dt_lex.l revision 209305
1%{
2/*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 *
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <string.h>
29#include <stdlib.h>
30#include <stdio.h>
31#include <assert.h>
32#include <ctype.h>
33#include <errno.h>
34
35#include <dt_impl.h>
36#include <dt_grammar.h>
37#include <dt_parser.h>
38#include <dt_string.h>
39
40/*
41 * We need to undefine lex's input and unput macros so that references to these
42 * call the functions provided at the end of this source file.
43 */
44#if defined(sun)
45#undef input
46#undef unput
47#else
48/*
49 * Define YY_INPUT for flex since input() can't be re-defined.
50 */
51#define YY_INPUT(buf,result,max_size) \
52	if (yypcb->pcb_fileptr != NULL) { \
53		if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \
54		    && ferror(yypcb->pcb_fileptr)) \
55			longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \
56	} else { \
57		int n; \
58		for (n = 0; n < max_size && \
59		    yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \
60			buf[n] = *yypcb->pcb_strptr++; \
61		result = n; \
62	}
63/*
64 * Do not EOF let tokens to be put back. This does not work with flex.
65 * On the other hand, leaving current buffer in same state it was when
66 * last EOF was received guarantees that input() will keep returning EOF
67 * for all subsequent invocations, which is the effect desired.
68 */
69#undef  unput
70#define unput(c) \
71	if (c != EOF) yyunput( c, yytext_ptr )
72#endif
73
74static int id_or_type(const char *);
75#if defined(sun)
76static int input(void);
77static void unput(int);
78#endif
79
80/*
81 * We first define a set of labeled states for use in the D lexer and then a
82 * set of regular expressions to simplify things below. The lexer states are:
83 *
84 * S0 - D program clause and expression lexing
85 * S1 - D comments (i.e. skip everything until end of comment)
86 * S2 - D program outer scope (probe specifiers and declarations)
87 * S3 - D control line parsing (i.e. after ^# is seen but before \n)
88 * S4 - D control line scan (locate control directives only and invoke S3)
89 */
90%}
91
92%e 1500		/* maximum nodes */
93%p 3700		/* maximum positions */
94%n 600		/* maximum states */
95
96%s S0 S1 S2 S3 S4
97
98RGX_AGG		"@"[a-zA-Z_][0-9a-zA-Z_]*
99RGX_PSPEC	[-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]*
100RGX_IDENT	[a-zA-Z_`][0-9a-zA-Z_`]*
101RGX_INT		([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]?
102RGX_FP		([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]?
103RGX_WS		[\f\n\r\t\v ]
104RGX_STR		([^"\\\n]|\\[^"\n]|\\\")*
105RGX_CHR		([^'\\\n]|\\[^'\n]|\\')*
106RGX_INTERP	^[\f\t\v ]*#!.*
107RGX_CTL		^[\f\t\v ]*#
108
109%%
110
111%{
112
113/*
114 * We insert a special prologue into yylex() itself: if the pcb contains a
115 * context token, we return that prior to running the normal lexer.  This
116 * allows libdtrace to force yacc into one of our three parsing contexts: D
117 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE).
118 * Once the token is returned, we clear it so this only happens once.
