1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5 *	The Regents of the University of California.
6 * Copyright (c) 2008 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2014 Kevin Lo
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD$");
43
44#include "opt_inet.h"
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47#include "opt_route.h"
48#include "opt_rss.h"
49
50#include <sys/param.h>
51#include <sys/domain.h>
52#include <sys/eventhandler.h>
53#include <sys/jail.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mbuf.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/protosw.h>
61#include <sys/sdt.h>
62#include <sys/signalvar.h>
63#include <sys/socket.h>
64#include <sys/socketvar.h>
65#include <sys/sx.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/systm.h>
69
70#include <vm/uma.h>
71
72#include <net/if.h>
73#include <net/if_var.h>
74#include <net/route.h>
75#include <net/route/nhop.h>
76#include <net/rss_config.h>
77
78#include <netinet/in.h>
79#include <netinet/in_kdtrace.h>
80#include <netinet/in_fib.h>
81#include <netinet/in_pcb.h>
82#include <netinet/in_systm.h>
83#include <netinet/in_var.h>
84#include <netinet/ip.h>
85#ifdef INET6
86#include <netinet/ip6.h>
87#endif
88#include <netinet/ip_icmp.h>
89#include <netinet/icmp_var.h>
90#include <netinet/ip_var.h>
91#include <netinet/ip_options.h>
92#ifdef INET6
93#include <netinet6/ip6_var.h>
94#endif
95#include <netinet/udp.h>
96#include <netinet/udp_var.h>
97#include <netinet/udplite.h>
98#include <netinet/in_rss.h>
99
100#include <netipsec/ipsec_support.h>
101
102#include <machine/in_cksum.h>
103
104#include <security/mac/mac_framework.h>
105
106/*
107 * UDP and UDP-Lite protocols implementation.
108 * Per RFC 768, August, 1980.
109 * Per RFC 3828, July, 2004.
110 */
111
112/*
113 * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
114 * removes the only data integrity mechanism for packets and malformed
115 * packets that would otherwise be discarded due to bad checksums, and may
116 * cause problems (especially for NFS data blocks).
117 */
118VNET_DEFINE(int, udp_cksum) = 1;
119SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
120    &VNET_NAME(udp_cksum), 0, "compute udp checksum");
121
122VNET_DEFINE(int, udp_log_in_vain) = 0;
123SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
124    &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
125
126VNET_DEFINE(int, udp_blackhole) = 0;
127SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
128    &VNET_NAME(udp_blackhole), 0,
129    "Do not send port unreachables for refused connects");
130
131u_long	udp_sendspace = 9216;		/* really max datagram size */
132SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
133    &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
134
135u_long	udp_recvspace = 40 * (1024 +
136#ifdef INET6
137				      sizeof(struct sockaddr_in6)
138#else
139				      sizeof(struct sockaddr_in)
140#endif
141				      );	/* 40 1K datagrams */
142
143SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
144    &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
145
146VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
147VNET_DEFINE(struct inpcbinfo, udbinfo);
148VNET_DEFINE(struct inpcbhead, ulitecb);
149VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
150VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
151#define	V_udpcb_zone			VNET(udpcb_zone)
152
153#ifndef UDBHASHSIZE
154#define	UDBHASHSIZE	128
155#endif
156
157VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
158VNET_PCPUSTAT_SYSINIT(udpstat);
159SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
160    udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
161
162#ifdef VIMAGE
163VNET_PCPUSTAT_SYSUNINIT(udpstat);
164#endif /* VIMAGE */
165#ifdef INET
166static void	udp_detach(struct socket *so);
167static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
168		    struct mbuf *, struct thread *, int);
169#endif
170
171static void
172udp_zone_change(void *tag)
173{
174
175	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
176	uma_zone_set_max(V_udpcb_zone, maxsockets);
177}
178
179static int
180udp_inpcb_init(void *mem, int size, int flags)
181{
182	struct inpcb *inp;
183
184	inp = mem;
185	INP_LOCK_INIT(inp, "inp", "udpinp");
186	return (0);
187}
188
189static int
190udplite_inpcb_init(void *mem, int size, int flags)
191{
192	struct inpcb *inp;
193
194	inp = mem;
195	INP_LOCK_INIT(inp, "inp", "udpliteinp");
196	return (0);
197}
198
199void
200udp_init(void)
201{
202
203	/*
204	 * For now default to 2-tuple UDP hashing - until the fragment
205	 * reassembly code can also update the flowid.
206	 *
207	 * Once we can calculate the flowid that way and re-establish
208	 * a 4-tuple, flip this to 4-tuple.
209	 */
210	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
211	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
212	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214	uma_zone_set_max(V_udpcb_zone, maxsockets);
215	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
216	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
217	    EVENTHANDLER_PRI_ANY);
218}
219
220void
221udplite_init(void)
222{
223
224	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
225	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
226	    IPI_HASHFIELDS_2TUPLE);
227}
228
229/*
230 * Kernel module interface for updating udpstat.  The argument is an index
231 * into udpstat treated as an array of u_long.  While this encodes the
232 * general layout of udpstat into the caller, it doesn't encode its location,
233 * so that future changes to add, for example, per-CPU stats support won't
234 * cause binary compatibility problems for kernel modules.
235 */
236void
237kmod_udpstat_inc(int statnum)
238{
239
240	counter_u64_add(VNET(udpstat)[statnum], 1);
241}
242
243int
244udp_newudpcb(struct inpcb *inp)
245{
246	struct udpcb *up;
247
248	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
249	if (up == NULL)
250		return (ENOBUFS);
251	inp->inp_ppcb = up;
252	return (0);
253}
254
255void
256udp_discardcb(struct udpcb *up)
257{
258
259	uma_zfree(V_udpcb_zone, up);
260}
261
262#ifdef VIMAGE
263static void
264udp_destroy(void *unused __unused)
265{
266
267	in_pcbinfo_destroy(&V_udbinfo);
268	uma_zdestroy(V_udpcb_zone);
269}
270VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
271
272static void
273udplite_destroy(void *unused __unused)
274{
275
276	in_pcbinfo_destroy(&V_ulitecbinfo);
277}
278VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
279    NULL);
280#endif
281
282#ifdef INET
283/*
284 * Subroutine of udp_input(), which appends the provided mbuf chain to the
285 * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
286 * contains the source address.  If the socket ends up being an IPv6 socket,
287 * udp_append() will convert to a sockaddr_in6 before passing the address
288 * into the socket code.
289 *
290 * In the normal case udp_append() will return 0, indicating that you
291 * must unlock the inp. However if a tunneling protocol is in place we increment
292 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
293 * then decrement the reference count. If the inp_rele returns 1, indicating the
294 * inp is gone, we return that to the caller to tell them *not* to unlock
295 * the inp. In the case of multi-cast this will cause the distribution
296 * to stop (though most tunneling protocols known currently do *not* use
297 * multicast).
