1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * feeder_rate: (Codename: Z Resampler), which means any effort to create
31 *              future replacement for this resampler are simply absurd unless
32 *              the world decide to add new alphabet after Z.
33 *
34 * FreeBSD bandlimited sinc interpolator, technically based on
35 * "Digital Audio Resampling" by Julius O. Smith III
36 *  - http://ccrma.stanford.edu/~jos/resample/
37 *
38 * The Good:
39 * + all out fixed point integer operations, no soft-float or anything like
40 *   that.
41 * + classic polyphase converters with high quality coefficient's polynomial
42 *   interpolators.
43 * + fast, faster, or the fastest of its kind.
44 * + compile time configurable.
45 * + etc etc..
46 *
47 * The Bad:
48 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
49 *   couldn't think of anything simpler than that (feeder_rate_xxx is just
50 *   too long). Expect possible clashes with other zitizens (any?).
51 */
52
53#ifdef _KERNEL
54#ifdef HAVE_KERNEL_OPTION_HEADERS
55#include "opt_snd.h"
56#endif
57#include <dev/sound/pcm/sound.h>
58#include <dev/sound/pcm/pcm.h>
59#include "feeder_if.h"
60
61#define SND_USE_FXDIV
62#include "snd_fxdiv_gen.h"
63
64SND_DECLARE_FILE("$FreeBSD$");
65#endif
66
67#include "feeder_rate_gen.h"
68
69#if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
70#undef Z_DIAGNOSTIC
71#define Z_DIAGNOSTIC		1
72#elif defined(_KERNEL)
73#undef Z_DIAGNOSTIC
74#endif
75
76#ifndef Z_QUALITY_DEFAULT
77#define Z_QUALITY_DEFAULT	Z_QUALITY_LINEAR
78#endif
79
80#define Z_RESERVOIR		2048
81#define Z_RESERVOIR_MAX		131072
82
83#define Z_SINC_MAX		0x3fffff
84#define Z_SINC_DOWNMAX		48		/* 384000 / 8000 */
85
86#ifdef _KERNEL
87#define Z_POLYPHASE_MAX		183040		/* 286 taps, 640 phases */
88#else
89#define Z_POLYPHASE_MAX		1464320		/* 286 taps, 5120 phases */
90#endif
91
92#define Z_RATE_DEFAULT		48000
93
94#define Z_RATE_MIN		FEEDRATE_RATEMIN
95#define Z_RATE_MAX		FEEDRATE_RATEMAX
96#define Z_ROUNDHZ		FEEDRATE_ROUNDHZ
97#define Z_ROUNDHZ_MIN		FEEDRATE_ROUNDHZ_MIN
98#define Z_ROUNDHZ_MAX		FEEDRATE_ROUNDHZ_MAX
99
100#define Z_RATE_SRC		FEEDRATE_SRC
101#define Z_RATE_DST		FEEDRATE_DST
102#define Z_RATE_QUALITY		FEEDRATE_QUALITY
103#define Z_RATE_CHANNELS		FEEDRATE_CHANNELS
104
105#define Z_PARANOID		1
106
107#define Z_MULTIFORMAT		1
108
109#ifdef _KERNEL
110#undef Z_USE_ALPHADRIFT
111#define Z_USE_ALPHADRIFT	1
112#endif
113
114#define Z_FACTOR_MIN		1
115#define Z_FACTOR_MAX		Z_MASK
116#define Z_FACTOR_SAFE(v)	(!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
117
118struct z_info;
119
120typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
121
122struct z_info {
123	int32_t rsrc, rdst;	/* original source / destination rates */
124	int32_t src, dst;	/* rounded source / destination rates */
125	int32_t channels;	/* total channels */
126	int32_t bps;		/* bytes-per-sample */
127	int32_t quality;	/* resampling quality */
128
129	int32_t z_gx, z_gy;	/* interpolation / decimation ratio */
130	int32_t z_alpha;	/* output sample time phase / drift */
131	uint8_t *z_delay;	/* FIR delay line / linear buffer */
132	int32_t *z_coeff;	/* FIR coefficients */
133	int32_t *z_dcoeff;	/* FIR coefficients differences */
134	int32_t *z_pcoeff;	/* FIR polyphase coefficients */
135	int32_t z_scale;	/* output scaling */
136	int32_t z_dx;		/* input sample drift increment */
137	int32_t z_dy;		/* output sample drift increment */
138#ifdef Z_USE_ALPHADRIFT
139	int32_t z_alphadrift;	/* alpha drift rate */
140	int32_t z_startdrift;	/* buffer start position drift rate */
141#endif
142	int32_t z_mask;		/* delay line full length mask */
143	int32_t z_size;		/* half width of FIR taps */
144	int32_t z_full;		/* full size of delay line */
145	int32_t z_alloc;	/* largest allocated full size of delay line */
146	int32_t z_start;	/* buffer processing start position */
147	int32_t z_pos;		/* current position for the next feed */
148#ifdef Z_DIAGNOSTIC
149	uint32_t z_cycle;	/* output cycle, purely for statistical */
150#endif
151	int32_t z_maxfeed;	/* maximum feed to avoid 32bit overflow */
152
153	z_resampler_t z_resample;
154};
155
156int feeder_rate_min = Z_RATE_MIN;
157int feeder_rate_max = Z_RATE_MAX;
158int feeder_rate_round = Z_ROUNDHZ;
159int feeder_rate_quality = Z_QUALITY_DEFAULT;
160
161static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
162
163#ifdef _KERNEL
164static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
165SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
166    &feeder_rate_presets, 0, "compile-time rate presets");
167SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN,
168    &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
169
170static int
171sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
172{
173	int err, val;
174
175	val = feeder_rate_min;
176	err = sysctl_handle_int(oidp, &val, 0, req);
177
178	if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
179		return (err);
180
181	if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
182		return (EINVAL);
183
184	feeder_rate_min = val;
185
186	return (0);
187}
188SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min,
189    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
190    sysctl_hw_snd_feeder_rate_min, "I",
191    "minimum allowable rate");
192
193static int
194sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
195{
196	int err, val;
197
198	val = feeder_rate_max;
199	err = sysctl_handle_int(oidp, &val, 0, req);
200
201	if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
202		return (err);
203
204	if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
205		return (EINVAL);
206
207	feeder_rate_max = val;
208
209	return (0);
210}
211SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max,
212    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
213    sysctl_hw_snd_feeder_rate_max, "I",
214    "maximum allowable rate");
215
216static int
217sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
218{
219	int err, val;
220
221	val = feeder_rate_round;
222	err = sysctl_handle_int(oidp, &val, 0, req);
223
224	if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
225		return (err);
226
227	if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
228		return (EINVAL);
229
230	feeder_rate_round = val - (val % Z_ROUNDHZ);
231
232	return (0);
233}
234SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round,
235    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
236    sysctl_hw_snd_feeder_rate_round, "I",
237    "sample rate converter rounding threshold");
238
239static int
240sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
241{
242	struct snddev_info *d;
243	struct pcm_channel *c;
244	struct pcm_feeder *f;
245	int i, err, val;
246
247	val = feeder_rate_quality;
248	err = sysctl_handle_int(oidp, &val, 0, req);
249
250	if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
251		return (err);
252
253	if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
254		return (EINVAL);
255
256	feeder_rate_quality = val;
257
258	/*
259	 * Traverse all available channels on each device and try to
260	 * set resampler quality if and only if it is exist as
261	 * part of feeder chains and the channel is idle.