119 */
120if (yypcb->pcb_token != 0) {
121	int tok = yypcb->pcb_token;
122	yypcb->pcb_token = 0;
123	return (tok);
124}
125
126%}
127
128<S0>auto	return (DT_KEY_AUTO);
129<S0>break	return (DT_KEY_BREAK);
130<S0>case	return (DT_KEY_CASE);
131<S0>char	return (DT_KEY_CHAR);
132<S0>const	return (DT_KEY_CONST);
133<S0>continue	return (DT_KEY_CONTINUE);
134<S0>counter	return (DT_KEY_COUNTER);
135<S0>default	return (DT_KEY_DEFAULT);
136<S0>do		return (DT_KEY_DO);
137<S0>double	return (DT_KEY_DOUBLE);
138<S0>else	return (DT_KEY_ELSE);
139<S0>enum	return (DT_KEY_ENUM);
140<S0>extern	return (DT_KEY_EXTERN);
141<S0>float	return (DT_KEY_FLOAT);
142<S0>for		return (DT_KEY_FOR);
143<S0>goto	return (DT_KEY_GOTO);
144<S0>if		return (DT_KEY_IF);
145<S0>import	return (DT_KEY_IMPORT);
146<S0>inline	return (DT_KEY_INLINE);
147<S0>int		return (DT_KEY_INT);
148<S0>long	return (DT_KEY_LONG);
149<S0>offsetof	return (DT_TOK_OFFSETOF);
150<S0>probe	return (DT_KEY_PROBE);
151<S0>provider	return (DT_KEY_PROVIDER);
152<S0>register	return (DT_KEY_REGISTER);
153<S0>restrict	return (DT_KEY_RESTRICT);
154<S0>return	return (DT_KEY_RETURN);
155<S0>self	return (DT_KEY_SELF);
156<S0>short	return (DT_KEY_SHORT);
157<S0>signed	return (DT_KEY_SIGNED);
158<S0>sizeof	return (DT_TOK_SIZEOF);
159<S0>static	return (DT_KEY_STATIC);
160<S0>string	return (DT_KEY_STRING);
161<S0>stringof	return (DT_TOK_STRINGOF);
162<S0>struct	return (DT_KEY_STRUCT);
163<S0>switch	return (DT_KEY_SWITCH);
164<S0>this	return (DT_KEY_THIS);
165<S0>translator	return (DT_KEY_XLATOR);
166<S0>typedef	return (DT_KEY_TYPEDEF);
167<S0>union	return (DT_KEY_UNION);
168<S0>unsigned	return (DT_KEY_UNSIGNED);
169<S0>void	return (DT_KEY_VOID);
170<S0>volatile	return (DT_KEY_VOLATILE);
171<S0>while	return (DT_KEY_WHILE);
172<S0>xlate	return (DT_TOK_XLATE);
173
174<S2>auto	{ yybegin(YYS_EXPR);	return (DT_KEY_AUTO); }
175<S2>char	{ yybegin(YYS_EXPR);	return (DT_KEY_CHAR); }
176<S2>const	{ yybegin(YYS_EXPR);	return (DT_KEY_CONST); }
177<S2>counter	{ yybegin(YYS_DEFINE);	return (DT_KEY_COUNTER); }
178<S2>double	{ yybegin(YYS_EXPR);	return (DT_KEY_DOUBLE); }
179<S2>enum	{ yybegin(YYS_EXPR);	return (DT_KEY_ENUM); }
180<S2>extern	{ yybegin(YYS_EXPR);	return (DT_KEY_EXTERN); }
181<S2>float	{ yybegin(YYS_EXPR);	return (DT_KEY_FLOAT); }
182<S2>import	{ yybegin(YYS_EXPR);	return (DT_KEY_IMPORT); }
183<S2>inline	{ yybegin(YYS_DEFINE);	return (DT_KEY_INLINE); }
184<S2>int		{ yybegin(YYS_EXPR);	return (DT_KEY_INT); }
185<S2>long	{ yybegin(YYS_EXPR);	return (DT_KEY_LONG); }
186<S2>provider	{ yybegin(YYS_DEFINE);	return (DT_KEY_PROVIDER); }
187<S2>register	{ yybegin(YYS_EXPR);	return (DT_KEY_REGISTER); }
188<S2>restrict	{ yybegin(YYS_EXPR);	return (DT_KEY_RESTRICT); }
189<S2>self	{ yybegin(YYS_EXPR);	return (DT_KEY_SELF); }
190<S2>short	{ yybegin(YYS_EXPR);	return (DT_KEY_SHORT); }
191<S2>signed	{ yybegin(YYS_EXPR);	return (DT_KEY_SIGNED); }
192<S2>static	{ yybegin(YYS_EXPR);	return (DT_KEY_STATIC); }
193<S2>string	{ yybegin(YYS_EXPR);	return (DT_KEY_STRING); }
