tables.c revision 46684
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#ifndef lint
39#if 0
40static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
41#endif
42static const char rcsid[] =
43	"$Id: tables.c,v 1.11 1998/05/15 06:27:46 charnier Exp $";
44#endif /* not lint */
45
46#include <sys/types.h>
47#include <sys/time.h>
48#include <sys/stat.h>
49#include <sys/fcntl.h>
50#include <errno.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55#include "pax.h"
56#include "tables.h"
57#include "extern.h"
58
59/*
60 * Routines for controlling the contents of all the different databases pax
61 * keeps. Tables are dynamically created only when they are needed. The
62 * goal was speed and the ability to work with HUGE archives. The databases
63 * were kept simple, but do have complex rules for when the contents change.
64 * As of this writing, the POSIX library functions were more complex than
65 * needed for this application (pax databases have very short lifetimes and
66 * do not survive after pax is finished). Pax is required to handle very
67 * large archives. These database routines carefully combine memory usage and
68 * temporary file storage in ways which will not significantly impact runtime
69 * performance while allowing the largest possible archives to be handled.
70 * Trying to force the fit to the POSIX databases routines was not considered
71 * time well spent.
72 */
73
74static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75static FTM **ftab = NULL;	/* file time table for updating arch */
76static NAMT **ntab = NULL;	/* interactive rename storage table */
77static DEVT **dtab = NULL;	/* device/inode mapping tables */
78static ATDIR **atab = NULL;	/* file tree directory time reset table */
79static int dirfd = -1;		/* storage for setting created dir time/mode */
80static u_long dircnt;		/* entries in dir time/mode storage */
81static int ffd = -1;		/* tmp file for file time table name storage */
82
83static DEVT *chk_dev __P((dev_t, int));
84
85/*
86 * hard link table routines
87 *
88 * The hard link table tries to detect hard links to files using the device and
89 * inode values. We do this when writing an archive, so we can tell the format
90 * write routine that this file is a hard link to another file. The format
91 * write routine then can store this file in whatever way it wants (as a hard
92 * link if the format supports that like tar, or ignore this info like cpio).
93 * (Actually a field in the format driver table tells us if the format wants
94 * hard link info. if not, we do not waste time looking for them). We also use
95 * the same table when reading an archive. In that situation, this table is
96 * used by the format read routine to detect hard links from stored dev and
97 * inode numbers (like cpio). This will allow pax to create a link when one
98 * can be detected by the archive format.
99 */
100
101/*
102 * lnk_start
103 *	Creates the hard link table.
104 * Return:
105 *	0 if created, -1 if failure
106 */
107
108#if __STDC__
109int
110lnk_start(void)
111#else
112int
113lnk_start()
114#endif
115{
116	if (ltab != NULL)
117		return(0);
118 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
119                pax_warn(1, "Cannot allocate memory for hard link table");
120                return(-1);
121        }
122	return(0);
123}
124
125/*
126 * chk_lnk()
127 *	Looks up entry in hard link hash table. If found, it copies the name
128 *	of the file it is linked to (we already saw that file) into ln_name.
129 *	lnkcnt is decremented and if goes to 1 the node is deleted from the
130 *	database. (We have seen all the links to this file). If not found,
131 *	we add the file to the database if it has the potential for having
132 *	hard links to other files we may process (it has a link count > 1)
133 * Return:
134 *	if found returns 1; if not found returns 0; -1 on error
135 */
136
137#if __STDC__
138int
139chk_lnk(register ARCHD *arcn)
140#else
141int
142chk_lnk(arcn)
143	register ARCHD *arcn;
144#endif
145{
146	register HRDLNK *pt;
147	register HRDLNK **ppt;
148	register u_int indx;
149
150	if (ltab == NULL)
151		return(-1);
152	/*
153	 * ignore those nodes that cannot have hard links
154	 */
155	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
156		return(0);
157
158	/*
159	 * hash inode number and look for this file
160	 */
161	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
162	if ((pt = ltab[indx]) != NULL) {
163		/*
164		 * it's hash chain in not empty, walk down looking for it
165		 */
166		ppt = &(ltab[indx]);
167		while (pt != NULL) {
168			if ((pt->ino == arcn->sb.st_ino) &&
169			    (pt->dev == arcn->sb.st_dev))
170				break;
171			ppt = &(pt->fow);
172			pt = pt->fow;
173		}
174
175		if (pt != NULL) {
176			/*
177			 * found a link. set the node type and copy in the
178			 * name of the file it is to link to. we need to
179			 * handle hardlinks to regular files differently than
180			 * other links.
