1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2006, 2011, 2016-2017 Robert N. M. Watson
5 * Copyright 2020 The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed by BAE Systems, the University of
9 * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
10 * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
11 * Computing (TC) research program.
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38/*
39 * Support for shared swap-backed anonymous memory objects via
40 * shm_open(2), shm_rename(2), and shm_unlink(2).
41 * While most of the implementation is here, vm_mmap.c contains
42 * mapping logic changes.
43 *
44 * posixshmcontrol(1) allows users to inspect the state of the memory
45 * objects.  Per-uid swap resource limit controls total amount of
46 * memory that user can consume for anonymous objects, including
47 * shared.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD$");
52
53#include "opt_capsicum.h"
54#include "opt_ktrace.h"
55
56#include <sys/param.h>
57#include <sys/capsicum.h>
58#include <sys/conf.h>
59#include <sys/fcntl.h>
60#include <sys/file.h>
61#include <sys/filedesc.h>
62#include <sys/filio.h>
63#include <sys/fnv_hash.h>
64#include <sys/kernel.h>
65#include <sys/limits.h>
66#include <sys/uio.h>
67#include <sys/signal.h>
68#include <sys/jail.h>
69#include <sys/ktrace.h>
70#include <sys/lock.h>
71#include <sys/malloc.h>
72#include <sys/mman.h>
73#include <sys/mutex.h>
74#include <sys/priv.h>
75#include <sys/proc.h>
76#include <sys/refcount.h>
77#include <sys/resourcevar.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/stat.h>
81#include <sys/syscallsubr.h>
82#include <sys/sysctl.h>
83#include <sys/sysproto.h>
84#include <sys/systm.h>
85#include <sys/sx.h>
86#include <sys/time.h>
87#include <sys/vmmeter.h>
88#include <sys/vnode.h>
89#include <sys/unistd.h>
90#include <sys/user.h>
91
92#include <security/audit/audit.h>
93#include <security/mac/mac_framework.h>
94
95#include <vm/vm.h>
96#include <vm/vm_param.h>
97#include <vm/pmap.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_map.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/swap_pager.h>
106
107struct shm_mapping {
108	char		*sm_path;
109	Fnv32_t		sm_fnv;
110	struct shmfd	*sm_shmfd;
111	LIST_ENTRY(shm_mapping) sm_link;
112};
113
114static MALLOC_DEFINE(M_SHMFD, "shmfd", "shared memory file descriptor");
115static LIST_HEAD(, shm_mapping) *shm_dictionary;
116static struct sx shm_dict_lock;
117static struct mtx shm_timestamp_lock;
118static u_long shm_hash;
119static struct unrhdr64 shm_ino_unr;
120static dev_t shm_dev_ino;
121
122#define	SHM_HASH(fnv)	(&shm_dictionary[(fnv) & shm_hash])
123
124static void	shm_init(void *arg);
125static void	shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd);
126static struct shmfd *shm_lookup(char *path, Fnv32_t fnv);
127static int	shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred);
128static int	shm_dotruncate_cookie(struct shmfd *shmfd, off_t length,
129    void *rl_cookie);
130static int	shm_dotruncate_locked(struct shmfd *shmfd, off_t length,
131    void *rl_cookie);
132static int	shm_copyin_path(struct thread *td, const char *userpath_in,
133    char **path_out);
134
135static fo_rdwr_t	shm_read;
136static fo_rdwr_t	shm_write;
137static fo_truncate_t	shm_truncate;
138static fo_ioctl_t	shm_ioctl;
139static fo_stat_t	shm_stat;
140static fo_close_t	shm_close;
141static fo_chmod_t	shm_chmod;
142static fo_chown_t	shm_chown;
143static fo_seek_t	shm_seek;
144static fo_fill_kinfo_t	shm_fill_kinfo;
145static fo_mmap_t	shm_mmap;
146static fo_get_seals_t	shm_get_seals;
147static fo_add_seals_t	shm_add_seals;
148static fo_fallocate_t	shm_fallocate;
149
150/* File descriptor operations. */
151struct fileops shm_ops = {
152	.fo_read = shm_read,
153	.fo_write = shm_write,
154	.fo_truncate = shm_truncate,
155	.fo_ioctl = shm_ioctl,
156	.fo_poll = invfo_poll,
157	.fo_kqfilter = invfo_kqfilter,
158	.fo_stat = shm_stat,
159	.fo_close = shm_close,
160	.fo_chmod = shm_chmod,
161	.fo_chown = shm_chown,
162	.fo_sendfile = vn_sendfile,
163	.fo_seek = shm_seek,
164	.fo_fill_kinfo = shm_fill_kinfo,
165	.fo_mmap = shm_mmap,
166	.fo_get_seals = shm_get_seals,
167	.fo_add_seals = shm_add_seals,
168	.fo_fallocate = shm_fallocate,
169	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE,
170};
171
172FEATURE(posix_shm, "POSIX shared memory");
173
174static SYSCTL_NODE(_vm, OID_AUTO, largepages, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
175    "");
176
177static int largepage_reclaim_tries = 1;
178SYSCTL_INT(_vm_largepages, OID_AUTO, reclaim_tries,
179    CTLFLAG_RWTUN, &largepage_reclaim_tries, 0,
180    "Number of contig reclaims before giving up for default alloc policy");
181
182static int
183uiomove_object_page(vm_object_t obj, size_t len, struct uio *uio)
184{
185	vm_page_t m;
186	vm_pindex_t idx;
187	size_t tlen;
188	int error, offset, rv;
189
190	idx = OFF_TO_IDX(uio->uio_offset);
191	offset = uio->uio_offset & PAGE_MASK;
192	tlen = MIN(PAGE_SIZE - offset, len);
193
194	rv = vm_page_grab_valid_unlocked(&m, obj, idx,
195	    VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
196	if (rv == VM_PAGER_OK)
197		goto found;
198
199	/*
200	 * Read I/O without either a corresponding resident page or swap
201	 * page: use zero_region.  This is intended to avoid instantiating
202	 * pages on read from a sparse region.
203	 */
204	VM_OBJECT_WLOCK(obj);
205	m = vm_page_lookup(obj, idx);
206	if (uio->uio_rw == UIO_READ && m == NULL &&
207	    !vm_pager_has_page(obj, idx, NULL, NULL)) {
208		VM_OBJECT_WUNLOCK(obj);
209		return (uiomove(__DECONST(void *, zero_region), tlen, uio));
210	}
211
212	/*
213	 * Although the tmpfs vnode lock is held here, it is
214	 * nonetheless safe to sleep waiting for a free page.  The
215	 * pageout daemon does not need to acquire the tmpfs vnode
216	 * lock to page out tobj's pages because tobj is a OBJT_SWAP
217	 * type object.
218	 */
219	rv = vm_page_grab_valid(&m, obj, idx,
220	    VM_ALLOC_NORMAL | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY);
221	if (rv != VM_PAGER_OK) {
222		VM_OBJECT_WUNLOCK(obj);
223		printf("uiomove_object: vm_obj %p idx %jd pager error %d\n",
224		    obj, idx, rv);
225		return (EIO);
226	}
227	VM_OBJECT_WUNLOCK(obj);
228
229found:
230	error = uiomove_fromphys(&m, offset, tlen, uio);
231	if (uio->uio_rw == UIO_WRITE && error == 0)
232		vm_page_set_dirty(m);
233	vm_page_activate(m);
234	vm_page_sunbusy(m);
235
236	return (error);
237}
238
239int
240uiomove_object(vm_object_t obj, off_t obj_size, struct uio *uio)
241{
242	ssize_t resid;
243	size_t len;
244	int error;
245
246	error = 0;
247	while ((resid = uio->uio_resid) > 0) {
248		if (obj_size <= uio->uio_offset)
249			break;
250		len = MIN(obj_size - uio->uio_offset, resid);
251		if (len == 0)
252			break;
253		error = uiomove_object_page(obj, len, uio);
254		if (error != 0 || resid == uio->uio_resid)
255			break;
256	}
257	return (error);
258}
259
260static u_long count_largepages[MAXPAGESIZES];
261
262static int
263shm_largepage_phys_populate(vm_object_t object, vm_pindex_t pidx,
264    int fault_type, vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
265{
266	vm_page_t m;
267	int psind;
268
269	psind = object->un_pager.phys.data_val;
270	if (psind == 0 || pidx >= object->size)
271		return (VM_PAGER_FAIL);
272	*first = rounddown2(pidx, pagesizes[psind] / PAGE_SIZE);
273
274	/*
275	 * We only busy the first page in the superpage run.  It is
276	 * useless to busy whole run since we only remove full
277	 * superpage, and it takes too long to busy e.g. 512 * 512 ==
278	 * 262144 pages constituing 1G amd64 superage.
