1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * The FreeBSD IP packet firewall, main file
33 */
34
35#include "opt_ipfw.h"
36#include "opt_ipdivert.h"
37#include "opt_inet.h"
38#ifndef INET
39#error "IPFIREWALL requires INET"
40#endif /* INET */
41#include "opt_inet6.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/condvar.h>
46#include <sys/counter.h>
47#include <sys/eventhandler.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/jail.h>
53#include <sys/module.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/rwlock.h>
57#include <sys/rmlock.h>
58#include <sys/sdt.h>
59#include <sys/socket.h>
60#include <sys/socketvar.h>
61#include <sys/sysctl.h>
62#include <sys/syslog.h>
63#include <sys/ucred.h>
64#include <net/ethernet.h> /* for ETHERTYPE_IP */
65#include <net/if.h>
66#include <net/if_var.h>
67#include <net/route.h>
68#include <net/route/nhop.h>
69#include <net/pfil.h>
70#include <net/vnet.h>
71
72#include <netpfil/pf/pf_mtag.h>
73
74#include <netinet/in.h>
75#include <netinet/in_var.h>
76#include <netinet/in_pcb.h>
77#include <netinet/ip.h>
78#include <netinet/ip_var.h>
79#include <netinet/ip_icmp.h>
80#include <netinet/ip_fw.h>
81#include <netinet/ip_carp.h>
82#include <netinet/pim.h>
83#include <netinet/tcp_var.h>
84#include <netinet/udp.h>
85#include <netinet/udp_var.h>
86#include <netinet/sctp.h>
87#include <netinet/sctp_crc32.h>
88#include <netinet/sctp_header.h>
89
90#include <netinet/ip6.h>
91#include <netinet/icmp6.h>
92#include <netinet/in_fib.h>
93#ifdef INET6
94#include <netinet6/in6_fib.h>
95#include <netinet6/in6_pcb.h>
96#include <netinet6/scope6_var.h>
97#include <netinet6/ip6_var.h>
98#endif
99
100#include <net/if_gre.h> /* for struct grehdr */
101
102#include <netpfil/ipfw/ip_fw_private.h>
103
104#include <machine/in_cksum.h>	/* XXX for in_cksum */
105
106#ifdef MAC
107#include <security/mac/mac_framework.h>
108#endif
109
110#define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111    SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112
113SDT_PROVIDER_DEFINE(ipfw);
114SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115    "int",			/* retval */
116    "int",			/* af */
117    "void *",			/* src addr */
118    "void *",			/* dst addr */
119    "struct ip_fw_args *",	/* args */
120    "struct ip_fw *"		/* rule */);
121
122/*
123 * static variables followed by global ones.
124 * All ipfw global variables are here.
125 */
126
127VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129
130VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132
133#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134static int default_to_accept = 1;
135#else
136static int default_to_accept;
137#endif
138
139VNET_DEFINE(int, autoinc_step);
140VNET_DEFINE(int, fw_one_pass) = 1;
141
142VNET_DEFINE(unsigned int, fw_tables_max);
143VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144/* Use 128 tables by default */
145static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146
147#ifndef LINEAR_SKIPTO
148static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
149    int tablearg, int jump_backwards);
150#define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
151#else
152static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
153    int tablearg, int jump_backwards);
154#define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
155#endif
156
157/*
158 * Each rule belongs to one of 32 different sets (0..31).
159 * The variable set_disable contains one bit per set.
160 * If the bit is set, all rules in the corresponding set
161 * are disabled. Set RESVD_SET(31) is reserved for the default rule
162 * and rules that are not deleted by the flush command,
163 * and CANNOT be disabled.
164 * Rules in set RESVD_SET can only be deleted individually.
165 */
166VNET_DEFINE(u_int32_t, set_disable);
167#define	V_set_disable			VNET(set_disable)
168
169VNET_DEFINE(int, fw_verbose);
170/* counter for ipfw_log(NULL...) */
171VNET_DEFINE(u_int64_t, norule_counter);
172VNET_DEFINE(int, verbose_limit);
173
174/* layer3_chain contains the list of rules for layer 3 */
175VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176
177/* ipfw_vnet_ready controls when we are open for business */
178VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179
180VNET_DEFINE(int, ipfw_nat_ready) = 0;
181
182ipfw_nat_t *ipfw_nat_ptr = NULL;
183struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188
189#ifdef SYSCTL_NODE
190uint32_t dummy_def = IPFW_DEFAULT_RULE;
191static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193
194SYSBEGIN(f3)
195
196SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197    "Firewall");
198SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200    "Only do a single pass through ipfw when using dummynet(4)");
201SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203    "Rule number auto-increment step");
204SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206    "Log matches to ipfw rules");
207SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209    "Set upper limit of matches of ipfw rules logged");
210SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
211    &dummy_def, 0,
212    "The default/max possible rule number.");
213SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
214    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215    0, 0, sysctl_ipfw_table_num, "IU",
216    "Maximum number of concurrently used tables");
217SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
218    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219    0, 0, sysctl_ipfw_tables_sets, "IU",
220    "Use per-set namespace for tables");
221SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
222    &default_to_accept, 0,
223    "Make the default rule accept all packets.");
224TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
225SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
226    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
227    "Number of static rules");
228
229#ifdef INET6
230SYSCTL_DECL(_net_inet6_ip6);
231SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
232    "Firewall");
233SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
234    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
235    &VNET_NAME(fw_deny_unknown_exthdrs), 0,
236    "Deny packets with unknown IPv6 Extension Headers");
237SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
238    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
239    &VNET_NAME(fw_permit_single_frag6), 0,
240    "Permit single packet IPv6 fragments");
241#endif /* INET6 */
242
243SYSEND
244
245#endif /* SYSCTL_NODE */
246
247/*
248 * Some macros used in the various matching options.
249 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
250 * Other macros just cast void * into the appropriate type
251 */
252#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
253#define	TCP(p)		((struct tcphdr *)(p))
254#define	SCTP(p)		((struct sctphdr *)(p))
255#define	UDP(p)		((struct udphdr *)(p))
256#define	ICMP(p)		((struct icmphdr *)(p))
257#define	ICMP6(p)	((struct icmp6_hdr *)(p))
258
259static __inline int
260icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
261{
262	int type = icmp->icmp_type;
263
264	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
265}
266
267#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
268    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
269
270static int
271is_icmp_query(struct icmphdr *icmp)
272{
273	int type = icmp->icmp_type;
274
275	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
276}
277#undef TT
278
279/*
280 * The following checks use two arrays of 8 or 16 bits to store the
281 * bits that we want set or clear, respectively. They are in the
282 * low and high half of cmd->arg1 or cmd->d[0].
283 *
284 * We scan options and store the bits we find set. We succeed if
285 *
286 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
287 *
288 * The code is sometimes optimized not to store additional variables.
289 */
290
291static int
292flags_match(ipfw_insn *cmd, u_int8_t bits)
293{
294	u_char want_clear;
295	bits = ~bits;
296
297	if ( ((cmd->arg1 & 0xff) & bits) != 0)
298		return 0; /* some bits we want set were clear */
299	want_clear = (cmd->arg1 >> 8) & 0xff;
300	if ( (want_clear & bits) != want_clear)
301		return 0; /* some bits we want clear were set */
302	return 1;
303}
304
305static int
306ipopts_match(struct ip *ip, ipfw_insn *cmd)
307{
308	int optlen, bits = 0;
309	u_char *cp = (u_char *)(ip + 1);
310	int x = (ip->ip_hl << 2) - sizeof (struct ip);
311
312	for (; x > 0; x -= optlen, cp += optlen) {
313		int opt = cp[IPOPT_OPTVAL];
314
315		if (opt == IPOPT_EOL)
316			break;
317		if (opt == IPOPT_NOP)
318			optlen = 1;
319		else {
320			optlen = cp[IPOPT_OLEN];
321			if (optlen <= 0 || optlen > x)
322				return 0; /* invalid or truncated */
323		}
324		switch (opt) {
325		default:
326			break;
327
328		case IPOPT_LSRR:
329			bits |= IP_FW_IPOPT_LSRR;
330			break;
331
332		case IPOPT_SSRR:
333			bits |= IP_FW_IPOPT_SSRR;
334			break;
335
336		case IPOPT_RR:
337			bits |= IP_FW_IPOPT_RR;
338			break;
339
340		case IPOPT_TS:
341			bits |= IP_FW_IPOPT_TS;
342			break;
343		}
344	}
345	return (flags_match(cmd, bits));
346}
347
348/*
349 * Parse TCP options. The logic copied from tcp_dooptions().
350 */
351static int
352tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
353{
354	const u_char *cp = (const u_char *)(tcp + 1);
355	int optlen, bits = 0;
356	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
357
358	for (; cnt > 0; cnt -= optlen, cp += optlen) {
359		int opt = cp[0];
360		if (opt == TCPOPT_EOL)
361			break;
362		if (opt == TCPOPT_NOP)
363			optlen = 1;
364		else {
365			if (cnt < 2)
366				break;
367			optlen = cp[1];
368			if (optlen < 2 || optlen > cnt)
369				break;
370		}
371
372		switch (opt) {
373		default:
374			break;
375
376		case TCPOPT_MAXSEG:
377			if (optlen != TCPOLEN_MAXSEG)
378				break;
379			bits |= IP_FW_TCPOPT_MSS;
380			if (mss != NULL)
381				*mss = be16dec(cp + 2);
382			break;
383
384		case TCPOPT_WINDOW:
385			if (optlen == TCPOLEN_WINDOW)
386				bits |= IP_FW_TCPOPT_WINDOW;
387			break;
388
389		case TCPOPT_SACK_PERMITTED:
390			if (optlen == TCPOLEN_SACK_PERMITTED)
391				bits |= IP_FW_TCPOPT_SACK;
392			break;
393
394		case TCPOPT_SACK:
395			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
396				bits |= IP_FW_TCPOPT_SACK;
397			break;
398
399		case TCPOPT_TIMESTAMP:
400			if (optlen == TCPOLEN_TIMESTAMP)
401				bits |= IP_FW_TCPOPT_TS;
402			break;
403		}
404	}
405	return (bits);
406}
407
408static int
409tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
410{
411
412	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
413}
414
415static int
416iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
417    uint32_t *tablearg)
418{
419
420	if (ifp == NULL)	/* no iface with this packet, match fails */
421		return (0);
422
423	/* Check by name or by IP address */
424	if (cmd->name[0] != '\0') { /* match by name */
425		if (cmd->name[0] == '\1') /* use tablearg to match */
426			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
427			    &ifp->if_index, tablearg);
428		/* Check name */
429		if (cmd->p.glob) {
430			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
431				return(1);
432		} else {
433			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
434				return(1);
435		}
436	} else {
437#if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
438		struct ifaddr *ia;
439
440		NET_EPOCH_ASSERT();
441
442		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
443			if (ia->ifa_addr->sa_family != AF_INET)
444				continue;
445			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
446			    (ia->ifa_addr))->sin_addr.s_addr)
447				return (1);	/* match */
448		}
449#endif /* __FreeBSD__ */
450	}
451	return(0);	/* no match, fail ... */
452}
453
454/*
455 * The verify_path function checks if a route to the src exists and
456 * if it is reachable via ifp (when provided).
457 *
458 * The 'verrevpath' option checks that the interface that an IP packet
459 * arrives on is the same interface that traffic destined for the
460 * packet's source address would be routed out of.
461 * The 'versrcreach' option just checks that the source address is
462 * reachable via any route (except default) in the routing table.
463 * These two are a measure to block forged packets. This is also
464 * commonly known as "anti-spoofing" or Unicast Reverse Path
465 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
466 * is purposely reminiscent of the Cisco IOS command,
467 *
468 *   ip verify unicast reverse-path
469 *   ip verify unicast source reachable-via any
470 *
471 * which implements the same functionality. But note that the syntax
472 * is misleading, and the check may be performed on all IP packets
473 * whether unicast, multicast, or broadcast.
474 */
475static int
476verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
477{
478#if defined(USERSPACE) || !defined(__FreeBSD__)
479	return 0;
480#else
481	struct nhop_object *nh;
482
483	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
484	if (nh == NULL)
485		return (0);
486
487	/*
488	 * If ifp is provided, check for equality with rtentry.
489	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
490	 * in order to pass packets injected back by if_simloop():
491	 * routing entry (via lo0) for our own address
492	 * may exist, so we need to handle routing assymetry.
493	 */
494	if (ifp != NULL && ifp != nh->nh_aifp)
495		return (0);
496
497	/* if no ifp provided, check if rtentry is not default route */
498	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
499		return (0);
500
501	/* or if this is a blackhole/reject route */
502	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
503		return (0);
504
505	/* found valid route */
506	return 1;
507#endif /* __FreeBSD__ */
508}
509
510/*
511 * Generate an SCTP packet containing an ABORT chunk. The verification tag
512 * is given by vtag. The T-bit is set in the ABORT chunk if and only if
513 * reflected is not 0.
