1/*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2
3/*-
4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5 *
6 * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Jason R. Thorpe.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/*
35 * Device driver for the Sundance Tech. TC9021 10/100/1000
36 * Ethernet controller.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#ifdef HAVE_KERNEL_OPTION_HEADERS
43#include "opt_device_polling.h"
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/endian.h>
49#include <sys/mbuf.h>
50#include <sys/malloc.h>
51#include <sys/kernel.h>
52#include <sys/module.h>
53#include <sys/socket.h>
54#include <sys/sockio.h>
55#include <sys/sysctl.h>
56#include <sys/taskqueue.h>
57
58#include <net/bpf.h>
59#include <net/ethernet.h>
60#include <net/if.h>
61#include <net/if_var.h>
62#include <net/if_dl.h>
63#include <net/if_media.h>
64#include <net/if_types.h>
65#include <net/if_vlan_var.h>
66
67#include <machine/bus.h>
68#include <machine/resource.h>
69#include <sys/bus.h>
70#include <sys/rman.h>
71
72#include <dev/mii/mii.h>
73#include <dev/mii/mii_bitbang.h>
74#include <dev/mii/miivar.h>
75
76#include <dev/pci/pcireg.h>
77#include <dev/pci/pcivar.h>
78
79#include <dev/stge/if_stgereg.h>
80
81#define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
82
83MODULE_DEPEND(stge, pci, 1, 1, 1);
84MODULE_DEPEND(stge, ether, 1, 1, 1);
85MODULE_DEPEND(stge, miibus, 1, 1, 1);
86
87/* "device miibus" required.  See GENERIC if you get errors here. */
88#include "miibus_if.h"
89
90/*
91 * Devices supported by this driver.
92 */
93static const struct stge_product {
94	uint16_t	stge_vendorid;
95	uint16_t	stge_deviceid;
96	const char	*stge_name;
97} stge_products[] = {
98	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
99	  "Sundance ST-1023 Gigabit Ethernet" },
100
101	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
102	  "Sundance ST-2021 Gigabit Ethernet" },
103
104	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
105	  "Tamarack TC9021 Gigabit Ethernet" },
106
107	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
108	  "Tamarack TC9021 Gigabit Ethernet" },
109
110	/*
111	 * The Sundance sample boards use the Sundance vendor ID,
112	 * but the Tamarack product ID.
113	 */
114	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
115	  "Sundance TC9021 Gigabit Ethernet" },
116
117	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
118	  "Sundance TC9021 Gigabit Ethernet" },
119
120	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
121	  "D-Link DL-4000 Gigabit Ethernet" },
122
123	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
124	  "Antares Gigabit Ethernet" }
125};
126
127static int	stge_probe(device_t);
128static int	stge_attach(device_t);
129static int	stge_detach(device_t);
130static int	stge_shutdown(device_t);
131static int	stge_suspend(device_t);
132static int	stge_resume(device_t);
133
134static int	stge_encap(struct stge_softc *, struct mbuf **);
135static void	stge_start(struct ifnet *);
136static void	stge_start_locked(struct ifnet *);
137static void	stge_watchdog(struct stge_softc *);
138static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
139static void	stge_init(void *);
140static void	stge_init_locked(struct stge_softc *);
141static void	stge_vlan_setup(struct stge_softc *);
142static void	stge_stop(struct stge_softc *);
143static void	stge_start_tx(struct stge_softc *);
144static void	stge_start_rx(struct stge_softc *);
145static void	stge_stop_tx(struct stge_softc *);
146static void	stge_stop_rx(struct stge_softc *);
147
148static void	stge_reset(struct stge_softc *, uint32_t);
149static int	stge_eeprom_wait(struct stge_softc *);
150static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
151static void	stge_tick(void *);
152static void	stge_stats_update(struct stge_softc *);
153static void	stge_set_filter(struct stge_softc *);
154static void	stge_set_multi(struct stge_softc *);
155
156static void	stge_link_task(void *, int);
157static void	stge_intr(void *);
158static __inline int stge_tx_error(struct stge_softc *);
159static void	stge_txeof(struct stge_softc *);
160static int	stge_rxeof(struct stge_softc *);
161static __inline void stge_discard_rxbuf(struct stge_softc *, int);
162static int	stge_newbuf(struct stge_softc *, int);
163#ifndef __NO_STRICT_ALIGNMENT
164static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
165#endif
166
167static int	stge_miibus_readreg(device_t, int, int);
168static int	stge_miibus_writereg(device_t, int, int, int);
169static void	stge_miibus_statchg(device_t);
170static int	stge_mediachange(struct ifnet *);
171static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
172
173static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174static int	stge_dma_alloc(struct stge_softc *);
175static void	stge_dma_free(struct stge_softc *);
176static void	stge_dma_wait(struct stge_softc *);
177static void	stge_init_tx_ring(struct stge_softc *);
178static int	stge_init_rx_ring(struct stge_softc *);
179#ifdef DEVICE_POLLING
180static int	stge_poll(struct ifnet *, enum poll_cmd, int);
181#endif
182
183static void	stge_setwol(struct stge_softc *);
184static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187
188/*
189 * MII bit-bang glue
190 */
191static uint32_t stge_mii_bitbang_read(device_t);
192static void	stge_mii_bitbang_write(device_t, uint32_t);
193
194static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
195	stge_mii_bitbang_read,
196	stge_mii_bitbang_write,
197	{
198		PC_MgmtData,		/* MII_BIT_MDO */
199		PC_MgmtData,		/* MII_BIT_MDI */
200		PC_MgmtClk,		/* MII_BIT_MDC */
201		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
202		0,			/* MII_BIT_DIR_PHY_HOST */
203	}
204};
205
206static device_method_t stge_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		stge_probe),
209	DEVMETHOD(device_attach,	stge_attach),
210	DEVMETHOD(device_detach,	stge_detach),
211	DEVMETHOD(device_shutdown,	stge_shutdown),
212	DEVMETHOD(device_suspend,	stge_suspend),
213	DEVMETHOD(device_resume,	stge_resume),
214
215	/* MII interface */
216	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
217	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
218	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
219
220	DEVMETHOD_END
221};
222
223static driver_t stge_driver = {
224	"stge",
225	stge_methods,
226	sizeof(struct stge_softc)
227};
228
229static devclass_t stge_devclass;
230
231DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
232DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
233
234static struct resource_spec stge_res_spec_io[] = {
235	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
236	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
237	{ -1,			0,		0 }
238};
239
240static struct resource_spec stge_res_spec_mem[] = {
241	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
242	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
243	{ -1,			0,		0 }
244};
245
246/*
247 * stge_mii_bitbang_read: [mii bit-bang interface function]
248 *
249 *	Read the MII serial port for the MII bit-bang module.
250 */
251static uint32_t
252stge_mii_bitbang_read(device_t dev)
253{
254	struct stge_softc *sc;
255	uint32_t val;
256
257	sc = device_get_softc(dev);
258
259	val = CSR_READ_1(sc, STGE_PhyCtrl);
260	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
261	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
262	return (val);
263}
264
265/*
266 * stge_mii_bitbang_write: [mii big-bang interface function]
267 *
268 *	Write the MII serial port for the MII bit-bang module.
269 */
270static void
271stge_mii_bitbang_write(device_t dev, uint32_t val)
272{
273	struct stge_softc *sc;
274
275	sc = device_get_softc(dev);
276
277	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
278	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
279	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
280}
281
282/*
283 * sc_miibus_readreg:	[mii interface function]
284 *
285 *	Read a PHY register on the MII of the TC9021.
286 */
287static int
288stge_miibus_readreg(device_t dev, int phy, int reg)
289{
290	struct stge_softc *sc;
291	int error, val;
292
293	sc = device_get_softc(dev);
294
295	if (reg == STGE_PhyCtrl) {
296		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
297		STGE_MII_LOCK(sc);
298		error = CSR_READ_1(sc, STGE_PhyCtrl);
299		STGE_MII_UNLOCK(sc);
300		return (error);
301	}
302
303	STGE_MII_LOCK(sc);
304	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
305	STGE_MII_UNLOCK(sc);
306	return (val);
307}
308
309/*
310 * stge_miibus_writereg:	[mii interface function]
311 *
312 *	Write a PHY register on the MII of the TC9021.
313 */
314static int
315stge_miibus_writereg(device_t dev, int phy, int reg, int val)
316{
317	struct stge_softc *sc;
318
319	sc = device_get_softc(dev);
320
321	STGE_MII_LOCK(sc);
322	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
323	STGE_MII_UNLOCK(sc);
324	return (0);
325}
326
327/*
328 * stge_miibus_statchg:	[mii interface function]
329 *
330 *	Callback from MII layer when media changes.
331 */
332static void
333stge_miibus_statchg(device_t dev)
334{
335	struct stge_softc *sc;
336
337	sc = device_get_softc(dev);
338	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
339}
340
341/*
342 * stge_mediastatus:	[ifmedia interface function]
343 *
344 *	Get the current interface media status.