279	 */
280	m = vm_page_grab(object, *first, VM_ALLOC_NORMAL | VM_ALLOC_NOCREAT);
281	MPASS(m != NULL);
282
283	*last = *first + atop(pagesizes[psind]) - 1;
284	return (VM_PAGER_OK);
285}
286
287static boolean_t
288shm_largepage_phys_haspage(vm_object_t object, vm_pindex_t pindex,
289    int *before, int *after)
290{
291	int psind;
292
293	psind = object->un_pager.phys.data_val;
294	if (psind == 0 || pindex >= object->size)
295		return (FALSE);
296	if (before != NULL) {
297		*before = pindex - rounddown2(pindex, pagesizes[psind] /
298		    PAGE_SIZE);
299	}
300	if (after != NULL) {
301		*after = roundup2(pindex, pagesizes[psind] / PAGE_SIZE) -
302		    pindex;
303	}
304	return (TRUE);
305}
306
307static void
308shm_largepage_phys_ctor(vm_object_t object, vm_prot_t prot,
309    vm_ooffset_t foff, struct ucred *cred)
310{
311}
312
313static void
314shm_largepage_phys_dtor(vm_object_t object)
315{
316	int psind;
317
318	psind = object->un_pager.phys.data_val;
319	if (psind != 0) {
320		atomic_subtract_long(&count_largepages[psind],
321		    object->size / (pagesizes[psind] / PAGE_SIZE));
322		vm_wire_sub(object->size);
323	} else {
324		KASSERT(object->size == 0,
325		    ("largepage phys obj %p not initialized bit size %#jx > 0",
326		    object, (uintmax_t)object->size));
327	}
328}
329
330static const struct phys_pager_ops shm_largepage_phys_ops = {
331	.phys_pg_populate =	shm_largepage_phys_populate,
332	.phys_pg_haspage =	shm_largepage_phys_haspage,
333	.phys_pg_ctor =		shm_largepage_phys_ctor,
334	.phys_pg_dtor =		shm_largepage_phys_dtor,
335};
336
337bool
338shm_largepage(struct shmfd *shmfd)
339{
340	return (shmfd->shm_object->type == OBJT_PHYS);
341}
342
343static int
344shm_seek(struct file *fp, off_t offset, int whence, struct thread *td)
345{
346	struct shmfd *shmfd;
347	off_t foffset;
348	int error;
349
350	shmfd = fp->f_data;
351	foffset = foffset_lock(fp, 0);
352	error = 0;
353	switch (whence) {
354	case L_INCR:
355		if (foffset < 0 ||
356		    (offset > 0 && foffset > OFF_MAX - offset)) {
357			error = EOVERFLOW;
358			break;
359		}
360		offset += foffset;
361		break;
362	case L_XTND:
363		if (offset > 0 && shmfd->shm_size > OFF_MAX - offset) {
364			error = EOVERFLOW;
365			break;
366		}
367		offset += shmfd->shm_size;
368		break;
369	case L_SET:
370		break;
371	default:
372		error = EINVAL;
373	}
374	if (error == 0) {
375		if (offset < 0 || offset > shmfd->shm_size)
376			error = EINVAL;
377		else
378			td->td_uretoff.tdu_off = offset;
379	}
380	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
381	return (error);
382}
383
384static int
385shm_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
386    int flags, struct thread *td)
387{
388	struct shmfd *shmfd;
389	void *rl_cookie;
390	int error;
391
392	shmfd = fp->f_data;
393#ifdef MAC
394	error = mac_posixshm_check_read(active_cred, fp->f_cred, shmfd);
395	if (error)
396		return (error);
397#endif
398	foffset_lock_uio(fp, uio, flags);
399	rl_cookie = rangelock_rlock(&shmfd->shm_rl, uio->uio_offset,
400	    uio->uio_offset + uio->uio_resid, &shmfd->shm_mtx);
401	error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
402	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
403	foffset_unlock_uio(fp, uio, flags);
404	return (error);
405}
406
407static int
408shm_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
409    int flags, struct thread *td)
410{
411	struct shmfd *shmfd;
412	void *rl_cookie;
413	int error;
414	off_t size;
415
416	shmfd = fp->f_data;
417#ifdef MAC
418	error = mac_posixshm_check_write(active_cred, fp->f_cred, shmfd);
419	if (error)
420		return (error);
421#endif
422	if (shm_largepage(shmfd) && shmfd->shm_lp_psind == 0)
423		return (EINVAL);
424	foffset_lock_uio(fp, uio, flags);
425	if (uio->uio_resid > OFF_MAX - uio->uio_offset) {
426		/*
427		 * Overflow is only an error if we're supposed to expand on
428		 * write.  Otherwise, we'll just truncate the write to the
429		 * size of the file, which can only grow up to OFF_MAX.
430		 */
431		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0) {
432			foffset_unlock_uio(fp, uio, flags);
433			return (EFBIG);
434		}
435
436		size = shmfd->shm_size;
437	} else {
438		size = uio->uio_offset + uio->uio_resid;
439	}
440	if ((flags & FOF_OFFSET) == 0) {
441		rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
442		    &shmfd->shm_mtx);
443	} else {
444		rl_cookie = rangelock_wlock(&shmfd->shm_rl, uio->uio_offset,
445		    size, &shmfd->shm_mtx);
446	}
447	if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
448		error = EPERM;
449	} else {
450		error = 0;
451		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0 &&
452		    size > shmfd->shm_size) {
453			error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
454		}
455		if (error == 0)
456			error = uiomove_object(shmfd->shm_object,
457			    shmfd->shm_size, uio);
458	}
459	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
460	foffset_unlock_uio(fp, uio, flags);
461	return (error);
462}
463
464static int
465shm_truncate(struct file *fp, off_t length, struct ucred *active_cred,
466    struct thread *td)
467{
468	struct shmfd *shmfd;
469#ifdef MAC
470	int error;
471#endif
472
473	shmfd = fp->f_data;
474#ifdef MAC
475	error = mac_posixshm_check_truncate(active_cred, fp->f_cred, shmfd);
476	if (error)
477		return (error);
478#endif
479	return (shm_dotruncate(shmfd, length));
480}
481
482int
483shm_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
484    struct thread *td)
485{
486	struct shmfd *shmfd;
487	struct shm_largepage_conf *conf;
488	void *rl_cookie;
489
490	shmfd = fp->f_data;
491	switch (com) {
492	case FIONBIO:
493	case FIOASYNC:
494		/*
495		 * Allow fcntl(fd, F_SETFL, O_NONBLOCK) to work,
496		 * just like it would on an unlinked regular file
497		 */
498		return (0);
499	case FIOSSHMLPGCNF:
500		if (!shm_largepage(shmfd))
501			return (ENOTTY);
502		conf = data;
503		if (shmfd->shm_lp_psind != 0 &&
504		    conf->psind != shmfd->shm_lp_psind)
505			return (EINVAL);
506		if (conf->psind <= 0 || conf->psind >= MAXPAGESIZES ||
507		    pagesizes[conf->psind] == 0)
508			return (EINVAL);
509		if (conf->alloc_policy != SHM_LARGEPAGE_ALLOC_DEFAULT &&
510		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_NOWAIT &&
511		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_HARD)
512			return (EINVAL);
513
514		rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
515		    &shmfd->shm_mtx);
516		shmfd->shm_lp_psind = conf->psind;
517		shmfd->shm_lp_alloc_policy = conf->alloc_policy;
518		shmfd->shm_object->un_pager.phys.data_val = conf->psind;
519		rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
520		return (0);
521	case FIOGSHMLPGCNF:
522		if (!shm_largepage(shmfd))
523			return (ENOTTY);
524		conf = data;
525		rl_cookie = rangelock_rlock(&shmfd->shm_rl, 0, OFF_MAX,
526		    &shmfd->shm_mtx);
527		conf->psind = shmfd->shm_lp_psind;
528		conf->alloc_policy = shmfd->shm_lp_alloc_policy;
529		rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
530		return (0);
531	default:
532		return (ENOTTY);
533	}
534}
535
536static int
537shm_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
538    struct thread *td)
539{
540	struct shmfd *shmfd;
541#ifdef MAC
542	int error;
543#endif
544
545	shmfd = fp->f_data;
546
547#ifdef MAC
548	error = mac_posixshm_check_stat(active_cred, fp->f_cred, shmfd);
549	if (error)
550		return (error);
551#endif
552
553	/*
554	 * Attempt to return sanish values for fstat() on a memory file
555	 * descriptor.