514 */
515
516static struct mbuf *
517ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
518    int reflected)
519{
520	struct mbuf *m;
521	struct ip *ip;
522#ifdef INET6
523	struct ip6_hdr *ip6;
524#endif
525	struct sctphdr *sctp;
526	struct sctp_chunkhdr *chunk;
527	u_int16_t hlen, plen, tlen;
528
529	MGETHDR(m, M_NOWAIT, MT_DATA);
530	if (m == NULL)
531		return (NULL);
532
533	M_SETFIB(m, id->fib);
534#ifdef MAC
535	if (replyto != NULL)
536		mac_netinet_firewall_reply(replyto, m);
537	else
538		mac_netinet_firewall_send(m);
539#else
540	(void)replyto;		/* don't warn about unused arg */
541#endif
542
543	switch (id->addr_type) {
544	case 4:
545		hlen = sizeof(struct ip);
546		break;
547#ifdef INET6
548	case 6:
549		hlen = sizeof(struct ip6_hdr);
550		break;
551#endif
552	default:
553		/* XXX: log me?!? */
554		FREE_PKT(m);
555		return (NULL);
556	}
557	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
558	tlen = hlen + plen;
559	m->m_data += max_linkhdr;
560	m->m_flags |= M_SKIP_FIREWALL;
561	m->m_pkthdr.len = m->m_len = tlen;
562	m->m_pkthdr.rcvif = NULL;
563	bzero(m->m_data, tlen);
564
565	switch (id->addr_type) {
566	case 4:
567		ip = mtod(m, struct ip *);
568
569		ip->ip_v = 4;
570		ip->ip_hl = sizeof(struct ip) >> 2;
571		ip->ip_tos = IPTOS_LOWDELAY;
572		ip->ip_len = htons(tlen);
573		ip->ip_id = htons(0);
574		ip->ip_off = htons(0);
575		ip->ip_ttl = V_ip_defttl;
576		ip->ip_p = IPPROTO_SCTP;
577		ip->ip_sum = 0;
578		ip->ip_src.s_addr = htonl(id->dst_ip);
579		ip->ip_dst.s_addr = htonl(id->src_ip);
580
581		sctp = (struct sctphdr *)(ip + 1);
582		break;
583#ifdef INET6
584	case 6:
585		ip6 = mtod(m, struct ip6_hdr *);
586
587		ip6->ip6_vfc = IPV6_VERSION;
588		ip6->ip6_plen = htons(plen);
589		ip6->ip6_nxt = IPPROTO_SCTP;
590		ip6->ip6_hlim = IPV6_DEFHLIM;
591		ip6->ip6_src = id->dst_ip6;
592		ip6->ip6_dst = id->src_ip6;
593
594		sctp = (struct sctphdr *)(ip6 + 1);
595		break;
596#endif
597	}
598
599	sctp->src_port = htons(id->dst_port);
600	sctp->dest_port = htons(id->src_port);
601	sctp->v_tag = htonl(vtag);
602	sctp->checksum = htonl(0);
603
604	chunk = (struct sctp_chunkhdr *)(sctp + 1);
605	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
606	chunk->chunk_flags = 0;
607	if (reflected != 0) {
608		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
609	}
610	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
611
612	sctp->checksum = sctp_calculate_cksum(m, hlen);
613
614	return (m);
615}
616
617/*
618 * Generate a TCP packet, containing either a RST or a keepalive.
619 * When flags & TH_RST, we are sending a RST packet, because of a
620 * "reset" action matched the packet.
621 * Otherwise we are sending a keepalive, and flags & TH_
622 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
623 * so that MAC can label the reply appropriately.
624 */
625struct mbuf *
626ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
627    u_int32_t ack, int flags)
628{
629	struct mbuf *m = NULL;		/* stupid compiler */
630	struct ip *h = NULL;		/* stupid compiler */
631#ifdef INET6
632	struct ip6_hdr *h6 = NULL;
633#endif
634	struct tcphdr *th = NULL;
635	int len, dir;
636
637	MGETHDR(m, M_NOWAIT, MT_DATA);
638	if (m == NULL)
639		return (NULL);
640
641	M_SETFIB(m, id->fib);
642#ifdef MAC
643	if (replyto != NULL)
644		mac_netinet_firewall_reply(replyto, m);
645	else
646		mac_netinet_firewall_send(m);
647#else
648	(void)replyto;		/* don't warn about unused arg */
649#endif
650
651	switch (id->addr_type) {
652	case 4:
653		len = sizeof(struct ip) + sizeof(struct tcphdr);
654		break;
655#ifdef INET6
656	case 6:
657		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
658		break;
659#endif
660	default:
661		/* XXX: log me?!? */
662		FREE_PKT(m);
663		return (NULL);
664	}
665	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
666
667	m->m_data += max_linkhdr;
668	m->m_flags |= M_SKIP_FIREWALL;
669	m->m_pkthdr.len = m->m_len = len;
670	m->m_pkthdr.rcvif = NULL;
671	bzero(m->m_data, len);
672
673	switch (id->addr_type) {
674	case 4:
675		h = mtod(m, struct ip *);
676
677		/* prepare for checksum */
678		h->ip_p = IPPROTO_TCP;
679		h->ip_len = htons(sizeof(struct tcphdr));
680		if (dir) {
681			h->ip_src.s_addr = htonl(id->src_ip);
682			h->ip_dst.s_addr = htonl(id->dst_ip);
683		} else {
684			h->ip_src.s_addr = htonl(id->dst_ip);
685			h->ip_dst.s_addr = htonl(id->src_ip);
686		}
687
688		th = (struct tcphdr *)(h + 1);
689		break;
690#ifdef INET6
691	case 6:
692		h6 = mtod(m, struct ip6_hdr *);
693
694		/* prepare for checksum */
695		h6->ip6_nxt = IPPROTO_TCP;
696		h6->ip6_plen = htons(sizeof(struct tcphdr));
697		if (dir) {
698			h6->ip6_src = id->src_ip6;
699			h6->ip6_dst = id->dst_ip6;
700		} else {
701			h6->ip6_src = id->dst_ip6;
702			h6->ip6_dst = id->src_ip6;
703		}
704
705		th = (struct tcphdr *)(h6 + 1);
706		break;
707#endif
708	}
709
710	if (dir) {
711		th->th_sport = htons(id->src_port);
712		th->th_dport = htons(id->dst_port);
713	} else {
714		th->th_sport = htons(id->dst_port);
715		th->th_dport = htons(id->src_port);
716	}
717	th->th_off = sizeof(struct tcphdr) >> 2;
718
719	if (flags & TH_RST) {
720		if (flags & TH_ACK) {
721			th->th_seq = htonl(ack);
722			th->th_flags = TH_RST;
723		} else {
724			if (flags & TH_SYN)
725				seq++;
726			th->th_ack = htonl(seq);
727			th->th_flags = TH_RST | TH_ACK;
728		}
729	} else {
730		/*
731		 * Keepalive - use caller provided sequence numbers
732		 */
733		th->th_seq = htonl(seq);
734		th->th_ack = htonl(ack);
735		th->th_flags = TH_ACK;
736	}
737
738	switch (id->addr_type) {
739	case 4:
740		th->th_sum = in_cksum(m, len);
741
742		/* finish the ip header */
743		h->ip_v = 4;
744		h->ip_hl = sizeof(*h) >> 2;
745		h->ip_tos = IPTOS_LOWDELAY;
746		h->ip_off = htons(0);
747		h->ip_len = htons(len);
748		h->ip_ttl = V_ip_defttl;
749		h->ip_sum = 0;
750		break;
751#ifdef INET6
752	case 6:
753		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
754		    sizeof(struct tcphdr));
755
756		/* finish the ip6 header */
757		h6->ip6_vfc |= IPV6_VERSION;
758		h6->ip6_hlim = IPV6_DEFHLIM;
759		break;
760#endif
761	}
762
763	return (m);
764}
765
766#ifdef INET6
767/*
768 * ipv6 specific rules here...
769 */
770static __inline int
771icmp6type_match(int type, ipfw_insn_u32 *cmd)
772{
773	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
774}
775
776static int
777flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
778{
779	int i;
780	for (i=0; i <= cmd->o.arg1; ++i)
781		if (curr_flow == cmd->d[i])
782			return 1;
783	return 0;
784}
785
786/* support for IP6_*_ME opcodes */
787static const struct in6_addr lla_mask = {{{
788	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
789	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
790}}};
791
792static int
793ipfw_localip6(struct in6_addr *in6)
794{
795	struct rm_priotracker in6_ifa_tracker;
796	struct in6_ifaddr *ia;
797
798	if (IN6_IS_ADDR_MULTICAST(in6))
799		return (0);
800
801	if (!IN6_IS_ADDR_LINKLOCAL(in6))
802		return (in6_localip(in6));
803
804	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
805	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
806		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
807			continue;
808		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
809		    in6, &lla_mask)) {
810			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
811			return (1);
812		}
813	}
814	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
815	return (0);
816}
817
818static int
819verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
820{
821	struct nhop_object *nh;
822
823	if (IN6_IS_SCOPE_LINKLOCAL(src))
824		return (1);
825
826	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
827	if (nh == NULL)
828		return (0);
829
830	/* If ifp is provided, check for equality with route table. */
831	if (ifp != NULL && ifp != nh->nh_aifp)
832		return (0);
833
834	/* if no ifp provided, check if rtentry is not default route */
835	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
836		return (0);
837
838	/* or if this is a blackhole/reject route */
839	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
840		return (0);
841
842	/* found valid route */
843	return 1;
844}
845
846static int
847is_icmp6_query(int icmp6_type)
848{
849	if ((icmp6_type <= ICMP6_MAXTYPE) &&
850	    (icmp6_type == ICMP6_ECHO_REQUEST ||
851	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
852	    icmp6_type == ICMP6_WRUREQUEST ||
853	    icmp6_type == ICMP6_FQDN_QUERY ||
854	    icmp6_type == ICMP6_NI_QUERY))
855		return (1);
856
857	return (0);
858}
859
860static int
861map_icmp_unreach(int code)
862{
863
864	/* RFC 7915 p4.2 */
865	switch (code) {
866	case ICMP_UNREACH_NET:
867	case ICMP_UNREACH_HOST:
868	case ICMP_UNREACH_SRCFAIL:
869	case ICMP_UNREACH_NET_UNKNOWN:
870	case ICMP_UNREACH_HOST_UNKNOWN:
871	case ICMP_UNREACH_TOSNET:
872	case ICMP_UNREACH_TOSHOST:
873		return (ICMP6_DST_UNREACH_NOROUTE);
874	case ICMP_UNREACH_PORT:
875		return (ICMP6_DST_UNREACH_NOPORT);
876	default:
877		/*
878		 * Map the rest of codes into admit prohibited.
879		 * XXX: unreach proto should be mapped into ICMPv6
880		 * parameter problem, but we use only unreach type.
881		 */
882		return (ICMP6_DST_UNREACH_ADMIN);
883	}
884}
885
886static void
887send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
888{
889	struct mbuf *m;
890
891	m = args->m;
892	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
893		struct tcphdr *tcp;
894		tcp = (struct tcphdr *)((char *)ip6 + hlen);
895
896		if ((tcp->th_flags & TH_RST) == 0) {
897			struct mbuf *m0;
898			m0 = ipfw_send_pkt(args->m, &(args->f_id),
899			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
900			    tcp->th_flags | TH_RST);
901			if (m0 != NULL)
902				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
903				    NULL);
904		}
905		FREE_PKT(m);
906	} else if (code == ICMP6_UNREACH_ABORT &&
907	    args->f_id.proto == IPPROTO_SCTP) {
908		struct mbuf *m0;
909		struct sctphdr *sctp;
910		u_int32_t v_tag;
911		int reflected;
912
913		sctp = (struct sctphdr *)((char *)ip6 + hlen);
914		reflected = 1;
915		v_tag = ntohl(sctp->v_tag);
916		/* Investigate the first chunk header if available */
917		if (m->m_len >= hlen + sizeof(struct sctphdr) +
918		    sizeof(struct sctp_chunkhdr)) {
919			struct sctp_chunkhdr *chunk;
920
921			chunk = (struct sctp_chunkhdr *)(sctp + 1);
922			switch (chunk->chunk_type) {
923			case SCTP_INITIATION:
924				/*
925				 * Packets containing an INIT chunk MUST have
926				 * a zero v-tag.
927				 */
928				if (v_tag != 0) {
929					v_tag = 0;
930					break;
931				}
932				/* INIT chunk MUST NOT be bundled */
933				if (m->m_pkthdr.len >
934				    hlen + sizeof(struct sctphdr) +
935				    ntohs(chunk->chunk_length) + 3) {
936					break;
937				}
938				/* Use the initiate tag if available */
939				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
940				    sizeof(struct sctp_chunkhdr) +
941				    offsetof(struct sctp_init, a_rwnd))) {
942					struct sctp_init *init;
943
944					init = (struct sctp_init *)(chunk + 1);
945					v_tag = ntohl(init->initiate_tag);
946					reflected = 0;
947				}
948				break;
949			case SCTP_ABORT_ASSOCIATION:
950				/*
951				 * If the packet contains an ABORT chunk, don't
952				 * reply.
953				 * XXX: We should search through all chunks,
954				 * but do not do that to avoid attacks.
955				 */
956				v_tag = 0;
957				break;
958			}
959		}
960		if (v_tag == 0) {
961			m0 = NULL;
962		} else {
963			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
964			    reflected);
965		}
966		if (m0 != NULL)
967			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
968		FREE_PKT(m);
969	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
970		/* Send an ICMPv6 unreach. */
971#if 0
972		/*
973		 * Unlike above, the mbufs need to line up with the ip6 hdr,
974		 * as the contents are read. We need to m_adj() the
975		 * needed amount.
976		 * The mbuf will however be thrown away so we can adjust it.
977		 * Remember we did an m_pullup on it already so we
978		 * can make some assumptions about contiguousness.
979		 */
980		if (args->L3offset)
981			m_adj(m, args->L3offset);
982#endif
983		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
984	} else
985		FREE_PKT(m);
986
987	args->m = NULL;
988}
989
990#endif /* INET6 */
991
992/*
993 * sends a reject message, consuming the mbuf passed as an argument.
994 */
995static void
996send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
997{
998
999#if 0
1000	/* XXX When ip is not guaranteed to be at mtod() we will
1001	 * need to account for this */
1002	 * The mbuf will however be thrown away so we can adjust it.
1003	 * Remember we did an m_pullup on it already so we
1004	 * can make some assumptions about contiguousness.
1005	 */
1006	if (args->L3offset)
1007		m_adj(m, args->L3offset);
1008#endif
1009	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1010		/* Send an ICMP unreach */
1011		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1012	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1013		struct tcphdr *const tcp =
1014		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1015		if ( (tcp->th_flags & TH_RST) == 0) {
1016			struct mbuf *m;
1017			m = ipfw_send_pkt(args->m, &(args->f_id),
1018				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1019				tcp->th_flags | TH_RST);
1020			if (m != NULL)
1021				ip_output(m, NULL, NULL, 0, NULL, NULL);
1022		}
1023		FREE_PKT(args->m);
1024	} else if (code == ICMP_REJECT_ABORT &&
1025	    args->f_id.proto == IPPROTO_SCTP) {
1026		struct mbuf *m;
1027		struct sctphdr *sctp;
1028		struct sctp_chunkhdr *chunk;
1029		struct sctp_init *init;
1030		u_int32_t v_tag;
1031		int reflected;
1032
1033		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1034		reflected = 1;
1035		v_tag = ntohl(sctp->v_tag);
1036		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1037		    sizeof(struct sctp_chunkhdr)) {
1038			/* Look at the first chunk header if available */
1039			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1040			switch (chunk->chunk_type) {
1041			case SCTP_INITIATION:
1042				/*
1043				 * Packets containing an INIT chunk MUST have
1044				 * a zero v-tag.