345 */
346static void
347stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
348{
349	struct stge_softc *sc;
350	struct mii_data *mii;
351
352	sc = ifp->if_softc;
353	mii = device_get_softc(sc->sc_miibus);
354
355	mii_pollstat(mii);
356	ifmr->ifm_status = mii->mii_media_status;
357	ifmr->ifm_active = mii->mii_media_active;
358}
359
360/*
361 * stge_mediachange:	[ifmedia interface function]
362 *
363 *	Set hardware to newly-selected media.
364 */
365static int
366stge_mediachange(struct ifnet *ifp)
367{
368	struct stge_softc *sc;
369	struct mii_data *mii;
370
371	sc = ifp->if_softc;
372	mii = device_get_softc(sc->sc_miibus);
373	mii_mediachg(mii);
374
375	return (0);
376}
377
378static int
379stge_eeprom_wait(struct stge_softc *sc)
380{
381	int i;
382
383	for (i = 0; i < STGE_TIMEOUT; i++) {
384		DELAY(1000);
385		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
386			return (0);
387	}
388	return (1);
389}
390
391/*
392 * stge_read_eeprom:
393 *
394 *	Read data from the serial EEPROM.
395 */
396static void
397stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
398{
399
400	if (stge_eeprom_wait(sc))
401		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
402
403	CSR_WRITE_2(sc, STGE_EepromCtrl,
404	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
405	if (stge_eeprom_wait(sc))
406		device_printf(sc->sc_dev, "EEPROM read timed out\n");
407	*data = CSR_READ_2(sc, STGE_EepromData);
408}
409
410static int
411stge_probe(device_t dev)
412{
413	const struct stge_product *sp;
414	int i;
415	uint16_t vendor, devid;
416
417	vendor = pci_get_vendor(dev);
418	devid = pci_get_device(dev);
419	sp = stge_products;
420	for (i = 0; i < nitems(stge_products); i++, sp++) {
421		if (vendor == sp->stge_vendorid &&
422		    devid == sp->stge_deviceid) {
423			device_set_desc(dev, sp->stge_name);
424			return (BUS_PROBE_DEFAULT);
425		}
426	}
427
428	return (ENXIO);
429}
430
431static int
432stge_attach(device_t dev)
433{
434	struct stge_softc *sc;
435	struct ifnet *ifp;
436	uint8_t enaddr[ETHER_ADDR_LEN];
437	int error, flags, i;
438	uint16_t cmd;
439	uint32_t val;
440
441	error = 0;
442	sc = device_get_softc(dev);
443	sc->sc_dev = dev;
444
445	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
446	    MTX_DEF);
447	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
448	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
449	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
450
451	/*
452	 * Map the device.
453	 */
454	pci_enable_busmaster(dev);
455	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
456	val = pci_read_config(dev, PCIR_BAR(1), 4);
457	if (PCI_BAR_IO(val))
458		sc->sc_spec = stge_res_spec_mem;
459	else {
460		val = pci_read_config(dev, PCIR_BAR(0), 4);
461		if (!PCI_BAR_IO(val)) {
462			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
463			error = ENXIO;
464			goto fail;
465		}
466		sc->sc_spec = stge_res_spec_io;
467	}
468	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
469	if (error != 0) {
470		device_printf(dev, "couldn't allocate %s resources\n",
471		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
472		goto fail;
473	}
474	sc->sc_rev = pci_get_revid(dev);
475
476	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
477	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
478	    "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
479	    &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I",
480	    "stge rx interrupt nframe");
481
482	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
483	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
484	    "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
485	    &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I",
486	    "stge rx interrupt dmawait");
487
488	/* Pull in device tunables. */
489	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
490	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
491	    "rxint_nframe", &sc->sc_rxint_nframe);
492	if (error == 0) {
493		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
494		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
495			device_printf(dev, "rxint_nframe value out of range; "
496			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
497			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
498		}
499	}
500
501	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
502	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
503	    "rxint_dmawait", &sc->sc_rxint_dmawait);
504	if (error == 0) {
505		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
506		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
507			device_printf(dev, "rxint_dmawait value out of range; "
508			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
509			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
510		}
511	}
512
513	if ((error = stge_dma_alloc(sc)) != 0)
514		goto fail;
515
516	/*
517	 * Determine if we're copper or fiber.  It affects how we
518	 * reset the card.
519	 */
520	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
521		sc->sc_usefiber = 1;
522	else
523		sc->sc_usefiber = 0;
524
525	/* Load LED configuration from EEPROM. */
526	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
527
528	/*
529	 * Reset the chip to a known state.
530	 */
531	STGE_LOCK(sc);
532	stge_reset(sc, STGE_RESET_FULL);
533	STGE_UNLOCK(sc);
534
535	/*
536	 * Reading the station address from the EEPROM doesn't seem
537	 * to work, at least on my sample boards.  Instead, since
538	 * the reset sequence does AutoInit, read it from the station
539	 * address registers. For Sundance 1023 you can only read it
540	 * from EEPROM.
541	 */
542	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
543		uint16_t v;
544
545		v = CSR_READ_2(sc, STGE_StationAddress0);
546		enaddr[0] = v & 0xff;
547		enaddr[1] = v >> 8;
548		v = CSR_READ_2(sc, STGE_StationAddress1);
549		enaddr[2] = v & 0xff;
550		enaddr[3] = v >> 8;
551		v = CSR_READ_2(sc, STGE_StationAddress2);
552		enaddr[4] = v & 0xff;
553		enaddr[5] = v >> 8;
554		sc->sc_stge1023 = 0;
555	} else {
556		uint16_t myaddr[ETHER_ADDR_LEN / 2];
557		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
558			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
559			    &myaddr[i]);
560			myaddr[i] = le16toh(myaddr[i]);
561		}
562		bcopy(myaddr, enaddr, sizeof(enaddr));
563		sc->sc_stge1023 = 1;
564	}
565
566	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
567	if (ifp == NULL) {
568		device_printf(sc->sc_dev, "failed to if_alloc()\n");
569		error = ENXIO;
570		goto fail;
571	}
572
573	ifp->if_softc = sc;
574	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
575	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
576	ifp->if_ioctl = stge_ioctl;
577	ifp->if_start = stge_start;
578	ifp->if_init = stge_init;
579	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
580	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
581	IFQ_SET_READY(&ifp->if_snd);
582	/* Revision B3 and earlier chips have checksum bug. */
583	if (sc->sc_rev >= 0x0c) {
584		ifp->if_hwassist = STGE_CSUM_FEATURES;
585		ifp->if_capabilities = IFCAP_HWCSUM;
586	} else {
587		ifp->if_hwassist = 0;
588		ifp->if_capabilities = 0;
589	}
590	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
591	ifp->if_capenable = ifp->if_capabilities;
592
593	/*
594	 * Read some important bits from the PhyCtrl register.
595	 */
596	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
597	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
598
599	/* Set up MII bus. */
600	flags = MIIF_DOPAUSE;
601	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
602		flags |= MIIF_MACPRIV0;
603	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
604	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
605	    flags);
606	if (error != 0) {
607		device_printf(sc->sc_dev, "attaching PHYs failed\n");
608		goto fail;
609	}
610
611	ether_ifattach(ifp, enaddr);
612
613	/* VLAN capability setup */
614	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
615	if (sc->sc_rev >= 0x0c)
616		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
617	ifp->if_capenable = ifp->if_capabilities;
618#ifdef DEVICE_POLLING
619	ifp->if_capabilities |= IFCAP_POLLING;
620#endif
621	/*
622	 * Tell the upper layer(s) we support long frames.
623	 * Must appear after the call to ether_ifattach() because
624	 * ether_ifattach() sets ifi_hdrlen to the default value.
625	 */
626	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
627
628	/*
629	 * The manual recommends disabling early transmit, so we
630	 * do.  It's disabled anyway, if using IP checksumming,
631	 * since the entire packet must be in the FIFO in order
632	 * for the chip to perform the checksum.
633	 */
634	sc->sc_txthresh = 0x0fff;
635
636	/*
637	 * Disable MWI if the PCI layer tells us to.