556	 */
557	bzero(sb, sizeof(*sb));
558	sb->st_blksize = PAGE_SIZE;
559	sb->st_size = shmfd->shm_size;
560	sb->st_blocks = howmany(sb->st_size, sb->st_blksize);
561	mtx_lock(&shm_timestamp_lock);
562	sb->st_atim = shmfd->shm_atime;
563	sb->st_ctim = shmfd->shm_ctime;
564	sb->st_mtim = shmfd->shm_mtime;
565	sb->st_birthtim = shmfd->shm_birthtime;
566	sb->st_mode = S_IFREG | shmfd->shm_mode;		/* XXX */
567	sb->st_uid = shmfd->shm_uid;
568	sb->st_gid = shmfd->shm_gid;
569	mtx_unlock(&shm_timestamp_lock);
570	sb->st_dev = shm_dev_ino;
571	sb->st_ino = shmfd->shm_ino;
572	sb->st_nlink = shmfd->shm_object->ref_count;
573	sb->st_blocks = shmfd->shm_object->size /
574	    (pagesizes[shmfd->shm_lp_psind] >> PAGE_SHIFT);
575
576	return (0);
577}
578
579static int
580shm_close(struct file *fp, struct thread *td)
581{
582	struct shmfd *shmfd;
583
584	shmfd = fp->f_data;
585	fp->f_data = NULL;
586	shm_drop(shmfd);
587
588	return (0);
589}
590
591static int
592shm_copyin_path(struct thread *td, const char *userpath_in, char **path_out) {
593	int error;
594	char *path;
595	const char *pr_path;
596	size_t pr_pathlen;
597
598	path = malloc(MAXPATHLEN, M_SHMFD, M_WAITOK);
599	pr_path = td->td_ucred->cr_prison->pr_path;
600
601	/* Construct a full pathname for jailed callers. */
602	pr_pathlen = strcmp(pr_path, "/") ==
603	    0 ? 0 : strlcpy(path, pr_path, MAXPATHLEN);
604	error = copyinstr(userpath_in, path + pr_pathlen,
605	    MAXPATHLEN - pr_pathlen, NULL);
606	if (error != 0)
607		goto out;
608
609#ifdef KTRACE
610	if (KTRPOINT(curthread, KTR_NAMEI))
611		ktrnamei(path);
612#endif
613
614	/* Require paths to start with a '/' character. */
615	if (path[pr_pathlen] != '/') {
616		error = EINVAL;
617		goto out;
618	}
619
620	*path_out = path;
621
622out:
623	if (error != 0)
624		free(path, M_SHMFD);
625
626	return (error);
627}
628
629static int
630shm_dotruncate_locked(struct shmfd *shmfd, off_t length, void *rl_cookie)
631{
632	vm_object_t object;
633	vm_page_t m;
634	vm_pindex_t idx, nobjsize;
635	vm_ooffset_t delta;
636	int base, rv;
637
638	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
639	object = shmfd->shm_object;
640	VM_OBJECT_ASSERT_WLOCKED(object);
641	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
642	if (length == shmfd->shm_size)
643		return (0);
644	nobjsize = OFF_TO_IDX(length + PAGE_MASK);
645
646	/* Are we shrinking?  If so, trim the end. */
647	if (length < shmfd->shm_size) {
648		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
649			return (EPERM);
650
651		/*
652		 * Disallow any requests to shrink the size if this
653		 * object is mapped into the kernel.
654		 */
655		if (shmfd->shm_kmappings > 0)
656			return (EBUSY);
657
658		/*
659		 * Zero the truncated part of the last page.
660		 */
661		base = length & PAGE_MASK;
662		if (base != 0) {
663			idx = OFF_TO_IDX(length);
664retry:
665			m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
666			if (m != NULL) {
667				MPASS(vm_page_all_valid(m));
668			} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
669				m = vm_page_alloc(object, idx,
670				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
671				if (m == NULL)
672					goto retry;
673				vm_object_pip_add(object, 1);
674				VM_OBJECT_WUNLOCK(object);
675				rv = vm_pager_get_pages(object, &m, 1, NULL,
676				    NULL);
677				VM_OBJECT_WLOCK(object);
678				vm_object_pip_wakeup(object);
679				if (rv == VM_PAGER_OK) {
680					/*
681					 * Since the page was not resident,
682					 * and therefore not recently
683					 * accessed, immediately enqueue it
684					 * for asynchronous laundering.  The
685					 * current operation is not regarded
686					 * as an access.
687					 */
688					vm_page_launder(m);
689				} else {
690					vm_page_free(m);
691					VM_OBJECT_WUNLOCK(object);
692					return (EIO);
693				}
694			}
695			if (m != NULL) {
696				pmap_zero_page_area(m, base, PAGE_SIZE - base);
697				KASSERT(vm_page_all_valid(m),
698				    ("shm_dotruncate: page %p is invalid", m));
699				vm_page_set_dirty(m);
700				vm_page_xunbusy(m);
701			}
702		}
703		delta = IDX_TO_OFF(object->size - nobjsize);
704
705		if (nobjsize < object->size)
706			vm_object_page_remove(object, nobjsize, object->size,
707			    0);
708
709		/* Free the swap accounted for shm */
710		swap_release_by_cred(delta, object->cred);
711		object->charge -= delta;
712	} else {
713		if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
714			return (EPERM);
715
716		/* Try to reserve additional swap space. */
717		delta = IDX_TO_OFF(nobjsize - object->size);
718		if (!swap_reserve_by_cred(delta, object->cred))
719			return (ENOMEM);
720		object->charge += delta;
721	}
722	shmfd->shm_size = length;
723	mtx_lock(&shm_timestamp_lock);
724	vfs_timestamp(&shmfd->shm_ctime);
725	shmfd->shm_mtime = shmfd->shm_ctime;
726	mtx_unlock(&shm_timestamp_lock);
727	object->size = nobjsize;
728	return (0);
729}
730
731static int
732shm_dotruncate_largepage(struct shmfd *shmfd, off_t length, void *rl_cookie)
733{
734	vm_object_t object;
735	vm_page_t m;
736	vm_pindex_t newobjsz, oldobjsz;
737	int aflags, error, i, psind, try;
738
739	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
740	object = shmfd->shm_object;
741	VM_OBJECT_ASSERT_WLOCKED(object);
742	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
743
744	oldobjsz = object->size;
745	newobjsz = OFF_TO_IDX(length);
746	if (length == shmfd->shm_size)
747		return (0);
748	psind = shmfd->shm_lp_psind;
749	if (psind == 0 && length != 0)
750		return (EINVAL);
751	if ((length & (pagesizes[psind] - 1)) != 0)
752		return (EINVAL);
753
754	if (length < shmfd->shm_size) {
755		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
756			return (EPERM);
757		if (shmfd->shm_kmappings > 0)
758			return (EBUSY);
759		return (ENOTSUP);	/* Pages are unmanaged. */
760#if 0
761		vm_object_page_remove(object, newobjsz, oldobjsz, 0);
762		object->size = newobjsz;
763		shmfd->shm_size = length;
764		return (0);
765#endif
766	}
767
768	if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
769		return (EPERM);
770
771	aflags = VM_ALLOC_NORMAL | VM_ALLOC_ZERO;
772	if (shmfd->shm_lp_alloc_policy == SHM_LARGEPAGE_ALLOC_NOWAIT)
773		aflags |= VM_ALLOC_WAITFAIL;
774	try = 0;
775
776	/*
777	 * Extend shmfd and object, keeping all already fully
778	 * allocated large pages intact even on error, because dropped
779	 * object lock might allowed mapping of them.
780	 */
781	while (object->size < newobjsz) {
782		m = vm_page_alloc_contig(object, object->size, aflags,
783		    pagesizes[psind] / PAGE_SIZE, 0, ~0,
784		    pagesizes[psind], 0,
785		    VM_MEMATTR_DEFAULT);
786		if (m == NULL) {
787			VM_OBJECT_WUNLOCK(object);
788			if (shmfd->shm_lp_alloc_policy ==
789			    SHM_LARGEPAGE_ALLOC_NOWAIT ||
790			    (shmfd->shm_lp_alloc_policy ==
791			    SHM_LARGEPAGE_ALLOC_DEFAULT &&
792			    try >= largepage_reclaim_tries)) {
793				VM_OBJECT_WLOCK(object);
794				return (ENOMEM);
795			}
796			error = vm_page_reclaim_contig(aflags,
797			    pagesizes[psind] / PAGE_SIZE, 0, ~0,
798			    pagesizes[psind], 0) ? 0 :
799			    vm_wait_intr(object);
800			if (error != 0) {
801				VM_OBJECT_WLOCK(object);
802				return (error);
803			}
804			try++;
805			VM_OBJECT_WLOCK(object);
806			continue;
807		}
808		try = 0;
809		for (i = 0; i < pagesizes[psind] / PAGE_SIZE; i++) {
810			if ((m[i].flags & PG_ZERO) == 0)
811				pmap_zero_page(&m[i]);
812			vm_page_valid(&m[i]);
813			vm_page_xunbusy(&m[i]);
814		}
815		object->size += OFF_TO_IDX(pagesizes[psind]);
816		shmfd->shm_size += pagesizes[psind];
817		atomic_add_long(&count_largepages[psind], 1);
818		vm_wire_add(atop(pagesizes[psind]));
819	}
820	return (0);
821}
822
823static int
824shm_dotruncate_cookie(struct shmfd *shmfd, off_t length, void *rl_cookie)
825{
826	int error;
827
828	VM_OBJECT_WLOCK(shmfd->shm_object);
829	error = shm_largepage(shmfd) ? shm_dotruncate_largepage(shmfd,
830	    length, rl_cookie) : shm_dotruncate_locked(shmfd, length,
831	    rl_cookie);
832	VM_OBJECT_WUNLOCK(shmfd->shm_object);
833	return (error);
834}
835
836int
837shm_dotruncate(struct shmfd *shmfd, off_t length)
838{
839	void *rl_cookie;
840	int error;
841
842	rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
843	    &shmfd->shm_mtx);
844	error = shm_dotruncate_cookie(shmfd, length, rl_cookie);
845	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
846	return (error);
847}
848
849/*
850 * shmfd object management including creation and reference counting
851 * routines.
