1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013-2015 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $FreeBSD$
32 */
33
34#ifndef __X86_IOMMU_INTEL_DMAR_H
35#define	__X86_IOMMU_INTEL_DMAR_H
36
37#include <dev/iommu/iommu.h>
38
39struct dmar_unit;
40
41/*
42 * Locking annotations:
43 * (u) - Protected by iommu unit lock
44 * (d) - Protected by domain lock
45 * (c) - Immutable after initialization
46 */
47
48/*
49 * The domain abstraction.  Most non-constant members of the domain
50 * are protected by owning dmar unit lock, not by the domain lock.
51 * Most important, the dmar lock protects the contexts list.
52 *
53 * The domain lock protects the address map for the domain, and list
54 * of unload entries delayed.
55 *
56 * Page tables pages and pages content is protected by the vm object
57 * lock pgtbl_obj, which contains the page tables pages.
58 */
59struct dmar_domain {
60	struct iommu_domain iodom;
61	int domain;			/* (c) DID, written in context entry */
62	int mgaw;			/* (c) Real max address width */
63	int agaw;			/* (c) Adjusted guest address width */
64	int pglvl;			/* (c) The pagelevel */
65	int awlvl;			/* (c) The pagelevel as the bitmask,
66					   to set in context entry */
67	u_int ctx_cnt;			/* (u) Number of contexts owned */
68	u_int refs;			/* (u) Refs, including ctx */
69	struct dmar_unit *dmar;		/* (c) */
70	LIST_ENTRY(dmar_domain) link;	/* (u) Member in the dmar list */
71	LIST_HEAD(, dmar_ctx) contexts;	/* (u) */
72	vm_object_t pgtbl_obj;		/* (c) Page table pages */
73	u_int batch_no;
74};
75
76struct dmar_ctx {
77	struct iommu_ctx context;
78	uint64_t last_fault_rec[2];	/* Last fault reported */
79	LIST_ENTRY(dmar_ctx) link;	/* (u) Member in the domain list */
80	u_int refs;			/* (u) References from tags */
81};
82
83#define	DMAR_DOMAIN_PGLOCK(dom)		VM_OBJECT_WLOCK((dom)->pgtbl_obj)
84#define	DMAR_DOMAIN_PGTRYLOCK(dom)	VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj)
85#define	DMAR_DOMAIN_PGUNLOCK(dom)	VM_OBJECT_WUNLOCK((dom)->pgtbl_obj)
86#define	DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \
87	VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj)
88
89#define	DMAR_DOMAIN_LOCK(dom)	mtx_lock(&(dom)->iodom.lock)
90#define	DMAR_DOMAIN_UNLOCK(dom)	mtx_unlock(&(dom)->iodom.lock)
91#define	DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED)
92
93#define	DMAR2IOMMU(dmar)	&((dmar)->iommu)
94#define	IOMMU2DMAR(dmar)	\
95	__containerof((dmar), struct dmar_unit, iommu)
96
97#define	DOM2IODOM(domain)	&((domain)->iodom)
98#define	IODOM2DOM(domain)	\
99	__containerof((domain), struct dmar_domain, iodom)
100
101#define	CTX2IOCTX(ctx)		&((ctx)->context)
102#define	IOCTX2CTX(ctx)		\
103	__containerof((ctx), struct dmar_ctx, context)
104
105#define	CTX2DOM(ctx)		IODOM2DOM((ctx)->context.domain)
106#define	CTX2DMAR(ctx)		(CTX2DOM(ctx)->dmar)
107#define	DOM2DMAR(domain)	((domain)->dmar)
108
109struct dmar_msi_data {
110	int irq;
111	int irq_rid;
112	struct resource *irq_res;
113	void *intr_handle;
114	int (*handler)(void *);
115	int msi_data_reg;
116	int msi_addr_reg;
117	int msi_uaddr_reg;
118	void (*enable_intr)(struct dmar_unit *);
119	void (*disable_intr)(struct dmar_unit *);
120	const char *name;
121};
122
123#define	DMAR_INTR_FAULT		0
124#define	DMAR_INTR_QI		1
125#define	DMAR_INTR_TOTAL		2
126
127struct dmar_unit {
128	struct iommu_unit iommu;
129	device_t dev;
130	uint16_t segment;
131	uint64_t base;
132
133	/* Resources */
134	int reg_rid;
135	struct resource *regs;
136
137	struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
138
139	/* Hardware registers cache */
140	uint32_t hw_ver;
141	uint64_t hw_cap;
142	uint64_t hw_ecap;
143	uint32_t hw_gcmd;
144
145	/* Data for being a dmar */
146	LIST_HEAD(, dmar_domain) domains;
147	struct unrhdr *domids;
148	vm_object_t ctx_obj;
149	u_int barrier_flags;
150
151	/* Fault handler data */
152	struct mtx fault_lock;
153	uint64_t *fault_log;
154	int fault_log_head;
155	int fault_log_tail;
156	int fault_log_size;
157	struct task fault_task;
158	struct taskqueue *fault_taskqueue;
159
160	/* QI */
161	int qi_enabled;
162	vm_offset_t inv_queue;
163	vm_size_t inv_queue_size;
164	uint32_t inv_queue_avail;
165	uint32_t inv_queue_tail;
166	volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
167					       descr completion */
168	uint64_t inv_waitd_seq_hw_phys;
169	uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
170	u_int inv_waitd_gen;	/* seq number generation AKA seq overflows */
171	u_int inv_seq_waiters;	/* count of waiters for seq */
172	u_int inv_queue_full;	/* informational counter */
173
174	/* IR */
175	int ir_enabled;
176	vm_paddr_t irt_phys;
177	dmar_irte_t *irt;
178	u_int irte_cnt;
179	vmem_t *irtids;
180
181	/* Delayed freeing of map entries queue processing */