262	 */
263	for (i = 0; pcm_devclass != NULL &&
264	    i < devclass_get_maxunit(pcm_devclass); i++) {
265		d = devclass_get_softc(pcm_devclass, i);
266		if (!PCM_REGISTERED(d))
267			continue;
268		PCM_LOCK(d);
269		PCM_WAIT(d);
270		PCM_ACQUIRE(d);
271		CHN_FOREACH(c, d, channels.pcm) {
272			CHN_LOCK(c);
273			f = chn_findfeeder(c, FEEDER_RATE);
274			if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
275				CHN_UNLOCK(c);
276				continue;
277			}
278			(void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
279			CHN_UNLOCK(c);
280		}
281		PCM_RELEASE(d);
282		PCM_UNLOCK(d);
283	}
284
285	return (0);
286}
287SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality,
288    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
289    sysctl_hw_snd_feeder_rate_quality, "I",
290    "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
291    __XSTRING(Z_QUALITY_MAX)"=high)");
292#endif	/* _KERNEL */
293
294/*
295 * Resampler type.
296 */
297#define Z_IS_ZOH(i)		((i)->quality == Z_QUALITY_ZOH)
298#define Z_IS_LINEAR(i)		((i)->quality == Z_QUALITY_LINEAR)
299#define Z_IS_SINC(i)		((i)->quality > Z_QUALITY_LINEAR)
300
301/*
302 * Macroses for accurate sample time drift calculations.
303 *
304 * gy2gx : given the amount of output, return the _exact_ required amount of
305 *         input.
306 * gx2gy : given the amount of input, return the _maximum_ amount of output
307 *         that will be generated.
308 * drift : given the amount of input and output, return the elapsed
309 *         sample-time.
310 */
311#define _Z_GCAST(x)		((uint64_t)(x))
312
313#if defined(__GNUCLIKE_ASM) && defined(__i386__)
314/*
315 * This is where i386 being beaten to a pulp. Fortunately this function is
316 * rarely being called and if it is, it will decide the best (hopefully)
317 * fastest way to do the division. If we can ensure that everything is dword
318 * aligned, letting the compiler to call udivdi3 to do the division can be
319 * faster compared to this.
320 *
321 * amd64 is the clear winner here, no question about it.
322 */
323static __inline uint32_t
324Z_DIV(uint64_t v, uint32_t d)
325{
326	uint32_t hi, lo, quo, rem;
327
328	hi = v >> 32;
329	lo = v & 0xffffffff;
330
331	/*
332	 * As much as we can, try to avoid long division like a plague.
333	 */
334	if (hi == 0)
335		quo = lo / d;
336	else
337		__asm("divl %2"
338		    : "=a" (quo), "=d" (rem)
339		    : "r" (d), "0" (lo), "1" (hi));
340
341	return (quo);
342}
343#else
344#define Z_DIV(x, y)		((x) / (y))
345#endif
346
347#define _Z_GY2GX(i, a, v)						\
348	Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)),	\
349	(i)->z_gy)
350
351#define _Z_GX2GY(i, a, v)						\
352	Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
353
354#define _Z_DRIFT(i, x, y)						\
355	((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
356
357#define z_gy2gx(i, v)		_Z_GY2GX(i, (i)->z_alpha, v)
358#define z_gx2gy(i, v)		_Z_GX2GY(i, (i)->z_alpha, v)
359#define z_drift(i, x, y)	_Z_DRIFT(i, x, y)
360
361/*
362 * Macroses for SINC coefficients table manipulations.. whatever.
363 */
364#define Z_SINC_COEFF_IDX(i)	((i)->quality - Z_QUALITY_LINEAR - 1)
365
366#define Z_SINC_LEN(i)							\
367	((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len <<	\
368	    Z_SHIFT) / (i)->z_dy))
369
370#define Z_SINC_BASE_LEN(i)						\
371	((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
372
373/*
374 * Macroses for linear delay buffer operations. Alignment is not
375 * really necessary since we're not using true circular buffer, but it
376 * will help us guard against possible trespasser. To be honest,
377 * the linear block operations does not need guarding at all due to
378 * accurate drifting!
379 */
380#define z_align(i, v)		((v) & (i)->z_mask)
381#define z_next(i, o, v)		z_align(i, (o) + (v))
382#define z_prev(i, o, v)		z_align(i, (o) - (v))
383#define z_fetched(i)		(z_align(i, (i)->z_pos - (i)->z_start) - 1)
384#define z_free(i)		((i)->z_full - (i)->z_pos)
385
386/*
387 * Macroses for Bla Bla .. :)
388 */
389#define z_copy(src, dst, sz)	(void)memcpy(dst, src, sz)
390#define z_feed(...)		FEEDER_FEED(__VA_ARGS__)
391
392static __inline uint32_t
393z_min(uint32_t x, uint32_t y)
394{
395
396	return ((x < y) ? x : y);
397}
398
399static int32_t
400z_gcd(int32_t x, int32_t y)
401{
402	int32_t w;
403
404	while (y != 0) {
405		w = x % y;
406		x = y;
407		y = w;
408	}
409
410	return (x);
411}
412
413static int32_t
414z_roundpow2(int32_t v)
415{
416	int32_t i;
417
418	i = 1;
419
420	/*
421	 * Let it overflow at will..
422	 */
423	while (i > 0 && i < v)
424		i <<= 1;
425
426	return (i);
427}
428
429/*
430 * Zero Order Hold, the worst of the worst, an insult against quality,
431 * but super fast.
432 */
433static void
434z_feed_zoh(struct z_info *info, uint8_t *dst)
435{
436#if 0
437	z_copy(info->z_delay +
438	    (info->z_start * info->channels * info->bps), dst,
439	    info->channels * info->bps);
440#else
441	uint32_t cnt;
442	uint8_t *src;
443
444	cnt = info->channels * info->bps;
445	src = info->z_delay + (info->z_start * cnt);
446
447	/*
448	 * This is a bit faster than doing bcopy() since we're dealing
449	 * with possible unaligned samples.
450	 */
451	do {
452		*dst++ = *src++;
453	} while (--cnt != 0);
454#endif
455}
456
457/*
458 * Linear Interpolation. This at least sounds better (perceptually) and fast,
459 * but without any proper filtering which means aliasing still exist and
460 * could become worst with a right sample. Interpolation centered within
461 * Z_LINEAR_ONE between the present and previous sample and everything is
462 * done with simple 32bit scaling arithmetic.