852 */
853struct shmfd *
854shm_alloc(struct ucred *ucred, mode_t mode, bool largepage)
855{
856	struct shmfd *shmfd;
857
858	shmfd = malloc(sizeof(*shmfd), M_SHMFD, M_WAITOK | M_ZERO);
859	shmfd->shm_size = 0;
860	shmfd->shm_uid = ucred->cr_uid;
861	shmfd->shm_gid = ucred->cr_gid;
862	shmfd->shm_mode = mode;
863	if (largepage) {
864		shmfd->shm_object = phys_pager_allocate(NULL,
865		    &shm_largepage_phys_ops, NULL, shmfd->shm_size,
866		    VM_PROT_DEFAULT, 0, ucred);
867		shmfd->shm_lp_alloc_policy = SHM_LARGEPAGE_ALLOC_DEFAULT;
868	} else {
869		shmfd->shm_object = vm_pager_allocate(OBJT_SWAP, NULL,
870		    shmfd->shm_size, VM_PROT_DEFAULT, 0, ucred);
871	}
872	KASSERT(shmfd->shm_object != NULL, ("shm_create: vm_pager_allocate"));
873	vfs_timestamp(&shmfd->shm_birthtime);
874	shmfd->shm_atime = shmfd->shm_mtime = shmfd->shm_ctime =
875	    shmfd->shm_birthtime;
876	shmfd->shm_ino = alloc_unr64(&shm_ino_unr);
877	refcount_init(&shmfd->shm_refs, 1);
878	mtx_init(&shmfd->shm_mtx, "shmrl", NULL, MTX_DEF);
879	rangelock_init(&shmfd->shm_rl);
880#ifdef MAC
881	mac_posixshm_init(shmfd);
882	mac_posixshm_create(ucred, shmfd);
883#endif
884
885	return (shmfd);
886}
887
888struct shmfd *
889shm_hold(struct shmfd *shmfd)
890{
891
892	refcount_acquire(&shmfd->shm_refs);
893	return (shmfd);
894}
895
896void
897shm_drop(struct shmfd *shmfd)
898{
899
900	if (refcount_release(&shmfd->shm_refs)) {
901#ifdef MAC
902		mac_posixshm_destroy(shmfd);
903#endif
904		rangelock_destroy(&shmfd->shm_rl);
905		mtx_destroy(&shmfd->shm_mtx);
906		vm_object_deallocate(shmfd->shm_object);
907		free(shmfd, M_SHMFD);
908	}
909}
910
911/*
912 * Determine if the credentials have sufficient permissions for a
913 * specified combination of FREAD and FWRITE.
914 */
915int
916shm_access(struct shmfd *shmfd, struct ucred *ucred, int flags)
917{
918	accmode_t accmode;
919	int error;
920
921	accmode = 0;
922	if (flags & FREAD)
923		accmode |= VREAD;
924	if (flags & FWRITE)
925		accmode |= VWRITE;
926	mtx_lock(&shm_timestamp_lock);
927	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
928	    accmode, ucred);
929	mtx_unlock(&shm_timestamp_lock);
930	return (error);
931}
932
933static void
934shm_init(void *arg)
935{
936	char name[32];
937	int i;
938
939	mtx_init(&shm_timestamp_lock, "shm timestamps", NULL, MTX_DEF);
940	sx_init(&shm_dict_lock, "shm dictionary");
941	shm_dictionary = hashinit(1024, M_SHMFD, &shm_hash);
942	new_unrhdr64(&shm_ino_unr, 1);
943	shm_dev_ino = devfs_alloc_cdp_inode();
944	KASSERT(shm_dev_ino > 0, ("shm dev inode not initialized"));
945
946	for (i = 1; i < MAXPAGESIZES; i++) {
947		if (pagesizes[i] == 0)
948			break;
949#define	M	(1024 * 1024)
950#define	G	(1024 * M)
951		if (pagesizes[i] >= G)
952			snprintf(name, sizeof(name), "%luG", pagesizes[i] / G);
953		else if (pagesizes[i] >= M)
954			snprintf(name, sizeof(name), "%luM", pagesizes[i] / M);
955		else
956			snprintf(name, sizeof(name), "%lu", pagesizes[i]);
957#undef G
958#undef M
959		SYSCTL_ADD_ULONG(NULL, SYSCTL_STATIC_CHILDREN(_vm_largepages),
960		    OID_AUTO, name, CTLFLAG_RD, &count_largepages[i],
961		    "number of non-transient largepages allocated");
962	}
963}
964SYSINIT(shm_init, SI_SUB_SYSV_SHM, SI_ORDER_ANY, shm_init, NULL);
965
966/*
967 * Dictionary management.  We maintain an in-kernel dictionary to map
968 * paths to shmfd objects.  We use the FNV hash on the path to store
969 * the mappings in a hash table.
970 */
971static struct shmfd *
972shm_lookup(char *path, Fnv32_t fnv)
973{
974	struct shm_mapping *map;
975
976	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
977		if (map->sm_fnv != fnv)
978			continue;
979		if (strcmp(map->sm_path, path) == 0)
980			return (map->sm_shmfd);
981	}
982
983	return (NULL);
984}
985
986static void
987shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd)
988{
989	struct shm_mapping *map;
990
991	map = malloc(sizeof(struct shm_mapping), M_SHMFD, M_WAITOK);
992	map->sm_path = path;
993	map->sm_fnv = fnv;
994	map->sm_shmfd = shm_hold(shmfd);
995	shmfd->shm_path = path;
996	LIST_INSERT_HEAD(SHM_HASH(fnv), map, sm_link);
997}
998
999static int
1000shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred)
1001{
1002	struct shm_mapping *map;
1003	int error;
1004
1005	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
1006		if (map->sm_fnv != fnv)
1007			continue;
1008		if (strcmp(map->sm_path, path) == 0) {
1009#ifdef MAC
1010			error = mac_posixshm_check_unlink(ucred, map->sm_shmfd);
1011			if (error)
1012				return (error);
1013#endif
1014			error = shm_access(map->sm_shmfd, ucred,
1015			    FREAD | FWRITE);
1016			if (error)
1017				return (error);
1018			map->sm_shmfd->shm_path = NULL;
1019			LIST_REMOVE(map, sm_link);
1020			shm_drop(map->sm_shmfd);
1021			free(map->sm_path, M_SHMFD);
1022			free(map, M_SHMFD);
1023			return (0);
1024		}
1025	}
1026
1027	return (ENOENT);
1028}
1029
1030int
1031kern_shm_open2(struct thread *td, const char *userpath, int flags, mode_t mode,
1032    int shmflags, struct filecaps *fcaps, const char *name __unused)
1033{
1034	struct pwddesc *pdp;
1035	struct shmfd *shmfd;
1036	struct file *fp;
1037	char *path;
1038	void *rl_cookie;
1039	Fnv32_t fnv;
1040	mode_t cmode;
1041	int error, fd, initial_seals;
1042	bool largepage;
1043
1044	if ((shmflags & ~(SHM_ALLOW_SEALING | SHM_GROW_ON_WRITE |
1045	    SHM_LARGEPAGE)) != 0)
1046		return (EINVAL);
1047
1048	initial_seals = F_SEAL_SEAL;
1049	if ((shmflags & SHM_ALLOW_SEALING) != 0)
1050		initial_seals &= ~F_SEAL_SEAL;
1051
1052#ifdef CAPABILITY_MODE
1053	/*
1054	 * shm_open(2) is only allowed for anonymous objects.