1045				 */
1046				if (v_tag != 0) {
1047					v_tag = 0;
1048					break;
1049				}
1050				/* INIT chunk MUST NOT be bundled */
1051				if (iplen >
1052				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1053				    ntohs(chunk->chunk_length) + 3) {
1054					break;
1055				}
1056				/* Use the initiate tag if available */
1057				if ((iplen >= (ip->ip_hl << 2) +
1058				    sizeof(struct sctphdr) +
1059				    sizeof(struct sctp_chunkhdr) +
1060				    offsetof(struct sctp_init, a_rwnd))) {
1061					init = (struct sctp_init *)(chunk + 1);
1062					v_tag = ntohl(init->initiate_tag);
1063					reflected = 0;
1064				}
1065				break;
1066			case SCTP_ABORT_ASSOCIATION:
1067				/*
1068				 * If the packet contains an ABORT chunk, don't
1069				 * reply.
1070				 * XXX: We should search through all chunks,
1071				 * but do not do that to avoid attacks.
1072				 */
1073				v_tag = 0;
1074				break;
1075			}
1076		}
1077		if (v_tag == 0) {
1078			m = NULL;
1079		} else {
1080			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1081			    reflected);
1082		}
1083		if (m != NULL)
1084			ip_output(m, NULL, NULL, 0, NULL, NULL);
1085		FREE_PKT(args->m);
1086	} else
1087		FREE_PKT(args->m);
1088	args->m = NULL;
1089}
1090
1091/*
1092 * Support for uid/gid/jail lookup. These tests are expensive
1093 * (because we may need to look into the list of active sockets)
1094 * so we cache the results. ugid_lookupp is 0 if we have not
1095 * yet done a lookup, 1 if we succeeded, and -1 if we tried
1096 * and failed. The function always returns the match value.
1097 * We could actually spare the variable and use *uc, setting
1098 * it to '(void *)check_uidgid if we have no info, NULL if
1099 * we tried and failed, or any other value if successful.
1100 */
1101static int
1102check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1103    struct ucred **uc)
1104{
1105#if defined(USERSPACE)
1106	return 0;	// not supported in userspace
1107#else
1108#ifndef __FreeBSD__
1109	/* XXX */
1110	return cred_check(insn, proto, oif,
1111	    dst_ip, dst_port, src_ip, src_port,
1112	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1113#else  /* FreeBSD */
1114	struct in_addr src_ip, dst_ip;
1115	struct inpcbinfo *pi;
1116	struct ipfw_flow_id *id;
1117	struct inpcb *pcb, *inp;
1118	int lookupflags;
1119	int match;
1120
1121	id = &args->f_id;
1122	inp = args->inp;
1123
1124	/*
1125	 * Check to see if the UDP or TCP stack supplied us with
1126	 * the PCB. If so, rather then holding a lock and looking
1127	 * up the PCB, we can use the one that was supplied.
1128	 */
1129	if (inp && *ugid_lookupp == 0) {
1130		INP_LOCK_ASSERT(inp);
1131		if (inp->inp_socket != NULL) {
1132			*uc = crhold(inp->inp_cred);
1133			*ugid_lookupp = 1;
1134		} else
1135			*ugid_lookupp = -1;
1136	}
1137	/*
1138	 * If we have already been here and the packet has no
1139	 * PCB entry associated with it, then we can safely
1140	 * assume that this is a no match.
1141	 */
1142	if (*ugid_lookupp == -1)
1143		return (0);
1144	if (id->proto == IPPROTO_TCP) {
1145		lookupflags = 0;
1146		pi = &V_tcbinfo;
1147	} else if (id->proto == IPPROTO_UDP) {
1148		lookupflags = INPLOOKUP_WILDCARD;
1149		pi = &V_udbinfo;
1150	} else if (id->proto == IPPROTO_UDPLITE) {
1151		lookupflags = INPLOOKUP_WILDCARD;
1152		pi = &V_ulitecbinfo;
1153	} else
1154		return 0;
1155	lookupflags |= INPLOOKUP_RLOCKPCB;
1156	match = 0;
1157	if (*ugid_lookupp == 0) {
1158		if (id->addr_type == 6) {
1159#ifdef INET6
1160			if (args->flags & IPFW_ARGS_IN)
1161				pcb = in6_pcblookup_mbuf(pi,
1162				    &id->src_ip6, htons(id->src_port),
1163				    &id->dst_ip6, htons(id->dst_port),
1164				    lookupflags, NULL, args->m);
1165			else
1166				pcb = in6_pcblookup_mbuf(pi,
1167				    &id->dst_ip6, htons(id->dst_port),
1168				    &id->src_ip6, htons(id->src_port),
1169				    lookupflags, args->ifp, args->m);
1170#else
1171			*ugid_lookupp = -1;
1172			return (0);
1173#endif
1174		} else {
1175			src_ip.s_addr = htonl(id->src_ip);
1176			dst_ip.s_addr = htonl(id->dst_ip);
1177			if (args->flags & IPFW_ARGS_IN)
1178				pcb = in_pcblookup_mbuf(pi,
1179				    src_ip, htons(id->src_port),
1180				    dst_ip, htons(id->dst_port),
1181				    lookupflags, NULL, args->m);
1182			else
1183				pcb = in_pcblookup_mbuf(pi,
1184				    dst_ip, htons(id->dst_port),
1185				    src_ip, htons(id->src_port),
1186				    lookupflags, args->ifp, args->m);
1187		}
1188		if (pcb != NULL) {
1189			INP_RLOCK_ASSERT(pcb);
1190			*uc = crhold(pcb->inp_cred);
1191			*ugid_lookupp = 1;
1192			INP_RUNLOCK(pcb);
1193		}
1194		if (*ugid_lookupp == 0) {
1195			/*
1196			 * We tried and failed, set the variable to -1
1197			 * so we will not try again on this packet.
1198			 */
1199			*ugid_lookupp = -1;
1200			return (0);
1201		}
1202	}
1203	if (insn->o.opcode == O_UID)
1204		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1205	else if (insn->o.opcode == O_GID)
1206		match = groupmember((gid_t)insn->d[0], *uc);
1207	else if (insn->o.opcode == O_JAIL)
1208		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1209	return (match);
1210#endif /* __FreeBSD__ */
1211#endif /* not supported in userspace */
1212}
1213
1214/*
1215 * Helper function to set args with info on the rule after the matching
1216 * one. slot is precise, whereas we guess rule_id as they are
1217 * assigned sequentially.
1218 */
1219static inline void
1220set_match(struct ip_fw_args *args, int slot,
1221	struct ip_fw_chain *chain)
1222{
1223	args->rule.chain_id = chain->id;
1224	args->rule.slot = slot + 1; /* we use 0 as a marker */
1225	args->rule.rule_id = 1 + chain->map[slot]->id;
1226	args->rule.rulenum = chain->map[slot]->rulenum;
1227	args->flags |= IPFW_ARGS_REF;
1228}
1229
1230#ifndef LINEAR_SKIPTO
1231/*
1232 * Helper function to enable cached rule lookups using
1233 * cached_id and cached_pos fields in ipfw rule.
1234 */
1235static int
1236jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1237    int tablearg, int jump_backwards)
1238{
1239	int f_pos;
1240
1241	/* If possible use cached f_pos (in f->cached_pos),
1242	 * whose version is written in f->cached_id
1243	 * (horrible hacks to avoid changing the ABI).
1244	 */
1245	if (num != IP_FW_TARG && f->cached_id == chain->id)
1246		f_pos = f->cached_pos;
1247	else {
1248		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1249		/* make sure we do not jump backward */
1250		if (jump_backwards == 0 && i <= f->rulenum)
1251			i = f->rulenum + 1;
1252		if (chain->idxmap != NULL)
1253			f_pos = chain->idxmap[i];
1254		else
1255			f_pos = ipfw_find_rule(chain, i, 0);
1256		/* update the cache */
1257		if (num != IP_FW_TARG) {
1258			f->cached_id = chain->id;
1259			f->cached_pos = f_pos;
1260		}
1261	}
1262
1263	return (f_pos);
1264}
1265#else
1266/*
1267 * Helper function to enable real fast rule lookups.
1268 */
1269static int
1270jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1271    int tablearg, int jump_backwards)
1272{
1273	int f_pos;
1274
1275	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
1276	/* make sure we do not jump backward */
1277	if (jump_backwards == 0 && num <= f->rulenum)
1278		num = f->rulenum + 1;
1279	f_pos = chain->idxmap[num];
1280
1281	return (f_pos);
1282}
1283#endif
1284
1285#define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1286/*
1287 * The main check routine for the firewall.
1288 *
1289 * All arguments are in args so we can modify them and return them
1290 * back to the caller.
1291 *
1292 * Parameters:
1293 *
1294 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1295 *		Starts with the IP header.
1296 *	args->L3offset	Number of bytes bypassed if we came from L2.
1297 *			e.g. often sizeof(eh)  ** NOTYET **
1298 *	args->ifp	Incoming or outgoing interface.
1299 *	args->divert_rule (in/out)
1300 *		Skip up to the first rule past this rule number;
1301 *		upon return, non-zero port number for divert or tee.
1302 *
1303 *	args->rule	Pointer to the last matching rule (in/out)
1304 *	args->next_hop	Socket we are forwarding to (out).
1305 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1306 *	args->f_id	Addresses grabbed from the packet (out)
1307 * 	args->rule.info	a cookie depending on rule action
1308 *
1309 * Return value:
1310 *
1311 *	IP_FW_PASS	the packet must be accepted
1312 *	IP_FW_DENY	the packet must be dropped
1313 *	IP_FW_DIVERT	divert packet, port in m_tag
1314 *	IP_FW_TEE	tee packet, port in m_tag
1315 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1316 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1317 *		args->rule contains the matching rule,
1318 *		args->rule.info has additional information.
1319 *
1320 */
1321int
1322ipfw_chk(struct ip_fw_args *args)
1323{
1324
1325	/*
1326	 * Local variables holding state while processing a packet:
1327	 *
1328	 * IMPORTANT NOTE: to speed up the processing of rules, there
1329	 * are some assumption on the values of the variables, which
1330	 * are documented here. Should you change them, please check
1331	 * the implementation of the various instructions to make sure
1332	 * that they still work.
1333	 *
1334	 * m | args->m	Pointer to the mbuf, as received from the caller.
1335	 *	It may change if ipfw_chk() does an m_pullup, or if it
1336	 *	consumes the packet because it calls send_reject().
1337	 *	XXX This has to change, so that ipfw_chk() never modifies
1338	 *	or consumes the buffer.
1339	 *	OR
1340	 * args->mem	Pointer to contigous memory chunk.
1341	 * ip	Is the beginning of the ip(4 or 6) header.
1342	 * eh	Ethernet header in case if input is Layer2.
1343	 */
1344	struct mbuf *m;
1345	struct ip *ip;
1346	struct ether_header *eh;
1347
1348	/*
1349	 * For rules which contain uid/gid or jail constraints, cache
1350	 * a copy of the users credentials after the pcb lookup has been
1351	 * executed. This will speed up the processing of rules with
1352	 * these types of constraints, as well as decrease contention
1353	 * on pcb related locks.
1354	 */
1355#ifndef __FreeBSD__
1356	struct bsd_ucred ucred_cache;
1357#else
1358	struct ucred *ucred_cache = NULL;
1359#endif
1360	int ucred_lookup = 0;
1361	int f_pos = 0;		/* index of current rule in the array */
1362	int retval = 0;
1363	struct ifnet *oif, *iif;
1364
1365	/*
1366	 * hlen	The length of the IP header.
1367	 */
1368	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1369
1370	/*
1371	 * offset	The offset of a fragment. offset != 0 means that
1372	 *	we have a fragment at this offset of an IPv4 packet.
1373	 *	offset == 0 means that (if this is an IPv4 packet)
1374	 *	this is the first or only fragment.
1375	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1376	 *	or there is a single packet fragment (fragment header added
1377	 *	without needed).  We will treat a single packet fragment as if
1378	 *	there was no fragment header (or log/block depending on the
1379	 *	V_fw_permit_single_frag6 sysctl setting).
1380	 */
1381	u_short offset = 0;
1382	u_short ip6f_mf = 0;
1383
1384	/*
1385	 * Local copies of addresses. They are only valid if we have
1386	 * an IP packet.
1387	 *
1388	 * proto	The protocol. Set to 0 for non-ip packets,
1389	 *	or to the protocol read from the packet otherwise.
1390	 *	proto != 0 means that we have an IPv4 packet.
1391	 *
1392	 * src_port, dst_port	port numbers, in HOST format. Only
1393	 *	valid for TCP and UDP packets.
1394	 *
1395	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1396	 *	Only valid for IPv4 packets.
1397	 */
1398	uint8_t proto;
1399	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1400	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1401	int iplen = 0;
1402	int pktlen;
1403
1404	struct ipfw_dyn_info dyn_info;
1405	struct ip_fw *q = NULL;
1406	struct ip_fw_chain *chain = &V_layer3_chain;
1407
1408	/*
1409	 * We store in ulp a pointer to the upper layer protocol header.
1410	 * In the ipv4 case this is easy to determine from the header,
1411	 * but for ipv6 we might have some additional headers in the middle.
1412	 * ulp is NULL if not found.
1413	 */
1414	void *ulp = NULL;		/* upper layer protocol pointer. */
1415
1416	/* XXX ipv6 variables */
1417	int is_ipv6 = 0;
1418	uint8_t	icmp6_type = 0;
1419	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1420	/* end of ipv6 variables */
1421
1422	int is_ipv4 = 0;
1423
1424	int done = 0;		/* flag to exit the outer loop */
1425	IPFW_RLOCK_TRACKER;
1426	bool mem;
1427
1428	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1429		if (args->flags & IPFW_ARGS_ETHER) {
1430			eh = (struct ether_header *)args->mem;
1431			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1432				ip = (struct ip *)
1433				    ((struct ether_vlan_header *)eh + 1);
1434			else
1435				ip = (struct ip *)(eh + 1);
1436		} else {
1437			eh = NULL;
1438			ip = (struct ip *)args->mem;
1439		}
1440		pktlen = IPFW_ARGS_LENGTH(args->flags);
1441		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1442	} else {
1443		m = args->m;
1444		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1445			return (IP_FW_PASS);	/* accept */
1446		if (args->flags & IPFW_ARGS_ETHER) {
1447	                /* We need some amount of data to be contiguous. */
1448			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1449			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1450			    max_protohdr))) == NULL)
1451				goto pullup_failed;
1452			eh = mtod(m, struct ether_header *);
1453			ip = (struct ip *)(eh + 1);
1454		} else {
1455			eh = NULL;
1456			ip = mtod(m, struct ip *);
1457		}
1458		pktlen = m->m_pkthdr.len;
1459		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1460	}
1461
1462	dst_ip.s_addr = 0;		/* make sure it is initialized */
1463	src_ip.s_addr = 0;		/* make sure it is initialized */
1464	src_port = dst_port = 0;
1465
1466	DYN_INFO_INIT(&dyn_info);
1467/*
1468 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1469 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1470 * pointer might become stale after other pullups (but we never use it
1471 * this way).
