tables.c revision 20420
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	$Id: tables.c,v 1.4 1995/10/23 21:23:23 ache Exp $
38 */
39
40#ifndef lint
41static char const sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
42#endif /* not lint */
43
44#include <sys/types.h>
45#include <sys/time.h>
46#include <sys/stat.h>
47#include <sys/param.h>
48#include <sys/fcntl.h>
49#include <stdio.h>
50#include <string.h>
51#include <unistd.h>
52#include <errno.h>
53#include <stdlib.h>
54#include "pax.h"
55#include "tables.h"
56#include "extern.h"
57
58/*
59 * Routines for controlling the contents of all the different databases pax
60 * keeps. Tables are dynamically created only when they are needed. The
61 * goal was speed and the ability to work with HUGE archives. The databases
62 * were kept simple, but do have complex rules for when the contents change.
63 * As of this writing, the posix library functions were more complex than
64 * needed for this application (pax databases have very short lifetimes and
65 * do not survive after pax is finished). Pax is required to handle very
66 * large archives. These database routines carefully combine memory usage and
67 * temporary file storage in ways which will not significantly impact runtime
68 * performance while allowing the largest possible archives to be handled.
69 * Trying to force the fit to the posix databases routines was not considered
70 * time well spent.
71 */
72
73static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
74static FTM **ftab = NULL;	/* file time table for updating arch */
75static NAMT **ntab = NULL;	/* interactive rename storage table */
76static DEVT **dtab = NULL;	/* device/inode mapping tables */
77static ATDIR **atab = NULL;	/* file tree directory time reset table */
78static int dirfd = -1;		/* storage for setting created dir time/mode */
79static u_long dircnt;		/* entries in dir time/mode storage */
80static int ffd = -1;		/* tmp file for file time table name storage */
81
82static DEVT *chk_dev __P((dev_t, int));
83
84/*
85 * hard link table routines
86 *
87 * The hard link table tries to detect hard links to files using the device and
88 * inode values. We do this when writing an archive, so we can tell the format
89 * write routine that this file is a hard link to another file. The format
90 * write routine then can store this file in whatever way it wants (as a hard
91 * link if the format supports that like tar, or ignore this info like cpio).
92 * (Actually a field in the format driver table tells us if the format wants
93 * hard link info. if not, we do not waste time looking for them). We also use
94 * the same table when reading an archive. In that situation, this table is
95 * used by the format read routine to detect hard links from stored dev and
96 * inode numbers (like cpio). This will allow pax to create a link when one
97 * can be detected by the archive format.
98 */
99
100/*
101 * lnk_start
102 *	Creates the hard link table.
103 * Return:
104 *	0 if created, -1 if failure
105 */
106
107#if __STDC__
108int
109lnk_start(void)
110#else
111int
112lnk_start()
113#endif
114{
115	if (ltab != NULL)
116		return(0);
117 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
118                warn(1, "Cannot allocate memory for hard link table");
119                return(-1);
120        }
121	return(0);
122}
123
124/*
125 * chk_lnk()
126 *	Looks up entry in hard link hash table. If found, it copies the name
127 *	of the file it is linked to (we already saw that file) into ln_name.
128 *	lnkcnt is decremented and if goes to 1 the node is deleted from the
129 *	database. (We have seen all the links to this file). If not found,
130 *	we add the file to the database if it has the potential for having
131 *	hard links to other files we may process (it has a link count > 1)
132 * Return:
133 *	if found returns 1; if not found returns 0; -1 on error
134 */
135
136#if __STDC__
137int
138chk_lnk(register ARCHD *arcn)
139#else
140int
141chk_lnk(arcn)
142	register ARCHD *arcn;
143#endif
144{
145	register HRDLNK *pt;
146	register HRDLNK **ppt;
147	register u_int indx;
148
149	if (ltab == NULL)
150		return(-1);
151	/*
152	 * ignore those nodes that cannot have hard links
153	 */
154	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
155		return(0);
156
157	/*
158	 * hash inode number and look for this file
159	 */
160	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
161	if ((pt = ltab[indx]) != NULL) {
162		/*
163		 * it's hash chain in not empty, walk down looking for it
164		 */
165		ppt = &(ltab[indx]);
166		while (pt != NULL) {
167			if ((pt->ino == arcn->sb.st_ino) &&
168			    (pt->dev == arcn->sb.st_dev))
169				break;
170			ppt = &(pt->fow);
171			pt = pt->fow;
172		}
173
174		if (pt != NULL) {
175			/*
176			 * found a link. set the node type and copy in the
177			 * name of the file it is to link to. we need to
178			 * handle hardlinks to regular files differently than
179			 * other links.
