1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
5 * Copyright (c) 1997, 1998, 1999
6 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39/*
40 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
41 * available from http://www.sis.com.tw.
42 *
43 * This driver also supports the NatSemi DP83815. Datasheets are
44 * available from http://www.national.com.
45 *
46 * Written by Bill Paul <wpaul@ee.columbia.edu>
47 * Electrical Engineering Department
48 * Columbia University, New York City
49 */
50/*
51 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
52 * simple TX and RX descriptors of 3 longwords in size. The receiver
53 * has a single perfect filter entry for the station address and a
54 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
55 * transceiver while the 7016 requires an external transceiver chip.
56 * Both chips offer the standard bit-bang MII interface as well as
57 * an enchanced PHY interface which simplifies accessing MII registers.
58 *
59 * The only downside to this chipset is that RX descriptors must be
60 * longword aligned.
61 */
62
63#ifdef HAVE_KERNEL_OPTION_HEADERS
64#include "opt_device_polling.h"
65#endif
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/bus.h>
70#include <sys/endian.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/malloc.h>
74#include <sys/mbuf.h>
75#include <sys/module.h>
76#include <sys/socket.h>
77#include <sys/sockio.h>
78#include <sys/sysctl.h>
79
80#include <net/if.h>
81#include <net/if_var.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_dl.h>
85#include <net/if_media.h>
86#include <net/if_types.h>
87#include <net/if_vlan_var.h>
88
89#include <net/bpf.h>
90
91#include <machine/bus.h>
92#include <machine/resource.h>
93#include <sys/rman.h>
94
95#include <dev/mii/mii.h>
96#include <dev/mii/mii_bitbang.h>
97#include <dev/mii/miivar.h>
98
99#include <dev/pci/pcireg.h>
100#include <dev/pci/pcivar.h>
101
102#define SIS_USEIOSPACE
103
104#include <dev/sis/if_sisreg.h>
105
106MODULE_DEPEND(sis, pci, 1, 1, 1);
107MODULE_DEPEND(sis, ether, 1, 1, 1);
108MODULE_DEPEND(sis, miibus, 1, 1, 1);
109
110/* "device miibus" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
114#define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
115#define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
116
117/*
118 * register space access macros
119 */
120#define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
121
122#define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
123
124#define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
125
126#define	CSR_BARRIER(sc, reg, length, flags)				\
127	bus_barrier(sc->sis_res[0], reg, length, flags)
128
129/*
130 * Various supported device vendors/types and their names.
131 */
132static const struct sis_type sis_devs[] = {
133	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
134	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
135	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
136	{ 0, 0, NULL }
137};
138
139static int sis_detach(device_t);
140static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
141static int sis_dma_alloc(struct sis_softc *);
142static void sis_dma_free(struct sis_softc *);
143static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
144    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
145static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
146#ifndef __NO_STRICT_ALIGNMENT
147static __inline void sis_fixup_rx(struct mbuf *);
148#endif
149static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
150static int sis_ifmedia_upd(struct ifnet *);
151static void sis_init(void *);
152static void sis_initl(struct sis_softc *);
153static void sis_intr(void *);
154static int sis_ioctl(struct ifnet *, u_long, caddr_t);
155static uint32_t sis_mii_bitbang_read(device_t);
156static void sis_mii_bitbang_write(device_t, uint32_t);
157static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
158static int sis_resume(device_t);
159static int sis_rxeof(struct sis_softc *);
160static void sis_rxfilter(struct sis_softc *);
161static void sis_rxfilter_ns(struct sis_softc *);
162static void sis_rxfilter_sis(struct sis_softc *);
163static void sis_start(struct ifnet *);
164static void sis_startl(struct ifnet *);
165static void sis_stop(struct sis_softc *);
166static int sis_suspend(device_t);
167static void sis_add_sysctls(struct sis_softc *);
168static void sis_watchdog(struct sis_softc *);
169static void sis_wol(struct sis_softc *);
170
171/*
172 * MII bit-bang glue
173 */
174static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
175	sis_mii_bitbang_read,
176	sis_mii_bitbang_write,
177	{
178		SIS_MII_DATA,		/* MII_BIT_MDO */
179		SIS_MII_DATA,		/* MII_BIT_MDI */
180		SIS_MII_CLK,		/* MII_BIT_MDC */
181		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
182		0,			/* MII_BIT_DIR_PHY_HOST */
183	}
184};
185
186static struct resource_spec sis_res_spec[] = {
187#ifdef SIS_USEIOSPACE
188	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
189#else
190	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
191#endif
192	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
193	{ -1, 0 }
194};
195
196#define SIS_SETBIT(sc, reg, x)				\
197	CSR_WRITE_4(sc, reg,				\
198		CSR_READ_4(sc, reg) | (x))
199
200#define SIS_CLRBIT(sc, reg, x)				\
201	CSR_WRITE_4(sc, reg,				\
202		CSR_READ_4(sc, reg) & ~(x))
203
204#define SIO_SET(x)					\
205	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
206
207#define SIO_CLR(x)					\
208	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
209
210/*
211 * Routine to reverse the bits in a word. Stolen almost
212 * verbatim from /usr/games/fortune.
213 */
214static uint16_t
215sis_reverse(uint16_t n)
216{
217	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
218	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
219	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
220	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
221
222	return (n);
223}
224
225static void
226sis_delay(struct sis_softc *sc)
227{
228	int			idx;
229
230	for (idx = (300 / 33) + 1; idx > 0; idx--)
231		CSR_READ_4(sc, SIS_CSR);
232}
233
234static void
235sis_eeprom_idle(struct sis_softc *sc)
236{
237	int		i;
238
239	SIO_SET(SIS_EECTL_CSEL);
240	sis_delay(sc);
241	SIO_SET(SIS_EECTL_CLK);
242	sis_delay(sc);
243
244	for (i = 0; i < 25; i++) {
245		SIO_CLR(SIS_EECTL_CLK);
246		sis_delay(sc);
247		SIO_SET(SIS_EECTL_CLK);
248		sis_delay(sc);
249	}
250
251	SIO_CLR(SIS_EECTL_CLK);
252	sis_delay(sc);
253	SIO_CLR(SIS_EECTL_CSEL);
254	sis_delay(sc);
255	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
256}
257
258/*
259 * Send a read command and address to the EEPROM, check for ACK.
260 */
261static void
262sis_eeprom_putbyte(struct sis_softc *sc, int addr)
263{
264	int		d, i;
265
266	d = addr | SIS_EECMD_READ;
267
268	/*
269	 * Feed in each bit and stobe the clock.
270	 */
271	for (i = 0x400; i; i >>= 1) {
272		if (d & i) {
273			SIO_SET(SIS_EECTL_DIN);
274		} else {
275			SIO_CLR(SIS_EECTL_DIN);
276		}
277		sis_delay(sc);
278		SIO_SET(SIS_EECTL_CLK);
279		sis_delay(sc);
280		SIO_CLR(SIS_EECTL_CLK);
281		sis_delay(sc);
282	}
283}
284
285/*
286 * Read a word of data stored in the EEPROM at address 'addr.'
287 */
288static void
289sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
290{
291	int		i;
292	uint16_t	word = 0;
293
294	/* Force EEPROM to idle state. */
295	sis_eeprom_idle(sc);
296
297	/* Enter EEPROM access mode. */
298	sis_delay(sc);
299	SIO_CLR(SIS_EECTL_CLK);
300	sis_delay(sc);
301	SIO_SET(SIS_EECTL_CSEL);
302	sis_delay(sc);
303
304	/*
305	 * Send address of word we want to read.
306	 */
307	sis_eeprom_putbyte(sc, addr);
308
309	/*
310	 * Start reading bits from EEPROM.
311	 */
312	for (i = 0x8000; i; i >>= 1) {
313		SIO_SET(SIS_EECTL_CLK);
314		sis_delay(sc);
315		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
316			word |= i;
317		sis_delay(sc);
318		SIO_CLR(SIS_EECTL_CLK);
319		sis_delay(sc);
320	}
321
322	/* Turn off EEPROM access mode. */
323	sis_eeprom_idle(sc);
324
325	*dest = word;
326}
327
328/*
329 * Read a sequence of words from the EEPROM.
