1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * AVL - generic AVL tree implementation for kernel use
28 *
29 * A complete description of AVL trees can be found in many CS textbooks.
30 *
31 * Here is a very brief overview. An AVL tree is a binary search tree that is
32 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
33 * any given node, the left and right subtrees are allowed to differ in height
34 * by at most 1 level.
35 *
36 * This relaxation from a perfectly balanced binary tree allows doing
37 * insertion and deletion relatively efficiently. Searching the tree is
38 * still a fast operation, roughly O(log(N)).
39 *
40 * The key to insertion and deletion is a set of tree maniuplations called
41 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
42 *
43 * This implementation of AVL trees has the following peculiarities:
44 *
45 *	- The AVL specific data structures are physically embedded as fields
46 *	  in the "using" data structures.  To maintain generality the code
47 *	  must constantly translate between "avl_node_t *" and containing
48 *	  data structure "void *"s by adding/subracting the avl_offset.
49 *
50 *	- Since the AVL data is always embedded in other structures, there is
51 *	  no locking or memory allocation in the AVL routines. This must be
52 *	  provided for by the enclosing data structure's semantics. Typically,
53 *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
54 *	  exclusive write lock. Other operations require a read lock.
55 *
56 *      - The implementation uses iteration instead of explicit recursion,
57 *	  since it is intended to run on limited size kernel stacks. Since
58 *	  there is no recursion stack present to move "up" in the tree,
59 *	  there is an explicit "parent" link in the avl_node_t.
60 *
61 *      - The left/right children pointers of a node are in an array.
62 *	  In the code, variables (instead of constants) are used to represent
63 *	  left and right indices.  The implementation is written as if it only
64 *	  dealt with left handed manipulations.  By changing the value assigned
65 *	  to "left", the code also works for right handed trees.  The
66 *	  following variables/terms are frequently used:
67 *
68 *		int left;	// 0 when dealing with left children,
69 *				// 1 for dealing with right children
70 *
71 *		int left_heavy;	// -1 when left subtree is taller at some node,
72 *				// +1 when right subtree is taller
73 *
74 *		int right;	// will be the opposite of left (0 or 1)
75 *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
76 *
77 *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
78 *
79 *	  Though it is a little more confusing to read the code, the approach
80 *	  allows using half as much code (and hence cache footprint) for tree
81 *	  manipulations and eliminates many conditional branches.
82 *
83 *	- The avl_index_t is an opaque "cookie" used to find nodes at or
84 *	  adjacent to where a new value would be inserted in the tree. The value
85 *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
86 *	  pointer) is set to indicate if that the new node has a value greater
87 *	  than the value of the indicated "avl_node_t *".
88 */
89
90#include <sys/types.h>
91#include <sys/param.h>
92#include <sys/debug.h>
93#include <sys/avl.h>
94#include <sys/cmn_err.h>
95
96/*
97 * Small arrays to translate between balance (or diff) values and child indeces.
98 *
99 * Code that deals with binary tree data structures will randomly use
100 * left and right children when examining a tree.  C "if()" statements
101 * which evaluate randomly suffer from very poor hardware branch prediction.
102 * In this code we avoid some of the branch mispredictions by using the
103 * following translation arrays. They replace random branches with an
104 * additional memory reference. Since the translation arrays are both very
105 * small the data should remain efficiently in cache.
106 */
107static const int  avl_child2balance[2]	= {-1, 1};
108static const int  avl_balance2child[]	= {0, 0, 1};
109
110
111/*
112 * Walk from one node to the previous valued node (ie. an infix walk
113 * towards the left). At any given node we do one of 2 things:
114 *
115 * - If there is a left child, go to it, then to it's rightmost descendant.
116 *
117 * - otherwise we return thru parent nodes until we've come from a right child.
118 *
119 * Return Value:
120 * NULL - if at the end of the nodes
121 * otherwise next node
122 */
123void *
124avl_walk(avl_tree_t *tree, void	*oldnode, int left)
125{
126	size_t off = tree->avl_offset;
127	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
128	int right = 1 - left;
129	int was_child;
130
131
132	/*
133	 * nowhere to walk to if tree is empty
134	 */
135	if (node == NULL)
136		return (NULL);
137
138	/*
139	 * Visit the previous valued node. There are two possibilities:
140	 *
141	 * If this node has a left child, go down one left, then all
142	 * the way right.