1055	 */
1056	if (IN_CAPABILITY_MODE(td) && (userpath != SHM_ANON))
1057		return (ECAPMODE);
1058#endif
1059
1060	AUDIT_ARG_FFLAGS(flags);
1061	AUDIT_ARG_MODE(mode);
1062
1063	if ((flags & O_ACCMODE) != O_RDONLY && (flags & O_ACCMODE) != O_RDWR)
1064		return (EINVAL);
1065
1066	if ((flags & ~(O_ACCMODE | O_CREAT | O_EXCL | O_TRUNC | O_CLOEXEC)) != 0)
1067		return (EINVAL);
1068
1069	largepage = (shmflags & SHM_LARGEPAGE) != 0;
1070	if (largepage && !PMAP_HAS_LARGEPAGES)
1071		return (ENOTTY);
1072
1073	/*
1074	 * Currently only F_SEAL_SEAL may be set when creating or opening shmfd.
1075	 * If the decision is made later to allow additional seals, care must be
1076	 * taken below to ensure that the seals are properly set if the shmfd
1077	 * already existed -- this currently assumes that only F_SEAL_SEAL can
1078	 * be set and doesn't take further precautions to ensure the validity of
1079	 * the seals being added with respect to current mappings.
1080	 */
1081	if ((initial_seals & ~F_SEAL_SEAL) != 0)
1082		return (EINVAL);
1083
1084	pdp = td->td_proc->p_pd;
1085	cmode = (mode & ~pdp->pd_cmask) & ACCESSPERMS;
1086
1087	/*
1088	 * shm_open(2) created shm should always have O_CLOEXEC set, as mandated
1089	 * by POSIX.  We allow it to be unset here so that an in-kernel
1090	 * interface may be written as a thin layer around shm, optionally not
1091	 * setting CLOEXEC.  For shm_open(2), O_CLOEXEC is set unconditionally
1092	 * in sys_shm_open() to keep this implementation compliant.
1093	 */
1094	error = falloc_caps(td, &fp, &fd, flags & O_CLOEXEC, fcaps);
1095	if (error)
1096		return (error);
1097
1098	/* A SHM_ANON path pointer creates an anonymous object. */
1099	if (userpath == SHM_ANON) {
1100		/* A read-only anonymous object is pointless. */
1101		if ((flags & O_ACCMODE) == O_RDONLY) {
1102			fdclose(td, fp, fd);
1103			fdrop(fp, td);
1104			return (EINVAL);
1105		}
1106		shmfd = shm_alloc(td->td_ucred, cmode, largepage);
1107		shmfd->shm_seals = initial_seals;
1108		shmfd->shm_flags = shmflags;
1109	} else {
1110		error = shm_copyin_path(td, userpath, &path);
1111		if (error != 0) {
1112			fdclose(td, fp, fd);
1113			fdrop(fp, td);
1114			return (error);
1115		}
1116
1117		AUDIT_ARG_UPATH1_CANON(path);
1118		fnv = fnv_32_str(path, FNV1_32_INIT);
1119		sx_xlock(&shm_dict_lock);
1120		shmfd = shm_lookup(path, fnv);
1121		if (shmfd == NULL) {
1122			/* Object does not yet exist, create it if requested. */
1123			if (flags & O_CREAT) {
1124#ifdef MAC
1125				error = mac_posixshm_check_create(td->td_ucred,
1126				    path);
1127				if (error == 0) {
1128#endif
1129					shmfd = shm_alloc(td->td_ucred, cmode,
1130					    largepage);
1131					shmfd->shm_seals = initial_seals;
1132					shmfd->shm_flags = shmflags;
1133					shm_insert(path, fnv, shmfd);
1134#ifdef MAC
1135				}
1136#endif
1137			} else {
1138				free(path, M_SHMFD);
1139				error = ENOENT;
1140			}
1141		} else {
1142			rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
1143			    &shmfd->shm_mtx);
1144
1145			/*
1146			 * kern_shm_open() likely shouldn't ever error out on
1147			 * trying to set a seal that already exists, unlike
1148			 * F_ADD_SEALS.  This would break terribly as
1149			 * shm_open(2) actually sets F_SEAL_SEAL to maintain
1150			 * historical behavior where the underlying file could
1151			 * not be sealed.
1152			 */
1153			initial_seals &= ~shmfd->shm_seals;
1154
1155			/*
1156			 * Object already exists, obtain a new
1157			 * reference if requested and permitted.
1158			 */
1159			free(path, M_SHMFD);
1160
1161			/*
1162			 * initial_seals can't set additional seals if we've
1163			 * already been set F_SEAL_SEAL.  If F_SEAL_SEAL is set,
1164			 * then we've already removed that one from
1165			 * initial_seals.  This is currently redundant as we
1166			 * only allow setting F_SEAL_SEAL at creation time, but
1167			 * it's cheap to check and decreases the effort required
1168			 * to allow additional seals.
1169			 */
1170			if ((shmfd->shm_seals & F_SEAL_SEAL) != 0 &&
1171			    initial_seals != 0)
1172				error = EPERM;
1173			else if ((flags & (O_CREAT | O_EXCL)) ==
1174			    (O_CREAT | O_EXCL))
1175				error = EEXIST;
1176			else if (shmflags != 0 && shmflags != shmfd->shm_flags)
1177				error = EINVAL;
1178			else {
1179#ifdef MAC
1180				error = mac_posixshm_check_open(td->td_ucred,
1181				    shmfd, FFLAGS(flags & O_ACCMODE));
1182				if (error == 0)
1183#endif
1184				error = shm_access(shmfd, td->td_ucred,
1185				    FFLAGS(flags & O_ACCMODE));
1186			}
1187
1188			/*
1189			 * Truncate the file back to zero length if
1190			 * O_TRUNC was specified and the object was
1191			 * opened with read/write.
1192			 */
1193			if (error == 0 &&
1194			    (flags & (O_ACCMODE | O_TRUNC)) ==
1195			    (O_RDWR | O_TRUNC)) {
1196				VM_OBJECT_WLOCK(shmfd->shm_object);
1197#ifdef MAC
1198				error = mac_posixshm_check_truncate(
1199					td->td_ucred, fp->f_cred, shmfd);
1200				if (error == 0)
1201#endif
1202					error = shm_dotruncate_locked(shmfd, 0,
1203					    rl_cookie);
1204				VM_OBJECT_WUNLOCK(shmfd->shm_object);
1205			}
1206			if (error == 0) {
1207				/*
1208				 * Currently we only allow F_SEAL_SEAL to be
1209				 * set initially.  As noted above, this would
1210				 * need to be reworked should that change.
1211				 */
1212				shmfd->shm_seals |= initial_seals;
1213				shm_hold(shmfd);
1214			}
1215			rangelock_unlock(&shmfd->shm_rl, rl_cookie,
1216			    &shmfd->shm_mtx);
1217		}
1218		sx_xunlock(&shm_dict_lock);
1219
1220		if (error) {
1221			fdclose(td, fp, fd);
1222			fdrop(fp, td);
1223			return (error);
1224		}
1225	}
1226
1227	finit(fp, FFLAGS(flags & O_ACCMODE), DTYPE_SHM, shmfd, &shm_ops);
1228
1229	td->td_retval[0] = fd;
1230	fdrop(fp, td);
1231
1232	return (0);
1233}
1234
1235/* System calls. */
1236#ifdef COMPAT_FREEBSD12
1237int
1238freebsd12_shm_open(struct thread *td, struct freebsd12_shm_open_args *uap)
1239{
1240
1241	return (kern_shm_open(td, uap->path, uap->flags | O_CLOEXEC,
1242	    uap->mode, NULL));
1243}
1244#endif
1245
1246int
1247sys_shm_unlink(struct thread *td, struct shm_unlink_args *uap)
1248{
1249	char *path;
1250	Fnv32_t fnv;
1251	int error;
1252
1253	error = shm_copyin_path(td, uap->path, &path);
1254	if (error != 0)
1255		return (error);
1256
1257	AUDIT_ARG_UPATH1_CANON(path);
1258	fnv = fnv_32_str(path, FNV1_32_INIT);
1259	sx_xlock(&shm_dict_lock);
1260	error = shm_remove(path, fnv, td->td_ucred);
1261	sx_xunlock(&shm_dict_lock);
1262	free(path, M_SHMFD);
1263
1264	return (error);
1265}
1266
1267int
1268sys_shm_rename(struct thread *td, struct shm_rename_args *uap)
1269{
1270	char *path_from = NULL, *path_to = NULL;
1271	Fnv32_t fnv_from, fnv_to;
1272	struct shmfd *fd_from;
1273	struct shmfd *fd_to;
1274	int error;
1275	int flags;
1276
1277	flags = uap->flags;
1278	AUDIT_ARG_FFLAGS(flags);
1279
1280	/*
1281	 * Make sure the user passed only valid flags.