181			 */
182			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
183				PAXPATHLEN+1);
184			arcn->ln_name[PAXPATHLEN] = '\0';
185			if (arcn->type == PAX_REG)
186				arcn->type = PAX_HRG;
187			else
188				arcn->type = PAX_HLK;
189
190			/*
191			 * if we have found all the links to this file, remove
192			 * it from the database
193			 */
194			if (--pt->nlink <= 1) {
195				*ppt = pt->fow;
196				(void)free((char *)pt->name);
197				(void)free((char *)pt);
198			}
199			return(1);
200		}
201	}
202
203	/*
204	 * we never saw this file before. It has links so we add it to the
205	 * front of this hash chain
206	 */
207	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
208		if ((pt->name = strdup(arcn->name)) != NULL) {
209			pt->dev = arcn->sb.st_dev;
210			pt->ino = arcn->sb.st_ino;
211			pt->nlink = arcn->sb.st_nlink;
212			pt->fow = ltab[indx];
213			ltab[indx] = pt;
214			return(0);
215		}
216		(void)free((char *)pt);
217	}
218
219	pax_warn(1, "Hard link table out of memory");
220	return(-1);
221}
222
223/*
224 * purg_lnk
225 *	remove reference for a file that we may have added to the data base as
226 *	a potential source for hard links. We ended up not using the file, so
227 *	we do not want to accidently point another file at it later on.
228 */
229
230#if __STDC__
231void
232purg_lnk(register ARCHD *arcn)
233#else
234void
235purg_lnk(arcn)
236	register ARCHD *arcn;
237#endif
238{
239	register HRDLNK *pt;
240	register HRDLNK **ppt;
241	register u_int indx;
242
243	if (ltab == NULL)
244		return;
245	/*
246	 * do not bother to look if it could not be in the database
247	 */
248	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
249	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
250		return;
251
252	/*
253	 * find the hash chain for this inode value, if empty return
254	 */
255	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
256	if ((pt = ltab[indx]) == NULL)
257		return;
258
259	/*
260	 * walk down the list looking for the inode/dev pair, unlink and
261	 * free if found
262	 */
263	ppt = &(ltab[indx]);
264	while (pt != NULL) {
265		if ((pt->ino == arcn->sb.st_ino) &&
266		    (pt->dev == arcn->sb.st_dev))
267			break;
268		ppt = &(pt->fow);
269		pt = pt->fow;
270	}
271	if (pt == NULL)
272		return;
273
274	/*
275	 * remove and free it
276	 */
277	*ppt = pt->fow;
278	(void)free((char *)pt->name);
279	(void)free((char *)pt);
280}
281
282/*
283 * lnk_end()
284 *	pull apart a existing link table so we can reuse it. We do this between
285 *	read and write phases of append with update. (The format may have
286 *	used the link table, and we need to start with a fresh table for the
287 *	write phase
288 */
289
290#if __STDC__
291void
292lnk_end(void)
293#else
294void
295lnk_end()
296#endif
297{
298	register int i;
299	register HRDLNK *pt;
300	register HRDLNK *ppt;
301
302	if (ltab == NULL)
303		return;
304
305	for (i = 0; i < L_TAB_SZ; ++i) {
306		if (ltab[i] == NULL)
307			continue;
308		pt = ltab[i];
309		ltab[i] = NULL;
310
311		/*
312		 * free up each entry on this chain
313		 */
314		while (pt != NULL) {
315			ppt = pt;
316			pt = ppt->fow;
317			(void)free((char *)ppt->name);
318			(void)free((char *)ppt);
319		}
320	}
321	return;
322}
323
324/*
325 * modification time table routines
326 *
327 * The modification time table keeps track of last modification times for all
328 * files stored in an archive during a write phase when -u is set. We only
329 * add a file to the archive if it is newer than a file with the same name
330 * already stored on the archive (if there is no other file with the same
331 * name on the archive it is added). This applies to writes and appends.
332 * An append with an -u must read the archive and store the modification time
333 * for every file on that archive before starting the write phase. It is clear
334 * that this is one HUGE database. To save memory space, the actual file names
335 * are stored in a scatch file and indexed by an in memory hash table. The
336 * hash table is indexed by hashing the file path. The nodes in the table store
337 * the length of the filename and the lseek offset within the scratch file
338 * where the actual name is stored. Since there are never any deletions to this
339 * table, fragmentation of the scratch file is never a issue. Lookups seem to
340 * not exhibit any locality at all (files in the database are rarely
341 * looked up more than once...). So caching is just a waste of memory. The
342 * only limitation is the amount of scatch file space available to store the
343 * path names.
344 */
345
346/*
347 * ftime_start()
348 *	create the file time hash table and open for read/write the scratch
349 *	file. (after created it is unlinked, so when we exit we leave
350 *	no witnesses).
351 * Return:
352 *	0 if the table and file was created ok, -1 otherwise
353 */
354
355#if __STDC__
356int
357ftime_start(void)
358#else
359int
360ftime_start()
361#endif
362{
363	char *pt;
364
365	if (ftab != NULL)
366		return(0);
367 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
368                pax_warn(1, "Cannot allocate memory for file time table");
369                return(-1);
370        }
371
372	/*
373	 * get random name and create temporary scratch file, unlink name
374	 * so it will get removed on exit
375	 */
376	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
377		return(-1);
378	(void)unlink(pt);
379
380	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
381		sys_warn(1, errno, "Unable to open temporary file: %s", pt);
382		return(-1);
383	}
384
385	(void)unlink(pt);
386	return(0);
387}
388
389/*
390 * chk_ftime()
391 *	looks up entry in file time hash table. If not found, the file is
392 *	added to the hash table and the file named stored in the scratch file.