1472 */
1473#define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1474#define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1475#define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1476do {								\
1477	int x = (_len) + T + EHLEN;				\
1478	if (mem) {						\
1479		if (__predict_false(pktlen < x)) {		\
1480			unlock;					\
1481			goto pullup_failed;			\
1482		}						\
1483		p = (char *)args->mem + (_len) + EHLEN;		\
1484	} else {						\
1485		if (__predict_false((m)->m_len < x)) {		\
1486			args->m = m = m_pullup(m, x);		\
1487			if (m == NULL) {			\
1488				unlock;				\
1489				goto pullup_failed;		\
1490			}					\
1491		}						\
1492		p = mtod(m, char *) + (_len) + EHLEN;		\
1493	}							\
1494} while (0)
1495
1496#define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1497#define	PULLUP_LEN_LOCKED(_len, p, T)	\
1498    _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1499    UPDATE_POINTERS()
1500/*
1501 * In case pointers got stale after pullups, update them.
1502 */
1503#define	UPDATE_POINTERS()					\
1504do {								\
1505	if (!mem) {						\
1506		if (eh != NULL) {				\
1507			eh = mtod(m, struct ether_header *);	\
1508			ip = (struct ip *)(eh + 1);		\
1509		} else						\
1510			ip = mtod(m, struct ip *);		\
1511		args->m = m;					\
1512	}							\
1513} while (0)
1514
1515	/* Identify IP packets and fill up variables. */
1516	if (pktlen >= sizeof(struct ip6_hdr) &&
1517	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1518	    ip->ip_v == 6) {
1519		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1520
1521		is_ipv6 = 1;
1522		args->flags |= IPFW_ARGS_IP6;
1523		hlen = sizeof(struct ip6_hdr);
1524		proto = ip6->ip6_nxt;
1525		/* Search extension headers to find upper layer protocols */
1526		while (ulp == NULL && offset == 0) {
1527			switch (proto) {
1528			case IPPROTO_ICMPV6:
1529				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1530				icmp6_type = ICMP6(ulp)->icmp6_type;
1531				break;
1532
1533			case IPPROTO_TCP:
1534				PULLUP_TO(hlen, ulp, struct tcphdr);
1535				dst_port = TCP(ulp)->th_dport;
1536				src_port = TCP(ulp)->th_sport;
1537				/* save flags for dynamic rules */
1538				args->f_id._flags = TCP(ulp)->th_flags;
1539				break;
1540
1541			case IPPROTO_SCTP:
1542				if (pktlen >= hlen + sizeof(struct sctphdr) +
1543				    sizeof(struct sctp_chunkhdr) +
1544				    offsetof(struct sctp_init, a_rwnd))
1545					PULLUP_LEN(hlen, ulp,
1546					    sizeof(struct sctphdr) +
1547					    sizeof(struct sctp_chunkhdr) +
1548					    offsetof(struct sctp_init, a_rwnd));
1549				else if (pktlen >= hlen + sizeof(struct sctphdr))
1550					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1551				else
1552					PULLUP_LEN(hlen, ulp,
1553					    sizeof(struct sctphdr));
1554				src_port = SCTP(ulp)->src_port;
1555				dst_port = SCTP(ulp)->dest_port;
1556				break;
1557
1558			case IPPROTO_UDP:
1559			case IPPROTO_UDPLITE:
1560				PULLUP_TO(hlen, ulp, struct udphdr);
1561				dst_port = UDP(ulp)->uh_dport;
1562				src_port = UDP(ulp)->uh_sport;
1563				break;
1564
1565			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1566				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1567				ext_hd |= EXT_HOPOPTS;
1568				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1569				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1570				ulp = NULL;
1571				break;
1572
1573			case IPPROTO_ROUTING:	/* RFC 2460 */
1574				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1575				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1576				case 0:
1577					ext_hd |= EXT_RTHDR0;
1578					break;
1579				case 2:
1580					ext_hd |= EXT_RTHDR2;
1581					break;
1582				default:
1583					if (V_fw_verbose)
1584						printf("IPFW2: IPV6 - Unknown "
1585						    "Routing Header type(%d)\n",
1586						    ((struct ip6_rthdr *)
1587						    ulp)->ip6r_type);
1588					if (V_fw_deny_unknown_exthdrs)
1589					    return (IP_FW_DENY);
1590					break;
1591				}
1592				ext_hd |= EXT_ROUTING;
1593				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1594				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1595				ulp = NULL;
1596				break;
1597
1598			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1599				PULLUP_TO(hlen, ulp, struct ip6_frag);
1600				ext_hd |= EXT_FRAGMENT;
1601				hlen += sizeof (struct ip6_frag);
1602				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1603				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1604					IP6F_OFF_MASK;
1605				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1606					IP6F_MORE_FRAG;
1607				if (V_fw_permit_single_frag6 == 0 &&
1608				    offset == 0 && ip6f_mf == 0) {
1609					if (V_fw_verbose)
1610						printf("IPFW2: IPV6 - Invalid "
1611						    "Fragment Header\n");
1612					if (V_fw_deny_unknown_exthdrs)
1613					    return (IP_FW_DENY);
1614					break;
1615				}
1616				args->f_id.extra =
1617				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1618				ulp = NULL;
1619				break;
1620
1621			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1622				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1623				ext_hd |= EXT_DSTOPTS;
1624				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1625				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1626				ulp = NULL;
1627				break;
1628
1629			case IPPROTO_AH:	/* RFC 2402 */
1630				PULLUP_TO(hlen, ulp, struct ip6_ext);
1631				ext_hd |= EXT_AH;
1632				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1633				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1634				ulp = NULL;
1635				break;
1636
1637			case IPPROTO_ESP:	/* RFC 2406 */
1638				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1639				/* Anything past Seq# is variable length and
1640				 * data past this ext. header is encrypted. */
1641				ext_hd |= EXT_ESP;
1642				break;
1643
1644			case IPPROTO_NONE:	/* RFC 2460 */
1645				/*
1646				 * Packet ends here, and IPv6 header has
1647				 * already been pulled up. If ip6e_len!=0
1648				 * then octets must be ignored.
1649				 */
1650				ulp = ip; /* non-NULL to get out of loop. */
1651				break;
1652
1653			case IPPROTO_OSPFIGP:
1654				/* XXX OSPF header check? */
1655				PULLUP_TO(hlen, ulp, struct ip6_ext);
1656				break;
1657
1658			case IPPROTO_PIM:
1659				/* XXX PIM header check? */
1660				PULLUP_TO(hlen, ulp, struct pim);
1661				break;
1662
1663			case IPPROTO_GRE:	/* RFC 1701 */
1664				/* XXX GRE header check? */
1665				PULLUP_TO(hlen, ulp, struct grehdr);
1666				break;
1667
1668			case IPPROTO_CARP:
1669				PULLUP_TO(hlen, ulp, offsetof(
1670				    struct carp_header, carp_counter));
1671				if (CARP_ADVERTISEMENT !=
1672				    ((struct carp_header *)ulp)->carp_type)
1673					return (IP_FW_DENY);
1674				break;
1675
1676			case IPPROTO_IPV6:	/* RFC 2893 */
1677				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1678				break;
1679
1680			case IPPROTO_IPV4:	/* RFC 2893 */
1681				PULLUP_TO(hlen, ulp, struct ip);
1682				break;
1683
1684			default:
1685				if (V_fw_verbose)
1686					printf("IPFW2: IPV6 - Unknown "
1687					    "Extension Header(%d), ext_hd=%x\n",
1688					     proto, ext_hd);
1689				if (V_fw_deny_unknown_exthdrs)
1690				    return (IP_FW_DENY);
1691				PULLUP_TO(hlen, ulp, struct ip6_ext);
1692				break;
1693			} /*switch */
1694		}
1695		UPDATE_POINTERS();
1696		ip6 = (struct ip6_hdr *)ip;
1697		args->f_id.addr_type = 6;
1698		args->f_id.src_ip6 = ip6->ip6_src;
1699		args->f_id.dst_ip6 = ip6->ip6_dst;
1700		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1701		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1702	} else if (pktlen >= sizeof(struct ip) &&
1703	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1704	    ip->ip_v == 4) {
1705		is_ipv4 = 1;
1706		args->flags |= IPFW_ARGS_IP4;
1707		hlen = ip->ip_hl << 2;
1708		/*
1709		 * Collect parameters into local variables for faster
1710		 * matching.
1711		 */
1712		proto = ip->ip_p;
1713		src_ip = ip->ip_src;
1714		dst_ip = ip->ip_dst;
1715		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1716		iplen = ntohs(ip->ip_len);
1717
1718		if (offset == 0) {
1719			switch (proto) {
1720			case IPPROTO_TCP:
1721				PULLUP_TO(hlen, ulp, struct tcphdr);
1722				dst_port = TCP(ulp)->th_dport;
1723				src_port = TCP(ulp)->th_sport;
1724				/* save flags for dynamic rules */
1725				args->f_id._flags = TCP(ulp)->th_flags;
1726				break;
1727
1728			case IPPROTO_SCTP:
1729				if (pktlen >= hlen + sizeof(struct sctphdr) +
1730				    sizeof(struct sctp_chunkhdr) +
1731				    offsetof(struct sctp_init, a_rwnd))
1732					PULLUP_LEN(hlen, ulp,
1733					    sizeof(struct sctphdr) +
1734					    sizeof(struct sctp_chunkhdr) +
1735					    offsetof(struct sctp_init, a_rwnd));
1736				else if (pktlen >= hlen + sizeof(struct sctphdr))
1737					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1738				else
1739					PULLUP_LEN(hlen, ulp,
1740					    sizeof(struct sctphdr));
1741				src_port = SCTP(ulp)->src_port;
1742				dst_port = SCTP(ulp)->dest_port;
1743				break;
1744
1745			case IPPROTO_UDP:
1746			case IPPROTO_UDPLITE:
1747				PULLUP_TO(hlen, ulp, struct udphdr);
1748				dst_port = UDP(ulp)->uh_dport;
1749				src_port = UDP(ulp)->uh_sport;
1750				break;
1751
1752			case IPPROTO_ICMP:
1753				PULLUP_TO(hlen, ulp, struct icmphdr);
1754				//args->f_id.flags = ICMP(ulp)->icmp_type;
1755				break;
1756
1757			default:
1758				break;
1759			}
1760		} else {
1761			if (offset == 1 && proto == IPPROTO_TCP) {
1762				/* RFC 3128 */
1763				goto pullup_failed;
1764			}
1765		}
1766
1767		UPDATE_POINTERS();
1768		args->f_id.addr_type = 4;
1769		args->f_id.src_ip = ntohl(src_ip.s_addr);
1770		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1771	} else {
1772		proto = 0;
1773		dst_ip.s_addr = src_ip.s_addr = 0;
1774
1775		args->f_id.addr_type = 1; /* XXX */
1776	}
1777#undef PULLUP_TO
1778	pktlen = iplen < pktlen ? iplen: pktlen;
1779
1780	/* Properly initialize the rest of f_id */
1781	args->f_id.proto = proto;
1782	args->f_id.src_port = src_port = ntohs(src_port);
1783	args->f_id.dst_port = dst_port = ntohs(dst_port);
1784
1785	IPFW_PF_RLOCK(chain);
1786	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1787		IPFW_PF_RUNLOCK(chain);
1788		return (IP_FW_PASS);	/* accept */
1789	}
1790	if (args->flags & IPFW_ARGS_REF) {
1791		/*
1792		 * Packet has already been tagged as a result of a previous
1793		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1794		 * REASS, NETGRAPH, DIVERT/TEE...)
1795		 * Validate the slot and continue from the next one
1796		 * if still present, otherwise do a lookup.
1797		 */
1798		f_pos = (args->rule.chain_id == chain->id) ?
1799		    args->rule.slot :
1800		    ipfw_find_rule(chain, args->rule.rulenum,
1801			args->rule.rule_id);
1802	} else {
1803		f_pos = 0;
1804	}
1805
1806	if (args->flags & IPFW_ARGS_IN) {
1807		iif = args->ifp;
1808		oif = NULL;
1809	} else {
1810		MPASS(args->flags & IPFW_ARGS_OUT);
1811		iif = mem ? NULL : m_rcvif(m);
1812		oif = args->ifp;
1813	}
1814
1815	/*
1816	 * Now scan the rules, and parse microinstructions for each rule.
1817	 * We have two nested loops and an inner switch. Sometimes we
1818	 * need to break out of one or both loops, or re-enter one of
1819	 * the loops with updated variables. Loop variables are:
1820	 *
1821	 *	f_pos (outer loop) points to the current rule.
1822	 *		On output it points to the matching rule.
1823	 *	done (outer loop) is used as a flag to break the loop.
1824	 *	l (inner loop)	residual length of current rule.
1825	 *		cmd points to the current microinstruction.
1826	 *
1827	 * We break the inner loop by setting l=0 and possibly
1828	 * cmdlen=0 if we don't want to advance cmd.
1829	 * We break the outer loop by setting done=1
1830	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1831	 * as needed.
1832	 */
1833	for (; f_pos < chain->n_rules; f_pos++) {
1834		ipfw_insn *cmd;
1835		uint32_t tablearg = 0;
1836		int l, cmdlen, skip_or; /* skip rest of OR block */
1837		struct ip_fw *f;
1838
1839		f = chain->map[f_pos];
1840		if (V_set_disable & (1 << f->set) )
1841			continue;
1842
1843		skip_or = 0;
1844		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1845		    l -= cmdlen, cmd += cmdlen) {
1846			int match;
1847
1848			/*
1849			 * check_body is a jump target used when we find a
1850			 * CHECK_STATE, and need to jump to the body of
1851			 * the target rule.
1852			 */
1853
1854/* check_body: */
1855			cmdlen = F_LEN(cmd);
1856			/*
1857			 * An OR block (insn_1 || .. || insn_n) has the
1858			 * F_OR bit set in all but the last instruction.
1859			 * The first match will set "skip_or", and cause
1860			 * the following instructions to be skipped until
1861			 * past the one with the F_OR bit clear.
