1/*-
2 * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/gsb_crc32.h>
33#include <sys/disklabel.h>
34#include <sys/endian.h>
35#include <sys/gpt.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/lock.h>
40#include <sys/malloc.h>
41#include <sys/mutex.h>
42#include <sys/queue.h>
43#include <sys/sbuf.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <geom/geom.h>
47#include <geom/geom_int.h>
48#include <geom/part/g_part.h>
49
50#include "g_part_if.h"
51
52FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
53
54/* XXX: move this to sys/disklabel64.h */
55#define	DISKMAGIC64     ((uint32_t)0xc4464c59)
56#define	MAXPARTITIONS64	16
57#define	RESPARTITIONS64	32
58
59struct disklabel64 {
60	char	  d_reserved0[512];	/* reserved or unused */
61	u_int32_t d_magic;		/* the magic number */
62	u_int32_t d_crc;		/* crc32() d_magic through last part */
63	u_int32_t d_align;		/* partition alignment requirement */
64	u_int32_t d_npartitions;	/* number of partitions */
65	struct uuid d_stor_uuid;	/* unique uuid for label */
66
67	u_int64_t d_total_size;		/* total size incl everything (bytes) */
68	u_int64_t d_bbase;		/* boot area base offset (bytes) */
69					/* boot area is pbase - bbase */
70	u_int64_t d_pbase;		/* first allocatable offset (bytes) */
71	u_int64_t d_pstop;		/* last allocatable offset+1 (bytes) */
72	u_int64_t d_abase;		/* location of backup copy if not 0 */
73
74	u_char	  d_packname[64];
75	u_char    d_reserved[64];
76
77	/*
78	 * Note: offsets are relative to the base of the slice, NOT to
79	 * d_pbase.  Unlike 32 bit disklabels the on-disk format for
80	 * a 64 bit disklabel remains slice-relative.
81	 *
82	 * An uninitialized partition has a p_boffset and p_bsize of 0.
83	 *
84	 * If p_fstype is not supported for a live partition it is set
85	 * to FS_OTHER.  This is typically the case when the filesystem
86	 * is identified by its uuid.
87	 */
88	struct partition64 {		/* the partition table */
89		u_int64_t p_boffset;	/* slice relative offset, in bytes */
90		u_int64_t p_bsize;	/* size of partition, in bytes */
91		u_int8_t  p_fstype;
92		u_int8_t  p_unused01;	/* reserved, must be 0 */
93		u_int8_t  p_unused02;	/* reserved, must be 0 */
94		u_int8_t  p_unused03;	/* reserved, must be 0 */
95		u_int32_t p_unused04;	/* reserved, must be 0 */
96		u_int32_t p_unused05;	/* reserved, must be 0 */
97		u_int32_t p_unused06;	/* reserved, must be 0 */
98		struct uuid p_type_uuid;/* mount type as UUID */
99		struct uuid p_stor_uuid;/* unique uuid for storage */
100	} d_partitions[MAXPARTITIONS64];/* actually may be more */
101};
102
103struct g_part_bsd64_table {
104	struct g_part_table	base;
105
106	uint32_t		d_align;
107	uint64_t		d_bbase;
108	uint64_t		d_abase;
109	struct uuid		d_stor_uuid;
110	char			d_reserved0[512];
111	u_char			d_packname[64];
112	u_char			d_reserved[64];
113};
114
115struct g_part_bsd64_entry {
116	struct g_part_entry	base;
117
118	uint8_t			fstype;
119	struct uuid		type_uuid;
120	struct uuid		stor_uuid;
121};
122
123static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
124    struct g_part_parms *);
125static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
126static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
127static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
128static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
129    struct sbuf *, const char *);
130static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
131static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
132    struct g_part_parms *);
133static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
134    char *, size_t);
135static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
136static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
137static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
138    char *, size_t);
139static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
140static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
141    struct g_part_parms *);
142
143static kobj_method_t g_part_bsd64_methods[] = {
144	KOBJMETHOD(g_part_add,		g_part_bsd64_add),
145	KOBJMETHOD(g_part_bootcode,	g_part_bsd64_bootcode),
146	KOBJMETHOD(g_part_create,	g_part_bsd64_create),
147	KOBJMETHOD(g_part_destroy,	g_part_bsd64_destroy),
148	KOBJMETHOD(g_part_dumpconf,	g_part_bsd64_dumpconf),
149	KOBJMETHOD(g_part_dumpto,	g_part_bsd64_dumpto),
150	KOBJMETHOD(g_part_modify,	g_part_bsd64_modify),
151	KOBJMETHOD(g_part_resize,	g_part_bsd64_resize),
152	KOBJMETHOD(g_part_name,		g_part_bsd64_name),
153	KOBJMETHOD(g_part_probe,	g_part_bsd64_probe),
154	KOBJMETHOD(g_part_read,		g_part_bsd64_read),
155	KOBJMETHOD(g_part_type,		g_part_bsd64_type),
156	KOBJMETHOD(g_part_write,	g_part_bsd64_write),
157	{ 0, 0 }
158};
159
160static struct g_part_scheme g_part_bsd64_scheme = {
161	"BSD64",
162	g_part_bsd64_methods,
163	sizeof(struct g_part_bsd64_table),
164	.gps_entrysz = sizeof(struct g_part_bsd64_entry),