194<S2>struct	{ yybegin(YYS_EXPR);	return (DT_KEY_STRUCT); }
195<S2>this	{ yybegin(YYS_EXPR);	return (DT_KEY_THIS); }
196<S2>translator	{ yybegin(YYS_DEFINE);	return (DT_KEY_XLATOR); }
197<S2>typedef	{ yybegin(YYS_EXPR);	return (DT_KEY_TYPEDEF); }
198<S2>union	{ yybegin(YYS_EXPR);	return (DT_KEY_UNION); }
199<S2>unsigned	{ yybegin(YYS_EXPR);	return (DT_KEY_UNSIGNED); }
200<S2>void	{ yybegin(YYS_EXPR);	return (DT_KEY_VOID); }
201<S2>volatile	{ yybegin(YYS_EXPR);	return (DT_KEY_VOLATILE); }
202
203<S0>"$$"[0-9]+	{
204			int i = atoi(yytext + 2);
205			char *v = "";
206
207			/*
208			 * A macro argument reference substitutes the text of
209			 * an argument in place of the current token.  When we
210			 * see $$<d> we fetch the saved string from pcb_sargv
211			 * (or use the default argument if the option has been
212			 * set and the argument hasn't been specified) and
213			 * return a token corresponding to this string.
214			 */
215			if (i < 0 || (i >= yypcb->pcb_sargc &&
216			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
217				xyerror(D_MACRO_UNDEF, "macro argument %s is "
218				    "not defined\n", yytext);
219			}
220
221			if (i < yypcb->pcb_sargc) {
222				v = yypcb->pcb_sargv[i]; /* get val from pcb */
223				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
224			}
225
226			if ((yylval.l_str = strdup(v)) == NULL)
227				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
228
229			(void) stresc2chr(yylval.l_str);
230			return (DT_TOK_STRING);
231		}
232
233<S0>"$"[0-9]+	{
234			int i = atoi(yytext + 1);
235			char *p, *v = "0";
236
237			/*
238			 * A macro argument reference substitutes the text of
239			 * one identifier or integer pattern for another.  When
240			 * we see $<d> we fetch the saved string from pcb_sargv
241			 * (or use the default argument if the option has been
242			 * set and the argument hasn't been specified) and
243			 * return a token corresponding to this string.
244			 */
245			if (i < 0 || (i >= yypcb->pcb_sargc &&
246			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
247				xyerror(D_MACRO_UNDEF, "macro argument %s is "
248				    "not defined\n", yytext);
249			}
250
251			if (i < yypcb->pcb_sargc) {
252				v = yypcb->pcb_sargv[i]; /* get val from pcb */
253				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
254			}
255
256			/*
257			 * If the macro text is not a valid integer or ident,
258			 * then we treat it as a string.  The string may be
259			 * optionally enclosed in quotes, which we strip.
260			 */
261			if (strbadidnum(v)) {
262				size_t len = strlen(v);
263
264				if (len != 1 && *v == '"' && v[len - 1] == '"')
265					yylval.l_str = strndup(v + 1, len - 2);
266				else
267					yylval.l_str = strndup(v, len);
268
269				if (yylval.l_str == NULL)
270					longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
271
272				(void) stresc2chr(yylval.l_str);
273				return (DT_TOK_STRING);
274			}
275
276			/*
277			 * If the macro text is not a string an begins with a
278			 * digit or a +/- sign, process it as an integer token.