393 *	If a file with the same name is found, the file times are compared and
394 *	the most recent file time is retained. If the new file was younger (or
395 *	was not in the database) the new file is selected for storage.
396 * Return:
397 *	0 if file should be added to the archive, 1 if it should be skipped,
398 *	-1 on error
399 */
400
401#if __STDC__
402int
403chk_ftime(register ARCHD *arcn)
404#else
405int
406chk_ftime(arcn)
407	register ARCHD *arcn;
408#endif
409{
410	register FTM *pt;
411	register int namelen;
412	register u_int indx;
413	char ckname[PAXPATHLEN+1];
414
415	/*
416	 * no info, go ahead and add to archive
417	 */
418	if (ftab == NULL)
419		return(0);
420
421	/*
422	 * hash the pathname and look up in table
423	 */
424	namelen = arcn->nlen;
425	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
426	if ((pt = ftab[indx]) != NULL) {
427		/*
428		 * the hash chain is not empty, walk down looking for match
429		 * only read up the path names if the lengths match, speeds
430		 * up the search a lot
431		 */
432		while (pt != NULL) {
433			if (pt->namelen == namelen) {
434				/*
435				 * potential match, have to read the name
436				 * from the scratch file.
437				 */
438				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
439					sys_warn(1, errno,
440					    "Failed ftime table seek");
441					return(-1);
442				}
443				if (read(ffd, ckname, namelen) != namelen) {
444					sys_warn(1, errno,
445					    "Failed ftime table read");
446					return(-1);
447				}
448
449				/*
450				 * if the names match, we are done
451				 */
452				if (!strncmp(ckname, arcn->name, namelen))
453					break;
454			}
455
456			/*
457			 * try the next entry on the chain
458			 */
459			pt = pt->fow;
460		}
461
462		if (pt != NULL) {
463			/*
464			 * found the file, compare the times, save the newer
465			 */
466			if (arcn->sb.st_mtime > pt->mtime) {
467				/*
468				 * file is newer
469				 */
470				pt->mtime = arcn->sb.st_mtime;
471				return(0);
472			}
473			/*
474			 * file is older
475			 */
476			return(1);
477		}
478	}
479
480	/*
481	 * not in table, add it
482	 */
483	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
484		/*
485		 * add the name at the end of the scratch file, saving the
486		 * offset. add the file to the head of the hash chain
487		 */
488		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
489			if (write(ffd, arcn->name, namelen) == namelen) {
490				pt->mtime = arcn->sb.st_mtime;
491				pt->namelen = namelen;
492				pt->fow = ftab[indx];
493				ftab[indx] = pt;
494				return(0);
495			}
496			sys_warn(1, errno, "Failed write to file time table");
497		} else
498			sys_warn(1, errno, "Failed seek on file time table");
499	} else
500		pax_warn(1, "File time table ran out of memory");
501
502	if (pt != NULL)
503		(void)free((char *)pt);
504	return(-1);
505}
506
507/*
508 * Interactive rename table routines
509 *
510 * The interactive rename table keeps track of the new names that the user
511 * assigns to files from tty input. Since this map is unique for each file
512 * we must store it in case there is a reference to the file later in archive
513 * (a link). Otherwise we will be unable to find the file we know was
514 * extracted. The remapping of these files is stored in a memory based hash
515 * table (it is assumed since input must come from /dev/tty, it is unlikely to
516 * be a very large table).
517 */
518
519/*
520 * name_start()
521 *	create the interactive rename table
522 * Return:
523 *	0 if successful, -1 otherwise
524 */
525
526#if __STDC__
527int
528name_start(void)
529#else
530int
531name_start()
532#endif
533{
534	if (ntab != NULL)
535		return(0);
536 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
537                pax_warn(1, "Cannot allocate memory for interactive rename table");
538                return(-1);
539        }
540	return(0);
541}
542
543/*
544 * add_name()
545 *	add the new name to old name mapping just created by the user.
546 *	If an old name mapping is found (there may be duplicate names on an
547 *	archive) only the most recent is kept.
