1/*	$NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
2
3/*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (c) 1992, 1993
7 *	The Regents of the University of California.  All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
43 */
44
45/*
46 * FPU subroutines: `explode' the machine's `packed binary' format numbers
47 * into our internal format.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD$");
52
53#include <sys/types.h>
54#include <sys/systm.h>
55
56#include <machine/fpu.h>
57#include <machine/ieee.h>
58#include <machine/pcb.h>
59
60#include <powerpc/fpu/fpu_arith.h>
61#include <powerpc/fpu/fpu_emu.h>
62#include <powerpc/fpu/fpu_extern.h>
63#include <powerpc/fpu/fpu_instr.h>
64
65/*
66 * N.B.: in all of the following, we assume the FP format is
67 *
68 *	---------------------------
69 *	| s | exponent | fraction |
70 *	---------------------------
71 *
72 * (which represents -1**s * 1.fraction * 2**exponent), so that the
73 * sign bit is way at the top (bit 31), the exponent is next, and
74 * then the remaining bits mark the fraction.  A zero exponent means
75 * zero or denormalized (0.fraction rather than 1.fraction), and the
76 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
77 *
78 * Since the sign bit is always the topmost bit---this holds even for
79 * integers---we set that outside all the *tof functions.  Each function
80 * returns the class code for the new number (but note that we use
81 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
82 */
83
84/*
85 * int -> fpn.
86 */
87int
88fpu_itof(struct fpn *fp, u_int i)
89{
90
91	if (i == 0)
92		return (FPC_ZERO);
93	/*
94	 * The value FP_1 represents 2^FP_LG, so set the exponent
95	 * there and let normalization fix it up.  Convert negative
96	 * numbers to sign-and-magnitude.  Note that this relies on
97	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
98	 */
99	fp->fp_exp = FP_LG;
100	fp->fp_mant[0] = (int)i < 0 ? -i : i;
101	fp->fp_mant[1] = 0;
102	fp->fp_mant[2] = 0;
103	fp->fp_mant[3] = 0;
104	fpu_norm(fp);
105	return (FPC_NUM);
106}
107
108/*
109 * 64-bit int -> fpn.
110 */
111int
112fpu_xtof(struct fpn *fp, u_int64_t i)
113{
114
115	if (i == 0)
116		return (FPC_ZERO);
117	/*
118	 * The value FP_1 represents 2^FP_LG, so set the exponent
119	 * there and let normalization fix it up.  Convert negative
120	 * numbers to sign-and-magnitude.  Note that this relies on
121	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
122	 */
123	fp->fp_exp = FP_LG2;
124	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
125	fp->fp_mant[2] = 0;
126	fp->fp_mant[3] = 0;
127	fpu_norm(fp);
128	return (FPC_NUM);
129}
130
131#define	mask(nbits) ((1L << (nbits)) - 1)
132
133/*
134 * All external floating formats convert to internal in the same manner,
135 * as defined here.  Note that only normals get an implied 1.0 inserted.
136 */
137#define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
138	if (exp == 0) { \
139		if (allfrac == 0) \
140			return (FPC_ZERO); \
141		fp->fp_exp = 1 - expbias; \
142		fp->fp_mant[0] = f0; \
143		fp->fp_mant[1] = f1; \
144		fp->fp_mant[2] = f2; \
145		fp->fp_mant[3] = f3; \
146		fpu_norm(fp); \
147		return (FPC_NUM); \
148	} \
149	if (exp == (2 * expbias + 1)) { \
150		if (allfrac == 0) \
151			return (FPC_INF); \
152		fp->fp_mant[0] = f0; \
153		fp->fp_mant[1] = f1; \
154		fp->fp_mant[2] = f2; \
155		fp->fp_mant[3] = f3; \
156		return (FPC_QNAN); \
157	} \
158	fp->fp_exp = exp - expbias; \
159	fp->fp_mant[0] = FP_1 | f0; \
160	fp->fp_mant[1] = f1; \
161	fp->fp_mant[2] = f2; \
162	fp->fp_mant[3] = f3; \
163	return (FPC_NUM)
164
165/*
166 * 32-bit single precision -> fpn.
167 * We assume a single occupies at most (64-FP_LG) bits in the internal
168 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
169 */
170int
171fpu_stof(struct fpn *fp, u_int i)
172{
173	int exp;
174	u_int frac, f0, f1;
175#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
176
177	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
178	frac = i & mask(SNG_FRACBITS);
179	f0 = frac >> SNG_SHIFT;
180	f1 = frac << (32 - SNG_SHIFT);
181	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
182}
183
184/*
185 * 64-bit double -> fpn.
186 * We assume this uses at most (96-FP_LG) bits.
187 */
188int
189fpu_dtof(struct fpn *fp, u_int i, u_int j)
190{
191	int exp;
192	u_int frac, f0, f1, f2;
193#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
194
195	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
196	frac = i & mask(DBL_FRACBITS - 32);
197	f0 = frac >> DBL_SHIFT;
198	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
199	f2 = j << (32 - DBL_SHIFT);
200	frac |= j;
201	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
202}
203
204/*
205 * Explode the contents of a register / regpair / regquad.
206 * If the input is a signalling NaN, an NV (invalid) exception
207 * will be set.  (Note that nothing but NV can occur until ALU
208 * operations are performed.)
209 */
210void
211fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
212{
213	u_int s, *space;
214	u_int64_t l, *xspace;
215
216	xspace = (u_int64_t *)&fe->fe_fpstate->fpr[reg].fpr;
217	l = xspace[0];
218	space = (u_int *)&fe->fe_fpstate->fpr[reg].fpr;
219	s = space[0];
220	fp->fp_sign = s >> 31;
221	fp->fp_sticky = 0;
222	switch (type) {
223	case FTYPE_LNG:
224		s = fpu_xtof(fp, l);
225		break;
226
227	case FTYPE_INT:
228		s = fpu_itof(fp, space[1]);
229		break;
230
231	case FTYPE_SNG:
232		s = fpu_stof(fp, s);
233		break;
234
235	case FTYPE_DBL:
236		s = fpu_dtof(fp, s, space[1]);
237		break;
238
239	default:
240		panic("fpu_explode");
241		panic("fpu_explode: invalid type %d", type);
242	}
243
244	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
245		/*
246		 * Input is a signalling NaN.  All operations that return
247		 * an input NaN operand put it through a ``NaN conversion'',
248		 * which basically just means ``turn on the quiet bit''.
249		 * We do this here so that all NaNs internally look quiet
250		 * (we can tell signalling ones by their class).
251		 */
252		fp->fp_mant[0] |= FP_QUIETBIT;
253		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
254		s = FPC_SNAN;
255	}
256	fp->fp_class = s;
257	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
258		((type == FTYPE_INT) ? 'i' :
259			((type == FTYPE_SNG) ? 's' :
260				((type == FTYPE_DBL) ? 'd' : '?'))),
261		reg));
262	DUMPFPN(FPE_REG, fp);
263	DPRINTF(FPE_REG, ("\n"));
264}
265