298 */
299static int
300udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
301    struct sockaddr_in *udp_in)
302{
303	struct sockaddr *append_sa;
304	struct socket *so;
305	struct mbuf *tmpopts, *opts = NULL;
306#ifdef INET6
307	struct sockaddr_in6 udp_in6;
308#endif
309	struct udpcb *up;
310
311	INP_LOCK_ASSERT(inp);
312
313	/*
314	 * Engage the tunneling protocol.
315	 */
316	up = intoudpcb(inp);
317	if (up->u_tun_func != NULL) {
318		in_pcbref(inp);
319		INP_RUNLOCK(inp);
320		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
321		    up->u_tun_ctx);
322		INP_RLOCK(inp);
323		return (in_pcbrele_rlocked(inp));
324	}
325
326	off += sizeof(struct udphdr);
327
328#if defined(IPSEC) || defined(IPSEC_SUPPORT)
329	/* Check AH/ESP integrity. */
330	if (IPSEC_ENABLED(ipv4) &&
331	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
332		m_freem(n);
333		return (0);
334	}
335	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
336		if (IPSEC_ENABLED(ipv4) &&
337		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
338			return (0);	/* Consumed. */
339	}
340#endif /* IPSEC */
341#ifdef MAC
342	if (mac_inpcb_check_deliver(inp, n) != 0) {
343		m_freem(n);
344		return (0);
345	}
346#endif /* MAC */
347	if (inp->inp_flags & INP_CONTROLOPTS ||
348	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
349#ifdef INET6
350		if (inp->inp_vflag & INP_IPV6)
351			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
352		else
353#endif /* INET6 */
354			ip_savecontrol(inp, &opts, ip, n);
355	}
356	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
357		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
358			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
359		if (tmpopts) {
360			if (opts) {
361				tmpopts->m_next = opts;
362				opts = tmpopts;
363			} else
364				opts = tmpopts;
365		}
366	}
367#ifdef INET6
368	if (inp->inp_vflag & INP_IPV6) {
369		bzero(&udp_in6, sizeof(udp_in6));
370		udp_in6.sin6_len = sizeof(udp_in6);
371		udp_in6.sin6_family = AF_INET6;
372		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
373		append_sa = (struct sockaddr *)&udp_in6;
374	} else
375#endif /* INET6 */
376		append_sa = (struct sockaddr *)&udp_in[0];
377	m_adj(n, off);
378
379	so = inp->inp_socket;
380	SOCKBUF_LOCK(&so->so_rcv);
381	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
382		SOCKBUF_UNLOCK(&so->so_rcv);
383		m_freem(n);
384		if (opts)
385			m_freem(opts);
386		UDPSTAT_INC(udps_fullsock);
387	} else
388		sorwakeup_locked(so);
389	return (0);
390}
391
392int
393udp_input(struct mbuf **mp, int *offp, int proto)
394{
395	struct ip *ip;
396	struct udphdr *uh;
397	struct ifnet *ifp;
398	struct inpcb *inp;
399	uint16_t len, ip_len;
400	struct inpcbinfo *pcbinfo;
401	struct ip save_ip;
402	struct sockaddr_in udp_in[2];
403	struct mbuf *m;
404	struct m_tag *fwd_tag;
405	int cscov_partial, iphlen;
406
407	m = *mp;
408	iphlen = *offp;
409	ifp = m->m_pkthdr.rcvif;
410	*mp = NULL;
411	UDPSTAT_INC(udps_ipackets);
412
413	/*
414	 * Strip IP options, if any; should skip this, make available to
415	 * user, and use on returned packets, but we don't yet have a way to
416	 * check the checksum with options still present.
417	 */
418	if (iphlen > sizeof (struct ip)) {
419		ip_stripoptions(m);
420		iphlen = sizeof(struct ip);
421	}
422
423	/*
424	 * Get IP and UDP header together in first mbuf.
425	 */
426	if (m->m_len < iphlen + sizeof(struct udphdr)) {
427		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
428			UDPSTAT_INC(udps_hdrops);
429			return (IPPROTO_DONE);
430		}
431	}
432	ip = mtod(m, struct ip *);
433	uh = (struct udphdr *)((caddr_t)ip + iphlen);
434	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
435
436	/*
437	 * Destination port of 0 is illegal, based on RFC768.
438	 */
439	if (uh->uh_dport == 0)
440		goto badunlocked;
441
442	/*
443	 * Construct sockaddr format source address.  Stuff source address
444	 * and datagram in user buffer.
445	 */
446	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
447	udp_in[0].sin_len = sizeof(struct sockaddr_in);
448	udp_in[0].sin_family = AF_INET;
449	udp_in[0].sin_port = uh->uh_sport;
450	udp_in[0].sin_addr = ip->ip_src;
451	udp_in[1].sin_len = sizeof(struct sockaddr_in);
452	udp_in[1].sin_family = AF_INET;
453	udp_in[1].sin_port = uh->uh_dport;
454	udp_in[1].sin_addr = ip->ip_dst;
455
456	/*
457	 * Make mbuf data length reflect UDP length.  If not enough data to
458	 * reflect UDP length, drop.
459	 */
460	len = ntohs((u_short)uh->uh_ulen);
461	ip_len = ntohs(ip->ip_len) - iphlen;
462	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
463		/* Zero means checksum over the complete packet. */
464		if (len == 0)
465			len = ip_len;
466		cscov_partial = 0;
467	}
468	if (ip_len != len) {
469		if (len > ip_len || len < sizeof(struct udphdr)) {
470			UDPSTAT_INC(udps_badlen);
471			goto badunlocked;
472		}
473		if (proto == IPPROTO_UDP)
474			m_adj(m, len - ip_len);
475	}
476
477	/*
478	 * Save a copy of the IP header in case we want restore it for
479	 * sending an ICMP error message in response.
480	 */
481	if (!V_udp_blackhole)
482		save_ip = *ip;
483	else
484		memset(&save_ip, 0, sizeof(save_ip));
485
486	/*
487	 * Checksum extended UDP header and data.