330 */
331static void
332sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
333{
334	int			i;
335	uint16_t		word = 0, *ptr;
336
337	for (i = 0; i < cnt; i++) {
338		sis_eeprom_getword(sc, off + i, &word);
339		ptr = (uint16_t *)(dest + (i * 2));
340		if (swap)
341			*ptr = ntohs(word);
342		else
343			*ptr = word;
344	}
345}
346
347#if defined(__i386__) || defined(__amd64__)
348static device_t
349sis_find_bridge(device_t dev)
350{
351	devclass_t		pci_devclass;
352	device_t		*pci_devices;
353	int			pci_count = 0;
354	device_t		*pci_children;
355	int			pci_childcount = 0;
356	device_t		*busp, *childp;
357	device_t		child = NULL;
358	int			i, j;
359
360	if ((pci_devclass = devclass_find("pci")) == NULL)
361		return (NULL);
362
363	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
364
365	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
366		if (device_get_children(*busp, &pci_children, &pci_childcount))
367			continue;
368		for (j = 0, childp = pci_children;
369		    j < pci_childcount; j++, childp++) {
370			if (pci_get_vendor(*childp) == SIS_VENDORID &&
371			    pci_get_device(*childp) == 0x0008) {
372				child = *childp;
373				free(pci_children, M_TEMP);
374				goto done;
375			}
376		}
377		free(pci_children, M_TEMP);
378	}
379
380done:
381	free(pci_devices, M_TEMP);
382	return (child);
383}
384
385static void
386sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
387{
388	device_t		bridge;
389	uint8_t			reg;
390	int			i;
391	bus_space_tag_t		btag;
392
393	bridge = sis_find_bridge(dev);
394	if (bridge == NULL)
395		return;
396	reg = pci_read_config(bridge, 0x48, 1);
397	pci_write_config(bridge, 0x48, reg|0x40, 1);
398
399	/* XXX */
400#if defined(__amd64__) || defined(__i386__)
401	btag = X86_BUS_SPACE_IO;
402#endif
403
404	for (i = 0; i < cnt; i++) {
405		bus_space_write_1(btag, 0x0, 0x70, i + off);
406		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
407	}
408
409	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
410}
411
412static void
413sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
414{
415	uint32_t		filtsave, csrsave;
416
417	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
418	csrsave = CSR_READ_4(sc, SIS_CSR);
419
420	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
421	CSR_WRITE_4(sc, SIS_CSR, 0);
422
423	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
424
425	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
426	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
428	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
430	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
431
432	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
433	CSR_WRITE_4(sc, SIS_CSR, csrsave);
434}
435#endif
436
437/*
438 * Read the MII serial port for the MII bit-bang module.
439 */
440static uint32_t
441sis_mii_bitbang_read(device_t dev)
442{
443	struct sis_softc	*sc;
444	uint32_t		val;
445
446	sc = device_get_softc(dev);
447
448	val = CSR_READ_4(sc, SIS_EECTL);
449	CSR_BARRIER(sc, SIS_EECTL, 4,
450	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
451	return (val);
452}
453
454/*
455 * Write the MII serial port for the MII bit-bang module.
456 */
457static void
458sis_mii_bitbang_write(device_t dev, uint32_t val)
459{
460	struct sis_softc	*sc;
461
462	sc = device_get_softc(dev);
463
464	CSR_WRITE_4(sc, SIS_EECTL, val);
465	CSR_BARRIER(sc, SIS_EECTL, 4,
466	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
467}
468
469static int
470sis_miibus_readreg(device_t dev, int phy, int reg)
471{
472	struct sis_softc	*sc;
473
474	sc = device_get_softc(dev);
475
476	if (sc->sis_type == SIS_TYPE_83815) {
477		if (phy != 0)
478			return (0);
479		/*
480		 * The NatSemi chip can take a while after
481		 * a reset to come ready, during which the BMSR
482		 * returns a value of 0. This is *never* supposed
483		 * to happen: some of the BMSR bits are meant to
484		 * be hardwired in the on position, and this can
485		 * confuse the miibus code a bit during the probe
486		 * and attach phase. So we make an effort to check
487		 * for this condition and wait for it to clear.
488		 */
489		if (!CSR_READ_4(sc, NS_BMSR))
490			DELAY(1000);
491		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
492	}
493
494	/*
495	 * Chipsets < SIS_635 seem not to be able to read/write
496	 * through mdio. Use the enhanced PHY access register
497	 * again for them.
498	 */
499	if (sc->sis_type == SIS_TYPE_900 &&
500	    sc->sis_rev < SIS_REV_635) {
501		int i, val = 0;
502
503		if (phy != 0)
504			return (0);
505
506		CSR_WRITE_4(sc, SIS_PHYCTL,
507		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
508		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
509
510		for (i = 0; i < SIS_TIMEOUT; i++) {
511			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
512				break;
513		}
514
515		if (i == SIS_TIMEOUT) {
516			device_printf(sc->sis_dev,
517			    "PHY failed to come ready\n");
518			return (0);
519		}
520
521		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
522
523		if (val == 0xFFFF)
524			return (0);
525
526		return (val);
527	} else
528		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
529		    reg));
530}
531
532static int
533sis_miibus_writereg(device_t dev, int phy, int reg, int data)
534{
535	struct sis_softc	*sc;
536
537	sc = device_get_softc(dev);
538
539	if (sc->sis_type == SIS_TYPE_83815) {
540		if (phy != 0)
541			return (0);
542		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
543		return (0);
544	}
545
546	/*
547	 * Chipsets < SIS_635 seem not to be able to read/write
548	 * through mdio. Use the enhanced PHY access register
549	 * again for them.
550	 */
551	if (sc->sis_type == SIS_TYPE_900 &&
552	    sc->sis_rev < SIS_REV_635) {
553		int i;
554
555		if (phy != 0)
556			return (0);
557
558		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
559		    (reg << 6) | SIS_PHYOP_WRITE);
560		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
561
562		for (i = 0; i < SIS_TIMEOUT; i++) {
563			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
564				break;
565		}
566
567		if (i == SIS_TIMEOUT)
568			device_printf(sc->sis_dev,
569			    "PHY failed to come ready\n");
570	} else
571		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
572		    data);
573	return (0);
574}
575
576static void
577sis_miibus_statchg(device_t dev)
578{
579	struct sis_softc	*sc;
580	struct mii_data		*mii;
581	struct ifnet		*ifp;
582	uint32_t		reg;
583
584	sc = device_get_softc(dev);
585	SIS_LOCK_ASSERT(sc);
586
587	mii = device_get_softc(sc->sis_miibus);
588	ifp = sc->sis_ifp;
589	if (mii == NULL || ifp == NULL ||
590	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591		return;
592
593	sc->sis_flags &= ~SIS_FLAG_LINK;
594	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595	    (IFM_ACTIVE | IFM_AVALID)) {
596		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597		case IFM_10_T:
598			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
599			sc->sis_flags |= SIS_FLAG_LINK;
600			break;
601		case IFM_100_TX:
602			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
603			sc->sis_flags |= SIS_FLAG_LINK;
604			break;
605		default:
606			break;
607		}
608	}
609
610	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
611		/*
612		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
613		 * SIS_RX_LISTPTR which in turn requires resetting
614		 * TX/RX buffers.  So just don't do anything for
615		 * lost link.
616		 */
617		return;
618	}
619
620	/* Set full/half duplex mode. */
621	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
622		SIS_SETBIT(sc, SIS_TX_CFG,
623		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
624		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
625	} else {
626		SIS_CLRBIT(sc, SIS_TX_CFG,
627		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
628		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
629	}
630
631	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
632		/*
633		 * MPII03.D: Half Duplex Excessive Collisions.
634		 * Also page 49 in 83816 manual
635		 */
636		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
637	}
638
639	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
640	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
641		/*
642		 * Short Cable Receive Errors (MP21.E)
643		 */
644		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
645		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
646		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
647		DELAY(100);
648		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
649		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
650			device_printf(sc->sis_dev,
651			    "Applying short cable fix (reg=%x)\n", reg);
652			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
653			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
654		}
655		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
656	}
657	/* Enable TX/RX MACs. */
658	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
659	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
660}
661
662static uint32_t
663sis_mchash(struct sis_softc *sc, const uint8_t *addr)
664{
665	uint32_t		crc;
666
667	/* Compute CRC for the address value. */
668	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
669
670	/*
671	 * return the filter bit position
672	 *
673	 * The NatSemi chip has a 512-bit filter, which is
674	 * different than the SiS, so we special-case it.
