dt_lex.l revision 209030
1%{
2/*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 *
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <string.h>
29#include <stdlib.h>
30#include <stdio.h>
31#include <assert.h>
32#include <ctype.h>
33#include <errno.h>
34
35#include <dt_impl.h>
36#include <dt_grammar.h>
37#include <dt_parser.h>
38#include <dt_string.h>
39
40/*
41 * We need to undefine lex's input and unput macros so that references to these
42 * call the functions provided at the end of this source file.
43 */
44#if defined(sun)
45#undef input
46#undef unput
47#else
48/*
49 * Define YY_INPUT for flex since input() can't be re-defined.
50 */
51#define YY_INPUT(buf,result,max_size) \
52	if (yypcb->pcb_fileptr != NULL) { \
53		if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \
54		    && ferror(yypcb->pcb_fileptr)) \
55			longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \
56	} else { \
57		int n; \
58		for (n = 0; n < max_size && \
59		    yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \
60			buf[n] = *yypcb->pcb_strptr++; \
61		result = n; \
62	}
63#endif
64
65static int id_or_type(const char *);
66#if defined(sun)
67static int input(void);
68static void unput(int);
69#endif
70
71/*
72 * We first define a set of labeled states for use in the D lexer and then a
73 * set of regular expressions to simplify things below. The lexer states are:
74 *
75 * S0 - D program clause and expression lexing
76 * S1 - D comments (i.e. skip everything until end of comment)
77 * S2 - D program outer scope (probe specifiers and declarations)
78 * S3 - D control line parsing (i.e. after ^# is seen but before \n)
79 * S4 - D control line scan (locate control directives only and invoke S3)
80 */
81%}
82
83%e 1500		/* maximum nodes */
84%p 3700		/* maximum positions */
85%n 600		/* maximum states */
86
87%s S0 S1 S2 S3 S4
88
89RGX_AGG		"@"[a-zA-Z_][0-9a-zA-Z_]*
90RGX_PSPEC	[-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]*
91RGX_IDENT	[a-zA-Z_`][0-9a-zA-Z_`]*
92RGX_INT		([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]?
93RGX_FP		([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]?
94RGX_WS		[\f\n\r\t\v ]
95RGX_STR		([^"\\\n]|\\[^"\n]|\\\")*
96RGX_CHR		([^'\\\n]|\\[^'\n]|\\')*
97RGX_INTERP	^[\f\t\v ]*#!.*
98RGX_CTL		^[\f\t\v ]*#
99
100%%
101
102%{
103
104/*
105 * We insert a special prologue into yylex() itself: if the pcb contains a
106 * context token, we return that prior to running the normal lexer.  This
107 * allows libdtrace to force yacc into one of our three parsing contexts: D
108 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE).
109 * Once the token is returned, we clear it so this only happens once.