488	 */
489	if (uh->uh_sum) {
490		u_short uh_sum;
491
492		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
493		    !cscov_partial) {
494			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
495				uh_sum = m->m_pkthdr.csum_data;
496			else
497				uh_sum = in_pseudo(ip->ip_src.s_addr,
498				    ip->ip_dst.s_addr, htonl((u_short)len +
499				    m->m_pkthdr.csum_data + proto));
500			uh_sum ^= 0xffff;
501		} else {
502			char b[9];
503
504			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
505			bzero(((struct ipovly *)ip)->ih_x1, 9);
506			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
507			    uh->uh_ulen : htons(ip_len);
508			uh_sum = in_cksum(m, len + sizeof (struct ip));
509			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
510		}
511		if (uh_sum) {
512			UDPSTAT_INC(udps_badsum);
513			m_freem(m);
514			return (IPPROTO_DONE);
515		}
516	} else {
517		if (proto == IPPROTO_UDP) {
518			UDPSTAT_INC(udps_nosum);
519		} else {
520			/* UDPLite requires a checksum */
521			/* XXX: What is the right UDPLite MIB counter here? */
522			m_freem(m);
523			return (IPPROTO_DONE);
524		}
525	}
526
527	pcbinfo = udp_get_inpcbinfo(proto);
528	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
529	    in_broadcast(ip->ip_dst, ifp)) {
530		struct inpcb *last;
531		struct inpcbhead *pcblist;
532
533		NET_EPOCH_ASSERT();
534
535		pcblist = udp_get_pcblist(proto);
536		last = NULL;
537		CK_LIST_FOREACH(inp, pcblist, inp_list) {
538			if (inp->inp_lport != uh->uh_dport)
539				continue;
540#ifdef INET6
541			if ((inp->inp_vflag & INP_IPV4) == 0)
542				continue;
543#endif
544			if (inp->inp_laddr.s_addr != INADDR_ANY &&
545			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
546				continue;
547			if (inp->inp_faddr.s_addr != INADDR_ANY &&
548			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
549				continue;
550			if (inp->inp_fport != 0 &&
551			    inp->inp_fport != uh->uh_sport)
552				continue;
553
554			INP_RLOCK(inp);
555
556			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
557				INP_RUNLOCK(inp);
558				continue;
559			}
560
561			/*
562			 * XXXRW: Because we weren't holding either the inpcb
563			 * or the hash lock when we checked for a match
564			 * before, we should probably recheck now that the
565			 * inpcb lock is held.
566			 */
567
568			/*
569			 * Handle socket delivery policy for any-source
570			 * and source-specific multicast. [RFC3678]
571			 */
572			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
573				struct ip_moptions	*imo;
574				struct sockaddr_in	 group;
575				int			 blocked;
576
577				imo = inp->inp_moptions;
578				if (imo == NULL) {
579					INP_RUNLOCK(inp);
580					continue;
581				}
582				bzero(&group, sizeof(struct sockaddr_in));
583				group.sin_len = sizeof(struct sockaddr_in);
584				group.sin_family = AF_INET;
585				group.sin_addr = ip->ip_dst;
586
587				blocked = imo_multi_filter(imo, ifp,
588					(struct sockaddr *)&group,
589					(struct sockaddr *)&udp_in[0]);
590				if (blocked != MCAST_PASS) {
591					if (blocked == MCAST_NOTGMEMBER)
592						IPSTAT_INC(ips_notmember);
593					if (blocked == MCAST_NOTSMEMBER ||
594					    blocked == MCAST_MUTED)
595						UDPSTAT_INC(udps_filtermcast);
596					INP_RUNLOCK(inp);
597					continue;
598				}
599			}
600			if (last != NULL) {
601				struct mbuf *n;
602
603				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
604				    NULL) {
605					if (proto == IPPROTO_UDPLITE)
606						UDPLITE_PROBE(receive, NULL, last, ip,
607						    last, uh);
608					else
609						UDP_PROBE(receive, NULL, last, ip, last,
610						    uh);
611					if (udp_append(last, ip, n, iphlen,
612						udp_in)) {
613						INP_RUNLOCK(inp);
614						goto badunlocked;
615					}
616				}
617				/* Release PCB lock taken on previous pass. */
618				INP_RUNLOCK(last);
619			}
620			last = inp;
621			/*
622			 * Don't look for additional matches if this one does
623			 * not have either the SO_REUSEPORT or SO_REUSEADDR
624			 * socket options set.  This heuristic avoids
625			 * searching through all pcbs in the common case of a
626			 * non-shared port.  It assumes that an application
627			 * will never clear these options after setting them.
628			 */
629			if ((last->inp_socket->so_options &
630			    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
631				break;
632		}
633
634		if (last == NULL) {
635			/*
636			 * No matching pcb found; discard datagram.  (No need
637			 * to send an ICMP Port Unreachable for a broadcast
638			 * or multicast datgram.)
639			 */
640			UDPSTAT_INC(udps_noport);
641			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
642				UDPSTAT_INC(udps_noportmcast);
643			else
644				UDPSTAT_INC(udps_noportbcast);
645			goto badunlocked;
646		}
647		if (proto == IPPROTO_UDPLITE)
648			UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
649		else
650			UDP_PROBE(receive, NULL, last, ip, last, uh);
651		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
652			INP_RUNLOCK(last);
653		return (IPPROTO_DONE);
654	}
655
656	/*
657	 * Locate pcb for datagram.
658	 */
659
660	/*
661	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
662	 */
663	if ((m->m_flags & M_IP_NEXTHOP) &&
664	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
665		struct sockaddr_in *next_hop;
666
667		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
668
669		/*
670		 * Transparently forwarded. Pretend to be the destination.
671		 * Already got one like this?
672		 */
673		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
674		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
675		if (!inp) {
676			/*
677			 * It's new.  Try to find the ambushing socket.
678			 * Because we've rewritten the destination address,
679			 * any hardware-generated hash is ignored.
680			 */
681			inp = in_pcblookup(pcbinfo, ip->ip_src,
682			    uh->uh_sport, next_hop->sin_addr,
683			    next_hop->sin_port ? htons(next_hop->sin_port) :
684			    uh->uh_dport, INPLOOKUP_WILDCARD |
685			    INPLOOKUP_RLOCKPCB, ifp);
686		}
687		/* Remove the tag from the packet. We don't need it anymore. */
688		m_tag_delete(m, fwd_tag);
689		m->m_flags &= ~M_IP_NEXTHOP;
690	} else
691		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
692		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
693		    INPLOOKUP_RLOCKPCB, ifp, m);
694	if (inp == NULL) {
695		if (V_udp_log_in_vain) {
696			char src[INET_ADDRSTRLEN];
697			char dst[INET_ADDRSTRLEN];
698
699			log(LOG_INFO,
700			    "Connection attempt to UDP %s:%d from %s:%d\n",
701			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
702			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
703		}
704		if (proto == IPPROTO_UDPLITE)
705			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
706		else
707			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
708		UDPSTAT_INC(udps_noport);
709		if (m->m_flags & (M_BCAST | M_MCAST)) {
710			UDPSTAT_INC(udps_noportbcast);
711			goto badunlocked;
712		}
713		if (V_udp_blackhole)
714			goto badunlocked;
715		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
716			goto badunlocked;
717		*ip = save_ip;
718		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
719		return (IPPROTO_DONE);
720	}
721
722	/*
723	 * Check the minimum TTL for socket.