638	 */
639	sc->sc_DMACtrl = 0;
640	if ((cmd & PCIM_CMD_MWRICEN) == 0)
641		sc->sc_DMACtrl |= DMAC_MWIDisable;
642
643	/*
644	 * Hookup IRQ
645	 */
646	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
647	    NULL, stge_intr, sc, &sc->sc_ih);
648	if (error != 0) {
649		ether_ifdetach(ifp);
650		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
651		sc->sc_ifp = NULL;
652		goto fail;
653	}
654
655fail:
656	if (error != 0)
657		stge_detach(dev);
658
659	return (error);
660}
661
662static int
663stge_detach(device_t dev)
664{
665	struct stge_softc *sc;
666	struct ifnet *ifp;
667
668	sc = device_get_softc(dev);
669
670	ifp = sc->sc_ifp;
671#ifdef DEVICE_POLLING
672	if (ifp && ifp->if_capenable & IFCAP_POLLING)
673		ether_poll_deregister(ifp);
674#endif
675	if (device_is_attached(dev)) {
676		STGE_LOCK(sc);
677		/* XXX */
678		sc->sc_detach = 1;
679		stge_stop(sc);
680		STGE_UNLOCK(sc);
681		callout_drain(&sc->sc_tick_ch);
682		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
683		ether_ifdetach(ifp);
684	}
685
686	if (sc->sc_miibus != NULL) {
687		device_delete_child(dev, sc->sc_miibus);
688		sc->sc_miibus = NULL;
689	}
690	bus_generic_detach(dev);
691	stge_dma_free(sc);
692
693	if (ifp != NULL) {
694		if_free(ifp);
695		sc->sc_ifp = NULL;
696	}
697
698	if (sc->sc_ih) {
699		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
700		sc->sc_ih = NULL;
701	}
702	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
703
704	mtx_destroy(&sc->sc_mii_mtx);
705	mtx_destroy(&sc->sc_mtx);
706
707	return (0);
708}
709
710struct stge_dmamap_arg {
711	bus_addr_t	stge_busaddr;
712};
713
714static void
715stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
716{
717	struct stge_dmamap_arg *ctx;
718
719	if (error != 0)
720		return;
721
722	ctx = (struct stge_dmamap_arg *)arg;
723	ctx->stge_busaddr = segs[0].ds_addr;
724}
725
726static int
727stge_dma_alloc(struct stge_softc *sc)
728{
729	struct stge_dmamap_arg ctx;
730	struct stge_txdesc *txd;
731	struct stge_rxdesc *rxd;
732	int error, i;
733
734	/* create parent tag. */
735	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
736		    1, 0,			/* algnmnt, boundary */
737		    STGE_DMA_MAXADDR,		/* lowaddr */
738		    BUS_SPACE_MAXADDR,		/* highaddr */
739		    NULL, NULL,			/* filter, filterarg */
740		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
741		    0,				/* nsegments */
742		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
743		    0,				/* flags */
744		    NULL, NULL,			/* lockfunc, lockarg */
745		    &sc->sc_cdata.stge_parent_tag);
746	if (error != 0) {
747		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
748		goto fail;
749	}
750	/* create tag for Tx ring. */
751	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
752		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
753		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
754		    BUS_SPACE_MAXADDR,		/* highaddr */
755		    NULL, NULL,			/* filter, filterarg */
756		    STGE_TX_RING_SZ,		/* maxsize */
757		    1,				/* nsegments */
758		    STGE_TX_RING_SZ,		/* maxsegsize */
759		    0,				/* flags */
760		    NULL, NULL,			/* lockfunc, lockarg */
761		    &sc->sc_cdata.stge_tx_ring_tag);
762	if (error != 0) {
763		device_printf(sc->sc_dev,
764		    "failed to allocate Tx ring DMA tag\n");
765		goto fail;
766	}
767
768	/* create tag for Rx ring. */
769	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
770		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
771		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
772		    BUS_SPACE_MAXADDR,		/* highaddr */
773		    NULL, NULL,			/* filter, filterarg */
774		    STGE_RX_RING_SZ,		/* maxsize */
775		    1,				/* nsegments */
776		    STGE_RX_RING_SZ,		/* maxsegsize */
777		    0,				/* flags */
778		    NULL, NULL,			/* lockfunc, lockarg */
779		    &sc->sc_cdata.stge_rx_ring_tag);
780	if (error != 0) {
781		device_printf(sc->sc_dev,
782		    "failed to allocate Rx ring DMA tag\n");
783		goto fail;
784	}
785
786	/* create tag for Tx buffers. */
787	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
788		    1, 0,			/* algnmnt, boundary */
789		    BUS_SPACE_MAXADDR,		/* lowaddr */
790		    BUS_SPACE_MAXADDR,		/* highaddr */
791		    NULL, NULL,			/* filter, filterarg */
792		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
793		    STGE_MAXTXSEGS,		/* nsegments */
794		    MCLBYTES,			/* maxsegsize */
795		    0,				/* flags */
796		    NULL, NULL,			/* lockfunc, lockarg */
797		    &sc->sc_cdata.stge_tx_tag);
798	if (error != 0) {
799		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
800		goto fail;
801	}
802
803	/* create tag for Rx buffers. */
804	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
805		    1, 0,			/* algnmnt, boundary */
806		    BUS_SPACE_MAXADDR,		/* lowaddr */
807		    BUS_SPACE_MAXADDR,		/* highaddr */
808		    NULL, NULL,			/* filter, filterarg */
809		    MCLBYTES,			/* maxsize */
810		    1,				/* nsegments */
811		    MCLBYTES,			/* maxsegsize */
812		    0,				/* flags */
813		    NULL, NULL,			/* lockfunc, lockarg */
814		    &sc->sc_cdata.stge_rx_tag);
815	if (error != 0) {
816		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
817		goto fail;
818	}
819
820	/* allocate DMA'able memory and load the DMA map for Tx ring. */
821	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
822	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
823	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
824	if (error != 0) {
825		device_printf(sc->sc_dev,
826		    "failed to allocate DMA'able memory for Tx ring\n");
827		goto fail;
828	}
829
830	ctx.stge_busaddr = 0;
831	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
832	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
833	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
834	if (error != 0 || ctx.stge_busaddr == 0) {
835		device_printf(sc->sc_dev,
836		    "failed to load DMA'able memory for Tx ring\n");
837		goto fail;
838	}
839	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
840
841	/* allocate DMA'able memory and load the DMA map for Rx ring. */
842	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
843	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
844	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
845	if (error != 0) {
846		device_printf(sc->sc_dev,
847		    "failed to allocate DMA'able memory for Rx ring\n");
848		goto fail;
849	}
850
851	ctx.stge_busaddr = 0;
852	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
853	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
854	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
855	if (error != 0 || ctx.stge_busaddr == 0) {
856		device_printf(sc->sc_dev,
857		    "failed to load DMA'able memory for Rx ring\n");
858		goto fail;
859	}
860	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
861
862	/* create DMA maps for Tx buffers. */
863	for (i = 0; i < STGE_TX_RING_CNT; i++) {
864		txd = &sc->sc_cdata.stge_txdesc[i];
865		txd->tx_m = NULL;
866		txd->tx_dmamap = 0;
867		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
868		    &txd->tx_dmamap);
869		if (error != 0) {
870			device_printf(sc->sc_dev,
871			    "failed to create Tx dmamap\n");
872			goto fail;
873		}
874	}
875	/* create DMA maps for Rx buffers. */
876	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
877	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
878		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
879		goto fail;
880	}
881	for (i = 0; i < STGE_RX_RING_CNT; i++) {
882		rxd = &sc->sc_cdata.stge_rxdesc[i];
883		rxd->rx_m = NULL;
884		rxd->rx_dmamap = 0;
885		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
886		    &rxd->rx_dmamap);
887		if (error != 0) {
888			device_printf(sc->sc_dev,
889			    "failed to create Rx dmamap\n");
890			goto fail;
891		}
892	}
893
894fail:
895	return (error);
896}
897
898static void
899stge_dma_free(struct stge_softc *sc)
900{
901	struct stge_txdesc *txd;
902	struct stge_rxdesc *rxd;
903	int i;
904
905	/* Tx ring */
906	if (sc->sc_cdata.stge_tx_ring_tag) {
907		if (sc->sc_rdata.stge_tx_ring_paddr)
908			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
909			    sc->sc_cdata.stge_tx_ring_map);
910		if (sc->sc_rdata.stge_tx_ring)
911			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
912			    sc->sc_rdata.stge_tx_ring,
913			    sc->sc_cdata.stge_tx_ring_map);
914		sc->sc_rdata.stge_tx_ring = NULL;
915		sc->sc_rdata.stge_tx_ring_paddr = 0;
916		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
917		sc->sc_cdata.stge_tx_ring_tag = NULL;
918	}
919	/* Rx ring */
920	if (sc->sc_cdata.stge_rx_ring_tag) {
921		if (sc->sc_rdata.stge_rx_ring_paddr)
922			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
923			    sc->sc_cdata.stge_rx_ring_map);
924		if (sc->sc_rdata.stge_rx_ring)
925			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
926			    sc->sc_rdata.stge_rx_ring,
927			    sc->sc_cdata.stge_rx_ring_map);
928		sc->sc_rdata.stge_rx_ring = NULL;
929		sc->sc_rdata.stge_rx_ring_paddr = 0;
930		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
931		sc->sc_cdata.stge_rx_ring_tag = NULL;
932	}
933	/* Tx buffers */
934	if (sc->sc_cdata.stge_tx_tag) {
935		for (i = 0; i < STGE_TX_RING_CNT; i++) {
936			txd = &sc->sc_cdata.stge_txdesc[i];
937			if (txd->tx_dmamap) {
938				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
939				    txd->tx_dmamap);
940				txd->tx_dmamap = 0;
941			}
942		}
943		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
944		sc->sc_cdata.stge_tx_tag = NULL;
945	}
946	/* Rx buffers */
947	if (sc->sc_cdata.stge_rx_tag) {
948		for (i = 0; i < STGE_RX_RING_CNT; i++) {
949			rxd = &sc->sc_cdata.stge_rxdesc[i];
950			if (rxd->rx_dmamap) {
951				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
952				    rxd->rx_dmamap);
953				rxd->rx_dmamap = 0;
954			}
955		}
956		if (sc->sc_cdata.stge_rx_sparemap) {
957			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
958			    sc->sc_cdata.stge_rx_sparemap);
959			sc->sc_cdata.stge_rx_sparemap = 0;
960		}
961		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
962		sc->sc_cdata.stge_rx_tag = NULL;
963	}
964
965	if (sc->sc_cdata.stge_parent_tag) {
966		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
967		sc->sc_cdata.stge_parent_tag = NULL;
968	}
969}
970
971/*
972 * stge_shutdown:
973 *
974 *	Make sure the interface is stopped at reboot time.