165	.gps_minent = MAXPARTITIONS64,
166	.gps_maxent = MAXPARTITIONS64
167};
168G_PART_SCHEME_DECLARE(g_part_bsd64);
169MODULE_VERSION(geom_part_bsd64, 0);
170
171#define	EQUUID(a, b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
172static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
173static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
174static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
175static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
176static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
177static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
178static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
179static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
180static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
181static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
182static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
183static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
184static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
185static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
186
187struct bsd64_uuid_alias {
188	struct uuid *uuid;
189	uint8_t fstype;
190	int alias;
191};
192static struct bsd64_uuid_alias dfbsd_alias_match[] = {
193	{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
194	{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
195	{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
196	{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
197	{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
198	{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
199	{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
200	{ NULL, 0, 0}
201};
202static struct bsd64_uuid_alias fbsd_alias_match[] = {
203	{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
204	{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
205	{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
206	{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
207	{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
208	{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
209	{ NULL, 0, 0}
210};
211
212static int
213bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
214{
215	struct uuid tmp;
216	const struct bsd64_uuid_alias *uap;
217	const char *alias;
218	char *p;
219	long lt;
220	int error;
221
222	if (type[0] == '!') {
223		if (type[1] == '\0')
224			return (EINVAL);
225		lt = strtol(type + 1, &p, 0);
226		/* The type specified as number */
227		if (*p == '\0') {
228			if (lt <= 0 || lt > 255)
229				return (EINVAL);
230			entry->fstype = lt;
231			entry->type_uuid = bsd64_uuid_unused;
232			return (0);
233		}
234		/* The type specified as uuid */
235		error = parse_uuid(type + 1, &tmp);
236		if (error != 0)
237			return (error);
238		if (EQUUID(&tmp, &bsd64_uuid_unused))
239			return (EINVAL);
240		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
241			if (EQUUID(&tmp, uap->uuid)) {
242				/* Prefer fstype for known uuids */
243				entry->type_uuid = bsd64_uuid_unused;
244				entry->fstype = uap->fstype;
245				return (0);
246			}
247		}
248		entry->type_uuid = tmp;
249		entry->fstype = FS_OTHER;
250		return (0);
251	}
252	/* The type specified as symbolic alias name */
253	for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
254		alias = g_part_alias_name(uap->alias);
255		if (!strcasecmp(type, alias)) {
256			entry->type_uuid = *uap->uuid;
257			entry->fstype = uap->fstype;
258			return (0);
259		}
260	}
261	for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
262		alias = g_part_alias_name(uap->alias);
263		if (!strcasecmp(type, alias)) {
264			entry->type_uuid = bsd64_uuid_unused;
265			entry->fstype = uap->fstype;
266			return (0);
267		}
268	}
269	return (EINVAL);
270}
271
272static int
273g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
274    struct g_part_parms *gpp)
275{
276	struct g_part_bsd64_entry *entry;
277
278	if (gpp->gpp_parms & G_PART_PARM_LABEL)
279		return (EINVAL);
280
281	entry = (struct g_part_bsd64_entry *)baseentry;
282	if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
283		return (EINVAL);
284	kern_uuidgen(&entry->stor_uuid, 1);
285	return (0);
286}
287
288static int
289g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
290{
291
292	return (EOPNOTSUPP);
293}
294
295#define	PALIGN_SIZE	(1024 * 1024)
296#define	PALIGN_MASK	(PALIGN_SIZE - 1)
297#define	BLKSIZE		(4 * 1024)
298#define	BOOTSIZE	(32 * 1024)
299#define	DALIGN_SIZE	(32 * 1024)
300static int
301g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
302{
303	struct g_part_bsd64_table *table;
304	struct g_part_entry *baseentry;
305	struct g_provider *pp;
306	uint64_t blkmask, pbase;
307	uint32_t blksize, ressize;
308
309	pp = gpp->gpp_provider;
310	if (pp->mediasize < 2* PALIGN_SIZE)
311		return (ENOSPC);
312
313	/*
314	 * Use at least 4KB block size. Blksize is stored in the d_align.