279			 */
280			if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') {
281				if (isdigit(v[0]))
282					yyintprefix = 0;
283				else
284					yyintprefix = *v++;
285
286				errno = 0;
287				yylval.l_int = strtoull(v, &p, 0);
288				(void) strncpy(yyintsuffix, p,
289				    sizeof (yyintsuffix));
290				yyintdecimal = *v != '0';
291
292				if (errno == ERANGE) {
293					xyerror(D_MACRO_OFLOW, "macro argument"
294					    " %s constant %s results in integer"
295					    " overflow\n", yytext, v);
296				}
297
298				return (DT_TOK_INT);
299			}
300
301			return (id_or_type(v));
302		}
303
304<S0>"$$"{RGX_IDENT} {
305			dt_ident_t *idp = dt_idhash_lookup(
306			    yypcb->pcb_hdl->dt_macros, yytext + 2);
307
308			char s[16]; /* enough for UINT_MAX + \0 */
309
310			if (idp == NULL) {
311				xyerror(D_MACRO_UNDEF, "macro variable %s "
312				    "is not defined\n", yytext);
313			}
314
315			/*
316			 * For the moment, all current macro variables are of
317			 * type id_t (refer to dtrace_update() for details).
318			 */
319			(void) snprintf(s, sizeof (s), "%u", idp->di_id);
320			if ((yylval.l_str = strdup(s)) == NULL)
321				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
322
323			return (DT_TOK_STRING);
324		}
325
326<S0>"$"{RGX_IDENT} {
327			dt_ident_t *idp = dt_idhash_lookup(
328			    yypcb->pcb_hdl->dt_macros, yytext + 1);
329
330			if (idp == NULL) {
331				xyerror(D_MACRO_UNDEF, "macro variable %s "
332				    "is not defined\n", yytext);
333			}
334
335			/*
336			 * For the moment, all current macro variables are of
337			 * type id_t (refer to dtrace_update() for details).
338			 */
339			yylval.l_int = (intmax_t)(int)idp->di_id;
340			yyintprefix = 0;
341			yyintsuffix[0] = '\0';
342			yyintdecimal = 1;
343
344			return (DT_TOK_INT);
345		}
346
347<S0>{RGX_IDENT}	{
348			return (id_or_type(yytext));
349		}
350
351<S0>{RGX_AGG}	{
352			if ((yylval.l_str = strdup(yytext)) == NULL)
353				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
354			return (DT_TOK_AGG);
355		}
356
357<S0>"@"		{
358			if ((yylval.l_str = strdup("@_")) == NULL)
359				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
360			return (DT_TOK_AGG);
361		}
362
363<S0>{RGX_INT}	|
364<S2>{RGX_INT}	|
365<S3>{RGX_INT}	{
366			char *p;
367
368			errno = 0;
369			yylval.l_int = strtoull(yytext, &p, 0);
370			yyintprefix = 0;
371			(void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
372			yyintdecimal = yytext[0] != '0';
373
374			if (errno == ERANGE) {
375				xyerror(D_INT_OFLOW, "constant %s results in "
376				    "integer overflow\n", yytext);
377			}
378
379			if (*p != '\0' && strchr("uUlL", *p) == NULL) {
380				xyerror(D_INT_DIGIT, "constant %s contains "
381				    "invalid digit %c\n", yytext, *p);
382			}
383
384			if ((YYSTATE) != S3)
385				return (DT_TOK_INT);
386
387			yypragma = dt_node_link(yypragma,
388			    dt_node_int(yylval.l_int));
389		}
390
391<S0>{RGX_FP}	yyerror("floating-point constants are not permitted\n");
392
393<S0>\"{RGX_STR}$ |
394<S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal");
395
396<S0>\"{RGX_STR}\" |
397<S3>\"{RGX_STR}\" {
398			/*
399			 * Quoted string -- convert C escape sequences and
400			 * return the string as a token.
401			 */
402			yylval.l_str = strndup(yytext + 1, yyleng - 2);
403
404			if (yylval.l_str == NULL)
405				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
406
407			(void) stresc2chr(yylval.l_str);
408			if ((YYSTATE) != S3)
409				return (DT_TOK_STRING);
410
411			yypragma = dt_node_link(yypragma,
412			    dt_node_string(yylval.l_str));
413		}
414
415<S0>'{RGX_CHR}$	xyerror(D_CHR_NL, "newline encountered in character constant");
416
417<S0>'{RGX_CHR}'	{
418			char *s, *p, *q;
419			size_t nbytes;
420
421			/*
422			 * Character constant -- convert C escape sequences and
423			 * return the character as an integer immediate value.
