
186#include <sys/types.h>
187#include <sys/mman.h>
188#include <sys/sysconf.h>
189
190#include "ctf_headers.h"
191#include "ctftools.h"
192#include "ctfmerge.h"
193#include "traverse.h"
194#include "memory.h"
195#include "fifo.h"
196#include "barrier.h"
197
198#pragma init(bigheap)
199
200#define	MERGE_PHASE1_BATCH_SIZE		8
201#define	MERGE_PHASE1_MAX_SLOTS		5
202#define	MERGE_INPUT_THROTTLE_LEN	10
203
204const char *progname;
205static char *outfile = NULL;
206static char *tmpname = NULL;
207static int dynsym;
208int debug_level = DEBUG_LEVEL;
209static size_t maxpgsize = 0x400000;
210
211
212void
213usage(void)
214{
215	(void) fprintf(stderr,
216	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
217	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
218	    "       %*s [-g] [-D uniqlabel] file ...\n"
219	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
220	    "file ...\n"
221	    "       %s [-g] -c srcfile destfile\n"
222	    "\n"
223	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
224	    "  the environment, a default value is used.\n",
225	    progname, progname, strlen(progname), " ",
226	    progname, progname);
227}
228
229static void
230bigheap(void)
231{
232	size_t big, *size;
233	int sizes;
234	struct memcntl_mha mha;
235
236	/*
237	 * First, get the available pagesizes.
238	 */
239	if ((sizes = getpagesizes(NULL, 0)) == -1)
240		return;
241
242	if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
243		return;
244
245	if (getpagesizes(size, sizes) == -1)
246		return;
247
248	while (size[sizes - 1] > maxpgsize)
249		sizes--;
250
251	/* set big to the largest allowed page size */
252	big = size[sizes - 1];
253	if (big & (big - 1)) {
254		/*
255		 * The largest page size is not a power of two for some
256		 * inexplicable reason; return.
257		 */
258		return;
259	}
260
261	/*
262	 * Now, align our break to the largest page size.
263	 */
264	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
265		return;
266
267	/*
268	 * set the preferred page size for the heap
269	 */
270	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
271	mha.mha_flags = 0;
272	mha.mha_pagesize = big;
273
274	(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
275}
276
277static void
278finalize_phase_one(workqueue_t *wq)
279{
280	int startslot, i;
281
282	/*
283	 * wip slots are cleared out only when maxbatchsz td's have been merged
284	 * into them.  We're not guaranteed that the number of files we're
285	 * merging is a multiple of maxbatchsz, so there will be some partial
286	 * groups in the wip array.  Move them to the done queue in batch ID
287	 * order, starting with the slot containing the next batch that would
288	 * have been placed on the done queue, followed by the others.
289	 * One thread will be doing this while the others wait at the barrier
290	 * back in worker_thread(), so we don't need to worry about pesky things
291	 * like locks.
292	 */
293
294	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
295		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
296			startslot = i;
297			break;
298		}
299	}
300
301	assert(startslot != -1);
302
303	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
304		int slotnum = i % wq->wq_nwipslots;
305		wip_t *wipslot = &wq->wq_wip[slotnum];
306
307		if (wipslot->wip_td != NULL) {
308			debug(2, "clearing slot %d (%d) (saving %d)\n",
309			    slotnum, i, wipslot->wip_nmerged);
310		} else
311			debug(2, "clearing slot %d (%d)\n", slotnum, i);
312
313		if (wipslot->wip_td != NULL) {
314			fifo_add(wq->wq_donequeue, wipslot->wip_td);
315			wq->wq_wip[slotnum].wip_td = NULL;
316		}
317	}
318
319	wq->wq_lastdonebatch = wq->wq_next_batchid++;
320
321	debug(2, "phase one done: donequeue has %d items\n",
322	    fifo_len(wq->wq_donequeue));
323}
324
325static void
326init_phase_two(workqueue_t *wq)
327{
328	int num;
329
330	/*
331	 * We're going to continually merge the first two entries on the queue,
332	 * placing the result on the end, until there's nothing left to merge.