143	 */
144	if (node->avl_child[left] != NULL) {
145		for (node = node->avl_child[left];
146		    node->avl_child[right] != NULL;
147		    node = node->avl_child[right])
148			;
149	/*
150	 * Otherwise, return thru left children as far as we can.
151	 */
152	} else {
153		for (;;) {
154			was_child = AVL_XCHILD(node);
155			node = AVL_XPARENT(node);
156			if (node == NULL)
157				return (NULL);
158			if (was_child == right)
159				break;
160		}
161	}
162
163	return (AVL_NODE2DATA(node, off));
164}
165
166/*
167 * Return the lowest valued node in a tree or NULL.
168 * (leftmost child from root of tree)
169 */
170void *
171avl_first(avl_tree_t *tree)
172{
173	avl_node_t *node;
174	avl_node_t *prev = NULL;
175	size_t off = tree->avl_offset;
176
177	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
178		prev = node;
179
180	if (prev != NULL)
181		return (AVL_NODE2DATA(prev, off));
182	return (NULL);
183}
184
185/*
186 * Return the highest valued node in a tree or NULL.
187 * (rightmost child from root of tree)
188 */
189void *
190avl_last(avl_tree_t *tree)
191{
192	avl_node_t *node;
193	avl_node_t *prev = NULL;
194	size_t off = tree->avl_offset;
195
196	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
197		prev = node;
198
199	if (prev != NULL)
200		return (AVL_NODE2DATA(prev, off));
201	return (NULL);
202}
203
204/*
205 * Access the node immediately before or after an insertion point.
206 *
207 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
208 *
209 * Return value:
210 *	NULL: no node in the given direction
211 *	"void *"  of the found tree node
212 */
213void *
214avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
215{
216	int child = AVL_INDEX2CHILD(where);
217	avl_node_t *node = AVL_INDEX2NODE(where);
218	void *data;
219	size_t off = tree->avl_offset;
220
221	if (node == NULL) {
222		ASSERT(tree->avl_root == NULL);
223		return (NULL);
224	}
225	data = AVL_NODE2DATA(node, off);
226	if (child != direction)
227		return (data);
228
229	return (avl_walk(tree, data, direction));
230}
231
232
233/*
234 * Search for the node which contains "value".  The algorithm is a
235 * simple binary tree search.
236 *
237 * return value:
238 *	NULL: the value is not in the AVL tree
239 *		*where (if not NULL)  is set to indicate the insertion point
240 *	"void *"  of the found tree node
241 */
242void *
243avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
244{
245	avl_node_t *node;
246	avl_node_t *prev = NULL;
247	int child = 0;
248	int diff;
249	size_t off = tree->avl_offset;
250
251	for (node = tree->avl_root; node != NULL;
252	    node = node->avl_child[child]) {
253
254		prev = node;
255
256		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
257		ASSERT(-1 <= diff && diff <= 1);
258		if (diff == 0) {
259#ifdef DEBUG
260			if (where != NULL)
261				*where = 0;
262#endif
263			return (AVL_NODE2DATA(node, off));
264		}
265		child = avl_balance2child[1 + diff];
266
267	}
268
269	if (where != NULL)
270		*where = AVL_MKINDEX(prev, child);
271
272	return (NULL);
273}
274
275
276/*
277 * Perform a rotation to restore balance at the subtree given by depth.
278 *
279 * This routine is used by both insertion and deletion. The return value
280 * indicates:
281 *	 0 : subtree did not change height
282 *	!0 : subtree was reduced in height
283 *
284 * The code is written as if handling left rotations, right rotations are
285 * symmetric and handled by swapping values of variables right/left[_heavy]
286 *
287 * On input balance is the "new" balance at "node". This value is either
288 * -2 or +2.
289 */
290static int
291avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
292{
293	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
294	int right = 1 - left;
295	int left_heavy = balance >> 1;
296	int right_heavy = -left_heavy;
297	avl_node_t *parent = AVL_XPARENT(node);
298	avl_node_t *child = node->avl_child[left];
299	avl_node_t *cright;
300	avl_node_t *gchild;
301	avl_node_t *gright;
302	avl_node_t *gleft;
303	int which_child = AVL_XCHILD(node);
304	int child_bal = AVL_XBALANCE(child);
305
306	/* BEGIN CSTYLED */
307	/*
308	 * case 1 : node is overly left heavy, the left child is balanced or
309	 * also left heavy. This requires the following rotation.
