1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5 * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6 * Copyright (c) 1997, 1998, 1999
7 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by Bill Paul.
20 * 4. Neither the name of the author nor the names of any co-contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28 * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35 * OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41/*
42 * SiS 190/191 PCI Ethernet NIC driver.
43 *
44 * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
45 * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
46 * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
47 * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
48 * review and very useful comments.
49 *
50 * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51 * Linux and Solaris drivers.
52 */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kernel.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/mbuf.h>
62#include <sys/module.h>
63#include <sys/mutex.h>
64#include <sys/rman.h>
65#include <sys/socket.h>
66#include <sys/sockio.h>
67
68#include <net/bpf.h>
69#include <net/if.h>
70#include <net/if_var.h>
71#include <net/if_arp.h>
72#include <net/ethernet.h>
73#include <net/if_dl.h>
74#include <net/if_media.h>
75#include <net/if_types.h>
76#include <net/if_vlan_var.h>
77
78#include <netinet/in.h>
79#include <netinet/in_systm.h>
80#include <netinet/ip.h>
81#include <netinet/tcp.h>
82
83#include <machine/bus.h>
84#include <machine/in_cksum.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#include <dev/sge/if_sgereg.h>
93
94MODULE_DEPEND(sge, pci, 1, 1, 1);
95MODULE_DEPEND(sge, ether, 1, 1, 1);
96MODULE_DEPEND(sge, miibus, 1, 1, 1);
97
98/* "device miibus0" required.  See GENERIC if you get errors here. */
99#include "miibus_if.h"
100
101/*
102 * Various supported device vendors/types and their names.
103 */
104static struct sge_type sge_devs[] = {
105	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
106	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
107	{ 0, 0, NULL }
108};
109
110static int	sge_probe(device_t);
111static int	sge_attach(device_t);
112static int	sge_detach(device_t);
113static int	sge_shutdown(device_t);
114static int	sge_suspend(device_t);
115static int	sge_resume(device_t);
116
117static int	sge_miibus_readreg(device_t, int, int);
118static int	sge_miibus_writereg(device_t, int, int, int);
119static void	sge_miibus_statchg(device_t);
120
121static int	sge_newbuf(struct sge_softc *, int);
122static int	sge_encap(struct sge_softc *, struct mbuf **);
123static __inline void
124		sge_discard_rxbuf(struct sge_softc *, int);
125static void	sge_rxeof(struct sge_softc *);
126static void	sge_txeof(struct sge_softc *);
127static void	sge_intr(void *);
128static void	sge_tick(void *);
129static void	sge_start(struct ifnet *);
130static void	sge_start_locked(struct ifnet *);
131static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
132static void	sge_init(void *);
133static void	sge_init_locked(struct sge_softc *);
134static void	sge_stop(struct sge_softc *);
135static void	sge_watchdog(struct sge_softc *);
136static int	sge_ifmedia_upd(struct ifnet *);
137static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138
139static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
140static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
141static uint16_t	sge_read_eeprom(struct sge_softc *, int);
142
143static void	sge_rxfilter(struct sge_softc *);
144static void	sge_setvlan(struct sge_softc *);
145static void	sge_reset(struct sge_softc *);
146static int	sge_list_rx_init(struct sge_softc *);
147static int	sge_list_rx_free(struct sge_softc *);
148static int	sge_list_tx_init(struct sge_softc *);
149static int	sge_list_tx_free(struct sge_softc *);
150
151static int	sge_dma_alloc(struct sge_softc *);
152static void	sge_dma_free(struct sge_softc *);
153static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
154
155static device_method_t sge_methods[] = {
156	/* Device interface */
157	DEVMETHOD(device_probe,		sge_probe),
158	DEVMETHOD(device_attach,	sge_attach),
159	DEVMETHOD(device_detach,	sge_detach),
160	DEVMETHOD(device_suspend,	sge_suspend),
161	DEVMETHOD(device_resume,	sge_resume),
162	DEVMETHOD(device_shutdown,	sge_shutdown),
163
164	/* MII interface */
165	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
166	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
167	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
168
169	DEVMETHOD_END
170};
171
172static driver_t sge_driver = {
173	"sge", sge_methods, sizeof(struct sge_softc)
174};
175
176static devclass_t sge_devclass;
177
178DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
179DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
180
181/*
182 * Register space access macros.