975 */
976static int
977stge_shutdown(device_t dev)
978{
979
980	return (stge_suspend(dev));
981}
982
983static void
984stge_setwol(struct stge_softc *sc)
985{
986	struct ifnet *ifp;
987	uint8_t v;
988
989	STGE_LOCK_ASSERT(sc);
990
991	ifp = sc->sc_ifp;
992	v = CSR_READ_1(sc, STGE_WakeEvent);
993	/* Disable all WOL bits. */
994	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
995	    WE_WakeOnLanEnable);
996	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
997		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
998	CSR_WRITE_1(sc, STGE_WakeEvent, v);
999	/* Reset Tx and prevent transmission. */
1000	CSR_WRITE_4(sc, STGE_AsicCtrl,
1001	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1002	/*
1003	 * TC9021 automatically reset link speed to 100Mbps when it's put
1004	 * into sleep so there is no need to try to resetting link speed.
1005	 */
1006}
1007
1008static int
1009stge_suspend(device_t dev)
1010{
1011	struct stge_softc *sc;
1012
1013	sc = device_get_softc(dev);
1014
1015	STGE_LOCK(sc);
1016	stge_stop(sc);
1017	sc->sc_suspended = 1;
1018	stge_setwol(sc);
1019	STGE_UNLOCK(sc);
1020
1021	return (0);
1022}
1023
1024static int
1025stge_resume(device_t dev)
1026{
1027	struct stge_softc *sc;
1028	struct ifnet *ifp;
1029	uint8_t v;
1030
1031	sc = device_get_softc(dev);
1032
1033	STGE_LOCK(sc);
1034	/*
1035	 * Clear WOL bits, so special frames wouldn't interfere
1036	 * normal Rx operation anymore.
1037	 */
1038	v = CSR_READ_1(sc, STGE_WakeEvent);
1039	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1040	    WE_WakeOnLanEnable);
1041	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1042	ifp = sc->sc_ifp;
1043	if (ifp->if_flags & IFF_UP)
1044		stge_init_locked(sc);
1045
1046	sc->sc_suspended = 0;
1047	STGE_UNLOCK(sc);
1048
1049	return (0);
1050}
1051
1052static void
1053stge_dma_wait(struct stge_softc *sc)
1054{
1055	int i;
1056
1057	for (i = 0; i < STGE_TIMEOUT; i++) {
1058		DELAY(2);
1059		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1060			break;
1061	}
1062
1063	if (i == STGE_TIMEOUT)
1064		device_printf(sc->sc_dev, "DMA wait timed out\n");
1065}
1066
1067static int
1068stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1069{
1070	struct stge_txdesc *txd;
1071	struct stge_tfd *tfd;
1072	struct mbuf *m;
1073	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1074	int error, i, nsegs, si;
1075	uint64_t csum_flags, tfc;
1076
1077	STGE_LOCK_ASSERT(sc);
1078
1079	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1080		return (ENOBUFS);
1081
1082	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1083	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1084	if (error == EFBIG) {
1085		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1086		if (m == NULL) {
1087			m_freem(*m_head);
1088			*m_head = NULL;
1089			return (ENOMEM);
1090		}
1091		*m_head = m;
1092		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1093		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1094		if (error != 0) {
1095			m_freem(*m_head);
1096			*m_head = NULL;
1097			return (error);
1098		}
1099	} else if (error != 0)
1100		return (error);
1101	if (nsegs == 0) {
1102		m_freem(*m_head);
1103		*m_head = NULL;
1104		return (EIO);
1105	}
1106
1107	m = *m_head;
1108	csum_flags = 0;
1109	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1110		if (m->m_pkthdr.csum_flags & CSUM_IP)
1111			csum_flags |= TFD_IPChecksumEnable;
1112		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1113			csum_flags |= TFD_TCPChecksumEnable;
1114		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1115			csum_flags |= TFD_UDPChecksumEnable;
1116	}
1117
1118	si = sc->sc_cdata.stge_tx_prod;
1119	tfd = &sc->sc_rdata.stge_tx_ring[si];
1120	for (i = 0; i < nsegs; i++)
1121		tfd->tfd_frags[i].frag_word0 =
1122		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1123		    FRAG_LEN(txsegs[i].ds_len));
1124	sc->sc_cdata.stge_tx_cnt++;
1125
1126	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1127	    TFD_FragCount(nsegs) | csum_flags;
1128	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1129		tfc |= TFD_TxDMAIndicate;
1130
1131	/* Update producer index. */
1132	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1133
1134	/* Check if we have a VLAN tag to insert. */
1135	if (m->m_flags & M_VLANTAG)
1136		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1137	tfd->tfd_control = htole64(tfc);
1138
1139	/* Update Tx Queue. */
1140	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1141	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1142	txd->tx_m = m;
1143
1144	/* Sync descriptors. */
1145	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1146	    BUS_DMASYNC_PREWRITE);
1147	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1148	    sc->sc_cdata.stge_tx_ring_map,
1149	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150
1151	return (0);
1152}
1153
1154/*
1155 * stge_start:		[ifnet interface function]
1156 *
1157 *	Start packet transmission on the interface.
1158 */
1159static void
1160stge_start(struct ifnet *ifp)
1161{
1162	struct stge_softc *sc;
1163
1164	sc = ifp->if_softc;
1165	STGE_LOCK(sc);
1166	stge_start_locked(ifp);
1167	STGE_UNLOCK(sc);
1168}
1169
1170static void
1171stge_start_locked(struct ifnet *ifp)
1172{
1173        struct stge_softc *sc;
1174        struct mbuf *m_head;
1175	int enq;
1176
1177	sc = ifp->if_softc;
1178
1179	STGE_LOCK_ASSERT(sc);
1180
1181	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1182	    IFF_DRV_RUNNING || sc->sc_link == 0)
1183		return;
1184
1185	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1186		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1187			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1188			break;
1189		}
1190
1191		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1192		if (m_head == NULL)
1193			break;
1194		/*
1195		 * Pack the data into the transmit ring. If we
1196		 * don't have room, set the OACTIVE flag and wait
1197		 * for the NIC to drain the ring.
1198		 */
1199		if (stge_encap(sc, &m_head)) {
1200			if (m_head == NULL)
1201				break;
1202			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1203			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1204			break;
1205		}
1206
1207		enq++;
1208		/*
1209		 * If there's a BPF listener, bounce a copy of this frame
1210		 * to him.
1211		 */
1212		ETHER_BPF_MTAP(ifp, m_head);
1213	}
1214
1215	if (enq > 0) {
1216		/* Transmit */
1217		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1218
1219		/* Set a timeout in case the chip goes out to lunch. */
1220		sc->sc_watchdog_timer = 5;
1221	}
1222}
1223
1224/*
1225 * stge_watchdog:
1226 *
1227 *	Watchdog timer handler.
1228 */
1229static void
1230stge_watchdog(struct stge_softc *sc)
1231{
1232	struct ifnet *ifp;
1233
1234	STGE_LOCK_ASSERT(sc);
1235
1236	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1237		return;
1238
1239	ifp = sc->sc_ifp;
1240	if_printf(sc->sc_ifp, "device timeout\n");
1241	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1242	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1243	stge_init_locked(sc);
1244	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1245		stge_start_locked(ifp);
1246}
1247
1248/*
1249 * stge_ioctl:		[ifnet interface function]
1250 *
1251 *	Handle control requests from the operator.