182	struct iommu_map_entries_tailq tlb_flush_entries;
183	struct task qi_task;
184	struct taskqueue *qi_taskqueue;
185};
186
187#define	DMAR_LOCK(dmar)		mtx_lock(&(dmar)->iommu.lock)
188#define	DMAR_UNLOCK(dmar)	mtx_unlock(&(dmar)->iommu.lock)
189#define	DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED)
190
191#define	DMAR_FAULT_LOCK(dmar)	mtx_lock_spin(&(dmar)->fault_lock)
192#define	DMAR_FAULT_UNLOCK(dmar)	mtx_unlock_spin(&(dmar)->fault_lock)
193#define	DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
194
195#define	DMAR_IS_COHERENT(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
196#define	DMAR_HAS_QI(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
197#define	DMAR_X2APIC(dmar) \
198	(x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
199
200/* Barrier ids */
201#define	DMAR_BARRIER_RMRR	0
202#define	DMAR_BARRIER_USEQ	1
203
204struct dmar_unit *dmar_find(device_t dev, bool verbose);
205struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
206struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
207
208u_int dmar_nd2mask(u_int nd);
209bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
210int domain_set_agaw(struct dmar_domain *domain, int mgaw);
211int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr,
212    bool allow_less);
213vm_pindex_t pglvl_max_pages(int pglvl);
214int domain_is_sp_lvl(struct dmar_domain *domain, int lvl);
215iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
216iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl);
217int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
218    iommu_gaddr_t *isizep);
219struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
220void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
221void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
222    struct sf_buf **sf);
223void dmar_unmap_pgtbl(struct sf_buf *sf);
224int dmar_load_root_entry_ptr(struct dmar_unit *unit);
225int dmar_inv_ctx_glob(struct dmar_unit *unit);
226int dmar_inv_iotlb_glob(struct dmar_unit *unit);
227int dmar_flush_write_bufs(struct dmar_unit *unit);
228void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
229void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
230void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
231int dmar_enable_translation(struct dmar_unit *unit);
232int dmar_disable_translation(struct dmar_unit *unit);
233int dmar_load_irt_ptr(struct dmar_unit *unit);
234int dmar_enable_ir(struct dmar_unit *unit);
235int dmar_disable_ir(struct dmar_unit *unit);
236bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
237void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
238uint64_t dmar_get_timeout(void);
239void dmar_update_timeout(uint64_t newval);
240
241int dmar_fault_intr(void *arg);
242void dmar_enable_fault_intr(struct dmar_unit *unit);
243void dmar_disable_fault_intr(struct dmar_unit *unit);
244int dmar_init_fault_log(struct dmar_unit *unit);
245void dmar_fini_fault_log(struct dmar_unit *unit);
246
247int dmar_qi_intr(void *arg);
248void dmar_enable_qi_intr(struct dmar_unit *unit);
249void dmar_disable_qi_intr(struct dmar_unit *unit);
250int dmar_init_qi(struct dmar_unit *unit);
251void dmar_fini_qi(struct dmar_unit *unit);
252void dmar_qi_invalidate_locked(struct dmar_domain *domain, iommu_gaddr_t start,
253    iommu_gaddr_t size, struct iommu_qi_genseq *psec, bool emit_wait);
254void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
255void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
256void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
257void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
258
259vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain,
260    iommu_gaddr_t maxaddr);
261void put_idmap_pgtbl(vm_object_t obj);
262void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
263    iommu_gaddr_t size);
264int domain_alloc_pgtbl(struct dmar_domain *domain);
265void domain_free_pgtbl(struct dmar_domain *domain);
266extern const struct iommu_domain_map_ops dmar_domain_map_ops;
267
268int dmar_dev_depth(device_t child);
269void dmar_dev_path(device_t child, int *busno, void *path1, int depth);
270
271struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev,
272    uint16_t rid, bool id_mapped, bool rmrr_init);
273struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
274    int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
275    bool id_mapped, bool rmrr_init);
276int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx);
277void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
278void dmar_free_ctx(struct dmar_ctx *ctx);
279struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
280void dmar_domain_unload_entry(struct iommu_map_entry *entry, bool free);
