ztest.c revision 207672
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * The objective of this program is to provide a DMU/ZAP/SPA stress test
28 * that runs entirely in userland, is easy to use, and easy to extend.
29 *
30 * The overall design of the ztest program is as follows:
31 *
32 * (1) For each major functional area (e.g. adding vdevs to a pool,
33 *     creating and destroying datasets, reading and writing objects, etc)
34 *     we have a simple routine to test that functionality.  These
35 *     individual routines do not have to do anything "stressful".
36 *
37 * (2) We turn these simple functionality tests into a stress test by
38 *     running them all in parallel, with as many threads as desired,
39 *     and spread across as many datasets, objects, and vdevs as desired.
40 *
41 * (3) While all this is happening, we inject faults into the pool to
42 *     verify that self-healing data really works.
43 *
44 * (4) Every time we open a dataset, we change its checksum and compression
45 *     functions.  Thus even individual objects vary from block to block
46 *     in which checksum they use and whether they're compressed.
47 *
48 * (5) To verify that we never lose on-disk consistency after a crash,
49 *     we run the entire test in a child of the main process.
50 *     At random times, the child self-immolates with a SIGKILL.
51 *     This is the software equivalent of pulling the power cord.
52 *     The parent then runs the test again, using the existing
53 *     storage pool, as many times as desired.
54 *
55 * (6) To verify that we don't have future leaks or temporal incursions,
56 *     many of the functional tests record the transaction group number
57 *     as part of their data.  When reading old data, they verify that
58 *     the transaction group number is less than the current, open txg.
59 *     If you add a new test, please do this if applicable.
60 *
61 * When run with no arguments, ztest runs for about five minutes and
62 * produces no output if successful.  To get a little bit of information,
63 * specify -V.  To get more information, specify -VV, and so on.
64 *
65 * To turn this into an overnight stress test, use -T to specify run time.
66 *
67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68 * to increase the pool capacity, fanout, and overall stress level.
69 *
70 * The -N(okill) option will suppress kills, so each child runs to completion.
71 * This can be useful when you're trying to distinguish temporal incursions
72 * from plain old race conditions.
73 */
74
75#include <sys/zfs_context.h>
76#include <sys/spa.h>
77#include <sys/dmu.h>
78#include <sys/txg.h>
79#include <sys/zap.h>
80#include <sys/dmu_traverse.h>
81#include <sys/dmu_objset.h>
82#include <sys/poll.h>
83#include <sys/stat.h>
84#include <sys/time.h>
85#include <sys/wait.h>
86#include <sys/mman.h>
87#include <sys/resource.h>
88#include <sys/zio.h>
89#include <sys/zio_checksum.h>
90#include <sys/zio_compress.h>
91#include <sys/zil.h>
92#include <sys/vdev_impl.h>
93#include <sys/vdev_file.h>
94#include <sys/spa_impl.h>
95#include <sys/dsl_prop.h>
96#include <sys/refcount.h>
97#include <stdio.h>
98#include <stdio_ext.h>
99#include <stdlib.h>
100#include <unistd.h>
101#include <signal.h>
102#include <umem.h>
103#include <dlfcn.h>
104#include <ctype.h>
105#include <math.h>
106#include <errno.h>
107#include <sys/fs/zfs.h>
108
109static char cmdname[] = "ztest";
110static char *zopt_pool = cmdname;
111static char *progname;
112
113static uint64_t zopt_vdevs = 5;
114static uint64_t zopt_vdevtime;
115static int zopt_ashift = SPA_MINBLOCKSHIFT;
116static int zopt_mirrors = 2;
117static int zopt_raidz = 4;
118static int zopt_raidz_parity = 1;
119static size_t zopt_vdev_size = SPA_MINDEVSIZE;
120static int zopt_datasets = 7;
121static int zopt_threads = 23;
122static uint64_t zopt_passtime = 60;	/* 60 seconds */
123static uint64_t zopt_killrate = 70;	/* 70% kill rate */
124static int zopt_verbose = 0;
125static int zopt_init = 1;
126static char *zopt_dir = "/tmp";
127static uint64_t zopt_time = 300;	/* 5 minutes */
128static int zopt_maxfaults;
129
130typedef struct ztest_block_tag {
131	uint64_t	bt_objset;
132	uint64_t	bt_object;
133	uint64_t	bt_offset;
134	uint64_t	bt_txg;
135	uint64_t	bt_thread;
136	uint64_t	bt_seq;
137} ztest_block_tag_t;
138
139typedef struct ztest_args {
140	char		za_pool[MAXNAMELEN];
141	spa_t		*za_spa;
142	objset_t	*za_os;
143	zilog_t		*za_zilog;
144	thread_t	za_thread;
145	uint64_t	za_instance;
146	uint64_t	za_random;
147	uint64_t	za_diroff;
148	uint64_t	za_diroff_shared;
149	uint64_t	za_zil_seq;
150	hrtime_t	za_start;
151	hrtime_t	za_stop;
152	hrtime_t	za_kill;
153	traverse_handle_t *za_th;
154	/*
155	 * Thread-local variables can go here to aid debugging.
156	 */
157	ztest_block_tag_t za_rbt;
158	ztest_block_tag_t za_wbt;
159	dmu_object_info_t za_doi;
160	dmu_buf_t	*za_dbuf;
161} ztest_args_t;
162
163typedef void ztest_func_t(ztest_args_t *);
164
165/*
166 * Note: these aren't static because we want dladdr() to work.
167 */
168ztest_func_t ztest_dmu_read_write;
169ztest_func_t ztest_dmu_write_parallel;
170ztest_func_t ztest_dmu_object_alloc_free;
171ztest_func_t ztest_zap;
172ztest_func_t ztest_zap_parallel;
173ztest_func_t ztest_traverse;
174ztest_func_t ztest_dsl_prop_get_set;
175ztest_func_t ztest_dmu_objset_create_destroy;
176ztest_func_t ztest_dmu_snapshot_create_destroy;
177ztest_func_t ztest_spa_create_destroy;
178ztest_func_t ztest_fault_inject;
179ztest_func_t ztest_spa_rename;
180ztest_func_t ztest_vdev_attach_detach;
181ztest_func_t ztest_vdev_LUN_growth;
182ztest_func_t ztest_vdev_add_remove;
183ztest_func_t ztest_vdev_aux_add_remove;
184ztest_func_t ztest_scrub;
185
186typedef struct ztest_info {
187	ztest_func_t	*zi_func;	/* test function */
188	uint64_t	zi_iters;	/* iterations per execution */
189	uint64_t	*zi_interval;	/* execute every <interval> seconds */
190	uint64_t	zi_calls;	/* per-pass count */
191	uint64_t	zi_call_time;	/* per-pass time */
192	uint64_t	zi_call_total;	/* cumulative total */
193	uint64_t	zi_call_target;	/* target cumulative total */
194} ztest_info_t;
195
196uint64_t zopt_always = 0;		/* all the time */
197uint64_t zopt_often = 1;		/* every second */
198uint64_t zopt_sometimes = 10;		/* every 10 seconds */
199uint64_t zopt_rarely = 60;		/* every 60 seconds */
200
201ztest_info_t ztest_info[] = {
202	{ ztest_dmu_read_write,			1,	&zopt_always	},
203	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
204	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
205	{ ztest_zap,				30,	&zopt_always	},
206	{ ztest_zap_parallel,			100,	&zopt_always	},
207	{ ztest_traverse,			1,	&zopt_often	},
208	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
209	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
210	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
211	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
212	{ ztest_fault_inject,			1,	&zopt_sometimes	},
213	{ ztest_spa_rename,			1,	&zopt_rarely	},
214	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
215	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
216	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
217	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
218	{ ztest_scrub,				1,	&zopt_vdevtime	},
219};
220
221#define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
222
223#define	ZTEST_SYNC_LOCKS	16
224
225/*
226 * Stuff we need to share writably between parent and child.
227 */
228typedef struct ztest_shared {
229	mutex_t		zs_vdev_lock;
230	rwlock_t	zs_name_lock;
231	uint64_t	zs_vdev_primaries;
232	uint64_t	zs_vdev_aux;
233	uint64_t	zs_enospc_count;
234	hrtime_t	zs_start_time;
235	hrtime_t	zs_stop_time;
236	uint64_t	zs_alloc;
237	uint64_t	zs_space;
238	ztest_info_t	zs_info[ZTEST_FUNCS];
239	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
240	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
241} ztest_shared_t;
242
243static char ztest_dev_template[] = "%s/%s.%llua";
244static char ztest_aux_template[] = "%s/%s.%s.%llu";
245static ztest_shared_t *ztest_shared;
246
247static int ztest_random_fd;
248static int ztest_dump_core = 1;
249
250static boolean_t ztest_exiting;
251
252extern uint64_t metaslab_gang_bang;
253
254#define	ZTEST_DIROBJ		1
255#define	ZTEST_MICROZAP_OBJ	2
256#define	ZTEST_FATZAP_OBJ	3
257
258#define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
259#define	ZTEST_DIRSIZE		256
260
261static void usage(boolean_t) __NORETURN;
262
263/*
264 * These libumem hooks provide a reasonable set of defaults for the allocator's
265 * debugging facilities.
266 */
267const char *
268_umem_debug_init()
269{
270	return ("default,verbose"); /* $UMEM_DEBUG setting */
271}
272
273const char *
274_umem_logging_init(void)
275{
276	return ("fail,contents"); /* $UMEM_LOGGING setting */
277}
278
279#define	FATAL_MSG_SZ	1024
280
281char *fatal_msg;
282
283static void
284fatal(int do_perror, char *message, ...)
285{
286	va_list args;
287	int save_errno = errno;
288	char buf[FATAL_MSG_SZ];
289
290	(void) fflush(stdout);
291
292	va_start(args, message);
293	(void) sprintf(buf, "ztest: ");
294	/* LINTED */
295	(void) vsprintf(buf + strlen(buf), message, args);
296	va_end(args);
297	if (do_perror) {
298		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
299		    ": %s", strerror(save_errno));
300	}
301	(void) fprintf(stderr, "%s\n", buf);
302	fatal_msg = buf;			/* to ease debugging */
303	if (ztest_dump_core)
304		abort();
305	exit(3);
306}
307
308static int
309str2shift(const char *buf)
310{
311	const char *ends = "BKMGTPEZ";
312	int i;
313
314	if (buf[0] == '\0')
315		return (0);
316	for (i = 0; i < strlen(ends); i++) {
317		if (toupper(buf[0]) == ends[i])
318			break;
319	}
320	if (i == strlen(ends)) {
321		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
322		    buf);
323		usage(B_FALSE);
324	}
325	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
326		return (10*i);
327	}
328	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
329	usage(B_FALSE);
330	/* NOTREACHED */
331}
332
333static uint64_t
334nicenumtoull(const char *buf)
335{
336	char *end;
337	uint64_t val;
338
339	val = strtoull(buf, &end, 0);
340	if (end == buf) {
341		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
342		usage(B_FALSE);
343	} else if (end[0] == '.') {
344		double fval = strtod(buf, &end);
345		fval *= pow(2, str2shift(end));
346		if (fval > UINT64_MAX) {
347			(void) fprintf(stderr, "ztest: value too large: %s\n",
348			    buf);
349			usage(B_FALSE);
350		}
351		val = (uint64_t)fval;
352	} else {
353		int shift = str2shift(end);
354		if (shift >= 64 || (val << shift) >> shift != val) {
355			(void) fprintf(stderr, "ztest: value too large: %s\n",
356			    buf);
357			usage(B_FALSE);
358		}
359		val <<= shift;
360	}
361	return (val);
362}
363
364static void
365usage(boolean_t requested)
366{
367	char nice_vdev_size[10];
368	char nice_gang_bang[10];
369	FILE *fp = requested ? stdout : stderr;
370
371	nicenum(zopt_vdev_size, nice_vdev_size);
372	nicenum(metaslab_gang_bang, nice_gang_bang);
373
374	(void) fprintf(fp, "Usage: %s\n"
375	    "\t[-v vdevs (default: %llu)]\n"
376	    "\t[-s size_of_each_vdev (default: %s)]\n"
377	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
378	    "\t[-m mirror_copies (default: %d)]\n"
379	    "\t[-r raidz_disks (default: %d)]\n"
380	    "\t[-R raidz_parity (default: %d)]\n"
381	    "\t[-d datasets (default: %d)]\n"
382	    "\t[-t threads (default: %d)]\n"
383	    "\t[-g gang_block_threshold (default: %s)]\n"
384	    "\t[-i initialize pool i times (default: %d)]\n"
385	    "\t[-k kill percentage (default: %llu%%)]\n"
386	    "\t[-p pool_name (default: %s)]\n"
387	    "\t[-f file directory for vdev files (default: %s)]\n"
388	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
389	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
390	    "\t[-T time] total run time (default: %llu sec)\n"
391	    "\t[-P passtime] time per pass (default: %llu sec)\n"
392	    "\t[-h] (print help)\n"
393	    "",
394	    cmdname,
395	    (u_longlong_t)zopt_vdevs,			/* -v */
396	    nice_vdev_size,				/* -s */
397	    zopt_ashift,				/* -a */
398	    zopt_mirrors,				/* -m */
399	    zopt_raidz,					/* -r */
400	    zopt_raidz_parity,				/* -R */
401	    zopt_datasets,				/* -d */
402	    zopt_threads,				/* -t */
403	    nice_gang_bang,				/* -g */
404	    zopt_init,					/* -i */
405	    (u_longlong_t)zopt_killrate,		/* -k */
406	    zopt_pool,					/* -p */
407	    zopt_dir,					/* -f */
408	    (u_longlong_t)zopt_time,			/* -T */
409	    (u_longlong_t)zopt_passtime);		/* -P */
410	exit(requested ? 0 : 1);
411}
412
413static uint64_t
414ztest_random(uint64_t range)
415{
416	uint64_t r;
417
418	if (range == 0)
419		return (0);
420
421	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
422		fatal(1, "short read from /dev/urandom");
423
424	return (r % range);
425}
426
427static void
428ztest_record_enospc(char *s)
429{
430	dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>");
431	ztest_shared->zs_enospc_count++;
432}
433
434static void
435process_options(int argc, char **argv)
436{
437	int opt;
438	uint64_t value;
439
440	/* Remember program name. */
441	progname = argv[0];
442
443	/* By default, test gang blocks for blocks 32K and greater */
444	metaslab_gang_bang = 32 << 10;
445
446	while ((opt = getopt(argc, argv,