315	 * XXX: Actually it is used just for calculate d_bbase and used
316	 * for better alignment in bsdlabel64(8).
317	 */
318	blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
319	blkmask = blksize - 1;
320	/* Reserve enough space for RESPARTITIONS64 partitions. */
321	ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
322	ressize = (ressize + blkmask) & ~blkmask;
323	/*
324	 * Reserve enough space for bootcode and align first allocatable
325	 * offset to PALIGN_SIZE.
326	 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
327	 * be bigger, because it is possible change it (it is equal pbase-bbase)
328	 * in the bsdlabel64(8).
329	 */
330	pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
331	pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
332	/*
333	 * Take physical offset into account and make first allocatable
334	 * offset 32KB aligned to the start of the physical disk.
335	 * XXX: Actually there are no such restrictions, this is how
336	 * DragonFlyBSD behaves.
337	 */
338	pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
339
340	table = (struct g_part_bsd64_table *)basetable;
341	table->d_align = blksize;
342	table->d_bbase = ressize / pp->sectorsize;
343	table->d_abase = ((pp->mediasize - ressize) &
344	    ~blkmask) / pp->sectorsize;
345	kern_uuidgen(&table->d_stor_uuid, 1);
346	basetable->gpt_first = pbase / pp->sectorsize;
347	basetable->gpt_last = table->d_abase - 1; /* XXX */
348	/*
349	 * Create 'c' partition and make it internal, so user will not be
350	 * able use it.
351	 */
352	baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
353	baseentry->gpe_internal = 1;
354	return (0);
355}
356
357static int
358g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
359{
360	struct g_provider *pp;
361
362	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
363	if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
364		basetable->gpt_smhead |= 1;
365	else
366		basetable->gpt_smhead |= 3;
367	return (0);
368}
369
370static void
371g_part_bsd64_dumpconf(struct g_part_table *basetable,
372    struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
373{
374	struct g_part_bsd64_table *table;
375	struct g_part_bsd64_entry *entry;
376	char buf[sizeof(table->d_packname)];
377
378	entry = (struct g_part_bsd64_entry *)baseentry;
379	if (indent == NULL) {
380		/* conftxt: libdisk compatibility */
381		sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
382	} else if (entry != NULL) {
383		/* confxml: partition entry information */
384		sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
385		    entry->fstype);
386		if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
387			sbuf_printf(sb, "%s<type_uuid>", indent);
388			sbuf_printf_uuid(sb, &entry->type_uuid);
389			sbuf_cat(sb, "</type_uuid>\n");
390		}
391		sbuf_printf(sb, "%s<stor_uuid>", indent);
392		sbuf_printf_uuid(sb, &entry->stor_uuid);
393		sbuf_cat(sb, "</stor_uuid>\n");
394	} else {
395		/* confxml: scheme information */
396		table = (struct g_part_bsd64_table *)basetable;
397		sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
398		    (uintmax_t)table->d_bbase);
399		if (table->d_abase)
400			sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
401			    indent, (uintmax_t)table->d_abase);
402		sbuf_printf(sb, "%s<stor_uuid>", indent);
403		sbuf_printf_uuid(sb, &table->d_stor_uuid);
404		sbuf_cat(sb, "</stor_uuid>\n");
405		sbuf_printf(sb, "%s<label>", indent);
406		strncpy(buf, table->d_packname, sizeof(buf) - 1);
407		buf[sizeof(buf) - 1] = '\0';
408		g_conf_cat_escaped(sb, buf);
409		sbuf_cat(sb, "</label>\n");
410	}
411}
412
413static int
414g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
415{
416	struct g_part_bsd64_entry *entry;
417
418	/* Allow dumping to a swap partition. */
419	entry = (struct g_part_bsd64_entry *)baseentry;
420	if (entry->fstype == FS_SWAP ||
421	    EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
422	    EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
423		return (1);
424	return (0);
425}
426