1252 */
1253static int
1254stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1255{
1256	struct stge_softc *sc;
1257	struct ifreq *ifr;
1258	struct mii_data *mii;
1259	int error, mask;
1260
1261	sc = ifp->if_softc;
1262	ifr = (struct ifreq *)data;
1263	error = 0;
1264	switch (cmd) {
1265	case SIOCSIFMTU:
1266		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1267			error = EINVAL;
1268		else if (ifp->if_mtu != ifr->ifr_mtu) {
1269			ifp->if_mtu = ifr->ifr_mtu;
1270			STGE_LOCK(sc);
1271			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1272				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1273				stge_init_locked(sc);
1274			}
1275			STGE_UNLOCK(sc);
1276		}
1277		break;
1278	case SIOCSIFFLAGS:
1279		STGE_LOCK(sc);
1280		if ((ifp->if_flags & IFF_UP) != 0) {
1281			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1282				if (((ifp->if_flags ^ sc->sc_if_flags)
1283				    & IFF_PROMISC) != 0)
1284					stge_set_filter(sc);
1285			} else {
1286				if (sc->sc_detach == 0)
1287					stge_init_locked(sc);
1288			}
1289		} else {
1290			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1291				stge_stop(sc);
1292		}
1293		sc->sc_if_flags = ifp->if_flags;
1294		STGE_UNLOCK(sc);
1295		break;
1296	case SIOCADDMULTI:
1297	case SIOCDELMULTI:
1298		STGE_LOCK(sc);
1299		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1300			stge_set_multi(sc);
1301		STGE_UNLOCK(sc);
1302		break;
1303	case SIOCSIFMEDIA:
1304	case SIOCGIFMEDIA:
1305		mii = device_get_softc(sc->sc_miibus);
1306		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1307		break;
1308	case SIOCSIFCAP:
1309		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1310#ifdef DEVICE_POLLING
1311		if ((mask & IFCAP_POLLING) != 0) {
1312			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1313				error = ether_poll_register(stge_poll, ifp);
1314				if (error != 0)
1315					break;
1316				STGE_LOCK(sc);
1317				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1318				ifp->if_capenable |= IFCAP_POLLING;
1319				STGE_UNLOCK(sc);
1320			} else {
1321				error = ether_poll_deregister(ifp);
1322				if (error != 0)
1323					break;
1324				STGE_LOCK(sc);
1325				CSR_WRITE_2(sc, STGE_IntEnable,
1326				    sc->sc_IntEnable);
1327				ifp->if_capenable &= ~IFCAP_POLLING;
1328				STGE_UNLOCK(sc);
1329			}
1330		}
1331#endif
1332		if ((mask & IFCAP_HWCSUM) != 0) {
1333			ifp->if_capenable ^= IFCAP_HWCSUM;
1334			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1335			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1336				ifp->if_hwassist = STGE_CSUM_FEATURES;
1337			else
1338				ifp->if_hwassist = 0;
1339		}
1340		if ((mask & IFCAP_WOL) != 0 &&
1341		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1342			if ((mask & IFCAP_WOL_MAGIC) != 0)
1343				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1344		}
1345		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1346			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1347			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1348				STGE_LOCK(sc);
1349				stge_vlan_setup(sc);
1350				STGE_UNLOCK(sc);
1351			}
1352		}
1353		VLAN_CAPABILITIES(ifp);
1354		break;
1355	default:
1356		error = ether_ioctl(ifp, cmd, data);
1357		break;
1358	}
1359
1360	return (error);
1361}
1362
1363static void
1364stge_link_task(void *arg, int pending)
1365{
1366	struct stge_softc *sc;
1367	struct mii_data *mii;
1368	uint32_t v, ac;
1369	int i;
1370
1371	sc = (struct stge_softc *)arg;
1372	STGE_LOCK(sc);
1373
1374	mii = device_get_softc(sc->sc_miibus);
1375	if (mii->mii_media_status & IFM_ACTIVE) {
1376		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1377			sc->sc_link = 1;
1378	} else
1379		sc->sc_link = 0;
1380
1381	sc->sc_MACCtrl = 0;
1382	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1383		sc->sc_MACCtrl |= MC_DuplexSelect;
1384	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1385		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1386	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1387		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1388	/*
1389	 * Update STGE_MACCtrl register depending on link status.
1390	 * (duplex, flow control etc)
1391	 */
1392	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1393	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1394	v |= sc->sc_MACCtrl;
1395	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1396	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1397		/* Duplex setting changed, reset Tx/Rx functions. */
1398		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1399		ac |= AC_TxReset | AC_RxReset;
1400		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1401		for (i = 0; i < STGE_TIMEOUT; i++) {
1402			DELAY(100);
1403			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1404				break;
1405		}
1406		if (i == STGE_TIMEOUT)
1407			device_printf(sc->sc_dev, "reset failed to complete\n");
1408	}
1409	STGE_UNLOCK(sc);
1410}
1411
1412static __inline int
1413stge_tx_error(struct stge_softc *sc)
1414{
1415	uint32_t txstat;
1416	int error;
1417
1418	for (error = 0;;) {
1419		txstat = CSR_READ_4(sc, STGE_TxStatus);
1420		if ((txstat & TS_TxComplete) == 0)
1421			break;
1422		/* Tx underrun */
1423		if ((txstat & TS_TxUnderrun) != 0) {
1424			/*
1425			 * XXX
1426			 * There should be a more better way to recover
1427			 * from Tx underrun instead of a full reset.
1428			 */
1429			if (sc->sc_nerr++ < STGE_MAXERR)
1430				device_printf(sc->sc_dev, "Tx underrun, "
1431				    "resetting...\n");
1432			if (sc->sc_nerr == STGE_MAXERR)
1433				device_printf(sc->sc_dev, "too many errors; "
1434				    "not reporting any more\n");
1435			error = -1;
1436			break;
1437		}
1438		/* Maximum/Late collisions, Re-enable Tx MAC. */
1439		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1440			CSR_WRITE_4(sc, STGE_MACCtrl,
1441			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1442			    MC_TxEnable);
1443	}
1444
1445	return (error);
1446}
1447
1448/*
1449 * stge_intr:
1450 *
1451 *	Interrupt service routine.
1452 */
1453static void
1454stge_intr(void *arg)
1455{
1456	struct stge_softc *sc;
1457	struct ifnet *ifp;
1458	int reinit;
1459	uint16_t status;
1460
1461	sc = (struct stge_softc *)arg;
1462	ifp = sc->sc_ifp;
1463
1464	STGE_LOCK(sc);
1465
1466#ifdef DEVICE_POLLING
1467	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1468		goto done_locked;
1469#endif
1470	status = CSR_READ_2(sc, STGE_IntStatus);
1471	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1472		goto done_locked;
1473
1474	/* Disable interrupts. */
1475	for (reinit = 0;;) {
1476		status = CSR_READ_2(sc, STGE_IntStatusAck);
1477		status &= sc->sc_IntEnable;
1478		if (status == 0)
1479			break;
1480		/* Host interface errors. */
1481		if ((status & IS_HostError) != 0) {
1482			device_printf(sc->sc_dev,
1483			    "Host interface error, resetting...\n");
1484			reinit = 1;
1485			goto force_init;
1486		}
1487
1488		/* Receive interrupts. */
1489		if ((status & IS_RxDMAComplete) != 0) {
1490			stge_rxeof(sc);
1491			if ((status & IS_RFDListEnd) != 0)
1492				CSR_WRITE_4(sc, STGE_DMACtrl,
1493				    DMAC_RxDMAPollNow);
1494		}
1495
1496		/* Transmit interrupts. */
1497		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1498			stge_txeof(sc);
1499
1500		/* Transmission errors.*/
1501		if ((status & IS_TxComplete) != 0) {
1502			if ((reinit = stge_tx_error(sc)) != 0)
1503				break;
1504		}
1505	}
1506
1507force_init:
1508	if (reinit != 0) {
1509		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1510		stge_init_locked(sc);
1511	}
1512
1513	/* Re-enable interrupts. */
1514	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1515
1516	/* Try to get more packets going. */
1517	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1518		stge_start_locked(ifp);
1519
1520done_locked:
1521	STGE_UNLOCK(sc);
1522}
1523
1524/*
1525 * stge_txeof:
1526 *
1527 *	Helper; handle transmit interrupts.
1528 */
1529static void
1530stge_txeof(struct stge_softc *sc)
1531{
1532	struct ifnet *ifp;
1533	struct stge_txdesc *txd;
1534	uint64_t control;
1535	int cons;
1536
1537	STGE_LOCK_ASSERT(sc);
1538
1539	ifp = sc->sc_ifp;
1540
1541	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1542	if (txd == NULL)
1543		return;
1544	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1545	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1546
1547	/*
1548	 * Go through our Tx list and free mbufs for those
1549	 * frames which have been transmitted.
1550	 */
1551	for (cons = sc->sc_cdata.stge_tx_cons;;
1552	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1553		if (sc->sc_cdata.stge_tx_cnt <= 0)
1554			break;
1555		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1556		if ((control & TFD_TFDDone) == 0)
1557			break;
1558		sc->sc_cdata.stge_tx_cnt--;
1559		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1560
1561		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1562		    BUS_DMASYNC_POSTWRITE);
1563		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1564
1565		/* Output counter is updated with statistics register */
1566		m_freem(txd->tx_m);
1567		txd->tx_m = NULL;
1568		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1569		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1570		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1571	}
1572	sc->sc_cdata.stge_tx_cons = cons;
1573	if (sc->sc_cdata.stge_tx_cnt == 0)
1574		sc->sc_watchdog_timer = 0;
1575
1576        bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1577	    sc->sc_cdata.stge_tx_ring_map,
1578	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1579}
1580
1581static __inline void
1582stge_discard_rxbuf(struct stge_softc *sc, int idx)
1583{
1584	struct stge_rfd *rfd;
1585
1586	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1587	rfd->rfd_status = 0;
1588}
1589
1590#ifndef __NO_STRICT_ALIGNMENT
1591/*
1592 * It seems that TC9021's DMA engine has alignment restrictions in
1593 * DMA scatter operations. The first DMA segment has no address
1594 * alignment restrictins but the rest should be aligned on 4(?) bytes
1595 * boundary. Otherwise it would corrupt random memory. Since we don't
1596 * know which one is used for the first segment in advance we simply
1597 * don't align at all.
1598 * To avoid copying over an entire frame to align, we allocate a new
1599 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1600 * prepended into the existing mbuf chain.