447	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
448		value = 0;
449		switch (opt) {
450		case 'v':
451		case 's':
452		case 'a':
453		case 'm':
454		case 'r':
455		case 'R':
456		case 'd':
457		case 't':
458		case 'g':
459		case 'i':
460		case 'k':
461		case 'T':
462		case 'P':
463			value = nicenumtoull(optarg);
464		}
465		switch (opt) {
466		case 'v':
467			zopt_vdevs = value;
468			break;
469		case 's':
470			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
471			break;
472		case 'a':
473			zopt_ashift = value;
474			break;
475		case 'm':
476			zopt_mirrors = value;
477			break;
478		case 'r':
479			zopt_raidz = MAX(1, value);
480			break;
481		case 'R':
482			zopt_raidz_parity = MIN(MAX(value, 1), 2);
483			break;
484		case 'd':
485			zopt_datasets = MAX(1, value);
486			break;
487		case 't':
488			zopt_threads = MAX(1, value);
489			break;
490		case 'g':
491			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
492			break;
493		case 'i':
494			zopt_init = value;
495			break;
496		case 'k':
497			zopt_killrate = value;
498			break;
499		case 'p':
500			zopt_pool = strdup(optarg);
501			break;
502		case 'f':
503			zopt_dir = strdup(optarg);
504			break;
505		case 'V':
506			zopt_verbose++;
507			break;
508		case 'E':
509			zopt_init = 0;
510			break;
511		case 'T':
512			zopt_time = value;
513			break;
514		case 'P':
515			zopt_passtime = MAX(1, value);
516			break;
517		case 'h':
518			usage(B_TRUE);
519			break;
520		case '?':
521		default:
522			usage(B_FALSE);
523			break;
524		}
525	}
526
527	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
528
529	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
530	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
531}
532
533static uint64_t
534ztest_get_ashift(void)
535{
536	if (zopt_ashift == 0)
537		return (SPA_MINBLOCKSHIFT + ztest_random(3));
538	return (zopt_ashift);
539}
540
541static nvlist_t *
542make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
543{
544	char pathbuf[MAXPATHLEN];
545	uint64_t vdev;
546	nvlist_t *file;
547
548	if (ashift == 0)
549		ashift = ztest_get_ashift();
550
551	if (path == NULL) {
552		path = pathbuf;
553
554		if (aux != NULL) {
555			vdev = ztest_shared->zs_vdev_aux;
556			(void) sprintf(path, ztest_aux_template,
557			    zopt_dir, zopt_pool, aux, vdev);
558		} else {
559			vdev = ztest_shared->zs_vdev_primaries++;
560			(void) sprintf(path, ztest_dev_template,
561			    zopt_dir, zopt_pool, vdev);
562		}
563	}
564
565	if (size != 0) {
566		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
567		if (fd == -1)
568			fatal(1, "can't open %s", path);
569		if (ftruncate(fd, size) != 0)
570			fatal(1, "can't ftruncate %s", path);
571		(void) close(fd);
572	}
573
574	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
575	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
576	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
577	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
578
579	return (file);
580}
581
582static nvlist_t *
583make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
584{
585	nvlist_t *raidz, **child;
586	int c;
587
588	if (r < 2)
589		return (make_vdev_file(path, aux, size, ashift));
590	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
591
592	for (c = 0; c < r; c++)
593		child[c] = make_vdev_file(path, aux, size, ashift);
594
595	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
596	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
597	    VDEV_TYPE_RAIDZ) == 0);
598	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
599	    zopt_raidz_parity) == 0);
600	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
601	    child, r) == 0);
602
603	for (c = 0; c < r; c++)
604		nvlist_free(child[c]);
605
606	umem_free(child, r * sizeof (nvlist_t *));
607
608	return (raidz);
609}
610
611static nvlist_t *
612make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
613	int r, int m)
614{
615	nvlist_t *mirror, **child;
616	int c;
617
618	if (m < 1)
619		return (make_vdev_raidz(path, aux, size, ashift, r));
620
621	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
622
623	for (c = 0; c < m; c++)
624		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
625
626	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
627	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
628	    VDEV_TYPE_MIRROR) == 0);
629	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
630	    child, m) == 0);
631
632	for (c = 0; c < m; c++)
633		nvlist_free(child[c]);
634
635	umem_free(child, m * sizeof (nvlist_t *));
636
637	return (mirror);
638}
639
640static nvlist_t *
641make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
642	int log, int r, int m, int t)
643{
644	nvlist_t *root, **child;
645	int c;
646
647	ASSERT(t > 0);
648
649	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
650
651	for (c = 0; c < t; c++) {
652		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
653		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
654		    log) == 0);
655	}
656
657	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
658	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
659	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
660	    child, t) == 0);
661
662	for (c = 0; c < t; c++)
663		nvlist_free(child[c]);
664
665	umem_free(child, t * sizeof (nvlist_t *));
666
667	return (root);
668}
669
670static void
671ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
672{
673	int bs = SPA_MINBLOCKSHIFT +
674	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
675	int ibs = DN_MIN_INDBLKSHIFT +
676	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
677	int error;
678
679	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
680	if (error) {
681		char osname[300];
682		dmu_objset_name(os, osname);
683		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
684		    osname, object, 1 << bs, ibs, error);
685	}
686}
687
688static uint8_t
689ztest_random_checksum(void)
690{
691	uint8_t checksum;
692
693	do {
694		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
695	} while (zio_checksum_table[checksum].ci_zbt);
696
697	if (checksum == ZIO_CHECKSUM_OFF)
698		checksum = ZIO_CHECKSUM_ON;
699
700	return (checksum);
701}
702
703static uint8_t
704ztest_random_compress(void)
705{
706	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
707}
708
709typedef struct ztest_replay {
710	objset_t	*zr_os;
711	uint64_t	zr_assign;
712} ztest_replay_t;
713
714static int
715ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap)
716{
717	objset_t *os = zr->zr_os;
718	dmu_tx_t *tx;
719	int error;
720
721	if (byteswap)
722		byteswap_uint64_array(lr, sizeof (*lr));
723
724	tx = dmu_tx_create(os);
725	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
726	error = dmu_tx_assign(tx, zr->zr_assign);
727	if (error) {
728		dmu_tx_abort(tx);
729		return (error);
730	}
731
732	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
733	    DMU_OT_NONE, 0, tx);
734	ASSERT3U(error, ==, 0);
735	dmu_tx_commit(tx);
736
737	if (zopt_verbose >= 5) {
738		char osname[MAXNAMELEN];
739		dmu_objset_name(os, osname);
740		(void) printf("replay create of %s object %llu"
741		    " in txg %llu = %d\n",
742		    osname, (u_longlong_t)lr->lr_doid,
743		    (u_longlong_t)zr->zr_assign, error);
744	}
745
746	return (error);
747}
748
749static int
750ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap)
751{
752	objset_t *os = zr->zr_os;
753	dmu_tx_t *tx;
754	int error;
755
756	if (byteswap)
757		byteswap_uint64_array(lr, sizeof (*lr));
758
759	tx = dmu_tx_create(os);
760	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
761	error = dmu_tx_assign(tx, zr->zr_assign);
762	if (error) {
763		dmu_tx_abort(tx);
764		return (error);
765	}
766
767	error = dmu_object_free(os, lr->lr_doid, tx);
768	dmu_tx_commit(tx);
769
770	return (error);
771}
772
773zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
774	NULL,			/* 0 no such transaction type */
775	ztest_replay_create,	/* TX_CREATE */
776	NULL,			/* TX_MKDIR */
777	NULL,			/* TX_MKXATTR */
778	NULL,			/* TX_SYMLINK */
779	ztest_replay_remove,	/* TX_REMOVE */
780	NULL,			/* TX_RMDIR */
781	NULL,			/* TX_LINK */
782	NULL,			/* TX_RENAME */
783	NULL,			/* TX_WRITE */
784	NULL,			/* TX_TRUNCATE */
785	NULL,			/* TX_SETATTR */
786	NULL,			/* TX_ACL */
787};
788
789/*
790 * Verify that we can't destroy an active pool, create an existing pool,
791 * or create a pool with a bad vdev spec.
792 */
793void
794ztest_spa_create_destroy(ztest_args_t *za)
795{
796	int error;
797	spa_t *spa;
798	nvlist_t *nvroot;
799
800	/*
801	 * Attempt to create using a bad file.
802	 */
803	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
804	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
805	nvlist_free(nvroot);
806	if (error != ENOENT)
807		fatal(0, "spa_create(bad_file) = %d", error);
808
809	/*
810	 * Attempt to create using a bad mirror.
811	 */
812	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
813	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
814	nvlist_free(nvroot);
815	if (error != ENOENT)
816		fatal(0, "spa_create(bad_mirror) = %d", error);
817
818	/*
819	 * Attempt to create an existing pool.  It shouldn't matter
820	 * what's in the nvroot; we should fail with EEXIST.
821	 */
822	(void) rw_rdlock(&ztest_shared->zs_name_lock);
823	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
824	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
825	nvlist_free(nvroot);
826	if (error != EEXIST)
827		fatal(0, "spa_create(whatever) = %d", error);
828
829	error = spa_open(za->za_pool, &spa, FTAG);
830	if (error)
831		fatal(0, "spa_open() = %d", error);
832
833	error = spa_destroy(za->za_pool);
834	if (error != EBUSY)
835		fatal(0, "spa_destroy() = %d", error);
836
837	spa_close(spa, FTAG);
838	(void) rw_unlock(&ztest_shared->zs_name_lock);
839}
840
841static vdev_t *
842vdev_lookup_by_path(vdev_t *vd, const char *path)
843{
844	vdev_t *mvd;
845
846	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
847		return (vd);
848
849	for (int c = 0; c < vd->vdev_children; c++)
850		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
851		    NULL)
852			return (mvd);
853
854	return (NULL);
855}
856
857/*
858 * Verify that vdev_add() works as expected.
859 */
860void
861ztest_vdev_add_remove(ztest_args_t *za)
862{
863	spa_t *spa = za->za_spa;
864	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
865	nvlist_t *nvroot;
866	int error;
867
868	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
869
870	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
871
872	ztest_shared->zs_vdev_primaries =
873	    spa->spa_root_vdev->vdev_children * leaves;
874
875	spa_config_exit(spa, SCL_VDEV, FTAG);
876
877	/*
878	 * Make 1/4 of the devices be log devices.
879	 */
880	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
881	    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
882
883	error = spa_vdev_add(spa, nvroot);
884	nvlist_free(nvroot);
885
886	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
887
888	if (error == ENOSPC)
889		ztest_record_enospc("spa_vdev_add");
890	else if (error != 0)
891		fatal(0, "spa_vdev_add() = %d", error);
892}
893
894/*
895 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
896 */
897void
898ztest_vdev_aux_add_remove(ztest_args_t *za)
899{
900	spa_t *spa = za->za_spa;
901	vdev_t *rvd = spa->spa_root_vdev;
902	spa_aux_vdev_t *sav;
903	char *aux;
904	uint64_t guid = 0;
905	int error;
906
907	if (ztest_random(2) == 0) {
908		sav = &spa->spa_spares;
909		aux = ZPOOL_CONFIG_SPARES;
910	} else {
911		sav = &spa->spa_l2cache;
912		aux = ZPOOL_CONFIG_L2CACHE;
913	}
914
915	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
916
917	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
918
919	if (sav->sav_count != 0 && ztest_random(4) == 0) {
920		/*
921		 * Pick a random device to remove.
922		 */
923		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
924	} else {
925		/*
926		 * Find an unused device we can add.
927		 */
928		ztest_shared->zs_vdev_aux = 0;
929		for (;;) {
930			char path[MAXPATHLEN];
931			int c;
932			(void) sprintf(path, ztest_aux_template, zopt_dir,
933			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
934			for (c = 0; c < sav->sav_count; c++)
935				if (strcmp(sav->sav_vdevs[c]->vdev_path,
936				    path) == 0)
937					break;
938			if (c == sav->sav_count &&
939			    vdev_lookup_by_path(rvd, path) == NULL)
940				break;
941			ztest_shared->zs_vdev_aux++;
942		}
943	}
944
945	spa_config_exit(spa, SCL_VDEV, FTAG);
946
947	if (guid == 0) {
948		/*
949		 * Add a new device.
950		 */
951		nvlist_t *nvroot = make_vdev_root(NULL, aux,
952		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
953		error = spa_vdev_add(spa, nvroot);
954		if (error != 0)
955			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
956		nvlist_free(nvroot);
957	} else {
958		/*
959		 * Remove an existing device.  Sometimes, dirty its
960		 * vdev state first to make sure we handle removal
961		 * of devices that have pending state changes.
962		 */
963		if (ztest_random(2) == 0)
964			(void) vdev_online(spa, guid, B_FALSE, NULL);
965
966		error = spa_vdev_remove(spa, guid, B_FALSE);
967		if (error != 0 && error != EBUSY)
968			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
969	}
970
971	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
972}
973
974/*
975 * Verify that we can attach and detach devices.