424			 */
425			if (yyleng == 2)
426				xyerror(D_CHR_NULL, "empty character constant");
427
428			s = yytext + 1;
429			yytext[yyleng - 1] = '\0';
430			nbytes = stresc2chr(s);
431			yylval.l_int = 0;
432			yyintprefix = 0;
433			yyintsuffix[0] = '\0';
434			yyintdecimal = 1;
435
436			if (nbytes > sizeof (yylval.l_int)) {
437				xyerror(D_CHR_OFLOW, "character constant is "
438				    "too long");
439			}
440#if BYTE_ORDER == _LITTLE_ENDIAN
441			p = ((char *)&yylval.l_int) + nbytes - 1;
442			for (q = s; nbytes != 0; nbytes--)
443				*p-- = *q++;
444#else
445			bcopy(s, ((char *)&yylval.l_int) +
446			    sizeof (yylval.l_int) - nbytes, nbytes);
447#endif
448			return (DT_TOK_INT);
449		}
450
451<S0>"/*"	|
452<S2>"/*"	{
453			yypcb->pcb_cstate = (YYSTATE);
454			BEGIN(S1);
455		}
456
457<S0>{RGX_INTERP} |
458<S2>{RGX_INTERP} ;	/* discard any #! lines */
459
460<S0>{RGX_CTL}	|
461<S2>{RGX_CTL}	|
462<S4>{RGX_CTL}	{
463			assert(yypragma == NULL);
464			yypcb->pcb_cstate = (YYSTATE);
465			BEGIN(S3);
466		}
467
468<S4>.		;	/* discard */
469<S4>"\n"	;	/* discard */
470
471<S0>"/"		{
472			int c, tok;
473
474			/*
475			 * The use of "/" as the predicate delimiter and as the
476			 * integer division symbol requires special lookahead
477			 * to avoid a shift/reduce conflict in the D grammar.
478			 * We look ahead to the next non-whitespace character.
479			 * If we encounter EOF, ";", "{", or "/", then this "/"
480			 * closes the predicate and we return DT_TOK_EPRED.
481			 * If we encounter anything else, it's DT_TOK_DIV.
482			 */
483			while ((c = input()) != 0) {
484				if (strchr("\f\n\r\t\v ", c) == NULL)
485					break;
486			}
487
488			if (c == 0 || c == ';' || c == '{' || c == '/') {
489				if (yypcb->pcb_parens != 0) {
490					yyerror("closing ) expected in "
491					    "predicate before /\n");
492				}
493				if (yypcb->pcb_brackets != 0) {
494					yyerror("closing ] expected in "
495					    "predicate before /\n");
496				}
497				tok = DT_TOK_EPRED;
498			} else
499				tok = DT_TOK_DIV;
500
501			unput(c);
502			return (tok);
503		}
504
505<S0>"("		{
506			yypcb->pcb_parens++;
507			return (DT_TOK_LPAR);
508		}
509
510<S0>")"		{
511			if (--yypcb->pcb_parens < 0)
512				yyerror("extra ) in input stream\n");
513			return (DT_TOK_RPAR);
514		}
515
516<S0>"["		{
517			yypcb->pcb_brackets++;
518			return (DT_TOK_LBRAC);
519		}
520
521<S0>"]"		{
522			if (--yypcb->pcb_brackets < 0)
523				yyerror("extra ] in input stream\n");
524			return (DT_TOK_RBRAC);
525		}
526
527<S0>"{"		|
528<S2>"{"		{
529			yypcb->pcb_braces++;
530			return ('{');
531		}
532
533<S0>"}"		{