180			 */
181			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
182				PAXPATHLEN+1);
183			if (arcn->type == PAX_REG)
184				arcn->type = PAX_HRG;
185			else
186				arcn->type = PAX_HLK;
187
188			/*
189			 * if we have found all the links to this file, remove
190			 * it from the database
191			 */
192			if (--pt->nlink <= 1) {
193				*ppt = pt->fow;
194				(void)free((char *)pt->name);
195				(void)free((char *)pt);
196			}
197			return(1);
198		}
199	}
200
201	/*
202	 * we never saw this file before. It has links so we add it to the
203	 * front of this hash chain
204	 */
205	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
206		if ((pt->name = strdup(arcn->name)) != NULL) {
207			pt->dev = arcn->sb.st_dev;
208			pt->ino = arcn->sb.st_ino;
209			pt->nlink = arcn->sb.st_nlink;
210			pt->fow = ltab[indx];
211			ltab[indx] = pt;
212			return(0);
213		}
214		(void)free((char *)pt);
215	}
216
217	warn(1, "Hard link table out of memory");
218	return(-1);
219}
220
221/*
222 * purg_lnk
223 *	remove reference for a file that we may have added to the data base as
224 *	a potential source for hard links. We ended up not using the file, so
225 *	we do not want to accidently point another file at it later on.
226 */
227
228#if __STDC__
229void
230purg_lnk(register ARCHD *arcn)
231#else
232void
233purg_lnk(arcn)
234	register ARCHD *arcn;
235#endif
236{
237	register HRDLNK *pt;
238	register HRDLNK **ppt;
239	register u_int indx;
240
241	if (ltab == NULL)
242		return;
243	/*
244	 * do not bother to look if it could not be in the database
245	 */
246	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
247	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
248		return;
249
250	/*
251	 * find the hash chain for this inode value, if empty return
252	 */
253	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
254	if ((pt = ltab[indx]) == NULL)
255		return;
256
257	/*
258	 * walk down the list looking for the inode/dev pair, unlink and
259	 * free if found
260	 */
261	ppt = &(ltab[indx]);
262	while (pt != NULL) {
263		if ((pt->ino == arcn->sb.st_ino) &&
264		    (pt->dev == arcn->sb.st_dev))
265			break;
266		ppt = &(pt->fow);
267		pt = pt->fow;
268	}
269	if (pt == NULL)
270		return;
271
272	/*
273	 * remove and free it
274	 */
275	*ppt = pt->fow;
276	(void)free((char *)pt->name);
277	(void)free((char *)pt);
278}
279
280/*
281 * lnk_end()
282 *	pull apart a existing link table so we can reuse it. We do this between
283 *	read and write phases of append with update. (The format may have
284 *	used the link table, and we need to start with a fresh table for the
285 *	write phase
286 */
287
288#if __STDC__
289void
290lnk_end(void)
291#else
292void
293lnk_end()
294#endif
295{
296	register int i;
297	register HRDLNK *pt;
298	register HRDLNK *ppt;
299
300	if (ltab == NULL)
301		return;
302
303	for (i = 0; i < L_TAB_SZ; ++i) {
304		if (ltab[i] == NULL)
305			continue;
306		pt = ltab[i];
307		ltab[i] = NULL;
308
309		/*
310		 * free up each entry on this chain
311		 */
312		while (pt != NULL) {
313			ppt = pt;
314			pt = ppt->fow;
315			(void)free((char *)ppt->name);
316			(void)free((char *)ppt);
317		}
318	}
319	return;
320}
321
322/*
323 * modification time table routines
324 *
325 * The modification time table keeps track of last modification times for all
326 * files stored in an archive during a write phase when -u is set. We only
327 * add a file to the archive if it is newer than a file with the same name
328 * already stored on the archive (if there is no other file with the same
329 * name on the archive it is added). This applies to writes and appends.
330 * An append with an -u must read the archive and store the modification time
331 * for every file on that archive before starting the write phase. It is clear
332 * that this is one HUGE database. To save memory space, the actual file names
333 * are stored in a scatch file and indexed by an in memory hash table. The
334 * hash table is indexed by hashing the file path. The nodes in the table store
335 * the length of the filename and the lseek offset within the scratch file
336 * where the actual name is stored. Since there are never any deletions to this
337 * table, fragmentation of the scratch file is never a issue. Lookups seem to
338 * not exhibit any locality at all (files in the database are rarely
339 * looked up more than once...). So caching is just a waste of memory. The
340 * only limitation is the amount of scatch file space available to store the
341 * path names.
342 */
343
344/*
345 * ftime_start()
346 *	create the file time hash table and open for read/write the scratch
347 *	file. (after created it is unlinked, so when we exit we leave
348 *	no witnesses).
349 * Return:
350 *	0 if the table and file was created ok, -1 otherwise
351 */
352
353#if __STDC__
354int
355ftime_start(void)
356#else
357int
358ftime_start()
359#endif
360{
361	char *pt;
362
363	if (ftab != NULL)
364		return(0);
365 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
366                warn(1, "Cannot allocate memory for file time table");
367                return(-1);
368        }
369
370	/*
371	 * get random name and create temporary scratch file, unlink name
372	 * so it will get removed on exit
373	 */
374	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
375		return(-1);
376	(void)unlink(pt);
377
378	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
379		syswarn(1, errno, "Unable to open temporary file: %s", pt);
380		return(-1);
381	}
382
383	(void)unlink(pt);
384	return(0);
385}
386
387/*
388 * chk_ftime()
389 *	looks up entry in file time hash table. If not found, the file is
390 *	added to the hash table and the file named stored in the scratch file.