310	 *
311	 *                   (node bal:-2)
312	 *                    /           \
313	 *                   /             \
314	 *              (child bal:0 or -1)
315	 *              /    \
316	 *             /      \
317	 *                     cright
318	 *
319	 * becomes:
320	 *
321	 *              (child bal:1 or 0)
322	 *              /        \
323	 *             /          \
324	 *                        (node bal:-1 or 0)
325	 *                         /     \
326	 *                        /       \
327	 *                     cright
328	 *
329	 * we detect this situation by noting that child's balance is not
330	 * right_heavy.
331	 */
332	/* END CSTYLED */
333	if (child_bal != right_heavy) {
334
335		/*
336		 * compute new balance of nodes
337		 *
338		 * If child used to be left heavy (now balanced) we reduced
339		 * the height of this sub-tree -- used in "return...;" below
340		 */
341		child_bal += right_heavy; /* adjust towards right */
342
343		/*
344		 * move "cright" to be node's left child
345		 */
346		cright = child->avl_child[right];
347		node->avl_child[left] = cright;
348		if (cright != NULL) {
349			AVL_SETPARENT(cright, node);
350			AVL_SETCHILD(cright, left);
351		}
352
353		/*
354		 * move node to be child's right child
355		 */
356		child->avl_child[right] = node;
357		AVL_SETBALANCE(node, -child_bal);
358		AVL_SETCHILD(node, right);
359		AVL_SETPARENT(node, child);
360
361		/*
362		 * update the pointer into this subtree
363		 */
364		AVL_SETBALANCE(child, child_bal);
365		AVL_SETCHILD(child, which_child);
366		AVL_SETPARENT(child, parent);
367		if (parent != NULL)
368			parent->avl_child[which_child] = child;
369		else
370			tree->avl_root = child;
371
372		return (child_bal == 0);
373	}
374
375	/* BEGIN CSTYLED */
376	/*
377	 * case 2 : When node is left heavy, but child is right heavy we use
378	 * a different rotation.
379	 *
380	 *                   (node b:-2)
381	 *                    /   \
382	 *                   /     \
383	 *                  /       \
384	 *             (child b:+1)
385	 *              /     \
386	 *             /       \
387	 *                   (gchild b: != 0)
388	 *                     /  \
389	 *                    /    \
390	 *                 gleft   gright
391	 *
392	 * becomes:
393	 *
394	 *              (gchild b:0)
395	 *              /       \
396	 *             /         \
397	 *            /           \
398	 *        (child b:?)   (node b:?)
399	 *         /  \          /   \
400	 *        /    \        /     \
401	 *            gleft   gright
402	 *
403	 * computing the new balances is more complicated. As an example:
404	 *	 if gchild was right_heavy, then child is now left heavy
405	 *		else it is balanced
406	 */
407	/* END CSTYLED */
408	gchild = child->avl_child[right];
409	gleft = gchild->avl_child[left];
410	gright = gchild->avl_child[right];
411
412	/*
413	 * move gright to left child of node and
414	 *
415	 * move gleft to right child of node
416	 */
417	node->avl_child[left] = gright;
418	if (gright != NULL) {
419		AVL_SETPARENT(gright, node);
420		AVL_SETCHILD(gright, left);
421	}
422
423	child->avl_child[right] = gleft;
424	if (gleft != NULL) {
425		AVL_SETPARENT(gleft, child);
426		AVL_SETCHILD(gleft, right);
427	}
428
429	/*
430	 * move child to left child of gchild and
431	 *
432	 * move node to right child of gchild and
433	 *
434	 * fixup parent of all this to point to gchild
435	 */
436	balance = AVL_XBALANCE(gchild);
437	gchild->avl_child[left] = child;
438	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
439	AVL_SETPARENT(child, gchild);
440	AVL_SETCHILD(child, left);
441
442	gchild->avl_child[right] = node;
443	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
444	AVL_SETPARENT(node, gchild);
445	AVL_SETCHILD(node, right);
446
447	AVL_SETBALANCE(gchild, 0);
448	AVL_SETPARENT(gchild, parent);
449	AVL_SETCHILD(gchild, which_child);
450	if (parent != NULL)
451		parent->avl_child[which_child] = gchild;
452	else
453		tree->avl_root = gchild;
454
455	return (1);	/* the new tree is always shorter */
456}
457
458
459/*
460 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
461 *
462 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
463 * searches out to the leaf positions.  The avl_index_t indicates the node
464 * which will be the parent of the new node.