1282	 * If you add a new flag, please add a new term here.
1283	 */
1284	if ((flags & ~(
1285	    SHM_RENAME_NOREPLACE |
1286	    SHM_RENAME_EXCHANGE
1287	    )) != 0) {
1288		error = EINVAL;
1289		goto out;
1290	}
1291
1292	/*
1293	 * EXCHANGE and NOREPLACE don't quite make sense together. Let's
1294	 * force the user to choose one or the other.
1295	 */
1296	if ((flags & SHM_RENAME_NOREPLACE) != 0 &&
1297	    (flags & SHM_RENAME_EXCHANGE) != 0) {
1298		error = EINVAL;
1299		goto out;
1300	}
1301
1302	/* Renaming to or from anonymous makes no sense */
1303	if (uap->path_from == SHM_ANON || uap->path_to == SHM_ANON) {
1304		error = EINVAL;
1305		goto out;
1306	}
1307
1308	error = shm_copyin_path(td, uap->path_from, &path_from);
1309	if (error != 0)
1310		goto out;
1311
1312	error = shm_copyin_path(td, uap->path_to, &path_to);
1313	if (error != 0)
1314		goto out;
1315
1316	AUDIT_ARG_UPATH1_CANON(path_from);
1317	AUDIT_ARG_UPATH2_CANON(path_to);
1318
1319	/* Rename with from/to equal is a no-op */
1320	if (strcmp(path_from, path_to) == 0)
1321		goto out;
1322
1323	fnv_from = fnv_32_str(path_from, FNV1_32_INIT);
1324	fnv_to = fnv_32_str(path_to, FNV1_32_INIT);
1325
1326	sx_xlock(&shm_dict_lock);
1327
1328	fd_from = shm_lookup(path_from, fnv_from);
1329	if (fd_from == NULL) {
1330		error = ENOENT;
1331		goto out_locked;
1332	}
1333
1334	fd_to = shm_lookup(path_to, fnv_to);
1335	if ((flags & SHM_RENAME_NOREPLACE) != 0 && fd_to != NULL) {
1336		error = EEXIST;
1337		goto out_locked;
1338	}
1339
1340	/*
1341	 * Unconditionally prevents shm_remove from invalidating the 'from'
1342	 * shm's state.
1343	 */
1344	shm_hold(fd_from);
1345	error = shm_remove(path_from, fnv_from, td->td_ucred);
1346
1347	/*
1348	 * One of my assumptions failed if ENOENT (e.g. locking didn't
1349	 * protect us)
1350	 */
1351	KASSERT(error != ENOENT, ("Our shm disappeared during shm_rename: %s",
1352	    path_from));
1353	if (error != 0) {
1354		shm_drop(fd_from);
1355		goto out_locked;
1356	}
1357
1358	/*
1359	 * If we are exchanging, we need to ensure the shm_remove below
1360	 * doesn't invalidate the dest shm's state.
1361	 */
1362	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL)
1363		shm_hold(fd_to);
1364
1365	/*
1366	 * NOTE: if path_to is not already in the hash, c'est la vie;
1367	 * it simply means we have nothing already at path_to to unlink.
1368	 * That is the ENOENT case.
1369	 *
1370	 * If we somehow don't have access to unlink this guy, but
1371	 * did for the shm at path_from, then relink the shm to path_from
1372	 * and abort with EACCES.
1373	 *
1374	 * All other errors: that is weird; let's relink and abort the
1375	 * operation.
1376	 */
1377	error = shm_remove(path_to, fnv_to, td->td_ucred);
1378	if (error != 0 && error != ENOENT) {
1379		shm_insert(path_from, fnv_from, fd_from);
1380		shm_drop(fd_from);
1381		/* Don't free path_from now, since the hash references it */
1382		path_from = NULL;
1383		goto out_locked;
1384	}
1385
1386	error = 0;
1387
1388	shm_insert(path_to, fnv_to, fd_from);
1389
1390	/* Don't free path_to now, since the hash references it */
1391	path_to = NULL;
1392
1393	/* We kept a ref when we removed, and incremented again in insert */
1394	shm_drop(fd_from);
1395	KASSERT(fd_from->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1396	    fd_from->shm_refs));
1397
1398	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL) {
1399		shm_insert(path_from, fnv_from, fd_to);
1400		path_from = NULL;
1401		shm_drop(fd_to);
1402		KASSERT(fd_to->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1403		    fd_to->shm_refs));
1404	}
1405
1406out_locked:
1407	sx_xunlock(&shm_dict_lock);
1408
1409out:
1410	free(path_from, M_SHMFD);
1411	free(path_to, M_SHMFD);
1412	return (error);
1413}
1414
1415static int
1416shm_mmap_large(struct shmfd *shmfd, vm_map_t map, vm_offset_t *addr,
1417    vm_size_t size, vm_prot_t prot, vm_prot_t max_prot, int flags,
1418    vm_ooffset_t foff, struct thread *td)
1419{
1420	struct vmspace *vms;
1421	vm_map_entry_t next_entry, prev_entry;
1422	vm_offset_t align, mask, maxaddr;
1423	int docow, error, rv, try;
1424	bool curmap;
1425
1426	if (shmfd->shm_lp_psind == 0)
1427		return (EINVAL);
1428
1429	/* MAP_PRIVATE is disabled */
1430	if ((flags & ~(MAP_SHARED | MAP_FIXED | MAP_EXCL |
1431	    MAP_NOCORE |
1432#ifdef MAP_32BIT
1433	    MAP_32BIT |
1434#endif
1435	    MAP_ALIGNMENT_MASK)) != 0)
1436		return (EINVAL);
1437
1438	vms = td->td_proc->p_vmspace;
1439	curmap = map == &vms->vm_map;
1440	if (curmap) {
1441		error = kern_mmap_racct_check(td, map, size);
1442		if (error != 0)
1443			return (error);
1444	}
1445
1446	docow = shmfd->shm_lp_psind << MAP_SPLIT_BOUNDARY_SHIFT;
1447	docow |= MAP_INHERIT_SHARE;
1448	if ((flags & MAP_NOCORE) != 0)
1449		docow |= MAP_DISABLE_COREDUMP;
1450
1451	mask = pagesizes[shmfd->shm_lp_psind] - 1;
1452	if ((foff & mask) != 0)
1453		return (EINVAL);
1454	maxaddr = vm_map_max(map);
1455#ifdef MAP_32BIT
1456	if ((flags & MAP_32BIT) != 0 && maxaddr > MAP_32BIT_MAX_ADDR)
1457		maxaddr = MAP_32BIT_MAX_ADDR;
1458#endif
1459	if (size == 0 || (size & mask) != 0 ||
1460	    (*addr != 0 && ((*addr & mask) != 0 ||
1461	    *addr + size < *addr || *addr + size > maxaddr)))
1462		return (EINVAL);
1463
1464	align = flags & MAP_ALIGNMENT_MASK;
1465	if (align == 0) {
1466		align = pagesizes[shmfd->shm_lp_psind];
1467	} else if (align == MAP_ALIGNED_SUPER) {
1468		if (shmfd->shm_lp_psind != 1)
1469			return (EINVAL);
1470		align = pagesizes[1];
1471	} else {
1472		align >>= MAP_ALIGNMENT_SHIFT;
1473		align = 1ULL << align;
1474		/* Also handles overflow. */
1475		if (align < pagesizes[shmfd->shm_lp_psind])
1476			return (EINVAL);
1477	}
1478
1479	vm_map_lock(map);
1480	if ((flags & MAP_FIXED) == 0) {
1481		try = 1;
1482		if (curmap && (*addr == 0 ||
1483		    (*addr >= round_page((vm_offset_t)vms->vm_taddr) &&
1484		    *addr < round_page((vm_offset_t)vms->vm_daddr +
1485		    lim_max(td, RLIMIT_DATA))))) {
1486			*addr = roundup2((vm_offset_t)vms->vm_daddr +
1487			    lim_max(td, RLIMIT_DATA),
1488			    pagesizes[shmfd->shm_lp_psind]);
1489		}
1490again:
1491		rv = vm_map_find_aligned(map, addr, size, maxaddr, align);
1492		if (rv != KERN_SUCCESS) {
1493			if (try == 1) {
1494				try = 2;
1495				*addr = vm_map_min(map);
1496				if ((*addr & mask) != 0)
1497					*addr = (*addr + mask) & mask;
1498				goto again;
1499			}
1500			goto fail1;
1501		}
1502	} else if ((flags & MAP_EXCL) == 0) {
1503		rv = vm_map_delete(map, *addr, *addr + size);
1504		if (rv != KERN_SUCCESS)
1505			goto fail1;
1506	} else {
1507		error = ENOSPC;
1508		if (vm_map_lookup_entry(map, *addr, &prev_entry))
1509			goto fail;
1510		next_entry = vm_map_entry_succ(prev_entry);
1511		if (next_entry->start < *addr + size)
1512			goto fail;
1513	}
1514
1515	rv = vm_map_insert(map, shmfd->shm_object, foff, *addr, *addr + size,
1516	    prot, max_prot, docow);
1517fail1:
1518	error = vm_mmap_to_errno(rv);
1519fail:
1520	vm_map_unlock(map);
1521	return (error);
1522}
1523
1524static int
1525shm_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t objsize,
1526    vm_prot_t prot, vm_prot_t cap_maxprot, int flags,
1527    vm_ooffset_t foff, struct thread *td)
1528{
1529	struct shmfd *shmfd;
1530	vm_prot_t maxprot;
1531	int error;
1532	bool writecnt;
1533	void *rl_cookie;
1534
1535	shmfd = fp->f_data;
1536	maxprot = VM_PROT_NONE;
1537
1538	rl_cookie = rangelock_rlock(&shmfd->shm_rl, 0, objsize,
1539	    &shmfd->shm_mtx);
1540	/* FREAD should always be set. */
1541	if ((fp->f_flag & FREAD) != 0)
1542		maxprot |= VM_PROT_EXECUTE | VM_PROT_READ;
1543
1544	/*
1545	 * If FWRITE's set, we can allow VM_PROT_WRITE unless it's a shared
1546	 * mapping with a write seal applied.  Private mappings are always
1547	 * writeable.