976 */
977void
978ztest_vdev_attach_detach(ztest_args_t *za)
979{
980	spa_t *spa = za->za_spa;
981	spa_aux_vdev_t *sav = &spa->spa_spares;
982	vdev_t *rvd = spa->spa_root_vdev;
983	vdev_t *oldvd, *newvd, *pvd;
984	nvlist_t *root;
985	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
986	uint64_t leaf, top;
987	uint64_t ashift = ztest_get_ashift();
988	uint64_t oldguid;
989	size_t oldsize, newsize;
990	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
991	int replacing;
992	int oldvd_has_siblings = B_FALSE;
993	int newvd_is_spare = B_FALSE;
994	int oldvd_is_log;
995	int error, expected_error;
996
997	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
998
999	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1000
1001	/*
1002	 * Decide whether to do an attach or a replace.
1003	 */
1004	replacing = ztest_random(2);
1005
1006	/*
1007	 * Pick a random top-level vdev.
1008	 */
1009	top = ztest_random(rvd->vdev_children);
1010
1011	/*
1012	 * Pick a random leaf within it.
1013	 */
1014	leaf = ztest_random(leaves);
1015
1016	/*
1017	 * Locate this vdev.
1018	 */
1019	oldvd = rvd->vdev_child[top];
1020	if (zopt_mirrors >= 1)
1021		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1022	if (zopt_raidz > 1)
1023		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1024
1025	/*
1026	 * If we're already doing an attach or replace, oldvd may be a
1027	 * mirror vdev -- in which case, pick a random child.
1028	 */
1029	while (oldvd->vdev_children != 0) {
1030		oldvd_has_siblings = B_TRUE;
1031		ASSERT(oldvd->vdev_children == 2);
1032		oldvd = oldvd->vdev_child[ztest_random(2)];
1033	}
1034
1035	oldguid = oldvd->vdev_guid;
1036	oldsize = vdev_get_rsize(oldvd);
1037	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1038	(void) strcpy(oldpath, oldvd->vdev_path);
1039	pvd = oldvd->vdev_parent;
1040
1041	/*
1042	 * If oldvd has siblings, then half of the time, detach it.
1043	 */
1044	if (oldvd_has_siblings && ztest_random(2) == 0) {
1045		spa_config_exit(spa, SCL_VDEV, FTAG);
1046		error = spa_vdev_detach(spa, oldguid, B_FALSE);
1047		if (error != 0 && error != ENODEV && error != EBUSY)
1048			fatal(0, "detach (%s) returned %d",
1049			    oldpath, error);
1050		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1051		return;
1052	}
1053
1054	/*
1055	 * For the new vdev, choose with equal probability between the two
1056	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1057	 */
1058	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1059		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1060		newvd_is_spare = B_TRUE;
1061		(void) strcpy(newpath, newvd->vdev_path);
1062	} else {
1063		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1064		    zopt_dir, zopt_pool, top * leaves + leaf);
1065		if (ztest_random(2) == 0)
1066			newpath[strlen(newpath) - 1] = 'b';
1067		newvd = vdev_lookup_by_path(rvd, newpath);
1068	}
1069
1070	if (newvd) {
1071		newsize = vdev_get_rsize(newvd);
1072	} else {
1073		/*
1074		 * Make newsize a little bigger or smaller than oldsize.
1075		 * If it's smaller, the attach should fail.
1076		 * If it's larger, and we're doing a replace,
1077		 * we should get dynamic LUN growth when we're done.
1078		 */
1079		newsize = 10 * oldsize / (9 + ztest_random(3));
1080	}
1081
1082	/*
1083	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1084	 * unless it's a replace; in that case any non-replacing parent is OK.
1085	 *
1086	 * If newvd is already part of the pool, it should fail with EBUSY.
1087	 *
1088	 * If newvd is too small, it should fail with EOVERFLOW.
1089	 */
1090	if (pvd->vdev_ops != &vdev_mirror_ops &&
1091	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1092	    pvd->vdev_ops == &vdev_replacing_ops ||
1093	    pvd->vdev_ops == &vdev_spare_ops))
1094		expected_error = ENOTSUP;
1095	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1096		expected_error = ENOTSUP;
1097	else if (newvd == oldvd)
1098		expected_error = replacing ? 0 : EBUSY;
1099	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1100		expected_error = EBUSY;
1101	else if (newsize < oldsize)
1102		expected_error = EOVERFLOW;
1103	else if (ashift > oldvd->vdev_top->vdev_ashift)
1104		expected_error = EDOM;
1105	else
1106		expected_error = 0;
1107
1108	spa_config_exit(spa, SCL_VDEV, FTAG);
1109
1110	/*
1111	 * Build the nvlist describing newpath.
1112	 */
1113	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1114	    ashift, 0, 0, 0, 1);
1115
1116	error = spa_vdev_attach(spa, oldguid, root, replacing);
1117
1118	nvlist_free(root);
1119
1120	/*
1121	 * If our parent was the replacing vdev, but the replace completed,
1122	 * then instead of failing with ENOTSUP we may either succeed,
1123	 * fail with ENODEV, or fail with EOVERFLOW.
1124	 */
1125	if (expected_error == ENOTSUP &&
1126	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1127		expected_error = error;
1128
1129	/*
1130	 * If someone grew the LUN, the replacement may be too small.
1131	 */
1132	if (error == EOVERFLOW || error == EBUSY)
1133		expected_error = error;
1134
1135	/* XXX workaround 6690467 */
1136	if (error != expected_error && expected_error != EBUSY) {
1137		fatal(0, "attach (%s %llu, %s %llu, %d) "
1138		    "returned %d, expected %d",
1139		    oldpath, (longlong_t)oldsize, newpath,
1140		    (longlong_t)newsize, replacing, error, expected_error);
1141	}
1142
1143	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1144}
1145
1146/*
1147 * Verify that dynamic LUN growth works as expected.
1148 */
1149/* ARGSUSED */
1150void
1151ztest_vdev_LUN_growth(ztest_args_t *za)
1152{
1153	spa_t *spa = za->za_spa;
1154	char dev_name[MAXPATHLEN];
1155	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1156	uint64_t vdev;
1157	size_t fsize;
1158	int fd;
1159
1160	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1161
1162	/*
1163	 * Pick a random leaf vdev.
1164	 */
1165	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1166	vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves);
1167	spa_config_exit(spa, SCL_VDEV, FTAG);
1168
1169	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
1170
1171	if ((fd = open(dev_name, O_RDWR)) != -1) {
1172		/*
1173		 * Determine the size.
1174		 */
1175		fsize = lseek(fd, 0, SEEK_END);
1176
1177		/*
1178		 * If it's less than 2x the original size, grow by around 3%.
1179		 */
1180		if (fsize < 2 * zopt_vdev_size) {
1181			size_t newsize = fsize + ztest_random(fsize / 32);
1182			(void) ftruncate(fd, newsize);
1183			if (zopt_verbose >= 6) {
1184				(void) printf("%s grew from %lu to %lu bytes\n",
1185				    dev_name, (ulong_t)fsize, (ulong_t)newsize);
1186			}
1187		}
1188		(void) close(fd);
1189	}
1190
1191	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1192}
1193
1194/* ARGSUSED */
1195static void
1196ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1197{
1198	/*
1199	 * Create the directory object.
1200	 */
1201	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1202	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1203	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1204
1205	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1206	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1207
1208	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1209	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1210}
1211
1212static int
1213ztest_destroy_cb(char *name, void *arg)
1214{
1215	ztest_args_t *za = arg;
1216	objset_t *os;
1217	dmu_object_info_t *doi = &za->za_doi;
1218	int error;
1219
1220	/*
1221	 * Verify that the dataset contains a directory object.
1222	 */
1223	error = dmu_objset_open(name, DMU_OST_OTHER,
1224	    DS_MODE_USER | DS_MODE_READONLY, &os);
1225	ASSERT3U(error, ==, 0);
1226	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1227	if (error != ENOENT) {
1228		/* We could have crashed in the middle of destroying it */
1229		ASSERT3U(error, ==, 0);
1230		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1231		ASSERT3S(doi->doi_physical_blks, >=, 0);
1232	}
1233	dmu_objset_close(os);
1234
1235	/*
1236	 * Destroy the dataset.
1237	 */
1238	error = dmu_objset_destroy(name);
1239	if (error) {
1240		(void) dmu_objset_open(name, DMU_OST_OTHER,
1241		    DS_MODE_USER | DS_MODE_READONLY, &os);
1242		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error);
1243	}
1244	return (0);
1245}
1246
1247/*
1248 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1249 */
1250static uint64_t
1251ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1252{
1253	itx_t *itx;
1254	lr_create_t *lr;
1255	size_t namesize;
1256	char name[24];
1257
1258	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1259	namesize = strlen(name) + 1;
1260
1261	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1262	    ztest_random(ZIL_MAX_BLKSZ));
1263	lr = (lr_create_t *)&itx->itx_lr;
1264	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1265	lr->lr_doid = object;
1266	lr->lr_foid = 0;
1267	lr->lr_mode = mode;
1268	lr->lr_uid = 0;
1269	lr->lr_gid = 0;
1270	lr->lr_gen = dmu_tx_get_txg(tx);
1271	lr->lr_crtime[0] = time(NULL);
1272	lr->lr_crtime[1] = 0;
1273	lr->lr_rdev = 0;
1274	bcopy(name, (char *)(lr + 1), namesize);
1275
1276	return (zil_itx_assign(zilog, itx, tx));
1277}
1278
1279void
1280ztest_dmu_objset_create_destroy(ztest_args_t *za)
1281{
1282	int error;
1283	objset_t *os, *os2;
1284	char name[100];
1285	int basemode, expected_error;
1286	zilog_t *zilog;
1287	uint64_t seq;
1288	uint64_t objects;
1289	ztest_replay_t zr;
1290
1291	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1292	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1293	    (u_longlong_t)za->za_instance);
1294
1295	basemode = DS_MODE_TYPE(za->za_instance);
1296	if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER)
1297		basemode = DS_MODE_USER;
1298
1299	/*
1300	 * If this dataset exists from a previous run, process its replay log
1301	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1302	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1303	 */
1304	if (ztest_random(2) == 0 &&
1305	    dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) {
1306		zr.zr_os = os;
1307		zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL);
1308		dmu_objset_close(os);
1309	}
1310
1311	/*
1312	 * There may be an old instance of the dataset we're about to
1313	 * create lying around from a previous run.  If so, destroy it
1314	 * and all of its snapshots.
1315	 */
1316	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1317	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1318
1319	/*
1320	 * Verify that the destroyed dataset is no longer in the namespace.
1321	 */
1322	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1323	if (error != ENOENT)
1324		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1325		    name, os);
1326
1327	/*
1328	 * Verify that we can create a new dataset.
1329	 */
1330	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
1331	    ztest_create_cb, NULL);
1332	if (error) {
1333		if (error == ENOSPC) {
1334			ztest_record_enospc("dmu_objset_create");
1335			(void) rw_unlock(&ztest_shared->zs_name_lock);
1336			return;
1337		}
1338		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1339	}
1340
1341	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1342	if (error) {
1343		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1344	}
1345
1346	/*
1347	 * Open the intent log for it.
1348	 */
1349	zilog = zil_open(os, NULL);
1350
1351	/*
1352	 * Put a random number of objects in there.
1353	 */
1354	objects = ztest_random(20);
1355	seq = 0;
1356	while (objects-- != 0) {
1357		uint64_t object;
1358		dmu_tx_t *tx = dmu_tx_create(os);
1359		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1360		error = dmu_tx_assign(tx, TXG_WAIT);
1361		if (error) {
1362			dmu_tx_abort(tx);
1363		} else {
1364			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1365			    DMU_OT_NONE, 0, tx);
1366			ztest_set_random_blocksize(os, object, tx);
1367			seq = ztest_log_create(zilog, tx, object,
1368			    DMU_OT_UINT64_OTHER);
1369			dmu_write(os, object, 0, sizeof (name), name, tx);
1370			dmu_tx_commit(tx);
1371		}
1372		if (ztest_random(5) == 0) {
1373			zil_commit(zilog, seq, object);
1374		}
1375		if (ztest_random(100) == 0) {
1376			error = zil_suspend(zilog);
1377			if (error == 0) {
1378				zil_resume(zilog);
1379			}
1380		}
1381	}
1382
1383	/*
1384	 * Verify that we cannot create an existing dataset.
1385	 */
1386	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL);
1387	if (error != EEXIST)
1388		fatal(0, "created existing dataset, error = %d", error);
1389
1390	/*
1391	 * Verify that multiple dataset holds are allowed, but only when
1392	 * the new access mode is compatible with the base mode.