463 */
464#define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)					\
465static void									\
466z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
467{										\
468	int32_t z;								\
469	intpcm_t x, y;								\
470	uint32_t ch;								\
471	uint8_t *sx, *sy;							\
472										\
473	z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT;		\
474										\
475	sx = info->z_delay + (info->z_start * info->channels *			\
476	    PCM_##BIT##_BPS);							\
477	sy = sx - (info->channels * PCM_##BIT##_BPS);				\
478										\
479	ch = info->channels;							\
480										\
481	do {									\
482		x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx);			\
483		y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy);			\
484		x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y);			\
485		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);			\
486		sx += PCM_##BIT##_BPS;						\
487		sy += PCM_##BIT##_BPS;						\
488		dst += PCM_##BIT##_BPS;						\
489	} while (--ch != 0);							\
490}
491
492/*
493 * Userland clipping diagnostic check, not enabled in kernel compilation.
494 * While doing sinc interpolation, unrealistic samples like full scale sine
495 * wav will clip, but for other things this will not make any noise at all.
496 * Everybody should learn how to normalized perceived loudness of their own
497 * music/sounds/samples (hint: ReplayGain).
498 */
499#ifdef Z_DIAGNOSTIC
500#define Z_CLIP_CHECK(v, BIT)	do {					\
501	if ((v) > PCM_S##BIT##_MAX) {					\
502		fprintf(stderr, "Overflow: v=%jd, max=%jd\n",		\
503		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX);		\
504	} else if ((v) < PCM_S##BIT##_MIN) {				\
505		fprintf(stderr, "Underflow: v=%jd, min=%jd\n",		\
506		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN);		\
507	}								\
508} while (0)
509#else
510#define Z_CLIP_CHECK(...)
511#endif
512
513#define Z_CLAMP(v, BIT)							\
514	(((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX :			\
515	(((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
516
517/*
518 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
519 * there's no point to hold the plate any longer. All samples will be
520 * shifted to a full 32 bit, scaled and restored during write for
521 * maximum dynamic range (only for downsampling).
522 */
523#define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv)			\
524	c += z >> Z_SHIFT;						\
525	z &= Z_MASK;							\
526	coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]);	\
527	x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);			\
528	v += Z_NORM_##BIT((intpcm64_t)x * coeff);			\
529	z += info->z_dy;						\
530	p adv##= info->channels * PCM_##BIT##_BPS
531
532/*
533 * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
534 */
535#if defined(__GNUC__) && __GNUC__ >= 4
536#define Z_SINC_ACCUMULATE(...)	do {					\
537	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
538	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
539} while (0)
540#define Z_SINC_ACCUMULATE_DECR		2
541#else
542#define Z_SINC_ACCUMULATE(...)	do {					\
543	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
544} while (0)
545#define Z_SINC_ACCUMULATE_DECR		1
546#endif
547
548#define Z_DECLARE_SINC(SIGN, BIT, ENDIAN)					\
549static void									\
550z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
551{										\
552	intpcm64_t v;								\
553	intpcm_t x;								\
554	uint8_t *p;								\
555	int32_t coeff, z, *z_coeff, *z_dcoeff;					\
556	uint32_t c, center, ch, i;						\
557										\
558	z_coeff = info->z_coeff;						\
559	z_dcoeff = info->z_dcoeff;						\
560	center = z_prev(info, info->z_start, info->z_size);			\
561	ch = info->channels * PCM_##BIT##_BPS;					\
562	dst += ch;								\
563										\
564	do {									\
565		dst -= PCM_##BIT##_BPS;						\
566		ch -= PCM_##BIT##_BPS;						\
567		v = 0;								\
568		z = info->z_alpha * info->z_dx;					\
569		c = 0;								\
570		p = info->z_delay + (z_next(info, center, 1) *			\
571		    info->channels * PCM_##BIT##_BPS) + ch;			\
572		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
573			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +);		\
574		z = info->z_dy - (info->z_alpha * info->z_dx);			\
575		c = 0;								\
576		p = info->z_delay + (center * info->channels *			\
577		    PCM_##BIT##_BPS) + ch;					\
578		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
579			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -);		\
580		if (info->z_scale != Z_ONE)					\
581			v = Z_SCALE_##BIT(v, info->z_scale);			\
582		else								\
583			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
584		Z_CLIP_CHECK(v, BIT);						\
585		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
586	} while (ch != 0);							\
587}
588
589#define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)				\
590static void									\
591z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)	\
592{										\
593	intpcm64_t v;								\
594	intpcm_t x;								\
595	uint8_t *p;								\
596	int32_t ch, i, start, *z_pcoeff;					\
597										\
598	ch = info->channels * PCM_##BIT##_BPS;					\
599	dst += ch;								\
600	start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch;	\
601										\
602	do {									\
603		dst -= PCM_##BIT##_BPS;						\
604		ch -= PCM_##BIT##_BPS;						\
605		v = 0;								\
606		p = info->z_delay + start + ch;					\
607		z_pcoeff = info->z_pcoeff +					\
608		    ((info->z_alpha * info->z_size) << 1);			\
609		for (i = info->z_size; i != 0; i--) {				\
610			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
611			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
612			z_pcoeff++;						\
613			p += info->channels * PCM_##BIT##_BPS;			\
614			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
615			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
616			z_pcoeff++;						\
617			p += info->channels * PCM_##BIT##_BPS;			\
618		}								\
619		if (info->z_scale != Z_ONE)					\
620			v = Z_SCALE_##BIT(v, info->z_scale);			\
621		else								\
622			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
623		Z_CLIP_CHECK(v, BIT);						\
624		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
625	} while (ch != 0);							\
626}
627
628#define Z_DECLARE(SIGN, BIT, ENDIAN)					\
629	Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)				\
630	Z_DECLARE_SINC(SIGN, BIT, ENDIAN)				\
631	Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
632
633#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
634Z_DECLARE(S, 16, LE)
635Z_DECLARE(S, 32, LE)
636#endif
637#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
638Z_DECLARE(S, 16, BE)
639Z_DECLARE(S, 32, BE)
640#endif
641#ifdef SND_FEEDER_MULTIFORMAT
642Z_DECLARE(S,  8, NE)
643Z_DECLARE(S, 24, LE)
644Z_DECLARE(S, 24, BE)
645Z_DECLARE(U,  8, NE)
646Z_DECLARE(U, 16, LE)
647Z_DECLARE(U, 24, LE)
648Z_DECLARE(U, 32, LE)
649Z_DECLARE(U, 16, BE)
650Z_DECLARE(U, 24, BE)
651Z_DECLARE(U, 32, BE)
652#endif
653
654enum {
655	Z_RESAMPLER_ZOH,
656	Z_RESAMPLER_LINEAR,
657	Z_RESAMPLER_SINC,
658	Z_RESAMPLER_SINC_POLYPHASE,
659	Z_RESAMPLER_LAST
660};
661
662#define Z_RESAMPLER_IDX(i)						\
663	(Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
664
665#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)					\
666	{									\
667	    AFMT_##SIGN##BIT##_##ENDIAN,					\
668	    {									\
669		[Z_RESAMPLER_ZOH]    = z_feed_zoh,				\
670		[Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN,	\
671		[Z_RESAMPLER_SINC]   = z_feed_sinc_##SIGN##BIT##ENDIAN,		\