391 *	If a file with the same name is found, the file times are compared and
392 *	the most recent file time is retained. If the new file was younger (or
393 *	was not in the database) the new file is selected for storage.
394 * Return:
395 *	0 if file should be added to the archive, 1 if it should be skipped,
396 *	-1 on error
397 */
398
399#if __STDC__
400int
401chk_ftime(register ARCHD *arcn)
402#else
403int
404chk_ftime(arcn)
405	register ARCHD *arcn;
406#endif
407{
408	register FTM *pt;
409	register int namelen;
410	register u_int indx;
411	char ckname[PAXPATHLEN+1];
412
413	/*
414	 * no info, go ahead and add to archive
415	 */
416	if (ftab == NULL)
417		return(0);
418
419	/*
420	 * hash the pathname and look up in table
421	 */
422	namelen = arcn->nlen;
423	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
424	if ((pt = ftab[indx]) != NULL) {
425		/*
426		 * the hash chain is not empty, walk down looking for match
427		 * only read up the path names if the lengths match, speeds
428		 * up the search a lot
429		 */
430		while (pt != NULL) {
431			if (pt->namelen == namelen) {
432				/*
433				 * potential match, have to read the name
434				 * from the scratch file.
435				 */
436				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
437					syswarn(1, errno,
438					    "Failed ftime table seek");
439					return(-1);
440				}
441				if (read(ffd, ckname, namelen) != namelen) {
442					syswarn(1, errno,
443					    "Failed ftime table read");
444					return(-1);
445				}
446
447				/*
448				 * if the names match, we are done
449				 */
450				if (!strncmp(ckname, arcn->name, namelen))
451					break;
452			}
453
454			/*
455			 * try the next entry on the chain
456			 */
457			pt = pt->fow;
458		}
459
460		if (pt != NULL) {
461			/*
462			 * found the file, compare the times, save the newer
463			 */
464			if (arcn->sb.st_mtime > pt->mtime) {
465				/*
466				 * file is newer
467				 */
468				pt->mtime = arcn->sb.st_mtime;
469				return(0);
470			}
471			/*
472			 * file is older
473			 */
474			return(1);
475		}
476	}
477
478	/*
479	 * not in table, add it
480	 */
481	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
482		/*
483		 * add the name at the end of the scratch file, saving the
484		 * offset. add the file to the head of the hash chain
485		 */
486		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
487			if (write(ffd, arcn->name, namelen) == namelen) {
488				pt->mtime = arcn->sb.st_mtime;
489				pt->namelen = namelen;
490				pt->fow = ftab[indx];
491				ftab[indx] = pt;
492				return(0);
493			}
494			syswarn(1, errno, "Failed write to file time table");
495		} else
496			syswarn(1, errno, "Failed seek on file time table");
497	} else
498		warn(1, "File time table ran out of memory");
499
500	if (pt != NULL)
501		(void)free((char *)pt);
502	return(-1);
503}
504
505/*
506 * Interactive rename table routines
507 *
508 * The interactive rename table keeps track of the new names that the user
509 * assignes to files from tty input. Since this map is unique for each file
510 * we must store it in case there is a reference to the file later in archive
511 * (a link). Otherwise we will be unable to find the file we know was
512 * extracted. The remapping of these files is stored in a memory based hash
513 * table (it is assumed since input must come from /dev/tty, it is unlikely to
514 * be a very large table).
515 */
516
517/*
518 * name_start()
519 *	create the interactive rename table
520 * Return:
521 *	0 if successful, -1 otherwise
522 */
523
524#if __STDC__
525int
526name_start(void)
527#else
528int
529name_start()
530#endif
531{
532	if (ntab != NULL)
533		return(0);
534 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
535                warn(1, "Cannot allocate memory for interactive rename table");
536                return(-1);
537        }
538	return(0);
539}
540
541/*
542 * add_name()
543 *	add the new name to old name mapping just created by the user.
544 *	If an old name mapping is found (there may be duplicate names on an
545 *	archive) only the most recent is kept.