548 * Return:
549 *	0 if added, -1 otherwise
550 */
551
552#if __STDC__
553int
554add_name(register char *oname, int onamelen, char *nname)
555#else
556int
557add_name(oname, onamelen, nname)
558	register char *oname;
559	int onamelen;
560	char *nname;
561#endif
562{
563	register NAMT *pt;
564	register u_int indx;
565
566	if (ntab == NULL) {
567		/*
568		 * should never happen
569		 */
570		pax_warn(0, "No interactive rename table, links may fail\n");
571		return(0);
572	}
573
574	/*
575	 * look to see if we have already mapped this file, if so we
576	 * will update it
577	 */
578	indx = st_hash(oname, onamelen, N_TAB_SZ);
579	if ((pt = ntab[indx]) != NULL) {
580		/*
581		 * look down the has chain for the file
582		 */
583		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
584			pt = pt->fow;
585
586		if (pt != NULL) {
587			/*
588			 * found an old mapping, replace it with the new one
589			 * the user just input (if it is different)
590			 */
591			if (strcmp(nname, pt->nname) == 0)
592				return(0);
593
594			(void)free((char *)pt->nname);
595			if ((pt->nname = strdup(nname)) == NULL) {
596				pax_warn(1, "Cannot update rename table");
597				return(-1);
598			}
599			return(0);
600		}
601	}
602
603	/*
604	 * this is a new mapping, add it to the table
605	 */
606	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
607		if ((pt->oname = strdup(oname)) != NULL) {
608			if ((pt->nname = strdup(nname)) != NULL) {
609				pt->fow = ntab[indx];
610				ntab[indx] = pt;
611				return(0);
612			}
613			(void)free((char *)pt->oname);
614		}
615		(void)free((char *)pt);
616	}
617	pax_warn(1, "Interactive rename table out of memory");
618	return(-1);
619}
620
621/*
622 * sub_name()
623 *	look up a link name to see if it points at a file that has been
624 *	remapped by the user. If found, the link is adjusted to contain the
625 *	new name (oname is the link to name)
626 */
627
628#if __STDC__
629void
630sub_name(register char *oname, int *onamelen)
631#else
632void
633sub_name(oname, onamelen)
634	register char *oname;
635	int *onamelen;
636#endif
637{
638	register NAMT *pt;
639	register u_int indx;
640
641	if (ntab == NULL)
642		return;
643	/*
644	 * look the name up in the hash table
645	 */
646	indx = st_hash(oname, *onamelen, N_TAB_SZ);
647	if ((pt = ntab[indx]) == NULL)
648		return;
649
650	while (pt != NULL) {
651		/*
652		 * walk down the hash cahin looking for a match
653		 */
654		if (strcmp(oname, pt->oname) == 0) {
655			/*
656			 * found it, replace it with the new name
657			 * and return (we know that oname has enough space)
658			 */
659			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
660			oname[PAXPATHLEN] = '\0';
661			return;
662		}
663		pt = pt->fow;
664	}
665
666	/*
667	 * no match, just return
668	 */
669	return;
670}
671
672/*
673 * device/inode mapping table routines
674 * (used with formats that store device and inodes fields)
675 *
676 * device/inode mapping tables remap the device field in a archive header. The
677 * device/inode fields are used to determine when files are hard links to each
678 * other. However these values have very little meaning outside of that. This
679 * database is used to solve one of two different problems.
680 *
681 * 1) when files are appended to an archive, while the new files may have hard
682 * links to each other, you cannot determine if they have hard links to any
683 * file already stored on the archive from a prior run of pax. We must assume
684 * that these inode/device pairs are unique only within a SINGLE run of pax
685 * (which adds a set of files to an archive). So we have to make sure the
686 * inode/dev pairs we add each time are always unique. We do this by observing
687 * while the inode field is very dense, the use of the dev field is fairly
688 * sparse. Within each run of pax, we remap any device number of a new archive
689 * member that has a device number used in a prior run and already stored in a
690 * file on the archive. During the read phase of the append, we store the
691 * device numbers used and mark them to not be used by any file during the
692 * write phase. If during write we go to use one of those old device numbers,
693 * we remap it to a new value.
694 *
695 * 2) Often the fields in the archive header used to store these values are
696 * too small to store the entire value. The result is an inode or device value
697 * which can be truncated. This really can foul up an archive. With truncation
698 * we end up creating links between files that are really not links (after
699 * truncation the inodes are the same value). We address that by detecting
700 * truncation and forcing a remap of the device field to split truncated
701 * inodes away from each other. Each truncation creates a pattern of bits that
702 * are removed. We use this pattern of truncated bits to partition the inodes
703 * on a single device to many different devices (each one represented by the
704 * truncated bit pattern). All inodes on the same device that have the same
705 * truncation pattern are mapped to the same new device. Two inodes that
706 * truncate to the same value clearly will always have different truncation
707 * bit patterns, so they will be split from away each other. When we spot
708 * device truncation we remap the device number to a non truncated value.
709 * (for more info see table.h for the data structures involved).
710 */
711
712/*
713 * dev_start()
714 *	create the device mapping table
715 * Return:
716 *	0 if successful, -1 otherwise
717 */
718
719#if __STDC__
720int
721dev_start(void)
722#else
723int
724dev_start()
725#endif
726{
727	if (dtab != NULL)
728		return(0);
729 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
730                pax_warn(1, "Cannot allocate memory for device mapping table");
731                return(-1);
732        }
733	return(0);
734}
735
736/*
737 * add_dev()
738 *	add a device number to the table. this will force the device to be
739 *	remapped to a new value if it be used during a write phase. This
740 *	function is called during the read phase of an append to prohibit the
741 *	use of any device number already in the archive.