110 */
111if (yypcb->pcb_token != 0) {
112	int tok = yypcb->pcb_token;
113	yypcb->pcb_token = 0;
114	return (tok);
115}
116
117%}
118
119<S0>auto	return (DT_KEY_AUTO);
120<S0>break	return (DT_KEY_BREAK);
121<S0>case	return (DT_KEY_CASE);
122<S0>char	return (DT_KEY_CHAR);
123<S0>const	return (DT_KEY_CONST);
124<S0>continue	return (DT_KEY_CONTINUE);
125<S0>counter	return (DT_KEY_COUNTER);
126<S0>default	return (DT_KEY_DEFAULT);
127<S0>do		return (DT_KEY_DO);
128<S0>double	return (DT_KEY_DOUBLE);
129<S0>else	return (DT_KEY_ELSE);
130<S0>enum	return (DT_KEY_ENUM);
131<S0>extern	return (DT_KEY_EXTERN);
132<S0>float	return (DT_KEY_FLOAT);
133<S0>for		return (DT_KEY_FOR);
134<S0>goto	return (DT_KEY_GOTO);
135<S0>if		return (DT_KEY_IF);
136<S0>import	return (DT_KEY_IMPORT);
137<S0>inline	return (DT_KEY_INLINE);
138<S0>int		return (DT_KEY_INT);
139<S0>long	return (DT_KEY_LONG);
140<S0>offsetof	return (DT_TOK_OFFSETOF);
141<S0>probe	return (DT_KEY_PROBE);
142<S0>provider	return (DT_KEY_PROVIDER);
143<S0>register	return (DT_KEY_REGISTER);
144<S0>restrict	return (DT_KEY_RESTRICT);
145<S0>return	return (DT_KEY_RETURN);
146<S0>self	return (DT_KEY_SELF);
147<S0>short	return (DT_KEY_SHORT);
148<S0>signed	return (DT_KEY_SIGNED);
149<S0>sizeof	return (DT_TOK_SIZEOF);
150<S0>static	return (DT_KEY_STATIC);
151<S0>string	return (DT_KEY_STRING);
152<S0>stringof	return (DT_TOK_STRINGOF);
153<S0>struct	return (DT_KEY_STRUCT);
154<S0>switch	return (DT_KEY_SWITCH);
155<S0>this	return (DT_KEY_THIS);
156<S0>translator	return (DT_KEY_XLATOR);
157<S0>typedef	return (DT_KEY_TYPEDEF);
158<S0>union	return (DT_KEY_UNION);
159<S0>unsigned	return (DT_KEY_UNSIGNED);
160<S0>void	return (DT_KEY_VOID);
161<S0>volatile	return (DT_KEY_VOLATILE);
162<S0>while	return (DT_KEY_WHILE);
163<S0>xlate	return (DT_TOK_XLATE);
164
165<S2>auto	{ yybegin(YYS_EXPR);	return (DT_KEY_AUTO); }
166<S2>char	{ yybegin(YYS_EXPR);	return (DT_KEY_CHAR); }
167<S2>const	{ yybegin(YYS_EXPR);	return (DT_KEY_CONST); }
168<S2>counter	{ yybegin(YYS_DEFINE);	return (DT_KEY_COUNTER); }
169<S2>double	{ yybegin(YYS_EXPR);	return (DT_KEY_DOUBLE); }
170<S2>enum	{ yybegin(YYS_EXPR);	return (DT_KEY_ENUM); }
171<S2>extern	{ yybegin(YYS_EXPR);	return (DT_KEY_EXTERN); }
172<S2>float	{ yybegin(YYS_EXPR);	return (DT_KEY_FLOAT); }
173<S2>import	{ yybegin(YYS_EXPR);	return (DT_KEY_IMPORT); }
174<S2>inline	{ yybegin(YYS_DEFINE);	return (DT_KEY_INLINE); }
175<S2>int		{ yybegin(YYS_EXPR);	return (DT_KEY_INT); }
176<S2>long	{ yybegin(YYS_EXPR);	return (DT_KEY_LONG); }
177<S2>provider	{ yybegin(YYS_DEFINE);	return (DT_KEY_PROVIDER); }
178<S2>register	{ yybegin(YYS_EXPR);	return (DT_KEY_REGISTER); }
179<S2>restrict	{ yybegin(YYS_EXPR);	return (DT_KEY_RESTRICT); }
180<S2>self	{ yybegin(YYS_EXPR);	return (DT_KEY_SELF); }
181<S2>short	{ yybegin(YYS_EXPR);	return (DT_KEY_SHORT); }
182<S2>signed	{ yybegin(YYS_EXPR);	return (DT_KEY_SIGNED); }
183<S2>static	{ yybegin(YYS_EXPR);	return (DT_KEY_STATIC); }
184<S2>string	{ yybegin(YYS_EXPR);	return (DT_KEY_STRING); }
185<S2>struct	{ yybegin(YYS_EXPR);	return (DT_KEY_STRUCT); }
186<S2>this	{ yybegin(YYS_EXPR);	return (DT_KEY_THIS); }
187<S2>translator	{ yybegin(YYS_DEFINE);	return (DT_KEY_XLATOR); }
188<S2>typedef	{ yybegin(YYS_EXPR);	return (DT_KEY_TYPEDEF); }
189<S2>union	{ yybegin(YYS_EXPR);	return (DT_KEY_UNION); }
190<S2>unsigned	{ yybegin(YYS_EXPR);	return (DT_KEY_UNSIGNED); }
191<S2>void	{ yybegin(YYS_EXPR);	return (DT_KEY_VOID); }
192<S2>volatile	{ yybegin(YYS_EXPR);	return (DT_KEY_VOLATILE); }
193
194<S0>"$$"[0-9]+	{
195			int i = atoi(yytext + 2);
196			char *v = "";
197
198			/*
199			 * A macro argument reference substitutes the text of
200			 * an argument in place of the current token.  When we
201			 * see $$<d> we fetch the saved string from pcb_sargv
202			 * (or use the default argument if the option has been
203			 * set and the argument hasn't been specified) and
204			 * return a token corresponding to this string.