183 */
184#define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
185#define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
186#define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
187
188#define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
189#define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
190#define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
191
192/* Define to show Tx/Rx error status. */
193#undef SGE_SHOW_ERRORS
194
195#define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
196
197static void
198sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
199{
200	bus_addr_t *p;
201
202	if (error != 0)
203		return;
204	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
205	p  = arg;
206	*p = segs->ds_addr;
207}
208
209/*
210 * Read a sequence of words from the EEPROM.
211 */
212static uint16_t
213sge_read_eeprom(struct sge_softc *sc, int offset)
214{
215	uint32_t val;
216	int i;
217
218	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
219	CSR_WRITE_4(sc, ROMInterface,
220	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
221	DELAY(500);
222	for (i = 0; i < SGE_TIMEOUT; i++) {
223		val = CSR_READ_4(sc, ROMInterface);
224		if ((val & EI_REQ) == 0)
225			break;
226		DELAY(100);
227	}
228	if (i == SGE_TIMEOUT) {
229		device_printf(sc->sge_dev,
230		    "EEPROM read timeout : 0x%08x\n", val);
231		return (0xffff);
232	}
233
234	return ((val & EI_DATA) >> EI_DATA_SHIFT);
235}
236
237static int
238sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
239{
240	uint16_t val;
241	int i;
242
243	val = sge_read_eeprom(sc, EEPROMSignature);
244	if (val == 0xffff || val == 0) {
245		device_printf(sc->sge_dev,
246		    "invalid EEPROM signature : 0x%04x\n", val);
247		return (EINVAL);
248	}
249
250	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
251		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
252		dest[i + 0] = (uint8_t)val;
253		dest[i + 1] = (uint8_t)(val >> 8);
254	}
255
256	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
257		sc->sge_flags |= SGE_FLAG_RGMII;
258	return (0);
259}
260
261/*
262 * For SiS96x, APC CMOS RAM is used to store ethernet address.
263 * APC CMOS RAM is accessed through ISA bridge.
264 */
265static int
266sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
267{
268#if defined(__amd64__) || defined(__i386__)
269	devclass_t pci;
270	device_t bus, dev = NULL;
271	device_t *kids;
272	struct apc_tbl {
273		uint16_t vid;
274		uint16_t did;
275	} *tp, apc_tbls[] = {
276		{ SIS_VENDORID, 0x0965 },
277		{ SIS_VENDORID, 0x0966 },
278		{ SIS_VENDORID, 0x0968 }
279	};
280	uint8_t reg;
281	int busnum, i, j, numkids;
282
283	pci = devclass_find("pci");
284	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
285		bus = devclass_get_device(pci, busnum);
286		if (!bus)
287			continue;
288		if (device_get_children(bus, &kids, &numkids) != 0)
289			continue;
290		for (i = 0; i < numkids; i++) {
291			dev = kids[i];
292			if (pci_get_class(dev) == PCIC_BRIDGE &&
293			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
294				tp = apc_tbls;
295				for (j = 0; j < nitems(apc_tbls); j++) {
296					if (pci_get_vendor(dev) == tp->vid &&
297					    pci_get_device(dev) == tp->did) {
298						free(kids, M_TEMP);
299						goto apc_found;
300					}
301					tp++;
302				}
303			}
304                }
305		free(kids, M_TEMP);
306	}
307	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
308	return (EINVAL);
309apc_found:
310	/* Enable port 0x78 and 0x79 to access APC registers. */