742 * Return:
743 *	0 if added ok, -1 otherwise
744 */
745
746#if __STDC__
747int
748add_dev(register ARCHD *arcn)
749#else
750int
751add_dev(arcn)
752	register ARCHD *arcn;
753#endif
754{
755	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
756		return(-1);
757	return(0);
758}
759
760/*
761 * chk_dev()
762 *	check for a device value in the device table. If not found and the add
763 *	flag is set, it is added. This does NOT assign any mapping values, just
764 *	adds the device number as one that need to be remapped. If this device
765 *	is already mapped, just return with a pointer to that entry.
766 * Return:
767 *	pointer to the entry for this device in the device map table. Null
768 *	if the add flag is not set and the device is not in the table (it is
769 *	not been seen yet). If add is set and the device cannot be added, null
770 *	is returned (indicates an error).
771 */
772
773#if __STDC__
774static DEVT *
775chk_dev(dev_t dev, int add)
776#else
777static DEVT *
778chk_dev(dev, add)
779	dev_t dev;
780	int add;
781#endif
782{
783	register DEVT *pt;
784	register u_int indx;
785
786	if (dtab == NULL)
787		return(NULL);
788	/*
789	 * look to see if this device is already in the table
790	 */
791	indx = ((unsigned)dev) % D_TAB_SZ;
792	if ((pt = dtab[indx]) != NULL) {
793		while ((pt != NULL) && (pt->dev != dev))
794			pt = pt->fow;
795
796		/*
797		 * found it, return a pointer to it
798		 */
799		if (pt != NULL)
800			return(pt);
801	}
802
803	/*
804	 * not in table, we add it only if told to as this may just be a check
805	 * to see if a device number is being used.
806	 */
807	if (add == 0)
808		return(NULL);
809
810	/*
811	 * allocate a node for this device and add it to the front of the hash
812	 * chain. Note we do not assign remaps values here, so the pt->list
813	 * list must be NULL.
814	 */
815	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
816		pax_warn(1, "Device map table out of memory");
817		return(NULL);
818	}
819	pt->dev = dev;
820	pt->list = NULL;
821	pt->fow = dtab[indx];
822	dtab[indx] = pt;
823	return(pt);
824}
825/*
826 * map_dev()
827 *	given an inode and device storage mask (the mask has a 1 for each bit
828 *	the archive format is able to store in a header), we check for inode
829 *	and device truncation and remap the device as required. Device mapping
830 *	can also occur when during the read phase of append a device number was
831 *	seen (and was marked as do not use during the write phase). WE ASSUME
832 *	that unsigned longs are the same size or bigger than the fields used
833 *	for ino_t and dev_t. If not the types will have to be changed.
834 * Return:
835 *	0 if all ok, -1 otherwise.
836 */
837
838#if __STDC__
839int
840map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
841#else
842int
843map_dev(arcn, dev_mask, ino_mask)
844	register ARCHD *arcn;
845	u_long dev_mask;
846	u_long ino_mask;
847#endif
848{
849	register DEVT *pt;
850	register DLIST *dpt;
851	static dev_t lastdev = 0;	/* next device number to try */
852	int trc_ino = 0;
853	int trc_dev = 0;
854	ino_t trunc_bits = 0;
855	ino_t nino;
856
857	if (dtab == NULL)
858		return(0);
859	/*
860	 * check for device and inode truncation, and extract the truncated
861	 * bit pattern.
862	 */
863	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
864		++trc_dev;
865	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
866		++trc_ino;
867		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
868	}
869
870	/*
871	 * see if this device is already being mapped, look up the device
872	 * then find the truncation bit pattern which applies
873	 */
874	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
875		/*
876		 * this device is already marked to be remapped
877		 */
878		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
879			if (dpt->trunc_bits == trunc_bits)
880				break;
881
882		if (dpt != NULL) {
883			/*
884			 * we are being remapped for this device and pattern
885			 * change the device number to be stored and return
886			 */
887			arcn->sb.st_dev = dpt->dev;
888			arcn->sb.st_ino = nino;
889			return(0);
890		}
891	} else {
892		/*
893		 * this device is not being remapped YET. if we do not have any
894		 * form of truncation, we do not need a remap
895		 */
896		if (!trc_ino && !trc_dev)
897			return(0);
898
899		/*
900		 * we have truncation, have to add this as a device to remap
901		 */
902		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
903			goto bad;
904
905		/*
906		 * if we just have a truncated inode, we have to make sure that
907		 * all future inodes that do not truncate (they have the
908		 * truncation pattern of all 0's) continue to map to the same
909		 * device number. We probably have already written inodes with
910		 * this device number to the archive with the truncation
911		 * pattern of all 0's. So we add the mapping for all 0's to the
912		 * same device number.