465 *
466 * After the node is inserted, a single rotation further up the tree may
467 * be necessary to maintain an acceptable AVL balance.
468 */
469void
470avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
471{
472	avl_node_t *node;
473	avl_node_t *parent = AVL_INDEX2NODE(where);
474	int old_balance;
475	int new_balance;
476	int which_child = AVL_INDEX2CHILD(where);
477	size_t off = tree->avl_offset;
478
479	ASSERT(tree);
480#ifdef _LP64
481	ASSERT(((uintptr_t)new_data & 0x7) == 0);
482#endif
483
484	node = AVL_DATA2NODE(new_data, off);
485
486	/*
487	 * First, add the node to the tree at the indicated position.
488	 */
489	++tree->avl_numnodes;
490
491	node->avl_child[0] = NULL;
492	node->avl_child[1] = NULL;
493
494	AVL_SETCHILD(node, which_child);
495	AVL_SETBALANCE(node, 0);
496	AVL_SETPARENT(node, parent);
497	if (parent != NULL) {
498		ASSERT(parent->avl_child[which_child] == NULL);
499		parent->avl_child[which_child] = node;
500	} else {
501		ASSERT(tree->avl_root == NULL);
502		tree->avl_root = node;
503	}
504	/*
505	 * Now, back up the tree modifying the balance of all nodes above the
506	 * insertion point. If we get to a highly unbalanced ancestor, we
507	 * need to do a rotation.  If we back out of the tree we are done.
508	 * If we brought any subtree into perfect balance (0), we are also done.
509	 */
510	for (;;) {
511		node = parent;
512		if (node == NULL)
513			return;
514
515		/*
516		 * Compute the new balance
517		 */
518		old_balance = AVL_XBALANCE(node);
519		new_balance = old_balance + avl_child2balance[which_child];
520
521		/*
522		 * If we introduced equal balance, then we are done immediately
523		 */
524		if (new_balance == 0) {
525			AVL_SETBALANCE(node, 0);
526			return;
527		}
528
529		/*
530		 * If both old and new are not zero we went
531		 * from -1 to -2 balance, do a rotation.
532		 */
533		if (old_balance != 0)
534			break;
535
536		AVL_SETBALANCE(node, new_balance);
537		parent = AVL_XPARENT(node);
538		which_child = AVL_XCHILD(node);
539	}
540
541	/*
542	 * perform a rotation to fix the tree and return
543	 */
544	(void) avl_rotation(tree, node, new_balance);
545}
546
547/*
548 * Insert "new_data" in "tree" in the given "direction" either after or
549 * before (AVL_AFTER, AVL_BEFORE) the data "here".
550 *
551 * Insertions can only be done at empty leaf points in the tree, therefore
552 * if the given child of the node is already present we move to either
553 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
554 * every other node in the tree is a leaf, this always works.
555 *
556 * To help developers using this interface, we assert that the new node
557 * is correctly ordered at every step of the way in DEBUG kernels.
558 */
559void
560avl_insert_here(
561	avl_tree_t *tree,
562	void *new_data,
563	void *here,
564	int direction)
565{
566	avl_node_t *node;
567	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
568#ifdef DEBUG
569	int diff;
570#endif
571
572	ASSERT(tree != NULL);
573	ASSERT(new_data != NULL);
574	ASSERT(here != NULL);
575	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
576
577	/*
578	 * If corresponding child of node is not NULL, go to the neighboring
579	 * node and reverse the insertion direction.