546 * Return:
547 *	0 if added, -1 otherwise
548 */
549
550#if __STDC__
551int
552add_name(register char *oname, int onamelen, char *nname)
553#else
554int
555add_name(oname, onamelen, nname)
556	register char *oname;
557	int onamelen;
558	char *nname;
559#endif
560{
561	register NAMT *pt;
562	register u_int indx;
563
564	if (ntab == NULL) {
565		/*
566		 * should never happen
567		 */
568		warn(0, "No interactive rename table, links may fail\n");
569		return(0);
570	}
571
572	/*
573	 * look to see if we have already mapped this file, if so we
574	 * will update it
575	 */
576	indx = st_hash(oname, onamelen, N_TAB_SZ);
577	if ((pt = ntab[indx]) != NULL) {
578		/*
579		 * look down the has chain for the file
580		 */
581		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
582			pt = pt->fow;
583
584		if (pt != NULL) {
585			/*
586			 * found an old mapping, replace it with the new one
587			 * the user just input (if it is different)
588			 */
589			if (strcmp(nname, pt->nname) == 0)
590				return(0);
591
592			(void)free((char *)pt->nname);
593			if ((pt->nname = strdup(nname)) == NULL) {
594				warn(1, "Cannot update rename table");
595				return(-1);
596			}
597			return(0);
598		}
599	}
600
601	/*
602	 * this is a new mapping, add it to the table
603	 */
604	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
605		if ((pt->oname = strdup(oname)) != NULL) {
606			if ((pt->nname = strdup(nname)) != NULL) {
607				pt->fow = ntab[indx];
608				ntab[indx] = pt;
609				return(0);
610			}
611			(void)free((char *)pt->oname);
612		}
613		(void)free((char *)pt);
614	}
615	warn(1, "Interactive rename table out of memory");
616	return(-1);
617}
618
619/*
620 * sub_name()
621 *	look up a link name to see if it points at a file that has been
622 *	remapped by the user. If found, the link is adjusted to contain the
623 *	new name (oname is the link to name)
624 */
625
626#if __STDC__
627void
628sub_name(register char *oname, int *onamelen)
629#else
630void
631sub_name(oname, onamelen)
632	register char *oname;
633	int *onamelen;
634#endif
635{
636	register NAMT *pt;
637	register u_int indx;
638
639	if (ntab == NULL)
640		return;
641	/*
642	 * look the name up in the hash table
643	 */
644	indx = st_hash(oname, *onamelen, N_TAB_SZ);
645	if ((pt = ntab[indx]) == NULL)
646		return;
647
648	while (pt != NULL) {
649		/*
650		 * walk down the hash cahin looking for a match
651		 */
652		if (strcmp(oname, pt->oname) == 0) {
653			/*
654			 * found it, replace it with the new name
655			 * and return (we know that oname has enough space)
656			 */
657			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
658			return;
659		}
660		pt = pt->fow;
661	}
662
663	/*
664	 * no match, just return
665	 */
666	return;
667}
668
669/*
670 * device/inode mapping table routines
671 * (used with formats that store device and inodes fields)
672 *
673 * device/inode mapping tables remap the device field in a archive header. The
674 * device/inode fields are used to determine when files are hard links to each
675 * other. However these values have very little meaning outside of that. This
676 * database is used to solve one of two different problems.
677 *
678 * 1) when files are appended to an archive, while the new files may have hard
679 * links to each other, you cannot determine if they have hard links to any
680 * file already stored on the archive from a prior run of pax. We must assume
681 * that these inode/device pairs are unique only within a SINGLE run of pax
682 * (which adds a set of files to an archive). So we have to make sure the
683 * inode/dev pairs we add each time are always unique. We do this by observing
684 * while the inode field is very dense, the use of the dev field is fairly
685 * sparse. Within each run of pax, we remap any device number of a new archive
686 * member that has a device number used in a prior run and already stored in a
687 * file on the archive. During the read phase of the append, we store the
688 * device numbers used and mark them to not be used by any file during the
689 * write phase. If during write we go to use one of those old device numbers,
690 * we remap it to a new value.
691 *
692 * 2) Often the fields in the archive header used to store these values are
693 * too small to store the entire value. The result is an inode or device value
694 * which can be truncated. This really can foul up an archive. With truncation
695 * we end up creating links between files that are really not links (after
696 * truncation the inodes are the same value). We address that by detecting
697 * truncation and forcing a remap of the device field to split truncated
698 * inodes away from each other. Each truncation creates a pattern of bits that
699 * are removed. We use this pattern of truncated bits to partition the inodes
700 * on a single device to many different devices (each one represented by the
701 * truncated bit pattern). All inodes on the same device that have the same
702 * truncation pattern are mapped to the same new device. Two inodes that
703 * truncate to the same value clearly will always have different truncation
704 * bit patterns, so they will be split from away each other. When we spot
705 * device truncation we remap the device number to a non truncated value.
706 * (for more info see table.h for the data structures involved).
707 */
708
709/*
710 * dev_start()
711 *	create the device mapping table
712 * Return:
713 *	0 if successful, -1 otherwise
714 */
715
716#if __STDC__
717int
718dev_start(void)
719#else
720int
721dev_start()
722#endif
723{
724	if (dtab != NULL)
725		return(0);
726 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
727                warn(1, "Cannot allocate memory for device mapping table");
728                return(-1);
729        }
730	return(0);
731}
732
733/*
734 * add_dev()
735 *	add a device number to the table. this will force the device to be
736 *	remapped to a new value if it be used during a write phase. This
737 *	function is called during the read phase of an append to prohibit the
738 *	use of any device number already in the archive.