205			 */
206			if (i < 0 || (i >= yypcb->pcb_sargc &&
207			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
208				xyerror(D_MACRO_UNDEF, "macro argument %s is "
209				    "not defined\n", yytext);
210			}
211
212			if (i < yypcb->pcb_sargc) {
213				v = yypcb->pcb_sargv[i]; /* get val from pcb */
214				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
215			}
216
217			if ((yylval.l_str = strdup(v)) == NULL)
218				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
219
220			(void) stresc2chr(yylval.l_str);
221			return (DT_TOK_STRING);
222		}
223
224<S0>"$"[0-9]+	{
225			int i = atoi(yytext + 1);
226			char *p, *v = "0";
227
228			/*
229			 * A macro argument reference substitutes the text of
230			 * one identifier or integer pattern for another.  When
231			 * we see $<d> we fetch the saved string from pcb_sargv
232			 * (or use the default argument if the option has been
233			 * set and the argument hasn't been specified) and
234			 * return a token corresponding to this string.
235			 */
236			if (i < 0 || (i >= yypcb->pcb_sargc &&
237			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
238				xyerror(D_MACRO_UNDEF, "macro argument %s is "
239				    "not defined\n", yytext);
240			}
241
242			if (i < yypcb->pcb_sargc) {
243				v = yypcb->pcb_sargv[i]; /* get val from pcb */
244				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
245			}
246
247			/*
248			 * If the macro text is not a valid integer or ident,
249			 * then we treat it as a string.  The string may be
250			 * optionally enclosed in quotes, which we strip.
251			 */
252			if (strbadidnum(v)) {
253				size_t len = strlen(v);
254
255				if (len != 1 && *v == '"' && v[len - 1] == '"')
256					yylval.l_str = strndup(v + 1, len - 2);
257				else
258					yylval.l_str = strndup(v, len);
259
260				if (yylval.l_str == NULL)
261					longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
262
263				(void) stresc2chr(yylval.l_str);
264				return (DT_TOK_STRING);
265			}
266
267			/*
268			 * If the macro text is not a string an begins with a
269			 * digit or a +/- sign, process it as an integer token.
270			 */
271			if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') {
272				if (isdigit(v[0]))
273					yyintprefix = 0;
274				else
275					yyintprefix = *v++;
276
277				errno = 0;
278				yylval.l_int = strtoull(v, &p, 0);
279				(void) strncpy(yyintsuffix, p,
280				    sizeof (yyintsuffix));
281				yyintdecimal = *v != '0';
282
283				if (errno == ERANGE) {
284					xyerror(D_MACRO_OFLOW, "macro argument"
285					    " %s constant %s results in integer"
286					    " overflow\n", yytext, v);
287				}
288
289				return (DT_TOK_INT);
290			}
291
292			return (id_or_type(v));
293		}
294
295<S0>"$$"{RGX_IDENT} {
296			dt_ident_t *idp = dt_idhash_lookup(
297			    yypcb->pcb_hdl->dt_macros, yytext + 2);
298
299			char s[16]; /* enough for UINT_MAX + \0 */
300
301			if (idp == NULL) {
302				xyerror(D_MACRO_UNDEF, "macro variable %s "
303				    "is not defined\n", yytext);
304			}
305
306			/*
307			 * For the moment, all current macro variables are of
308			 * type id_t (refer to dtrace_update() for details).
