tables.c revision 1557
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#ifndef lint
39static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
40#endif /* not lint */
41
42#include <sys/types.h>
43#include <sys/time.h>
44#include <sys/stat.h>
45#include <sys/param.h>
46#include <sys/fcntl.h>
47#include <stdio.h>
48#include <ctype.h>
49#include <string.h>
50#include <unistd.h>
51#include <errno.h>
52#include <stdlib.h>
53#include "pax.h"
54#include "tables.h"
55#include "extern.h"
56
57/*
58 * Routines for controlling the contents of all the different databases pax
59 * keeps. Tables are dynamically created only when they are needed. The
60 * goal was speed and the ability to work with HUGE archives. The databases
61 * were kept simple, but do have complex rules for when the contents change.
62 * As of this writing, the posix library functions were more complex than
63 * needed for this application (pax databases have very short lifetimes and
64 * do not survive after pax is finished). Pax is required to handle very
65 * large archives. These database routines carefully combine memory usage and
66 * temporary file storage in ways which will not significantly impact runtime
67 * performance while allowing the largest possible archives to be handled.
68 * Trying to force the fit to the posix databases routines was not considered
69 * time well spent.
70 */
71
72static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
73static FTM **ftab = NULL;	/* file time table for updating arch */
74static NAMT **ntab = NULL;	/* interactive rename storage table */
75static DEVT **dtab = NULL;	/* device/inode mapping tables */
76static ATDIR **atab = NULL;	/* file tree directory time reset table */
77static int dirfd = -1;		/* storage for setting created dir time/mode */
78static u_long dircnt;		/* entries in dir time/mode storage */
79static int ffd = -1;		/* tmp file for file time table name storage */
80
81static DEVT *chk_dev __P((dev_t, int));
82
83/*
84 * hard link table routines
85 *
86 * The hard link table tries to detect hard links to files using the device and
87 * inode values. We do this when writing an archive, so we can tell the format
88 * write routine that this file is a hard link to another file. The format
89 * write routine then can store this file in whatever way it wants (as a hard
90 * link if the format supports that like tar, or ignore this info like cpio).
91 * (Actually a field in the format driver table tells us if the format wants
92 * hard link info. if not, we do not waste time looking for them). We also use
93 * the same table when reading an archive. In that situation, this table is
94 * used by the format read routine to detect hard links from stored dev and
95 * inode numbers (like cpio). This will allow pax to create a link when one
96 * can be detected by the archive format.
97 */
98
99/*
100 * lnk_start
101 *	Creates the hard link table.
102 * Return:
103 *	0 if created, -1 if failure
104 */
105
106#if __STDC__
107int
108lnk_start(void)
109#else
110int
111lnk_start()
112#endif
113{
114	if (ltab != NULL)
115		return(0);
116 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
117                warn(1, "Cannot allocate memory for hard link table");
118                return(-1);
119        }
120	return(0);
121}
122
123/*
124 * chk_lnk()
125 *	Looks up entry in hard link hash table. If found, it copies the name
126 *	of the file it is linked to (we already saw that file) into ln_name.
127 *	lnkcnt is decremented and if goes to 1 the node is deleted from the
128 *	database. (We have seen all the links to this file). If not found,
129 *	we add the file to the database if it has the potential for having
130 *	hard links to other files we may process (it has a link count > 1)
131 * Return:
132 *	if found returns 1; if not found returns 0; -1 on error
133 */
134
135#if __STDC__
136int
137chk_lnk(register ARCHD *arcn)
138#else
139int
140chk_lnk(arcn)
141	register ARCHD *arcn;
142#endif
143{
144	register HRDLNK *pt;
145	register HRDLNK **ppt;
146	register u_int indx;
147
148	if (ltab == NULL)
149		return(-1);
150	/*
151	 * ignore those nodes that cannot have hard links
152	 */
153	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
154		return(0);
155
156	/*
157	 * hash inode number and look for this file
158	 */
159	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
160	if ((pt = ltab[indx]) != NULL) {
161		/*
162		 * it's hash chain in not empty, walk down looking for it
163		 */
164		ppt = &(ltab[indx]);
165		while (pt != NULL) {
166			if ((pt->ino == arcn->sb.st_ino) &&
167			    (pt->dev == arcn->sb.st_dev))
168				break;
169			ppt = &(pt->fow);
170			pt = pt->fow;
171		}
172
173		if (pt != NULL) {
174			/*
175			 * found a link. set the node type and copy in the
176			 * name of the file it is to link to. we need to
177			 * handle hardlinks to regular files differently than
178			 * other links.