672		[Z_RESAMPLER_SINC_POLYPHASE]   =				\
673		    z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN			\
674	    }									\
675	}
676
677static const struct {
678	uint32_t format;
679	z_resampler_t resampler[Z_RESAMPLER_LAST];
680} z_resampler_tab[] = {
681#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
682	Z_RESAMPLER_ENTRY(S, 16, LE),
683	Z_RESAMPLER_ENTRY(S, 32, LE),
684#endif
685#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
686	Z_RESAMPLER_ENTRY(S, 16, BE),
687	Z_RESAMPLER_ENTRY(S, 32, BE),
688#endif
689#ifdef SND_FEEDER_MULTIFORMAT
690	Z_RESAMPLER_ENTRY(S,  8, NE),
691	Z_RESAMPLER_ENTRY(S, 24, LE),
692	Z_RESAMPLER_ENTRY(S, 24, BE),
693	Z_RESAMPLER_ENTRY(U,  8, NE),
694	Z_RESAMPLER_ENTRY(U, 16, LE),
695	Z_RESAMPLER_ENTRY(U, 24, LE),
696	Z_RESAMPLER_ENTRY(U, 32, LE),
697	Z_RESAMPLER_ENTRY(U, 16, BE),
698	Z_RESAMPLER_ENTRY(U, 24, BE),
699	Z_RESAMPLER_ENTRY(U, 32, BE),
700#endif
701};
702
703#define Z_RESAMPLER_TAB_SIZE						\
704	((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
705
706static void
707z_resampler_reset(struct z_info *info)
708{
709
710	info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
711	    info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
712	info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
713	    info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
714	info->z_gx = 1;
715	info->z_gy = 1;
716	info->z_alpha = 0;
717	info->z_resample = NULL;
718	info->z_size = 1;
719	info->z_coeff = NULL;
720	info->z_dcoeff = NULL;
721	if (info->z_pcoeff != NULL) {
722		free(info->z_pcoeff, M_DEVBUF);
723		info->z_pcoeff = NULL;
724	}
725	info->z_scale = Z_ONE;
726	info->z_dx = Z_FULL_ONE;
727	info->z_dy = Z_FULL_ONE;
728#ifdef Z_DIAGNOSTIC
729	info->z_cycle = 0;
730#endif
731	if (info->quality < Z_QUALITY_MIN)
732		info->quality = Z_QUALITY_MIN;
733	else if (info->quality > Z_QUALITY_MAX)
734		info->quality = Z_QUALITY_MAX;
735}
736
737#ifdef Z_PARANOID
738static int32_t
739z_resampler_sinc_len(struct z_info *info)
740{
741	int32_t c, z, len, lmax;
742
743	if (!Z_IS_SINC(info))
744		return (1);
745
746	/*
747	 * A rather careful (or useless) way to calculate filter length.
748	 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
749	 * sanity checking is not going to hurt though..
750	 */
751	c = 0;
752	z = info->z_dy;
753	len = 0;
754	lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
755
756	do {
757		c += z >> Z_SHIFT;
758		z &= Z_MASK;
759		z += info->z_dy;
760	} while (c < lmax && ++len > 0);
761
762	if (len != Z_SINC_LEN(info)) {
763#ifdef _KERNEL
764		printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
765		    __func__, len, Z_SINC_LEN(info));
766#else
767		fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
768		    __func__, len, Z_SINC_LEN(info));
769		return (-1);
770#endif
771	}
772
773	return (len);
774}
775#else
776#define z_resampler_sinc_len(i)		(Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
777#endif
778
779#define Z_POLYPHASE_COEFF_SHIFT		0
780
781/*
782 * Pick suitable polynomial interpolators based on filter oversampled ratio
783 * (2 ^ Z_DRIFT_SHIFT).
784 */
785#if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) ||		\
786    defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) ||	\
787    defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) ||		\
788    defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) ||		\
789    defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
790#if Z_DRIFT_SHIFT >= 6
791#define Z_COEFF_INTERP_BSPLINE		1
792#elif Z_DRIFT_SHIFT >= 5
793#define Z_COEFF_INTERP_OPT32X		1
794#elif Z_DRIFT_SHIFT == 4
795#define Z_COEFF_INTERP_OPT16X		1
796#elif Z_DRIFT_SHIFT == 3
797#define Z_COEFF_INTERP_OPT8X		1
798#elif Z_DRIFT_SHIFT == 2
799#define Z_COEFF_INTERP_OPT4X		1
800#elif Z_DRIFT_SHIFT == 1
801#define Z_COEFF_INTERP_OPT2X		1
802#else
803#error "Z_DRIFT_SHIFT screwed!"
804#endif
805#endif
806
807/*
808 * In classic polyphase mode, the actual coefficients for each phases need to
809 * be calculated based on default prototype filters. For highly oversampled
810 * filter, linear or quadradatic interpolator should be enough. Anything less
811 * than that require 'special' interpolators to reduce interpolation errors.
812 *
813 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
814 *    by Olli Niemitalo
815 *    - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
816 *
817 */
818static int32_t
819z_coeff_interpolate(int32_t z, int32_t *z_coeff)
820{
821	int32_t coeff;
822#if defined(Z_COEFF_INTERP_ZOH)
823
824	/* 1-point, 0th-order (Zero Order Hold) */
825	z = z;
826	coeff = z_coeff[0];
827#elif defined(Z_COEFF_INTERP_LINEAR)
828	int32_t zl0, zl1;
829
830	/* 2-point, 1st-order Linear */
831	zl0 = z_coeff[0];
832	zl1 = z_coeff[1] - z_coeff[0];
833
834	coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
835#elif defined(Z_COEFF_INTERP_QUADRATIC)
836	int32_t zq0, zq1, zq2;
837
838	/* 3-point, 2nd-order Quadratic */
839	zq0 = z_coeff[0];
840	zq1 = z_coeff[1] - z_coeff[-1];
841	zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
842
843	coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
844	    zq1) * z, Z_SHIFT + 1) + zq0;
845#elif defined(Z_COEFF_INTERP_HERMITE)
846	int32_t zh0, zh1, zh2, zh3;
847
848	/* 4-point, 3rd-order Hermite */
849	zh0 = z_coeff[0];
850	zh1 = z_coeff[1] - z_coeff[-1];
851	zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
852	    z_coeff[2];
853	zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
854
855	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
856	    zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
857#elif defined(Z_COEFF_INTERP_BSPLINE)
858	int32_t zb0, zb1, zb2, zb3;
859
860	/* 4-point, 3rd-order B-Spline */
861	zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
862	    z_coeff[-1] + z_coeff[1]), 30);
863	zb1 = z_coeff[1] - z_coeff[-1];
864	zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
865	zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
866	    z_coeff[2] - z_coeff[-1]), 30);
867
868	coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
869	    zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
870#elif defined(Z_COEFF_INTERP_OPT32X)
871	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
872	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
873
874	/* 6-point, 5th-order Optimal 32x */
875	zoz = z - (Z_ONE >> 1);
876	zoe1 = z_coeff[1] + z_coeff[0];
877	zoe2 = z_coeff[2] + z_coeff[-1];
878	zoe3 = z_coeff[3] + z_coeff[-2];
879	zoo1 = z_coeff[1] - z_coeff[0];
880	zoo2 = z_coeff[2] - z_coeff[-1];
881	zoo3 = z_coeff[3] - z_coeff[-2];
882
883	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
884	    (0x00170c29LL * zoe3), 30);
885	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
886	    (0x008cd4dcLL * zoo3), 30);
887	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
888	    (0x0160b5d0LL * zoe3), 30);
889	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
890	    (0x01cfe914LL * zoo3), 30);
891	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
892	    (0x015508ddLL * zoe3), 30);
893	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
894	    (0x0082d81aLL * zoo3), 30);
895
896	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
897	    (int64_t)zoc5 * zoz, Z_SHIFT) +
898	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
899	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
900#elif defined(Z_COEFF_INTERP_OPT16X)
901	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
902	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