309			 */
310			(void) snprintf(s, sizeof (s), "%u", idp->di_id);
311			if ((yylval.l_str = strdup(s)) == NULL)
312				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
313
314			return (DT_TOK_STRING);
315		}
316
317<S0>"$"{RGX_IDENT} {
318			dt_ident_t *idp = dt_idhash_lookup(
319			    yypcb->pcb_hdl->dt_macros, yytext + 1);
320
321			if (idp == NULL) {
322				xyerror(D_MACRO_UNDEF, "macro variable %s "
323				    "is not defined\n", yytext);
324			}
325
326			/*
327			 * For the moment, all current macro variables are of
328			 * type id_t (refer to dtrace_update() for details).
329			 */
330			yylval.l_int = (intmax_t)(int)idp->di_id;
331			yyintprefix = 0;
332			yyintsuffix[0] = '\0';
333			yyintdecimal = 1;
334
335			return (DT_TOK_INT);
336		}
337
338<S0>{RGX_IDENT}	{
339			return (id_or_type(yytext));
340		}
341
342<S0>{RGX_AGG}	{
343			if ((yylval.l_str = strdup(yytext)) == NULL)
344				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
345			return (DT_TOK_AGG);
346		}
347
348<S0>"@"		{
349			if ((yylval.l_str = strdup("@_")) == NULL)
350				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
351			return (DT_TOK_AGG);
352		}
353
354<S0>{RGX_INT}	|
355<S2>{RGX_INT}	|
356<S3>{RGX_INT}	{
357			char *p;
358
359			errno = 0;
360			yylval.l_int = strtoull(yytext, &p, 0);
361			yyintprefix = 0;
362			(void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
363			yyintdecimal = yytext[0] != '0';
364
365			if (errno == ERANGE) {
366				xyerror(D_INT_OFLOW, "constant %s results in "
367				    "integer overflow\n", yytext);
368			}
369
370			if (*p != '\0' && strchr("uUlL", *p) == NULL) {
371				xyerror(D_INT_DIGIT, "constant %s contains "
372				    "invalid digit %c\n", yytext, *p);
373			}
374
375			if ((YYSTATE) != S3)
376				return (DT_TOK_INT);
377
378			yypragma = dt_node_link(yypragma,
379			    dt_node_int(yylval.l_int));
380		}
381
382<S0>{RGX_FP}	yyerror("floating-point constants are not permitted\n");
383
384<S0>\"{RGX_STR}$ |
385<S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal");
386
387<S0>\"{RGX_STR}\" |
388<S3>\"{RGX_STR}\" {
389			/*
390			 * Quoted string -- convert C escape sequences and
391			 * return the string as a token.
392			 */
393			yylval.l_str = strndup(yytext + 1, yyleng - 2);
394
395			if (yylval.l_str == NULL)
396				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
397
398			(void) stresc2chr(yylval.l_str);
399			if ((YYSTATE) != S3)
400				return (DT_TOK_STRING);
401
402			yypragma = dt_node_link(yypragma,
403			    dt_node_string(yylval.l_str));
404		}
405
406<S0>'{RGX_CHR}$	xyerror(D_CHR_NL, "newline encountered in character constant");
407
408<S0>'{RGX_CHR}'	{
409			char *s, *p, *q;
410			size_t nbytes;
411
412			/*
413			 * Character constant -- convert C escape sequences and
414			 * return the character as an integer immediate value.