1601 */
1602static __inline struct mbuf *
1603stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1604{
1605	struct mbuf *n;
1606
1607	n = NULL;
1608	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1609		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1610		m->m_data += ETHER_HDR_LEN;
1611		n = m;
1612	} else {
1613		MGETHDR(n, M_NOWAIT, MT_DATA);
1614		if (n != NULL) {
1615			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1616			m->m_data += ETHER_HDR_LEN;
1617			m->m_len -= ETHER_HDR_LEN;
1618			n->m_len = ETHER_HDR_LEN;
1619			M_MOVE_PKTHDR(n, m);
1620			n->m_next = m;
1621		} else
1622			m_freem(m);
1623	}
1624
1625	return (n);
1626}
1627#endif
1628
1629/*
1630 * stge_rxeof:
1631 *
1632 *	Helper; handle receive interrupts.
1633 */
1634static int
1635stge_rxeof(struct stge_softc *sc)
1636{
1637	struct ifnet *ifp;
1638	struct stge_rxdesc *rxd;
1639	struct mbuf *mp, *m;
1640	uint64_t status64;
1641	uint32_t status;
1642	int cons, prog, rx_npkts;
1643
1644	STGE_LOCK_ASSERT(sc);
1645
1646	rx_npkts = 0;
1647	ifp = sc->sc_ifp;
1648
1649	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1650	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1651
1652	prog = 0;
1653	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1654	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1655		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1656		status = RFD_RxStatus(status64);
1657		if ((status & RFD_RFDDone) == 0)
1658			break;
1659#ifdef DEVICE_POLLING
1660		if (ifp->if_capenable & IFCAP_POLLING) {
1661			if (sc->sc_cdata.stge_rxcycles <= 0)
1662				break;
1663			sc->sc_cdata.stge_rxcycles--;
1664		}
1665#endif
1666		prog++;
1667		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1668		mp = rxd->rx_m;
1669
1670		/*
1671		 * If the packet had an error, drop it.  Note we count
1672		 * the error later in the periodic stats update.
1673		 */
1674		if ((status & RFD_FrameEnd) != 0 && (status &
1675		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1676		    RFD_RxAlignmentError | RFD_RxFCSError |
1677		    RFD_RxLengthError)) != 0) {
1678			stge_discard_rxbuf(sc, cons);
1679			if (sc->sc_cdata.stge_rxhead != NULL) {
1680				m_freem(sc->sc_cdata.stge_rxhead);
1681				STGE_RXCHAIN_RESET(sc);
1682			}
1683			continue;
1684		}
1685		/*
1686		 * Add a new receive buffer to the ring.
1687		 */
1688		if (stge_newbuf(sc, cons) != 0) {
1689			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1690			stge_discard_rxbuf(sc, cons);
1691			if (sc->sc_cdata.stge_rxhead != NULL) {
1692				m_freem(sc->sc_cdata.stge_rxhead);
1693				STGE_RXCHAIN_RESET(sc);
1694			}
1695			continue;
1696		}
1697
1698		if ((status & RFD_FrameEnd) != 0)
1699			mp->m_len = RFD_RxDMAFrameLen(status) -
1700			    sc->sc_cdata.stge_rxlen;
1701		sc->sc_cdata.stge_rxlen += mp->m_len;
1702
1703		/* Chain mbufs. */
1704		if (sc->sc_cdata.stge_rxhead == NULL) {
1705			sc->sc_cdata.stge_rxhead = mp;
1706			sc->sc_cdata.stge_rxtail = mp;
1707		} else {
1708			mp->m_flags &= ~M_PKTHDR;
1709			sc->sc_cdata.stge_rxtail->m_next = mp;
1710			sc->sc_cdata.stge_rxtail = mp;
1711		}
1712
1713		if ((status & RFD_FrameEnd) != 0) {
1714			m = sc->sc_cdata.stge_rxhead;
1715			m->m_pkthdr.rcvif = ifp;
1716			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1717
1718			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1719				m_freem(m);
1720				STGE_RXCHAIN_RESET(sc);
1721				continue;
1722			}
1723			/*
1724			 * Set the incoming checksum information for
1725			 * the packet.
1726			 */
1727			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1728				if ((status & RFD_IPDetected) != 0) {
1729					m->m_pkthdr.csum_flags |=
1730						CSUM_IP_CHECKED;
1731					if ((status & RFD_IPError) == 0)
1732						m->m_pkthdr.csum_flags |=
1733						    CSUM_IP_VALID;
1734				}
1735				if (((status & RFD_TCPDetected) != 0 &&
1736				    (status & RFD_TCPError) == 0) ||
1737				    ((status & RFD_UDPDetected) != 0 &&
1738				    (status & RFD_UDPError) == 0)) {
1739					m->m_pkthdr.csum_flags |=
1740					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1741					m->m_pkthdr.csum_data = 0xffff;
1742				}
1743			}
1744
1745#ifndef __NO_STRICT_ALIGNMENT
1746			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1747				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1748					STGE_RXCHAIN_RESET(sc);
1749					continue;
1750				}
1751			}
1752#endif
1753			/* Check for VLAN tagged packets. */
1754			if ((status & RFD_VLANDetected) != 0 &&
1755			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1756				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1757				m->m_flags |= M_VLANTAG;
1758			}
1759
1760			STGE_UNLOCK(sc);
1761			/* Pass it on. */
1762			(*ifp->if_input)(ifp, m);
1763			STGE_LOCK(sc);
1764			rx_npkts++;
1765
1766			STGE_RXCHAIN_RESET(sc);
1767		}
1768	}
1769
1770	if (prog > 0) {
1771		/* Update the consumer index. */
1772		sc->sc_cdata.stge_rx_cons = cons;
1773		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1774		    sc->sc_cdata.stge_rx_ring_map,
1775		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776	}
1777	return (rx_npkts);
1778}
1779
1780#ifdef DEVICE_POLLING
1781static int
1782stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1783{
1784	struct stge_softc *sc;
1785	uint16_t status;
1786	int rx_npkts;
1787
1788	rx_npkts = 0;
1789	sc = ifp->if_softc;
1790	STGE_LOCK(sc);
1791	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1792		STGE_UNLOCK(sc);
1793		return (rx_npkts);
1794	}
1795
1796	sc->sc_cdata.stge_rxcycles = count;
1797	rx_npkts = stge_rxeof(sc);
1798	stge_txeof(sc);
1799
1800	if (cmd == POLL_AND_CHECK_STATUS) {
1801		status = CSR_READ_2(sc, STGE_IntStatus);
1802		status &= sc->sc_IntEnable;
1803		if (status != 0) {
1804			if ((status & IS_HostError) != 0) {
1805				device_printf(sc->sc_dev,
1806				    "Host interface error, resetting...\n");
1807				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1808				stge_init_locked(sc);
1809			}
1810			if ((status & IS_TxComplete) != 0) {
1811				if (stge_tx_error(sc) != 0) {
1812					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813					stge_init_locked(sc);
1814				}
1815			}
1816		}
1817	}
1818
1819	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1820		stge_start_locked(ifp);
1821
1822	STGE_UNLOCK(sc);
1823	return (rx_npkts);
1824}
1825#endif	/* DEVICE_POLLING */
1826
1827/*
1828 * stge_tick:
1829 *
1830 *	One second timer, used to tick the MII.
1831 */
1832static void
1833stge_tick(void *arg)
1834{
1835	struct stge_softc *sc;
1836	struct mii_data *mii;
1837
1838	sc = (struct stge_softc *)arg;
1839
1840	STGE_LOCK_ASSERT(sc);
1841
1842	mii = device_get_softc(sc->sc_miibus);
1843	mii_tick(mii);
1844
1845	/* Update statistics counters. */
1846	stge_stats_update(sc);
1847
1848	/*
1849	 * Relcaim any pending Tx descriptors to release mbufs in a
1850	 * timely manner as we don't generate Tx completion interrupts
1851	 * for every frame. This limits the delay to a maximum of one
1852	 * second.
1853	 */
1854	if (sc->sc_cdata.stge_tx_cnt != 0)
1855		stge_txeof(sc);
1856
1857	stge_watchdog(sc);
1858
1859	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1860}
1861
1862/*
1863 * stge_stats_update:
1864 *
1865 *	Read the TC9021 statistics counters.
1866 */
1867static void
1868stge_stats_update(struct stge_softc *sc)
1869{
1870	struct ifnet *ifp;
1871
1872	STGE_LOCK_ASSERT(sc);
1873
1874	ifp = sc->sc_ifp;
1875
1876	CSR_READ_4(sc,STGE_OctetRcvOk);
1877
1878	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1879
1880	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1881
1882	CSR_READ_4(sc, STGE_OctetXmtdOk);
1883
1884	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1885
1886	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1887	    CSR_READ_4(sc, STGE_LateCollisions) +
1888	    CSR_READ_4(sc, STGE_MultiColFrames) +
1889	    CSR_READ_4(sc, STGE_SingleColFrames));
1890
1891	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1892	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1893	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1894}
1895
1896/*
1897 * stge_reset:
1898 *
1899 *	Perform a soft reset on the TC9021.