179			 */
180			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
181				PAXPATHLEN+1);
182			if (arcn->type == PAX_REG)
183				arcn->type = PAX_HRG;
184			else
185				arcn->type = PAX_HLK;
186
187			/*
188			 * if we have found all the links to this file, remove
189			 * it from the database
190			 */
191			if (--pt->nlink <= 1) {
192				*ppt = pt->fow;
193				(void)free((char *)pt->name);
194				(void)free((char *)pt);
195			}
196			return(1);
197		}
198	}
199
200	/*
201	 * we never saw this file before. It has links so we add it to the
202	 * front of this hash chain
203	 */
204	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
205		if ((pt->name = strdup(arcn->name)) != NULL) {
206			pt->dev = arcn->sb.st_dev;
207			pt->ino = arcn->sb.st_ino;
208			pt->nlink = arcn->sb.st_nlink;
209			pt->fow = ltab[indx];
210			ltab[indx] = pt;
211			return(0);
212		}
213		(void)free((char *)pt);
214	}
215
216	warn(1, "Hard link table out of memory");
217	return(-1);
218}
219
220/*
221 * purg_lnk
222 *	remove reference for a file that we may have added to the data base as
223 *	a potential source for hard links. We ended up not using the file, so
224 *	we do not want to accidently point another file at it later on.
225 */
226
227#if __STDC__
228void
229purg_lnk(register ARCHD *arcn)
230#else
231void
232purg_lnk(arcn)
233	register ARCHD *arcn;
234#endif
235{
236	register HRDLNK *pt;
237	register HRDLNK **ppt;
238	register u_int indx;
239
240	if (ltab == NULL)
241		return;
242	/*
243	 * do not bother to look if it could not be in the database
244	 */
245	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
246	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
247		return;
248
249	/*
250	 * find the hash chain for this inode value, if empty return
251	 */
252	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
253	if ((pt = ltab[indx]) == NULL)
254		return;
255
256	/*
257	 * walk down the list looking for the inode/dev pair, unlink and
258	 * free if found
259	 */
260	ppt = &(ltab[indx]);
261	while (pt != NULL) {
262		if ((pt->ino == arcn->sb.st_ino) &&
263		    (pt->dev == arcn->sb.st_dev))
264			break;
265		ppt = &(pt->fow);
266		pt = pt->fow;
267	}
268	if (pt == NULL)
269		return;
270
271	/*
272	 * remove and free it
273	 */
274	*ppt = pt->fow;
275	(void)free((char *)pt->name);
276	(void)free((char *)pt);
277}
278
279/*
280 * lnk_end()
281 *	pull apart a existing link table so we can reuse it. We do this between
282 *	read and write phases of append with update. (The format may have
283 *	used the link table, and we need to start with a fresh table for the
284 *	write phase
285 */
286
287#if __STDC__
288void
289lnk_end(void)
290#else
291void
292lnk_end()
293#endif
294{
295	register int i;
296	register HRDLNK *pt;
297	register HRDLNK *ppt;
298
299	if (ltab == NULL)
300		return;
301
302	for (i = 0; i < L_TAB_SZ; ++i) {
303		if (ltab[i] == NULL)
304			continue;
305		pt = ltab[i];
306		ltab[i] = NULL;
307
308		/*
309		 * free up each entry on this chain
310		 */
311		while (pt != NULL) {
312			ppt = pt;
313			pt = ppt->fow;
314			(void)free((char *)ppt->name);
315			(void)free((char *)ppt);
316		}
317	}
318	return;
319}
320
321/*
322 * modification time table routines
323 *
324 * The modification time table keeps track of last modification times for all
325 * files stored in an archive during a write phase when -u is set. We only
326 * add a file to the archive if it is newer than a file with the same name
327 * already stored on the archive (if there is no other file with the same
328 * name on the archive it is added). This applies to writes and appends.
329 * An append with an -u must read the archive and store the modification time
330 * for every file on that archive before starting the write phase. It is clear
331 * that this is one HUGE database. To save memory space, the actual file names
332 * are stored in a scatch file and indexed by an in memory hash table. The
333 * hash table is indexed by hashing the file path. The nodes in the table store
334 * the length of the filename and the lseek offset within the scratch file
335 * where the actual name is stored. Since there are never any deletions to this
336 * table, fragmentation of the scratch file is never a issue. Lookups seem to
337 * not exhibit any locality at all (files in the database are rarely
338 * looked up more than once...). So caching is just a waste of memory. The
339 * only limitation is the amount of scatch file space available to store the
340 * path names.
341 */
342
343/*
344 * ftime_start()
345 *	create the file time hash table and open for read/write the scratch
346 *	file. (after created it is unlinked, so when we exit we leave
347 *	no witnesses).
348 * Return:
349 *	0 if the table and file was created ok, -1 otherwise
350 */
351
352#if __STDC__
353int
354ftime_start(void)
355#else
356int
357ftime_start()
358#endif
359{
360	char *pt;
361
362	if (ftab != NULL)
363		return(0);
364 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
365                warn(1, "Cannot allocate memory for file time table");
366                return(-1);
367        }
368
369	/*
370	 * get random name and create temporary scratch file, unlink name
371	 * so it will get removed on exit
372	 */
373	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
374		return(-1);
375	(void)unlink(pt);
376
377	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
378		syswarn(1, errno, "Unable to open temporary file: %s", pt);
379		return(-1);
380	}
381
382	(void)unlink(pt);
383	return(0);
384}
385
386/*
387 * chk_ftime()
388 *	looks up entry in file time hash table. If not found, the file is
389 *	added to the hash table and the file named stored in the scratch file.