580	 */
581	node = AVL_DATA2NODE(here, tree->avl_offset);
582
583#ifdef DEBUG
584	diff = tree->avl_compar(new_data, here);
585	ASSERT(-1 <= diff && diff <= 1);
586	ASSERT(diff != 0);
587	ASSERT(diff > 0 ? child == 1 : child == 0);
588#endif
589
590	if (node->avl_child[child] != NULL) {
591		node = node->avl_child[child];
592		child = 1 - child;
593		while (node->avl_child[child] != NULL) {
594#ifdef DEBUG
595			diff = tree->avl_compar(new_data,
596			    AVL_NODE2DATA(node, tree->avl_offset));
597			ASSERT(-1 <= diff && diff <= 1);
598			ASSERT(diff != 0);
599			ASSERT(diff > 0 ? child == 1 : child == 0);
600#endif
601			node = node->avl_child[child];
602		}
603#ifdef DEBUG
604		diff = tree->avl_compar(new_data,
605		    AVL_NODE2DATA(node, tree->avl_offset));
606		ASSERT(-1 <= diff && diff <= 1);
607		ASSERT(diff != 0);
608		ASSERT(diff > 0 ? child == 1 : child == 0);
609#endif
610	}
611	ASSERT(node->avl_child[child] == NULL);
612
613	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
614}
615
616/*
617 * Add a new node to an AVL tree.
618 */
619void
620avl_add(avl_tree_t *tree, void *new_node)
621{
622	avl_index_t where;
623
624	/*
625	 * This is unfortunate.  We want to call panic() here, even for
626	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
627	 * in libc or else the rtld build process gets confused.  So, all we can
628	 * do in userland is resort to a normal ASSERT().
629	 */
630	if (avl_find(tree, new_node, &where) != NULL)
631#ifdef _KERNEL
632		panic("avl_find() succeeded inside avl_add()");
633#else
634		ASSERT(0);
635#endif
636	avl_insert(tree, new_node, where);
637}
638
639/*
640 * Delete a node from the AVL tree.  Deletion is similar to insertion, but
641 * with 2 complications.
642 *
643 * First, we may be deleting an interior node. Consider the following subtree:
644 *
645 *     d           c            c
646 *    / \         / \          / \
647 *   b   e       b   e        b   e
648 *  / \	        / \          /
649 * a   c       a            a
650 *
651 * When we are deleting node (d), we find and bring up an adjacent valued leaf
652 * node, say (c), to take the interior node's place. In the code this is
653 * handled by temporarily swapping (d) and (c) in the tree and then using
654 * common code to delete (d) from the leaf position.
655 *
656 * Secondly, an interior deletion from a deep tree may require more than one
657 * rotation to fix the balance. This is handled by moving up the tree through
658 * parents and applying rotations as needed. The return value from
659 * avl_rotation() is used to detect when a subtree did not change overall
660 * height due to a rotation.
661 */
662void
663avl_remove(avl_tree_t *tree, void *data)
664{
665	avl_node_t *delete;
666	avl_node_t *parent;
667	avl_node_t *node;
668	avl_node_t tmp;
669	int old_balance;
670	int new_balance;
671	int left;
672	int right;
673	int which_child;
674	size_t off = tree->avl_offset;
675
676	ASSERT(tree);
677
678	delete = AVL_DATA2NODE(data, off);
679
680	/*
681	 * Deletion is easiest with a node that has at most 1 child.
682	 * We swap a node with 2 children with a sequentially valued
683	 * neighbor node. That node will have at most 1 child. Note this
684	 * has no effect on the ordering of the remaining nodes.
685	 *
686	 * As an optimization, we choose the greater neighbor if the tree
687	 * is right heavy, otherwise the left neighbor. This reduces the
688	 * number of rotations needed.
689	 */
690	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
691
692		/*
693		 * choose node to swap from whichever side is taller
694		 */
695		old_balance = AVL_XBALANCE(delete);
696		left = avl_balance2child[old_balance + 1];
697		right = 1 - left;
698
699		/*
700		 * get to the previous value'd node
701		 * (down 1 left, as far as possible right)
702		 */
703		for (node = delete->avl_child[left];
704		    node->avl_child[right] != NULL;
705		    node = node->avl_child[right])
706			;
707
708		/*
709		 * create a temp placeholder for 'node'
710		 * move 'node' to delete's spot in the tree
711		 */
712		tmp = *node;
713
714		*node = *delete;
715		if (node->avl_child[left] == node)
716			node->avl_child[left] = &tmp;
717
718		parent = AVL_XPARENT(node);
719		if (parent != NULL)
720			parent->avl_child[AVL_XCHILD(node)] = node;
721		else
722			tree->avl_root = node;
723		AVL_SETPARENT(node->avl_child[left], node);
724		AVL_SETPARENT(node->avl_child[right], node);
725
726		/*
727		 * Put tmp where node used to be (just temporary).