675	 */
676	if (sc->sis_type == SIS_TYPE_83815)
677		return (crc >> 23);
678	else if (sc->sis_rev >= SIS_REV_635 ||
679	    sc->sis_rev == SIS_REV_900B)
680		return (crc >> 24);
681	else
682		return (crc >> 25);
683}
684
685static void
686sis_rxfilter(struct sis_softc *sc)
687{
688
689	SIS_LOCK_ASSERT(sc);
690
691	if (sc->sis_type == SIS_TYPE_83815)
692		sis_rxfilter_ns(sc);
693	else
694		sis_rxfilter_sis(sc);
695}
696
697static u_int
698sis_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
699{
700	struct sis_softc *sc = arg;
701	uint32_t h;
702	int bit, index;
703
704	h = sis_mchash(sc, LLADDR(sdl));
705	index = h >> 3;
706	bit = h & 0x1F;
707	CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
708	if (bit > 0xF)
709		bit -= 0x10;
710	SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
711
712	return (1);
713}
714
715static void
716sis_rxfilter_ns(struct sis_softc *sc)
717{
718	struct ifnet		*ifp;
719	uint32_t		i, filter;
720
721	ifp = sc->sis_ifp;
722	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
723	if (filter & SIS_RXFILTCTL_ENABLE) {
724		/*
725		 * Filter should be disabled to program other bits.
726		 */
727		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
728		CSR_READ_4(sc, SIS_RXFILT_CTL);
729	}
730	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
731	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
732	    SIS_RXFILTCTL_ALLMULTI);
733
734	if (ifp->if_flags & IFF_BROADCAST)
735		filter |= SIS_RXFILTCTL_BROAD;
736	/*
737	 * For the NatSemi chip, we have to explicitly enable the
738	 * reception of ARP frames, as well as turn on the 'perfect
739	 * match' filter where we store the station address, otherwise
740	 * we won't receive unicasts meant for this host.
741	 */
742	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
743
744	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
745		filter |= SIS_RXFILTCTL_ALLMULTI;
746		if (ifp->if_flags & IFF_PROMISC)
747			filter |= SIS_RXFILTCTL_ALLPHYS;
748	} else {
749		/*
750		 * We have to explicitly enable the multicast hash table
751		 * on the NatSemi chip if we want to use it, which we do.
752		 */
753		filter |= NS_RXFILTCTL_MCHASH;
754
755		/* first, zot all the existing hash bits */
756		for (i = 0; i < 32; i++) {
757			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
758			    (i * 2));
759			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
760		}
761
762		if_foreach_llmaddr(ifp, sis_write_maddr, sc);
763	}
764
765	/* Turn the receive filter on */
766	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
767	CSR_READ_4(sc, SIS_RXFILT_CTL);
768}
769
770struct sis_hash_maddr_ctx {
771	struct sis_softc *sc;
772	uint16_t hashes[16];
773};
774
775static u_int
776sis_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
777{
778	struct sis_hash_maddr_ctx *ctx = arg;
779	uint32_t h;
780
781	h = sis_mchash(ctx->sc, LLADDR(sdl));
782	ctx->hashes[h >> 4] |= 1 << (h & 0xf);
783
784	return (1);
785}
786
787static void
788sis_rxfilter_sis(struct sis_softc *sc)
789{
790	struct ifnet		*ifp;
791	struct sis_hash_maddr_ctx ctx;
792	uint32_t		filter, i, n;
793
794	ifp = sc->sis_ifp;
795
796	/* hash table size */
797	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
798		n = 16;
799	else
800		n = 8;
801
802	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
803	if (filter & SIS_RXFILTCTL_ENABLE) {
804		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
805		CSR_READ_4(sc, SIS_RXFILT_CTL);
806	}
807	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
808	    SIS_RXFILTCTL_ALLMULTI);
809	if (ifp->if_flags & IFF_BROADCAST)
810		filter |= SIS_RXFILTCTL_BROAD;
811
812	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
813		filter |= SIS_RXFILTCTL_ALLMULTI;
814		if (ifp->if_flags & IFF_PROMISC)
815			filter |= SIS_RXFILTCTL_ALLPHYS;
816		for (i = 0; i < n; i++)
817			ctx.hashes[i] = ~0;
818	} else {
819		for (i = 0; i < n; i++)
820			ctx.hashes[i] = 0;
821		ctx.sc = sc;
822		if (if_foreach_llmaddr(ifp, sis_hash_maddr, &ctx) > n) {
823			filter |= SIS_RXFILTCTL_ALLMULTI;
824			for (i = 0; i < n; i++)
825				ctx.hashes[i] = ~0;
826		}
827	}
828
829	for (i = 0; i < n; i++) {
830		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
831		CSR_WRITE_4(sc, SIS_RXFILT_DATA, ctx.hashes[i]);
832	}
833
834	/* Turn the receive filter on */
835	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
836	CSR_READ_4(sc, SIS_RXFILT_CTL);
837}
838
839static void
840sis_reset(struct sis_softc *sc)
841{
842	int		i;
843
844	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
845
846	for (i = 0; i < SIS_TIMEOUT; i++) {
847		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
848			break;
849	}
850
851	if (i == SIS_TIMEOUT)
852		device_printf(sc->sis_dev, "reset never completed\n");
853
854	/* Wait a little while for the chip to get its brains in order. */
855	DELAY(1000);
856
857	/*
858	 * If this is a NetSemi chip, make sure to clear
859	 * PME mode.
860	 */
861	if (sc->sis_type == SIS_TYPE_83815) {
862		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
863		CSR_WRITE_4(sc, NS_CLKRUN, 0);
864	} else {
865		/* Disable WOL functions. */
866		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
867	}
868}
869
870/*
871 * Probe for an SiS chip. Check the PCI vendor and device
872 * IDs against our list and return a device name if we find a match.
873 */
874static int
875sis_probe(device_t dev)
876{
877	const struct sis_type	*t;
878
879	t = sis_devs;
880
881	while (t->sis_name != NULL) {
882		if ((pci_get_vendor(dev) == t->sis_vid) &&
883		    (pci_get_device(dev) == t->sis_did)) {
884			device_set_desc(dev, t->sis_name);
885			return (BUS_PROBE_DEFAULT);
886		}
887		t++;
888	}
889
890	return (ENXIO);
891}
892
893/*
894 * Attach the interface. Allocate softc structures, do ifmedia
895 * setup and ethernet/BPF attach.
896 */
897static int
898sis_attach(device_t dev)
899{
900	u_char			eaddr[ETHER_ADDR_LEN];
901	struct sis_softc	*sc;
902	struct ifnet		*ifp;
903	int			error = 0, pmc, waittime = 0;
904
905	waittime = 0;
906	sc = device_get_softc(dev);
907
908	sc->sis_dev = dev;
909
910	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
911	    MTX_DEF);
912	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
913
914	if (pci_get_device(dev) == SIS_DEVICEID_900)
915		sc->sis_type = SIS_TYPE_900;
916	if (pci_get_device(dev) == SIS_DEVICEID_7016)
917		sc->sis_type = SIS_TYPE_7016;
918	if (pci_get_vendor(dev) == NS_VENDORID)
919		sc->sis_type = SIS_TYPE_83815;
920
921	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
922	/*
923	 * Map control/status registers.
924	 */
925	pci_enable_busmaster(dev);
926
927	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
928	if (error) {
929		device_printf(dev, "couldn't allocate resources\n");
930		goto fail;
931	}
932
933	/* Reset the adapter. */
934	sis_reset(sc);
935
936	if (sc->sis_type == SIS_TYPE_900 &&
937	    (sc->sis_rev == SIS_REV_635 ||
938	    sc->sis_rev == SIS_REV_900B)) {
939		SIO_SET(SIS_CFG_RND_CNT);
940		SIO_SET(SIS_CFG_PERR_DETECT);
941	}
942
943	/*
944	 * Get station address from the EEPROM.
945	 */
946	switch (pci_get_vendor(dev)) {
947	case NS_VENDORID:
948		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
949
950		/* We can't update the device description, so spew */
951		if (sc->sis_srr == NS_SRR_15C)
952			device_printf(dev, "Silicon Revision: DP83815C\n");
953		else if (sc->sis_srr == NS_SRR_15D)
954			device_printf(dev, "Silicon Revision: DP83815D\n");
955		else if (sc->sis_srr == NS_SRR_16A)
956			device_printf(dev, "Silicon Revision: DP83816A\n");
957		else
958			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
959
960		/*
961		 * Reading the MAC address out of the EEPROM on
962		 * the NatSemi chip takes a bit more work than
963		 * you'd expect. The address spans 4 16-bit words,
964		 * with the first word containing only a single bit.