390 *	If a file with the same name is found, the file times are compared and
391 *	the most recent file time is retained. If the new file was younger (or
392 *	was not in the database) the new file is selected for storage.
393 * Return:
394 *	0 if file should be added to the archive, 1 if it should be skipped,
395 *	-1 on error
396 */
397
398#if __STDC__
399int
400chk_ftime(register ARCHD *arcn)
401#else
402int
403chk_ftime(arcn)
404	register ARCHD *arcn;
405#endif
406{
407	register FTM *pt;
408	register int namelen;
409	register u_int indx;
410	char ckname[PAXPATHLEN+1];
411
412	/*
413	 * no info, go ahead and add to archive
414	 */
415	if (ftab == NULL)
416		return(0);
417
418	/*
419	 * hash the pathname and look up in table
420	 */
421	namelen = arcn->nlen;
422	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
423	if ((pt = ftab[indx]) != NULL) {
424		/*
425		 * the hash chain is not empty, walk down looking for match
426		 * only read up the path names if the lengths match, speeds
427		 * up the search a lot
428		 */
429		while (pt != NULL) {
430			if (pt->namelen == namelen) {
431				/*
432				 * potential match, have to read the name
433				 * from the scratch file.
434				 */
435				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
436					syswarn(1, errno,
437					    "Failed ftime table seek");
438					return(-1);
439				}
440				if (read(ffd, ckname, namelen) != namelen) {
441					syswarn(1, errno,
442					    "Failed ftime table read");
443					return(-1);
444				}
445
446				/*
447				 * if the names match, we are done
448				 */
449				if (!strncmp(ckname, arcn->name, namelen))
450					break;
451			}
452
453			/*
454			 * try the next entry on the chain
455			 */
456			pt = pt->fow;
457		}
458
459		if (pt != NULL) {
460			/*
461			 * found the file, compare the times, save the newer
462			 */
463			if (arcn->sb.st_mtime > pt->mtime) {
464				/*
465				 * file is newer
466				 */
467				pt->mtime = arcn->sb.st_mtime;
468				return(0);
469			}
470			/*
471			 * file is older
472			 */
473			return(1);
474		}
475	}
476
477	/*
478	 * not in table, add it
479	 */
480	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
481		/*
482		 * add the name at the end of the scratch file, saving the
483		 * offset. add the file to the head of the hash chain
484		 */
485		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
486			if (write(ffd, arcn->name, namelen) == namelen) {
487				pt->mtime = arcn->sb.st_mtime;
488				pt->namelen = namelen;
489				pt->fow = ftab[indx];
490				ftab[indx] = pt;
491				return(0);
492			}
493			syswarn(1, errno, "Failed write to file time table");
494		} else
495			syswarn(1, errno, "Failed seek on file time table");
496	} else
497		warn(1, "File time table ran out of memory");
498
499	if (pt != NULL)
500		(void)free((char *)pt);
501	return(-1);
502}
503
504/*
505 * Interactive rename table routines
506 *
507 * The interactive rename table keeps track of the new names that the user
508 * assignes to files from tty input. Since this map is unique for each file
509 * we must store it in case there is a reference to the file later in archive
510 * (a link). Otherwise we will be unable to find the file we know was
511 * extracted. The remapping of these files is stored in a memory based hash
512 * table (it is assumed since input must come from /dev/tty, it is unlikely to
513 * be a very large table).
514 */
515
516/*
517 * name_start()
518 *	create the interactive rename table
519 * Return:
520 *	0 if successful, -1 otherwise
521 */
522
523#if __STDC__
524int
525name_start(void)
526#else
527int
528name_start()
529#endif
530{
531	if (ntab != NULL)
532		return(0);
533 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
534                warn(1, "Cannot allocate memory for interactive rename table");
535                return(-1);
536        }
537	return(0);
538}
539
540/*
541 * add_name()
542 *	add the new name to old name mapping just created by the user.
543 *	If an old name mapping is found (there may be duplicate names on an
544 *	archive) only the most recent is kept.