1393	 */
1394	if (basemode == DS_MODE_OWNER) {
1395		error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER,
1396		    &os2);
1397		if (error)
1398			fatal(0, "dmu_objset_open('%s') = %d", name, error);
1399		else
1400			dmu_objset_close(os2);
1401	}
1402	error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2);
1403	expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0;
1404	if (error != expected_error)
1405		fatal(0, "dmu_objset_open('%s') = %d, expected %d",
1406		    name, error, expected_error);
1407	if (error == 0)
1408		dmu_objset_close(os2);
1409
1410	zil_close(zilog);
1411	dmu_objset_close(os);
1412
1413	error = dmu_objset_destroy(name);
1414	if (error)
1415		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1416
1417	(void) rw_unlock(&ztest_shared->zs_name_lock);
1418}
1419
1420/*
1421 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1422 */
1423void
1424ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1425{
1426	int error;
1427	objset_t *os = za->za_os;
1428	char snapname[100];
1429	char osname[MAXNAMELEN];
1430
1431	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1432	dmu_objset_name(os, osname);
1433	(void) snprintf(snapname, 100, "%s@%llu", osname,
1434	    (u_longlong_t)za->za_instance);
1435
1436	error = dmu_objset_destroy(snapname);
1437	if (error != 0 && error != ENOENT)
1438		fatal(0, "dmu_objset_destroy() = %d", error);
1439	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE);
1440	if (error == ENOSPC)
1441		ztest_record_enospc("dmu_take_snapshot");
1442	else if (error != 0 && error != EEXIST)
1443		fatal(0, "dmu_take_snapshot() = %d", error);
1444	(void) rw_unlock(&ztest_shared->zs_name_lock);
1445}
1446
1447#define	ZTEST_TRAVERSE_BLOCKS	1000
1448
1449static int
1450ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg)
1451{
1452	ztest_args_t *za = arg;
1453	zbookmark_t *zb = &bc->bc_bookmark;
1454	blkptr_t *bp = &bc->bc_blkptr;
1455	dnode_phys_t *dnp = bc->bc_dnode;
1456	traverse_handle_t *th = za->za_th;
1457	uint64_t size = BP_GET_LSIZE(bp);
1458
1459	/*
1460	 * Level -1 indicates the objset_phys_t or something in its intent log.
1461	 */
1462	if (zb->zb_level == -1) {
1463		if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1464			ASSERT3U(zb->zb_object, ==, 0);
1465			ASSERT3U(zb->zb_blkid, ==, 0);
1466			ASSERT3U(size, ==, sizeof (objset_phys_t));
1467			za->za_zil_seq = 0;
1468		} else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
1469			ASSERT3U(zb->zb_object, ==, 0);
1470			ASSERT3U(zb->zb_blkid, >, za->za_zil_seq);
1471			za->za_zil_seq = zb->zb_blkid;
1472		} else {
1473			ASSERT3U(zb->zb_object, !=, 0);	/* lr_write_t */
1474		}
1475
1476		return (0);
1477	}
1478
1479	ASSERT(dnp != NULL);
1480
1481	if (bc->bc_errno)
1482		return (ERESTART);
1483
1484	/*
1485	 * Once in a while, abort the traverse.   We only do this to odd
1486	 * instance numbers to ensure that even ones can run to completion.
1487	 */
1488	if ((za->za_instance & 1) && ztest_random(10000) == 0)
1489		return (EINTR);
1490
1491	if (bp->blk_birth == 0) {
1492		ASSERT(th->th_advance & ADVANCE_HOLES);
1493		return (0);
1494	}
1495
1496	if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) &&
1497	    bc == &th->th_cache[ZB_DN_CACHE][0]) {
1498		ASSERT(bc->bc_data == NULL);
1499		return (0);
1500	}
1501
1502	ASSERT(bc->bc_data != NULL);
1503
1504	/*
1505	 * This is an expensive question, so don't ask it too often.
1506	 */
1507	if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) {
1508		void *xbuf = umem_alloc(size, UMEM_NOFAIL);
1509		if (arc_tryread(spa, bp, xbuf) == 0) {
1510			ASSERT(bcmp(bc->bc_data, xbuf, size) == 0);
1511		}
1512		umem_free(xbuf, size);
1513	}
1514
1515	if (zb->zb_level > 0) {
1516		ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift);
1517		return (0);
1518	}
1519
1520	ASSERT(zb->zb_level == 0);
1521	ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT);
1522
1523	return (0);
1524}
1525
1526/*
1527 * Verify that live pool traversal works.
1528 */
1529void
1530ztest_traverse(ztest_args_t *za)
1531{
1532	spa_t *spa = za->za_spa;
1533	traverse_handle_t *th = za->za_th;
1534	int rc, advance;
1535	uint64_t cbstart, cblimit;
1536
1537	if (th == NULL) {
1538		advance = 0;
1539
1540		if (ztest_random(2) == 0)
1541			advance |= ADVANCE_PRE;
1542
1543		if (ztest_random(2) == 0)
1544			advance |= ADVANCE_PRUNE;
1545
1546		if (ztest_random(2) == 0)
1547			advance |= ADVANCE_DATA;
1548
1549		if (ztest_random(2) == 0)
1550			advance |= ADVANCE_HOLES;
1551
1552		if (ztest_random(2) == 0)
1553			advance |= ADVANCE_ZIL;
1554
1555		th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance,
1556		    ZIO_FLAG_CANFAIL);
1557
1558		traverse_add_pool(th, 0, -1ULL);
1559	}
1560
1561	advance = th->th_advance;
1562	cbstart = th->th_callbacks;
1563	cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000);
1564
1565	while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit)
1566		continue;
1567
1568	if (zopt_verbose >= 5)
1569		(void) printf("traverse %s%s%s%s %llu blocks to "
1570		    "<%llu, %llu, %lld, %llx>%s\n",
1571		    (advance & ADVANCE_PRE) ? "pre" : "post",
1572		    (advance & ADVANCE_PRUNE) ? "|prune" : "",
1573		    (advance & ADVANCE_DATA) ? "|data" : "",
1574		    (advance & ADVANCE_HOLES) ? "|holes" : "",
1575		    (u_longlong_t)(th->th_callbacks - cbstart),
1576		    (u_longlong_t)th->th_lastcb.zb_objset,
1577		    (u_longlong_t)th->th_lastcb.zb_object,
1578		    (u_longlong_t)th->th_lastcb.zb_level,
1579		    (u_longlong_t)th->th_lastcb.zb_blkid,
1580		    rc == 0 ? " [done]" :
1581		    rc == EINTR ? " [aborted]" :
1582		    rc == EAGAIN ? "" :
1583		    strerror(rc));
1584
1585	if (rc != EAGAIN) {
1586		if (rc != 0 && rc != EINTR)
1587			fatal(0, "traverse_more(%p) = %d", th, rc);
1588		traverse_fini(th);
1589		za->za_th = NULL;
1590	}
1591}
1592
1593/*
1594 * Verify that dmu_object_{alloc,free} work as expected.
1595 */
1596void
1597ztest_dmu_object_alloc_free(ztest_args_t *za)
1598{
1599	objset_t *os = za->za_os;
1600	dmu_buf_t *db;
1601	dmu_tx_t *tx;
1602	uint64_t batchobj, object, batchsize, endoff, temp;
1603	int b, c, error, bonuslen;
1604	dmu_object_info_t *doi = &za->za_doi;
1605	char osname[MAXNAMELEN];
1606
1607	dmu_objset_name(os, osname);
1608
1609	endoff = -8ULL;
1610	batchsize = 2;
1611
1612	/*
1613	 * Create a batch object if necessary, and record it in the directory.
1614	 */
1615	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1616	    sizeof (uint64_t), &batchobj));
1617	if (batchobj == 0) {
1618		tx = dmu_tx_create(os);
1619		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1620		    sizeof (uint64_t));
1621		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1622		error = dmu_tx_assign(tx, TXG_WAIT);
1623		if (error) {
1624			ztest_record_enospc("create a batch object");
1625			dmu_tx_abort(tx);
1626			return;
1627		}
1628		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1629		    DMU_OT_NONE, 0, tx);
1630		ztest_set_random_blocksize(os, batchobj, tx);
1631		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1632		    sizeof (uint64_t), &batchobj, tx);
1633		dmu_tx_commit(tx);
1634	}
1635
1636	/*
1637	 * Destroy the previous batch of objects.
1638	 */
1639	for (b = 0; b < batchsize; b++) {
1640		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1641		    sizeof (uint64_t), &object));
1642		if (object == 0)
1643			continue;
1644		/*
1645		 * Read and validate contents.
1646		 * We expect the nth byte of the bonus buffer to be n.
1647		 */
1648		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1649		za->za_dbuf = db;
1650
1651		dmu_object_info_from_db(db, doi);
1652		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1653		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1654		ASSERT3S(doi->doi_physical_blks, >=, 0);
1655
1656		bonuslen = doi->doi_bonus_size;
1657
1658		for (c = 0; c < bonuslen; c++) {
1659			if (((uint8_t *)db->db_data)[c] !=
1660			    (uint8_t)(c + bonuslen)) {
1661				fatal(0,
1662				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1663				    osname, object, c,
1664				    ((uint8_t *)db->db_data)[c],
1665				    (uint8_t)(c + bonuslen));
1666			}
1667		}
1668
1669		dmu_buf_rele(db, FTAG);
1670		za->za_dbuf = NULL;
1671
1672		/*
1673		 * We expect the word at endoff to be our object number.
1674		 */
1675		VERIFY(0 == dmu_read(os, object, endoff,
1676		    sizeof (uint64_t), &temp));
1677
1678		if (temp != object) {
1679			fatal(0, "bad data in %s, got %llu, expected %llu",
1680			    osname, temp, object);
1681		}
1682
1683		/*
1684		 * Destroy old object and clear batch entry.
1685		 */
1686		tx = dmu_tx_create(os);
1687		dmu_tx_hold_write(tx, batchobj,
1688		    b * sizeof (uint64_t), sizeof (uint64_t));
1689		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1690		error = dmu_tx_assign(tx, TXG_WAIT);
1691		if (error) {
1692			ztest_record_enospc("free object");
1693			dmu_tx_abort(tx);
1694			return;
1695		}
1696		error = dmu_object_free(os, object, tx);
1697		if (error) {
1698			fatal(0, "dmu_object_free('%s', %llu) = %d",
1699			    osname, object, error);
1700		}
1701		object = 0;
1702
1703		dmu_object_set_checksum(os, batchobj,
1704		    ztest_random_checksum(), tx);
1705		dmu_object_set_compress(os, batchobj,
1706		    ztest_random_compress(), tx);
1707
1708		dmu_write(os, batchobj, b * sizeof (uint64_t),
1709		    sizeof (uint64_t), &object, tx);
1710
1711		dmu_tx_commit(tx);
1712	}
1713
1714	/*
1715	 * Before creating the new batch of objects, generate a bunch of churn.
1716	 */
1717	for (b = ztest_random(100); b > 0; b--) {
1718		tx = dmu_tx_create(os);
1719		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1720		error = dmu_tx_assign(tx, TXG_WAIT);
1721		if (error) {
1722			ztest_record_enospc("churn objects");
1723			dmu_tx_abort(tx);
1724			return;
1725		}
1726		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1727		    DMU_OT_NONE, 0, tx);
1728		ztest_set_random_blocksize(os, object, tx);
1729		error = dmu_object_free(os, object, tx);
1730		if (error) {
1731			fatal(0, "dmu_object_free('%s', %llu) = %d",
1732			    osname, object, error);
1733		}
1734		dmu_tx_commit(tx);
1735	}
1736
1737	/*
1738	 * Create a new batch of objects with randomly chosen
1739	 * blocksizes and record them in the batch directory.
1740	 */
1741	for (b = 0; b < batchsize; b++) {
1742		uint32_t va_blksize;
1743		u_longlong_t va_nblocks;
1744
1745		tx = dmu_tx_create(os);
1746		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1747		    sizeof (uint64_t));
1748		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1749		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1750		    sizeof (uint64_t));
1751		error = dmu_tx_assign(tx, TXG_WAIT);
1752		if (error) {
1753			ztest_record_enospc("create batchobj");
1754			dmu_tx_abort(tx);
1755			return;
1756		}
1757		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1758
1759		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1760		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1761
1762		ztest_set_random_blocksize(os, object, tx);
1763
1764		dmu_object_set_checksum(os, object,
1765		    ztest_random_checksum(), tx);
1766		dmu_object_set_compress(os, object,
1767		    ztest_random_compress(), tx);
1768
1769		dmu_write(os, batchobj, b * sizeof (uint64_t),
1770		    sizeof (uint64_t), &object, tx);
1771
1772		/*
1773		 * Write to both the bonus buffer and the regular data.
1774		 */
1775		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1776		za->za_dbuf = db;
1777		ASSERT3U(bonuslen, <=, db->db_size);
1778
1779		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1780		ASSERT3S(va_nblocks, >=, 0);
1781
1782		dmu_buf_will_dirty(db, tx);
1783
1784		/*
1785		 * See comments above regarding the contents of
1786		 * the bonus buffer and the word at endoff.
1787		 */
1788		for (c = 0; c < bonuslen; c++)
1789			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1790
1791		dmu_buf_rele(db, FTAG);
1792		za->za_dbuf = NULL;
1793
1794		/*
1795		 * Write to a large offset to increase indirection.
1796		 */
1797		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1798
1799		dmu_tx_commit(tx);
1800	}
1801}
1802
1803/*
1804 * Verify that dmu_{read,write} work as expected.
1805 */
1806typedef struct bufwad {
1807	uint64_t	bw_index;
1808	uint64_t	bw_txg;
1809	uint64_t	bw_data;
1810} bufwad_t;
1811
1812typedef struct dmu_read_write_dir {
1813	uint64_t	dd_packobj;
1814	uint64_t	dd_bigobj;
1815	uint64_t	dd_chunk;
1816} dmu_read_write_dir_t;
1817
1818void
1819ztest_dmu_read_write(ztest_args_t *za)
1820{
1821	objset_t *os = za->za_os;
1822	dmu_read_write_dir_t dd;
1823	dmu_tx_t *tx;
1824	int i, freeit, error;
1825	uint64_t n, s, txg;
1826	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
1827	uint64_t packoff, packsize, bigoff, bigsize;
1828	uint64_t regions = 997;
1829	uint64_t stride = 123456789ULL;
1830	uint64_t width = 40;
1831	int free_percent = 5;
1832
1833	/*
1834	 * This test uses two objects, packobj and bigobj, that are always
1835	 * updated together (i.e. in the same tx) so that their contents are
1836	 * in sync and can be compared.  Their contents relate to each other
1837	 * in a simple way: packobj is a dense array of 'bufwad' structures,
1838	 * while bigobj is a sparse array of the same bufwads.  Specifically,
1839	 * for any index n, there are three bufwads that should be identical:
1840	 *
1841	 *	packobj, at offset n * sizeof (bufwad_t)
1842	 *	bigobj, at the head of the nth chunk
1843	 *	bigobj, at the tail of the nth chunk
1844	 *
1845	 * The chunk size is arbitrary. It doesn't have to be a power of two,
1846	 * and it doesn't have any relation to the object blocksize.