728		 * It always has a parent and at most 1 child.
729		 */
730		delete = &tmp;
731		parent = AVL_XPARENT(delete);
732		parent->avl_child[AVL_XCHILD(delete)] = delete;
733		which_child = (delete->avl_child[1] != 0);
734		if (delete->avl_child[which_child] != NULL)
735			AVL_SETPARENT(delete->avl_child[which_child], delete);
736	}
737
738
739	/*
740	 * Here we know "delete" is at least partially a leaf node. It can
741	 * be easily removed from the tree.
742	 */
743	ASSERT(tree->avl_numnodes > 0);
744	--tree->avl_numnodes;
745	parent = AVL_XPARENT(delete);
746	which_child = AVL_XCHILD(delete);
747	if (delete->avl_child[0] != NULL)
748		node = delete->avl_child[0];
749	else
750		node = delete->avl_child[1];
751
752	/*
753	 * Connect parent directly to node (leaving out delete).
754	 */
755	if (node != NULL) {
756		AVL_SETPARENT(node, parent);
757		AVL_SETCHILD(node, which_child);
758	}
759	if (parent == NULL) {
760		tree->avl_root = node;
761		return;
762	}
763	parent->avl_child[which_child] = node;
764
765
766	/*
767	 * Since the subtree is now shorter, begin adjusting parent balances
768	 * and performing any needed rotations.
769	 */
770	do {
771
772		/*
773		 * Move up the tree and adjust the balance
774		 *
775		 * Capture the parent and which_child values for the next
776		 * iteration before any rotations occur.
777		 */
778		node = parent;
779		old_balance = AVL_XBALANCE(node);
780		new_balance = old_balance - avl_child2balance[which_child];
781		parent = AVL_XPARENT(node);
782		which_child = AVL_XCHILD(node);
783
784		/*
785		 * If a node was in perfect balance but isn't anymore then
786		 * we can stop, since the height didn't change above this point
787		 * due to a deletion.
788		 */
789		if (old_balance == 0) {
790			AVL_SETBALANCE(node, new_balance);
791			break;
792		}
793
794		/*
795		 * If the new balance is zero, we don't need to rotate
796		 * else
797		 * need a rotation to fix the balance.
798		 * If the rotation doesn't change the height
799		 * of the sub-tree we have finished adjusting.
800		 */
801		if (new_balance == 0)
802			AVL_SETBALANCE(node, new_balance);
803		else if (!avl_rotation(tree, node, new_balance))
804			break;
805	} while (parent != NULL);
806}
807
808#define	AVL_REINSERT(tree, obj)		\
809	avl_remove((tree), (obj));	\
810	avl_add((tree), (obj))
811
812boolean_t
813avl_update_lt(avl_tree_t *t, void *obj)
814{
815	void *neighbor;
816
817	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
818	    (t->avl_compar(obj, neighbor) <= 0));
819
820	neighbor = AVL_PREV(t, obj);
821	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
822		AVL_REINSERT(t, obj);
823		return (B_TRUE);
824	}
825
826	return (B_FALSE);
827}
828
829boolean_t
830avl_update_gt(avl_tree_t *t, void *obj)
831{
832	void *neighbor;
833
834	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
835	    (t->avl_compar(obj, neighbor) >= 0));
836
837	neighbor = AVL_NEXT(t, obj);
838	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
839		AVL_REINSERT(t, obj);
840		return (B_TRUE);
841	}
842
843	return (B_FALSE);
844}
845
846boolean_t
847avl_update(avl_tree_t *t, void *obj)
848{
849	void *neighbor;
850
851	neighbor = AVL_PREV(t, obj);
852	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
853		AVL_REINSERT(t, obj);
854		return (B_TRUE);
855	}
856
857	neighbor = AVL_NEXT(t, obj);
858	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
859		AVL_REINSERT(t, obj);
860		return (B_TRUE);
861	}
862
863	return (B_FALSE);
864}
865
866/*
867 * initialize a new AVL tree
868 */
869void
870avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
871    size_t size, size_t offset)
872{
873	ASSERT(tree);
874	ASSERT(compar);
875	ASSERT(size > 0);
876	ASSERT(size >= offset + sizeof (avl_node_t));
877#ifdef _LP64
878	ASSERT((offset & 0x7) == 0);
879#endif
880
881	tree->avl_compar = compar;
882	tree->avl_root = NULL;
883	tree->avl_numnodes = 0;
884	tree->avl_size = size;
885	tree->avl_offset = offset;
886}
887
888/*
889 * Delete a tree.