545 * Return:
546 *	0 if added, -1 otherwise
547 */
548
549#if __STDC__
550int
551add_name(register char *oname, int onamelen, char *nname)
552#else
553int
554add_name(oname, onamelen, nname)
555	register char *oname;
556	int onamelen;
557	char *nname;
558#endif
559{
560	register NAMT *pt;
561	register u_int indx;
562
563	if (ntab == NULL) {
564		/*
565		 * should never happen
566		 */
567		warn(0, "No interactive rename table, links may fail\n");
568		return(0);
569	}
570
571	/*
572	 * look to see if we have already mapped this file, if so we
573	 * will update it
574	 */
575	indx = st_hash(oname, onamelen, N_TAB_SZ);
576	if ((pt = ntab[indx]) != NULL) {
577		/*
578		 * look down the has chain for the file
579		 */
580		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
581			pt = pt->fow;
582
583		if (pt != NULL) {
584			/*
585			 * found an old mapping, replace it with the new one
586			 * the user just input (if it is different)
587			 */
588			if (strcmp(nname, pt->nname) == 0)
589				return(0);
590
591			(void)free((char *)pt->nname);
592			if ((pt->nname = strdup(nname)) == NULL) {
593				warn(1, "Cannot update rename table");
594				return(-1);
595			}
596			return(0);
597		}
598	}
599
600	/*
601	 * this is a new mapping, add it to the table
602	 */
603	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
604		if ((pt->oname = strdup(oname)) != NULL) {
605			if ((pt->nname = strdup(nname)) != NULL) {
606				pt->fow = ntab[indx];
607				ntab[indx] = pt;
608				return(0);
609			}
610			(void)free((char *)pt->oname);
611		}
612		(void)free((char *)pt);
613	}
614	warn(1, "Interactive rename table out of memory");
615	return(-1);
616}
617
618/*
619 * sub_name()
620 *	look up a link name to see if it points at a file that has been
621 *	remapped by the user. If found, the link is adjusted to contain the
622 *	new name (oname is the link to name)
623 */
624
625#if __STDC__
626void
627sub_name(register char *oname, int *onamelen)
628#else
629void
630sub_name(oname, onamelen)
631	register char *oname;
632	int *onamelen;
633#endif
634{
635	register NAMT *pt;
636	register u_int indx;
637
638	if (ntab == NULL)
639		return;
640	/*
641	 * look the name up in the hash table
642	 */
643	indx = st_hash(oname, *onamelen, N_TAB_SZ);
644	if ((pt = ntab[indx]) == NULL)
645		return;
646
647	while (pt != NULL) {
648		/*
649		 * walk down the hash cahin looking for a match
650		 */
651		if (strcmp(oname, pt->oname) == 0) {
652			/*
653			 * found it, replace it with the new name
654			 * and return (we know that oname has enough space)
655			 */
656			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
657			return;
658		}
659		pt = pt->fow;
660	}
661
662	/*
663	 * no match, just return
664	 */
665	return;
666}
667
668/*
669 * device/inode mapping table routines
670 * (used with formats that store device and inodes fields)
671 *
672 * device/inode mapping tables remap the device field in a archive header. The
673 * device/inode fields are used to determine when files are hard links to each
674 * other. However these values have very little meaning outside of that. This
675 * database is used to solve one of two different problems.
676 *
677 * 1) when files are appended to an archive, while the new files may have hard
678 * links to each other, you cannot determine if they have hard links to any
679 * file already stored on the archive from a prior run of pax. We must assume
680 * that these inode/device pairs are unique only within a SINGLE run of pax
681 * (which adds a set of files to an archive). So we have to make sure the
682 * inode/dev pairs we add each time are always unique. We do this by observing
683 * while the inode field is very dense, the use of the dev field is fairly
684 * sparse. Within each run of pax, we remap any device number of a new archive
685 * member that has a device number used in a prior run and already stored in a
686 * file on the archive. During the read phase of the append, we store the
687 * device numbers used and mark them to not be used by any file during the
688 * write phase. If during write we go to use one of those old device numbers,
689 * we remap it to a new value.
690 *
691 * 2) Often the fields in the archive header used to store these values are
692 * too small to store the entire value. The result is an inode or device value
693 * which can be truncated. This really can foul up an archive. With truncation
694 * we end up creating links between files that are really not links (after
695 * truncation the inodes are the same value). We address that by detecting
696 * truncation and forcing a remap of the device field to split truncated
697 * inodes away from each other. Each truncation creates a pattern of bits that
698 * are removed. We use this pattern of truncated bits to partition the inodes
699 * on a single device to many different devices (each one represented by the
700 * truncated bit pattern). All inodes on the same device that have the same
701 * truncation pattern are mapped to the same new device. Two inodes that
702 * truncate to the same value clearly will always have different truncation
703 * bit patterns, so they will be split from away each other. When we spot
704 * device truncation we remap the device number to a non truncated value.
705 * (for more info see table.h for the data structures involved).
706 */
707
708/*
709 * dev_start()
710 *	create the device mapping table
711 * Return:
712 *	0 if successful, -1 otherwise
713 */
714
715#if __STDC__
716int
717dev_start(void)
718#else
719int
720dev_start()
721#endif
722{
723	if (dtab != NULL)
724		return(0);
725 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
726                warn(1, "Cannot allocate memory for device mapping table");
727                return(-1);
728        }
729	return(0);
730}
731
732/*
733 * add_dev()
734 *	add a device number to the table. this will force the device to be
735 *	remapped to a new value if it be used during a write phase. This
736 *	function is called during the read phase of an append to prohibit the
737 *	use of any device number already in the archive.