415			 */
416			if (yyleng == 2)
417				xyerror(D_CHR_NULL, "empty character constant");
418
419			s = yytext + 1;
420			yytext[yyleng - 1] = '\0';
421			nbytes = stresc2chr(s);
422			yylval.l_int = 0;
423			yyintprefix = 0;
424			yyintsuffix[0] = '\0';
425			yyintdecimal = 1;
426
427			if (nbytes > sizeof (yylval.l_int)) {
428				xyerror(D_CHR_OFLOW, "character constant is "
429				    "too long");
430			}
431#if BYTE_ORDER == _LITTLE_ENDIAN
432			p = ((char *)&yylval.l_int) + nbytes - 1;
433			for (q = s; nbytes != 0; nbytes--)
434				*p-- = *q++;
435#else
436			bcopy(s, ((char *)&yylval.l_int) +
437			    sizeof (yylval.l_int) - nbytes, nbytes);
438#endif
439			return (DT_TOK_INT);
440		}
441
442<S0>"/*"	|
443<S2>"/*"	{
444			yypcb->pcb_cstate = (YYSTATE);
445			BEGIN(S1);
446		}
447
448<S0>{RGX_INTERP} |
449<S2>{RGX_INTERP} ;	/* discard any #! lines */
450
451<S0>{RGX_CTL}	|
452<S2>{RGX_CTL}	|
453<S4>{RGX_CTL}	{
454			assert(yypragma == NULL);
455			yypcb->pcb_cstate = (YYSTATE);
456			BEGIN(S3);
457		}
458
459<S4>.		;	/* discard */
460<S4>"\n"	;	/* discard */
461
462<S0>"/"		{
463			int c, tok;
464
465			/*
466			 * The use of "/" as the predicate delimiter and as the
467			 * integer division symbol requires special lookahead
468			 * to avoid a shift/reduce conflict in the D grammar.
469			 * We look ahead to the next non-whitespace character.
470			 * If we encounter EOF, ";", "{", or "/", then this "/"
471			 * closes the predicate and we return DT_TOK_EPRED.
472			 * If we encounter anything else, it's DT_TOK_DIV.
473			 */
474			while ((c = input()) != 0) {
475				if (strchr("\f\n\r\t\v ", c) == NULL)
476					break;
477			}
478
479			if (c == 0 || c == ';' || c == '{' || c == '/') {
480				if (yypcb->pcb_parens != 0) {
481					yyerror("closing ) expected in "
482					    "predicate before /\n");
483				}
484				if (yypcb->pcb_brackets != 0) {
485					yyerror("closing ] expected in "
486					    "predicate before /\n");
487				}
488				tok = DT_TOK_EPRED;
489			} else
490				tok = DT_TOK_DIV;
491
492			unput(c);
493			return (tok);
494		}
495
496<S0>"("		{
497			yypcb->pcb_parens++;
498			return (DT_TOK_LPAR);
499		}
500
501<S0>")"		{
502			if (--yypcb->pcb_parens < 0)
503				yyerror("extra ) in input stream\n");
504			return (DT_TOK_RPAR);
505		}
506
507<S0>"["		{
508			yypcb->pcb_brackets++;
509			return (DT_TOK_LBRAC);
510		}
511
512<S0>"]"		{
513			if (--yypcb->pcb_brackets < 0)
514				yyerror("extra ] in input stream\n");
515			return (DT_TOK_RBRAC);
516		}
517
518<S0>"{"		|
519<S2>"{"		{
520			yypcb->pcb_braces++;
521			return ('{');
522		}
523
524<S0>"}"		{