1862			 */
1863			if (skip_or) {		/* skip this instruction */
1864				if ((cmd->len & F_OR) == 0)
1865					skip_or = 0;	/* next one is good */
1866				continue;
1867			}
1868			match = 0; /* set to 1 if we succeed */
1869
1870			switch (cmd->opcode) {
1871			/*
1872			 * The first set of opcodes compares the packet's
1873			 * fields with some pattern, setting 'match' if a
1874			 * match is found. At the end of the loop there is
1875			 * logic to deal with F_NOT and F_OR flags associated
1876			 * with the opcode.
1877			 */
1878			case O_NOP:
1879				match = 1;
1880				break;
1881
1882			case O_FORWARD_MAC:
1883				printf("ipfw: opcode %d unimplemented\n",
1884				    cmd->opcode);
1885				break;
1886
1887			case O_GID:
1888			case O_UID:
1889			case O_JAIL:
1890				/*
1891				 * We only check offset == 0 && proto != 0,
1892				 * as this ensures that we have a
1893				 * packet with the ports info.
1894				 */
1895				if (offset != 0)
1896					break;
1897				if (proto == IPPROTO_TCP ||
1898				    proto == IPPROTO_UDP ||
1899				    proto == IPPROTO_UDPLITE)
1900					match = check_uidgid(
1901						    (ipfw_insn_u32 *)cmd,
1902						    args, &ucred_lookup,
1903#ifdef __FreeBSD__
1904						    &ucred_cache);
1905#else
1906						    (void *)&ucred_cache);
1907#endif
1908				break;
1909
1910			case O_RECV:
1911				match = iface_match(iif, (ipfw_insn_if *)cmd,
1912				    chain, &tablearg);
1913				break;
1914
1915			case O_XMIT:
1916				match = iface_match(oif, (ipfw_insn_if *)cmd,
1917				    chain, &tablearg);
1918				break;
1919
1920			case O_VIA:
1921				match = iface_match(args->ifp,
1922				    (ipfw_insn_if *)cmd, chain, &tablearg);
1923				break;
1924
1925			case O_MACADDR2:
1926				if (args->flags & IPFW_ARGS_ETHER) {
1927					u_int32_t *want = (u_int32_t *)
1928						((ipfw_insn_mac *)cmd)->addr;
1929					u_int32_t *mask = (u_int32_t *)
1930						((ipfw_insn_mac *)cmd)->mask;
1931					u_int32_t *hdr = (u_int32_t *)eh;
1932
1933					match =
1934					    ( want[0] == (hdr[0] & mask[0]) &&
1935					      want[1] == (hdr[1] & mask[1]) &&
1936					      want[2] == (hdr[2] & mask[2]) );
1937				}
1938				break;
1939
1940			case O_MAC_TYPE:
1941				if (args->flags & IPFW_ARGS_ETHER) {
1942					u_int16_t *p =
1943					    ((ipfw_insn_u16 *)cmd)->ports;
1944					int i;
1945
1946					for (i = cmdlen - 1; !match && i>0;
1947					    i--, p += 2)
1948						match =
1949						    (ntohs(eh->ether_type) >=
1950						    p[0] &&
1951						    ntohs(eh->ether_type) <=
1952						    p[1]);
1953				}
1954				break;
1955
1956			case O_FRAG:
1957				if (is_ipv4) {
1958					/*
1959					 * Since flags_match() works with
1960					 * uint8_t we pack ip_off into 8 bits.
1961					 * For this match offset is a boolean.
1962					 */
1963					match = flags_match(cmd,
1964					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
1965					    >> 8) | (offset != 0));
1966				} else {
1967					/*
1968					 * Compatiblity: historically bare
1969					 * "frag" would match IPv6 fragments.
1970					 */
1971					match = (cmd->arg1 == 0x1 &&
1972					    (offset != 0));
1973				}
1974				break;
1975
1976			case O_IN:	/* "out" is "not in" */
1977				match = (oif == NULL);
1978				break;
1979
1980			case O_LAYER2:
1981				match = (args->flags & IPFW_ARGS_ETHER);
1982				break;
1983
1984			case O_DIVERTED:
1985				if ((args->flags & IPFW_ARGS_REF) == 0)
1986					break;
1987				/*
1988				 * For diverted packets, args->rule.info
1989				 * contains the divert port (in host format)
1990				 * reason and direction.
1991				 */
1992				match = ((args->rule.info & IPFW_IS_MASK) ==
1993				    IPFW_IS_DIVERT) && (
1994				    ((args->rule.info & IPFW_INFO_IN) ?
1995					1: 2) & cmd->arg1);
1996				break;
1997
1998			case O_PROTO:
1999				/*
2000				 * We do not allow an arg of 0 so the
2001				 * check of "proto" only suffices.
2002				 */
2003				match = (proto == cmd->arg1);
2004				break;
2005
2006			case O_IP_SRC:
2007				match = is_ipv4 &&
2008				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2009				    src_ip.s_addr);
2010				break;
2011
2012			case O_IP_DST_LOOKUP:
2013			{
2014				void *pkey;
2015				uint32_t vidx, key;
2016				uint16_t keylen;
2017
2018				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
2019					/* Determine lookup key type */
2020					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
2021					if (vidx != 4 /* uid */ &&
2022					    vidx != 5 /* jail */ &&
2023					    is_ipv6 == 0 && is_ipv4 == 0)
2024						break;
2025					/* Determine key length */
2026					if (vidx == 0 /* dst-ip */ ||
2027					    vidx == 1 /* src-ip */)
2028						keylen = is_ipv6 ?
2029						    sizeof(struct in6_addr):
2030						    sizeof(in_addr_t);
2031					else {
2032						keylen = sizeof(key);
2033						pkey = &key;
2034					}
2035					if (vidx == 0 /* dst-ip */)
2036						pkey = is_ipv4 ? (void *)&dst_ip:
2037						    (void *)&args->f_id.dst_ip6;
2038					else if (vidx == 1 /* src-ip */)
2039						pkey = is_ipv4 ? (void *)&src_ip:
2040						    (void *)&args->f_id.src_ip6;
2041					else if (vidx == 6 /* dscp */) {
2042						if (is_ipv4)
2043							key = ip->ip_tos >> 2;
2044						else {
2045							key = args->f_id.flow_id6;
2046							key = (key & 0x0f) << 2 |
2047							    (key & 0xf000) >> 14;
2048						}
2049						key &= 0x3f;
2050					} else if (vidx == 2 /* dst-port */ ||
2051					    vidx == 3 /* src-port */) {
2052						/* Skip fragments */
2053						if (offset != 0)
2054							break;
2055						/* Skip proto without ports */
2056						if (proto != IPPROTO_TCP &&
2057						    proto != IPPROTO_UDP &&
2058						    proto != IPPROTO_UDPLITE &&
2059						    proto != IPPROTO_SCTP)
2060							break;
2061						if (vidx == 2 /* dst-port */)
2062							key = dst_port;
2063						else
2064							key = src_port;
2065					}
2066#ifndef USERSPACE
2067					else if (vidx == 4 /* uid */ ||
2068					    vidx == 5 /* jail */) {
2069						check_uidgid(
2070						    (ipfw_insn_u32 *)cmd,
2071						    args, &ucred_lookup,
2072#ifdef __FreeBSD__
2073						    &ucred_cache);
2074						if (vidx == 4 /* uid */)
2075							key = ucred_cache->cr_uid;
2076						else if (vidx == 5 /* jail */)
2077							key = ucred_cache->cr_prison->pr_id;
2078#else /* !__FreeBSD__ */
2079						    (void *)&ucred_cache);
2080						if (vidx == 4 /* uid */)
2081							key = ucred_cache.uid;
2082						else if (vidx == 5 /* jail */)
2083							key = ucred_cache.xid;
2084#endif /* !__FreeBSD__ */
2085					}
2086#endif /* !USERSPACE */
2087					else
2088						break;
2089					match = ipfw_lookup_table(chain,
2090					    cmd->arg1, keylen, pkey, &vidx);
2091					if (!match)
2092						break;
2093					tablearg = vidx;
2094					break;
2095				}
2096				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2097				/* FALLTHROUGH */
2098			}
2099			case O_IP_SRC_LOOKUP:
2100			{
2101				void *pkey;
2102				uint32_t vidx;
2103				uint16_t keylen;
2104
2105				if (is_ipv4) {
2106					keylen = sizeof(in_addr_t);
2107					if (cmd->opcode == O_IP_DST_LOOKUP)
2108						pkey = &dst_ip;
2109					else
2110						pkey = &src_ip;
2111				} else if (is_ipv6) {
2112					keylen = sizeof(struct in6_addr);
2113					if (cmd->opcode == O_IP_DST_LOOKUP)
2114						pkey = &args->f_id.dst_ip6;
2115					else
2116						pkey = &args->f_id.src_ip6;
2117				} else
2118					break;
2119				match = ipfw_lookup_table(chain, cmd->arg1,
2120				    keylen, pkey, &vidx);
2121				if (!match)
2122					break;
2123				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2124					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2125					    TARG_VAL(chain, vidx, tag);
2126					if (!match)
2127						break;
2128				}
2129				tablearg = vidx;
2130				break;
2131			}
2132
2133			case O_IP_FLOW_LOOKUP:
2134				{
2135					uint32_t v = 0;
2136					match = ipfw_lookup_table(chain,
2137					    cmd->arg1, 0, &args->f_id, &v);
2138					if (!match)
2139						break;
2140					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2141						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2142						    TARG_VAL(chain, v, tag);
2143					if (match)
2144						tablearg = v;
2145				}
2146				break;
2147			case O_IP_SRC_MASK:
2148			case O_IP_DST_MASK:
2149				if (is_ipv4) {
2150				    uint32_t a =
2151					(cmd->opcode == O_IP_DST_MASK) ?
2152					    dst_ip.s_addr : src_ip.s_addr;
2153				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2154				    int i = cmdlen-1;
2155
2156				    for (; !match && i>0; i-= 2, p+= 2)
2157					match = (p[0] == (a & p[1]));
2158				}
2159				break;
2160
2161			case O_IP_SRC_ME:
2162				if (is_ipv4) {
2163					match = in_localip(src_ip);
2164					break;
2165				}
2166#ifdef INET6
2167				/* FALLTHROUGH */
2168			case O_IP6_SRC_ME:
2169				match = is_ipv6 &&
2170				    ipfw_localip6(&args->f_id.src_ip6);
2171#endif
2172				break;
2173
2174			case O_IP_DST_SET:
2175			case O_IP_SRC_SET:
2176				if (is_ipv4) {
2177					u_int32_t *d = (u_int32_t *)(cmd+1);
2178					u_int32_t addr =
2179					    cmd->opcode == O_IP_DST_SET ?
2180						args->f_id.dst_ip :
2181						args->f_id.src_ip;
2182
2183					    if (addr < d[0])
2184						    break;
2185					    addr -= d[0]; /* subtract base */
2186					    match = (addr < cmd->arg1) &&
2187						( d[ 1 + (addr>>5)] &
2188						  (1<<(addr & 0x1f)) );
2189				}
2190				break;
2191
2192			case O_IP_DST:
2193				match = is_ipv4 &&
2194				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2195				    dst_ip.s_addr);
2196				break;
2197
2198			case O_IP_DST_ME:
2199				if (is_ipv4) {
2200					match = in_localip(dst_ip);
2201					break;
2202				}
2203#ifdef INET6
2204				/* FALLTHROUGH */
2205			case O_IP6_DST_ME:
2206				match = is_ipv6 &&
2207				    ipfw_localip6(&args->f_id.dst_ip6);
2208#endif
2209				break;
2210
2211			case O_IP_SRCPORT:
2212			case O_IP_DSTPORT:
2213				/*
2214				 * offset == 0 && proto != 0 is enough
2215				 * to guarantee that we have a
2216				 * packet with port info.
2217				 */
2218				if ((proto == IPPROTO_UDP ||
2219				    proto == IPPROTO_UDPLITE ||
2220				    proto == IPPROTO_TCP ||
2221				    proto == IPPROTO_SCTP) && offset == 0) {
2222					u_int16_t x =
2223					    (cmd->opcode == O_IP_SRCPORT) ?
2224						src_port : dst_port ;
2225					u_int16_t *p =
2226					    ((ipfw_insn_u16 *)cmd)->ports;
2227					int i;
2228
2229					for (i = cmdlen - 1; !match && i>0;
2230					    i--, p += 2)
2231						match = (x>=p[0] && x<=p[1]);
2232				}
2233				break;
2234
2235			case O_ICMPTYPE:
2236				match = (offset == 0 && proto==IPPROTO_ICMP &&
2237				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2238				break;
2239
2240#ifdef INET6
2241			case O_ICMP6TYPE:
2242				match = is_ipv6 && offset == 0 &&
2243				    proto==IPPROTO_ICMPV6 &&
2244				    icmp6type_match(
2245					ICMP6(ulp)->icmp6_type,
2246					(ipfw_insn_u32 *)cmd);
2247				break;
2248#endif /* INET6 */
2249
2250			case O_IPOPT:
2251				match = (is_ipv4 &&
2252				    ipopts_match(ip, cmd) );
2253				break;
2254
2255			case O_IPVER:
2256				match = ((is_ipv4 || is_ipv6) &&
2257				    cmd->arg1 == ip->ip_v);
2258				break;
2259
2260			case O_IPID:
2261			case O_IPTTL:
2262				if (!is_ipv4)
2263					break;
2264			case O_IPLEN:
2265				{	/* only for IP packets */
2266				    uint16_t x;
2267				    uint16_t *p;
2268				    int i;
2269
2270				    if (cmd->opcode == O_IPLEN)
2271					x = iplen;
2272				    else if (cmd->opcode == O_IPTTL)
2273					x = ip->ip_ttl;
2274				    else /* must be IPID */
2275					x = ntohs(ip->ip_id);
2276				    if (cmdlen == 1) {
2277					match = (cmd->arg1 == x);
2278					break;
2279				    }
2280				    /* otherwise we have ranges */
2281				    p = ((ipfw_insn_u16 *)cmd)->ports;
2282				    i = cmdlen - 1;
2283				    for (; !match && i>0; i--, p += 2)
2284					match = (x >= p[0] && x <= p[1]);
2285				}
2286				break;
2287
2288			case O_IPPRECEDENCE:
2289				match = (is_ipv4 &&
2290				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2291				break;
2292
2293			case O_IPTOS:
2294				match = (is_ipv4 &&
2295				    flags_match(cmd, ip->ip_tos));
2296				break;
2297
2298			case O_DSCP:
2299			    {
2300				uint32_t *p;
2301				uint16_t x;
2302
2303				p = ((ipfw_insn_u32 *)cmd)->d;
2304
2305				if (is_ipv4)
2306					x = ip->ip_tos >> 2;
2307				else if (is_ipv6) {
2308					uint8_t *v;
2309					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2310					x = (*v & 0x0F) << 2;
2311					v++;
2312					x |= *v >> 6;
2313				} else
2314					break;
2315
2316				/* DSCP bitmask is stored as low_u32 high_u32 */
2317				if (x >= 32)
2318					match = *(p + 1) & (1 << (x - 32));
2319				else
2320					match = *p & (1 << x);
2321			    }
2322				break;
2323
2324			case O_TCPDATALEN:
2325				if (proto == IPPROTO_TCP && offset == 0) {
2326				    struct tcphdr *tcp;
2327				    uint16_t x;
2328				    uint16_t *p;
2329				    int i;
2330#ifdef INET6
2331				    if (is_ipv6) {
2332					    struct ip6_hdr *ip6;
2333
2334					    ip6 = (struct ip6_hdr *)ip;
2335					    if (ip6->ip6_plen == 0) {
2336						    /*
2337						     * Jumbo payload is not
2338						     * supported by this
2339						     * opcode.