738 * Return:
739 *	0 if added ok, -1 otherwise
740 */
741
742#if __STDC__
743int
744add_dev(register ARCHD *arcn)
745#else
746int
747add_dev(arcn)
748	register ARCHD *arcn;
749#endif
750{
751	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
752		return(-1);
753	return(0);
754}
755
756/*
757 * chk_dev()
758 *	check for a device value in the device table. If not found and the add
759 *	flag is set, it is added. This does NOT assign any mapping values, just
760 *	adds the device number as one that need to be remapped. If this device
761 *	is alread mapped, just return with a pointer to that entry.
762 * Return:
763 *	pointer to the entry for this device in the device map table. Null
764 *	if the add flag is not set and the device is not in the table (it is
765 *	not been seen yet). If add is set and the device cannot be added, null
766 *	is returned (indicates an error).
767 */
768
769#if __STDC__
770static DEVT *
771chk_dev(dev_t dev, int add)
772#else
773static DEVT *
774chk_dev(dev, add)
775	dev_t dev;
776	int add;
777#endif
778{
779	register DEVT *pt;
780	register u_int indx;
781
782	if (dtab == NULL)
783		return(NULL);
784	/*
785	 * look to see if this device is already in the table
786	 */
787	indx = ((unsigned)dev) % D_TAB_SZ;
788	if ((pt = dtab[indx]) != NULL) {
789		while ((pt != NULL) && (pt->dev != dev))
790			pt = pt->fow;
791
792		/*
793		 * found it, return a pointer to it
794		 */
795		if (pt != NULL)
796			return(pt);
797	}
798
799	/*
800	 * not in table, we add it only if told to as this may just be a check
801	 * to see if a device number is being used.
802	 */
803	if (add == 0)
804		return(NULL);
805
806	/*
807	 * allocate a node for this device and add it to the front of the hash
808	 * chain. Note we do not assign remaps values here, so the pt->list
809	 * list must be NULL.
810	 */
811	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
812		warn(1, "Device map table out of memory");
813		return(NULL);
814	}
815	pt->dev = dev;
816	pt->list = NULL;
817	pt->fow = dtab[indx];
818	dtab[indx] = pt;
819	return(pt);
820}
821/*
822 * map_dev()
823 *	given an inode and device storage mask (the mask has a 1 for each bit
824 *	the archive format is able to store in a header), we check for inode
825 *	and device truncation and remap the device as required. Device mapping
826 *	can also occur when during the read phase of append a device number was
827 *	seen (and was marked as do not use during the write phase). WE ASSUME
828 *	that unsigned longs are the same size or bigger than the fields used
829 *	for ino_t and dev_t. If not the types will have to be changed.
830 * Return:
831 *	0 if all ok, -1 otherwise.
832 */
833
834#if __STDC__
835int
836map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
837#else
838int
839map_dev(arcn, dev_mask, ino_mask)
840	register ARCHD *arcn;
841	u_long dev_mask;
842	u_long ino_mask;
843#endif
844{
845	register DEVT *pt;
846	register DLIST *dpt;
847	static dev_t lastdev = 0;	/* next device number to try */
848	int trc_ino = 0;
849	int trc_dev = 0;
850	ino_t trunc_bits = 0;
851	ino_t nino;
852
853	if (dtab == NULL)
854		return(0);
855	/*
856	 * check for device and inode truncation, and extract the truncated
857	 * bit pattern.
858	 */
859	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
860		++trc_dev;
861	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
862		++trc_ino;
863		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
864	}
865
866	/*
867	 * see if this device is already being mapped, look up the device
868	 * then find the truncation bit pattern which applies
869	 */
870	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
871		/*
872		 * this device is already marked to be remapped
873		 */
874		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
875			if (dpt->trunc_bits == trunc_bits)
876				break;
877
878		if (dpt != NULL) {
879			/*
880			 * we are being remapped for this device and pattern
881			 * change the device number to be stored and return
882			 */
883			arcn->sb.st_dev = dpt->dev;
884			arcn->sb.st_ino = nino;
885			return(0);
886		}
887	} else {
888		/*
889		 * this device is not being remapped YET. if we do not have any
890		 * form of truncation, we do not need a remap
891		 */
892		if (!trc_ino && !trc_dev)
893			return(0);
894
895		/*
896		 * we have truncation, have to add this as a device to remap
897		 */
898		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
899			goto bad;
900
901		/*
902		 * if we just have a truncated inode, we have to make sure that
903		 * all future inodes that do not truncate (they have the
904		 * truncation pattern of all 0's) continue to map to the same
905		 * device number. We probably have already written inodes with
906		 * this device number to the archive with the truncation
907		 * pattern of all 0's. So we add the mapping for all 0's to the
908		 * same device number.