903
904	/* 6-point, 5th-order Optimal 16x */
905	zoz = z - (Z_ONE >> 1);
906	zoe1 = z_coeff[1] + z_coeff[0];
907	zoe2 = z_coeff[2] + z_coeff[-1];
908	zoe3 = z_coeff[3] + z_coeff[-2];
909	zoo1 = z_coeff[1] - z_coeff[0];
910	zoo2 = z_coeff[2] - z_coeff[-1];
911	zoo3 = z_coeff[3] - z_coeff[-2];
912
913	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
914	    (0x00170c29LL * zoe3), 30);
915	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
916	    (0x008cd4dcLL * zoo3), 30);
917	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
918	    (0x0160b5d0LL * zoe3), 30);
919	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
920	    (0x01cfe914LL * zoo3), 30);
921	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
922	    (0x015508ddLL * zoe3), 30);
923	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
924	    (0x0082d81aLL * zoo3), 30);
925
926	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
927	    (int64_t)zoc5 * zoz, Z_SHIFT) +
928	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
929	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
930#elif defined(Z_COEFF_INTERP_OPT8X)
931	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
932	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
933
934	/* 6-point, 5th-order Optimal 8x */
935	zoz = z - (Z_ONE >> 1);
936	zoe1 = z_coeff[1] + z_coeff[0];
937	zoe2 = z_coeff[2] + z_coeff[-1];
938	zoe3 = z_coeff[3] + z_coeff[-2];
939	zoo1 = z_coeff[1] - z_coeff[0];
940	zoo2 = z_coeff[2] - z_coeff[-1];
941	zoo3 = z_coeff[3] - z_coeff[-2];
942
943	zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
944	    (0x0018b23fLL * zoe3), 30);
945	zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
946	    (0x0094b599LL * zoo3), 30);
947	zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
948	    (0x016ed8e0LL * zoe3), 30);
949	zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
950	    (0x01dae93aLL * zoo3), 30);
951	zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
952	    (0x0153ed07LL * zoe3), 30);
953	zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
954	    (0x007a7c26LL * zoo3), 30);
955
956	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
957	    (int64_t)zoc5 * zoz, Z_SHIFT) +
958	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
959	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
960#elif defined(Z_COEFF_INTERP_OPT4X)
961	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
962	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
963
964	/* 6-point, 5th-order Optimal 4x */
965	zoz = z - (Z_ONE >> 1);
966	zoe1 = z_coeff[1] + z_coeff[0];
967	zoe2 = z_coeff[2] + z_coeff[-1];
968	zoe3 = z_coeff[3] + z_coeff[-2];
969	zoo1 = z_coeff[1] - z_coeff[0];
970	zoo2 = z_coeff[2] - z_coeff[-1];
971	zoo3 = z_coeff[3] - z_coeff[-2];
972
973	zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
974	    (0x001a3784LL * zoe3), 30);
975	zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
976	    (0x009ca889LL * zoo3), 30);
977	zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
978	    (0x017ef0c6LL * zoe3), 30);
979	zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
980	    (0x01e936dbLL * zoo3), 30);
981	zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
982	    (0x014f5923LL * zoe3), 30);
983	zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
984	    (0x00670dbdLL * zoo3), 30);
985
986	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
987	    (int64_t)zoc5 * zoz, Z_SHIFT) +
988	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
989	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
990#elif defined(Z_COEFF_INTERP_OPT2X)
991	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
992	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
993
994	/* 6-point, 5th-order Optimal 2x */
995	zoz = z - (Z_ONE >> 1);
996	zoe1 = z_coeff[1] + z_coeff[0];
997	zoe2 = z_coeff[2] + z_coeff[-1];
998	zoe3 = z_coeff[3] + z_coeff[-2];
999	zoo1 = z_coeff[1] - z_coeff[0];
1000	zoo2 = z_coeff[2] - z_coeff[-1];
1001	zoo3 = z_coeff[3] - z_coeff[-2];
1002
1003	zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
1004	    (0x00267881LL * zoe3), 30);
1005	zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1006	    (0x00d683cdLL * zoo3), 30);
1007	zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1008	    (0x01e2aceaLL * zoe3), 30);
1009	zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1010	    (0x022cefc7LL * zoo3), 30);
1011	zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1012	    (0x0131d935LL * zoe3), 30);
1013	zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1014	    (0x0018ee79LL * zoo3), 30);
1015
1016	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1017	    (int64_t)zoc5 * zoz, Z_SHIFT) +
1018	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1019	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1020#else
1021#error "Interpolation type screwed!"
1022#endif
1023
1024#if Z_POLYPHASE_COEFF_SHIFT > 0
1025	coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1026#endif
1027	return (coeff);
1028}
1029
1030static int
1031z_resampler_build_polyphase(struct z_info *info)
1032{
1033	int32_t alpha, c, i, z, idx;
1034
1035	/* Let this be here first. */
1036	if (info->z_pcoeff != NULL) {
1037		free(info->z_pcoeff, M_DEVBUF);
1038		info->z_pcoeff = NULL;
1039	}
1040
1041	if (feeder_rate_polyphase_max < 1)
1042		return (ENOTSUP);
1043
1044	if (((int64_t)info->z_size * info->z_gy * 2) >
1045	    feeder_rate_polyphase_max) {
1046#ifndef _KERNEL
1047		fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1048		    info->z_gx, info->z_gy,
1049		    (intmax_t)info->z_size * info->z_gy * 2,
1050		    feeder_rate_polyphase_max);
1051#endif
1052		return (E2BIG);
1053	}
1054
1055	info->z_pcoeff = malloc(sizeof(int32_t) *
1056	    info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
1057	if (info->z_pcoeff == NULL)
1058		return (ENOMEM);
1059
1060	for (alpha = 0; alpha < info->z_gy; alpha++) {
1061		z = alpha * info->z_dx;
1062		c = 0;
1063		for (i = info->z_size; i != 0; i--) {
1064			c += z >> Z_SHIFT;
1065			z &= Z_MASK;
1066			idx = (alpha * info->z_size * 2) +
1067			    (info->z_size * 2) - i;
1068			info->z_pcoeff[idx] =
1069			    z_coeff_interpolate(z, info->z_coeff + c);
1070			z += info->z_dy;
1071		}
1072		z = info->z_dy - (alpha * info->z_dx);
1073		c = 0;
1074		for (i = info->z_size; i != 0; i--) {
1075			c += z >> Z_SHIFT;
1076			z &= Z_MASK;
1077			idx = (alpha * info->z_size * 2) + i - 1;
1078			info->z_pcoeff[idx] =
1079			    z_coeff_interpolate(z, info->z_coeff + c);
1080			z += info->z_dy;
1081		}
1082	}
1083
1084#ifndef _KERNEL
1085	fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1086	    info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1087#endif
1088
1089	return (0);
1090}
1091
1092static int
1093z_resampler_setup(struct pcm_feeder *f)
1094{
1095	struct z_info *info;
1096	int64_t gy2gx_max, gx2gy_max;
1097	uint32_t format;
1098	int32_t align, i, z_scale;
1099	int adaptive;
1100
1101	info = f->data;
1102	z_resampler_reset(info);
1103
1104	if (info->src == info->dst)
1105		return (0);
1106
1107	/* Shrink by greatest common divisor. */
1108	i = z_gcd(info->src, info->dst);
1109	info->z_gx = info->src / i;
1110	info->z_gy = info->dst / i;
1111
1112	/* Too big, or too small. Bail out. */
1113	if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1114		return (EINVAL);
1115
1116	format = f->desc->in;
1117	adaptive = 0;
1118	z_scale = 0;
1119
1120	/*
1121	 * Setup everything: filter length, conversion factor, etc.