739 * Return:
740 *	0 if added ok, -1 otherwise
741 */
742
743#if __STDC__
744int
745add_dev(register ARCHD *arcn)
746#else
747int
748add_dev(arcn)
749	register ARCHD *arcn;
750#endif
751{
752	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
753		return(-1);
754	return(0);
755}
756
757/*
758 * chk_dev()
759 *	check for a device value in the device table. If not found and the add
760 *	flag is set, it is added. This does NOT assign any mapping values, just
761 *	adds the device number as one that need to be remapped. If this device
762 *	is alread mapped, just return with a pointer to that entry.
763 * Return:
764 *	pointer to the entry for this device in the device map table. Null
765 *	if the add flag is not set and the device is not in the table (it is
766 *	not been seen yet). If add is set and the device cannot be added, null
767 *	is returned (indicates an error).
768 */
769
770#if __STDC__
771static DEVT *
772chk_dev(dev_t dev, int add)
773#else
774static DEVT *
775chk_dev(dev, add)
776	dev_t dev;
777	int add;
778#endif
779{
780	register DEVT *pt;
781	register u_int indx;
782
783	if (dtab == NULL)
784		return(NULL);
785	/*
786	 * look to see if this device is already in the table
787	 */
788	indx = ((unsigned)dev) % D_TAB_SZ;
789	if ((pt = dtab[indx]) != NULL) {
790		while ((pt != NULL) && (pt->dev != dev))
791			pt = pt->fow;
792
793		/*
794		 * found it, return a pointer to it
795		 */
796		if (pt != NULL)
797			return(pt);
798	}
799
800	/*
801	 * not in table, we add it only if told to as this may just be a check
802	 * to see if a device number is being used.
803	 */
804	if (add == 0)
805		return(NULL);
806
807	/*
808	 * allocate a node for this device and add it to the front of the hash
809	 * chain. Note we do not assign remaps values here, so the pt->list
810	 * list must be NULL.
811	 */
812	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
813		warn(1, "Device map table out of memory");
814		return(NULL);
815	}
816	pt->dev = dev;
817	pt->list = NULL;
818	pt->fow = dtab[indx];
819	dtab[indx] = pt;
820	return(pt);
821}
822/*
823 * map_dev()
824 *	given an inode and device storage mask (the mask has a 1 for each bit
825 *	the archive format is able to store in a header), we check for inode
826 *	and device truncation and remap the device as required. Device mapping
827 *	can also occur when during the read phase of append a device number was
828 *	seen (and was marked as do not use during the write phase). WE ASSUME
829 *	that unsigned longs are the same size or bigger than the fields used
830 *	for ino_t and dev_t. If not the types will have to be changed.
831 * Return:
832 *	0 if all ok, -1 otherwise.
833 */
834
835#if __STDC__
836int
837map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
838#else
839int
840map_dev(arcn, dev_mask, ino_mask)
841	register ARCHD *arcn;
842	u_long dev_mask;
843	u_long ino_mask;
844#endif
845{
846	register DEVT *pt;
847	register DLIST *dpt;
848	static dev_t lastdev = 0;	/* next device number to try */
849	int trc_ino = 0;
850	int trc_dev = 0;
851	ino_t trunc_bits = 0;
852	ino_t nino;
853
854	if (dtab == NULL)
855		return(0);
856	/*
857	 * check for device and inode truncation, and extract the truncated
858	 * bit pattern.
859	 */
860	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
861		++trc_dev;
862	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
863		++trc_ino;
864		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
865	}
866
867	/*
868	 * see if this device is already being mapped, look up the device
869	 * then find the truncation bit pattern which applies
870	 */
871	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
872		/*
873		 * this device is already marked to be remapped
874		 */
875		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
876			if (dpt->trunc_bits == trunc_bits)
877				break;
878
879		if (dpt != NULL) {
880			/*
881			 * we are being remapped for this device and pattern
882			 * change the device number to be stored and return
883			 */
884			arcn->sb.st_dev = dpt->dev;
885			arcn->sb.st_ino = nino;
886			return(0);
887		}
888	} else {
889		/*
890		 * this device is not being remapped YET. if we do not have any
891		 * form of truncation, we do not need a remap
892		 */
893		if (!trc_ino && !trc_dev)
894			return(0);
895
896		/*
897		 * we have truncation, have to add this as a device to remap
898		 */
899		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
900			goto bad;
901
902		/*
903		 * if we just have a truncated inode, we have to make sure that
904		 * all future inodes that do not truncate (they have the
905		 * truncation pattern of all 0's) continue to map to the same
906		 * device number. We probably have already written inodes with
907		 * this device number to the archive with the truncation
908		 * pattern of all 0's. So we add the mapping for all 0's to the
909		 * same device number.