1847	 * The only requirement is that it can hold at least two bufwads.
1848	 *
1849	 * Normally, we write the bufwad to each of these locations.
1850	 * However, free_percent of the time we instead write zeroes to
1851	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
1852	 * bigobj to packobj, we can verify that the DMU is correctly
1853	 * tracking which parts of an object are allocated and free,
1854	 * and that the contents of the allocated blocks are correct.
1855	 */
1856
1857	/*
1858	 * Read the directory info.  If it's the first time, set things up.
1859	 */
1860	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1861	    sizeof (dd), &dd));
1862	if (dd.dd_chunk == 0) {
1863		ASSERT(dd.dd_packobj == 0);
1864		ASSERT(dd.dd_bigobj == 0);
1865		tx = dmu_tx_create(os);
1866		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
1867		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1868		error = dmu_tx_assign(tx, TXG_WAIT);
1869		if (error) {
1870			ztest_record_enospc("create r/w directory");
1871			dmu_tx_abort(tx);
1872			return;
1873		}
1874
1875		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1876		    DMU_OT_NONE, 0, tx);
1877		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1878		    DMU_OT_NONE, 0, tx);
1879		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
1880
1881		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
1882		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
1883
1884		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
1885		    tx);
1886		dmu_tx_commit(tx);
1887	}
1888
1889	/*
1890	 * Prefetch a random chunk of the big object.
1891	 * Our aim here is to get some async reads in flight
1892	 * for blocks that we may free below; the DMU should
1893	 * handle this race correctly.
1894	 */
1895	n = ztest_random(regions) * stride + ztest_random(width);
1896	s = 1 + ztest_random(2 * width - 1);
1897	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
1898
1899	/*
1900	 * Pick a random index and compute the offsets into packobj and bigobj.
1901	 */
1902	n = ztest_random(regions) * stride + ztest_random(width);
1903	s = 1 + ztest_random(width - 1);
1904
1905	packoff = n * sizeof (bufwad_t);
1906	packsize = s * sizeof (bufwad_t);
1907
1908	bigoff = n * dd.dd_chunk;
1909	bigsize = s * dd.dd_chunk;
1910
1911	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
1912	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
1913
1914	/*
1915	 * free_percent of the time, free a range of bigobj rather than
1916	 * overwriting it.
1917	 */
1918	freeit = (ztest_random(100) < free_percent);
1919
1920	/*
1921	 * Read the current contents of our objects.
1922	 */
1923	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf);
1924	ASSERT3U(error, ==, 0);
1925	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf);
1926	ASSERT3U(error, ==, 0);
1927
1928	/*
1929	 * Get a tx for the mods to both packobj and bigobj.
1930	 */
1931	tx = dmu_tx_create(os);
1932
1933	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
1934
1935	if (freeit)
1936		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
1937	else
1938		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
1939
1940	error = dmu_tx_assign(tx, TXG_WAIT);
1941
1942	if (error) {
1943		ztest_record_enospc("dmu r/w range");
1944		dmu_tx_abort(tx);
1945		umem_free(packbuf, packsize);
1946		umem_free(bigbuf, bigsize);
1947		return;
1948	}
1949
1950	txg = dmu_tx_get_txg(tx);
1951
1952	/*
1953	 * For each index from n to n + s, verify that the existing bufwad
1954	 * in packobj matches the bufwads at the head and tail of the
1955	 * corresponding chunk in bigobj.  Then update all three bufwads
1956	 * with the new values we want to write out.
1957	 */
1958	for (i = 0; i < s; i++) {
1959		/* LINTED */
1960		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
1961		/* LINTED */
1962		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
1963		/* LINTED */
1964		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
1965
1966		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
1967		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
1968
1969		if (pack->bw_txg > txg)
1970			fatal(0, "future leak: got %llx, open txg is %llx",
1971			    pack->bw_txg, txg);
1972
1973		if (pack->bw_data != 0 && pack->bw_index != n + i)
1974			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
1975			    pack->bw_index, n, i);
1976
1977		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
1978			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
1979
1980		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
1981			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
1982
1983		if (freeit) {
1984			bzero(pack, sizeof (bufwad_t));
1985		} else {
1986			pack->bw_index = n + i;
1987			pack->bw_txg = txg;
1988			pack->bw_data = 1 + ztest_random(-2ULL);
1989		}
1990		*bigH = *pack;
1991		*bigT = *pack;
1992	}
1993
1994	/*
1995	 * We've verified all the old bufwads, and made new ones.
1996	 * Now write them out.
1997	 */
1998	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
1999
2000	if (freeit) {
2001		if (zopt_verbose >= 6) {
2002			(void) printf("freeing offset %llx size %llx"
2003			    " txg %llx\n",
2004			    (u_longlong_t)bigoff,
2005			    (u_longlong_t)bigsize,
2006			    (u_longlong_t)txg);
2007		}
2008		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
2009		    bigsize, tx));
2010	} else {
2011		if (zopt_verbose >= 6) {
2012			(void) printf("writing offset %llx size %llx"
2013			    " txg %llx\n",
2014			    (u_longlong_t)bigoff,
2015			    (u_longlong_t)bigsize,
2016			    (u_longlong_t)txg);
2017		}
2018		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
2019	}
2020
2021	dmu_tx_commit(tx);
2022
2023	/*
2024	 * Sanity check the stuff we just wrote.
2025	 */
2026	{
2027		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2028		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2029
2030		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2031		    packsize, packcheck));
2032		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2033		    bigsize, bigcheck));
2034
2035		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2036		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2037
2038		umem_free(packcheck, packsize);
2039		umem_free(bigcheck, bigsize);
2040	}
2041
2042	umem_free(packbuf, packsize);
2043	umem_free(bigbuf, bigsize);
2044}
2045
2046void
2047ztest_dmu_check_future_leak(ztest_args_t *za)
2048{
2049	objset_t *os = za->za_os;
2050	dmu_buf_t *db;
2051	ztest_block_tag_t *bt;
2052	dmu_object_info_t *doi = &za->za_doi;
2053
2054	/*
2055	 * Make sure that, if there is a write record in the bonus buffer
2056	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2057	 * last synced txg of the pool.
2058	 */
2059	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2060	za->za_dbuf = db;
2061	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2062	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2063	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2064	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2065	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2066	if (bt->bt_objset != 0) {
2067		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2068		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2069		ASSERT3U(bt->bt_offset, ==, -1ULL);
2070		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2071	}
2072	dmu_buf_rele(db, FTAG);
2073	za->za_dbuf = NULL;
2074}
2075
2076void
2077ztest_dmu_write_parallel(ztest_args_t *za)
2078{
2079	objset_t *os = za->za_os;
2080	ztest_block_tag_t *rbt = &za->za_rbt;
2081	ztest_block_tag_t *wbt = &za->za_wbt;
2082	const size_t btsize = sizeof (ztest_block_tag_t);
2083	dmu_buf_t *db;
2084	int b, error;
2085	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2086	int do_free = 0;
2087	uint64_t off, txg, txg_how;
2088	mutex_t *lp;
2089	char osname[MAXNAMELEN];
2090	char iobuf[SPA_MAXBLOCKSIZE];
2091	blkptr_t blk = { 0 };
2092	uint64_t blkoff;
2093	zbookmark_t zb;
2094	dmu_tx_t *tx = dmu_tx_create(os);
2095
2096	dmu_objset_name(os, osname);
2097
2098	/*
2099	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2100	 * to verify that having multiple threads writing to the same object
2101	 * in parallel doesn't cause any trouble.
2102	 */
2103	if (ztest_random(4) == 0) {
2104		/*
2105		 * Do the bonus buffer instead of a regular block.
2106		 * We need a lock to serialize resize vs. others,
2107		 * so we hash on the objset ID.
2108		 */
2109		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2110		off = -1ULL;
2111		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2112	} else {
2113		b = ztest_random(ZTEST_SYNC_LOCKS);
2114		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2115		if (ztest_random(4) == 0) {
2116			do_free = 1;
2117			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2118		} else {
2119			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2120		}
2121	}
2122
2123	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2124	error = dmu_tx_assign(tx, txg_how);
2125	if (error) {
2126		if (error == ERESTART) {
2127			ASSERT(txg_how == TXG_NOWAIT);
2128			dmu_tx_wait(tx);
2129		} else {
2130			ztest_record_enospc("dmu write parallel");
2131		}
2132		dmu_tx_abort(tx);
2133		return;
2134	}
2135	txg = dmu_tx_get_txg(tx);
2136
2137	lp = &ztest_shared->zs_sync_lock[b];
2138	(void) mutex_lock(lp);
2139
2140	wbt->bt_objset = dmu_objset_id(os);
2141	wbt->bt_object = ZTEST_DIROBJ;
2142	wbt->bt_offset = off;
2143	wbt->bt_txg = txg;
2144	wbt->bt_thread = za->za_instance;
2145	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2146
2147	/*
2148	 * Occasionally, write an all-zero block to test the behavior
2149	 * of blocks that compress into holes.
2150	 */
2151	if (off != -1ULL && ztest_random(8) == 0)
2152		bzero(wbt, btsize);
2153
2154	if (off == -1ULL) {
2155		dmu_object_info_t *doi = &za->za_doi;
2156		char *dboff;
2157
2158		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2159		za->za_dbuf = db;
2160		dmu_object_info_from_db(db, doi);
2161		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2162		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2163		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2164		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2165		bcopy(dboff, rbt, btsize);
2166		if (rbt->bt_objset != 0) {
2167			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2168			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2169			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2170			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2171		}
2172		if (ztest_random(10) == 0) {
2173			int newsize = (ztest_random(db->db_size /
2174			    btsize) + 1) * btsize;
2175
2176			ASSERT3U(newsize, >=, btsize);
2177			ASSERT3U(newsize, <=, db->db_size);
2178			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2179			dboff = (char *)db->db_data + newsize - btsize;
2180		}
2181		dmu_buf_will_dirty(db, tx);
2182		bcopy(wbt, dboff, btsize);
2183		dmu_buf_rele(db, FTAG);
2184		za->za_dbuf = NULL;
2185	} else if (do_free) {
2186		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2187	} else {
2188		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2189	}
2190
2191	(void) mutex_unlock(lp);
2192
2193	if (ztest_random(1000) == 0)
2194		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2195
2196	dmu_tx_commit(tx);
2197
2198	if (ztest_random(10000) == 0)
2199		txg_wait_synced(dmu_objset_pool(os), txg);
2200
2201	if (off == -1ULL || do_free)
2202		return;
2203
2204	if (ztest_random(2) != 0)
2205		return;
2206
2207	/*
2208	 * dmu_sync() the block we just wrote.
2209	 */
2210	(void) mutex_lock(lp);
2211
2212	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2213	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2214	za->za_dbuf = db;
2215	if (error) {
2216		dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n",
2217		    osname, ZTEST_DIROBJ, blkoff, error);
2218		(void) mutex_unlock(lp);
2219		return;
2220	}
2221	blkoff = off - blkoff;
2222	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2223	dmu_buf_rele(db, FTAG);
2224	za->za_dbuf = NULL;
2225
2226	(void) mutex_unlock(lp);
2227
2228	if (error) {
2229		dprintf("dmu_sync(%s, %d, %llx) = %d\n",
2230		    osname, ZTEST_DIROBJ, off, error);
2231		return;
2232	}
2233
2234	if (blk.blk_birth == 0)		/* concurrent free */
2235		return;
2236
2237	txg_suspend(dmu_objset_pool(os));
2238
2239	ASSERT(blk.blk_fill == 1);
2240	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2241	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2242	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2243
2244	/*
2245	 * Read the block that dmu_sync() returned to make sure its contents
2246	 * match what we wrote.  We do this while still txg_suspend()ed
2247	 * to ensure that the block can't be reused before we read it.
2248	 */
2249	zb.zb_objset = dmu_objset_id(os);
2250	zb.zb_object = ZTEST_DIROBJ;
2251	zb.zb_level = 0;
2252	zb.zb_blkid = off / bs;
2253	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2254	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2255	ASSERT3U(error, ==, 0);
2256
2257	txg_resume(dmu_objset_pool(os));
2258
2259	bcopy(&iobuf[blkoff], rbt, btsize);
2260
2261	if (rbt->bt_objset == 0)		/* concurrent free */
2262		return;
2263
2264	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2265		return;
2266
2267	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2268	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2269	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2270
2271	/*
2272	 * The semantic of dmu_sync() is that we always push the most recent
2273	 * version of the data, so in the face of concurrent updates we may
2274	 * see a newer version of the block.  That's OK.
2275	 */
2276	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2277	if (rbt->bt_thread == wbt->bt_thread)
2278		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2279	else
2280		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2281}
2282
2283/*
2284 * Verify that zap_{create,destroy,add,remove,update} work as expected.