965		 * You have to shift everything over one bit to
966		 * get it aligned properly. Also, the bits are
967		 * stored backwards (the LSB is really the MSB,
968		 * and so on) so you have to reverse them in order
969		 * to get the MAC address into the form we want.
970		 * Why? Who the hell knows.
971		 */
972		{
973			uint16_t		tmp[4];
974
975			sis_read_eeprom(sc, (caddr_t)&tmp,
976			    NS_EE_NODEADDR, 4, 0);
977
978			/* Shift everything over one bit. */
979			tmp[3] = tmp[3] >> 1;
980			tmp[3] |= tmp[2] << 15;
981			tmp[2] = tmp[2] >> 1;
982			tmp[2] |= tmp[1] << 15;
983			tmp[1] = tmp[1] >> 1;
984			tmp[1] |= tmp[0] << 15;
985
986			/* Now reverse all the bits. */
987			tmp[3] = sis_reverse(tmp[3]);
988			tmp[2] = sis_reverse(tmp[2]);
989			tmp[1] = sis_reverse(tmp[1]);
990
991			eaddr[0] = (tmp[1] >> 0) & 0xFF;
992			eaddr[1] = (tmp[1] >> 8) & 0xFF;
993			eaddr[2] = (tmp[2] >> 0) & 0xFF;
994			eaddr[3] = (tmp[2] >> 8) & 0xFF;
995			eaddr[4] = (tmp[3] >> 0) & 0xFF;
996			eaddr[5] = (tmp[3] >> 8) & 0xFF;
997		}
998		break;
999	case SIS_VENDORID:
1000	default:
1001#if defined(__i386__) || defined(__amd64__)
1002		/*
1003		 * If this is a SiS 630E chipset with an embedded
1004		 * SiS 900 controller, we have to read the MAC address
1005		 * from the APC CMOS RAM. Our method for doing this
1006		 * is very ugly since we have to reach out and grab
1007		 * ahold of hardware for which we cannot properly
1008		 * allocate resources. This code is only compiled on
1009		 * the i386 architecture since the SiS 630E chipset
1010		 * is for x86 motherboards only. Note that there are
1011		 * a lot of magic numbers in this hack. These are
1012		 * taken from SiS's Linux driver. I'd like to replace
1013		 * them with proper symbolic definitions, but that
1014		 * requires some datasheets that I don't have access
1015		 * to at the moment.
1016		 */
1017		if (sc->sis_rev == SIS_REV_630S ||
1018		    sc->sis_rev == SIS_REV_630E ||
1019		    sc->sis_rev == SIS_REV_630EA1)
1020			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1021
1022		else if (sc->sis_rev == SIS_REV_635 ||
1023			 sc->sis_rev == SIS_REV_630ET)
1024			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1025		else if (sc->sis_rev == SIS_REV_96x) {
1026			/* Allow to read EEPROM from LAN. It is shared
1027			 * between a 1394 controller and the NIC and each
1028			 * time we access it, we need to set SIS_EECMD_REQ.
1029			 */
1030			SIO_SET(SIS_EECMD_REQ);
1031			for (waittime = 0; waittime < SIS_TIMEOUT;
1032			    waittime++) {
1033				/* Force EEPROM to idle state. */
1034				sis_eeprom_idle(sc);
1035				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1036					sis_read_eeprom(sc, (caddr_t)&eaddr,
1037					    SIS_EE_NODEADDR, 3, 0);
1038					break;
1039				}
1040				DELAY(1);
1041			}
1042			/*
1043			 * Set SIS_EECTL_CLK to high, so a other master
1044			 * can operate on the i2c bus.
1045			 */
1046			SIO_SET(SIS_EECTL_CLK);
1047			/* Refuse EEPROM access by LAN */
1048			SIO_SET(SIS_EECMD_DONE);
1049		} else
1050#endif
1051			sis_read_eeprom(sc, (caddr_t)&eaddr,
1052			    SIS_EE_NODEADDR, 3, 0);
1053		break;
1054	}
1055
1056	sis_add_sysctls(sc);
1057
1058	/* Allocate DMA'able memory. */
1059	if ((error = sis_dma_alloc(sc)) != 0)
1060		goto fail;
1061
1062	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1063	if (ifp == NULL) {
1064		device_printf(dev, "can not if_alloc()\n");
1065		error = ENOSPC;
1066		goto fail;
1067	}
1068	ifp->if_softc = sc;
1069	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1070	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1071	ifp->if_ioctl = sis_ioctl;
1072	ifp->if_start = sis_start;
1073	ifp->if_init = sis_init;
1074	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1075	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1076	IFQ_SET_READY(&ifp->if_snd);
1077
1078	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1079		if (sc->sis_type == SIS_TYPE_83815)
1080			ifp->if_capabilities |= IFCAP_WOL;
1081		else
1082			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1083		ifp->if_capenable = ifp->if_capabilities;
1084	}
1085
1086	/*
1087	 * Do MII setup.
1088	 */
1089	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1090	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1091	if (error != 0) {
1092		device_printf(dev, "attaching PHYs failed\n");
1093		goto fail;
1094	}
1095
1096	/*
1097	 * Call MI attach routine.
1098	 */
1099	ether_ifattach(ifp, eaddr);
1100
1101	/*
1102	 * Tell the upper layer(s) we support long frames.
1103	 */
1104	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1105	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1106	ifp->if_capenable = ifp->if_capabilities;
1107#ifdef DEVICE_POLLING
1108	ifp->if_capabilities |= IFCAP_POLLING;
1109#endif
1110
1111	/* Hook interrupt last to avoid having to lock softc */
1112	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1113	    NULL, sis_intr, sc, &sc->sis_intrhand);
1114
1115	if (error) {
1116		device_printf(dev, "couldn't set up irq\n");
1117		ether_ifdetach(ifp);
1118		goto fail;
1119	}
1120
1121fail:
1122	if (error)
1123		sis_detach(dev);
1124
1125	return (error);
1126}
1127
1128/*
1129 * Shutdown hardware and free up resources. This can be called any
1130 * time after the mutex has been initialized. It is called in both
1131 * the error case in attach and the normal detach case so it needs
1132 * to be careful about only freeing resources that have actually been
1133 * allocated.