910		 */
911		if (!trc_dev && (trunc_bits != 0)) {
912			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
913				goto bad;
914			dpt->trunc_bits = 0;
915			dpt->dev = arcn->sb.st_dev;
916			dpt->fow = pt->list;
917			pt->list = dpt;
918		}
919	}
920
921	/*
922	 * look for a device number not being used. We must watch for wrap
923	 * around on lastdev (so we do not get stuck looking forever!)
924	 */
925	while (++lastdev > 0) {
926		if (chk_dev(lastdev, 0) != NULL)
927			continue;
928		/*
929		 * found an unused value. If we have reached truncation point
930		 * for this format we are hosed, so we give up. Otherwise we
931		 * mark it as being used.
932		 */
933		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
934		    (chk_dev(lastdev, 1) == NULL))
935			goto bad;
936		break;
937	}
938
939	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
940		goto bad;
941
942	/*
943	 * got a new device number, store it under this truncation pattern.
944	 * change the device number this file is being stored with.
945	 */
946	dpt->trunc_bits = trunc_bits;
947	dpt->dev = lastdev;
948	dpt->fow = pt->list;
949	pt->list = dpt;
950	arcn->sb.st_dev = lastdev;
951	arcn->sb.st_ino = nino;
952	return(0);
953
954    bad:
955	warn(1, "Unable to fix truncated inode/device field when storing %s",
956	    arcn->name);
957	warn(0, "Archive may create improper hard links when extracted");
958	return(0);
959}
960
961/*
962 * directory access/mod time reset table routines (for directories READ by pax)
963 *
964 * The pax -t flag requires that access times of archive files to be the same
965 * before being read by pax. For regular files, access time is restored after
966 * the file has been copied. This database provides the same functionality for
967 * directories read during file tree traversal. Restoring directory access time
968 * is more complex than files since directories may be read several times until
969 * all the descendants in their subtree are visited by fts. Directory access
970 * and modification times are stored during the fts pre-order visit (done
971 * before any descendants in the subtree is visited) and restored after the
972 * fts post-order visit (after all the descendants have been visited). In the
973 * case of premature exit from a subtree (like from the effects of -n), any
974 * directory entries left in this database are reset during final cleanup
975 * operations of pax. Entries are hashed by inode number for fast lookup.
976 */
977
978/*
979 * atdir_start()
980 *	create the directory access time database for directories READ by pax.
981 * Return:
982 *	0 is created ok, -1 otherwise.
983 */
984
985#if __STDC__
986int
987atdir_start(void)
988#else
989int
990atdir_start()
991#endif
992{
993	if (atab != NULL)
994		return(0);
995 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
996                warn(1,"Cannot allocate space for directory access time table");
997                return(-1);
998        }
999	return(0);
1000}
1001
1002
1003/*
1004 * atdir_end()
1005 *	walk through the directory access time table and reset the access time
1006 *	of any directory who still has an entry left in the database. These
1007 *	entries are for directories READ by pax
1008 */
1009
1010#if __STDC__
1011void
1012atdir_end(void)
1013#else
1014void
1015atdir_end()
1016#endif
1017{
1018	register ATDIR *pt;
1019	register int i;
1020
1021	if (atab == NULL)
1022		return;
1023	/*
1024	 * for each non-empty hash table entry reset all the directories
1025	 * chained there.
1026	 */
1027	for (i = 0; i < A_TAB_SZ; ++i) {
1028		if ((pt = atab[i]) == NULL)
1029			continue;
1030		/*
1031		 * remember to force the times, set_ftime() looks at pmtime
1032		 * and patime, which only applies to things CREATED by pax,
1033		 * not read by pax. Read time reset is controlled by -t.
1034		 */
1035		for (; pt != NULL; pt = pt->fow)
1036			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1037	}
1038}
1039
1040/*
1041 * add_atdir()
1042 *	add a directory to the directory access time table. Table is hashed
1043 *	and chained by inode number. This is for directories READ by pax
1044 */
1045
1046#if __STDC__
1047void
1048add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1049#else
1050void
1051add_atdir(fname, dev, ino, mtime, atime)
1052	char *fname;
1053	dev_t dev;
1054	ino_t ino;
1055	time_t mtime;
1056	time_t atime;
1057#endif
1058{
1059	register ATDIR *pt;
1060	register u_int indx;
1061
1062	if (atab == NULL)
1063		return;
1064
1065	/*
1066	 * make sure this directory is not already in the table, if so just
1067	 * return (the older entry always has the correct time). The only
1068	 * way this will happen is when the same subtree can be traversed by
1069	 * different args to pax and the -n option is aborting fts out of a
1070	 * subtree before all the post-order visits have been made).
1071	 */
1072	indx = ((unsigned)ino) % A_TAB_SZ;
1073	if ((pt = atab[indx]) != NULL) {
1074		while (pt != NULL) {
1075			if ((pt->ino == ino) && (pt->dev == dev))
1076				break;
1077			pt = pt->fow;
1078		}
1079
1080		/*
1081		 * oops, already there. Leave it alone.