333	 * At that point, everything will have been merged into one.  The
334	 * initial value of ninqueue needs to be equal to the total number of
335	 * entries that will show up on the queue, both at the start of the
336	 * phase and as generated by merges during the phase.
337	 */
338	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
339	while (num != 1) {
340		wq->wq_ninqueue += num / 2;
341		num = num / 2 + num % 2;
342	}
343
344	/*
345	 * Move the done queue to the work queue.  We won't be using the done
346	 * queue in phase 2.
347	 */
348	assert(fifo_len(wq->wq_queue) == 0);
349	fifo_free(wq->wq_queue, NULL);
350	wq->wq_queue = wq->wq_donequeue;
351}
352
353static void
354wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
355{
356	pthread_mutex_lock(&wq->wq_donequeue_lock);
357
358	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
359		pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
360	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
361
362	fifo_add(wq->wq_donequeue, slot->wip_td);
363	wq->wq_lastdonebatch++;
364	pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
365	    wq->wq_nwipslots].wip_cv);
366
367	/* reset the slot for next use */
368	slot->wip_td = NULL;
369	slot->wip_batchid = wq->wq_next_batchid++;
370
371	pthread_mutex_unlock(&wq->wq_donequeue_lock);
372}
373
374static void
375wip_add_work(wip_t *slot, tdata_t *pow)
376{
377	if (slot->wip_td == NULL) {
378		slot->wip_td = pow;
379		slot->wip_nmerged = 1;
380	} else {
381		debug(2, "%d: merging %p into %p\n", pthread_self(),
382		    (void *)pow, (void *)slot->wip_td);
383
384		merge_into_master(pow, slot->wip_td, NULL, 0);
385		tdata_free(pow);
386
387		slot->wip_nmerged++;
388	}
389}
390
391static void
392worker_runphase1(workqueue_t *wq)
393{
394	wip_t *wipslot;
395	tdata_t *pow;
396	int wipslotnum, pownum;
397
398	for (;;) {
399		pthread_mutex_lock(&wq->wq_queue_lock);
400
401		while (fifo_empty(wq->wq_queue)) {
402			if (wq->wq_nomorefiles == 1) {
403				pthread_cond_broadcast(&wq->wq_work_avail);
404				pthread_mutex_unlock(&wq->wq_queue_lock);
405
406				/* on to phase 2 ... */
407				return;
408			}
409
410			pthread_cond_wait(&wq->wq_work_avail,
411			    &wq->wq_queue_lock);
412		}
413
414		/* there's work to be done! */
415		pow = fifo_remove(wq->wq_queue);
416		pownum = wq->wq_nextpownum++;
417		pthread_cond_broadcast(&wq->wq_work_removed);
418
419		assert(pow != NULL);
420
421		/* merge it into the right slot */
422		wipslotnum = pownum % wq->wq_nwipslots;
423		wipslot = &wq->wq_wip[wipslotnum];
424
425		pthread_mutex_lock(&wipslot->wip_lock);
426
427		pthread_mutex_unlock(&wq->wq_queue_lock);
428
429		wip_add_work(wipslot, pow);
430
431		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
432			wip_save_work(wq, wipslot, wipslotnum);
433
434		pthread_mutex_unlock(&wipslot->wip_lock);
435	}
436}
437
438static void
439worker_runphase2(workqueue_t *wq)
440{
441	tdata_t *pow1, *pow2;
442	int batchid;
443
444	for (;;) {
445		pthread_mutex_lock(&wq->wq_queue_lock);
446
447		if (wq->wq_ninqueue == 1) {
448			pthread_cond_broadcast(&wq->wq_work_avail);
449			pthread_mutex_unlock(&wq->wq_queue_lock);
450
451			debug(2, "%d: entering p2 completion barrier\n",
452			    pthread_self());
453			if (barrier_wait(&wq->wq_bar1)) {
454				pthread_mutex_lock(&wq->wq_queue_lock);
455				wq->wq_alldone = 1;
456				pthread_cond_signal(&wq->wq_alldone_cv);
457				pthread_mutex_unlock(&wq->wq_queue_lock);
458			}
459
460			return;
461		}
462
463		if (fifo_len(wq->wq_queue) < 2) {
464			pthread_cond_wait(&wq->wq_work_avail,
465			    &wq->wq_queue_lock);
466			pthread_mutex_unlock(&wq->wq_queue_lock);
467			continue;
468		}
469
470		/* there's work to be done! */
471		pow1 = fifo_remove(wq->wq_queue);
472		pow2 = fifo_remove(wq->wq_queue);
473		wq->wq_ninqueue -= 2;
474
475		batchid = wq->wq_next_batchid++;
476
477		pthread_mutex_unlock(&wq->wq_queue_lock);
478
479		debug(2, "%d: merging %p into %p\n", pthread_self(),
480		    (void *)pow1, (void *)pow2);
481		merge_into_master(pow1, pow2, NULL, 0);
482		tdata_free(pow1);
483
484		/*
485		 * merging is complete.  place at the tail of the queue in
486		 * proper order.