1134 */
1135static int
1136sis_detach(device_t dev)
1137{
1138	struct sis_softc	*sc;
1139	struct ifnet		*ifp;
1140
1141	sc = device_get_softc(dev);
1142	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1143	ifp = sc->sis_ifp;
1144
1145#ifdef DEVICE_POLLING
1146	if (ifp->if_capenable & IFCAP_POLLING)
1147		ether_poll_deregister(ifp);
1148#endif
1149
1150	/* These should only be active if attach succeeded. */
1151	if (device_is_attached(dev)) {
1152		SIS_LOCK(sc);
1153		sis_stop(sc);
1154		SIS_UNLOCK(sc);
1155		callout_drain(&sc->sis_stat_ch);
1156		ether_ifdetach(ifp);
1157	}
1158	if (sc->sis_miibus)
1159		device_delete_child(dev, sc->sis_miibus);
1160	bus_generic_detach(dev);
1161
1162	if (sc->sis_intrhand)
1163		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1164	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1165
1166	if (ifp)
1167		if_free(ifp);
1168
1169	sis_dma_free(sc);
1170
1171	mtx_destroy(&sc->sis_mtx);
1172
1173	return (0);
1174}
1175
1176struct sis_dmamap_arg {
1177	bus_addr_t	sis_busaddr;
1178};
1179
1180static void
1181sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1182{
1183	struct sis_dmamap_arg	*ctx;
1184
1185	if (error != 0)
1186		return;
1187
1188	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1189
1190	ctx = (struct sis_dmamap_arg *)arg;
1191	ctx->sis_busaddr = segs[0].ds_addr;
1192}
1193
1194static int
1195sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1196    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1197    bus_addr_t *paddr, const char *msg)
1198{
1199	struct sis_dmamap_arg	ctx;
1200	int			error;
1201
1202	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1203	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1204	    maxsize, 0, NULL, NULL, tag);
1205	if (error != 0) {
1206		device_printf(sc->sis_dev,
1207		    "could not create %s dma tag\n", msg);
1208		return (ENOMEM);
1209	}
1210	/* Allocate DMA'able memory for ring. */
1211	error = bus_dmamem_alloc(*tag, (void **)ring,
1212	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1213	if (error != 0) {
1214		device_printf(sc->sis_dev,
1215		    "could not allocate DMA'able memory for %s\n", msg);
1216		return (ENOMEM);
1217	}
1218	/* Load the address of the ring. */
1219	ctx.sis_busaddr = 0;
1220	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1221	    &ctx, BUS_DMA_NOWAIT);
1222	if (error != 0) {
1223		device_printf(sc->sis_dev,
1224		    "could not load DMA'able memory for %s\n", msg);
1225		return (ENOMEM);
1226	}
1227	*paddr = ctx.sis_busaddr;
1228	return (0);
1229}
1230
1231static int
1232sis_dma_alloc(struct sis_softc *sc)
1233{
1234	struct sis_rxdesc	*rxd;
1235	struct sis_txdesc	*txd;
1236	int			error, i;
1237
1238	/* Allocate the parent bus DMA tag appropriate for PCI. */
1239	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1240	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1241	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1242	    0, NULL, NULL, &sc->sis_parent_tag);
1243	if (error != 0) {
1244		device_printf(sc->sis_dev,
1245		    "could not allocate parent dma tag\n");
1246		return (ENOMEM);
1247	}
1248
1249	/* Create RX ring. */
1250	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1251	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1252	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1253	if (error)
1254		return (error);
1255
1256	/* Create TX ring. */
1257	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1258	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1259	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1260	if (error)
1261		return (error);
1262
1263	/* Create tag for RX mbufs. */
1264	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1265	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1266	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1267	if (error) {
1268		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1269		return (error);
1270	}
1271
1272	/* Create tag for TX mbufs. */
1273	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1274	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1275	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1276	    &sc->sis_tx_tag);
1277	if (error) {
1278		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1279		return (error);
1280	}
1281
1282	/* Create DMA maps for RX buffers. */
1283	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1284	if (error) {
1285		device_printf(sc->sis_dev,
1286		    "can't create spare DMA map for RX\n");
1287		return (error);
1288	}
1289	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1290		rxd = &sc->sis_rxdesc[i];
1291		rxd->rx_m = NULL;
1292		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1293		if (error) {
1294			device_printf(sc->sis_dev,
1295			    "can't create DMA map for RX\n");
1296			return (error);
1297		}
1298	}
1299
1300	/* Create DMA maps for TX buffers. */
1301	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1302		txd = &sc->sis_txdesc[i];
1303		txd->tx_m = NULL;
1304		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1305		if (error) {
1306			device_printf(sc->sis_dev,
1307			    "can't create DMA map for TX\n");
1308			return (error);
1309		}
1310	}
1311
1312	return (0);
1313}
1314
1315static void
1316sis_dma_free(struct sis_softc *sc)
1317{
1318	struct sis_rxdesc	*rxd;
1319	struct sis_txdesc	*txd;
1320	int			i;
1321
1322	/* Destroy DMA maps for RX buffers. */
1323	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1324		rxd = &sc->sis_rxdesc[i];
1325		if (rxd->rx_dmamap)
1326			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1327	}
1328	if (sc->sis_rx_sparemap)
1329		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1330
1331	/* Destroy DMA maps for TX buffers. */
1332	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1333		txd = &sc->sis_txdesc[i];
1334		if (txd->tx_dmamap)
1335			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1336	}
1337
1338	if (sc->sis_rx_tag)
1339		bus_dma_tag_destroy(sc->sis_rx_tag);
1340	if (sc->sis_tx_tag)
1341		bus_dma_tag_destroy(sc->sis_tx_tag);
1342
1343	/* Destroy RX ring. */
1344	if (sc->sis_rx_paddr)
1345		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1346	if (sc->sis_rx_list)
1347		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1348		    sc->sis_rx_list_map);
1349
1350	if (sc->sis_rx_list_tag)
1351		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1352
1353	/* Destroy TX ring. */
1354	if (sc->sis_tx_paddr)
1355		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1356
1357	if (sc->sis_tx_list)
1358		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1359		    sc->sis_tx_list_map);
1360
1361	if (sc->sis_tx_list_tag)
1362		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1363
1364	/* Destroy the parent tag. */
1365	if (sc->sis_parent_tag)
1366		bus_dma_tag_destroy(sc->sis_parent_tag);
1367}
1368
1369/*
1370 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1371 * we arrange the descriptors in a closed ring, so that the last descriptor
1372 * points back to the first.
1373 */
1374static int
1375sis_ring_init(struct sis_softc *sc)
1376{
1377	struct sis_rxdesc	*rxd;
1378	struct sis_txdesc	*txd;
1379	bus_addr_t		next;
1380	int			error, i;
1381
1382	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1383	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1384		txd = &sc->sis_txdesc[i];
1385		txd->tx_m = NULL;
1386		if (i == SIS_TX_LIST_CNT - 1)
1387			next = SIS_TX_RING_ADDR(sc, 0);
1388		else
1389			next = SIS_TX_RING_ADDR(sc, i + 1);
1390		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1391	}
1392	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1393	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1394	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1395
1396	sc->sis_rx_cons = 0;
1397	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1398	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1399		rxd = &sc->sis_rxdesc[i];
1400		rxd->rx_desc = &sc->sis_rx_list[i];
1401		if (i == SIS_RX_LIST_CNT - 1)
1402			next = SIS_RX_RING_ADDR(sc, 0);
1403		else
1404			next = SIS_RX_RING_ADDR(sc, i + 1);
1405		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1406		error = sis_newbuf(sc, rxd);
1407		if (error)
1408			return (error);
1409	}
1410	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1411	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1412
1413	return (0);
1414}
1415
1416/*
1417 * Initialize an RX descriptor and attach an MBUF cluster.
1418 */
1419static int
1420sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1421{
1422	struct mbuf		*m;
1423	bus_dma_segment_t	segs[1];
1424	bus_dmamap_t		map;
1425	int nsegs;
1426
1427	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1428	if (m == NULL)
1429		return (ENOBUFS);
1430	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1431#ifndef __NO_STRICT_ALIGNMENT
1432	m_adj(m, SIS_RX_BUF_ALIGN);
1433#endif
1434
1435	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1436	    segs, &nsegs, 0) != 0) {
1437		m_freem(m);
1438		return (ENOBUFS);
1439	}
1440	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1441
1442	if (rxd->rx_m != NULL) {
1443		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1444		    BUS_DMASYNC_POSTREAD);
1445		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1446	}
1447	map = rxd->rx_dmamap;
1448	rxd->rx_dmamap = sc->sis_rx_sparemap;
1449	sc->sis_rx_sparemap = map;
1450	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1451	rxd->rx_m = m;
1452	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1453	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1454	return (0);
1455}
1456
1457static __inline void
1458sis_discard_rxbuf(struct sis_rxdesc *rxd)
1459{
1460
1461	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1462}
1463
1464#ifndef __NO_STRICT_ALIGNMENT
1465static __inline void
1466sis_fixup_rx(struct mbuf *m)
1467{
1468	uint16_t		*src, *dst;
1469	int			i;
1470
1471	src = mtod(m, uint16_t *);
1472	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1473
1474	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1475		*dst++ = *src++;
1476
1477	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1478}
1479#endif
1480
1481/*
1482 * A frame has been uploaded: pass the resulting mbuf chain up to
1483 * the higher level protocols.