427static int
428g_part_bsd64_modify(struct g_part_table *basetable,
429    struct g_part_entry *baseentry, struct g_part_parms *gpp)
430{
431	struct g_part_bsd64_entry *entry;
432
433	if (gpp->gpp_parms & G_PART_PARM_LABEL)
434		return (EINVAL);
435
436	entry = (struct g_part_bsd64_entry *)baseentry;
437	if (gpp->gpp_parms & G_PART_PARM_TYPE)
438		return (bsd64_parse_type(gpp->gpp_type, entry));
439	return (0);
440}
441
442static int
443g_part_bsd64_resize(struct g_part_table *basetable,
444    struct g_part_entry *baseentry, struct g_part_parms *gpp)
445{
446	struct g_part_bsd64_table *table;
447	struct g_provider *pp;
448
449	if (baseentry == NULL) {
450		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
451		table = (struct g_part_bsd64_table *)basetable;
452		table->d_abase =
453		    rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
454		        table->d_align) / pp->sectorsize;
455		basetable->gpt_last = table->d_abase - 1;
456		return (0);
457	}
458	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
459	return (0);
460}
461
462static const char *
463g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
464    char *buf, size_t bufsz)
465{
466
467	snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
468	return (buf);
469}
470
471static int
472g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
473{
474	struct g_provider *pp;
475	uint32_t v;
476	int error;
477	u_char *buf;
478
479	pp = cp->provider;
480	if (pp->mediasize < 2 * PALIGN_SIZE)
481		return (ENOSPC);
482	v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
483		       pp->sectorsize);
484	buf = g_read_data(cp, 0, v, &error);
485	if (buf == NULL)
486		return (error);
487	v = le32dec(buf + offsetof(struct disklabel64, d_magic));
488	g_free(buf);
489	return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
490}
491
492static int
493g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
494{
495	struct g_part_bsd64_table *table;
496	struct g_part_bsd64_entry *entry;
497	struct g_part_entry *baseentry;
498	struct g_provider *pp;
499	struct disklabel64 *dlp;
500	uint64_t v64, sz;
501	uint32_t v32;
502	int error, index;
503	u_char *buf;
504
505	pp = cp->provider;
506	table = (struct g_part_bsd64_table *)basetable;
507	v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
508	buf = g_read_data(cp, 0, v32, &error);
509	if (buf == NULL)
510		return (error);
511
512	dlp = (struct disklabel64 *)buf;
513	basetable->gpt_entries = le32toh(dlp->d_npartitions);
514	if (basetable->gpt_entries > MAXPARTITIONS64 ||
515	    basetable->gpt_entries < 1)
516		goto invalid_label;
517	v32 = le32toh(dlp->d_crc);
518	dlp->d_crc = 0;
519	if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
520	    d_partitions[basetable->gpt_entries]) -
521	    offsetof(struct disklabel64, d_magic)) != v32)
522		goto invalid_label;
523	table->d_align = le32toh(dlp->d_align);
524	if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
525		goto invalid_label;
526	if (le64toh(dlp->d_total_size) > pp->mediasize)
527		goto invalid_label;
528	v64 = le64toh(dlp->d_pbase);
529	if (v64 % pp->sectorsize)
530		goto invalid_label;
531	basetable->gpt_first = v64 / pp->sectorsize;
532	v64 = le64toh(dlp->d_pstop);
533	if (v64 % pp->sectorsize)
534		goto invalid_label;
535	basetable->gpt_last = v64 / pp->sectorsize;
536	basetable->gpt_isleaf = 1;
537	v64 = le64toh(dlp->d_bbase);
538	if (v64 % pp->sectorsize)
539		goto invalid_label;
540	table->d_bbase = v64 / pp->sectorsize;
541	v64 = le64toh(dlp->d_abase);
542	if (v64 % pp->sectorsize)
543		goto invalid_label;
544	table->d_abase = v64 / pp->sectorsize;
545	le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
546	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
547		if (index == RAW_PART) {
548			/* Skip 'c' partition. */
549			baseentry = g_part_new_entry(basetable,
550			    index + 1, 0, 0);
551			baseentry->gpe_internal = 1;
552			continue;
553		}
554		v64 = le64toh(dlp->d_partitions[index].p_boffset);
555		sz = le64toh(dlp->d_partitions[index].p_bsize);