724	 */
725	INP_RLOCK_ASSERT(inp);
726	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
727		if (proto == IPPROTO_UDPLITE)
728			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
729		else
730			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
731		INP_RUNLOCK(inp);
732		m_freem(m);
733		return (IPPROTO_DONE);
734	}
735	if (cscov_partial) {
736		struct udpcb *up;
737
738		up = intoudpcb(inp);
739		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
740			INP_RUNLOCK(inp);
741			m_freem(m);
742			return (IPPROTO_DONE);
743		}
744	}
745
746	if (proto == IPPROTO_UDPLITE)
747		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
748	else
749		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
750	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
751		INP_RUNLOCK(inp);
752	return (IPPROTO_DONE);
753
754badunlocked:
755	m_freem(m);
756	return (IPPROTO_DONE);
757}
758#endif /* INET */
759
760/*
761 * Notify a udp user of an asynchronous error; just wake up so that they can
762 * collect error status.
763 */
764struct inpcb *
765udp_notify(struct inpcb *inp, int errno)
766{
767
768	INP_WLOCK_ASSERT(inp);
769	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
770	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
771		NH_FREE(inp->inp_route.ro_nh);
772		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
773	}
774
775	inp->inp_socket->so_error = errno;
776	sorwakeup(inp->inp_socket);
777	sowwakeup(inp->inp_socket);
778	return (inp);
779}
780
781#ifdef INET
782static void
783udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
784    struct inpcbinfo *pcbinfo)
785{
786	struct ip *ip = vip;
787	struct udphdr *uh;
788	struct in_addr faddr;
789	struct inpcb *inp;
790
791	faddr = ((struct sockaddr_in *)sa)->sin_addr;
792	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
793		return;
794
795	if (PRC_IS_REDIRECT(cmd)) {
796		/* signal EHOSTDOWN, as it flushes the cached route */
797		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
798		return;
799	}
800
801	/*
802	 * Hostdead is ugly because it goes linearly through all PCBs.
803	 *
804	 * XXX: We never get this from ICMP, otherwise it makes an excellent
805	 * DoS attack on machines with many connections.
806	 */
807	if (cmd == PRC_HOSTDEAD)
808		ip = NULL;
809	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
810		return;
811	if (ip != NULL) {
812		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
813		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
814		    ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
815		if (inp != NULL) {
816			INP_WLOCK_ASSERT(inp);
817			if (inp->inp_socket != NULL) {
818				udp_notify(inp, inetctlerrmap[cmd]);
819			}
820			INP_WUNLOCK(inp);
821		} else {
822			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
823					   ip->ip_src, uh->uh_sport,
824					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
825			if (inp != NULL) {
826				struct udpcb *up;
827				void *ctx;
828				udp_tun_icmp_t func;
829
830				up = intoudpcb(inp);
831				ctx = up->u_tun_ctx;
832				func = up->u_icmp_func;
833				INP_RUNLOCK(inp);
834				if (func != NULL)
835					(*func)(cmd, sa, vip, ctx);
836			}
837		}
838	} else
839		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
840		    udp_notify);
841}
842void
843udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
844{
845
846	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
847}
848
849void
850udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
851{
852
853	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
854}
855#endif /* INET */
856
857static int
858udp_pcblist(SYSCTL_HANDLER_ARGS)
859{
860	struct xinpgen xig;
861	struct epoch_tracker et;
862	struct inpcb *inp;
863	int error;
864
865	if (req->newptr != 0)
866		return (EPERM);
867
868	if (req->oldptr == 0) {
869		int n;
870
871		n = V_udbinfo.ipi_count;
872		n += imax(n / 8, 10);
873		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
874		return (0);
875	}
876
877	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
878		return (error);
879
880	bzero(&xig, sizeof(xig));
881	xig.xig_len = sizeof xig;
882	xig.xig_count = V_udbinfo.ipi_count;
883	xig.xig_gen = V_udbinfo.ipi_gencnt;
884	xig.xig_sogen = so_gencnt;
885	error = SYSCTL_OUT(req, &xig, sizeof xig);
886	if (error)
887		return (error);
888
889	NET_EPOCH_ENTER(et);
890	for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead);
891	    inp != NULL;
892	    inp = CK_LIST_NEXT(inp, inp_list)) {
893		INP_RLOCK(inp);
894		if (inp->inp_gencnt <= xig.xig_gen &&
895		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
896			struct xinpcb xi;
897
898			in_pcbtoxinpcb(inp, &xi);
899			INP_RUNLOCK(inp);
900			error = SYSCTL_OUT(req, &xi, sizeof xi);
901			if (error)
902				break;
903		} else
904			INP_RUNLOCK(inp);
905	}
906	NET_EPOCH_EXIT(et);
907
908	if (!error) {
909		/*
910		 * Give the user an updated idea of our state.  If the
911		 * generation differs from what we told her before, she knows
912		 * that something happened while we were processing this
913		 * request, and it might be necessary to retry.