281void dmar_domain_unload(struct dmar_domain *domain,
282    struct iommu_map_entries_tailq *entries, bool cansleep);
283void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free);
284
285void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain,
286    int dev_busno, const void *dev_path, int dev_path_len,
287    struct iommu_map_entries_tailq *rmrr_entries);
288int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar);
289
290void dmar_quirks_post_ident(struct dmar_unit *dmar);
291void dmar_quirks_pre_use(struct iommu_unit *dmar);
292
293int dmar_init_irt(struct dmar_unit *unit);
294void dmar_fini_irt(struct dmar_unit *unit);
295
296extern iommu_haddr_t dmar_high;
297extern int haw;
298extern int dmar_tbl_pagecnt;
299extern int dmar_batch_coalesce;
300
301static inline uint32_t
302dmar_read4(const struct dmar_unit *unit, int reg)
303{
304
305	return (bus_read_4(unit->regs, reg));
306}
307
308static inline uint64_t
309dmar_read8(const struct dmar_unit *unit, int reg)
310{
311#ifdef __i386__
312	uint32_t high, low;
313
314	low = bus_read_4(unit->regs, reg);
315	high = bus_read_4(unit->regs, reg + 4);
316	return (low | ((uint64_t)high << 32));
317#else
318	return (bus_read_8(unit->regs, reg));
319#endif
320}
321
322static inline void
323dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
324{
325
326	KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
327	    (unit->hw_gcmd & DMAR_GCMD_TE),
328	    ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit,
329	    unit->hw_gcmd, val));
330	bus_write_4(unit->regs, reg, val);
331}
332
333static inline void
334dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
335{
336
337	KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
338#ifdef __i386__
339	uint32_t high, low;
340
341	low = val;
342	high = val >> 32;
343	bus_write_4(unit->regs, reg, low);
344	bus_write_4(unit->regs, reg + 4, high);
345#else
346	bus_write_8(unit->regs, reg, val);
347#endif
348}
349
350/*
351 * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
352 * are issued in the correct order.  For store, the lower word,
353 * containing the P or R and W bits, is set only after the high word
354 * is written.  For clear, the P bit is cleared first, then the high
355 * word is cleared.
356 *
357 * dmar_pte_update updates the pte.  For amd64, the update is atomic.
358 * For i386, it first disables the entry by clearing the word
359 * containing the P bit, and then defer to dmar_pte_store.  The locked
360 * cmpxchg8b is probably available on any machine having DMAR support,
361 * but interrupt translation table may be mapped uncached.
362 */
363static inline void
364dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
365{
366#ifdef __i386__
367	volatile uint32_t *p;
368	uint32_t hi, lo;
369
370	hi = val >> 32;
371	lo = val;
372	p = (volatile uint32_t *)dst;
373	*(p + 1) = hi;
374	*p = lo;
375#else
376	*dst = val;
377#endif
378}
379
380static inline void
381dmar_pte_store(volatile uint64_t *dst, uint64_t val)
382{
383
384	KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
385	    dst, (uintmax_t)*dst, (uintmax_t)val));
386	dmar_pte_store1(dst, val);
387}
388
389static inline void
390dmar_pte_update(volatile uint64_t *dst, uint64_t val)
391{
392
393#ifdef __i386__
394	volatile uint32_t *p;
395
396	p = (volatile uint32_t *)dst;
397	*p = 0;
398#endif
399	dmar_pte_store1(dst, val);
400}
401
402static inline void
403dmar_pte_clear(volatile uint64_t *dst)
404{
405#ifdef __i386__
406	volatile uint32_t *p;
407
408	p = (volatile uint32_t *)dst;
409	*p = 0;
410	*(p + 1) = 0;
411#else
412	*dst = 0;
413#endif
414}
415
416extern struct timespec dmar_hw_timeout;
417
418#define	DMAR_WAIT_UNTIL(cond)					\
419{								\
420	struct timespec last, curr;				\
421	bool forever;						\
422								\
423	if (dmar_hw_timeout.tv_sec == 0 &&			\
424	    dmar_hw_timeout.tv_nsec == 0) {			\
425		forever = true;					\
426	} else {						\
427		forever = false;				\
428		nanouptime(&curr);				\
429		timespecadd(&curr, &dmar_hw_timeout, &last);	\
430	}							\
431	for (;;) {						\
432		if (cond) {					\
433			error = 0;				\
434			break;					\
435		}						\
436		nanouptime(&curr);				\
437		if (!forever && timespeccmp(&last, &curr, <)) {	\
438			error = ETIMEDOUT;			\
439			break;					\
440		}						\
441		cpu_spinwait();					\
442	}							\
443}
444
445#ifdef INVARIANTS
446#define	TD_PREP_PINNED_ASSERT						\
447	int old_td_pinned;						\
448	old_td_pinned = curthread->td_pinned
449#define	TD_PINNED_ASSERT						\
450	KASSERT(curthread->td_pinned == old_td_pinned,			\
451	    ("pin count leak: %d %d %s:%d", curthread->td_pinned,	\
452	    old_td_pinned, __FILE__, __LINE__))
453#else
454#define	TD_PREP_PINNED_ASSERT
455#define	TD_PINNED_ASSERT
456#endif
457
458#endif
459