1082		 */
1083		if (pt != NULL)
1084			return;
1085	}
1086
1087	/*
1088	 * add it to the front of the hash chain
1089	 */
1090	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1091		if ((pt->name = strdup(fname)) != NULL) {
1092			pt->dev = dev;
1093			pt->ino = ino;
1094			pt->mtime = mtime;
1095			pt->atime = atime;
1096			pt->fow = atab[indx];
1097			atab[indx] = pt;
1098			return;
1099		}
1100		(void)free((char *)pt);
1101	}
1102
1103	warn(1, "Directory access time reset table ran out of memory");
1104	return;
1105}
1106
1107/*
1108 * get_atdir()
1109 *	look up a directory by inode and device number to obtain the access
1110 *	and modification time you want to set to. If found, the modification
1111 *	and access time parameters are set and the entry is removed from the
1112 *	table (as it is no longer needed). These are for directories READ by
1113 *	pax
1114 * Return:
1115 *	0 if found, -1 if not found.
1116 */
1117
1118#if __STDC__
1119int
1120get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1121#else
1122int
1123get_atdir(dev, ino, mtime, atime)
1124	dev_t dev;
1125	ino_t ino;
1126	time_t *mtime;
1127	time_t *atime;
1128#endif
1129{
1130	register ATDIR *pt;
1131	register ATDIR **ppt;
1132	register u_int indx;
1133
1134	if (atab == NULL)
1135		return(-1);
1136	/*
1137	 * hash by inode and search the chain for an inode and device match
1138	 */
1139	indx = ((unsigned)ino) % A_TAB_SZ;
1140	if ((pt = atab[indx]) == NULL)
1141		return(-1);
1142
1143	ppt = &(atab[indx]);
1144	while (pt != NULL) {
1145		if ((pt->ino == ino) && (pt->dev == dev))
1146			break;
1147		/*
1148		 * no match, go to next one
1149		 */
1150		ppt = &(pt->fow);
1151		pt = pt->fow;
1152	}
1153
1154	/*
1155	 * return if we did not find it.
1156	 */
1157	if (pt == NULL)
1158		return(-1);
1159
1160	/*
1161	 * found it. return the times and remove the entry from the table.
1162	 */
1163	*ppt = pt->fow;
1164	*mtime = pt->mtime;
1165	*atime = pt->atime;
1166	(void)free((char *)pt->name);
1167	(void)free((char *)pt);
1168	return(0);
1169}
1170
1171/*
1172 * directory access mode and time storage routines (for directories CREATED
1173 * by pax).
1174 *
1175 * Pax requires that extracted directories, by default, have their access/mod
1176 * times and permissions set to the values specified in the archive. During the
1177 * actions of extracting (and creating the destination subtree during -rw copy)
1178 * directories extracted may be modified after being created. Even worse is
1179 * that these directories may have been created with file permissions which
1180 * prohibits any descendants of these directories from being extracted. When
1181 * directories are created by pax, access rights may be added to permit the
1182 * creation of files in their subtree. Every time pax creates a directory, the
1183 * times and file permissions specified by the archive are stored. After all
1184 * files have been extracted (or copied), these directories have their times
1185 * and file modes reset to the stored values. The directory info is restored in
1186 * reverse order as entries were added to the data file from root to leaf. To
1187 * restore atime properly, we must go backwards. The data file consists of
1188 * records with two parts, the file name followed by a DIRDATA trailer. The
1189 * fixed sized trailer contains the size of the name plus the off_t location in
1190 * the file. To restore we work backwards through the file reading the trailer
1191 * then the file name.
1192 */
1193
1194/*
1195 * dir_start()
1196 *	set up the directory time and file mode storage for directories CREATED
1197 *	by pax.