2340						     */
2341						    break;
2342					    }
2343					    x = iplen - hlen;
2344				    } else
2345#endif /* INET6 */
2346					    x = iplen - (ip->ip_hl << 2);
2347				    tcp = TCP(ulp);
2348				    x -= tcp->th_off << 2;
2349				    if (cmdlen == 1) {
2350					match = (cmd->arg1 == x);
2351					break;
2352				    }
2353				    /* otherwise we have ranges */
2354				    p = ((ipfw_insn_u16 *)cmd)->ports;
2355				    i = cmdlen - 1;
2356				    for (; !match && i>0; i--, p += 2)
2357					match = (x >= p[0] && x <= p[1]);
2358				}
2359				break;
2360
2361			case O_TCPFLAGS:
2362				match = (proto == IPPROTO_TCP && offset == 0 &&
2363				    flags_match(cmd, TCP(ulp)->th_flags));
2364				break;
2365
2366			case O_TCPOPTS:
2367				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2368					PULLUP_LEN_LOCKED(hlen, ulp,
2369					    (TCP(ulp)->th_off << 2));
2370					match = tcpopts_match(TCP(ulp), cmd);
2371				}
2372				break;
2373
2374			case O_TCPSEQ:
2375				match = (proto == IPPROTO_TCP && offset == 0 &&
2376				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2377					TCP(ulp)->th_seq);
2378				break;
2379
2380			case O_TCPACK:
2381				match = (proto == IPPROTO_TCP && offset == 0 &&
2382				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2383					TCP(ulp)->th_ack);
2384				break;
2385
2386			case O_TCPMSS:
2387				if (proto == IPPROTO_TCP &&
2388				    (args->f_id._flags & TH_SYN) != 0 &&
2389				    ulp != NULL) {
2390					uint16_t mss, *p;
2391					int i;
2392
2393					PULLUP_LEN_LOCKED(hlen, ulp,
2394					    (TCP(ulp)->th_off << 2));
2395					if ((tcpopts_parse(TCP(ulp), &mss) &
2396					    IP_FW_TCPOPT_MSS) == 0)
2397						break;
2398					if (cmdlen == 1) {
2399						match = (cmd->arg1 == mss);
2400						break;
2401					}
2402					/* Otherwise we have ranges. */
2403					p = ((ipfw_insn_u16 *)cmd)->ports;
2404					i = cmdlen - 1;
2405					for (; !match && i > 0; i--, p += 2)
2406						match = (mss >= p[0] &&
2407						    mss <= p[1]);
2408				}
2409				break;
2410
2411			case O_TCPWIN:
2412				if (proto == IPPROTO_TCP && offset == 0) {
2413				    uint16_t x;
2414				    uint16_t *p;
2415				    int i;
2416
2417				    x = ntohs(TCP(ulp)->th_win);
2418				    if (cmdlen == 1) {
2419					match = (cmd->arg1 == x);
2420					break;
2421				    }
2422				    /* Otherwise we have ranges. */
2423				    p = ((ipfw_insn_u16 *)cmd)->ports;
2424				    i = cmdlen - 1;
2425				    for (; !match && i > 0; i--, p += 2)
2426					match = (x >= p[0] && x <= p[1]);
2427				}
2428				break;
2429
2430			case O_ESTAB:
2431				/* reject packets which have SYN only */
2432				/* XXX should i also check for TH_ACK ? */
2433				match = (proto == IPPROTO_TCP && offset == 0 &&
2434				    (TCP(ulp)->th_flags &
2435				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2436				break;
2437
2438			case O_ALTQ: {
2439				struct pf_mtag *at;
2440				struct m_tag *mtag;
2441				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2442
2443				/*
2444				 * ALTQ uses mbuf tags from another
2445				 * packet filtering system - pf(4).
2446				 * We allocate a tag in its format
2447				 * and fill it in, pretending to be pf(4).
2448				 */
2449				match = 1;
2450				at = pf_find_mtag(m);
2451				if (at != NULL && at->qid != 0)
2452					break;
2453				mtag = m_tag_get(PACKET_TAG_PF,
2454				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2455				if (mtag == NULL) {
2456					/*
2457					 * Let the packet fall back to the
2458					 * default ALTQ.
2459					 */
2460					break;
2461				}
2462				m_tag_prepend(m, mtag);
2463				at = (struct pf_mtag *)(mtag + 1);
2464				at->qid = altq->qid;
2465				at->hdr = ip;
2466				break;
2467			}
2468
2469			case O_LOG:
2470				ipfw_log(chain, f, hlen, args,
2471				    offset | ip6f_mf, tablearg, ip);
2472				match = 1;
2473				break;
2474
2475			case O_PROB:
2476				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2477				break;
2478
2479			case O_VERREVPATH:
2480				/* Outgoing packets automatically pass/match */
2481				match = (args->flags & IPFW_ARGS_OUT ||
2482				    (
2483#ifdef INET6
2484				    is_ipv6 ?
2485					verify_path6(&(args->f_id.src_ip6),
2486					    iif, args->f_id.fib) :
2487#endif
2488				    verify_path(src_ip, iif, args->f_id.fib)));
2489				break;
2490
2491			case O_VERSRCREACH:
2492				/* Outgoing packets automatically pass/match */
2493				match = (hlen > 0 && ((oif != NULL) || (
2494#ifdef INET6
2495				    is_ipv6 ?
2496				        verify_path6(&(args->f_id.src_ip6),
2497				            NULL, args->f_id.fib) :
2498#endif
2499				    verify_path(src_ip, NULL, args->f_id.fib))));
2500				break;
2501
2502			case O_ANTISPOOF:
2503				/* Outgoing packets automatically pass/match */
2504				if (oif == NULL && hlen > 0 &&
2505				    (  (is_ipv4 && in_localaddr(src_ip))
2506#ifdef INET6
2507				    || (is_ipv6 &&
2508				        in6_localaddr(&(args->f_id.src_ip6)))
2509#endif
2510				    ))
2511					match =
2512#ifdef INET6
2513					    is_ipv6 ? verify_path6(
2514					        &(args->f_id.src_ip6), iif,
2515						args->f_id.fib) :
2516#endif
2517					    verify_path(src_ip, iif,
2518					        args->f_id.fib);
2519				else
2520					match = 1;
2521				break;
2522
2523			case O_IPSEC:
2524				match = (m_tag_find(m,
2525				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2526				/* otherwise no match */
2527				break;
2528
2529#ifdef INET6
2530			case O_IP6_SRC:
2531				match = is_ipv6 &&
2532				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2533				    &((ipfw_insn_ip6 *)cmd)->addr6);
2534				break;
2535
2536			case O_IP6_DST:
2537				match = is_ipv6 &&
2538				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2539				    &((ipfw_insn_ip6 *)cmd)->addr6);
2540				break;
2541			case O_IP6_SRC_MASK:
2542			case O_IP6_DST_MASK:
2543				if (is_ipv6) {
2544					int i = cmdlen - 1;
2545					struct in6_addr p;
2546					struct in6_addr *d =
2547					    &((ipfw_insn_ip6 *)cmd)->addr6;
2548
2549					for (; !match && i > 0; d += 2,
2550					    i -= F_INSN_SIZE(struct in6_addr)
2551					    * 2) {
2552						p = (cmd->opcode ==
2553						    O_IP6_SRC_MASK) ?
2554						    args->f_id.src_ip6:
2555						    args->f_id.dst_ip6;
2556						APPLY_MASK(&p, &d[1]);
2557						match =
2558						    IN6_ARE_ADDR_EQUAL(&d[0],
2559						    &p);
2560					}
2561				}
2562				break;
2563
2564			case O_FLOW6ID:
2565				match = is_ipv6 &&
2566				    flow6id_match(args->f_id.flow_id6,
2567				    (ipfw_insn_u32 *) cmd);
2568				break;
2569
2570			case O_EXT_HDR:
2571				match = is_ipv6 &&
2572				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2573				break;
2574
2575			case O_IP6:
2576				match = is_ipv6;
2577				break;
2578#endif
2579
2580			case O_IP4:
2581				match = is_ipv4;
2582				break;
2583
2584			case O_TAG: {
2585				struct m_tag *mtag;
2586				uint32_t tag = TARG(cmd->arg1, tag);
2587
2588				/* Packet is already tagged with this tag? */
2589				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2590
2591				/* We have `untag' action when F_NOT flag is
2592				 * present. And we must remove this mtag from
2593				 * mbuf and reset `match' to zero (`match' will
2594				 * be inversed later).
2595				 * Otherwise we should allocate new mtag and
2596				 * push it into mbuf.
2597				 */
2598				if (cmd->len & F_NOT) { /* `untag' action */
2599					if (mtag != NULL)
2600						m_tag_delete(m, mtag);
2601					match = 0;
2602				} else {
2603					if (mtag == NULL) {
2604						mtag = m_tag_alloc( MTAG_IPFW,
2605						    tag, 0, M_NOWAIT);
2606						if (mtag != NULL)
2607							m_tag_prepend(m, mtag);
2608					}
2609					match = 1;
2610				}
2611				break;
2612			}
2613
2614			case O_FIB: /* try match the specified fib */
2615				if (args->f_id.fib == cmd->arg1)
2616					match = 1;
2617				break;
2618
2619			case O_SOCKARG:	{
2620#ifndef USERSPACE	/* not supported in userspace */
2621				struct inpcb *inp = args->inp;
2622				struct inpcbinfo *pi;
2623				bool inp_locked = false;
2624
2625				if (proto == IPPROTO_TCP)
2626					pi = &V_tcbinfo;
2627				else if (proto == IPPROTO_UDP)
2628					pi = &V_udbinfo;
2629				else if (proto == IPPROTO_UDPLITE)
2630					pi = &V_ulitecbinfo;
2631				else
2632					break;
2633
2634				/*
2635				 * XXXRW: so_user_cookie should almost
2636				 * certainly be inp_user_cookie?
2637				 */
2638
2639				/*
2640				 * For incoming packet lookup the inpcb
2641				 * using the src/dest ip/port tuple.
2642				 */
2643				if (is_ipv4 && inp == NULL) {
2644					inp = in_pcblookup(pi,
2645					    src_ip, htons(src_port),
2646					    dst_ip, htons(dst_port),
2647					    INPLOOKUP_RLOCKPCB, NULL);
2648					inp_locked = true;
2649				}
2650#ifdef INET6
2651				if (is_ipv6 && inp == NULL) {
2652					inp = in6_pcblookup(pi,
2653					    &args->f_id.src_ip6,
2654					    htons(src_port),
2655					    &args->f_id.dst_ip6,
2656					    htons(dst_port),
2657					    INPLOOKUP_RLOCKPCB, NULL);
2658					inp_locked = true;
2659				}
2660#endif /* INET6 */
2661				if (inp != NULL) {
2662					if (inp->inp_socket) {
2663						tablearg =
2664						    inp->inp_socket->so_user_cookie;
2665						if (tablearg)
2666							match = 1;
2667					}
2668					if (inp_locked)
2669						INP_RUNLOCK(inp);
2670				}
2671#endif /* !USERSPACE */
2672				break;
2673			}
2674
2675			case O_TAGGED: {
2676				struct m_tag *mtag;
2677				uint32_t tag = TARG(cmd->arg1, tag);
2678
2679				if (cmdlen == 1) {
2680					match = m_tag_locate(m, MTAG_IPFW,
2681					    tag, NULL) != NULL;
2682					break;
2683				}
2684
2685				/* we have ranges */
2686				for (mtag = m_tag_first(m);
2687				    mtag != NULL && !match;
2688				    mtag = m_tag_next(m, mtag)) {
2689					uint16_t *p;
2690					int i;
2691
2692					if (mtag->m_tag_cookie != MTAG_IPFW)
2693						continue;
2694
2695					p = ((ipfw_insn_u16 *)cmd)->ports;
2696					i = cmdlen - 1;
2697					for(; !match && i > 0; i--, p += 2)
2698						match =
2699						    mtag->m_tag_id >= p[0] &&
2700						    mtag->m_tag_id <= p[1];
2701				}
2702				break;
2703			}
2704
2705			/*
2706			 * The second set of opcodes represents 'actions',
2707			 * i.e. the terminal part of a rule once the packet
2708			 * matches all previous patterns.
2709			 * Typically there is only one action for each rule,
2710			 * and the opcode is stored at the end of the rule
2711			 * (but there are exceptions -- see below).
2712			 *
2713			 * In general, here we set retval and terminate the
2714			 * outer loop (would be a 'break 3' in some language,
2715			 * but we need to set l=0, done=1)
2716			 *
2717			 * Exceptions:
2718			 * O_COUNT and O_SKIPTO actions:
2719			 *   instead of terminating, we jump to the next rule
2720			 *   (setting l=0), or to the SKIPTO target (setting
2721			 *   f/f_len, cmd and l as needed), respectively.
2722			 *
2723			 * O_TAG, O_LOG and O_ALTQ action parameters:
2724			 *   perform some action and set match = 1;
2725			 *
2726			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2727			 *   not real 'actions', and are stored right
2728			 *   before the 'action' part of the rule (one
2729			 *   exception is O_SKIP_ACTION which could be
2730			 *   between these opcodes and 'action' one).