913		 */
914		if (!trc_dev && (trunc_bits != 0)) {
915			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
916				goto bad;
917			dpt->trunc_bits = 0;
918			dpt->dev = arcn->sb.st_dev;
919			dpt->fow = pt->list;
920			pt->list = dpt;
921		}
922	}
923
924	/*
925	 * look for a device number not being used. We must watch for wrap
926	 * around on lastdev (so we do not get stuck looking forever!)
927	 */
928	while (++lastdev > 0) {
929		if (chk_dev(lastdev, 0) != NULL)
930			continue;
931		/*
932		 * found an unused value. If we have reached truncation point
933		 * for this format we are hosed, so we give up. Otherwise we
934		 * mark it as being used.
935		 */
936		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
937		    (chk_dev(lastdev, 1) == NULL))
938			goto bad;
939		break;
940	}
941
942	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
943		goto bad;
944
945	/*
946	 * got a new device number, store it under this truncation pattern.
947	 * change the device number this file is being stored with.
948	 */
949	dpt->trunc_bits = trunc_bits;
950	dpt->dev = lastdev;
951	dpt->fow = pt->list;
952	pt->list = dpt;
953	arcn->sb.st_dev = lastdev;
954	arcn->sb.st_ino = nino;
955	return(0);
956
957    bad:
958	pax_warn(1, "Unable to fix truncated inode/device field when storing %s",
959	    arcn->name);
960	pax_warn(0, "Archive may create improper hard links when extracted");
961	return(0);
962}
963
964/*
965 * directory access/mod time reset table routines (for directories READ by pax)
966 *
967 * The pax -t flag requires that access times of archive files to be the same
968 * before being read by pax. For regular files, access time is restored after
969 * the file has been copied. This database provides the same functionality for
970 * directories read during file tree traversal. Restoring directory access time
971 * is more complex than files since directories may be read several times until
972 * all the descendants in their subtree are visited by fts. Directory access
973 * and modification times are stored during the fts pre-order visit (done
974 * before any descendants in the subtree is visited) and restored after the
975 * fts post-order visit (after all the descendants have been visited). In the
976 * case of premature exit from a subtree (like from the effects of -n), any
977 * directory entries left in this database are reset during final cleanup
978 * operations of pax. Entries are hashed by inode number for fast lookup.
979 */
980
981/*
982 * atdir_start()
983 *	create the directory access time database for directories READ by pax.
984 * Return:
985 *	0 is created ok, -1 otherwise.
986 */
987
988#if __STDC__
989int
990atdir_start(void)
991#else
992int
993atdir_start()
994#endif
995{
996	if (atab != NULL)
997		return(0);
998 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
999                pax_warn(1,"Cannot allocate space for directory access time table");
1000                return(-1);
1001        }
1002	return(0);
1003}
1004
1005
1006/*
1007 * atdir_end()
1008 *	walk through the directory access time table and reset the access time
1009 *	of any directory who still has an entry left in the database. These
1010 *	entries are for directories READ by pax
1011 */
1012
1013#if __STDC__
1014void
1015atdir_end(void)
1016#else
1017void
1018atdir_end()
1019#endif
1020{
1021	register ATDIR *pt;
1022	register int i;
1023
1024	if (atab == NULL)
1025		return;
1026	/*
1027	 * for each non-empty hash table entry reset all the directories
1028	 * chained there.
1029	 */
1030	for (i = 0; i < A_TAB_SZ; ++i) {
1031		if ((pt = atab[i]) == NULL)
1032			continue;
1033		/*
1034		 * remember to force the times, set_ftime() looks at pmtime
1035		 * and patime, which only applies to things CREATED by pax,
1036		 * not read by pax. Read time reset is controlled by -t.
1037		 */
1038		for (; pt != NULL; pt = pt->fow)
1039			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1040	}
1041}
1042
1043/*
1044 * add_atdir()
1045 *	add a directory to the directory access time table. Table is hashed
1046 *	and chained by inode number. This is for directories READ by pax
1047 */
1048
1049#if __STDC__
1050void
1051add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1052#else
1053void
1054add_atdir(fname, dev, ino, mtime, atime)
1055	char *fname;
1056	dev_t dev;
1057	ino_t ino;
1058	time_t mtime;
1059	time_t atime;
1060#endif
1061{
1062	register ATDIR *pt;
1063	register u_int indx;
1064
1065	if (atab == NULL)
1066		return;
1067
1068	/*
1069	 * make sure this directory is not already in the table, if so just
1070	 * return (the older entry always has the correct time). The only
1071	 * way this will happen is when the same subtree can be traversed by
1072	 * different args to pax and the -n option is aborting fts out of a
1073	 * subtree before all the post-order visits have been made).
1074	 */
1075	indx = ((unsigned)ino) % A_TAB_SZ;
1076	if ((pt = atab[indx]) != NULL) {
1077		while (pt != NULL) {
1078			if ((pt->ino == ino) && (pt->dev == dev))
1079				break;
1080			pt = pt->fow;
1081		}
1082
1083		/*
1084		 * oops, already there. Leave it alone.
