tables.h revision 8855
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)tables.h	8.1 (Berkeley) 5/31/93
38 *	$Id: tables.h,v 1.2 1994/09/24 02:56:35 davidg Exp $
39 */
40
41/*
42 * data structures and constants used by the different databases kept by pax
43 */
44
45/*
46 * Hash Table Sizes MUST BE PRIME, if set too small performance suffers.
47 * Probably safe to expect 500000 inodes per tape. Assuming good key
48 * distribution (inodes) chains of under 50 long (worse case) is ok.
49 */
50#define L_TAB_SZ	2503		/* hard link hash table size */
51#define F_TAB_SZ	50503		/* file time hash table size */
52#define N_TAB_SZ	541		/* interactive rename hash table */
53#define D_TAB_SZ	317		/* unique device mapping table */
54#define A_TAB_SZ	317		/* ftree dir access time reset table */
55#define MAXKEYLEN	64		/* max number of chars for hash */
56
57/*
58 * file hard link structure (hashed by dev/ino and chained) used to find the
59 * hard links in a file system or with some archive formats (cpio)
60 */
61typedef struct hrdlnk {
62	char		*name;	/* name of first file seen with this ino/dev */
63	dev_t		dev;	/* files device number */
64	ino_t		ino;	/* files inode number */
65	u_long		nlink;	/* expected link count */
66	struct hrdlnk	*fow;
67} HRDLNK;
68
69/*
70 * Archive write update file time table (the -u, -C flag), hashed by filename.
71 * Filenames are stored in a scratch file at seek offset into the file. The
72 * file time (mod time) and the file name length (for a quick check) are
73 * stored in a hash table node. We were forced to use a scratch file because
74 * with -u, the mtime for every node in the archive must always be available
75 * to compare against (and this data can get REALLY large with big archives).
76 * By being careful to read only when we have a good chance of a match, the
77 * performance loss is not measurable (and the size of the archive we can
78 * handle is greatly increased).
79 */
80typedef struct ftm {
81	int		namelen;	/* file name length */
82	time_t		mtime;		/* files last modification time */
83	off_t		seek;		/* loacation in scratch file */
84	struct ftm	*fow;
85} FTM;
86
87/*
88 * Interactive rename table (-i flag), hashed by orig filename.
89 * We assume this will not be a large table as this mapping data can only be
90 * obtained through interactive input by the user. Nobody is going to type in
91 * changes for 500000 files? We use chaining to resolve collisions.
92 */
93
94typedef struct namt {
95	char		*oname;		/* old name */
96	char		*nname;		/* new name typed in by the user */
97	struct namt	*fow;
98} NAMT;
99
100/*
101 * Unique device mapping tables. Some protocols (e.g. cpio) require that the
102 * <c_dev,c_ino> pair will uniquely identify a file in an archive unless they
103 * are links to the same file. Appending to archives can break this. For those
104 * protocols that have this requirement we map c_dev to a unique value not seen
105 * in the archive when we append. We also try to handle inode truncation with
106 * this table. (When the inode field in the archive header are too small, we
107 * remap the dev on writes to remove accidental collisions).
108 *
109 * The list is hashed by device number using chain collision resolution. Off of
110 * each DEVT are linked the various remaps for this device based on those bits
111 * in the inode which were truncated. For example if we are just remapping to
112 * avoid a device number during an update append, off the DEVT we would have
113 * only a single DLIST that has a truncation id of 0 (no inode bits were
114 * stripped for this device so far). When we spot inode truncation we create
115 * a new mapping based on the set of bits in the inode which were stripped off.
116 * so if the top four bits of the inode are stripped and they have a pattern of
117 * 0110...... (where . are those bits not truncated) we would have a mapping
118 * assigned for all inodes that has the same 0110.... pattern (with this dev
119 * number of course). This keeps the mapping sparse and should be able to store
120 * close to the limit of files which can be represented by the optimal
121 * combination of dev and inode bits, and without creating a fouled up archive.
122 * Note we also remap truncated devs in the same way (an exercise for the
123 * dedicated reader; always wanted to say that...:)
124 */
125
126typedef struct devt {
127	dev_t		dev;	/* the orig device number we now have to map */
128	struct devt	*fow;	/* new device map list */
129	struct dlist	*list;	/* map list based on inode truncation bits */
130} DEVT;
131
132typedef struct dlist {
133	ino_t trunc_bits;	/* truncation pattern for a specific map */
134	dev_t dev;		/* the new device id we use */
135	struct dlist *fow;
136} DLIST;
137
138/*
139 * ftree directory access time reset table. When we are done with with a
140 * subtree we reset the access and mod time of the directory when the tflag is
141 * set. Not really explicitly specified in the pax spec, but easy and fast to
142 * do (and this may have even been intended in the spec, it is not clear).
143 * table is hashed by inode with chaining.
144 */
145
146typedef struct atdir {
147	char *name;	/* name of directory to reset */
148	dev_t dev;	/* dev and inode for fast lookup */
149	ino_t ino;
150	time_t mtime;	/* access and mod time to reset to */
151	time_t atime;
152	struct atdir *fow;
153} ATDIR;
154
155/*
156 * created directory time and mode storage entry. After pax is finished during
157 * extraction or copy, we must reset directory access modes and times that
158 * may have been modified after creation (they no longer have the specified
159 * times and/or modes). We must reset time in the reverse order of creation,
160 * because entries are added  from the top of the file tree to the bottom.
161 * We MUST reset times from leaf to root (it will not work the other
162 * direction).  Entries are recorded into a spool file to make reverse
163 * reading faster.
164 */
165
166typedef struct dirdata {
167	int nlen;	/* length of the directory name (includes \0) */
168	off_t npos;	/* position in file where this dir name starts */
169	mode_t mode;	/* file mode to restore */
170	time_t mtime;	/* mtime to set */
171	time_t atime;	/* atime to set */
172	int frc_mode;	/* do we force mode settings? */
173} DIRDATA;
174