909		 */
910		if (!trc_dev && (trunc_bits != 0)) {
911			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
912				goto bad;
913			dpt->trunc_bits = 0;
914			dpt->dev = arcn->sb.st_dev;
915			dpt->fow = pt->list;
916			pt->list = dpt;
917		}
918	}
919
920	/*
921	 * look for a device number not being used. We must watch for wrap
922	 * around on lastdev (so we do not get stuck looking forever!)
923	 */
924	while (++lastdev > 0) {
925		if (chk_dev(lastdev, 0) != NULL)
926			continue;
927		/*
928		 * found an unused value. If we have reached truncation point
929		 * for this format we are hosed, so we give up. Otherwise we
930		 * mark it as being used.
931		 */
932		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
933		    (chk_dev(lastdev, 1) == NULL))
934			goto bad;
935		break;
936	}
937
938	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
939		goto bad;
940
941	/*
942	 * got a new device number, store it under this truncation pattern.
943	 * change the device number this file is being stored with.
944	 */
945	dpt->trunc_bits = trunc_bits;
946	dpt->dev = lastdev;
947	dpt->fow = pt->list;
948	pt->list = dpt;
949	arcn->sb.st_dev = lastdev;
950	arcn->sb.st_ino = nino;
951	return(0);
952
953    bad:
954	warn(1, "Unable to fix truncated inode/device field when storing %s",
955	    arcn->name);
956	warn(0, "Archive may create improper hard links when extracted");
957	return(0);
958}
959
960/*
961 * directory access/mod time reset table routines (for directories READ by pax)
962 *
963 * The pax -t flag requires that access times of archive files to be the same
964 * before being read by pax. For regular files, access time is restored after
965 * the file has been copied. This database provides the same functionality for
966 * directories read during file tree traversal. Restoring directory access time
967 * is more complex than files since directories may be read several times until
968 * all the descendants in their subtree are visited by fts. Directory access
969 * and modification times are stored during the fts pre-order visit (done
970 * before any descendants in the subtree is visited) and restored after the
971 * fts post-order visit (after all the descendants have been visited). In the
972 * case of premature exit from a subtree (like from the effects of -n), any
973 * directory entries left in this database are reset during final cleanup
974 * operations of pax. Entries are hashed by inode number for fast lookup.
975 */
976
977/*
978 * atdir_start()
979 *	create the directory access time database for directories READ by pax.
980 * Return:
981 *	0 is created ok, -1 otherwise.
982 */
983
984#if __STDC__
985int
986atdir_start(void)
987#else
988int
989atdir_start()
990#endif
991{
992	if (atab != NULL)
993		return(0);
994 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
995                warn(1,"Cannot allocate space for directory access time table");
996                return(-1);
997        }
998	return(0);
999}
1000
1001
1002/*
1003 * atdir_end()
1004 *	walk through the directory access time table and reset the access time
1005 *	of any directory who still has an entry left in the database. These
1006 *	entries are for directories READ by pax
1007 */
1008
1009#if __STDC__
1010void
1011atdir_end(void)
1012#else
1013void
1014atdir_end()
1015#endif
1016{
1017	register ATDIR *pt;
1018	register int i;
1019
1020	if (atab == NULL)
1021		return;
1022	/*
1023	 * for each non-empty hash table entry reset all the directories
1024	 * chained there.
1025	 */
1026	for (i = 0; i < A_TAB_SZ; ++i) {
1027		if ((pt = atab[i]) == NULL)
1028			continue;
1029		/*
1030		 * remember to force the times, set_ftime() looks at pmtime
1031		 * and patime, which only applies to things CREATED by pax,
1032		 * not read by pax. Read time reset is controlled by -t.
1033		 */
1034		for (; pt != NULL; pt = pt->fow)
1035			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1036	}
1037}
1038
1039/*
1040 * add_atdir()
1041 *	add a directory to the directory access time table. Table is hashed
1042 *	and chained by inode number. This is for directories READ by pax
1043 */
1044
1045#if __STDC__
1046void
1047add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1048#else
1049void
1050add_atdir(fname, dev, ino, mtime, atime)
1051	char *fname;
1052	dev_t dev;
1053	ino_t ino;
1054	time_t mtime;
1055	time_t atime;
1056#endif
1057{
1058	register ATDIR *pt;
1059	register u_int indx;
1060
1061	if (atab == NULL)
1062		return;
1063
1064	/*
1065	 * make sure this directory is not already in the table, if so just
1066	 * return (the older entry always has the correct time). The only
1067	 * way this will happen is when the same subtree can be traversed by
1068	 * different args to pax and the -n option is aborting fts out of a
1069	 * subtree before all the post-order visits have been made).
1070	 */
1071	indx = ((unsigned)ino) % A_TAB_SZ;
1072	if ((pt = atab[indx]) != NULL) {
1073		while (pt != NULL) {
1074			if ((pt->ino == ino) && (pt->dev == dev))
1075				break;
1076			pt = pt->fow;
1077		}
1078
1079		/*
1080		 * oops, already there. Leave it alone.