1085		 */
1086		if (pt != NULL)
1087			return;
1088	}
1089
1090	/*
1091	 * add it to the front of the hash chain
1092	 */
1093	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1094		if ((pt->name = strdup(fname)) != NULL) {
1095			pt->dev = dev;
1096			pt->ino = ino;
1097			pt->mtime = mtime;
1098			pt->atime = atime;
1099			pt->fow = atab[indx];
1100			atab[indx] = pt;
1101			return;
1102		}
1103		(void)free((char *)pt);
1104	}
1105
1106	pax_warn(1, "Directory access time reset table ran out of memory");
1107	return;
1108}
1109
1110/*
1111 * get_atdir()
1112 *	look up a directory by inode and device number to obtain the access
1113 *	and modification time you want to set to. If found, the modification
1114 *	and access time parameters are set and the entry is removed from the
1115 *	table (as it is no longer needed). These are for directories READ by
1116 *	pax
1117 * Return:
1118 *	0 if found, -1 if not found.
1119 */
1120
1121#if __STDC__
1122int
1123get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1124#else
1125int
1126get_atdir(dev, ino, mtime, atime)
1127	dev_t dev;
1128	ino_t ino;
1129	time_t *mtime;
1130	time_t *atime;
1131#endif
1132{
1133	register ATDIR *pt;
1134	register ATDIR **ppt;
1135	register u_int indx;
1136
1137	if (atab == NULL)
1138		return(-1);
1139	/*
1140	 * hash by inode and search the chain for an inode and device match
1141	 */
1142	indx = ((unsigned)ino) % A_TAB_SZ;
1143	if ((pt = atab[indx]) == NULL)
1144		return(-1);
1145
1146	ppt = &(atab[indx]);
1147	while (pt != NULL) {
1148		if ((pt->ino == ino) && (pt->dev == dev))
1149			break;
1150		/*
1151		 * no match, go to next one
1152		 */
1153		ppt = &(pt->fow);
1154		pt = pt->fow;
1155	}
1156
1157	/*
1158	 * return if we did not find it.
1159	 */
1160	if (pt == NULL)
1161		return(-1);
1162
1163	/*
1164	 * found it. return the times and remove the entry from the table.
1165	 */
1166	*ppt = pt->fow;
1167	*mtime = pt->mtime;
1168	*atime = pt->atime;
1169	(void)free((char *)pt->name);
1170	(void)free((char *)pt);
1171	return(0);
1172}
1173
1174/*
1175 * directory access mode and time storage routines (for directories CREATED
1176 * by pax).
1177 *
1178 * Pax requires that extracted directories, by default, have their access/mod
1179 * times and permissions set to the values specified in the archive. During the
1180 * actions of extracting (and creating the destination subtree during -rw copy)
1181 * directories extracted may be modified after being created. Even worse is
1182 * that these directories may have been created with file permissions which
1183 * prohibits any descendants of these directories from being extracted. When
1184 * directories are created by pax, access rights may be added to permit the
1185 * creation of files in their subtree. Every time pax creates a directory, the
1186 * times and file permissions specified by the archive are stored. After all
1187 * files have been extracted (or copied), these directories have their times
1188 * and file modes reset to the stored values. The directory info is restored in
1189 * reverse order as entries were added to the data file from root to leaf. To
1190 * restore atime properly, we must go backwards. The data file consists of
1191 * records with two parts, the file name followed by a DIRDATA trailer. The
1192 * fixed sized trailer contains the size of the name plus the off_t location in
1193 * the file. To restore we work backwards through the file reading the trailer
1194 * then the file name.
1195 */
1196
1197/*
1198 * dir_start()
1199 *	set up the directory time and file mode storage for directories CREATED
1200 *	by pax.