311	reg = pci_read_config(dev, 0x48, 1);
312	pci_write_config(dev, 0x48, reg & ~0x02, 1);
313	DELAY(50);
314	pci_read_config(dev, 0x48, 1);
315	/* Read stored ethernet address. */
316	for (i = 0; i < ETHER_ADDR_LEN; i++) {
317		outb(0x78, 0x09 + i);
318		dest[i] = inb(0x79);
319	}
320	outb(0x78, 0x12);
321	if ((inb(0x79) & 0x80) != 0)
322		sc->sge_flags |= SGE_FLAG_RGMII;
323	/* Restore access to APC registers. */
324	pci_write_config(dev, 0x48, reg, 1);
325
326	return (0);
327#else
328	return (EINVAL);
329#endif
330}
331
332static int
333sge_miibus_readreg(device_t dev, int phy, int reg)
334{
335	struct sge_softc *sc;
336	uint32_t val;
337	int i;
338
339	sc = device_get_softc(dev);
340	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
341	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
342	DELAY(10);
343	for (i = 0; i < SGE_TIMEOUT; i++) {
344		val = CSR_READ_4(sc, GMIIControl);
345		if ((val & GMI_REQ) == 0)
346			break;
347		DELAY(10);
348	}
349	if (i == SGE_TIMEOUT) {
350		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
351		return (0);
352	}
353	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
354}
355
356static int
357sge_miibus_writereg(device_t dev, int phy, int reg, int data)
358{
359	struct sge_softc *sc;
360	uint32_t val;
361	int i;
362
363	sc = device_get_softc(dev);
364	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
365	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
366	    GMI_OP_WR | GMI_REQ);
367	DELAY(10);
368	for (i = 0; i < SGE_TIMEOUT; i++) {
369		val = CSR_READ_4(sc, GMIIControl);
370		if ((val & GMI_REQ) == 0)
371			break;
372		DELAY(10);
373	}
374	if (i == SGE_TIMEOUT)
375		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
376	return (0);
377}
378
379static void
380sge_miibus_statchg(device_t dev)
381{
382	struct sge_softc *sc;
383	struct mii_data *mii;
384	struct ifnet *ifp;
385	uint32_t ctl, speed;
386
387	sc = device_get_softc(dev);
388	mii = device_get_softc(sc->sge_miibus);
389	ifp = sc->sge_ifp;
390	if (mii == NULL || ifp == NULL ||
391	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
392		return;
393	speed = 0;
394	sc->sge_flags &= ~SGE_FLAG_LINK;
395	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396	    (IFM_ACTIVE | IFM_AVALID)) {
397		switch (IFM_SUBTYPE(mii->mii_media_active)) {
398		case IFM_10_T:
399			sc->sge_flags |= SGE_FLAG_LINK;
400			speed = SC_SPEED_10;
401			break;
402		case IFM_100_TX:
403			sc->sge_flags |= SGE_FLAG_LINK;
404			speed = SC_SPEED_100;
405			break;
406		case IFM_1000_T:
407			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
408				sc->sge_flags |= SGE_FLAG_LINK;
409				speed = SC_SPEED_1000;
410			}
411			break;
412		default:
413			break;
414                }
415        }
416	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
417		return;
418	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
419	ctl = CSR_READ_4(sc, StationControl);
420	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
421	if (speed == SC_SPEED_1000) {
422		ctl |= 0x07000000;
423		sc->sge_flags |= SGE_FLAG_SPEED_1000;
424	} else {
425		ctl |= 0x04000000;
426		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
427	}
428#ifdef notyet
429	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
430		ctl |= 0x03000000;
431#endif
432	ctl |= speed;
433	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434		ctl |= SC_FDX;
435		sc->sge_flags |= SGE_FLAG_FDX;
436	} else
437		sc->sge_flags &= ~SGE_FLAG_FDX;
438	CSR_WRITE_4(sc, StationControl, ctl);
439	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