914		 */
915		xig.xig_gen = V_udbinfo.ipi_gencnt;
916		xig.xig_sogen = so_gencnt;
917		xig.xig_count = V_udbinfo.ipi_count;
918		error = SYSCTL_OUT(req, &xig, sizeof xig);
919	}
920
921	return (error);
922}
923
924SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
925    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
926    udp_pcblist, "S,xinpcb",
927    "List of active UDP sockets");
928
929#ifdef INET
930static int
931udp_getcred(SYSCTL_HANDLER_ARGS)
932{
933	struct xucred xuc;
934	struct sockaddr_in addrs[2];
935	struct epoch_tracker et;
936	struct inpcb *inp;
937	int error;
938
939	error = priv_check(req->td, PRIV_NETINET_GETCRED);
940	if (error)
941		return (error);
942	error = SYSCTL_IN(req, addrs, sizeof(addrs));
943	if (error)
944		return (error);
945	NET_EPOCH_ENTER(et);
946	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
947	    addrs[0].sin_addr, addrs[0].sin_port,
948	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
949	NET_EPOCH_EXIT(et);
950	if (inp != NULL) {
951		INP_RLOCK_ASSERT(inp);
952		if (inp->inp_socket == NULL)
953			error = ENOENT;
954		if (error == 0)
955			error = cr_canseeinpcb(req->td->td_ucred, inp);
956		if (error == 0)
957			cru2x(inp->inp_cred, &xuc);
958		INP_RUNLOCK(inp);
959	} else
960		error = ENOENT;
961	if (error == 0)
962		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
963	return (error);
964}
965
966SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
967    CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
968    0, 0, udp_getcred, "S,xucred",
969    "Get the xucred of a UDP connection");
970#endif /* INET */
971
972int
973udp_ctloutput(struct socket *so, struct sockopt *sopt)
974{
975	struct inpcb *inp;
976	struct udpcb *up;
977	int isudplite, error, optval;
978
979	error = 0;
980	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
981	inp = sotoinpcb(so);
982	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
983	INP_WLOCK(inp);
984	if (sopt->sopt_level != so->so_proto->pr_protocol) {
985#ifdef INET6
986		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
987			INP_WUNLOCK(inp);
988			error = ip6_ctloutput(so, sopt);
989		}
990#endif
991#if defined(INET) && defined(INET6)
992		else
993#endif
994#ifdef INET
995		{
996			INP_WUNLOCK(inp);
997			error = ip_ctloutput(so, sopt);
998		}
999#endif
1000		return (error);
1001	}
1002
1003	switch (sopt->sopt_dir) {
1004	case SOPT_SET:
1005		switch (sopt->sopt_name) {
1006#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1007#ifdef INET
1008		case UDP_ENCAP:
1009			if (!IPSEC_ENABLED(ipv4)) {
1010				INP_WUNLOCK(inp);
1011				return (ENOPROTOOPT);
1012			}
1013			error = UDPENCAP_PCBCTL(inp, sopt);
1014			break;
1015#endif /* INET */
1016#endif /* IPSEC */
1017		case UDPLITE_SEND_CSCOV:
1018		case UDPLITE_RECV_CSCOV:
1019			if (!isudplite) {
1020				INP_WUNLOCK(inp);
1021				error = ENOPROTOOPT;
1022				break;
1023			}
1024			INP_WUNLOCK(inp);
1025			error = sooptcopyin(sopt, &optval, sizeof(optval),
1026			    sizeof(optval));
1027			if (error != 0)
1028				break;
1029			inp = sotoinpcb(so);
1030			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1031			INP_WLOCK(inp);
1032			up = intoudpcb(inp);
1033			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1034			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1035				INP_WUNLOCK(inp);
1036				error = EINVAL;
1037				break;
1038			}
1039			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1040				up->u_txcslen = optval;
1041			else
1042				up->u_rxcslen = optval;
1043			INP_WUNLOCK(inp);
1044			break;
1045		default:
1046			INP_WUNLOCK(inp);
1047			error = ENOPROTOOPT;
1048			break;
1049		}
1050		break;
1051	case SOPT_GET:
1052		switch (sopt->sopt_name) {
1053#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1054#ifdef INET
1055		case UDP_ENCAP:
1056			if (!IPSEC_ENABLED(ipv4)) {
1057				INP_WUNLOCK(inp);
1058				return (ENOPROTOOPT);
1059			}
1060			error = UDPENCAP_PCBCTL(inp, sopt);
1061			break;
1062#endif /* INET */
1063#endif /* IPSEC */
1064		case UDPLITE_SEND_CSCOV:
1065		case UDPLITE_RECV_CSCOV:
1066			if (!isudplite) {
1067				INP_WUNLOCK(inp);
1068				error = ENOPROTOOPT;
1069				break;
1070			}
1071			up = intoudpcb(inp);
1072			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1073			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1074				optval = up->u_txcslen;
1075			else
1076				optval = up->u_rxcslen;
1077			INP_WUNLOCK(inp);
1078			error = sooptcopyout(sopt, &optval, sizeof(optval));
1079			break;
1080		default:
1081			INP_WUNLOCK(inp);
1082			error = ENOPROTOOPT;
1083			break;
1084		}
1085		break;
1086	}
1087	return (error);
1088}
1089
1090#ifdef INET
1091#ifdef INET6
1092/* The logic here is derived from ip6_setpktopt(). See comments there. */
1093static int
1094udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1095    struct inpcb *inp, int flags)
1096{
1097	struct ifnet *ifp;
1098	struct in6_pktinfo *pktinfo;
1099	struct in_addr ia;
1100
1101	if ((flags & PRUS_IPV6) == 0)
1102		return (0);
1103
1104	if (cm->cmsg_level != IPPROTO_IPV6)
1105		return (0);
1106
1107	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1108	    cm->cmsg_type != IPV6_PKTINFO)
1109		return (0);
1110
1111	if (cm->cmsg_len !=
1112	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1113		return (EINVAL);
1114
1115	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1116	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1117	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1118		return (EINVAL);
1119
1120	/* Validate the interface index if specified. */
1121	if (pktinfo->ipi6_ifindex > V_if_index)
1122		return (ENXIO);
1123
1124	ifp = NULL;
1125	if (pktinfo->ipi6_ifindex) {
1126		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1127		if (ifp == NULL)
1128			return (ENXIO);
1129	}
1130	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1131		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1132		if (in_ifhasaddr(ifp, ia) == 0)
1133			return (EADDRNOTAVAIL);
1134	}
1135
1136	bzero(src, sizeof(*src));
1137	src->sin_family = AF_INET;
1138	src->sin_len = sizeof(*src);
1139	src->sin_port = inp->inp_lport;
1140	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1141
1142	return (0);
1143}
1144#endif
1145
1146static int
1147udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1148    struct mbuf *control, struct thread *td, int flags)
1149{
1150	struct udpiphdr *ui;
1151	int len = m->m_pkthdr.len;
1152	struct in_addr faddr, laddr;
1153	struct cmsghdr *cm;
1154	struct inpcbinfo *pcbinfo;
1155	struct sockaddr_in *sin, src;
1156	struct epoch_tracker et;
1157	int cscov_partial = 0;
1158	int error = 0;
1159	int ipflags = 0;
1160	u_short fport, lport;
1161	u_char tos;
1162	uint8_t pr;
1163	uint16_t cscov = 0;
1164	uint32_t flowid = 0;
1165	uint8_t flowtype = M_HASHTYPE_NONE;
1166
1167	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1168		if (control)
1169			m_freem(control);
1170		m_freem(m);
1171		return (EMSGSIZE);
1172	}
1173
1174	src.sin_family = 0;
1175	sin = (struct sockaddr_in *)addr;
1176
1177	/*
1178	 * udp_output() may need to temporarily bind or connect the current
1179	 * inpcb.  As such, we don't know up front whether we will need the
1180	 * pcbinfo lock or not.  Do any work to decide what is needed up
1181	 * front before acquiring any locks.
1182	 *
1183	 * We will need network epoch in either case, to safely lookup into
1184	 * pcb hash.
1185	 */
1186	if (sin == NULL ||
1187	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0))
1188		INP_WLOCK(inp);
1189	else
1190		INP_RLOCK(inp);
1191	NET_EPOCH_ENTER(et);
1192	tos = inp->inp_ip_tos;
1193	if (control != NULL) {
1194		/*
1195		 * XXX: Currently, we assume all the optional information is
1196		 * stored in a single mbuf.