1201 * Return:
1202 *	0 if ok, -1 otherwise
1203 */
1204
1205#if __STDC__
1206int
1207dir_start(void)
1208#else
1209int
1210dir_start()
1211#endif
1212{
1213	char *pt;
1214
1215	if (dirfd != -1)
1216		return(0);
1217	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1218		return(-1);
1219
1220	/*
1221	 * unlink the file so it goes away at termination by itself
1222	 */
1223	(void)unlink(pt);
1224	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1225		(void)unlink(pt);
1226		return(0);
1227	}
1228	pax_warn(1, "Unable to create temporary file for directory times: %s", pt);
1229	return(-1);
1230}
1231
1232/*
1233 * add_dir()
1234 *	add the mode and times for a newly CREATED directory
1235 *	name is name of the directory, psb the stat buffer with the data in it,
1236 *	frc_mode is a flag that says whether to force the setting of the mode
1237 *	(ignoring the user set values for preserving file mode). Frc_mode is
1238 *	for the case where we created a file and found that the resulting
1239 *	directory was not writeable and the user asked for file modes to NOT
1240 *	be preserved. (we have to preserve what was created by default, so we
1241 *	have to force the setting at the end. this is stated explicitly in the
1242 *	pax spec)
1243 */
1244
1245#if __STDC__
1246void
1247add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1248#else
1249void
1250add_dir(name, nlen, psb, frc_mode)
1251	char *name;
1252	int nlen;
1253	struct stat *psb;
1254	int frc_mode;
1255#endif
1256{
1257	DIRDATA dblk;
1258
1259	if (dirfd < 0)
1260		return;
1261
1262	/*
1263	 * get current position (where file name will start) so we can store it
1264	 * in the trailer
1265	 */
1266	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1267		pax_warn(1,"Unable to store mode and times for directory: %s",name);
1268		return;
1269	}
1270
1271	/*
1272	 * write the file name followed by the trailer
1273	 */
1274	dblk.nlen = nlen + 1;
1275	dblk.mode = psb->st_mode & 0xffff;
1276	dblk.mtime = psb->st_mtime;
1277	dblk.atime = psb->st_atime;
1278	dblk.frc_mode = frc_mode;
1279	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1280	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1281		++dircnt;
1282		return;
1283	}
1284
1285	pax_warn(1,"Unable to store mode and times for created directory: %s",name);
1286	return;
1287}
1288
1289/*
1290 * proc_dir()
1291 *	process all file modes and times stored for directories CREATED
1292 *	by pax
1293 */
1294
1295#if __STDC__
1296void
1297proc_dir(void)
1298#else
1299void
1300proc_dir()
1301#endif
1302{
1303	char name[PAXPATHLEN+1];
1304	DIRDATA dblk;
1305	u_long cnt;
1306
1307	if (dirfd < 0)
1308		return;
1309	/*
1310	 * read backwards through the file and process each directory
1311	 */
1312	for (cnt = 0; cnt < dircnt; ++cnt) {
1313		/*
1314		 * read the trailer, then the file name, if this fails
1315		 * just give up.
1316		 */
1317		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1318			break;
1319		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1320			break;
1321		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322			break;
1323		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1324			break;
1325		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1326			break;
1327
1328		/*
1329		 * frc_mode set, make sure we set the file modes even if
1330		 * the user didn't ask for it (see file_subs.c for more info)
1331		 */
1332		if (pmode || dblk.frc_mode)
1333			set_pmode(name, dblk.mode);
1334		if (patime || pmtime)
1335			set_ftime(name, dblk.mtime, dblk.atime, 0);
1336	}
1337
1338	(void)close(dirfd);
1339	dirfd = -1;
1340	if (cnt != dircnt)
1341		pax_warn(1,"Unable to set mode and times for created directories");
1342	return;
1343}
1344
1345/*
1346 * database independent routines
1347 */
1348
1349/*
1350 * st_hash()
1351 *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1352 *	end of file, as this provides far better distribution than any other
1353 *	part of the name. For performance reasons we only care about the last
1354 *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1355 *	name). Was tested on 500,000 name file tree traversal from the root
1356 *	and gave almost a perfectly uniform distribution of keys when used with
1357 *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1358 *	chars at a time and pads with 0 for last addition.
1359 * Return:
1360 *	the hash value of the string MOD (%) the table size.
1361 */
1362
1363#if __STDC__
1364u_int
1365st_hash(char *name, int len, int tabsz)
1366#else
1367u_int
1368st_hash(name, len, tabsz)
1369	char *name;
1370	int len;
1371	int tabsz;
1372#endif
1373{
1374	register char *pt;
1375	register char *dest;
1376	register char *end;
1377	register int i;
1378	register u_int key = 0;
1379	register int steps;
1380	register int res;
1381	u_int val;
1382
1383	/*
1384	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1385	 * time here (remember these are pathnames, the tail is what will
1386	 * spread out the keys)
1387	 */
1388	if (len > MAXKEYLEN) {
1389                pt = &(name[len - MAXKEYLEN]);
1390		len = MAXKEYLEN;
1391	} else
1392		pt = name;
1393
1394	/*
1395	 * calculate the number of u_int size steps in the string and if
1396	 * there is a runt to deal with
1397	 */
1398	steps = len/sizeof(u_int);
1399	res = len % sizeof(u_int);
1400
1401	/*
1402	 * add up the value of the string in unsigned integer sized pieces
1403	 * too bad we cannot have unsigned int aligned strings, then we
1404	 * could avoid the expensive copy.
1405	 */
1406	for (i = 0; i < steps; ++i) {
1407		end = pt + sizeof(u_int);
1408		dest = (char *)&val;
1409		while (pt < end)
1410			*dest++ = *pt++;
1411		key += val;
1412	}
1413
1414	/*
1415	 * add in the runt padded with zero to the right
1416	 */
1417	if (res) {
1418		val = 0;
1419		end = pt + res;
1420		dest = (char *)&val;
1421		while (pt < end)
1422			*dest++ = *pt++;
1423		key += val;
1424	}
1425
1426	/*
1427	 * return the result mod the table size
1428	 */
1429	return(key % tabsz);
1430}
1431