525			if (--yypcb->pcb_braces < 0)
526				yyerror("extra } in input stream\n");
527			return ('}');
528		}
529
530<S0>"|"		return (DT_TOK_BOR);
531<S0>"^"		return (DT_TOK_XOR);
532<S0>"&"		return (DT_TOK_BAND);
533<S0>"&&"	return (DT_TOK_LAND);
534<S0>"^^"	return (DT_TOK_LXOR);
535<S0>"||"	return (DT_TOK_LOR);
536<S0>"=="	return (DT_TOK_EQU);
537<S0>"!="	return (DT_TOK_NEQ);
538<S0>"<"		return (DT_TOK_LT);
539<S0>"<="	return (DT_TOK_LE);
540<S0>">"		return (DT_TOK_GT);
541<S0>">="	return (DT_TOK_GE);
542<S0>"<<"	return (DT_TOK_LSH);
543<S0>">>"	return (DT_TOK_RSH);
544<S0>"+"		return (DT_TOK_ADD);
545<S0>"-"		return (DT_TOK_SUB);
546<S0>"*"		return (DT_TOK_MUL);
547<S0>"%"		return (DT_TOK_MOD);
548<S0>"~"		return (DT_TOK_BNEG);
549<S0>"!"		return (DT_TOK_LNEG);
550<S0>"?"		return (DT_TOK_QUESTION);
551<S0>":"		return (DT_TOK_COLON);
552<S0>"."		return (DT_TOK_DOT);
553<S0>"->"	return (DT_TOK_PTR);
554<S0>"="		return (DT_TOK_ASGN);
555<S0>"+="	return (DT_TOK_ADD_EQ);
556<S0>"-="	return (DT_TOK_SUB_EQ);
557<S0>"*="	return (DT_TOK_MUL_EQ);
558<S0>"/="	return (DT_TOK_DIV_EQ);
559<S0>"%="	return (DT_TOK_MOD_EQ);
560<S0>"&="	return (DT_TOK_AND_EQ);
561<S0>"^="	return (DT_TOK_XOR_EQ);
562<S0>"|="	return (DT_TOK_OR_EQ);
563<S0>"<<="	return (DT_TOK_LSH_EQ);
564<S0>">>="	return (DT_TOK_RSH_EQ);
565<S0>"++"	return (DT_TOK_ADDADD);
566<S0>"--"	return (DT_TOK_SUBSUB);
567<S0>"..."	return (DT_TOK_ELLIPSIS);
568<S0>","		return (DT_TOK_COMMA);
569<S0>";"		return (';');
570<S0>{RGX_WS}	; /* discard */
571<S0>"\\"\n	; /* discard */
572<S0>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
573
574<S1>"/*"	yyerror("/* encountered inside a comment\n");
575<S1>"*/"	BEGIN(yypcb->pcb_cstate);
576<S1>.|\n	; /* discard */
577
578<S2>{RGX_PSPEC}	{
579			/*
580			 * S2 has an ambiguity because RGX_PSPEC includes '*'
581			 * as a glob character and '*' also can be DT_TOK_STAR.
582			 * Since lex always matches the longest token, this
583			 * rule can be matched by an input string like "int*",
584			 * which could begin a global variable declaration such
585			 * as "int*x;" or could begin a RGX_PSPEC with globbing
586			 * such as "int* { trace(timestamp); }".  If C_PSPEC is
587			 * not set, we must resolve the ambiguity in favor of
588			 * the type and perform lexer pushback if the fragment
589			 * before '*' or entire fragment matches a type name.
590			 * If C_PSPEC is set, we always return a PSPEC token.
591			 * If C_PSPEC is off, the user can avoid ambiguity by
592			 * including a ':' delimiter in the specifier, which
593			 * they should be doing anyway to specify the provider.