1484 */
1485static int
1486sis_rxeof(struct sis_softc *sc)
1487{
1488	struct mbuf		*m;
1489	struct ifnet		*ifp;
1490	struct sis_rxdesc	*rxd;
1491	struct sis_desc		*cur_rx;
1492	int			prog, rx_cons, rx_npkts = 0, total_len;
1493	uint32_t		rxstat;
1494
1495	SIS_LOCK_ASSERT(sc);
1496
1497	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1498	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1499
1500	rx_cons = sc->sis_rx_cons;
1501	ifp = sc->sis_ifp;
1502
1503	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1504	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1505#ifdef DEVICE_POLLING
1506		if (ifp->if_capenable & IFCAP_POLLING) {
1507			if (sc->rxcycles <= 0)
1508				break;
1509			sc->rxcycles--;
1510		}
1511#endif
1512		cur_rx = &sc->sis_rx_list[rx_cons];
1513		rxstat = le32toh(cur_rx->sis_cmdsts);
1514		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1515			break;
1516		rxd = &sc->sis_rxdesc[rx_cons];
1517
1518		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1519		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1520		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1521		    ETHER_CRC_LEN))
1522			rxstat &= ~SIS_RXSTAT_GIANT;
1523		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1524			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1525			if (rxstat & SIS_RXSTAT_COLL)
1526				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1527			sis_discard_rxbuf(rxd);
1528			continue;
1529		}
1530
1531		/* Add a new receive buffer to the ring. */
1532		m = rxd->rx_m;
1533		if (sis_newbuf(sc, rxd) != 0) {
1534			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1535			sis_discard_rxbuf(rxd);
1536			continue;
1537		}
1538
1539		/* No errors; receive the packet. */
1540		m->m_pkthdr.len = m->m_len = total_len;
1541#ifndef __NO_STRICT_ALIGNMENT
1542		/*
1543		 * On architectures without alignment problems we try to
1544		 * allocate a new buffer for the receive ring, and pass up
1545		 * the one where the packet is already, saving the expensive
1546		 * copy operation.
1547		 */
1548		sis_fixup_rx(m);
1549#endif
1550		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1551		m->m_pkthdr.rcvif = ifp;
1552
1553		SIS_UNLOCK(sc);
1554		(*ifp->if_input)(ifp, m);
1555		SIS_LOCK(sc);
1556		rx_npkts++;
1557	}
1558
1559	if (prog > 0) {
1560		sc->sis_rx_cons = rx_cons;
1561		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1562		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1563	}
1564
1565	return (rx_npkts);
1566}
1567
1568/*
1569 * A frame was downloaded to the chip. It's safe for us to clean up
1570 * the list buffers.
1571 */
1572
1573static void
1574sis_txeof(struct sis_softc *sc)
1575{
1576	struct ifnet		*ifp;
1577	struct sis_desc		*cur_tx;
1578	struct sis_txdesc	*txd;
1579	uint32_t		cons, txstat;
1580
1581	SIS_LOCK_ASSERT(sc);
1582
1583	cons = sc->sis_tx_cons;
1584	if (cons == sc->sis_tx_prod)
1585		return;
1586
1587	ifp = sc->sis_ifp;
1588	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1589	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1590
1591	/*
1592	 * Go through our tx list and free mbufs for those
1593	 * frames that have been transmitted.
1594	 */
1595	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1596		cur_tx = &sc->sis_tx_list[cons];
1597		txstat = le32toh(cur_tx->sis_cmdsts);
1598		if ((txstat & SIS_CMDSTS_OWN) != 0)
1599			break;
1600		txd = &sc->sis_txdesc[cons];
1601		if (txd->tx_m != NULL) {
1602			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1603			    BUS_DMASYNC_POSTWRITE);
1604			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1605			m_freem(txd->tx_m);
1606			txd->tx_m = NULL;
1607			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1608				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1609				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1610				    (txstat & SIS_TXSTAT_COLLCNT) >> 16);
1611			} else {
1612				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1613				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1614					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1615				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1616					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1617			}
1618		}
1619		sc->sis_tx_cnt--;
1620		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621	}
1622	sc->sis_tx_cons = cons;
1623	if (sc->sis_tx_cnt == 0)
1624		sc->sis_watchdog_timer = 0;
1625}
1626
1627static void
1628sis_tick(void *xsc)
1629{
1630	struct sis_softc	*sc;
1631	struct mii_data		*mii;
1632
1633	sc = xsc;
1634	SIS_LOCK_ASSERT(sc);
1635
1636	mii = device_get_softc(sc->sis_miibus);
1637	mii_tick(mii);
1638	sis_watchdog(sc);
1639	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1640		sis_miibus_statchg(sc->sis_dev);
1641	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1642}
1643
1644#ifdef DEVICE_POLLING
1645static poll_handler_t sis_poll;
1646
1647static int
1648sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1649{
1650	struct	sis_softc *sc = ifp->if_softc;
1651	int rx_npkts = 0;
1652
1653	SIS_LOCK(sc);
1654	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1655		SIS_UNLOCK(sc);
1656		return (rx_npkts);
1657	}
1658
1659	/*
1660	 * On the sis, reading the status register also clears it.
1661	 * So before returning to intr mode we must make sure that all
1662	 * possible pending sources of interrupts have been served.
1663	 * In practice this means run to completion the *eof routines,
1664	 * and then call the interrupt routine
1665	 */
1666	sc->rxcycles = count;
1667	rx_npkts = sis_rxeof(sc);
1668	sis_txeof(sc);
1669	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1670		sis_startl(ifp);
1671
1672	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1673		uint32_t	status;
1674
1675		/* Reading the ISR register clears all interrupts. */
1676		status = CSR_READ_4(sc, SIS_ISR);
1677
1678		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1679			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1680
1681		if (status & (SIS_ISR_RX_IDLE))
1682			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1683
1684		if (status & SIS_ISR_SYSERR) {
1685			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1686			sis_initl(sc);
1687		}
1688	}
1689
1690	SIS_UNLOCK(sc);
1691	return (rx_npkts);
1692}
1693#endif /* DEVICE_POLLING */
1694
1695static void
1696sis_intr(void *arg)
1697{
1698	struct sis_softc	*sc;
1699	struct ifnet		*ifp;
1700	uint32_t		status;
1701
1702	sc = arg;
1703	ifp = sc->sis_ifp;
1704
1705	SIS_LOCK(sc);
1706#ifdef DEVICE_POLLING
1707	if (ifp->if_capenable & IFCAP_POLLING) {
1708		SIS_UNLOCK(sc);
1709		return;
1710	}
1711#endif
1712
1713	/* Reading the ISR register clears all interrupts. */
1714	status = CSR_READ_4(sc, SIS_ISR);
1715	if ((status & SIS_INTRS) == 0) {
1716		/* Not ours. */
1717		SIS_UNLOCK(sc);
1718		return;
1719	}
1720
1721	/* Disable interrupts. */
1722	CSR_WRITE_4(sc, SIS_IER, 0);
1723
1724	for (;(status & SIS_INTRS) != 0;) {
1725		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1726			break;
1727		if (status &
1728		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1729		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1730			sis_txeof(sc);
1731
1732		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1733		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1734			sis_rxeof(sc);
1735
1736		if (status & SIS_ISR_RX_OFLOW)
1737			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1738
1739		if (status & (SIS_ISR_RX_IDLE))
1740			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1741
1742		if (status & SIS_ISR_SYSERR) {
1743			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1744			sis_initl(sc);
1745			SIS_UNLOCK(sc);
1746			return;
1747		}
1748		status = CSR_READ_4(sc, SIS_ISR);
1749	}
1750
1751	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1752		/* Re-enable interrupts. */
1753		CSR_WRITE_4(sc, SIS_IER, 1);
1754
1755		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1756			sis_startl(ifp);
1757	}
1758
1759	SIS_UNLOCK(sc);
1760}
1761
1762/*
1763 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1764 * pointers to the fragment pointers.
1765 */
1766static int
1767sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1768{
1769	struct mbuf		*m;
1770	struct sis_txdesc	*txd;
1771	struct sis_desc		*f;
1772	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1773	bus_dmamap_t		map;
1774	int			error, i, frag, nsegs, prod;
1775	int			padlen;
1776
1777	prod = sc->sis_tx_prod;
1778	txd = &sc->sis_txdesc[prod];
1779	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1780	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1781		m = *m_head;
1782		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1783		if (M_WRITABLE(m) == 0) {
1784			/* Get a writable copy. */
1785			m = m_dup(*m_head, M_NOWAIT);
1786			m_freem(*m_head);
1787			if (m == NULL) {
1788				*m_head = NULL;
1789				return (ENOBUFS);
1790			}
1791			*m_head = m;
1792		}
1793		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1794			m = m_defrag(m, M_NOWAIT);
1795			if (m == NULL) {
1796				m_freem(*m_head);
1797				*m_head = NULL;
1798				return (ENOBUFS);
1799			}
1800		}
1801		/*
1802		 * Manually pad short frames, and zero the pad space
1803		 * to avoid leaking data.