1122	 */
1123	if (Z_IS_SINC(info)) {
1124		/*
1125		 * Downsampling, or upsampling scaling factor. As long as the
1126		 * factor can be represented by a fraction of 1 << Z_SHIFT,
1127		 * we're pretty much in business. Scaling is not needed for
1128		 * upsampling, so we just slap Z_ONE there.
1129		 */
1130		if (info->z_gx > info->z_gy)
1131			/*
1132			 * If the downsampling ratio is beyond sanity,
1133			 * enable semi-adaptive mode. Although handling
1134			 * extreme ratio is possible, the result of the
1135			 * conversion is just pointless, unworthy,
1136			 * nonsensical noises, etc.
1137			 */
1138			if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1139				z_scale = Z_ONE / Z_SINC_DOWNMAX;
1140			else
1141				z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1142				    info->z_gx;
1143		else
1144			z_scale = Z_ONE;
1145
1146		/*
1147		 * This is actually impossible, unless anything above
1148		 * overflow.
1149		 */
1150		if (z_scale < 1)
1151			return (E2BIG);
1152
1153		/*
1154		 * Calculate sample time/coefficients index drift. It is
1155		 * a constant for upsampling, but downsampling require
1156		 * heavy duty filtering with possible too long filters.
1157		 * If anything goes wrong, revisit again and enable
1158		 * adaptive mode.
1159		 */
1160z_setup_adaptive_sinc:
1161		if (info->z_pcoeff != NULL) {
1162			free(info->z_pcoeff, M_DEVBUF);
1163			info->z_pcoeff = NULL;
1164		}
1165
1166		if (adaptive == 0) {
1167			info->z_dy = z_scale << Z_DRIFT_SHIFT;
1168			if (info->z_dy < 1)
1169				return (E2BIG);
1170			info->z_scale = z_scale;
1171		} else {
1172			info->z_dy = Z_FULL_ONE;
1173			info->z_scale = Z_ONE;
1174		}
1175
1176#if 0
1177#define Z_SCALE_DIV	10000
1178#define Z_SCALE_LIMIT(s, v)						\
1179	((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1180
1181		info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1182#endif
1183
1184		/* Smallest drift increment. */
1185		info->z_dx = info->z_dy / info->z_gy;
1186
1187		/*
1188		 * Overflow or underflow. Try adaptive, let it continue and
1189		 * retry.
1190		 */
1191		if (info->z_dx < 1) {
1192			if (adaptive == 0) {
1193				adaptive = 1;
1194				goto z_setup_adaptive_sinc;
1195			}
1196			return (E2BIG);
1197		}
1198
1199		/*
1200		 * Round back output drift.
1201		 */
1202		info->z_dy = info->z_dx * info->z_gy;
1203
1204		for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1205			if (Z_SINC_COEFF_IDX(info) != i)
1206				continue;
1207			/*
1208			 * Calculate required filter length and guard
1209			 * against possible abusive result. Note that
1210			 * this represents only 1/2 of the entire filter
1211			 * length.
1212			 */
1213			info->z_size = z_resampler_sinc_len(info);
1214
1215			/*
1216			 * Multiple of 2 rounding, for better accumulator
1217			 * performance.
1218			 */
1219			info->z_size &= ~1;
1220
1221			if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1222				if (adaptive == 0) {
1223					adaptive = 1;
1224					goto z_setup_adaptive_sinc;
1225				}
1226				return (E2BIG);
1227			}
1228			info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1229			info->z_dcoeff = z_coeff_tab[i].dcoeff;
1230			break;
1231		}
1232
1233		if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1234			return (EINVAL);
1235	} else if (Z_IS_LINEAR(info)) {
1236		/*
1237		 * Don't put much effort if we're doing linear interpolation.
1238		 * Just center the interpolation distance within Z_LINEAR_ONE,
1239		 * and be happy about it.
1240		 */
1241		info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1242	}
1243
1244	/*
1245	 * We're safe for now, lets continue.. Look for our resampler
1246	 * depending on configured format and quality.
1247	 */
1248	for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1249		int ridx;
1250
1251		if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
1252			continue;
1253		if (Z_IS_SINC(info) && adaptive == 0 &&
1254		    z_resampler_build_polyphase(info) == 0)
1255			ridx = Z_RESAMPLER_SINC_POLYPHASE;
1256		else
1257			ridx = Z_RESAMPLER_IDX(info);
1258		info->z_resample = z_resampler_tab[i].resampler[ridx];
1259		break;
1260	}
1261
1262	if (info->z_resample == NULL)
1263		return (EINVAL);
1264
1265	info->bps = AFMT_BPS(format);
1266	align = info->channels * info->bps;
1267
1268	/*
1269	 * Calculate largest value that can be fed into z_gy2gx() and
1270	 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1271	 * be called early during feeding process to determine how much input
1272	 * samples that is required to generate requested output, while
1273	 * z_gx2gy() will be called just before samples filtering /
1274	 * accumulation process based on available samples that has been
1275	 * calculated using z_gx2gy().
1276	 *
1277	 * Now that is damn confusing, I guess ;-) .
1278	 */
1279	gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1280	    info->z_gx;
1281
1282	if ((gy2gx_max * align) > SND_FXDIV_MAX)
1283		gy2gx_max = SND_FXDIV_MAX / align;
1284
1285	if (gy2gx_max < 1)
1286		return (E2BIG);
1287
1288	gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1289	    info->z_gy;
1290
1291	if (gx2gy_max > INT32_MAX)
1292		gx2gy_max = INT32_MAX;
1293
1294	if (gx2gy_max < 1)
1295		return (E2BIG);
1296
1297	/*
1298	 * Ensure that z_gy2gx() at its largest possible calculated value
1299	 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1300	 * stage.