487		 */
488		pthread_mutex_lock(&wq->wq_queue_lock);
489		while (wq->wq_lastdonebatch + 1 != batchid) {
490			pthread_cond_wait(&wq->wq_done_cv,
491			    &wq->wq_queue_lock);
492		}
493
494		wq->wq_lastdonebatch = batchid;
495
496		fifo_add(wq->wq_queue, pow2);
497		debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
498		    pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
499		    wq->wq_ninqueue);
500		pthread_cond_broadcast(&wq->wq_done_cv);
501		pthread_cond_signal(&wq->wq_work_avail);
502		pthread_mutex_unlock(&wq->wq_queue_lock);
503	}
504}
505
506/*
507 * Main loop for worker threads.
508 */
509static void
510worker_thread(workqueue_t *wq)
511{
512	worker_runphase1(wq);
513
514	debug(2, "%d: entering first barrier\n", pthread_self());
515
516	if (barrier_wait(&wq->wq_bar1)) {
517
518		debug(2, "%d: doing work in first barrier\n", pthread_self());
519
520		finalize_phase_one(wq);
521
522		init_phase_two(wq);
523
524		debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
525		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
526	}
527
528	debug(2, "%d: entering second barrier\n", pthread_self());
529
530	(void) barrier_wait(&wq->wq_bar2);
531
532	debug(2, "%d: phase 1 complete\n", pthread_self());
533
534	worker_runphase2(wq);
535}
536
537/*
538 * Pass a tdata_t tree, built from an input file, off to the work queue for
539 * consumption by worker threads.
540 */
541static int
542merge_ctf_cb(tdata_t *td, char *name, void *arg)
543{
544	workqueue_t *wq = arg;
545
546	debug(3, "Adding tdata %p for processing\n", (void *)td);
547
548	pthread_mutex_lock(&wq->wq_queue_lock);
549	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
550		debug(2, "Throttling input (len = %d, throttle = %d)\n",
551		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
552		pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
553	}
554
555	fifo_add(wq->wq_queue, td);
556	debug(1, "Thread %d announcing %s\n", pthread_self(), name);
557	pthread_cond_broadcast(&wq->wq_work_avail);
558	pthread_mutex_unlock(&wq->wq_queue_lock);
559
560	return (1);
561}
562
563/*
564 * This program is intended to be invoked from a Makefile, as part of the build.
565 * As such, in the event of a failure or user-initiated interrupt (^C), we need
566 * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
567 * Unfortunately, ctfmerge will usually be invoked directly after (and as part
568 * of the same Makefile rule as) a link, and will operate on the linked file
569 * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
570 * will notice that the *linked* file is newer than the object files, and thus
571 * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
572 * reinvokes ctfmerge, is to remove the file to which we are adding CTF
573 * data (confusingly named the output file).  This means that the link will need
574 * to happen again, but links are generally fast, and we can't allow the merge
575 * to be skipped.