1198 * Return:
1199 *	0 if ok, -1 otherwise
1200 */
1201
1202#if __STDC__
1203int
1204dir_start(void)
1205#else
1206int
1207dir_start()
1208#endif
1209{
1210	char *pt;
1211
1212	if (dirfd != -1)
1213		return(0);
1214	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1215		return(-1);
1216
1217	/*
1218	 * unlink the file so it goes away at termination by itself
1219	 */
1220	(void)unlink(pt);
1221	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1222		(void)unlink(pt);
1223		return(0);
1224	}
1225	warn(1, "Unable to create temporary file for directory times: %s", pt);
1226	return(-1);
1227}
1228
1229/*
1230 * add_dir()
1231 *	add the mode and times for a newly CREATED directory
1232 *	name is name of the directory, psb the stat buffer with the data in it,
1233 *	frc_mode is a flag that says whether to force the setting of the mode
1234 *	(ignoring the user set values for preserving file mode). Frc_mode is
1235 *	for the case where we created a file and found that the resulting
1236 *	directory was not writeable and the user asked for file modes to NOT
1237 *	be preserved. (we have to preserve what was created by default, so we
1238 *	have to force the setting at the end. this is stated explicitly in the
1239 *	pax spec)
1240 */
1241
1242#if __STDC__
1243void
1244add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1245#else
1246void
1247add_dir(name, nlen, psb, frc_mode)
1248	char *name;
1249	int nlen;
1250	struct stat *psb;
1251	int frc_mode;
1252#endif
1253{
1254	DIRDATA dblk;
1255
1256	if (dirfd < 0)
1257		return;
1258
1259	/*
1260	 * get current position (where file name will start) so we can store it
1261	 * in the trailer
1262	 */
1263	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1264		warn(1,"Unable to store mode and times for directory: %s",name);
1265		return;
1266	}
1267
1268	/*
1269	 * write the file name followed by the trailer
1270	 */
1271	dblk.nlen = nlen + 1;
1272	dblk.mode = psb->st_mode & 0xffff;
1273	dblk.mtime = psb->st_mtime;
1274	dblk.atime = psb->st_atime;
1275	dblk.frc_mode = frc_mode;
1276	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1277	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1278		++dircnt;
1279		return;
1280	}
1281
1282	warn(1,"Unable to store mode and times for created directory: %s",name);
1283	return;
1284}
1285
1286/*
1287 * proc_dir()
1288 *	process all file modes and times stored for directories CREATED
1289 *	by pax
1290 */
1291
1292#if __STDC__
1293void
1294proc_dir(void)
1295#else
1296void
1297proc_dir()
1298#endif
1299{
1300	char name[PAXPATHLEN+1];
1301	DIRDATA dblk;
1302	u_long cnt;
1303
1304	if (dirfd < 0)
1305		return;
1306	/*
1307	 * read backwards through the file and process each directory
1308	 */
1309	for (cnt = 0; cnt < dircnt; ++cnt) {
1310		/*
1311		 * read the trailer, then the file name, if this fails
1312		 * just give up.
1313		 */
1314		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1315			break;
1316		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1317			break;
1318		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1319			break;
1320		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1321			break;
1322		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1323			break;
1324
1325		/*
1326		 * frc_mode set, make sure we set the file modes even if
1327		 * the user didn't ask for it (see file_subs.c for more info)
1328		 */
1329		if (pmode || dblk.frc_mode)
1330			set_pmode(name, dblk.mode);
1331		if (patime || pmtime)
1332			set_ftime(name, dblk.mtime, dblk.atime, 0);
1333	}
1334
1335	(void)close(dirfd);
1336	dirfd = -1;
1337	if (cnt != dircnt)
1338		warn(1,"Unable to set mode and times for created directories");
1339	return;
1340}
1341
1342/*
1343 * database independent routines
1344 */
1345
1346/*
1347 * st_hash()
1348 *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1349 *	end of file, as this provides far better distribution than any other
1350 *	part of the name. For performance reasons we only care about the last
1351 *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1352 *	name). Was tested on 500,000 name file tree traversal from the root
1353 *	and gave almost a perfectly uniform distribution of keys when used with
1354 *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1355 *	chars at a time and pads with 0 for last addition.
1356 * Return:
1357 *	the hash value of the string MOD (%) the table size.
1358 */
1359
1360#if __STDC__
1361u_int
1362st_hash(char *name, int len, int tabsz)
1363#else
1364u_int
1365st_hash(name, len, tabsz)
1366	char *name;
1367	int len;
1368	int tabsz;
1369#endif
1370{
1371	register char *pt;
1372	register char *dest;
1373	register char *end;
1374	register int i;
1375	register u_int key = 0;
1376	register int steps;
1377	register int res;
1378	u_int val;
1379
1380	/*
1381	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1382	 * time here (remember these are pathnames, the tail is what will
1383	 * spread out the keys)
1384	 */
1385	if (len > MAXKEYLEN) {
1386                pt = &(name[len - MAXKEYLEN]);
1387		len = MAXKEYLEN;
1388	} else
1389		pt = name;
1390
1391	/*
1392	 * calculate the number of u_int size steps in the string and if
1393	 * there is a runt to deal with
1394	 */
1395	steps = len/sizeof(u_int);
1396	res = len % sizeof(u_int);
1397
1398	/*
1399	 * add up the value of the string in unsigned integer sized pieces
1400	 * too bad we cannot have unsigned int aligned strings, then we
1401	 * could avoid the expensive copy.
1402	 */
1403	for (i = 0; i < steps; ++i) {
1404		end = pt + sizeof(u_int);
1405		dest = (char *)&val;
1406		while (pt < end)
1407			*dest++ = *pt++;
1408		key += val;
1409	}
1410
1411	/*
1412	 * add in the runt padded with zero to the right
1413	 */
1414	if (res) {
1415		val = 0;
1416		end = pt + res;
1417		dest = (char *)&val;
1418		while (pt < end)
1419			*dest++ = *pt++;
1420		key += val;
1421	}
1422
1423	/*
1424	 * return the result mod the table size
1425	 */
1426	return(key % tabsz);
1427}
1428