1301	 */
1302	if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1303		return (E2BIG);
1304
1305	info->z_maxfeed = gy2gx_max * align;
1306
1307#ifdef Z_USE_ALPHADRIFT
1308	info->z_startdrift = z_gy2gx(info, 1);
1309	info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1310#endif
1311
1312	i = z_gy2gx(info, 1);
1313	info->z_full = z_roundpow2((info->z_size << 1) + i);
1314
1315	/*
1316	 * Too big to be true, and overflowing left and right like mad ..
1317	 */
1318	if ((info->z_full * align) < 1) {
1319		if (adaptive == 0 && Z_IS_SINC(info)) {
1320			adaptive = 1;
1321			goto z_setup_adaptive_sinc;
1322		}
1323		return (E2BIG);
1324	}
1325
1326	/*
1327	 * Increase full buffer size if its too small to reduce cyclic
1328	 * buffer shifting in main conversion/feeder loop.
1329	 */
1330	while (info->z_full < Z_RESERVOIR_MAX &&
1331	    (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1332		info->z_full <<= 1;
1333
1334	/* Initialize buffer position. */
1335	info->z_mask = info->z_full - 1;
1336	info->z_start = z_prev(info, info->z_size << 1, 1);
1337	info->z_pos = z_next(info, info->z_start, 1);
1338
1339	/*
1340	 * Allocate or reuse delay line buffer, whichever makes sense.
1341	 */
1342	i = info->z_full * align;
1343	if (i < 1)
1344		return (E2BIG);
1345
1346	if (info->z_delay == NULL || info->z_alloc < i ||
1347	    i <= (info->z_alloc >> 1)) {
1348		if (info->z_delay != NULL)
1349			free(info->z_delay, M_DEVBUF);
1350		info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
1351		if (info->z_delay == NULL)
1352			return (ENOMEM);
1353		info->z_alloc = i;
1354	}
1355
1356	/*
1357	 * Zero out head of buffer to avoid pops and clicks.
1358	 */
1359	memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1360	    info->z_pos * align);
1361
1362#ifdef Z_DIAGNOSTIC
1363	/*
1364	 * XXX Debuging mess !@#$%^
1365	 */
1366#define dumpz(x)	fprintf(stderr, "\t%12s = %10u : %-11d\n",	\
1367			    "z_"__STRING(x), (uint32_t)info->z_##x,	\
1368			    (int32_t)info->z_##x)
1369	fprintf(stderr, "\n%s():\n", __func__);
1370	fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1371	    info->channels, info->bps, format, info->quality);
1372	fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1373	    info->src, info->rsrc, info->dst, info->rdst);
1374	fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1375	fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1376	if (adaptive != 0)
1377		z_scale = Z_ONE;
1378	fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1379	    z_scale, Z_ONE, (double)z_scale / Z_ONE);
1380	fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1381	fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1382	dumpz(size);
1383	dumpz(alloc);
1384	if (info->z_alloc < 1024)
1385		fprintf(stderr, "\t%15s%10d Bytes\n",
1386		    "", info->z_alloc);
1387	else if (info->z_alloc < (1024 << 10))
1388		fprintf(stderr, "\t%15s%10d KBytes\n",
1389		    "", info->z_alloc >> 10);
1390	else if (info->z_alloc < (1024 << 20))
1391		fprintf(stderr, "\t%15s%10d MBytes\n",
1392		    "", info->z_alloc >> 20);
1393	else
1394		fprintf(stderr, "\t%15s%10d GBytes\n",
1395		    "", info->z_alloc >> 30);
1396	fprintf(stderr, "\t%12s   %10d (min output samples)\n",
1397	    "",
1398	    (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1399	fprintf(stderr, "\t%12s   %10d (min allocated output samples)\n",
1400	    "",
1401	    (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1402	    (info->z_size << 1)));
1403	fprintf(stderr, "\t%12s = %10d\n",
1404	    "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1405	fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1406	    "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1407	fprintf(stderr, "\t%12s = %10d\n",
1408	    "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1409	fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1410	    "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1411	dumpz(maxfeed);
1412	dumpz(full);
1413	dumpz(start);
1414	dumpz(pos);
1415	dumpz(scale);
1416	fprintf(stderr, "\t%12s   %10f\n", "",
1417	    (double)info->z_scale / Z_ONE);
1418	dumpz(dx);
1419	fprintf(stderr, "\t%12s   %10f\n", "",
1420	    (double)info->z_dx / info->z_dy);
1421	dumpz(dy);
1422	fprintf(stderr, "\t%12s   %10d (drift step)\n", "",
1423	    info->z_dy >> Z_SHIFT);
1424	fprintf(stderr, "\t%12s   %10d (scaling differences)\n", "",
1425	    (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1426	fprintf(stderr, "\t%12s = %u bytes\n",
1427	    "intpcm32_t", sizeof(intpcm32_t));
1428	fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1429	    "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1430#endif
1431
1432	return (0);
1433}
1434
1435static int
1436z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
1437{
1438	struct z_info *info;
1439	int32_t oquality;
1440
1441	info = f->data;
1442
1443	switch (what) {
1444	case Z_RATE_SRC:
1445		if (value < feeder_rate_min || value > feeder_rate_max)
1446			return (E2BIG);
1447		if (value == info->rsrc)
1448			return (0);
1449		info->rsrc = value;
1450		break;
1451	case Z_RATE_DST:
1452		if (value < feeder_rate_min || value > feeder_rate_max)
1453			return (E2BIG);
1454		if (value == info->rdst)
1455			return (0);
1456		info->rdst = value;
1457		break;
1458	case Z_RATE_QUALITY:
1459		if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1460			return (EINVAL);
1461		if (value == info->quality)
1462			return (0);
1463		/*
1464		 * If we failed to set the requested quality, restore
1465		 * the old one. We cannot afford leaving it broken since
1466		 * passive feeder chains like vchans never reinitialize
1467		 * itself.