1197		 */
1198		if (control->m_next) {
1199			m_freem(control);
1200			error = EINVAL;
1201			goto release;
1202		}
1203		for (; control->m_len > 0;
1204		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1205		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1206			cm = mtod(control, struct cmsghdr *);
1207			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1208			    || cm->cmsg_len > control->m_len) {
1209				error = EINVAL;
1210				break;
1211			}
1212#ifdef INET6
1213			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1214			if (error != 0)
1215				break;
1216#endif
1217			if (cm->cmsg_level != IPPROTO_IP)
1218				continue;
1219
1220			switch (cm->cmsg_type) {
1221			case IP_SENDSRCADDR:
1222				if (cm->cmsg_len !=
1223				    CMSG_LEN(sizeof(struct in_addr))) {
1224					error = EINVAL;
1225					break;
1226				}
1227				bzero(&src, sizeof(src));
1228				src.sin_family = AF_INET;
1229				src.sin_len = sizeof(src);
1230				src.sin_port = inp->inp_lport;
1231				src.sin_addr =
1232				    *(struct in_addr *)CMSG_DATA(cm);
1233				break;
1234
1235			case IP_TOS:
1236				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1237					error = EINVAL;
1238					break;
1239				}
1240				tos = *(u_char *)CMSG_DATA(cm);
1241				break;
1242
1243			case IP_FLOWID:
1244				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1245					error = EINVAL;
1246					break;
1247				}
1248				flowid = *(uint32_t *) CMSG_DATA(cm);
1249				break;
1250
1251			case IP_FLOWTYPE:
1252				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1253					error = EINVAL;
1254					break;
1255				}
1256				flowtype = *(uint32_t *) CMSG_DATA(cm);
1257				break;
1258
1259#ifdef	RSS
1260			case IP_RSSBUCKETID:
1261				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1262					error = EINVAL;
1263					break;
1264				}
1265				/* This is just a placeholder for now */
1266				break;
1267#endif	/* RSS */
1268			default:
1269				error = ENOPROTOOPT;
1270				break;
1271			}
1272			if (error)
1273				break;
1274		}
1275		m_freem(control);
1276		control = NULL;
1277	}
1278	if (error)
1279		goto release;
1280
1281	pr = inp->inp_socket->so_proto->pr_protocol;
1282	pcbinfo = udp_get_inpcbinfo(pr);
1283
1284	/*
1285	 * If the IP_SENDSRCADDR control message was specified, override the
1286	 * source address for this datagram.  Its use is invalidated if the
1287	 * address thus specified is incomplete or clobbers other inpcbs.
1288	 */
1289	laddr = inp->inp_laddr;
1290	lport = inp->inp_lport;
1291	if (src.sin_family == AF_INET) {
1292		INP_HASH_LOCK_ASSERT(pcbinfo);
1293		if ((lport == 0) ||
1294		    (laddr.s_addr == INADDR_ANY &&
1295		     src.sin_addr.s_addr == INADDR_ANY)) {
1296			error = EINVAL;
1297			goto release;
1298		}
1299		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1300		    &laddr.s_addr, &lport, td->td_ucred);
1301		if (error)
1302			goto release;
1303	}
1304
1305	/*
1306	 * If a UDP socket has been connected, then a local address/port will
1307	 * have been selected and bound.
1308	 *
1309	 * If a UDP socket has not been connected to, then an explicit
1310	 * destination address must be used, in which case a local
1311	 * address/port may not have been selected and bound.
1312	 */
1313	if (sin != NULL) {
1314		INP_LOCK_ASSERT(inp);
1315		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1316			error = EISCONN;
1317			goto release;
1318		}
1319
1320		/*
1321		 * Jail may rewrite the destination address, so let it do
1322		 * that before we use it.
1323		 */
1324		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1325		if (error)
1326			goto release;
1327
1328		/*
1329		 * If a local address or port hasn't yet been selected, or if
1330		 * the destination address needs to be rewritten due to using
1331		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1332		 * to do the heavy lifting.  Once a port is selected, we
1333		 * commit the binding back to the socket; we also commit the
1334		 * binding of the address if in jail.
1335		 *
1336		 * If we already have a valid binding and we're not
1337		 * requesting a destination address rewrite, use a fast path.
1338		 */
1339		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1340		    inp->inp_lport == 0 ||
1341		    sin->sin_addr.s_addr == INADDR_ANY ||
1342		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1343			INP_HASH_LOCK_ASSERT(pcbinfo);
1344			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1345			    &lport, &faddr.s_addr, &fport, NULL,
1346			    td->td_ucred);
1347			if (error)
1348				goto release;
1349
1350			/*
1351			 * XXXRW: Why not commit the port if the address is
1352			 * !INADDR_ANY?
1353			 */
1354			/* Commit the local port if newly assigned. */
1355			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1356			    inp->inp_lport == 0) {
1357				INP_WLOCK_ASSERT(inp);
1358				/*
1359				 * Remember addr if jailed, to prevent
1360				 * rebinding.
1361				 */
1362				if (prison_flag(td->td_ucred, PR_IP4))
1363					inp->inp_laddr = laddr;
1364				inp->inp_lport = lport;
1365				INP_HASH_WLOCK(pcbinfo);
1366				error = in_pcbinshash(inp);
1367				INP_HASH_WUNLOCK(pcbinfo);
1368				if (error != 0) {
1369					inp->inp_lport = 0;
1370					error = EAGAIN;
1371					goto release;
1372				}
1373				inp->inp_flags |= INP_ANONPORT;
1374			}
1375		} else {
1376			faddr = sin->sin_addr;
1377			fport = sin->sin_port;
1378		}
1379	} else {
1380		INP_LOCK_ASSERT(inp);
1381		faddr = inp->inp_faddr;
1382		fport = inp->inp_fport;
1383		if (faddr.s_addr == INADDR_ANY) {
1384			error = ENOTCONN;
1385			goto release;
1386		}
1387	}
1388
1389	/*
1390	 * Calculate data length and get a mbuf for UDP, IP, and possible
1391	 * link-layer headers.  Immediate slide the data pointer back forward
1392	 * since we won't use that space at this layer.
1393	 */
1394	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1395	if (m == NULL) {
1396		error = ENOBUFS;
1397		goto release;
1398	}
1399	m->m_data += max_linkhdr;
1400	m->m_len -= max_linkhdr;
1401	m->m_pkthdr.len -= max_linkhdr;
1402
1403	/*
1404	 * Fill in mbuf with extended UDP header and addresses and length put
1405	 * into network format.