1081		 */
1082		if (pt != NULL)
1083			return;
1084	}
1085
1086	/*
1087	 * add it to the front of the hash chain
1088	 */
1089	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1090		if ((pt->name = strdup(fname)) != NULL) {
1091			pt->dev = dev;
1092			pt->ino = ino;
1093			pt->mtime = mtime;
1094			pt->atime = atime;
1095			pt->fow = atab[indx];
1096			atab[indx] = pt;
1097			return;
1098		}
1099		(void)free((char *)pt);
1100	}
1101
1102	warn(1, "Directory access time reset table ran out of memory");
1103	return;
1104}
1105
1106/*
1107 * get_atdir()
1108 *	look up a directory by inode and device number to obtain the access
1109 *	and modification time you want to set to. If found, the modification
1110 *	and access time parameters are set and the entry is removed from the
1111 *	table (as it is no longer needed). These are for directories READ by
1112 *	pax
1113 * Return:
1114 *	0 if found, -1 if not found.
1115 */
1116
1117#if __STDC__
1118int
1119get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1120#else
1121int
1122get_atdir(dev, ino, mtime, atime)
1123	dev_t dev;
1124	ino_t ino;
1125	time_t *mtime;
1126	time_t *atime;
1127#endif
1128{
1129	register ATDIR *pt;
1130	register ATDIR **ppt;
1131	register u_int indx;
1132
1133	if (atab == NULL)
1134		return(-1);
1135	/*
1136	 * hash by inode and search the chain for an inode and device match
1137	 */
1138	indx = ((unsigned)ino) % A_TAB_SZ;
1139	if ((pt = atab[indx]) == NULL)
1140		return(-1);
1141
1142	ppt = &(atab[indx]);
1143	while (pt != NULL) {
1144		if ((pt->ino == ino) && (pt->dev == dev))
1145			break;
1146		/*
1147		 * no match, go to next one
1148		 */
1149		ppt = &(pt->fow);
1150		pt = pt->fow;
1151	}
1152
1153	/*
1154	 * return if we did not find it.
1155	 */
1156	if (pt == NULL)
1157		return(-1);
1158
1159	/*
1160	 * found it. return the times and remove the entry from the table.
1161	 */
1162	*ppt = pt->fow;
1163	*mtime = pt->mtime;
1164	*atime = pt->atime;
1165	(void)free((char *)pt->name);
1166	(void)free((char *)pt);
1167	return(0);
1168}
1169
1170/*
1171 * directory access mode and time storage routines (for directories CREATED
1172 * by pax).
1173 *
1174 * Pax requires that extracted directories, by default, have their access/mod
1175 * times and permissions set to the values specified in the archive. During the
1176 * actions of extracting (and creating the destination subtree during -rw copy)
1177 * directories extracted may be modified after being created. Even worse is
1178 * that these directories may have been created with file permissions which
1179 * prohibits any descendants of these directories from being extracted. When
1180 * directories are created by pax, access rights may be added to permit the
1181 * creation of files in their subtree. Every time pax creates a directory, the
1182 * times and file permissions specified by the archive are stored. After all
1183 * files have been extracted (or copied), these directories have their times
1184 * and file modes reset to the stored values. The directory info is restored in
1185 * reverse order as entries were added to the data file from root to leaf. To
1186 * restore atime properly, we must go backwards. The data file consists of
1187 * records with two parts, the file name followed by a DIRDATA trailer. The
1188 * fixed sized trailer contains the size of the name plus the off_t location in
1189 * the file. To restore we work backwards through the file reading the trailer
1190 * then the file name.
1191 */
1192
1193/*
1194 * dir_start()
1195 *	set up the directory time and file mode storage for directories CREATED
1196 *	by pax.