1548	 */
1549	if ((flags & MAP_SHARED) == 0) {
1550		cap_maxprot |= VM_PROT_WRITE;
1551		maxprot |= VM_PROT_WRITE;
1552		writecnt = false;
1553	} else {
1554		if ((fp->f_flag & FWRITE) != 0 &&
1555		    (shmfd->shm_seals & F_SEAL_WRITE) == 0)
1556			maxprot |= VM_PROT_WRITE;
1557
1558		/*
1559		 * Any mappings from a writable descriptor may be upgraded to
1560		 * VM_PROT_WRITE with mprotect(2), unless a write-seal was
1561		 * applied between the open and subsequent mmap(2).  We want to
1562		 * reject application of a write seal as long as any such
1563		 * mapping exists so that the seal cannot be trivially bypassed.
1564		 */
1565		writecnt = (maxprot & VM_PROT_WRITE) != 0;
1566		if (!writecnt && (prot & VM_PROT_WRITE) != 0) {
1567			error = EACCES;
1568			goto out;
1569		}
1570	}
1571	maxprot &= cap_maxprot;
1572
1573	/* See comment in vn_mmap(). */
1574	if (
1575#ifdef _LP64
1576	    objsize > OFF_MAX ||
1577#endif
1578	    foff > OFF_MAX - objsize) {
1579		error = EINVAL;
1580		goto out;
1581	}
1582
1583#ifdef MAC
1584	error = mac_posixshm_check_mmap(td->td_ucred, shmfd, prot, flags);
1585	if (error != 0)
1586		goto out;
1587#endif
1588
1589	mtx_lock(&shm_timestamp_lock);
1590	vfs_timestamp(&shmfd->shm_atime);
1591	mtx_unlock(&shm_timestamp_lock);
1592	vm_object_reference(shmfd->shm_object);
1593
1594	if (shm_largepage(shmfd)) {
1595		writecnt = false;
1596		error = shm_mmap_large(shmfd, map, addr, objsize, prot,
1597		    maxprot, flags, foff, td);
1598	} else {
1599		if (writecnt) {
1600			vm_pager_update_writecount(shmfd->shm_object, 0,
1601			    objsize);
1602		}
1603		error = vm_mmap_object(map, addr, objsize, prot, maxprot, flags,
1604		    shmfd->shm_object, foff, writecnt, td);
1605	}
1606	if (error != 0) {
1607		if (writecnt)
1608			vm_pager_release_writecount(shmfd->shm_object, 0,
1609			    objsize);
1610		vm_object_deallocate(shmfd->shm_object);
1611	}
1612out:
1613	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1614	return (error);
1615}
1616
1617static int
1618shm_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1619    struct thread *td)
1620{
1621	struct shmfd *shmfd;
1622	int error;
1623
1624	error = 0;
1625	shmfd = fp->f_data;
1626	mtx_lock(&shm_timestamp_lock);
1627	/*
1628	 * SUSv4 says that x bits of permission need not be affected.
1629	 * Be consistent with our shm_open there.
1630	 */
1631#ifdef MAC
1632	error = mac_posixshm_check_setmode(active_cred, shmfd, mode);
1633	if (error != 0)
1634		goto out;
1635#endif
1636	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
1637	    VADMIN, active_cred);
1638	if (error != 0)
1639		goto out;
1640	shmfd->shm_mode = mode & ACCESSPERMS;
1641out:
1642	mtx_unlock(&shm_timestamp_lock);
1643	return (error);
1644}
1645
1646static int
1647shm_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1648    struct thread *td)
1649{
1650	struct shmfd *shmfd;
1651	int error;
1652
1653	error = 0;
1654	shmfd = fp->f_data;
1655	mtx_lock(&shm_timestamp_lock);
1656#ifdef MAC
1657	error = mac_posixshm_check_setowner(active_cred, shmfd, uid, gid);
1658	if (error != 0)
1659		goto out;
1660#endif
1661	if (uid == (uid_t)-1)
1662		uid = shmfd->shm_uid;
1663	if (gid == (gid_t)-1)
1664                 gid = shmfd->shm_gid;
1665	if (((uid != shmfd->shm_uid && uid != active_cred->cr_uid) ||
1666	    (gid != shmfd->shm_gid && !groupmember(gid, active_cred))) &&
1667	    (error = priv_check_cred(active_cred, PRIV_VFS_CHOWN)))
1668		goto out;
1669	shmfd->shm_uid = uid;
1670	shmfd->shm_gid = gid;
1671out:
1672	mtx_unlock(&shm_timestamp_lock);
1673	return (error);
1674}
1675
1676/*
1677 * Helper routines to allow the backing object of a shared memory file
1678 * descriptor to be mapped in the kernel.
1679 */
1680int
1681shm_map(struct file *fp, size_t size, off_t offset, void **memp)
1682{
1683	struct shmfd *shmfd;
1684	vm_offset_t kva, ofs;
1685	vm_object_t obj;
1686	int rv;
1687
1688	if (fp->f_type != DTYPE_SHM)
1689		return (EINVAL);
1690	shmfd = fp->f_data;
1691	obj = shmfd->shm_object;
1692	VM_OBJECT_WLOCK(obj);
1693	/*
1694	 * XXXRW: This validation is probably insufficient, and subject to
1695	 * sign errors.  It should be fixed.
1696	 */
1697	if (offset >= shmfd->shm_size ||
1698	    offset + size > round_page(shmfd->shm_size)) {
1699		VM_OBJECT_WUNLOCK(obj);
1700		return (EINVAL);
1701	}
1702
1703	shmfd->shm_kmappings++;
1704	vm_object_reference_locked(obj);
1705	VM_OBJECT_WUNLOCK(obj);
1706
1707	/* Map the object into the kernel_map and wire it. */
1708	kva = vm_map_min(kernel_map);
1709	ofs = offset & PAGE_MASK;
1710	offset = trunc_page(offset);
1711	size = round_page(size + ofs);
1712	rv = vm_map_find(kernel_map, obj, offset, &kva, size, 0,
1713	    VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
1714	    VM_PROT_READ | VM_PROT_WRITE, 0);
1715	if (rv == KERN_SUCCESS) {
1716		rv = vm_map_wire(kernel_map, kva, kva + size,
1717		    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
1718		if (rv == KERN_SUCCESS) {
1719			*memp = (void *)(kva + ofs);
1720			return (0);
1721		}
1722		vm_map_remove(kernel_map, kva, kva + size);
1723	} else
1724		vm_object_deallocate(obj);
1725
1726	/* On failure, drop our mapping reference. */
1727	VM_OBJECT_WLOCK(obj);
1728	shmfd->shm_kmappings--;
1729	VM_OBJECT_WUNLOCK(obj);
1730
1731	return (vm_mmap_to_errno(rv));
1732}
1733
1734/*
1735 * We require the caller to unmap the entire entry.  This allows us to
1736 * safely decrement shm_kmappings when a mapping is removed.