594			 */
595			if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) &&
596			    strchr(yytext, ':') == NULL) {
597
598				char *p = strchr(yytext, '*');
599				char *q = yytext + yyleng - 1;
600
601				if (p != NULL && p > yytext)
602					*p = '\0'; /* prune yytext */
603
604				if (dt_type_lookup(yytext, NULL) == 0) {
605					yylval.l_str = strdup(yytext);
606
607					if (yylval.l_str == NULL) {
608						longjmp(yypcb->pcb_jmpbuf,
609						    EDT_NOMEM);
610					}
611
612					if (p != NULL && p > yytext) {
613						for (*p = '*'; q >= p; q--)
614							unput(*q);
615					}
616
617					yybegin(YYS_EXPR);
618					return (DT_TOK_TNAME);
619				}
620
621				if (p != NULL && p > yytext)
622					*p = '*'; /* restore yytext */
623			}
624
625			if ((yylval.l_str = strdup(yytext)) == NULL)
626				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
627
628			return (DT_TOK_PSPEC);
629		}
630
631<S2>"/"		return (DT_TOK_DIV);
632<S2>","		return (DT_TOK_COMMA);
633
634<S2>{RGX_WS}	; /* discard */
635<S2>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
636
637<S3>\n		{
638			dt_pragma(yypragma);
639			yypragma = NULL;
640			BEGIN(yypcb->pcb_cstate);
641		}
642
643<S3>[\f\t\v ]+	; /* discard */
644
645<S3>[^\f\n\t\v "]+ {
646			dt_node_t *dnp;
647
648			if ((yylval.l_str = strdup(yytext)) == NULL)
649				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
650
651			/*
652			 * We want to call dt_node_ident() here, but we can't
653			 * because it will expand inlined identifiers, which we
654			 * don't want to do from #pragma context in order to
655			 * support pragmas that apply to the ident itself.  We
656			 * call dt_node_string() and then reset dn_op instead.
657			 */
658			dnp = dt_node_string(yylval.l_str);
659			dnp->dn_kind = DT_NODE_IDENT;
660			dnp->dn_op = DT_TOK_IDENT;
661			yypragma = dt_node_link(yypragma, dnp);
662		}
663
664<S3>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
665
666%%
667
668/*
669 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro.
670 * We use two main states for lexing because probe descriptions use a syntax
671 * that is incompatible with the normal D tokens (e.g. names can contain "-").
672 * yybegin also handles the job of switching between two lists of dt_nodes
673 * as we allocate persistent definitions, like inlines, and transient nodes
674 * that will be freed once we are done parsing the current program file.
675 */
676void
677yybegin(yystate_t state)
678{
679#ifdef	YYDEBUG
680	yydebug = _dtrace_debug;
681#endif
682	if (yypcb->pcb_yystate == state)
683		return; /* nothing to do if we're in the state already */
684
685	if (yypcb->pcb_yystate == YYS_DEFINE) {
686		yypcb->pcb_list = yypcb->pcb_hold;
687		yypcb->pcb_hold = NULL;
688	}
689
690	switch (state) {
691	case YYS_CLAUSE:
692		BEGIN(S2);
693		break;
694	case YYS_DEFINE:
695		assert(yypcb->pcb_hold == NULL);
696		yypcb->pcb_hold = yypcb->pcb_list;
697		yypcb->pcb_list = NULL;
698		/*FALLTHRU*/
699	case YYS_EXPR:
700		BEGIN(S0);
701		break;
702	case YYS_DONE:
703		break;
704	case YYS_CONTROL:
705		BEGIN(S4);
706		break;
707	default:
708		xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state);
709	}
710
711	yypcb->pcb_yystate = state;
712}
713
714void
715yyinit(dt_pcb_t *pcb)
716{
717	yypcb = pcb;
718	yylineno = 1;
719	yypragma = NULL;
720#if defined(sun)
721	yysptr = yysbuf;
722#endif
723}
724
725/*
726 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate
727 * token to the parser indicating either an identifier or a typedef name.
728 * User-defined global variables always take precedence over types, but we do
729 * use some heuristics because D programs can look at an ever-changing set of
730 * kernel types and also can implicitly instantiate variables by assignment,
731 * unlike in C.  The code here is ordered carefully as lookups are not cheap.