534			if (--yypcb->pcb_braces < 0)
535				yyerror("extra } in input stream\n");
536			return ('}');
537		}
538
539<S0>"|"		return (DT_TOK_BOR);
540<S0>"^"		return (DT_TOK_XOR);
541<S0>"&"		return (DT_TOK_BAND);
542<S0>"&&"	return (DT_TOK_LAND);
543<S0>"^^"	return (DT_TOK_LXOR);
544<S0>"||"	return (DT_TOK_LOR);
545<S0>"=="	return (DT_TOK_EQU);
546<S0>"!="	return (DT_TOK_NEQ);
547<S0>"<"		return (DT_TOK_LT);
548<S0>"<="	return (DT_TOK_LE);
549<S0>">"		return (DT_TOK_GT);
550<S0>">="	return (DT_TOK_GE);
551<S0>"<<"	return (DT_TOK_LSH);
552<S0>">>"	return (DT_TOK_RSH);
553<S0>"+"		return (DT_TOK_ADD);
554<S0>"-"		return (DT_TOK_SUB);
555<S0>"*"		return (DT_TOK_MUL);
556<S0>"%"		return (DT_TOK_MOD);
557<S0>"~"		return (DT_TOK_BNEG);
558<S0>"!"		return (DT_TOK_LNEG);
559<S0>"?"		return (DT_TOK_QUESTION);
560<S0>":"		return (DT_TOK_COLON);
561<S0>"."		return (DT_TOK_DOT);
562<S0>"->"	return (DT_TOK_PTR);
563<S0>"="		return (DT_TOK_ASGN);
564<S0>"+="	return (DT_TOK_ADD_EQ);
565<S0>"-="	return (DT_TOK_SUB_EQ);
566<S0>"*="	return (DT_TOK_MUL_EQ);
567<S0>"/="	return (DT_TOK_DIV_EQ);
568<S0>"%="	return (DT_TOK_MOD_EQ);
569<S0>"&="	return (DT_TOK_AND_EQ);
570<S0>"^="	return (DT_TOK_XOR_EQ);
571<S0>"|="	return (DT_TOK_OR_EQ);
572<S0>"<<="	return (DT_TOK_LSH_EQ);
573<S0>">>="	return (DT_TOK_RSH_EQ);
574<S0>"++"	return (DT_TOK_ADDADD);
575<S0>"--"	return (DT_TOK_SUBSUB);
576<S0>"..."	return (DT_TOK_ELLIPSIS);
577<S0>","		return (DT_TOK_COMMA);
578<S0>";"		return (';');
579<S0>{RGX_WS}	; /* discard */
580<S0>"\\"\n	; /* discard */
581<S0>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
582
583<S1>"/*"	yyerror("/* encountered inside a comment\n");
584<S1>"*/"	BEGIN(yypcb->pcb_cstate);
585<S1>.|\n	; /* discard */
586
587<S2>{RGX_PSPEC}	{
588			/*
589			 * S2 has an ambiguity because RGX_PSPEC includes '*'
590			 * as a glob character and '*' also can be DT_TOK_STAR.
591			 * Since lex always matches the longest token, this
592			 * rule can be matched by an input string like "int*",
593			 * which could begin a global variable declaration such
594			 * as "int*x;" or could begin a RGX_PSPEC with globbing
595			 * such as "int* { trace(timestamp); }".  If C_PSPEC is
596			 * not set, we must resolve the ambiguity in favor of
597			 * the type and perform lexer pushback if the fragment
598			 * before '*' or entire fragment matches a type name.
599			 * If C_PSPEC is set, we always return a PSPEC token.
600			 * If C_PSPEC is off, the user can avoid ambiguity by
601			 * including a ':' delimiter in the specifier, which
602			 * they should be doing anyway to specify the provider.