556		if (sz == 0 && v64 == 0)
557			continue;
558		if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
559			goto invalid_label;
560		baseentry = g_part_new_entry(basetable, index + 1,
561		    v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
562		entry = (struct g_part_bsd64_entry *)baseentry;
563		le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
564		    &entry->type_uuid);
565		le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
566		    &entry->stor_uuid);
567		entry->fstype = dlp->d_partitions[index].p_fstype;
568	}
569	bcopy(dlp->d_reserved0, table->d_reserved0,
570	    sizeof(table->d_reserved0));
571	bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
572	bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
573	g_free(buf);
574	return (0);
575
576invalid_label:
577	g_free(buf);
578	return (EINVAL);
579}
580
581static const char *
582g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
583    char *buf, size_t bufsz)
584{
585	struct g_part_bsd64_entry *entry;
586	struct bsd64_uuid_alias *uap;
587
588	entry = (struct g_part_bsd64_entry *)baseentry;
589	if (entry->fstype != FS_OTHER) {
590		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
591			if (uap->fstype == entry->fstype)
592				return (g_part_alias_name(uap->alias));
593	} else {
594		for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
595			if (EQUUID(uap->uuid, &entry->type_uuid))
596				return (g_part_alias_name(uap->alias));
597		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
598			if (EQUUID(uap->uuid, &entry->type_uuid))
599				return (g_part_alias_name(uap->alias));
600	}
601	if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
602		snprintf(buf, bufsz, "!%d", entry->fstype);
603	else {
604		buf[0] = '!';
605		snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
606	}
607	return (buf);
608}
609
610static int
611g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
612{
613	struct g_provider *pp;
614	struct g_part_entry *baseentry;
615	struct g_part_bsd64_entry *entry;
616	struct g_part_bsd64_table *table;
617	struct disklabel64 *dlp;
618	uint32_t v, sz;
619	int error, index;
620
621	pp = cp->provider;
622	table = (struct g_part_bsd64_table *)basetable;
623	sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
624	dlp = g_malloc(sz, M_WAITOK | M_ZERO);
625
626	memcpy(dlp->d_reserved0, table->d_reserved0,
627	    sizeof(table->d_reserved0));
628	memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
629	memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
630	le32enc(&dlp->d_magic, DISKMAGIC64);
631	le32enc(&dlp->d_align, table->d_align);
632	le32enc(&dlp->d_npartitions, basetable->gpt_entries);
633	le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
634	le64enc(&dlp->d_total_size, pp->mediasize);
635	le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
636	le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
637	le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
638	le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
639
640	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
641		if (baseentry->gpe_deleted)
642			continue;
643		index = baseentry->gpe_index - 1;
644		entry = (struct g_part_bsd64_entry *)baseentry;
645		if (index == RAW_PART)
646			continue;
647		le64enc(&dlp->d_partitions[index].p_boffset,
648		    baseentry->gpe_start * pp->sectorsize);
649		le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
650		    (baseentry->gpe_end - baseentry->gpe_start + 1));
651		dlp->d_partitions[index].p_fstype = entry->fstype;
652		le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
653		    &entry->type_uuid);
654		le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
655		    &entry->stor_uuid);
656	}
657	/* Calculate checksum. */
658	v = offsetof(struct disklabel64,
659	    d_partitions[basetable->gpt_entries]) -
660	    offsetof(struct disklabel64, d_magic);
661	le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
662	error = g_write_data(cp, 0, dlp, sz);
663	g_free(dlp);
664	return (error);
665}
666