1804		 */
1805		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1806		m->m_pkthdr.len += padlen;
1807		m->m_len = m->m_pkthdr.len;
1808		*m_head = m;
1809	}
1810	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1811	    *m_head, segs, &nsegs, 0);
1812	if (error == EFBIG) {
1813		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1814		if (m == NULL) {
1815			m_freem(*m_head);
1816			*m_head = NULL;
1817			return (ENOBUFS);
1818		}
1819		*m_head = m;
1820		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1821		    *m_head, segs, &nsegs, 0);
1822		if (error != 0) {
1823			m_freem(*m_head);
1824			*m_head = NULL;
1825			return (error);
1826		}
1827	} else if (error != 0)
1828		return (error);
1829
1830	/* Check for descriptor overruns. */
1831	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1832		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1833		return (ENOBUFS);
1834	}
1835
1836	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1837
1838	frag = prod;
1839	for (i = 0; i < nsegs; i++) {
1840		f = &sc->sis_tx_list[prod];
1841		if (i == 0)
1842			f->sis_cmdsts = htole32(segs[i].ds_len |
1843			    SIS_CMDSTS_MORE);
1844		else
1845			f->sis_cmdsts = htole32(segs[i].ds_len |
1846			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1847		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1848		SIS_INC(prod, SIS_TX_LIST_CNT);
1849		sc->sis_tx_cnt++;
1850	}
1851
1852	/* Update producer index. */
1853	sc->sis_tx_prod = prod;
1854
1855	/* Remove MORE flag on the last descriptor. */
1856	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1857	f = &sc->sis_tx_list[prod];
1858	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1859
1860	/* Lastly transfer ownership of packet to the controller. */
1861	f = &sc->sis_tx_list[frag];
1862	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1863
1864	/* Swap the last and the first dmamaps. */
1865	map = txd->tx_dmamap;
1866	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1867	sc->sis_txdesc[prod].tx_dmamap = map;
1868	sc->sis_txdesc[prod].tx_m = *m_head;
1869
1870	return (0);
1871}
1872
1873static void
1874sis_start(struct ifnet *ifp)
1875{
1876	struct sis_softc	*sc;
1877
1878	sc = ifp->if_softc;
1879	SIS_LOCK(sc);
1880	sis_startl(ifp);
1881	SIS_UNLOCK(sc);
1882}
1883
1884static void
1885sis_startl(struct ifnet *ifp)
1886{
1887	struct sis_softc	*sc;
1888	struct mbuf		*m_head;
1889	int			queued;
1890
1891	sc = ifp->if_softc;
1892
1893	SIS_LOCK_ASSERT(sc);
1894
1895	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1896	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1897		return;
1898
1899	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1900	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1901		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1902		if (m_head == NULL)
1903			break;
1904
1905		if (sis_encap(sc, &m_head) != 0) {
1906			if (m_head == NULL)
1907				break;
1908			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1909			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1910			break;
1911		}
1912
1913		queued++;
1914
1915		/*
1916		 * If there's a BPF listener, bounce a copy of this frame
1917		 * to him.
1918		 */
1919		BPF_MTAP(ifp, m_head);
1920	}
1921
1922	if (queued) {
1923		/* Transmit */
1924		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1925		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1926		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1927
1928		/*
1929		 * Set a timeout in case the chip goes out to lunch.
1930		 */
1931		sc->sis_watchdog_timer = 5;
1932	}
1933}
1934
1935static void
1936sis_init(void *xsc)
1937{
1938	struct sis_softc	*sc = xsc;
1939
1940	SIS_LOCK(sc);
1941	sis_initl(sc);
1942	SIS_UNLOCK(sc);
1943}
1944
1945static void
1946sis_initl(struct sis_softc *sc)
1947{
1948	struct ifnet		*ifp = sc->sis_ifp;
1949	struct mii_data		*mii;
1950	uint8_t			*eaddr;
1951
1952	SIS_LOCK_ASSERT(sc);
1953
1954	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1955		return;
1956
1957	/*
1958	 * Cancel pending I/O and free all RX/TX buffers.
1959	 */
1960	sis_stop(sc);
1961	/*
1962	 * Reset the chip to a known state.
1963	 */
1964	sis_reset(sc);
1965#ifdef notyet
1966	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1967		/*
1968		 * Configure 400usec of interrupt holdoff.  This is based
1969		 * on emperical tests on a Soekris 4801.
1970 		 */
1971		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1972	}
1973#endif
1974
1975	mii = device_get_softc(sc->sis_miibus);
1976
1977	/* Set MAC address */
1978	eaddr = IF_LLADDR(sc->sis_ifp);
1979	if (sc->sis_type == SIS_TYPE_83815) {
1980		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1981		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1982		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1983		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1984		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1985		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1986	} else {
1987		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1988		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1989		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1990		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1991		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1992		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1993	}
1994
1995	/* Init circular TX/RX lists. */
1996	if (sis_ring_init(sc) != 0) {
1997		device_printf(sc->sis_dev,
1998		    "initialization failed: no memory for rx buffers\n");
1999		sis_stop(sc);
2000		return;
2001	}
2002
2003	if (sc->sis_type == SIS_TYPE_83815) {
2004		if (sc->sis_manual_pad != 0)
2005			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
2006		else
2007			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2008	}
2009
2010	/*
2011	 * Short Cable Receive Errors (MP21.E)
2012	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2013	 * recommends the following register settings "for optimum
2014	 * performance." for rev 15C.  Set this also for 15D parts as
2015	 * they require it in practice.
2016	 */
2017	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2018		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2019		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2020		/* set val for c2 */
2021		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2022		/* load/kill c2 */
2023		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2024		/* rais SD off, from 4 to c */
2025		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2026		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2027	}
2028
2029	sis_rxfilter(sc);
2030
2031	/*
2032	 * Load the address of the RX and TX lists.
2033	 */
2034	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2035	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2036
2037	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2038	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2039	 * for TX/RX DMA should be no larger than 16 double words.
2040	 */
2041	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2042		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2043	} else {
2044		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2045	}
2046
2047	/* Accept Long Packets for VLAN support */
2048	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2049
2050	/*
2051	 * Assume 100Mbps link, actual MAC configuration is done
2052	 * after getting a valid link.
2053	 */
2054	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2055
2056	/*
2057	 * Enable interrupts.
2058	 */
2059	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2060#ifdef DEVICE_POLLING
2061	/*
2062	 * ... only enable interrupts if we are not polling, make sure
2063	 * they are off otherwise.
2064	 */
2065	if (ifp->if_capenable & IFCAP_POLLING)
2066		CSR_WRITE_4(sc, SIS_IER, 0);
2067	else
2068#endif
2069	CSR_WRITE_4(sc, SIS_IER, 1);
2070
2071	/* Clear MAC disable. */
2072	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2073
2074	sc->sis_flags &= ~SIS_FLAG_LINK;
2075	mii_mediachg(mii);
2076
2077	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2078	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2079
2080	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2081}
2082
2083/*
2084 * Set media options.
2085 */
2086static int
2087sis_ifmedia_upd(struct ifnet *ifp)
2088{
2089	struct sis_softc	*sc;
2090	struct mii_data		*mii;
2091	struct mii_softc	*miisc;
2092	int			error;
2093
2094	sc = ifp->if_softc;
2095
2096	SIS_LOCK(sc);
2097	mii = device_get_softc(sc->sis_miibus);
2098	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2099		PHY_RESET(miisc);
2100	error = mii_mediachg(mii);
2101	SIS_UNLOCK(sc);
2102
2103	return (error);
2104}
2105
2106/*
2107 * Report current media status.