576 *
577 * Another possibility would be to block SIGINT entirely - to always run to
578 * completion.  The run time of ctfmerge can, however, be measured in minutes
579 * in some cases, so this is not a valid option.
580 */
581static void
582handle_sig(int sig)
583{
584	terminate("Caught signal %d - exiting\n", sig);
585}
586
587static void
588terminate_cleanup(void)
589{
590	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
591
592	if (tmpname != NULL && dounlink)
593		unlink(tmpname);
594
595	if (outfile == NULL)
596		return;
597
598	if (dounlink) {
599		fprintf(stderr, "Removing %s\n", outfile);
600		unlink(outfile);
601	}
602}
603
604static void
605copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
606{
607	tdata_t *srctd;
608
609	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
610		terminate("No CTF data found in source file %s\n", srcfile);
611
612	tmpname = mktmpname(destfile, ".ctf");
613	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs);
614	if (rename(tmpname, destfile) != 0) {
615		terminate("Couldn't rename temp file %s to %s", tmpname,
616		    destfile);
617	}
618	free(tmpname);
619	tdata_free(srctd);
620}
621
622static void
623wq_init(workqueue_t *wq, int nfiles)
624{
625	int throttle, nslots, i;
626
627	if (getenv("CTFMERGE_MAX_SLOTS"))
628		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
629	else
630		nslots = MERGE_PHASE1_MAX_SLOTS;
631
632	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
633		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
634	else
635		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
636
637	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
638	    wq->wq_maxbatchsz);
639
640	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
641	wq->wq_nwipslots = nslots;
642	wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
643
644	if (getenv("CTFMERGE_INPUT_THROTTLE"))
645		throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
646	else
647		throttle = MERGE_INPUT_THROTTLE_LEN;
648	wq->wq_ithrottle = throttle * wq->wq_nthreads;
649
650	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
651	    wq->wq_nthreads);
652
653	wq->wq_next_batchid = 0;
654
655	for (i = 0; i < nslots; i++) {
656		pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
657		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
658	}
659
660	pthread_mutex_init(&wq->wq_queue_lock, NULL);
661	wq->wq_queue = fifo_new();
662	pthread_cond_init(&wq->wq_work_avail, NULL);
663	pthread_cond_init(&wq->wq_work_removed, NULL);
664	wq->wq_ninqueue = nfiles;
665	wq->wq_nextpownum = 0;
666
667	pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
668	wq->wq_donequeue = fifo_new();
669	wq->wq_lastdonebatch = -1;
670
671	pthread_cond_init(&wq->wq_done_cv, NULL);
672
673	pthread_cond_init(&wq->wq_alldone_cv, NULL);
674	wq->wq_alldone = 0;
675
676	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
677	barrier_init(&wq->wq_bar2, wq->wq_nthreads);
678
679	wq->wq_nomorefiles = 0;
680}
681
682static void
683start_threads(workqueue_t *wq)
684{
685	pthread_t thrid;
686	sigset_t sets;
687	int i;
688
689	sigemptyset(&sets);
690	sigaddset(&sets, SIGINT);
691	sigaddset(&sets, SIGQUIT);
692	sigaddset(&sets, SIGTERM);
693	pthread_sigmask(SIG_BLOCK, &sets, NULL);
694
695	for (i = 0; i < wq->wq_nthreads; i++) {
696		pthread_create(&thrid, NULL, (void *(*)(void *))worker_thread,
697		    wq);
698	}
699
700	sigset(SIGINT, handle_sig);
701	sigset(SIGQUIT, handle_sig);
702	sigset(SIGTERM, handle_sig);
703	pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
704}
705
706static int
707strcompare(const void *p1, const void *p2)
708{
709	char *s1 = *((char **)p1);
710	char *s2 = *((char **)p2);
711
712	return (strcmp(s1, s2));
713}
714
715int
716main(int argc, char **argv)
717{
718	workqueue_t wq;
719	tdata_t *mstrtd, *savetd;
720	char *uniqfile = NULL, *uniqlabel = NULL;
721	char *withfile = NULL;
722	char *label = NULL;
723	char **ifiles, **tifiles;
724	int verbose = 0, docopy = 0;