603			 */
604			if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) &&
605			    strchr(yytext, ':') == NULL) {
606
607				char *p = strchr(yytext, '*');
608				char *q = yytext + yyleng - 1;
609
610				if (p != NULL && p > yytext)
611					*p = '\0'; /* prune yytext */
612
613				if (dt_type_lookup(yytext, NULL) == 0) {
614					yylval.l_str = strdup(yytext);
615
616					if (yylval.l_str == NULL) {
617						longjmp(yypcb->pcb_jmpbuf,
618						    EDT_NOMEM);
619					}
620
621					if (p != NULL && p > yytext) {
622						for (*p = '*'; q >= p; q--)
623							unput(*q);
624					}
625
626					yybegin(YYS_EXPR);
627					return (DT_TOK_TNAME);
628				}
629
630				if (p != NULL && p > yytext)
631					*p = '*'; /* restore yytext */
632			}
633
634			if ((yylval.l_str = strdup(yytext)) == NULL)
635				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
636
637			return (DT_TOK_PSPEC);
638		}
639
640<S2>"/"		return (DT_TOK_DIV);
641<S2>","		return (DT_TOK_COMMA);
642
643<S2>{RGX_WS}	; /* discard */
644<S2>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
645
646<S3>\n		{
647			dt_pragma(yypragma);
648			yypragma = NULL;
649			BEGIN(yypcb->pcb_cstate);
650		}
651
652<S3>[\f\t\v ]+	; /* discard */
653
654<S3>[^\f\n\t\v "]+ {
655			dt_node_t *dnp;
656
657			if ((yylval.l_str = strdup(yytext)) == NULL)
658				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
659
660			/*
661			 * We want to call dt_node_ident() here, but we can't
662			 * because it will expand inlined identifiers, which we
663			 * don't want to do from #pragma context in order to
664			 * support pragmas that apply to the ident itself.  We
665			 * call dt_node_string() and then reset dn_op instead.
666			 */
667			dnp = dt_node_string(yylval.l_str);
668			dnp->dn_kind = DT_NODE_IDENT;
669			dnp->dn_op = DT_TOK_IDENT;
670			yypragma = dt_node_link(yypragma, dnp);
671		}
672
673<S3>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
674
675%%
676
677/*
678 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro.
679 * We use two main states for lexing because probe descriptions use a syntax
680 * that is incompatible with the normal D tokens (e.g. names can contain "-").
681 * yybegin also handles the job of switching between two lists of dt_nodes
682 * as we allocate persistent definitions, like inlines, and transient nodes
683 * that will be freed once we are done parsing the current program file.
684 */
685void
686yybegin(yystate_t state)
687{
688#ifdef	YYDEBUG
689	yydebug = _dtrace_debug;
690#endif
691	if (yypcb->pcb_yystate == state)
692		return; /* nothing to do if we're in the state already */
693
694	if (yypcb->pcb_yystate == YYS_DEFINE) {
695		yypcb->pcb_list = yypcb->pcb_hold;
696		yypcb->pcb_hold = NULL;
697	}
698
699	switch (state) {
700	case YYS_CLAUSE:
701		BEGIN(S2);
702		break;
703	case YYS_DEFINE:
704		assert(yypcb->pcb_hold == NULL);
705		yypcb->pcb_hold = yypcb->pcb_list;
706		yypcb->pcb_list = NULL;
707		/*FALLTHRU*/
708	case YYS_EXPR:
709		BEGIN(S0);
710		break;
711	case YYS_DONE:
712		break;
713	case YYS_CONTROL:
714		BEGIN(S4);
715		break;
716	default:
717		xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state);
718	}
719
720	yypcb->pcb_yystate = state;
721}
722
723void
724yyinit(dt_pcb_t *pcb)
725{
726	yypcb = pcb;
727	yylineno = 1;
728	yypragma = NULL;
729#if defined(sun)
730	yysptr = yysbuf;
731#endif
732}
733
734/*
735 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate
736 * token to the parser indicating either an identifier or a typedef name.
737 * User-defined global variables always take precedence over types, but we do
738 * use some heuristics because D programs can look at an ever-changing set of
739 * kernel types and also can implicitly instantiate variables by assignment,
740 * unlike in C.  The code here is ordered carefully as lookups are not cheap.