2108 */
2109static void
2110sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2111{
2112	struct sis_softc	*sc;
2113	struct mii_data		*mii;
2114
2115	sc = ifp->if_softc;
2116
2117	SIS_LOCK(sc);
2118	mii = device_get_softc(sc->sis_miibus);
2119	mii_pollstat(mii);
2120	ifmr->ifm_active = mii->mii_media_active;
2121	ifmr->ifm_status = mii->mii_media_status;
2122	SIS_UNLOCK(sc);
2123}
2124
2125static int
2126sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2127{
2128	struct sis_softc	*sc = ifp->if_softc;
2129	struct ifreq		*ifr = (struct ifreq *) data;
2130	struct mii_data		*mii;
2131	int			error = 0, mask;
2132
2133	switch (command) {
2134	case SIOCSIFFLAGS:
2135		SIS_LOCK(sc);
2136		if (ifp->if_flags & IFF_UP) {
2137			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2138			    ((ifp->if_flags ^ sc->sis_if_flags) &
2139			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2140				sis_rxfilter(sc);
2141			else
2142				sis_initl(sc);
2143		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2144			sis_stop(sc);
2145		sc->sis_if_flags = ifp->if_flags;
2146		SIS_UNLOCK(sc);
2147		break;
2148	case SIOCADDMULTI:
2149	case SIOCDELMULTI:
2150		SIS_LOCK(sc);
2151		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2152			sis_rxfilter(sc);
2153		SIS_UNLOCK(sc);
2154		break;
2155	case SIOCGIFMEDIA:
2156	case SIOCSIFMEDIA:
2157		mii = device_get_softc(sc->sis_miibus);
2158		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2159		break;
2160	case SIOCSIFCAP:
2161		SIS_LOCK(sc);
2162		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2163#ifdef DEVICE_POLLING
2164		if ((mask & IFCAP_POLLING) != 0 &&
2165		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2166			ifp->if_capenable ^= IFCAP_POLLING;
2167			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2168				error = ether_poll_register(sis_poll, ifp);
2169				if (error != 0) {
2170					SIS_UNLOCK(sc);
2171					break;
2172				}
2173				/* Disable interrupts. */
2174				CSR_WRITE_4(sc, SIS_IER, 0);
2175                        } else {
2176                                error = ether_poll_deregister(ifp);
2177                                /* Enable interrupts. */
2178				CSR_WRITE_4(sc, SIS_IER, 1);
2179                        }
2180		}
2181#endif /* DEVICE_POLLING */
2182		if ((mask & IFCAP_WOL) != 0 &&
2183		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2184			if ((mask & IFCAP_WOL_UCAST) != 0)
2185				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2186			if ((mask & IFCAP_WOL_MCAST) != 0)
2187				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2188			if ((mask & IFCAP_WOL_MAGIC) != 0)
2189				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2190		}
2191		SIS_UNLOCK(sc);
2192		break;
2193	default:
2194		error = ether_ioctl(ifp, command, data);
2195		break;
2196	}
2197
2198	return (error);
2199}
2200
2201static void
2202sis_watchdog(struct sis_softc *sc)
2203{
2204
2205	SIS_LOCK_ASSERT(sc);
2206
2207	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2208		return;
2209
2210	device_printf(sc->sis_dev, "watchdog timeout\n");
2211	if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
2212
2213	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2214	sis_initl(sc);
2215
2216	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2217		sis_startl(sc->sis_ifp);
2218}
2219
2220/*
2221 * Stop the adapter and free any mbufs allocated to the
2222 * RX and TX lists.
2223 */
2224static void
2225sis_stop(struct sis_softc *sc)
2226{
2227	struct ifnet *ifp;
2228	struct sis_rxdesc *rxd;
2229	struct sis_txdesc *txd;
2230	int i;
2231
2232	SIS_LOCK_ASSERT(sc);
2233
2234	ifp = sc->sis_ifp;
2235	sc->sis_watchdog_timer = 0;
2236
2237	callout_stop(&sc->sis_stat_ch);
2238
2239	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2240	CSR_WRITE_4(sc, SIS_IER, 0);
2241	CSR_WRITE_4(sc, SIS_IMR, 0);
2242	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2243	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2244	DELAY(1000);
2245	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2246	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2247
2248	sc->sis_flags &= ~SIS_FLAG_LINK;
2249
2250	/*
2251	 * Free data in the RX lists.
2252	 */
2253	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2254		rxd = &sc->sis_rxdesc[i];
2255		if (rxd->rx_m != NULL) {
2256			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2257			    BUS_DMASYNC_POSTREAD);
2258			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2259			m_freem(rxd->rx_m);
2260			rxd->rx_m = NULL;
2261		}
2262	}
2263
2264	/*
2265	 * Free the TX list buffers.
2266	 */
2267	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2268		txd = &sc->sis_txdesc[i];
2269		if (txd->tx_m != NULL) {
2270			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2271			    BUS_DMASYNC_POSTWRITE);
2272			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2273			m_freem(txd->tx_m);
2274			txd->tx_m = NULL;
2275		}
2276	}
2277}
2278
2279/*
2280 * Stop all chip I/O so that the kernel's probe routines don't
2281 * get confused by errant DMAs when rebooting.
2282 */
2283static int
2284sis_shutdown(device_t dev)
2285{
2286
2287	return (sis_suspend(dev));
2288}
2289
2290static int
2291sis_suspend(device_t dev)
2292{
2293	struct sis_softc	*sc;
2294
2295	sc = device_get_softc(dev);
2296	SIS_LOCK(sc);
2297	sis_stop(sc);
2298	sis_wol(sc);
2299	SIS_UNLOCK(sc);
2300	return (0);
2301}
2302
2303static int
2304sis_resume(device_t dev)
2305{
2306	struct sis_softc	*sc;
2307	struct ifnet		*ifp;
2308
2309	sc = device_get_softc(dev);
2310	SIS_LOCK(sc);
2311	ifp = sc->sis_ifp;
2312	if ((ifp->if_flags & IFF_UP) != 0) {
2313		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2314		sis_initl(sc);
2315	}
2316	SIS_UNLOCK(sc);
2317	return (0);
2318}
2319
2320static void
2321sis_wol(struct sis_softc *sc)
2322{
2323	struct ifnet		*ifp;
2324	uint32_t		val;
2325	uint16_t		pmstat;
2326	int			pmc;
2327
2328	ifp = sc->sis_ifp;
2329	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2330		return;
2331
2332	if (sc->sis_type == SIS_TYPE_83815) {
2333		/* Reset RXDP. */
2334		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2335
2336		/* Configure WOL events. */
2337		CSR_READ_4(sc, NS_WCSR);
2338		val = 0;
2339		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2340			val |= NS_WCSR_WAKE_UCAST;
2341		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2342			val |= NS_WCSR_WAKE_MCAST;
2343		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2344			val |= NS_WCSR_WAKE_MAGIC;
2345		CSR_WRITE_4(sc, NS_WCSR, val);
2346		/* Enable PME and clear PMESTS. */
2347		val = CSR_READ_4(sc, NS_CLKRUN);
2348		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2349		CSR_WRITE_4(sc, NS_CLKRUN, val);
2350		/* Enable silent RX mode. */
2351		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2352	} else {
2353		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2354			return;
2355		val = 0;
2356		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2357			val |= SIS_PWRMAN_WOL_MAGIC;
2358		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2359		/* Request PME. */
2360		pmstat = pci_read_config(sc->sis_dev,
2361		    pmc + PCIR_POWER_STATUS, 2);
2362		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2363		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2364			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2365		pci_write_config(sc->sis_dev,
2366		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2367	}
2368}
2369
2370static void
2371sis_add_sysctls(struct sis_softc *sc)
2372{
2373	struct sysctl_ctx_list *ctx;
2374	struct sysctl_oid_list *children;
2375	int unit;
2376
2377	ctx = device_get_sysctl_ctx(sc->sis_dev);
2378	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2379
2380	unit = device_get_unit(sc->sis_dev);
2381	/*
2382	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2383	 * seem to pad with 0xFF when it encounter short frames.  According
2384	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2385	 * on will have driver pad manully but it's disabled by default
2386	 * because it will consume extra CPU cycles for short frames.
2387	 */
2388	sc->sis_manual_pad = 0;
2389	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2390	    CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
2391}
2392
2393static device_method_t sis_methods[] = {
2394	/* Device interface */
2395	DEVMETHOD(device_probe,		sis_probe),
2396	DEVMETHOD(device_attach,	sis_attach),
2397	DEVMETHOD(device_detach,	sis_detach),
2398	DEVMETHOD(device_shutdown,	sis_shutdown),
2399	DEVMETHOD(device_suspend,	sis_suspend),
2400	DEVMETHOD(device_resume,	sis_resume),
2401
2402	/* MII interface */
2403	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2404	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2405	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2406
2407	DEVMETHOD_END
2408};
2409
2410static driver_t sis_driver = {
2411	"sis",
2412	sis_methods,
2413	sizeof(struct sis_softc)
2414};
2415
2416static devclass_t sis_devclass;
2417
2418DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2419DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2420