1468		 */
1469		oquality = info->quality;
1470		info->quality = value;
1471		if (z_resampler_setup(f) == 0)
1472			return (0);
1473		info->quality = oquality;
1474		break;
1475	case Z_RATE_CHANNELS:
1476		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1477			return (EINVAL);
1478		if (value == info->channels)
1479			return (0);
1480		info->channels = value;
1481		break;
1482	default:
1483		return (EINVAL);
1484		break;
1485	}
1486
1487	return (z_resampler_setup(f));
1488}
1489
1490static int
1491z_resampler_get(struct pcm_feeder *f, int what)
1492{
1493	struct z_info *info;
1494
1495	info = f->data;
1496
1497	switch (what) {
1498	case Z_RATE_SRC:
1499		return (info->rsrc);
1500		break;
1501	case Z_RATE_DST:
1502		return (info->rdst);
1503		break;
1504	case Z_RATE_QUALITY:
1505		return (info->quality);
1506		break;
1507	case Z_RATE_CHANNELS:
1508		return (info->channels);
1509		break;
1510	default:
1511		break;
1512	}
1513
1514	return (-1);
1515}
1516
1517static int
1518z_resampler_init(struct pcm_feeder *f)
1519{
1520	struct z_info *info;
1521	int ret;
1522
1523	if (f->desc->in != f->desc->out)
1524		return (EINVAL);
1525
1526	info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
1527	if (info == NULL)
1528		return (ENOMEM);
1529
1530	info->rsrc = Z_RATE_DEFAULT;
1531	info->rdst = Z_RATE_DEFAULT;
1532	info->quality = feeder_rate_quality;
1533	info->channels = AFMT_CHANNEL(f->desc->in);
1534
1535	f->data = info;
1536
1537	ret = z_resampler_setup(f);
1538	if (ret != 0) {
1539		if (info->z_pcoeff != NULL)
1540			free(info->z_pcoeff, M_DEVBUF);
1541		if (info->z_delay != NULL)
1542			free(info->z_delay, M_DEVBUF);
1543		free(info, M_DEVBUF);
1544		f->data = NULL;
1545	}
1546
1547	return (ret);
1548}
1549
1550static int
1551z_resampler_free(struct pcm_feeder *f)
1552{
1553	struct z_info *info;
1554
1555	info = f->data;
1556	if (info != NULL) {
1557		if (info->z_pcoeff != NULL)
1558			free(info->z_pcoeff, M_DEVBUF);
1559		if (info->z_delay != NULL)
1560			free(info->z_delay, M_DEVBUF);
1561		free(info, M_DEVBUF);
1562	}
1563
1564	f->data = NULL;
1565
1566	return (0);
1567}
1568
1569static uint32_t
1570z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
1571    uint8_t *b, uint32_t count, void *source)
1572{
1573	struct z_info *info;
1574	int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1575	int32_t fetch, fetched, start, cp;
1576	uint8_t *dst;
1577
1578	info = f->data;
1579	if (info->z_resample == NULL)
1580		return (z_feed(f->source, c, b, count, source));
1581
1582	/*
1583	 * Calculate sample size alignment and amount of sample output.
1584	 * We will do everything in sample domain, but at the end we
1585	 * will jump back to byte domain.
1586	 */
1587	align = info->channels * info->bps;
1588	ocount = SND_FXDIV(count, align);
1589	if (ocount == 0)
1590		return (0);
1591
1592	/*
1593	 * Calculate amount of input samples that is needed to generate
1594	 * exact amount of output.
1595	 */
1596	reqin = z_gy2gx(info, ocount) - z_fetched(info);
1597
1598#ifdef Z_USE_ALPHADRIFT
1599	startdrift = info->z_startdrift;
1600	alphadrift = info->z_alphadrift;
1601#else
1602	startdrift = _Z_GY2GX(info, 0, 1);
1603	alphadrift = z_drift(info, startdrift, 1);
1604#endif
1605
1606	dst = b;
1607
1608	do {
1609		if (reqin != 0) {
1610			fetch = z_min(z_free(info), reqin);
1611			if (fetch == 0) {
1612				/*
1613				 * No more free spaces, so wind enough
1614				 * samples back to the head of delay line
1615				 * in byte domain.
1616				 */
1617				fetched = z_fetched(info);
1618				start = z_prev(info, info->z_start,
1619				    (info->z_size << 1) - 1);
1620				cp = (info->z_size << 1) + fetched;
1621				z_copy(info->z_delay + (start * align),
1622				    info->z_delay, cp * align);
1623				info->z_start =
1624				    z_prev(info, info->z_size << 1, 1);
1625				info->z_pos =
1626				    z_next(info, info->z_start, fetched + 1);
1627				fetch = z_min(z_free(info), reqin);
1628#ifdef Z_DIAGNOSTIC
1629				if (1) {
1630					static uint32_t kk = 0;
1631					fprintf(stderr,
1632					    "Buffer Move: "
1633					    "start=%d fetched=%d cp=%d "
1634					    "cycle=%u [%u]\r",
1635					    start, fetched, cp, info->z_cycle,
1636					    ++kk);
1637				}
1638				info->z_cycle = 0;
1639#endif
1640			}
1641			if (fetch != 0) {
1642				/*
1643				 * Fetch in byte domain and jump back
1644				 * to sample domain.
1645				 */
1646				fetched = SND_FXDIV(z_feed(f->source, c,
1647				    info->z_delay + (info->z_pos * align),
1648				    fetch * align, source), align);
1649				/*
1650				 * Prepare to convert fetched buffer,
1651				 * or mark us done if we cannot fulfill
1652				 * the request.
1653				 */
1654				reqin -= fetched;
1655				info->z_pos += fetched;
1656				if (fetched != fetch)
1657					reqin = 0;
1658			}
1659		}
1660
1661		reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1662		if (reqout != 0) {
1663			ocount -= reqout;
1664
1665			/*
1666			 * Drift.. drift.. drift..
1667			 *
1668			 * Notice that there are 2 methods of doing the drift
1669			 * operations: The former is much cleaner (in a sense
1670			 * of mathematical readings of my eyes), but slower
1671			 * due to integer division in z_gy2gx(). Nevertheless,
1672			 * both should give the same exact accurate drifting
1673			 * results, so the later is favourable.
1674			 */
1675			do {
1676				info->z_resample(info, dst);
1677#if 0
1678				startdrift = z_gy2gx(info, 1);
1679				alphadrift = z_drift(info, startdrift, 1);
1680				info->z_start += startdrift;
1681				info->z_alpha += alphadrift;
1682#else
1683				info->z_alpha += alphadrift;
1684				if (info->z_alpha < info->z_gy)
1685					info->z_start += startdrift;
1686				else {
1687					info->z_start += startdrift - 1;
1688					info->z_alpha -= info->z_gy;
1689				}
1690#endif
1691				dst += align;
1692#ifdef Z_DIAGNOSTIC
1693				info->z_cycle++;
1694#endif
1695			} while (--reqout != 0);
1696		}
1697	} while (reqin != 0 && ocount != 0);
1698
1699	/*
1700	 * Back to byte domain..
1701	 */
1702	return (dst - b);
1703}
1704
1705static int
1706z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1707    uint32_t count, void *source)
1708{
1709	uint32_t feed, maxfeed, left;
1710
1711	/*
1712	 * Split count to smaller chunks to avoid possible 32bit overflow.
1713	 */
1714	maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1715	left = count;
1716
1717	do {
1718		feed = z_resampler_feed_internal(f, c, b,
1719		    z_min(maxfeed, left), source);
1720		b += feed;
1721		left -= feed;
1722	} while (left != 0 && feed != 0);
1723
1724	return (count - left);
1725}
1726
1727static struct pcm_feederdesc feeder_rate_desc[] = {
1728	{ FEEDER_RATE, 0, 0, 0, 0 },
1729	{ 0, 0, 0, 0, 0 },
1730};
1731
1732static kobj_method_t feeder_rate_methods[] = {
1733	KOBJMETHOD(feeder_init,		z_resampler_init),
1734	KOBJMETHOD(feeder_free,		z_resampler_free),
1735	KOBJMETHOD(feeder_set,		z_resampler_set),
1736	KOBJMETHOD(feeder_get,		z_resampler_get),
1737	KOBJMETHOD(feeder_feed,		z_resampler_feed),
1738	KOBJMETHOD_END
1739};
1740
1741FEEDER_DECLARE(feeder_rate, NULL);
1742