1900 */
1901static void
1902stge_reset(struct stge_softc *sc, uint32_t how)
1903{
1904	uint32_t ac;
1905	uint8_t v;
1906	int i, dv;
1907
1908	STGE_LOCK_ASSERT(sc);
1909
1910	dv = 5000;
1911	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1912	switch (how) {
1913	case STGE_RESET_TX:
1914		ac |= AC_TxReset | AC_FIFO;
1915		dv = 100;
1916		break;
1917	case STGE_RESET_RX:
1918		ac |= AC_RxReset | AC_FIFO;
1919		dv = 100;
1920		break;
1921	case STGE_RESET_FULL:
1922	default:
1923		/*
1924		 * Only assert RstOut if we're fiber.  We need GMII clocks
1925		 * to be present in order for the reset to complete on fiber
1926		 * cards.
1927		 */
1928		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1929		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1930		    (sc->sc_usefiber ? AC_RstOut : 0);
1931		break;
1932	}
1933
1934	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1935
1936	/* Account for reset problem at 10Mbps. */
1937	DELAY(dv);
1938
1939	for (i = 0; i < STGE_TIMEOUT; i++) {
1940		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1941			break;
1942		DELAY(dv);
1943	}
1944
1945	if (i == STGE_TIMEOUT)
1946		device_printf(sc->sc_dev, "reset failed to complete\n");
1947
1948	/* Set LED, from Linux IPG driver. */
1949	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1950	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1951	if ((sc->sc_led & 0x01) != 0)
1952		ac |= AC_LEDMode;
1953	if ((sc->sc_led & 0x03) != 0)
1954		ac |= AC_LEDModeBit1;
1955	if ((sc->sc_led & 0x08) != 0)
1956		ac |= AC_LEDSpeed;
1957	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1958
1959	/* Set PHY, from Linux IPG driver */
1960	v = CSR_READ_1(sc, STGE_PhySet);
1961	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1962	v |= ((sc->sc_led & 0x70) >> 4);
1963	CSR_WRITE_1(sc, STGE_PhySet, v);
1964}
1965
1966/*
1967 * stge_init:		[ ifnet interface function ]
1968 *
1969 *	Initialize the interface.
1970 */
1971static void
1972stge_init(void *xsc)
1973{
1974	struct stge_softc *sc;
1975
1976	sc = (struct stge_softc *)xsc;
1977	STGE_LOCK(sc);
1978	stge_init_locked(sc);
1979	STGE_UNLOCK(sc);
1980}
1981
1982static void
1983stge_init_locked(struct stge_softc *sc)
1984{
1985	struct ifnet *ifp;
1986	struct mii_data *mii;
1987	uint16_t eaddr[3];
1988	uint32_t v;
1989	int error;
1990
1991	STGE_LOCK_ASSERT(sc);
1992
1993	ifp = sc->sc_ifp;
1994	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1995		return;
1996	mii = device_get_softc(sc->sc_miibus);
1997
1998	/*
1999	 * Cancel any pending I/O.
2000	 */
2001	stge_stop(sc);
2002
2003	/*
2004	 * Reset the chip to a known state.
2005	 */
2006	stge_reset(sc, STGE_RESET_FULL);
2007
2008	/* Init descriptors. */
2009	error = stge_init_rx_ring(sc);
2010        if (error != 0) {
2011                device_printf(sc->sc_dev,
2012                    "initialization failed: no memory for rx buffers\n");
2013                stge_stop(sc);
2014		goto out;
2015        }
2016	stge_init_tx_ring(sc);
2017
2018	/* Set the station address. */
2019	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2020	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2021	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2022	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2023
2024	/*
2025	 * Set the statistics masks.  Disable all the RMON stats,
2026	 * and disable selected stats in the non-RMON stats registers.
2027	 */
2028	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2029	CSR_WRITE_4(sc, STGE_StatisticsMask,
2030	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2031	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2032	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2033	    (1U << 21));
2034
2035	/* Set up the receive filter. */
2036	stge_set_filter(sc);
2037	/* Program multicast filter. */
2038	stge_set_multi(sc);
2039
2040	/*
2041	 * Give the transmit and receive ring to the chip.
2042	 */
2043	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2044	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2045	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2046	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2047
2048	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2049	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2050	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2051	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2052
2053	/*
2054	 * Initialize the Tx auto-poll period.  It's OK to make this number
2055	 * large (255 is the max, but we use 127) -- we explicitly kick the
2056	 * transmit engine when there's actually a packet.
2057	 */
2058	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2059
2060	/* ..and the Rx auto-poll period. */
2061	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2062
2063	/* Initialize the Tx start threshold. */
2064	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2065
2066	/* Rx DMA thresholds, from Linux */
2067	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2068	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2069
2070	/* Rx early threhold, from Linux */
2071	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2072
2073	/* Tx DMA thresholds, from Linux */
2074	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2075	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2076
2077	/*
2078	 * Initialize the Rx DMA interrupt control register.  We
2079	 * request an interrupt after every incoming packet, but
2080	 * defer it for sc_rxint_dmawait us. When the number of
2081	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2082	 * deferring the interrupt, and signal it immediately.
2083	 */
2084	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2085	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2086	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2087
2088	/*
2089	 * Initialize the interrupt mask.
2090	 */
2091	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2092	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2093#ifdef DEVICE_POLLING
2094	/* Disable interrupts if we are polling. */
2095	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2096		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2097	else
2098#endif
2099	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2100
2101	/*
2102	 * Configure the DMA engine.
2103	 * XXX Should auto-tune TxBurstLimit.
2104	 */
2105	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2106
2107	/*
2108	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2109	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2110	 * in the Rx FIFO.
2111	 */
2112	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2113	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2114
2115	/*
2116	 * Set the maximum frame size.
2117	 */
2118	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2119	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2120
2121	/*
2122	 * Initialize MacCtrl -- do it before setting the media,
2123	 * as setting the media will actually program the register.
2124	 *
2125	 * Note: We have to poke the IFS value before poking
2126	 * anything else.
2127	 */
2128	/* Tx/Rx MAC should be disabled before programming IFS.*/
2129	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2130
2131	stge_vlan_setup(sc);
2132
2133	if (sc->sc_rev >= 6) {		/* >= B.2 */
2134		/* Multi-frag frame bug work-around. */
2135		CSR_WRITE_2(sc, STGE_DebugCtrl,
2136		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2137
2138		/* Tx Poll Now bug work-around. */
2139		CSR_WRITE_2(sc, STGE_DebugCtrl,
2140		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2141		/* Tx Poll Now bug work-around. */
2142		CSR_WRITE_2(sc, STGE_DebugCtrl,
2143		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2144	}
2145
2146	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2147	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2148	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2149	/*
2150	 * It seems that transmitting frames without checking the state of
2151	 * Rx/Tx MAC wedge the hardware.
2152	 */
2153	stge_start_tx(sc);
2154	stge_start_rx(sc);
2155
2156	sc->sc_link = 0;
2157	/*
2158	 * Set the current media.
2159	 */
2160	mii_mediachg(mii);
2161
2162	/*
2163	 * Start the one second MII clock.
2164	 */
2165	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2166
2167	/*
2168	 * ...all done!
2169	 */
2170	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2171	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2172
2173 out:
2174	if (error != 0)
2175		device_printf(sc->sc_dev, "interface not running\n");
2176}
2177
2178static void
2179stge_vlan_setup(struct stge_softc *sc)
2180{
2181	struct ifnet *ifp;
2182	uint32_t v;
2183
2184	ifp = sc->sc_ifp;
2185	/*
2186	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2187	 * MC_AutoVLANuntagging bit.
2188	 * MC_AutoVLANtagging bit selects which VLAN source to use
2189	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2190	 * bit has priority over MC_AutoVLANtagging bit. So we always
2191	 * use TFC instead of STGE_VLANTag register.
2192	 */
2193	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2194	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2195		v |= MC_AutoVLANuntagging;
2196	else
2197		v &= ~MC_AutoVLANuntagging;
2198	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2199}
2200
2201/*
2202 *	Stop transmission on the interface.
2203 */
2204static void
2205stge_stop(struct stge_softc *sc)
2206{
2207	struct ifnet *ifp;
2208	struct stge_txdesc *txd;
2209	struct stge_rxdesc *rxd;
2210	uint32_t v;
2211	int i;
2212
2213	STGE_LOCK_ASSERT(sc);
2214	/*
2215	 * Stop the one second clock.
2216	 */
2217	callout_stop(&sc->sc_tick_ch);
2218	sc->sc_watchdog_timer = 0;
2219
2220	/*
2221	 * Disable interrupts.
2222	 */
2223	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2224
2225	/*
2226	 * Stop receiver, transmitter, and stats update.
2227	 */
2228	stge_stop_rx(sc);
2229	stge_stop_tx(sc);
2230	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2231	v |= MC_StatisticsDisable;
2232	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2233
2234	/*
2235	 * Stop the transmit and receive DMA.
2236	 */
2237	stge_dma_wait(sc);
2238	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2239	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2240	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2241	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2242
2243	/*
2244	 * Free RX and TX mbufs still in the queues.