741 */
742static int
743id_or_type(const char *s)
744{
745	dtrace_hdl_t *dtp = yypcb->pcb_hdl;
746	dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
747	int c0, c1, ttok = DT_TOK_TNAME;
748	dt_ident_t *idp;
749
750	if ((s = yylval.l_str = strdup(s)) == NULL)
751		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
752
753	/*
754	 * If the lexeme is a global variable or likely identifier or *not* a
755	 * type_name, then it is an identifier token.
756	 */
757	if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL ||
758	    dt_idhash_lookup(yypcb->pcb_idents, s) != NULL ||
759	    dt_type_lookup(s, NULL) != 0)
760		return (DT_TOK_IDENT);
761
762	/*
763	 * If we're in the midst of parsing a declaration and a type_specifier
764	 * has already been shifted, then return DT_TOK_IDENT instead of TNAME.
765	 * This semantic is necessary to permit valid ISO C code such as:
766	 *
767	 * typedef int foo;
768	 * struct s { foo foo; };
769	 *
770	 * without causing shift/reduce conflicts in the direct_declarator part
771	 * of the grammar.  The result is that we must check for conflicting
772	 * redeclarations of the same identifier as part of dt_node_decl().
773	 */
774	if (ddp != NULL && ddp->dd_name != NULL)
775		return (DT_TOK_IDENT);
776
777	/*
778	 * If the lexeme is a type name and we are not in a program clause,
779	 * then always interpret it as a type and return DT_TOK_TNAME.
780	 */
781	if ((YYSTATE) != S0)
782		return (DT_TOK_TNAME);
783
784	/*
785	 * If the lexeme matches a type name but is in a program clause, then
786	 * it could be a type or it could be an undefined variable.  Peek at
787	 * the next token to decide.  If we see ++, --, [, or =, we know there
788	 * might be an assignment that is trying to create a global variable,
789	 * so we optimistically return DT_TOK_IDENT.  There is no harm in being
790	 * wrong: a type_name followed by ++, --, [, or = is a syntax error.
791	 */
792	while ((c0 = input()) != 0) {
793		if (strchr("\f\n\r\t\v ", c0) == NULL)
794			break;
795	}
796
797	switch (c0) {
798	case '+':
799	case '-':
800		if ((c1 = input()) == c0)
801			ttok = DT_TOK_IDENT;
802		unput(c1);
803		break;
804
805	case '=':
806		if ((c1 = input()) != c0)
807			ttok = DT_TOK_IDENT;
808		unput(c1);
809		break;
810	case '[':
811		ttok = DT_TOK_IDENT;
812		break;
813	}
814
815	if (ttok == DT_TOK_IDENT) {
816		idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0,
817		    0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);
818
819		if (idp == NULL)
820			longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
821	}
822
823	unput(c0);
824	return (ttok);
825}
826
827#if defined(sun)
828static int
829input(void)
830{
831	int c;
832
833	if (yysptr > yysbuf)
834		c = *--yysptr;
835	else if (yypcb->pcb_fileptr != NULL)
836		c = fgetc(yypcb->pcb_fileptr);
837	else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen)
838		c = *yypcb->pcb_strptr++;
839	else
840		c = EOF;
841
842	if (c == '\n')
843		yylineno++;
844
845	if (c != EOF)
846		return (c);
847
848	if ((YYSTATE) == S1)
849		yyerror("end-of-file encountered before matching */\n");
850
851	if ((YYSTATE) == S3)
852		yyerror("end-of-file encountered before end of control line\n");
853
854	if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr))
855		longjmp(yypcb->pcb_jmpbuf, EDT_FIO);
856
857	return (0); /* EOF */
858}
859
860static void
861unput(int c)
862{
863	if (c == '\n')
864		yylineno--;
865
866	*yysptr++ = c;
867	yytchar = c;
868}
869#endif
870