2285 */
2286#define	ZTEST_ZAP_MIN_INTS	1
2287#define	ZTEST_ZAP_MAX_INTS	4
2288#define	ZTEST_ZAP_MAX_PROPS	1000
2289
2290void
2291ztest_zap(ztest_args_t *za)
2292{
2293	objset_t *os = za->za_os;
2294	uint64_t object;
2295	uint64_t txg, last_txg;
2296	uint64_t value[ZTEST_ZAP_MAX_INTS];
2297	uint64_t zl_ints, zl_intsize, prop;
2298	int i, ints;
2299	dmu_tx_t *tx;
2300	char propname[100], txgname[100];
2301	int error;
2302	char osname[MAXNAMELEN];
2303	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2304
2305	dmu_objset_name(os, osname);
2306
2307	/*
2308	 * Create a new object if necessary, and record it in the directory.
2309	 */
2310	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2311	    sizeof (uint64_t), &object));
2312
2313	if (object == 0) {
2314		tx = dmu_tx_create(os);
2315		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2316		    sizeof (uint64_t));
2317		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2318		error = dmu_tx_assign(tx, TXG_WAIT);
2319		if (error) {
2320			ztest_record_enospc("create zap test obj");
2321			dmu_tx_abort(tx);
2322			return;
2323		}
2324		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2325		if (error) {
2326			fatal(0, "zap_create('%s', %llu) = %d",
2327			    osname, object, error);
2328		}
2329		ASSERT(object != 0);
2330		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2331		    sizeof (uint64_t), &object, tx);
2332		/*
2333		 * Generate a known hash collision, and verify that
2334		 * we can lookup and remove both entries.
2335		 */
2336		for (i = 0; i < 2; i++) {
2337			value[i] = i;
2338			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2339			    1, &value[i], tx);
2340			ASSERT3U(error, ==, 0);
2341		}
2342		for (i = 0; i < 2; i++) {
2343			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2344			    1, &value[i], tx);
2345			ASSERT3U(error, ==, EEXIST);
2346			error = zap_length(os, object, hc[i],
2347			    &zl_intsize, &zl_ints);
2348			ASSERT3U(error, ==, 0);
2349			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2350			ASSERT3U(zl_ints, ==, 1);
2351		}
2352		for (i = 0; i < 2; i++) {
2353			error = zap_remove(os, object, hc[i], tx);
2354			ASSERT3U(error, ==, 0);
2355		}
2356
2357		dmu_tx_commit(tx);
2358	}
2359
2360	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2361
2362	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2363	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2364	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2365	bzero(value, sizeof (value));
2366	last_txg = 0;
2367
2368	/*
2369	 * If these zap entries already exist, validate their contents.
2370	 */
2371	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2372	if (error == 0) {
2373		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2374		ASSERT3U(zl_ints, ==, 1);
2375
2376		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2377		    zl_ints, &last_txg) == 0);
2378
2379		VERIFY(zap_length(os, object, propname, &zl_intsize,
2380		    &zl_ints) == 0);
2381
2382		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2383		ASSERT3U(zl_ints, ==, ints);
2384
2385		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2386		    zl_ints, value) == 0);
2387
2388		for (i = 0; i < ints; i++) {
2389			ASSERT3U(value[i], ==, last_txg + object + i);
2390		}
2391	} else {
2392		ASSERT3U(error, ==, ENOENT);
2393	}
2394
2395	/*
2396	 * Atomically update two entries in our zap object.
2397	 * The first is named txg_%llu, and contains the txg
2398	 * in which the property was last updated.  The second
2399	 * is named prop_%llu, and the nth element of its value
2400	 * should be txg + object + n.
2401	 */
2402	tx = dmu_tx_create(os);
2403	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2404	error = dmu_tx_assign(tx, TXG_WAIT);
2405	if (error) {
2406		ztest_record_enospc("create zap entry");
2407		dmu_tx_abort(tx);
2408		return;
2409	}
2410	txg = dmu_tx_get_txg(tx);
2411
2412	if (last_txg > txg)
2413		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2414
2415	for (i = 0; i < ints; i++)
2416		value[i] = txg + object + i;
2417
2418	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2419	if (error)
2420		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2421		    osname, object, txgname, error);
2422
2423	error = zap_update(os, object, propname, sizeof (uint64_t),
2424	    ints, value, tx);
2425	if (error)
2426		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2427		    osname, object, propname, error);
2428
2429	dmu_tx_commit(tx);
2430
2431	/*
2432	 * Remove a random pair of entries.
2433	 */
2434	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2435	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2436	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2437
2438	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2439
2440	if (error == ENOENT)
2441		return;
2442
2443	ASSERT3U(error, ==, 0);
2444
2445	tx = dmu_tx_create(os);
2446	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2447	error = dmu_tx_assign(tx, TXG_WAIT);
2448	if (error) {
2449		ztest_record_enospc("remove zap entry");
2450		dmu_tx_abort(tx);
2451		return;
2452	}
2453	error = zap_remove(os, object, txgname, tx);
2454	if (error)
2455		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2456		    osname, object, txgname, error);
2457
2458	error = zap_remove(os, object, propname, tx);
2459	if (error)
2460		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2461		    osname, object, propname, error);
2462
2463	dmu_tx_commit(tx);
2464
2465	/*
2466	 * Once in a while, destroy the object.
2467	 */
2468	if (ztest_random(1000) != 0)
2469		return;
2470
2471	tx = dmu_tx_create(os);
2472	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2473	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2474	error = dmu_tx_assign(tx, TXG_WAIT);
2475	if (error) {
2476		ztest_record_enospc("destroy zap object");
2477		dmu_tx_abort(tx);
2478		return;
2479	}
2480	error = zap_destroy(os, object, tx);
2481	if (error)
2482		fatal(0, "zap_destroy('%s', %llu) = %d",
2483		    osname, object, error);
2484	object = 0;
2485	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2486	    &object, tx);
2487	dmu_tx_commit(tx);
2488}
2489
2490void
2491ztest_zap_parallel(ztest_args_t *za)
2492{
2493	objset_t *os = za->za_os;
2494	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
2495	dmu_tx_t *tx;
2496	int i, namelen, error;
2497	char name[20], string_value[20];
2498	void *data;
2499
2500	/*
2501	 * Generate a random name of the form 'xxx.....' where each
2502	 * x is a random printable character and the dots are dots.
2503	 * There are 94 such characters, and the name length goes from
2504	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
2505	 */
2506	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
2507
2508	for (i = 0; i < 3; i++)
2509		name[i] = '!' + ztest_random('~' - '!' + 1);
2510	for (; i < namelen - 1; i++)
2511		name[i] = '.';
2512	name[i] = '\0';
2513
2514	if (ztest_random(2) == 0)
2515		object = ZTEST_MICROZAP_OBJ;
2516	else
2517		object = ZTEST_FATZAP_OBJ;
2518
2519	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
2520		wsize = sizeof (txg);
2521		wc = 1;
2522		data = &txg;
2523	} else {
2524		wsize = 1;
2525		wc = namelen;
2526		data = string_value;
2527	}
2528
2529	count = -1ULL;
2530	VERIFY(zap_count(os, object, &count) == 0);
2531	ASSERT(count != -1ULL);
2532
2533	/*
2534	 * Select an operation: length, lookup, add, update, remove.
2535	 */
2536	i = ztest_random(5);
2537
2538	if (i >= 2) {
2539		tx = dmu_tx_create(os);
2540		dmu_tx_hold_zap(tx, object, TRUE, NULL);
2541		error = dmu_tx_assign(tx, TXG_WAIT);
2542		if (error) {
2543			ztest_record_enospc("zap parallel");
2544			dmu_tx_abort(tx);
2545			return;
2546		}
2547		txg = dmu_tx_get_txg(tx);
2548		bcopy(name, string_value, namelen);
2549	} else {
2550		tx = NULL;
2551		txg = 0;
2552		bzero(string_value, namelen);
2553	}
2554
2555	switch (i) {
2556
2557	case 0:
2558		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
2559		if (error == 0) {
2560			ASSERT3U(wsize, ==, zl_wsize);
2561			ASSERT3U(wc, ==, zl_wc);
2562		} else {
2563			ASSERT3U(error, ==, ENOENT);
2564		}
2565		break;
2566
2567	case 1:
2568		error = zap_lookup(os, object, name, wsize, wc, data);
2569		if (error == 0) {
2570			if (data == string_value &&
2571			    bcmp(name, data, namelen) != 0)
2572				fatal(0, "name '%s' != val '%s' len %d",
2573				    name, data, namelen);
2574		} else {
2575			ASSERT3U(error, ==, ENOENT);
2576		}
2577		break;
2578
2579	case 2:
2580		error = zap_add(os, object, name, wsize, wc, data, tx);
2581		ASSERT(error == 0 || error == EEXIST);
2582		break;
2583
2584	case 3:
2585		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
2586		break;
2587
2588	case 4:
2589		error = zap_remove(os, object, name, tx);
2590		ASSERT(error == 0 || error == ENOENT);
2591		break;
2592	}
2593
2594	if (tx != NULL)
2595		dmu_tx_commit(tx);
2596}
2597
2598void
2599ztest_dsl_prop_get_set(ztest_args_t *za)
2600{
2601	objset_t *os = za->za_os;
2602	int i, inherit;
2603	uint64_t value;
2604	const char *prop, *valname;
2605	char setpoint[MAXPATHLEN];
2606	char osname[MAXNAMELEN];
2607	int error;
2608
2609	(void) rw_rdlock(&ztest_shared->zs_name_lock);
2610
2611	dmu_objset_name(os, osname);
2612
2613	for (i = 0; i < 2; i++) {
2614		if (i == 0) {
2615			prop = "checksum";
2616			value = ztest_random_checksum();
2617			inherit = (value == ZIO_CHECKSUM_INHERIT);
2618		} else {
2619			prop = "compression";
2620			value = ztest_random_compress();
2621			inherit = (value == ZIO_COMPRESS_INHERIT);
2622		}
2623
2624		error = dsl_prop_set(osname, prop, sizeof (value),
2625		    !inherit, &value);
2626
2627		if (error == ENOSPC) {
2628			ztest_record_enospc("dsl_prop_set");
2629			break;
2630		}
2631
2632		ASSERT3U(error, ==, 0);
2633
2634		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
2635		    1, &value, setpoint), ==, 0);
2636
2637		if (i == 0)
2638			valname = zio_checksum_table[value].ci_name;
2639		else
2640			valname = zio_compress_table[value].ci_name;
2641
2642		if (zopt_verbose >= 6) {
2643			(void) printf("%s %s = %s for '%s'\n",
2644			    osname, prop, valname, setpoint);
2645		}
2646	}
2647
2648	(void) rw_unlock(&ztest_shared->zs_name_lock);
2649}
2650
2651/*
2652 * Inject random faults into the on-disk data.
2653 */
2654void
2655ztest_fault_inject(ztest_args_t *za)
2656{
2657	int fd;
2658	uint64_t offset;
2659	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
2660	uint64_t bad = 0x1990c0ffeedecadeULL;
2661	uint64_t top, leaf;
2662	char path0[MAXPATHLEN];
2663	char pathrand[MAXPATHLEN];
2664	size_t fsize;
2665	spa_t *spa = za->za_spa;
2666	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
2667	int iters = 1000;
2668	int maxfaults = zopt_maxfaults;
2669	vdev_t *vd0 = NULL;
2670	uint64_t guid0 = 0;
2671
2672	ASSERT(leaves >= 1);
2673
2674	/*
2675	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2676	 */
2677	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2678
2679	if (ztest_random(2) == 0) {
2680		/*
2681		 * Inject errors on a normal data device.
2682		 */
2683		top = ztest_random(spa->spa_root_vdev->vdev_children);
2684		leaf = ztest_random(leaves);
2685
2686		/*
2687		 * Generate paths to the first leaf in this top-level vdev,
2688		 * and to the random leaf we selected.  We'll induce transient
2689		 * write failures and random online/offline activity on leaf 0,
2690		 * and we'll write random garbage to the randomly chosen leaf.
2691		 */
2692		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
2693		    zopt_dir, zopt_pool, top * leaves + 0);
2694		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
2695		    zopt_dir, zopt_pool, top * leaves + leaf);
2696
2697		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
2698		if (vd0 != NULL && maxfaults != 1) {
2699			/*
2700			 * Make vd0 explicitly claim to be unreadable,
2701			 * or unwriteable, or reach behind its back
2702			 * and close the underlying fd.  We can do this if
2703			 * maxfaults == 0 because we'll fail and reexecute,
2704			 * and we can do it if maxfaults >= 2 because we'll
2705			 * have enough redundancy.  If maxfaults == 1, the
2706			 * combination of this with injection of random data
2707			 * corruption below exceeds the pool's fault tolerance.
2708			 */
2709			vdev_file_t *vf = vd0->vdev_tsd;
2710
2711			if (vf != NULL && ztest_random(3) == 0) {
2712				(void) close(vf->vf_vnode->v_fd);
2713				vf->vf_vnode->v_fd = -1;
2714			} else if (ztest_random(2) == 0) {
2715				vd0->vdev_cant_read = B_TRUE;
2716			} else {
2717				vd0->vdev_cant_write = B_TRUE;
2718			}
2719			guid0 = vd0->vdev_guid;
2720		}
2721	} else {
2722		/*
2723		 * Inject errors on an l2cache device.
2724		 */
2725		spa_aux_vdev_t *sav = &spa->spa_l2cache;
2726
2727		if (sav->sav_count == 0) {
2728			spa_config_exit(spa, SCL_STATE, FTAG);
2729			return;
2730		}
2731		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
2732		guid0 = vd0->vdev_guid;
2733		(void) strcpy(path0, vd0->vdev_path);
2734		(void) strcpy(pathrand, vd0->vdev_path);
2735
2736		leaf = 0;
2737		leaves = 1;
2738		maxfaults = INT_MAX;	/* no limit on cache devices */
2739	}
2740
2741	dprintf("damaging %s and %s\n", path0, pathrand);
2742
2743	spa_config_exit(spa, SCL_STATE, FTAG);
2744
2745	if (maxfaults == 0)
2746		return;
2747
2748	/*
2749	 * If we can tolerate two or more faults, randomly online/offline vd0.