2731			 *   These opcodes try to install an entry in the
2732			 *   state tables; if successful, we continue with
2733			 *   the next opcode (match=1; break;), otherwise
2734			 *   the packet must be dropped (set retval,
2735			 *   break loops with l=0, done=1)
2736			 *
2737			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2738			 *   cause a lookup of the state table, and a jump
2739			 *   to the 'action' part of the parent rule
2740			 *   if an entry is found, or
2741			 *   (CHECK_STATE only) a jump to the next rule if
2742			 *   the entry is not found.
2743			 *   The result of the lookup is cached so that
2744			 *   further instances of these opcodes become NOPs.
2745			 *   The jump to the next rule is done by setting
2746			 *   l=0, cmdlen=0.
2747			 *
2748			 * O_SKIP_ACTION: this opcode is not a real 'action'
2749			 *  either, and is stored right before the 'action'
2750			 *  part of the rule, right after the O_KEEP_STATE
2751			 *  opcode. It causes match failure so the real
2752			 *  'action' could be executed only if the rule
2753			 *  is checked via dynamic rule from the state
2754			 *  table, as in such case execution starts
2755			 *  from the true 'action' opcode directly.
2756			 *
2757			 */
2758			case O_LIMIT:
2759			case O_KEEP_STATE:
2760				if (ipfw_dyn_install_state(chain, f,
2761				    (ipfw_insn_limit *)cmd, args, ulp,
2762				    pktlen, &dyn_info, tablearg)) {
2763					/* error or limit violation */
2764					retval = IP_FW_DENY;
2765					l = 0;	/* exit inner loop */
2766					done = 1; /* exit outer loop */
2767				}
2768				match = 1;
2769				break;
2770
2771			case O_PROBE_STATE:
2772			case O_CHECK_STATE:
2773				/*
2774				 * dynamic rules are checked at the first
2775				 * keep-state or check-state occurrence,
2776				 * with the result being stored in dyn_info.
2777				 * The compiler introduces a PROBE_STATE
2778				 * instruction for us when we have a
2779				 * KEEP_STATE (because PROBE_STATE needs
2780				 * to be run first).
2781				 */
2782				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2783				    (q = ipfw_dyn_lookup_state(args, ulp,
2784				    pktlen, cmd, &dyn_info)) != NULL) {
2785					/*
2786					 * Found dynamic entry, jump to the
2787					 * 'action' part of the parent rule
2788					 * by setting f, cmd, l and clearing
2789					 * cmdlen.
2790					 */
2791					f = q;
2792					f_pos = dyn_info.f_pos;
2793					cmd = ACTION_PTR(f);
2794					l = f->cmd_len - f->act_ofs;
2795					cmdlen = 0;
2796					match = 1;
2797					break;
2798				}
2799				/*
2800				 * Dynamic entry not found. If CHECK_STATE,
2801				 * skip to next rule, if PROBE_STATE just
2802				 * ignore and continue with next opcode.
2803				 */
2804				if (cmd->opcode == O_CHECK_STATE)
2805					l = 0;	/* exit inner loop */
2806				match = 1;
2807				break;
2808
2809			case O_SKIP_ACTION:
2810				match = 0;	/* skip to the next rule */
2811				l = 0;		/* exit inner loop */
2812				break;
2813
2814			case O_ACCEPT:
2815				retval = 0;	/* accept */
2816				l = 0;		/* exit inner loop */
2817				done = 1;	/* exit outer loop */
2818				break;
2819
2820			case O_PIPE:
2821			case O_QUEUE:
2822				set_match(args, f_pos, chain);
2823				args->rule.info = TARG(cmd->arg1, pipe);
2824				if (cmd->opcode == O_PIPE)
2825					args->rule.info |= IPFW_IS_PIPE;
2826				if (V_fw_one_pass)
2827					args->rule.info |= IPFW_ONEPASS;
2828				retval = IP_FW_DUMMYNET;
2829				l = 0;          /* exit inner loop */
2830				done = 1;       /* exit outer loop */
2831				break;
2832
2833			case O_DIVERT:
2834			case O_TEE:
2835				if (args->flags & IPFW_ARGS_ETHER)
2836					break;	/* not on layer 2 */
2837				/* otherwise this is terminal */
2838				l = 0;		/* exit inner loop */
2839				done = 1;	/* exit outer loop */
2840				retval = (cmd->opcode == O_DIVERT) ?
2841					IP_FW_DIVERT : IP_FW_TEE;
2842				set_match(args, f_pos, chain);
2843				args->rule.info = TARG(cmd->arg1, divert);
2844				break;
2845
2846			case O_COUNT:
2847				IPFW_INC_RULE_COUNTER(f, pktlen);
2848				l = 0;		/* exit inner loop */
2849				break;
2850
2851			case O_SKIPTO:
2852			    IPFW_INC_RULE_COUNTER(f, pktlen);
2853			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2854			    /*
2855			     * Skip disabled rules, and re-enter
2856			     * the inner loop with the correct
2857			     * f_pos, f, l and cmd.
2858			     * Also clear cmdlen and skip_or
2859			     */
2860			    for (; f_pos < chain->n_rules - 1 &&
2861				    (V_set_disable &
2862				     (1 << chain->map[f_pos]->set));
2863				    f_pos++)
2864				;
2865			    /* Re-enter the inner loop at the skipto rule. */
2866			    f = chain->map[f_pos];
2867			    l = f->cmd_len;
2868			    cmd = f->cmd;
2869			    match = 1;
2870			    cmdlen = 0;
2871			    skip_or = 0;
2872			    continue;
2873			    break;	/* not reached */
2874
2875			case O_CALLRETURN: {
2876				/*
2877				 * Implementation of `subroutine' call/return,
2878				 * in the stack carried in an mbuf tag. This
2879				 * is different from `skipto' in that any call
2880				 * address is possible (`skipto' must prevent
2881				 * backward jumps to avoid endless loops).
2882				 * We have `return' action when F_NOT flag is
2883				 * present. The `m_tag_id' field is used as
2884				 * stack pointer.
2885				 */
2886				struct m_tag *mtag;
2887				uint16_t jmpto, *stack;
2888
2889#define	IS_CALL		((cmd->len & F_NOT) == 0)
2890#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2891				/*
2892				 * Hand-rolled version of m_tag_locate() with
2893				 * wildcard `type'.
2894				 * If not already tagged, allocate new tag.
2895				 */
2896				mtag = m_tag_first(m);
2897				while (mtag != NULL) {
2898					if (mtag->m_tag_cookie ==
2899					    MTAG_IPFW_CALL)
2900						break;
2901					mtag = m_tag_next(m, mtag);
2902				}
2903				if (mtag == NULL && IS_CALL) {
2904					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2905					    IPFW_CALLSTACK_SIZE *
2906					    sizeof(uint16_t), M_NOWAIT);
2907					if (mtag != NULL)
2908						m_tag_prepend(m, mtag);
2909				}
2910
2911				/*
2912				 * On error both `call' and `return' just
2913				 * continue with next rule.
2914				 */
2915				if (IS_RETURN && (mtag == NULL ||
2916				    mtag->m_tag_id == 0)) {
2917					l = 0;		/* exit inner loop */
2918					break;
2919				}
2920				if (IS_CALL && (mtag == NULL ||
2921				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2922					printf("ipfw: call stack error, "
2923					    "go to next rule\n");
2924					l = 0;		/* exit inner loop */
2925					break;
2926				}
2927
2928				IPFW_INC_RULE_COUNTER(f, pktlen);
2929				stack = (uint16_t *)(mtag + 1);
2930
2931				/*
2932				 * The `call' action may use cached f_pos
2933				 * (in f->next_rule), whose version is written
2934				 * in f->next_rule.
2935				 * The `return' action, however, doesn't have
2936				 * fixed jump address in cmd->arg1 and can't use
2937				 * cache.
2938				 */
2939				if (IS_CALL) {
2940					stack[mtag->m_tag_id] = f->rulenum;
2941					mtag->m_tag_id++;
2942			    		f_pos = JUMP(chain, f, cmd->arg1,
2943					    tablearg, 1);
2944				} else {	/* `return' action */
2945					mtag->m_tag_id--;
2946					jmpto = stack[mtag->m_tag_id] + 1;
2947					f_pos = ipfw_find_rule(chain, jmpto, 0);
2948				}
2949
2950				/*
2951				 * Skip disabled rules, and re-enter
2952				 * the inner loop with the correct
2953				 * f_pos, f, l and cmd.
2954				 * Also clear cmdlen and skip_or
2955				 */
2956				for (; f_pos < chain->n_rules - 1 &&
2957				    (V_set_disable &
2958				    (1 << chain->map[f_pos]->set)); f_pos++)
2959					;
2960				/* Re-enter the inner loop at the dest rule. */
2961				f = chain->map[f_pos];
2962				l = f->cmd_len;
2963				cmd = f->cmd;
2964				cmdlen = 0;
2965				skip_or = 0;
2966				continue;
2967				break;	/* NOTREACHED */
2968			}
2969#undef IS_CALL
2970#undef IS_RETURN
2971
2972			case O_REJECT:
2973				/*
2974				 * Drop the packet and send a reject notice
2975				 * if the packet is not ICMP (or is an ICMP
2976				 * query), and it is not multicast/broadcast.
2977				 */
2978				if (hlen > 0 && is_ipv4 && offset == 0 &&
2979				    (proto != IPPROTO_ICMP ||
2980				     is_icmp_query(ICMP(ulp))) &&
2981				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2982				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2983					send_reject(args, cmd->arg1, iplen, ip);
2984					m = args->m;
2985				}
2986				/* FALLTHROUGH */
2987#ifdef INET6
2988			case O_UNREACH6:
2989				if (hlen > 0 && is_ipv6 &&
2990				    ((offset & IP6F_OFF_MASK) == 0) &&
2991				    (proto != IPPROTO_ICMPV6 ||
2992				     (is_icmp6_query(icmp6_type) == 1)) &&
2993				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2994				    !IN6_IS_ADDR_MULTICAST(
2995					&args->f_id.dst_ip6)) {
2996					send_reject6(args,
2997					    cmd->opcode == O_REJECT ?
2998					    map_icmp_unreach(cmd->arg1):
2999					    cmd->arg1, hlen,
3000					    (struct ip6_hdr *)ip);
3001					m = args->m;
3002				}
3003				/* FALLTHROUGH */
3004#endif
3005			case O_DENY:
3006				retval = IP_FW_DENY;
3007				l = 0;		/* exit inner loop */
3008				done = 1;	/* exit outer loop */
3009				break;
3010
3011			case O_FORWARD_IP:
3012				if (args->flags & IPFW_ARGS_ETHER)
3013					break;	/* not valid on layer2 pkts */
3014				if (q != f ||
3015				    dyn_info.direction == MATCH_FORWARD) {
3016				    struct sockaddr_in *sa;
3017
3018				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3019				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3020#ifdef INET6
3021					/*
3022					 * We use O_FORWARD_IP opcode for
3023					 * fwd rule with tablearg, but tables
3024					 * now support IPv6 addresses. And
3025					 * when we are inspecting IPv6 packet,
3026					 * we can use nh6 field from
3027					 * table_value as next_hop6 address.
3028					 */
3029					if (is_ipv6) {
3030						struct ip_fw_nh6 *nh6;
3031
3032						args->flags |= IPFW_ARGS_NH6;
3033						nh6 = &args->hopstore6;
3034						nh6->sin6_addr = TARG_VAL(
3035						    chain, tablearg, nh6);
3036						nh6->sin6_port = sa->sin_port;
3037						nh6->sin6_scope_id = TARG_VAL(
3038						    chain, tablearg, zoneid);
3039					} else
3040#endif
3041					{
3042						args->flags |= IPFW_ARGS_NH4;
3043						args->hopstore.sin_port =
3044						    sa->sin_port;
3045						sa = &args->hopstore;
3046						sa->sin_family = AF_INET;
3047						sa->sin_len = sizeof(*sa);
3048						sa->sin_addr.s_addr = htonl(
3049						    TARG_VAL(chain, tablearg,
3050						    nh4));
3051					}
3052				    } else {
3053					    args->flags |= IPFW_ARGS_NH4PTR;
3054					    args->next_hop = sa;
3055				    }
3056				}
3057				retval = IP_FW_PASS;
3058				l = 0;          /* exit inner loop */
3059				done = 1;       /* exit outer loop */
3060				break;
3061
3062#ifdef INET6
3063			case O_FORWARD_IP6:
3064				if (args->flags & IPFW_ARGS_ETHER)
3065					break;	/* not valid on layer2 pkts */
3066				if (q != f ||
3067				    dyn_info.direction == MATCH_FORWARD) {
3068					struct sockaddr_in6 *sin6;
3069
3070					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3071					args->flags |= IPFW_ARGS_NH6PTR;
3072					args->next_hop6 = sin6;
3073				}
3074				retval = IP_FW_PASS;
3075				l = 0;		/* exit inner loop */
3076				done = 1;	/* exit outer loop */
3077				break;
3078#endif
3079
3080			case O_NETGRAPH:
3081			case O_NGTEE:
3082				set_match(args, f_pos, chain);
3083				args->rule.info = TARG(cmd->arg1, netgraph);
3084				if (V_fw_one_pass)
3085					args->rule.info |= IPFW_ONEPASS;
3086				retval = (cmd->opcode == O_NETGRAPH) ?
3087				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3088				l = 0;          /* exit inner loop */
3089				done = 1;       /* exit outer loop */
3090				break;
3091
3092			case O_SETFIB: {
3093				uint32_t fib;
3094
3095				IPFW_INC_RULE_COUNTER(f, pktlen);
3096				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3097				if (fib >= rt_numfibs)
3098					fib = 0;
3099				M_SETFIB(m, fib);
3100				args->f_id.fib = fib; /* XXX */
3101				l = 0;		/* exit inner loop */
3102				break;
3103		        }
3104
3105			case O_SETDSCP: {
3106				uint16_t code;
3107
3108				code = TARG(cmd->arg1, dscp) & 0x3F;
3109				l = 0;		/* exit inner loop */
3110				if (is_ipv4) {
3111					uint16_t old;
3112
3113					old = *(uint16_t *)ip;
3114					ip->ip_tos = (code << 2) |
3115					    (ip->ip_tos & 0x03);
3116					ip->ip_sum = cksum_adjust(ip->ip_sum,
3117					    old, *(uint16_t *)ip);
3118				} else if (is_ipv6) {
3119					uint8_t *v;
3120
3121					v = &((struct ip6_hdr *)ip)->ip6_vfc;
3122					*v = (*v & 0xF0) | (code >> 2);
3123					v++;
3124					*v = (*v & 0x3F) | ((code & 0x03) << 6);
3125				} else
3126					break;
3127
3128				IPFW_INC_RULE_COUNTER(f, pktlen);
3129				break;
3130			}
3131
3132			case O_NAT:
3133				l = 0;          /* exit inner loop */
3134				done = 1;       /* exit outer loop */
3135				/*
3136				 * Ensure that we do not invoke NAT handler for
3137				 * non IPv4 packets. Libalias expects only IPv4.