732 */
733static int
734id_or_type(const char *s)
735{
736	dtrace_hdl_t *dtp = yypcb->pcb_hdl;
737	dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
738	int c0, c1, ttok = DT_TOK_TNAME;
739	dt_ident_t *idp;
740
741	if ((s = yylval.l_str = strdup(s)) == NULL)
742		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
743
744	/*
745	 * If the lexeme is a global variable or likely identifier or *not* a
746	 * type_name, then it is an identifier token.
747	 */
748	if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL ||
749	    dt_idhash_lookup(yypcb->pcb_idents, s) != NULL ||
750	    dt_type_lookup(s, NULL) != 0)
751		return (DT_TOK_IDENT);
752
753	/*
754	 * If we're in the midst of parsing a declaration and a type_specifier
755	 * has already been shifted, then return DT_TOK_IDENT instead of TNAME.
756	 * This semantic is necessary to permit valid ISO C code such as:
757	 *
758	 * typedef int foo;
759	 * struct s { foo foo; };
760	 *
761	 * without causing shift/reduce conflicts in the direct_declarator part
762	 * of the grammar.  The result is that we must check for conflicting
763	 * redeclarations of the same identifier as part of dt_node_decl().
764	 */
765	if (ddp != NULL && ddp->dd_name != NULL)
766		return (DT_TOK_IDENT);
767
768	/*
769	 * If the lexeme is a type name and we are not in a program clause,
770	 * then always interpret it as a type and return DT_TOK_TNAME.
771	 */
772	if ((YYSTATE) != S0)
773		return (DT_TOK_TNAME);
774
775	/*
776	 * If the lexeme matches a type name but is in a program clause, then
777	 * it could be a type or it could be an undefined variable.  Peek at
778	 * the next token to decide.  If we see ++, --, [, or =, we know there
779	 * might be an assignment that is trying to create a global variable,
780	 * so we optimistically return DT_TOK_IDENT.  There is no harm in being
781	 * wrong: a type_name followed by ++, --, [, or = is a syntax error.
782	 */
783	while ((c0 = input()) != 0) {
784		if (strchr("\f\n\r\t\v ", c0) == NULL)
785			break;
786	}
787
788	switch (c0) {
789	case '+':
790	case '-':
791		if ((c1 = input()) == c0)
792			ttok = DT_TOK_IDENT;
793		unput(c1);
794		break;
795
796	case '=':
797		if ((c1 = input()) != c0)
798			ttok = DT_TOK_IDENT;
799		unput(c1);
800		break;
801	case '[':
802		ttok = DT_TOK_IDENT;
803		break;
804	}
805
806	if (ttok == DT_TOK_IDENT) {
807		idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0,
808		    0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);
809
810		if (idp == NULL)
811			longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
812	}
813
814	if (c0 != EOF)
815		unput(c0);
816	return (ttok);
817}
818
819#if defined(sun)
820static int
821input(void)
822{
823	int c;
824
825	if (yysptr > yysbuf)
826		c = *--yysptr;
827	else if (yypcb->pcb_fileptr != NULL)
828		c = fgetc(yypcb->pcb_fileptr);
829	else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen)
830		c = *yypcb->pcb_strptr++;
831	else
832		c = EOF;
833
834	if (c == '\n')
835		yylineno++;
836
837	if (c != EOF)
838		return (c);
839
840	if ((YYSTATE) == S1)
841		yyerror("end-of-file encountered before matching */\n");
842
843	if ((YYSTATE) == S3)
844		yyerror("end-of-file encountered before end of control line\n");
845
846	if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr))
847		longjmp(yypcb->pcb_jmpbuf, EDT_FIO);
848
849	return (0); /* EOF */
850}
851
852static void
853unput(int c)
854{
855	if (c == '\n')
856		yylineno--;
857
858	*yysptr++ = c;
859	yytchar = c;
860}
861#endif
862