2750	 */
2751	if (maxfaults >= 2 && guid0 != 0) {
2752		if (ztest_random(10) < 6)
2753			(void) vdev_offline(spa, guid0, B_TRUE);
2754		else
2755			(void) vdev_online(spa, guid0, B_FALSE, NULL);
2756	}
2757
2758	/*
2759	 * We have at least single-fault tolerance, so inject data corruption.
2760	 */
2761	fd = open(pathrand, O_RDWR);
2762
2763	if (fd == -1)	/* we hit a gap in the device namespace */
2764		return;
2765
2766	fsize = lseek(fd, 0, SEEK_END);
2767
2768	while (--iters != 0) {
2769		offset = ztest_random(fsize / (leaves << bshift)) *
2770		    (leaves << bshift) + (leaf << bshift) +
2771		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
2772
2773		if (offset >= fsize)
2774			continue;
2775
2776		if (zopt_verbose >= 6)
2777			(void) printf("injecting bad word into %s,"
2778			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
2779
2780		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
2781			fatal(1, "can't inject bad word at 0x%llx in %s",
2782			    offset, pathrand);
2783	}
2784
2785	(void) close(fd);
2786}
2787
2788/*
2789 * Scrub the pool.
2790 */
2791void
2792ztest_scrub(ztest_args_t *za)
2793{
2794	spa_t *spa = za->za_spa;
2795
2796	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2797	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
2798	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2799}
2800
2801/*
2802 * Rename the pool to a different name and then rename it back.
2803 */
2804void
2805ztest_spa_rename(ztest_args_t *za)
2806{
2807	char *oldname, *newname;
2808	int error;
2809	spa_t *spa;
2810
2811	(void) rw_wrlock(&ztest_shared->zs_name_lock);
2812
2813	oldname = za->za_pool;
2814	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
2815	(void) strcpy(newname, oldname);
2816	(void) strcat(newname, "_tmp");
2817
2818	/*
2819	 * Do the rename
2820	 */
2821	error = spa_rename(oldname, newname);
2822	if (error)
2823		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
2824		    newname, error);
2825
2826	/*
2827	 * Try to open it under the old name, which shouldn't exist
2828	 */
2829	error = spa_open(oldname, &spa, FTAG);
2830	if (error != ENOENT)
2831		fatal(0, "spa_open('%s') = %d", oldname, error);
2832
2833	/*
2834	 * Open it under the new name and make sure it's still the same spa_t.
2835	 */
2836	error = spa_open(newname, &spa, FTAG);
2837	if (error != 0)
2838		fatal(0, "spa_open('%s') = %d", newname, error);
2839
2840	ASSERT(spa == za->za_spa);
2841	spa_close(spa, FTAG);
2842
2843	/*
2844	 * Rename it back to the original
2845	 */
2846	error = spa_rename(newname, oldname);
2847	if (error)
2848		fatal(0, "spa_rename('%s', '%s') = %d", newname,
2849		    oldname, error);
2850
2851	/*
2852	 * Make sure it can still be opened
2853	 */
2854	error = spa_open(oldname, &spa, FTAG);
2855	if (error != 0)
2856		fatal(0, "spa_open('%s') = %d", oldname, error);
2857
2858	ASSERT(spa == za->za_spa);
2859	spa_close(spa, FTAG);
2860
2861	umem_free(newname, strlen(newname) + 1);
2862
2863	(void) rw_unlock(&ztest_shared->zs_name_lock);
2864}
2865
2866
2867/*
2868 * Completely obliterate one disk.
2869 */
2870static void
2871ztest_obliterate_one_disk(uint64_t vdev)
2872{
2873	int fd;
2874	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
2875	size_t fsize;
2876
2877	if (zopt_maxfaults < 2)
2878		return;
2879
2880	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2881	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
2882
2883	fd = open(dev_name, O_RDWR);
2884
2885	if (fd == -1)
2886		fatal(1, "can't open %s", dev_name);
2887
2888	/*
2889	 * Determine the size.
2890	 */
2891	fsize = lseek(fd, 0, SEEK_END);
2892
2893	(void) close(fd);
2894
2895	/*
2896	 * Rename the old device to dev_name.old (useful for debugging).
2897	 */
2898	VERIFY(rename(dev_name, copy_name) == 0);
2899
2900	/*
2901	 * Create a new one.
2902	 */
2903	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
2904	VERIFY(ftruncate(fd, fsize) == 0);
2905	(void) close(fd);
2906}
2907
2908static void
2909ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
2910{
2911	char dev_name[MAXPATHLEN];
2912	nvlist_t *root;
2913	int error;
2914	uint64_t guid;
2915	vdev_t *vd;
2916
2917	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2918
2919	/*
2920	 * Build the nvlist describing dev_name.
2921	 */
2922	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
2923
2924	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2925	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
2926		guid = 0;
2927	else
2928		guid = vd->vdev_guid;
2929	spa_config_exit(spa, SCL_VDEV, FTAG);
2930	error = spa_vdev_attach(spa, guid, root, B_TRUE);
2931	if (error != 0 &&
2932	    error != EBUSY &&
2933	    error != ENOTSUP &&
2934	    error != ENODEV &&
2935	    error != EDOM)
2936		fatal(0, "spa_vdev_attach(in-place) = %d", error);
2937
2938	nvlist_free(root);
2939}
2940
2941static void
2942ztest_verify_blocks(char *pool)
2943{
2944	int status;
2945	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
2946	char zbuf[1024];
2947	char *bin;
2948	char *ztest;
2949	char *isa;
2950	int isalen;
2951	FILE *fp;
2952
2953	if (realpath(progname, zdb) == NULL)
2954		assert(!"realpath() failed");
2955
2956	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
2957	bin = strstr(zdb, "/usr/bin/");
2958	ztest = strstr(bin, "/ztest");
2959	isa = bin + 8;
2960	isalen = ztest - isa;
2961	isa = strdup(isa);
2962	/* LINTED */
2963	(void) sprintf(bin,
2964	    "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache -O %s %s",
2965	    isalen,
2966	    isa,
2967	    zopt_verbose >= 3 ? "s" : "",
2968	    zopt_verbose >= 4 ? "v" : "",
2969	    ztest_random(2) == 0 ? "pre" : "post", pool);
2970	free(isa);
2971
2972	if (zopt_verbose >= 5)
2973		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
2974
2975	fp = popen(zdb, "r");
2976	assert(fp != NULL);
2977
2978	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
2979		if (zopt_verbose >= 3)
2980			(void) printf("%s", zbuf);
2981
2982	status = pclose(fp);
2983
2984	if (status == 0)
2985		return;
2986
2987	ztest_dump_core = 0;
2988	if (WIFEXITED(status))
2989		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
2990	else
2991		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
2992}
2993
2994static void
2995ztest_walk_pool_directory(char *header)
2996{
2997	spa_t *spa = NULL;
2998
2999	if (zopt_verbose >= 6)
3000		(void) printf("%s\n", header);
3001
3002	mutex_enter(&spa_namespace_lock);
3003	while ((spa = spa_next(spa)) != NULL)
3004		if (zopt_verbose >= 6)
3005			(void) printf("\t%s\n", spa_name(spa));
3006	mutex_exit(&spa_namespace_lock);
3007}
3008
3009static void
3010ztest_spa_import_export(char *oldname, char *newname)
3011{
3012	nvlist_t *config;
3013	uint64_t pool_guid;
3014	spa_t *spa;
3015	int error;
3016
3017	if (zopt_verbose >= 4) {
3018		(void) printf("import/export: old = %s, new = %s\n",
3019		    oldname, newname);
3020	}
3021
3022	/*
3023	 * Clean up from previous runs.
3024	 */
3025	(void) spa_destroy(newname);
3026
3027	/*
3028	 * Get the pool's configuration and guid.
3029	 */
3030	error = spa_open(oldname, &spa, FTAG);
3031	if (error)
3032		fatal(0, "spa_open('%s') = %d", oldname, error);
3033
3034	pool_guid = spa_guid(spa);
3035	spa_close(spa, FTAG);
3036
3037	ztest_walk_pool_directory("pools before export");
3038
3039	/*
3040	 * Export it.
3041	 */
3042	error = spa_export(oldname, &config, B_FALSE, B_FALSE);
3043	if (error)
3044		fatal(0, "spa_export('%s') = %d", oldname, error);
3045
3046	ztest_walk_pool_directory("pools after export");
3047
3048	/*
3049	 * Import it under the new name.
3050	 */
3051	error = spa_import(newname, config, NULL);
3052	if (error)
3053		fatal(0, "spa_import('%s') = %d", newname, error);
3054
3055	ztest_walk_pool_directory("pools after import");
3056
3057	/*
3058	 * Try to import it again -- should fail with EEXIST.
3059	 */
3060	error = spa_import(newname, config, NULL);
3061	if (error != EEXIST)
3062		fatal(0, "spa_import('%s') twice", newname);
3063
3064	/*
3065	 * Try to import it under a different name -- should fail with EEXIST.
3066	 */
3067	error = spa_import(oldname, config, NULL);
3068	if (error != EEXIST)
3069		fatal(0, "spa_import('%s') under multiple names", newname);
3070
3071	/*
3072	 * Verify that the pool is no longer visible under the old name.
3073	 */
3074	error = spa_open(oldname, &spa, FTAG);
3075	if (error != ENOENT)
3076		fatal(0, "spa_open('%s') = %d", newname, error);
3077
3078	/*
3079	 * Verify that we can open and close the pool using the new name.
3080	 */
3081	error = spa_open(newname, &spa, FTAG);
3082	if (error)
3083		fatal(0, "spa_open('%s') = %d", newname, error);
3084	ASSERT(pool_guid == spa_guid(spa));
3085	spa_close(spa, FTAG);
3086
3087	nvlist_free(config);
3088}
3089
3090static void *
3091ztest_resume(void *arg)
3092{
3093	spa_t *spa = arg;
3094
3095	while (!ztest_exiting) {
3096		(void) poll(NULL, 0, 1000);
3097
3098		if (!spa_suspended(spa))
3099			continue;
3100
3101		spa_vdev_state_enter(spa);
3102		vdev_clear(spa, NULL);
3103		(void) spa_vdev_state_exit(spa, NULL, 0);
3104
3105		zio_resume(spa);
3106	}
3107	return (NULL);
3108}
3109
3110static void *
3111ztest_thread(void *arg)
3112{
3113	ztest_args_t *za = arg;
3114	ztest_shared_t *zs = ztest_shared;
3115	hrtime_t now, functime;
3116	ztest_info_t *zi;
3117	int f, i;
3118
3119	while ((now = gethrtime()) < za->za_stop) {
3120		/*
3121		 * See if it's time to force a crash.
3122		 */
3123		if (now > za->za_kill) {
3124			zs->zs_alloc = spa_get_alloc(za->za_spa);
3125			zs->zs_space = spa_get_space(za->za_spa);
3126			(void) kill(getpid(), SIGKILL);
3127		}
3128
3129		/*
3130		 * Pick a random function.
3131		 */
3132		f = ztest_random(ZTEST_FUNCS);
3133		zi = &zs->zs_info[f];
3134
3135		/*
3136		 * Decide whether to call it, based on the requested frequency.
3137		 */
3138		if (zi->zi_call_target == 0 ||
3139		    (double)zi->zi_call_total / zi->zi_call_target >
3140		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3141			continue;
3142
3143		atomic_add_64(&zi->zi_calls, 1);
3144		atomic_add_64(&zi->zi_call_total, 1);
3145
3146		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
3147		    ZTEST_DIRSIZE;
3148		za->za_diroff_shared = (1ULL << 63);
3149
3150		for (i = 0; i < zi->zi_iters; i++)
3151			zi->zi_func(za);
3152
3153		functime = gethrtime() - now;
3154
3155		atomic_add_64(&zi->zi_call_time, functime);
3156
3157		if (zopt_verbose >= 4) {
3158			Dl_info dli;
3159			(void) dladdr((void *)zi->zi_func, &dli);
3160			(void) printf("%6.2f sec in %s\n",
3161			    (double)functime / NANOSEC, dli.dli_sname);
3162		}
3163
3164		/*
3165		 * If we're getting ENOSPC with some regularity, stop.
3166		 */
3167		if (zs->zs_enospc_count > 10)
3168			break;
3169	}
3170
3171	return (NULL);
3172}
3173
3174/*
3175 * Kick off threads to run tests on all datasets in parallel.
3176 */
3177static void
3178ztest_run(char *pool)
3179{
3180	int t, d, error;
3181	ztest_shared_t *zs = ztest_shared;
3182	ztest_args_t *za;
3183	spa_t *spa;
3184	char name[100];
3185	thread_t resume_tid;
3186
3187	ztest_exiting = B_FALSE;
3188
3189	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3190	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3191
3192	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3193		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3194
3195	/*
3196	 * Destroy one disk before we even start.
3197	 * It's mirrored, so everything should work just fine.
3198	 * This makes us exercise fault handling very early in spa_load().
3199	 */
3200	ztest_obliterate_one_disk(0);
3201
3202	/*
3203	 * Verify that the sum of the sizes of all blocks in the pool
3204	 * equals the SPA's allocated space total.
3205	 */
3206	ztest_verify_blocks(pool);
3207
3208	/*
3209	 * Kick off a replacement of the disk we just obliterated.
3210	 */
3211	kernel_init(FREAD | FWRITE);
3212	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3213	ztest_replace_one_disk(spa, 0);
3214	if (zopt_verbose >= 5)
3215		show_pool_stats(spa);
3216	spa_close(spa, FTAG);
3217	kernel_fini();
3218
3219	kernel_init(FREAD | FWRITE);
3220
3221	/*
3222	 * Verify that we can export the pool and reimport it under a
3223	 * different name.