1197 * Return:
1198 *	0 if ok, -1 otherwise
1199 */
1200
1201#if __STDC__
1202int
1203dir_start(void)
1204#else
1205int
1206dir_start()
1207#endif
1208{
1209	char *pt;
1210
1211	if (dirfd != -1)
1212		return(0);
1213	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1214		return(-1);
1215
1216	/*
1217	 * unlink the file so it goes away at termination by itself
1218	 */
1219	(void)unlink(pt);
1220	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1221		(void)unlink(pt);
1222		return(0);
1223	}
1224	warn(1, "Unable to create temporary file for directory times: %s", pt);
1225	return(-1);
1226}
1227
1228/*
1229 * add_dir()
1230 *	add the mode and times for a newly CREATED directory
1231 *	name is name of the directory, psb the stat buffer with the data in it,
1232 *	frc_mode is a flag that says whether to force the setting of the mode
1233 *	(ignoring the user set values for preserving file mode). Frc_mode is
1234 *	for the case where we created a file and found that the resulting
1235 *	directory was not writeable and the user asked for file modes to NOT
1236 *	be preserved. (we have to preserve what was created by default, so we
1237 *	have to force the setting at the end. this is stated explicitly in the
1238 *	pax spec)
1239 */
1240
1241#if __STDC__
1242void
1243add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1244#else
1245void
1246add_dir(name, nlen, psb, frc_mode)
1247	char *name;
1248	int nlen;
1249	struct stat *psb;
1250	int frc_mode;
1251#endif
1252{
1253	DIRDATA dblk;
1254
1255	if (dirfd < 0)
1256		return;
1257
1258	/*
1259	 * get current position (where file name will start) so we can store it
1260	 * in the trailer
1261	 */
1262	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1263		warn(1,"Unable to store mode and times for directory: %s",name);
1264		return;
1265	}
1266
1267	/*
1268	 * write the file name followed by the trailer
1269	 */
1270	dblk.nlen = nlen + 1;
1271	dblk.mode = psb->st_mode & 0xffff;
1272	dblk.mtime = psb->st_mtime;
1273	dblk.atime = psb->st_atime;
1274	dblk.frc_mode = frc_mode;
1275	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1276	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1277		++dircnt;
1278		return;
1279	}
1280
1281	warn(1,"Unable to store mode and times for created directory: %s",name);
1282	return;
1283}
1284
1285/*
1286 * proc_dir()
1287 *	process all file modes and times stored for directories CREATED
1288 *	by pax
1289 */
1290
1291#if __STDC__
1292void
1293proc_dir(void)
1294#else
1295void
1296proc_dir()
1297#endif
1298{
1299	char name[PAXPATHLEN+1];
1300	DIRDATA dblk;
1301	u_long cnt;
1302
1303	if (dirfd < 0)
1304		return;
1305	/*
1306	 * read backwards through the file and process each directory
1307	 */
1308	for (cnt = 0; cnt < dircnt; ++cnt) {
1309		/*
1310		 * read the trailer, then the file name, if this fails
1311		 * just give up.
1312		 */
1313		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1314			break;
1315		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1316			break;
1317		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1318			break;
1319		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1320			break;
1321		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322			break;
1323
1324		/*
1325		 * frc_mode set, make sure we set the file modes even if
1326		 * the user didn't ask for it (see file_subs.c for more info)
1327		 */
1328		if (pmode || dblk.frc_mode)
1329			set_pmode(name, dblk.mode);
1330		if (patime || pmtime)
1331			set_ftime(name, dblk.mtime, dblk.atime, 0);
1332	}
1333
1334	(void)close(dirfd);
1335	dirfd = -1;
1336	if (cnt != dircnt)
1337		warn(1,"Unable to set mode and times for created directories");
1338	return;
1339}
1340
1341/*
1342 * database independent routines
1343 */
1344
1345/*
1346 * st_hash()
1347 *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1348 *	end of file, as this provides far better distribution than any other
1349 *	part of the name. For performance reasons we only care about the last
1350 *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1351 *	name). Was tested on 500,000 name file tree traversal from the root
1352 *	and gave almost a perfectly uniform distribution of keys when used with
1353 *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1354 *	chars at a time and pads with 0 for last addition.
1355 * Return:
1356 *	the hash value of the string MOD (%) the table size.
1357 */
1358
1359#if __STDC__
1360u_int
1361st_hash(char *name, int len, int tabsz)
1362#else
1363u_int
1364st_hash(name, len, tabsz)
1365	char *name;
1366	int len;
1367	int tabsz;
1368#endif
1369{
1370	register char *pt;
1371	register char *dest;
1372	register char *end;
1373	register int i;
1374	register u_int key = 0;
1375	register int steps;
1376	register int res;
1377	u_int val;
1378
1379	/*
1380	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1381	 * time here (remember these are pathnames, the tail is what will
1382	 * spread out the keys)
1383	 */
1384	if (len > MAXKEYLEN) {
1385                pt = &(name[len - MAXKEYLEN]);
1386		len = MAXKEYLEN;
1387	} else
1388		pt = name;
1389
1390	/*
1391	 * calculate the number of u_int size steps in the string and if
1392	 * there is a runt to deal with
1393	 */
1394	steps = len/sizeof(u_int);
1395	res = len % sizeof(u_int);
1396
1397	/*
1398	 * add up the value of the string in unsigned integer sized pieces
1399	 * too bad we cannot have unsigned int aligned strings, then we
1400	 * could avoid the expensive copy.
1401	 */
1402	for (i = 0; i < steps; ++i) {
1403		end = pt + sizeof(u_int);
1404		dest = (char *)&val;
1405		while (pt < end)
1406			*dest++ = *pt++;
1407		key += val;
1408	}
1409
1410	/*
1411	 * add in the runt padded with zero to the right
1412	 */
1413	if (res) {
1414		val = 0;
1415		end = pt + res;
1416		dest = (char *)&val;
1417		while (pt < end)
1418			*dest++ = *pt++;
1419		key += val;
1420	}
1421
1422	/*
1423	 * return the result mod the table size
1424	 */
1425	return(key % tabsz);
1426}
1427