3138				 */
3139				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3140				    retval = IP_FW_DENY;
3141				    break;
3142				}
3143
3144				struct cfg_nat *t;
3145				int nat_id;
3146
3147				args->rule.info = 0;
3148				set_match(args, f_pos, chain);
3149				/* Check if this is 'global' nat rule */
3150				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3151					retval = ipfw_nat_ptr(args, NULL, m);
3152					break;
3153				}
3154				t = ((ipfw_insn_nat *)cmd)->nat;
3155				if (t == NULL) {
3156					nat_id = TARG(cmd->arg1, nat);
3157					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3158
3159					if (t == NULL) {
3160					    retval = IP_FW_DENY;
3161					    break;
3162					}
3163					if (cmd->arg1 != IP_FW_TARG)
3164					    ((ipfw_insn_nat *)cmd)->nat = t;
3165				}
3166				retval = ipfw_nat_ptr(args, t, m);
3167				break;
3168
3169			case O_REASS: {
3170				int ip_off;
3171
3172				l = 0;	/* in any case exit inner loop */
3173				if (is_ipv6) /* IPv6 is not supported yet */
3174					break;
3175				IPFW_INC_RULE_COUNTER(f, pktlen);
3176				ip_off = ntohs(ip->ip_off);
3177
3178				/* if not fragmented, go to next rule */
3179				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3180				    break;
3181
3182				args->m = m = ip_reass(m);
3183
3184				/*
3185				 * do IP header checksum fixup.
3186				 */
3187				if (m == NULL) { /* fragment got swallowed */
3188				    retval = IP_FW_DENY;
3189				} else { /* good, packet complete */
3190				    int hlen;
3191
3192				    ip = mtod(m, struct ip *);
3193				    hlen = ip->ip_hl << 2;
3194				    ip->ip_sum = 0;
3195				    if (hlen == sizeof(struct ip))
3196					ip->ip_sum = in_cksum_hdr(ip);
3197				    else
3198					ip->ip_sum = in_cksum(m, hlen);
3199				    retval = IP_FW_REASS;
3200				    args->rule.info = 0;
3201				    set_match(args, f_pos, chain);
3202				}
3203				done = 1;	/* exit outer loop */
3204				break;
3205			}
3206			case O_EXTERNAL_ACTION:
3207				l = 0; /* in any case exit inner loop */
3208				retval = ipfw_run_eaction(chain, args,
3209				    cmd, &done);
3210				/*
3211				 * If both @retval and @done are zero,
3212				 * consider this as rule matching and
3213				 * update counters.
3214				 */
3215				if (retval == 0 && done == 0) {
3216					IPFW_INC_RULE_COUNTER(f, pktlen);
3217					/*
3218					 * Reset the result of the last
3219					 * dynamic state lookup.
3220					 * External action can change
3221					 * @args content, and it may be
3222					 * used for new state lookup later.
3223					 */
3224					DYN_INFO_INIT(&dyn_info);
3225				}
3226				break;
3227
3228			default:
3229				panic("-- unknown opcode %d\n", cmd->opcode);
3230			} /* end of switch() on opcodes */
3231			/*
3232			 * if we get here with l=0, then match is irrelevant.
3233			 */
3234
3235			if (cmd->len & F_NOT)
3236				match = !match;
3237
3238			if (match) {
3239				if (cmd->len & F_OR)
3240					skip_or = 1;
3241			} else {
3242				if (!(cmd->len & F_OR)) /* not an OR block, */
3243					break;		/* try next rule    */
3244			}
3245
3246		}	/* end of inner loop, scan opcodes */
3247#undef PULLUP_LEN
3248#undef PULLUP_LEN_LOCKED
3249
3250		if (done)
3251			break;
3252
3253/* next_rule:; */	/* try next rule		*/
3254
3255	}		/* end of outer for, scan rules */
3256
3257	if (done) {
3258		struct ip_fw *rule = chain->map[f_pos];
3259		/* Update statistics */
3260		IPFW_INC_RULE_COUNTER(rule, pktlen);
3261		IPFW_PROBE(rule__matched, retval,
3262		    is_ipv4 ? AF_INET : AF_INET6,
3263		    is_ipv4 ? (uintptr_t)&src_ip :
3264		        (uintptr_t)&args->f_id.src_ip6,
3265		    is_ipv4 ? (uintptr_t)&dst_ip :
3266		        (uintptr_t)&args->f_id.dst_ip6,
3267		    args, rule);
3268	} else {
3269		retval = IP_FW_DENY;
3270		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3271	}
3272	IPFW_PF_RUNLOCK(chain);
3273#ifdef __FreeBSD__
3274	if (ucred_cache != NULL)
3275		crfree(ucred_cache);
3276#endif
3277	return (retval);
3278
3279pullup_failed:
3280	if (V_fw_verbose)
3281		printf("ipfw: pullup failed\n");
3282	return (IP_FW_DENY);
3283}
3284
3285/*
3286 * Set maximum number of tables that can be used in given VNET ipfw instance.
3287 */
3288#ifdef SYSCTL_NODE
3289static int
3290sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3291{
3292	int error;
3293	unsigned int ntables;
3294
3295	ntables = V_fw_tables_max;
3296
3297	error = sysctl_handle_int(oidp, &ntables, 0, req);
3298	/* Read operation or some error */
3299	if ((error != 0) || (req->newptr == NULL))
3300		return (error);
3301
3302	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3303}
3304
3305/*
3306 * Switches table namespace between global and per-set.
3307 */
3308static int
3309sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3310{
3311	int error;
3312	unsigned int sets;
3313
3314	sets = V_fw_tables_sets;
3315
3316	error = sysctl_handle_int(oidp, &sets, 0, req);
3317	/* Read operation or some error */
3318	if ((error != 0) || (req->newptr == NULL))
3319		return (error);
3320
3321	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3322}
3323#endif
3324
3325/*
3326 * Module and VNET glue
3327 */
3328
3329/*
3330 * Stuff that must be initialised only on boot or module load
3331 */
3332static int
3333ipfw_init(void)
3334{
3335	int error = 0;
3336
3337	/*
3338 	 * Only print out this stuff the first time around,
3339	 * when called from the sysinit code.
3340	 */
3341	printf("ipfw2 "
3342#ifdef INET6
3343		"(+ipv6) "
3344#endif
3345		"initialized, divert %s, nat %s, "
3346		"default to %s, logging ",
3347#ifdef IPDIVERT
3348		"enabled",
3349#else
3350		"loadable",
3351#endif
3352#ifdef IPFIREWALL_NAT
3353		"enabled",
3354#else
3355		"loadable",
3356#endif
3357		default_to_accept ? "accept" : "deny");
3358
3359	/*
3360	 * Note: V_xxx variables can be accessed here but the vnet specific
3361	 * initializer may not have been called yet for the VIMAGE case.
3362	 * Tuneables will have been processed. We will print out values for
3363	 * the default vnet.
3364	 * XXX This should all be rationalized AFTER 8.0
3365	 */
3366	if (V_fw_verbose == 0)
3367		printf("disabled\n");
3368	else if (V_verbose_limit == 0)
3369		printf("unlimited\n");
3370	else
3371		printf("limited to %d packets/entry by default\n",
3372		    V_verbose_limit);
3373
3374	/* Check user-supplied table count for validness */
3375	if (default_fw_tables > IPFW_TABLES_MAX)
3376	  default_fw_tables = IPFW_TABLES_MAX;
3377
3378	ipfw_init_sopt_handler();
3379	ipfw_init_obj_rewriter();
3380	ipfw_iface_init();
3381	return (error);
3382}
3383
3384/*
3385 * Called for the removal of the last instance only on module unload.
3386 */
3387static void
3388ipfw_destroy(void)
3389{
3390
3391	ipfw_iface_destroy();
3392	ipfw_destroy_sopt_handler();
3393	ipfw_destroy_obj_rewriter();
3394	printf("IP firewall unloaded\n");
3395}
3396
3397/*
3398 * Stuff that must be initialized for every instance
3399 * (including the first of course).
3400 */
3401static int
3402vnet_ipfw_init(const void *unused)
3403{
3404	int error, first;
3405	struct ip_fw *rule = NULL;
3406	struct ip_fw_chain *chain;
3407
3408	chain = &V_layer3_chain;
3409
3410	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3411
3412	/* First set up some values that are compile time options */
3413	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3414	V_fw_deny_unknown_exthdrs = 1;
3415#ifdef IPFIREWALL_VERBOSE
3416	V_fw_verbose = 1;
3417#endif
3418#ifdef IPFIREWALL_VERBOSE_LIMIT
3419	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3420#endif
3421#ifdef IPFIREWALL_NAT
3422	LIST_INIT(&chain->nat);
3423#endif
3424
3425	/* Init shared services hash table */
3426	ipfw_init_srv(chain);
3427
3428	ipfw_init_counters();
3429	/* Set initial number of tables */
3430	V_fw_tables_max = default_fw_tables;
3431	error = ipfw_init_tables(chain, first);
3432	if (error) {
3433		printf("ipfw2: setting up tables failed\n");
3434		free(chain->map, M_IPFW);
3435		free(rule, M_IPFW);
3436		return (ENOSPC);
3437	}
3438
3439	IPFW_LOCK_INIT(chain);
3440
3441	/* fill and insert the default rule */
3442	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3443	rule->flags |= IPFW_RULE_NOOPT;
3444	rule->cmd_len = 1;
3445	rule->cmd[0].len = 1;
3446	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3447	chain->default_rule = rule;
3448	ipfw_add_protected_rule(chain, rule, 0);
3449
3450	ipfw_dyn_init(chain);
3451	ipfw_eaction_init(chain, first);
3452#ifdef LINEAR_SKIPTO
3453	ipfw_init_skipto_cache(chain);
3454#endif
3455	ipfw_bpf_init(first);
3456
3457	/* First set up some values that are compile time options */
3458	V_ipfw_vnet_ready = 1;		/* Open for business */
3459
3460	/*
3461	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3462	 * Even if the latter two fail we still keep the module alive
3463	 * because the sockopt and layer2 paths are still useful.
3464	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3465	 * so we can ignore the exact return value and just set a flag.
3466	 *
3467	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3468	 * changes in the underlying (per-vnet) variables trigger
3469	 * immediate hook()/unhook() calls.
3470	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3471	 * is checked on each packet because there are no pfil hooks.
3472	 */
3473	V_ip_fw_ctl_ptr = ipfw_ctl3;
3474	error = ipfw_attach_hooks();
3475	return (error);
3476}
3477
3478/*
3479 * Called for the removal of each instance.
3480 */
3481static int
3482vnet_ipfw_uninit(const void *unused)
3483{
3484	struct ip_fw *reap;
3485	struct ip_fw_chain *chain = &V_layer3_chain;
3486	int i, last;
3487
3488	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3489	/*
3490	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3491	 * Then grab, release and grab again the WLOCK so we make
3492	 * sure the update is propagated and nobody will be in.
3493	 */
3494	ipfw_detach_hooks();
3495	V_ip_fw_ctl_ptr = NULL;
3496
3497	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3498
3499	IPFW_UH_WLOCK(chain);
3500	IPFW_UH_WUNLOCK(chain);
3501
3502	ipfw_dyn_uninit(0);	/* run the callout_drain */
3503
3504	IPFW_UH_WLOCK(chain);
3505
3506	reap = NULL;
3507	IPFW_WLOCK(chain);
3508	for (i = 0; i < chain->n_rules; i++)
3509		ipfw_reap_add(chain, &reap, chain->map[i]);
3510	free(chain->map, M_IPFW);
3511#ifdef LINEAR_SKIPTO
3512	ipfw_destroy_skipto_cache(chain);
3513#endif
3514	IPFW_WUNLOCK(chain);
3515	IPFW_UH_WUNLOCK(chain);
3516	ipfw_destroy_tables(chain, last);
3517	ipfw_eaction_uninit(chain, last);
3518	if (reap != NULL)
3519		ipfw_reap_rules(reap);
3520	vnet_ipfw_iface_destroy(chain);
3521	ipfw_destroy_srv(chain);
3522	IPFW_LOCK_DESTROY(chain);
3523	ipfw_dyn_uninit(1);	/* free the remaining parts */
3524	ipfw_destroy_counters();
3525	ipfw_bpf_uninit(last);
3526	return (0);
3527}
3528
3529/*
3530 * Module event handler.
3531 * In general we have the choice of handling most of these events by the
3532 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3533 * use the SYSINIT handlers as they are more capable of expressing the
3534 * flow of control during module and vnet operations, so this is just
3535 * a skeleton. Note there is no SYSINIT equivalent of the module
3536 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3537 */
3538static int
3539ipfw_modevent(module_t mod, int type, void *unused)
3540{
3541	int err = 0;
3542
3543	switch (type) {
3544	case MOD_LOAD:
3545		/* Called once at module load or
3546	 	 * system boot if compiled in. */
3547		break;
3548	case MOD_QUIESCE:
3549		/* Called before unload. May veto unloading. */
3550		break;
3551	case MOD_UNLOAD:
3552		/* Called during unload. */
3553		break;
3554	case MOD_SHUTDOWN:
3555		/* Called during system shutdown. */
3556		break;
3557	default:
3558		err = EOPNOTSUPP;
3559		break;
3560	}
3561	return err;
3562}
3563
3564static moduledata_t ipfwmod = {
3565	"ipfw",
3566	ipfw_modevent,
3567	0
3568};
3569
3570/* Define startup order. */
3571#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3572#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3573#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3574#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3575
3576DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3577FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3578MODULE_VERSION(ipfw, 3);
3579/* should declare some dependencies here */
3580
3581/*
3582 * Starting up. Done in order after ipfwmod() has been called.
3583 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3584 */
3585SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3586	    ipfw_init, NULL);
3587VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3588	    vnet_ipfw_init, NULL);
3589
3590/*
3591 * Closing up shop. These are done in REVERSE ORDER, but still
3592 * after ipfwmod() has been called. Not called on reboot.
3593 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3594 * or when the module is unloaded.
3595 */
3596SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3597	    ipfw_destroy, NULL);
3598VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3599	    vnet_ipfw_uninit, NULL);
3600/* end of file */
3601