3224	 */
3225	if (ztest_random(2) == 0) {
3226		(void) snprintf(name, 100, "%s_import", pool);
3227		ztest_spa_import_export(pool, name);
3228		ztest_spa_import_export(name, pool);
3229	}
3230
3231	/*
3232	 * Verify that we can loop over all pools.
3233	 */
3234	mutex_enter(&spa_namespace_lock);
3235	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3236		if (zopt_verbose > 3) {
3237			(void) printf("spa_next: found %s\n", spa_name(spa));
3238		}
3239	}
3240	mutex_exit(&spa_namespace_lock);
3241
3242	/*
3243	 * Open our pool.
3244	 */
3245	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3246
3247	/*
3248	 * Create a thread to periodically resume suspended I/O.
3249	 */
3250	VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND,
3251	    &resume_tid) == 0);
3252
3253	/*
3254	 * Verify that we can safely inquire about about any object,
3255	 * whether it's allocated or not.  To make it interesting,
3256	 * we probe a 5-wide window around each power of two.
3257	 * This hits all edge cases, including zero and the max.
3258	 */
3259	for (t = 0; t < 64; t++) {
3260		for (d = -5; d <= 5; d++) {
3261			error = dmu_object_info(spa->spa_meta_objset,
3262			    (1ULL << t) + d, NULL);
3263			ASSERT(error == 0 || error == ENOENT ||
3264			    error == EINVAL);
3265		}
3266	}
3267
3268	/*
3269	 * Now kick off all the tests that run in parallel.
3270	 */
3271	zs->zs_enospc_count = 0;
3272
3273	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3274
3275	if (zopt_verbose >= 4)
3276		(void) printf("starting main threads...\n");
3277
3278	za[0].za_start = gethrtime();
3279	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3280	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3281	za[0].za_kill = za[0].za_stop;
3282	if (ztest_random(100) < zopt_killrate)
3283		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3284
3285	for (t = 0; t < zopt_threads; t++) {
3286		d = t % zopt_datasets;
3287
3288		(void) strcpy(za[t].za_pool, pool);
3289		za[t].za_os = za[d].za_os;
3290		za[t].za_spa = spa;
3291		za[t].za_zilog = za[d].za_zilog;
3292		za[t].za_instance = t;
3293		za[t].za_random = ztest_random(-1ULL);
3294		za[t].za_start = za[0].za_start;
3295		za[t].za_stop = za[0].za_stop;
3296		za[t].za_kill = za[0].za_kill;
3297
3298		if (t < zopt_datasets) {
3299			ztest_replay_t zr;
3300			int test_future = FALSE;
3301			(void) rw_rdlock(&ztest_shared->zs_name_lock);
3302			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3303			error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
3304			    ztest_create_cb, NULL);
3305			if (error == EEXIST) {
3306				test_future = TRUE;
3307			} else if (error == ENOSPC) {
3308				zs->zs_enospc_count++;
3309				(void) rw_unlock(&ztest_shared->zs_name_lock);
3310				break;
3311			} else if (error != 0) {
3312				fatal(0, "dmu_objset_create(%s) = %d",
3313				    name, error);
3314			}
3315			error = dmu_objset_open(name, DMU_OST_OTHER,
3316			    DS_MODE_USER, &za[d].za_os);
3317			if (error)
3318				fatal(0, "dmu_objset_open('%s') = %d",
3319				    name, error);
3320			(void) rw_unlock(&ztest_shared->zs_name_lock);
3321			if (test_future)
3322				ztest_dmu_check_future_leak(&za[t]);
3323			zr.zr_os = za[d].za_os;
3324			zil_replay(zr.zr_os, &zr, &zr.zr_assign,
3325			    ztest_replay_vector, NULL);
3326			za[d].za_zilog = zil_open(za[d].za_os, NULL);
3327		}
3328
3329		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3330		    &za[t].za_thread) == 0);
3331	}
3332
3333	while (--t >= 0) {
3334		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3335		if (za[t].za_th)
3336			traverse_fini(za[t].za_th);
3337		if (t < zopt_datasets) {
3338			zil_close(za[t].za_zilog);
3339			dmu_objset_close(za[t].za_os);
3340		}
3341	}
3342
3343	if (zopt_verbose >= 3)
3344		show_pool_stats(spa);
3345
3346	txg_wait_synced(spa_get_dsl(spa), 0);
3347
3348	zs->zs_alloc = spa_get_alloc(spa);
3349	zs->zs_space = spa_get_space(spa);
3350
3351	/*
3352	 * If we had out-of-space errors, destroy a random objset.
3353	 */
3354	if (zs->zs_enospc_count != 0) {
3355		(void) rw_rdlock(&ztest_shared->zs_name_lock);
3356		d = (int)ztest_random(zopt_datasets);
3357		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3358		if (zopt_verbose >= 3)
3359			(void) printf("Destroying %s to free up space\n", name);
3360		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3361		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3362		(void) rw_unlock(&ztest_shared->zs_name_lock);
3363	}
3364
3365	txg_wait_synced(spa_get_dsl(spa), 0);
3366
3367	umem_free(za, zopt_threads * sizeof (ztest_args_t));
3368
3369	/* Kill the resume thread */
3370	ztest_exiting = B_TRUE;
3371	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3372
3373	/*
3374	 * Right before closing the pool, kick off a bunch of async I/O;
3375	 * spa_close() should wait for it to complete.
3376	 */
3377	for (t = 1; t < 50; t++)
3378		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
3379
3380	spa_close(spa, FTAG);
3381
3382	kernel_fini();
3383}
3384
3385void
3386print_time(hrtime_t t, char *timebuf)
3387{
3388	hrtime_t s = t / NANOSEC;
3389	hrtime_t m = s / 60;
3390	hrtime_t h = m / 60;
3391	hrtime_t d = h / 24;
3392
3393	s -= m * 60;
3394	m -= h * 60;
3395	h -= d * 24;
3396
3397	timebuf[0] = '\0';
3398
3399	if (d)
3400		(void) sprintf(timebuf,
3401		    "%llud%02lluh%02llum%02llus", d, h, m, s);
3402	else if (h)
3403		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
3404	else if (m)
3405		(void) sprintf(timebuf, "%llum%02llus", m, s);
3406	else
3407		(void) sprintf(timebuf, "%llus", s);
3408}
3409
3410/*
3411 * Create a storage pool with the given name and initial vdev size.
3412 * Then create the specified number of datasets in the pool.
3413 */
3414static void
3415ztest_init(char *pool)
3416{
3417	spa_t *spa;
3418	int error;
3419	nvlist_t *nvroot;
3420
3421	kernel_init(FREAD | FWRITE);
3422
3423	/*
3424	 * Create the storage pool.
3425	 */
3426	(void) spa_destroy(pool);
3427	ztest_shared->zs_vdev_primaries = 0;
3428	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
3429	    0, zopt_raidz, zopt_mirrors, 1);
3430	error = spa_create(pool, nvroot, NULL, NULL, NULL);
3431	nvlist_free(nvroot);
3432
3433	if (error)
3434		fatal(0, "spa_create() = %d", error);
3435	error = spa_open(pool, &spa, FTAG);
3436	if (error)
3437		fatal(0, "spa_open() = %d", error);
3438
3439	if (zopt_verbose >= 3)
3440		show_pool_stats(spa);
3441
3442	spa_close(spa, FTAG);
3443
3444	kernel_fini();
3445}
3446
3447int
3448main(int argc, char **argv)
3449{
3450	int kills = 0;
3451	int iters = 0;
3452	int i, f;
3453	ztest_shared_t *zs;
3454	ztest_info_t *zi;
3455	char timebuf[100];
3456	char numbuf[6];
3457
3458	(void) setvbuf(stdout, NULL, _IOLBF, 0);
3459
3460	/* Override location of zpool.cache */
3461	spa_config_path = "/tmp/zpool.cache";
3462
3463	ztest_random_fd = open("/dev/urandom", O_RDONLY);
3464
3465	process_options(argc, argv);
3466
3467	argc -= optind;
3468	argv += optind;
3469
3470	dprintf_setup(&argc, argv);
3471
3472	/*
3473	 * Blow away any existing copy of zpool.cache
3474	 */
3475	if (zopt_init != 0)
3476		(void) remove("/tmp/zpool.cache");
3477
3478	zs = ztest_shared = (void *)mmap(0,
3479	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
3480	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
3481
3482	if (zopt_verbose >= 1) {
3483		(void) printf("%llu vdevs, %d datasets, %d threads,"
3484		    " %llu seconds...\n",
3485		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
3486		    (u_longlong_t)zopt_time);
3487	}
3488
3489	/*
3490	 * Create and initialize our storage pool.
3491	 */
3492	for (i = 1; i <= zopt_init; i++) {
3493		bzero(zs, sizeof (ztest_shared_t));
3494		if (zopt_verbose >= 3 && zopt_init != 1)
3495			(void) printf("ztest_init(), pass %d\n", i);
3496		ztest_init(zopt_pool);
3497	}
3498
3499	/*
3500	 * Initialize the call targets for each function.
3501	 */
3502	for (f = 0; f < ZTEST_FUNCS; f++) {
3503		zi = &zs->zs_info[f];
3504
3505		*zi = ztest_info[f];
3506
3507		if (*zi->zi_interval == 0)
3508			zi->zi_call_target = UINT64_MAX;
3509		else
3510			zi->zi_call_target = zopt_time / *zi->zi_interval;
3511	}
3512
3513	zs->zs_start_time = gethrtime();
3514	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
3515
3516	/*
3517	 * Run the tests in a loop.  These tests include fault injection
3518	 * to verify that self-healing data works, and forced crashes
3519	 * to verify that we never lose on-disk consistency.
3520	 */
3521	while (gethrtime() < zs->zs_stop_time) {
3522		int status;
3523		pid_t pid;
3524		char *tmp;
3525
3526		/*
3527		 * Initialize the workload counters for each function.
3528		 */
3529		for (f = 0; f < ZTEST_FUNCS; f++) {
3530			zi = &zs->zs_info[f];
3531			zi->zi_calls = 0;
3532			zi->zi_call_time = 0;
3533		}
3534
3535		pid = fork();
3536
3537		if (pid == -1)
3538			fatal(1, "fork failed");
3539
3540		if (pid == 0) {	/* child */
3541			struct rlimit rl = { 1024, 1024 };
3542			(void) setrlimit(RLIMIT_NOFILE, &rl);
3543			(void) enable_extended_FILE_stdio(-1, -1);
3544			ztest_run(zopt_pool);
3545			exit(0);
3546		}
3547
3548		while (waitpid(pid, &status, 0) != pid)
3549			continue;
3550
3551		if (WIFEXITED(status)) {
3552			if (WEXITSTATUS(status) != 0) {
3553				(void) fprintf(stderr,
3554				    "child exited with code %d\n",
3555				    WEXITSTATUS(status));
3556				exit(2);
3557			}
3558		} else if (WIFSIGNALED(status)) {
3559			if (WTERMSIG(status) != SIGKILL) {
3560				(void) fprintf(stderr,
3561				    "child died with signal %d\n",
3562				    WTERMSIG(status));
3563				exit(3);
3564			}
3565			kills++;
3566		} else {
3567			(void) fprintf(stderr, "something strange happened "
3568			    "to child\n");
3569			exit(4);
3570		}
3571
3572		iters++;
3573
3574		if (zopt_verbose >= 1) {
3575			hrtime_t now = gethrtime();
3576
3577			now = MIN(now, zs->zs_stop_time);
3578			print_time(zs->zs_stop_time - now, timebuf);
3579			nicenum(zs->zs_space, numbuf);
3580
3581			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
3582			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
3583			    iters,
3584			    WIFEXITED(status) ? "Complete" : "SIGKILL",
3585			    (u_longlong_t)zs->zs_enospc_count,
3586			    100.0 * zs->zs_alloc / zs->zs_space,
3587			    numbuf,
3588			    100.0 * (now - zs->zs_start_time) /
3589			    (zopt_time * NANOSEC), timebuf);
3590		}
3591
3592		if (zopt_verbose >= 2) {
3593			(void) printf("\nWorkload summary:\n\n");
3594			(void) printf("%7s %9s   %s\n",
3595			    "Calls", "Time", "Function");
3596			(void) printf("%7s %9s   %s\n",
3597			    "-----", "----", "--------");
3598			for (f = 0; f < ZTEST_FUNCS; f++) {
3599				Dl_info dli;
3600
3601				zi = &zs->zs_info[f];
3602				print_time(zi->zi_call_time, timebuf);
3603				(void) dladdr((void *)zi->zi_func, &dli);
3604				(void) printf("%7llu %9s   %s\n",
3605				    (u_longlong_t)zi->zi_calls, timebuf,
3606				    dli.dli_sname);
3607			}
3608			(void) printf("\n");
3609		}
3610
3611		/*
3612		 * It's possible that we killed a child during a rename test, in
3613		 * which case we'll have a 'ztest_tmp' pool lying around instead
3614		 * of 'ztest'.  Do a blind rename in case this happened.
3615		 */
3616		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
3617		(void) strcpy(tmp, zopt_pool);
3618		(void) strcat(tmp, "_tmp");
3619		kernel_init(FREAD | FWRITE);
3620		(void) spa_rename(tmp, zopt_pool);
3621		kernel_fini();
3622		umem_free(tmp, strlen(tmp) + 1);
3623	}
3624
3625	ztest_verify_blocks(zopt_pool);
3626
3627	if (zopt_verbose >= 1) {
3628		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
3629		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
3630	}
3631
3632	return (0);
3633}
3634