2245	 */
2246	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2247		rxd = &sc->sc_cdata.stge_rxdesc[i];
2248		if (rxd->rx_m != NULL) {
2249			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2250			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2251			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2252			    rxd->rx_dmamap);
2253			m_freem(rxd->rx_m);
2254			rxd->rx_m = NULL;
2255		}
2256        }
2257	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2258		txd = &sc->sc_cdata.stge_txdesc[i];
2259		if (txd->tx_m != NULL) {
2260			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2261			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2262			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2263			    txd->tx_dmamap);
2264			m_freem(txd->tx_m);
2265			txd->tx_m = NULL;
2266		}
2267        }
2268
2269	/*
2270	 * Mark the interface down and cancel the watchdog timer.
2271	 */
2272	ifp = sc->sc_ifp;
2273	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2274	sc->sc_link = 0;
2275}
2276
2277static void
2278stge_start_tx(struct stge_softc *sc)
2279{
2280	uint32_t v;
2281	int i;
2282
2283	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2284	if ((v & MC_TxEnabled) != 0)
2285		return;
2286	v |= MC_TxEnable;
2287	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2288	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2289	for (i = STGE_TIMEOUT; i > 0; i--) {
2290		DELAY(10);
2291		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2292		if ((v & MC_TxEnabled) != 0)
2293			break;
2294	}
2295	if (i == 0)
2296		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2297}
2298
2299static void
2300stge_start_rx(struct stge_softc *sc)
2301{
2302	uint32_t v;
2303	int i;
2304
2305	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2306	if ((v & MC_RxEnabled) != 0)
2307		return;
2308	v |= MC_RxEnable;
2309	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2310	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2311	for (i = STGE_TIMEOUT; i > 0; i--) {
2312		DELAY(10);
2313		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2314		if ((v & MC_RxEnabled) != 0)
2315			break;
2316	}
2317	if (i == 0)
2318		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2319}
2320
2321static void
2322stge_stop_tx(struct stge_softc *sc)
2323{
2324	uint32_t v;
2325	int i;
2326
2327	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2328	if ((v & MC_TxEnabled) == 0)
2329		return;
2330	v |= MC_TxDisable;
2331	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2332	for (i = STGE_TIMEOUT; i > 0; i--) {
2333		DELAY(10);
2334		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2335		if ((v & MC_TxEnabled) == 0)
2336			break;
2337	}
2338	if (i == 0)
2339		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2340}
2341
2342static void
2343stge_stop_rx(struct stge_softc *sc)
2344{
2345	uint32_t v;
2346	int i;
2347
2348	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2349	if ((v & MC_RxEnabled) == 0)
2350		return;
2351	v |= MC_RxDisable;
2352	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2353	for (i = STGE_TIMEOUT; i > 0; i--) {
2354		DELAY(10);
2355		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2356		if ((v & MC_RxEnabled) == 0)
2357			break;
2358	}
2359	if (i == 0)
2360		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2361}
2362
2363static void
2364stge_init_tx_ring(struct stge_softc *sc)
2365{
2366	struct stge_ring_data *rd;
2367	struct stge_txdesc *txd;
2368	bus_addr_t addr;
2369	int i;
2370
2371	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2372	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2373
2374	sc->sc_cdata.stge_tx_prod = 0;
2375	sc->sc_cdata.stge_tx_cons = 0;
2376	sc->sc_cdata.stge_tx_cnt = 0;
2377
2378	rd = &sc->sc_rdata;
2379	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2380	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2381		if (i == (STGE_TX_RING_CNT - 1))
2382			addr = STGE_TX_RING_ADDR(sc, 0);
2383		else
2384			addr = STGE_TX_RING_ADDR(sc, i + 1);
2385		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2386		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2387		txd = &sc->sc_cdata.stge_txdesc[i];
2388		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2389	}
2390
2391	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2392	    sc->sc_cdata.stge_tx_ring_map,
2393	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2394
2395}
2396
2397static int
2398stge_init_rx_ring(struct stge_softc *sc)
2399{
2400	struct stge_ring_data *rd;
2401	bus_addr_t addr;
2402	int i;
2403
2404	sc->sc_cdata.stge_rx_cons = 0;
2405	STGE_RXCHAIN_RESET(sc);
2406
2407	rd = &sc->sc_rdata;
2408	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2409	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2410		if (stge_newbuf(sc, i) != 0)
2411			return (ENOBUFS);
2412		if (i == (STGE_RX_RING_CNT - 1))
2413			addr = STGE_RX_RING_ADDR(sc, 0);
2414		else
2415			addr = STGE_RX_RING_ADDR(sc, i + 1);
2416		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2417		rd->stge_rx_ring[i].rfd_status = 0;
2418	}
2419
2420	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2421	    sc->sc_cdata.stge_rx_ring_map,
2422	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2423
2424	return (0);
2425}
2426
2427/*
2428 * stge_newbuf:
2429 *
2430 *	Add a receive buffer to the indicated descriptor.
2431 */
2432static int
2433stge_newbuf(struct stge_softc *sc, int idx)
2434{
2435	struct stge_rxdesc *rxd;
2436	struct stge_rfd *rfd;
2437	struct mbuf *m;
2438	bus_dma_segment_t segs[1];
2439	bus_dmamap_t map;
2440	int nsegs;
2441
2442	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2443	if (m == NULL)
2444		return (ENOBUFS);
2445	m->m_len = m->m_pkthdr.len = MCLBYTES;
2446	/*
2447	 * The hardware requires 4bytes aligned DMA address when JUMBO
2448	 * frame is used.
2449	 */
2450	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2451		m_adj(m, ETHER_ALIGN);
2452
2453	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2454	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2455		m_freem(m);
2456		return (ENOBUFS);
2457	}
2458	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2459
2460	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2461	if (rxd->rx_m != NULL) {
2462		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2463		    BUS_DMASYNC_POSTREAD);
2464		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2465	}
2466	map = rxd->rx_dmamap;
2467	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2468	sc->sc_cdata.stge_rx_sparemap = map;
2469	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2470	    BUS_DMASYNC_PREREAD);
2471	rxd->rx_m = m;
2472
2473	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2474	rfd->rfd_frag.frag_word0 =
2475	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2476	rfd->rfd_status = 0;
2477
2478	return (0);
2479}
2480
2481/*
2482 * stge_set_filter:
2483 *
2484 *	Set up the receive filter.
2485 */
2486static void
2487stge_set_filter(struct stge_softc *sc)
2488{
2489	struct ifnet *ifp;
2490	uint16_t mode;
2491
2492	STGE_LOCK_ASSERT(sc);
2493
2494	ifp = sc->sc_ifp;
2495
2496	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2497	mode |= RM_ReceiveUnicast;
2498	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2499		mode |= RM_ReceiveBroadcast;
2500	else
2501		mode &= ~RM_ReceiveBroadcast;
2502	if ((ifp->if_flags & IFF_PROMISC) != 0)
2503		mode |= RM_ReceiveAllFrames;
2504	else
2505		mode &= ~RM_ReceiveAllFrames;
2506
2507	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2508}
2509
2510static u_int
2511stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2512{
2513	uint32_t crc, *mchash = arg;
2514
2515	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2516	/* Just want the 6 least significant bits. */
2517	crc &= 0x3f;
2518	/* Set the corresponding bit in the hash table. */
2519	mchash[crc >> 5] |= 1 << (crc & 0x1f);
2520
2521	return (1);
2522}
2523
2524static void
2525stge_set_multi(struct stge_softc *sc)
2526{
2527	struct ifnet *ifp;
2528	uint32_t mchash[2];
2529	uint16_t mode;
2530	int count;
2531
2532	STGE_LOCK_ASSERT(sc);
2533
2534	ifp = sc->sc_ifp;
2535
2536	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2537	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2538		if ((ifp->if_flags & IFF_PROMISC) != 0)
2539			mode |= RM_ReceiveAllFrames;
2540		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2541			mode |= RM_ReceiveMulticast;
2542		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2543		return;
2544	}
2545
2546	/* clear existing filters. */
2547	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2548	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2549
2550	/*
2551	 * Set up the multicast address filter by passing all multicast
2552	 * addresses through a CRC generator, and then using the low-order
2553	 * 6 bits as an index into the 64 bit multicast hash table.  The
2554	 * high order bits select the register, while the rest of the bits
2555	 * select the bit within the register.
2556	 */
2557	bzero(mchash, sizeof(mchash));
2558	count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash);
2559
2560	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2561	if (count > 0)
2562		mode |= RM_ReceiveMulticastHash;
2563	else
2564		mode &= ~RM_ReceiveMulticastHash;
2565
2566	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2567	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2568	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2569}
2570
2571static int
2572sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2573{
2574	int error, value;
2575
2576	if (!arg1)
2577		return (EINVAL);
2578	value = *(int *)arg1;
2579	error = sysctl_handle_int(oidp, &value, 0, req);
2580	if (error || !req->newptr)
2581		return (error);
2582	if (value < low || value > high)
2583		return (EINVAL);
2584        *(int *)arg1 = value;
2585
2586        return (0);
2587}
2588
2589static int
2590sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2591{
2592	return (sysctl_int_range(oidp, arg1, arg2, req,
2593	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2594}
2595
2596static int
2597sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2598{
2599	return (sysctl_int_range(oidp, arg1, arg2, req,
2600	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2601}
2602