725	int write_fuzzy_match = 0;
726	int keep_stabs = 0;
727	int require_ctf = 0;
728	int nifiles, nielems;
729	int c, i, idx, tidx, err;
730
731	progname = basename(argv[0]);
732
733	if (getenv("CTFMERGE_DEBUG_LEVEL"))
734		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
735
736	err = 0;
737	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
738		switch (c) {
739		case 'c':
740			docopy = 1;
741			break;
742		case 'd':
743			/* Uniquify against `uniqfile' */
744			uniqfile = optarg;
745			break;
746		case 'D':
747			/* Uniquify against label `uniqlabel' in `uniqfile' */
748			uniqlabel = optarg;
749			break;
750		case 'f':
751			write_fuzzy_match = CTF_FUZZY_MATCH;
752			break;
753		case 'g':
754			keep_stabs = CTF_KEEP_STABS;
755			break;
756		case 'l':
757			/* Label merged types with `label' */
758			label = optarg;
759			break;
760		case 'L':
761			/* Label merged types with getenv(`label`) */
762			if ((label = getenv(optarg)) == NULL)
763				label = CTF_DEFAULT_LABEL;
764			break;
765		case 'o':
766			/* Place merged types in CTF section in `outfile' */
767			outfile = optarg;
768			break;
769		case 't':
770			/* Insist *all* object files built from C have CTF */
771			require_ctf = 1;
772			break;
773		case 'v':
774			/* More debugging information */
775			verbose = 1;
776			break;
777		case 'w':
778			/* Additive merge with data from `withfile' */
779			withfile = optarg;
780			break;
781		case 's':
782			/* use the dynsym rather than the symtab */
783			dynsym = CTF_USE_DYNSYM;
784			break;
785		default:
786			usage();
787			exit(2);
788		}
789	}
790
791	/* Validate arguments */
792	if (docopy) {
793		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
794		    outfile != NULL || withfile != NULL || dynsym != 0)
795			err++;
796
797		if (argc - optind != 2)
798			err++;
799	} else {
800		if (uniqfile != NULL && withfile != NULL)
801			err++;
802
803		if (uniqlabel != NULL && uniqfile == NULL)
804			err++;
805
806		if (outfile == NULL || label == NULL)
807			err++;
808
809		if (argc - optind == 0)
810			err++;
811	}
812
813	if (err) {
814		usage();
815		exit(2);
816	}
817
818	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
819		keep_stabs = CTF_KEEP_STABS;
820
821	if (uniqfile && access(uniqfile, R_OK) != 0) {
822		warning("Uniquification file %s couldn't be opened and "
823		    "will be ignored.\n", uniqfile);
824		uniqfile = NULL;
825	}
826	if (withfile && access(withfile, R_OK) != 0) {
827		warning("With file %s couldn't be opened and will be "
828		    "ignored.\n", withfile);
829		withfile = NULL;
830	}
831	if (outfile && access(outfile, R_OK|W_OK) != 0)
832		terminate("Cannot open output file %s for r/w", outfile);
833
834	/*
835	 * This is ugly, but we don't want to have to have a separate tool
836	 * (yet) just for copying an ELF section with our specific requirements,
837	 * so we shoe-horn a copier into ctfmerge.
838	 */
839	if (docopy) {
840		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
841
842		exit(0);
843	}
844
845	set_terminate_cleanup(terminate_cleanup);
846
847	/* Sort the input files and strip out duplicates */
848	nifiles = argc - optind;
849	ifiles = xmalloc(sizeof (char *) * nifiles);
850	tifiles = xmalloc(sizeof (char *) * nifiles);
851
852	for (i = 0; i < nifiles; i++)
853		tifiles[i] = argv[optind + i];
854	qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);
855
856	ifiles[0] = tifiles[0];
857	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
858		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
859			ifiles[++idx] = tifiles[tidx];
860	}
861	nifiles = idx + 1;
862
863	/* Make sure they all exist */
864	if ((nielems = count_files(ifiles, nifiles)) < 0)
865		terminate("Some input files were inaccessible\n");
866
867	/* Prepare for the merge */
868	wq_init(&wq, nielems);
869
870	start_threads(&wq);
871
872	/*
873	 * Start the merge
874	 *
875	 * We're reading everything from each of the object files, so we
876	 * don't need to specify labels.