1737 */
1738int
1739shm_unmap(struct file *fp, void *mem, size_t size)
1740{
1741	struct shmfd *shmfd;
1742	vm_map_entry_t entry;
1743	vm_offset_t kva, ofs;
1744	vm_object_t obj;
1745	vm_pindex_t pindex;
1746	vm_prot_t prot;
1747	boolean_t wired;
1748	vm_map_t map;
1749	int rv;
1750
1751	if (fp->f_type != DTYPE_SHM)
1752		return (EINVAL);
1753	shmfd = fp->f_data;
1754	kva = (vm_offset_t)mem;
1755	ofs = kva & PAGE_MASK;
1756	kva = trunc_page(kva);
1757	size = round_page(size + ofs);
1758	map = kernel_map;
1759	rv = vm_map_lookup(&map, kva, VM_PROT_READ | VM_PROT_WRITE, &entry,
1760	    &obj, &pindex, &prot, &wired);
1761	if (rv != KERN_SUCCESS)
1762		return (EINVAL);
1763	if (entry->start != kva || entry->end != kva + size) {
1764		vm_map_lookup_done(map, entry);
1765		return (EINVAL);
1766	}
1767	vm_map_lookup_done(map, entry);
1768	if (obj != shmfd->shm_object)
1769		return (EINVAL);
1770	vm_map_remove(map, kva, kva + size);
1771	VM_OBJECT_WLOCK(obj);
1772	KASSERT(shmfd->shm_kmappings > 0, ("shm_unmap: object not mapped"));
1773	shmfd->shm_kmappings--;
1774	VM_OBJECT_WUNLOCK(obj);
1775	return (0);
1776}
1777
1778static int
1779shm_fill_kinfo_locked(struct shmfd *shmfd, struct kinfo_file *kif, bool list)
1780{
1781	const char *path, *pr_path;
1782	size_t pr_pathlen;
1783	bool visible;
1784
1785	sx_assert(&shm_dict_lock, SA_LOCKED);
1786	kif->kf_type = KF_TYPE_SHM;
1787	kif->kf_un.kf_file.kf_file_mode = S_IFREG | shmfd->shm_mode;
1788	kif->kf_un.kf_file.kf_file_size = shmfd->shm_size;
1789	if (shmfd->shm_path != NULL) {
1790		if (shmfd->shm_path != NULL) {
1791			path = shmfd->shm_path;
1792			pr_path = curthread->td_ucred->cr_prison->pr_path;
1793			if (strcmp(pr_path, "/") != 0) {
1794				/* Return the jail-rooted pathname. */
1795				pr_pathlen = strlen(pr_path);
1796				visible = strncmp(path, pr_path, pr_pathlen)
1797				    == 0 && path[pr_pathlen] == '/';
1798				if (list && !visible)
1799					return (EPERM);
1800				if (visible)
1801					path += pr_pathlen;
1802			}
1803			strlcpy(kif->kf_path, path, sizeof(kif->kf_path));
1804		}
1805	}
1806	return (0);
1807}
1808
1809static int
1810shm_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1811    struct filedesc *fdp __unused)
1812{
1813	int res;
1814
1815	sx_slock(&shm_dict_lock);
1816	res = shm_fill_kinfo_locked(fp->f_data, kif, false);
1817	sx_sunlock(&shm_dict_lock);
1818	return (res);
1819}
1820
1821static int
1822shm_add_seals(struct file *fp, int seals)
1823{
1824	struct shmfd *shmfd;
1825	void *rl_cookie;
1826	vm_ooffset_t writemappings;
1827	int error, nseals;
1828
1829	error = 0;
1830	shmfd = fp->f_data;
1831	rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
1832	    &shmfd->shm_mtx);
1833
1834	/* Even already-set seals should result in EPERM. */
1835	if ((shmfd->shm_seals & F_SEAL_SEAL) != 0) {
1836		error = EPERM;
1837		goto out;
1838	}
1839	nseals = seals & ~shmfd->shm_seals;
1840	if ((nseals & F_SEAL_WRITE) != 0) {
1841		if (shm_largepage(shmfd)) {
1842			error = ENOTSUP;
1843			goto out;
1844		}
1845
1846		/*
1847		 * The rangelock above prevents writable mappings from being
1848		 * added after we've started applying seals.  The RLOCK here
1849		 * is to avoid torn reads on ILP32 arches as unmapping/reducing
1850		 * writemappings will be done without a rangelock.
1851		 */
1852		VM_OBJECT_RLOCK(shmfd->shm_object);
1853		writemappings = shmfd->shm_object->un_pager.swp.writemappings;
1854		VM_OBJECT_RUNLOCK(shmfd->shm_object);
1855		/* kmappings are also writable */
1856		if (writemappings > 0) {
1857			error = EBUSY;
1858			goto out;
1859		}
1860	}
1861	shmfd->shm_seals |= nseals;
1862out:
1863	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1864	return (error);
1865}
1866
1867static int
1868shm_get_seals(struct file *fp, int *seals)
1869{
1870	struct shmfd *shmfd;
1871
1872	shmfd = fp->f_data;
1873	*seals = shmfd->shm_seals;
1874	return (0);
1875}
1876
1877static int
1878shm_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
1879{
1880	void *rl_cookie;
1881	struct shmfd *shmfd;
1882	size_t size;
1883	int error;
1884
1885	/* This assumes that the caller already checked for overflow. */
1886	error = 0;
1887	shmfd = fp->f_data;
1888	size = offset + len;
1889
1890	/*
1891	 * Just grab the rangelock for the range that we may be attempting to
1892	 * grow, rather than blocking read/write for regions we won't be
1893	 * touching while this (potential) resize is in progress.  Other
1894	 * attempts to resize the shmfd will have to take a write lock from 0 to
1895	 * OFF_MAX, so this being potentially beyond the current usable range of
1896	 * the shmfd is not necessarily a concern.  If other mechanisms are
1897	 * added to grow a shmfd, this may need to be re-evaluated.
1898	 */
1899	rl_cookie = rangelock_wlock(&shmfd->shm_rl, offset, size,
1900	    &shmfd->shm_mtx);
1901	if (size > shmfd->shm_size)
1902		error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
1903	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1904	/* Translate to posix_fallocate(2) return value as needed. */
1905	if (error == ENOMEM)
1906		error = ENOSPC;
1907	return (error);
1908}
1909
1910static int
1911sysctl_posix_shm_list(SYSCTL_HANDLER_ARGS)
1912{
1913	struct shm_mapping *shmm;
1914	struct sbuf sb;
1915	struct kinfo_file kif;
1916	u_long i;
1917	ssize_t curlen;
1918	int error, error2;
1919
1920	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file) * 5, req);
1921	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1922	curlen = 0;
1923	error = 0;
1924	sx_slock(&shm_dict_lock);
1925	for (i = 0; i < shm_hash + 1; i++) {
1926		LIST_FOREACH(shmm, &shm_dictionary[i], sm_link) {
1927			error = shm_fill_kinfo_locked(shmm->sm_shmfd,
1928			    &kif, true);
1929			if (error == EPERM)
1930				continue;
1931			if (error != 0)
1932				break;
1933			pack_kinfo(&kif);
1934			if (req->oldptr != NULL &&
1935			    kif.kf_structsize + curlen > req->oldlen)
1936				break;
1937			error = sbuf_bcat(&sb, &kif, kif.kf_structsize) == 0 ?
1938			    0 : ENOMEM;
1939			if (error != 0)
1940				break;
1941			curlen += kif.kf_structsize;
1942		}
1943	}
1944	sx_sunlock(&shm_dict_lock);
1945	error2 = sbuf_finish(&sb);
1946	sbuf_delete(&sb);
1947	return (error != 0 ? error : error2);
1948}
1949
1950SYSCTL_PROC(_kern_ipc, OID_AUTO, posix_shm_list,
1951    CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_OPAQUE,
1952    NULL, 0, sysctl_posix_shm_list, "",
1953    "POSIX SHM list");
1954
1955int
1956kern_shm_open(struct thread *td, const char *path, int flags, mode_t mode,
1957    struct filecaps *caps)
1958{
1959
1960	return (kern_shm_open2(td, path, flags, mode, 0, caps, NULL));
1961}
1962
1963/*
1964 * This version of the shm_open() interface leaves CLOEXEC behavior up to the
1965 * caller, and libc will enforce it for the traditional shm_open() call.  This
1966 * allows other consumers, like memfd_create(), to opt-in for CLOEXEC.  This
1967 * interface also includes a 'name' argument that is currently unused, but could
1968 * potentially be exported later via some interface for debugging purposes.
1969 * From the kernel's perspective, it is optional.  Individual consumers like
1970 * memfd_create() may require it in order to be compatible with other systems
1971 * implementing the same function.
1972 */
1973int
1974sys_shm_open2(struct thread *td, struct shm_open2_args *uap)
1975{
1976
1977	return (kern_shm_open2(td, uap->path, uap->flags, uap->mode,
1978	    uap->shmflags, NULL, uap->name));
1979}
1980