890 */
891/* ARGSUSED */
892void
893avl_destroy(avl_tree_t *tree)
894{
895	ASSERT(tree);
896	ASSERT(tree->avl_numnodes == 0);
897	ASSERT(tree->avl_root == NULL);
898}
899
900
901/*
902 * Return the number of nodes in an AVL tree.
903 */
904ulong_t
905avl_numnodes(avl_tree_t *tree)
906{
907	ASSERT(tree);
908	return (tree->avl_numnodes);
909}
910
911boolean_t
912avl_is_empty(avl_tree_t *tree)
913{
914	ASSERT(tree);
915	return (tree->avl_numnodes == 0);
916}
917
918#define	CHILDBIT	(1L)
919
920/*
921 * Post-order tree walk used to visit all tree nodes and destroy the tree
922 * in post order. This is used for destroying a tree w/o paying any cost
923 * for rebalancing it.
924 *
925 * example:
926 *
927 *	void *cookie = NULL;
928 *	my_data_t *node;
929 *
930 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
931 *		free(node);
932 *	avl_destroy(tree);
933 *
934 * The cookie is really an avl_node_t to the current node's parent and
935 * an indication of which child you looked at last.
936 *
937 * On input, a cookie value of CHILDBIT indicates the tree is done.
938 */
939void *
940avl_destroy_nodes(avl_tree_t *tree, void **cookie)
941{
942	avl_node_t	*node;
943	avl_node_t	*parent;
944	int		child;
945	void		*first;
946	size_t		off = tree->avl_offset;
947
948	/*
949	 * Initial calls go to the first node or it's right descendant.
950	 */
951	if (*cookie == NULL) {
952		first = avl_first(tree);
953
954		/*
955		 * deal with an empty tree
956		 */
957		if (first == NULL) {
958			*cookie = (void *)CHILDBIT;
959			return (NULL);
960		}
961
962		node = AVL_DATA2NODE(first, off);
963		parent = AVL_XPARENT(node);
964		goto check_right_side;
965	}
966
967	/*
968	 * If there is no parent to return to we are done.
969	 */
970	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
971	if (parent == NULL) {
972		if (tree->avl_root != NULL) {
973			ASSERT(tree->avl_numnodes == 1);
974			tree->avl_root = NULL;
975			tree->avl_numnodes = 0;
976		}
977		return (NULL);
978	}
979
980	/*
981	 * Remove the child pointer we just visited from the parent and tree.
982	 */
983	child = (uintptr_t)(*cookie) & CHILDBIT;
984	parent->avl_child[child] = NULL;
985	ASSERT(tree->avl_numnodes > 1);
986	--tree->avl_numnodes;
987
988	/*
989	 * If we just did a right child or there isn't one, go up to parent.
990	 */
991	if (child == 1 || parent->avl_child[1] == NULL) {
992		node = parent;
993		parent = AVL_XPARENT(parent);
994		goto done;
995	}
996
997	/*
998	 * Do parent's right child, then leftmost descendent.
999	 */
1000	node = parent->avl_child[1];
1001	while (node->avl_child[0] != NULL) {
1002		parent = node;
1003		node = node->avl_child[0];
1004	}
1005
1006	/*
1007	 * If here, we moved to a left child. It may have one
1008	 * child on the right (when balance == +1).
1009	 */
1010check_right_side:
1011	if (node->avl_child[1] != NULL) {
1012		ASSERT(AVL_XBALANCE(node) == 1);
1013		parent = node;
1014		node = node->avl_child[1];
1015		ASSERT(node->avl_child[0] == NULL &&
1016		    node->avl_child[1] == NULL);
1017	} else {
1018		ASSERT(AVL_XBALANCE(node) <= 0);
1019	}
1020
1021done:
1022	if (parent == NULL) {
1023		*cookie = (void *)CHILDBIT;
1024		ASSERT(node == tree->avl_root);
1025	} else {
1026		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1027	}
1028
1029	return (AVL_NODE2DATA(node, off));
1030}
1031