877	 */
878	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
879	    &wq, require_ctf) == 0) {
880		/*
881		 * If we're verifying that C files have CTF, it's safe to
882		 * assume that in this case, we're building only from assembly
883		 * inputs.
884		 */
885		if (require_ctf)
886			exit(0);
887		terminate("No ctf sections found to merge\n");
888	}
889
890	pthread_mutex_lock(&wq.wq_queue_lock);
891	wq.wq_nomorefiles = 1;
892	pthread_cond_broadcast(&wq.wq_work_avail);
893	pthread_mutex_unlock(&wq.wq_queue_lock);
894
895	pthread_mutex_lock(&wq.wq_queue_lock);
896	while (wq.wq_alldone == 0)
897		pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
898	pthread_mutex_unlock(&wq.wq_queue_lock);
899
900	/*
901	 * All requested files have been merged, with the resulting tree in
902	 * mstrtd.  savetd is the tree that will be placed into the output file.
903	 *
904	 * Regardless of whether we're doing a normal uniquification or an
905	 * additive merge, we need a type tree that has been uniquified
906	 * against uniqfile or withfile, as appropriate.
907	 *
908	 * If we're doing a uniquification, we stuff the resulting tree into
909	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
910	 */
911	assert(fifo_len(wq.wq_queue) == 1);
912	mstrtd = fifo_remove(wq.wq_queue);
913
914	if (verbose || debug_level) {
915		debug(2, "Statistics for td %p\n", (void *)mstrtd);
916
917		iidesc_stats(mstrtd->td_iihash);
918	}
919
920	if (uniqfile != NULL || withfile != NULL) {
921		char *reffile, *reflabel = NULL;
922		tdata_t *reftd;
923
924		if (uniqfile != NULL) {
925			reffile = uniqfile;
926			reflabel = uniqlabel;
927		} else
928			reffile = withfile;
929
930		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
931		    &reftd, require_ctf) == 0) {
932			terminate("No CTF data found in reference file %s\n",
933			    reffile);
934		}
935
936		savetd = tdata_new();
937
938		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
939			terminate("No room for additional types in master\n");
940
941		savetd->td_nextid = withfile ? reftd->td_nextid :
942		    CTF_INDEX_TO_TYPE(1, TRUE);
943		merge_into_master(mstrtd, reftd, savetd, 0);
944
945		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
946
947		if (withfile) {
948			/*
949			 * savetd holds the new data to be added to the withfile
950			 */
951			tdata_t *withtd = reftd;
952
953			tdata_merge(withtd, savetd);
954
955			savetd = withtd;
956		} else {
957			char uniqname[MAXPATHLEN];
958			labelent_t *parle;
959
960			parle = tdata_label_top(reftd);
961
962			savetd->td_parlabel = xstrdup(parle->le_name);
963
964			strncpy(uniqname, reffile, sizeof (uniqname));
965			uniqname[MAXPATHLEN - 1] = '\0';
966			savetd->td_parname = xstrdup(basename(uniqname));
967		}
968
969	} else {
970		/*
971		 * No post processing.  Write the merged tree as-is into the
972		 * output file.
973		 */
974		tdata_label_free(mstrtd);
975		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
976
977		savetd = mstrtd;
978	}
979
980	tmpname = mktmpname(outfile, ".ctf");
981	write_ctf(savetd, outfile, tmpname,
982	    CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs);
983	if (rename(tmpname, outfile) != 0)
984		terminate("Couldn't rename output temp file %s", tmpname);
985	free(tmpname);
986
987	return (0);
988}
989