1406	 */
1407	ui = mtod(m, struct udpiphdr *);
1408	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1409	ui->ui_v = IPVERSION << 4;
1410	ui->ui_pr = pr;
1411	ui->ui_src = laddr;
1412	ui->ui_dst = faddr;
1413	ui->ui_sport = lport;
1414	ui->ui_dport = fport;
1415	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1416	if (pr == IPPROTO_UDPLITE) {
1417		struct udpcb *up;
1418		uint16_t plen;
1419
1420		up = intoudpcb(inp);
1421		cscov = up->u_txcslen;
1422		plen = (u_short)len + sizeof(struct udphdr);
1423		if (cscov >= plen)
1424			cscov = 0;
1425		ui->ui_len = htons(plen);
1426		ui->ui_ulen = htons(cscov);
1427		/*
1428		 * For UDP-Lite, checksum coverage length of zero means
1429		 * the entire UDPLite packet is covered by the checksum.
1430		 */
1431		cscov_partial = (cscov == 0) ? 0 : 1;
1432	}
1433
1434	/*
1435	 * Set the Don't Fragment bit in the IP header.
1436	 */
1437	if (inp->inp_flags & INP_DONTFRAG) {
1438		struct ip *ip;
1439
1440		ip = (struct ip *)&ui->ui_i;
1441		ip->ip_off |= htons(IP_DF);
1442	}
1443
1444	if (inp->inp_socket->so_options & SO_DONTROUTE)
1445		ipflags |= IP_ROUTETOIF;
1446	if (inp->inp_socket->so_options & SO_BROADCAST)
1447		ipflags |= IP_ALLOWBROADCAST;
1448	if (inp->inp_flags & INP_ONESBCAST)
1449		ipflags |= IP_SENDONES;
1450
1451#ifdef MAC
1452	mac_inpcb_create_mbuf(inp, m);
1453#endif
1454
1455	/*
1456	 * Set up checksum and output datagram.
1457	 */
1458	ui->ui_sum = 0;
1459	if (pr == IPPROTO_UDPLITE) {
1460		if (inp->inp_flags & INP_ONESBCAST)
1461			faddr.s_addr = INADDR_BROADCAST;
1462		if (cscov_partial) {
1463			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1464				ui->ui_sum = 0xffff;
1465		} else {
1466			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1467				ui->ui_sum = 0xffff;
1468		}
1469	} else if (V_udp_cksum) {
1470		if (inp->inp_flags & INP_ONESBCAST)
1471			faddr.s_addr = INADDR_BROADCAST;
1472		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1473		    htons((u_short)len + sizeof(struct udphdr) + pr));
1474		m->m_pkthdr.csum_flags = CSUM_UDP;
1475		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1476	}
1477	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1478	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1479	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1480	UDPSTAT_INC(udps_opackets);
1481
1482	/*
1483	 * Setup flowid / RSS information for outbound socket.
1484	 *
1485	 * Once the UDP code decides to set a flowid some other way,
1486	 * this allows the flowid to be overridden by userland.
1487	 */
1488	if (flowtype != M_HASHTYPE_NONE) {
1489		m->m_pkthdr.flowid = flowid;
1490		M_HASHTYPE_SET(m, flowtype);
1491	}
1492#if defined(ROUTE_MPATH) || defined(RSS)
1493	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1494		uint32_t hash_val, hash_type;
1495
1496		hash_val = fib4_calc_packet_hash(laddr, faddr,
1497		    lport, fport, pr, &hash_type);
1498		m->m_pkthdr.flowid = hash_val;
1499		M_HASHTYPE_SET(m, hash_type);
1500	}
1501
1502	/*
1503	 * Don't override with the inp cached flowid value.
1504	 *
1505	 * Depending upon the kind of send being done, the inp
1506	 * flowid/flowtype values may actually not be appropriate
1507	 * for this particular socket send.
1508	 *
1509	 * We should either leave the flowid at zero (which is what is
1510	 * currently done) or set it to some software generated
1511	 * hash value based on the packet contents.
1512	 */
1513	ipflags |= IP_NODEFAULTFLOWID;
1514#endif	/* RSS */
1515
1516	if (pr == IPPROTO_UDPLITE)
1517		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1518	else
1519		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1520	error = ip_output(m, inp->inp_options,
1521	    INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags,
1522	    inp->inp_moptions, inp);
1523	INP_UNLOCK(inp);
1524	NET_EPOCH_EXIT(et);
1525	return (error);
1526
1527release:
1528	INP_UNLOCK(inp);
1529	NET_EPOCH_EXIT(et);
1530	m_freem(m);
1531	return (error);
1532}
1533
1534static void
1535udp_abort(struct socket *so)
1536{
1537	struct inpcb *inp;
1538	struct inpcbinfo *pcbinfo;
1539
1540	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1541	inp = sotoinpcb(so);
1542	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1543	INP_WLOCK(inp);
1544	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1545		INP_HASH_WLOCK(pcbinfo);
1546		in_pcbdisconnect(inp);
1547		inp->inp_laddr.s_addr = INADDR_ANY;
1548		INP_HASH_WUNLOCK(pcbinfo);
1549		soisdisconnected(so);
1550	}
1551	INP_WUNLOCK(inp);
1552}
1553
1554static int
1555udp_attach(struct socket *so, int proto, struct thread *td)
1556{
1557	static uint32_t udp_flowid;
1558	struct inpcb *inp;
1559	struct inpcbinfo *pcbinfo;
1560	int error;
1561
1562	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1563	inp = sotoinpcb(so);
1564	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1565	error = soreserve(so, udp_sendspace, udp_recvspace);
1566	if (error)
1567		return (error);
1568	INP_INFO_WLOCK(pcbinfo);
1569	error = in_pcballoc(so, pcbinfo);
1570	if (error) {
1571		INP_INFO_WUNLOCK(pcbinfo);
1572		return (error);
1573	}
1574
1575	inp = sotoinpcb(so);
1576	inp->inp_vflag |= INP_IPV4;
1577	inp->inp_ip_ttl = V_ip_defttl;
1578	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1579	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1580
1581	error = udp_newudpcb(inp);
1582	if (error) {
1583		in_pcbdetach(inp);
1584		in_pcbfree(inp);
1585		INP_INFO_WUNLOCK(pcbinfo);
1586		return (error);
1587	}
1588
1589	INP_WUNLOCK(inp);
1590	INP_INFO_WUNLOCK(pcbinfo);
1591	return (0);
1592}
1593#endif /* INET */
1594
1595int
1596udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1597{
1598	struct inpcb *inp;
1599	struct udpcb *up;
1600
1601	KASSERT(so->so_type == SOCK_DGRAM,
1602	    ("udp_set_kernel_tunneling: !dgram"));
1603	inp = sotoinpcb(so);
1604	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1605	INP_WLOCK(inp);
1606	up = intoudpcb(inp);
1607	if ((up->u_tun_func != NULL) ||
1608	    (up->u_icmp_func != NULL)) {
1609		INP_WUNLOCK(inp);
1610		return (EBUSY);
1611	}
1612	up->u_tun_func = f;
1613	up->u_icmp_func = i;
1614	up->u_tun_ctx = ctx;
1615	INP_WUNLOCK(inp);
1616	return (0);
1617}
1618
1619#ifdef INET
1620static int
1621udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1622{
1623	struct inpcb *inp;
1624	struct inpcbinfo *pcbinfo;
1625	struct sockaddr_in *sinp;
1626	int error;
1627
1628	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1629	inp = sotoinpcb(so);
1630	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1631
1632	sinp = (struct sockaddr_in *)nam;
1633	if (nam->sa_family != AF_INET) {
1634		/*
1635		 * Preserve compatibility with old programs.
1636		 */
1637		if (nam->sa_family != AF_UNSPEC ||
1638		    sinp->sin_addr.s_addr != INADDR_ANY)
1639			return (EAFNOSUPPORT);
1640		nam->sa_family = AF_INET;
1641	}
1642	if (nam->sa_len != sizeof(struct sockaddr_in))
1643		return (EINVAL);
1644
1645	INP_WLOCK(inp);
1646	INP_HASH_WLOCK(pcbinfo);
1647	error = in_pcbbind(inp, nam, td->td_ucred);
1648	INP_HASH_WUNLOCK(pcbinfo);
1649	INP_WUNLOCK(inp);
1650	return (error);
1651}
1652
1653static void
1654udp_close(struct socket *so)
1655{
1656	struct inpcb *inp;
1657	struct inpcbinfo *pcbinfo;
1658
1659	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1660	inp = sotoinpcb(so);
1661	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1662	INP_WLOCK(inp);
1663	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1664		INP_HASH_WLOCK(pcbinfo);
1665		in_pcbdisconnect(inp);
1666		inp->inp_laddr.s_addr = INADDR_ANY;
1667		INP_HASH_WUNLOCK(pcbinfo);
1668		soisdisconnected(so);
1669	}
1670	INP_WUNLOCK(inp);
1671}
1672
1673static int
1674udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1675{
1676	struct epoch_tracker et;
1677	struct inpcb *inp;
1678	struct inpcbinfo *pcbinfo;
1679	struct sockaddr_in *sin;
1680	int error;
1681
1682	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1683	inp = sotoinpcb(so);
1684	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1685
1686	sin = (struct sockaddr_in *)nam;
1687	if (sin->sin_family != AF_INET)
1688		return (EAFNOSUPPORT);
1689	if (sin->sin_len != sizeof(*sin))
1690		return (EINVAL);
1691
1692	INP_WLOCK(inp);
1693	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1694		INP_WUNLOCK(inp);
1695		return (EISCONN);
1696	}
1697	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1698	if (error != 0) {
1699		INP_WUNLOCK(inp);
1700		return (error);
1701	}
1702	NET_EPOCH_ENTER(et);
1703	INP_HASH_WLOCK(pcbinfo);
1704	error = in_pcbconnect(inp, nam, td->td_ucred);
1705	INP_HASH_WUNLOCK(pcbinfo);
1706	NET_EPOCH_EXIT(et);
1707	if (error == 0)
1708		soisconnected(so);
1709	INP_WUNLOCK(inp);
1710	return (error);
1711}
1712
1713static void
1714udp_detach(struct socket *so)
1715{
1716	struct inpcb *inp;
1717	struct inpcbinfo *pcbinfo;
1718	struct udpcb *up;
1719
1720	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1721	inp = sotoinpcb(so);
1722	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1723	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1724	    ("udp_detach: not disconnected"));
1725	INP_INFO_WLOCK(pcbinfo);
1726	INP_WLOCK(inp);
1727	up = intoudpcb(inp);
1728	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1729	inp->inp_ppcb = NULL;
1730	in_pcbdetach(inp);
1731	in_pcbfree(inp);
1732	INP_INFO_WUNLOCK(pcbinfo);
1733	udp_discardcb(up);
1734}
1735
1736static int
1737udp_disconnect(struct socket *so)
1738{
1739	struct inpcb *inp;
1740	struct inpcbinfo *pcbinfo;
1741
1742	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1743	inp = sotoinpcb(so);
1744	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1745	INP_WLOCK(inp);
1746	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1747		INP_WUNLOCK(inp);
1748		return (ENOTCONN);
1749	}
1750	INP_HASH_WLOCK(pcbinfo);
1751	in_pcbdisconnect(inp);
1752	inp->inp_laddr.s_addr = INADDR_ANY;
1753	INP_HASH_WUNLOCK(pcbinfo);
1754	SOCK_LOCK(so);
1755	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1756	SOCK_UNLOCK(so);
1757	INP_WUNLOCK(inp);
1758	return (0);
1759}
1760
1761static int
1762udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1763    struct mbuf *control, struct thread *td)
1764{
1765	struct inpcb *inp;
1766	int error;
1767
1768	inp = sotoinpcb(so);
1769	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1770
1771	if (addr != NULL) {
1772		error = 0;
1773		if (addr->sa_family != AF_INET)
1774			error = EAFNOSUPPORT;
1775		else if (addr->sa_len != sizeof(struct sockaddr_in))
1776			error = EINVAL;
1777		if (__predict_false(error != 0)) {
1778			m_freem(control);
1779			m_freem(m);
1780			return (error);
1781		}
1782	}
1783	return (udp_output(inp, m, addr, control, td, flags));
1784}
1785#endif /* INET */
1786
1787int
1788udp_shutdown(struct socket *so)
1789{
1790	struct inpcb *inp;
1791
1792	inp = sotoinpcb(so);
1793	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1794	INP_WLOCK(inp);
1795	socantsendmore(so);
1796	INP_WUNLOCK(inp);
1797	return (0);
1798}
1799
1800#ifdef INET
1801struct pr_usrreqs udp_usrreqs = {
1802	.pru_abort =		udp_abort,
1803	.pru_attach =		udp_attach,
1804	.pru_bind =		udp_bind,
1805	.pru_connect =		udp_connect,
1806	.pru_control =		in_control,
1807	.pru_detach =		udp_detach,
1808	.pru_disconnect =	udp_disconnect,
1809	.pru_peeraddr =		in_getpeeraddr,
1810	.pru_send =		udp_send,
1811	.pru_soreceive =	soreceive_dgram,
1812	.pru_sosend =		sosend_dgram,
1813	.pru_shutdown =		udp_shutdown,
1814	.pru_sockaddr =		in_getsockaddr,
1815	.pru_sosetlabel =	in_pcbsosetlabel,
1816	.pru_close =		udp_close,
1817};
1818#endif /* INET */
1819