440		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
441		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
442	}
443}
444
445static u_int
446sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count)
447{
448	uint32_t crc, *hashes = arg;
449
450	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
451	hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
452
453	return (1);
454}
455
456static void
457sge_rxfilter(struct sge_softc *sc)
458{
459	struct ifnet *ifp;
460	uint32_t hashes[2];
461	uint16_t rxfilt;
462
463	SGE_LOCK_ASSERT(sc);
464
465	ifp = sc->sge_ifp;
466	rxfilt = CSR_READ_2(sc, RxMacControl);
467	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
468	rxfilt |= AcceptMyPhys;
469	if ((ifp->if_flags & IFF_BROADCAST) != 0)
470		rxfilt |= AcceptBroadcast;
471	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
472		if ((ifp->if_flags & IFF_PROMISC) != 0)
473			rxfilt |= AcceptAllPhys;
474		rxfilt |= AcceptMulticast;
475		hashes[0] = 0xFFFFFFFF;
476		hashes[1] = 0xFFFFFFFF;
477	} else {
478		rxfilt |= AcceptMulticast;
479		hashes[0] = hashes[1] = 0;
480		/* Now program new ones. */
481		if_foreach_llmaddr(ifp, sge_hash_maddr, hashes);
482	}
483	CSR_WRITE_2(sc, RxMacControl, rxfilt);
484	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
485	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
486}
487
488static void
489sge_setvlan(struct sge_softc *sc)
490{
491	struct ifnet *ifp;
492	uint16_t rxfilt;
493
494	SGE_LOCK_ASSERT(sc);
495
496	ifp = sc->sge_ifp;
497	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
498		return;
499	rxfilt = CSR_READ_2(sc, RxMacControl);
500	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
501		rxfilt |= RXMAC_STRIP_VLAN;
502	else
503		rxfilt &= ~RXMAC_STRIP_VLAN;
504	CSR_WRITE_2(sc, RxMacControl, rxfilt);
505}
506
507static void
508sge_reset(struct sge_softc *sc)
509{
510
511	CSR_WRITE_4(sc, IntrMask, 0);
512	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
513
514	/* Soft reset. */
515	CSR_WRITE_4(sc, IntrControl, 0x8000);
516	CSR_READ_4(sc, IntrControl);
517	DELAY(100);
518	CSR_WRITE_4(sc, IntrControl, 0);
519	/* Stop MAC. */
520	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
521	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
522
523	CSR_WRITE_4(sc, IntrMask, 0);
524	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
525
526	CSR_WRITE_4(sc, GMIIControl, 0);
527}
528
529/*
530 * Probe for an SiS chip. Check the PCI vendor and device
531 * IDs against our list and return a device name if we find a match.
532 */
533static int
534sge_probe(device_t dev)
535{
536	struct sge_type *t;
537
538	t = sge_devs;
539	while (t->sge_name != NULL) {
540		if ((pci_get_vendor(dev) == t->sge_vid) &&
541		    (pci_get_device(dev) == t->sge_did)) {
542			device_set_desc(dev, t->sge_name);
543			return (BUS_PROBE_DEFAULT);
544		}
545		t++;
546	}
547
548	return (ENXIO);
549}
550
551/*
552 * Attach the interface.  Allocate softc structures, do ifmedia
553 * setup and ethernet/BPF attach.
554 */
555static int
556sge_attach(device_t dev)
557{
558	struct sge_softc *sc;
559	struct ifnet *ifp;
560	uint8_t eaddr[ETHER_ADDR_LEN];
561	int error = 0, rid;
562
563	sc = device_get_softc(dev);
564	sc->sge_dev = dev;
565
566	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
567	    MTX_DEF);
568        callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
569
570	/*
571	 * Map control/status registers.
572	 */
573	pci_enable_busmaster(dev);
574
575	/* Allocate resources. */
576	sc->sge_res_id = PCIR_BAR(0);
577	sc->sge_res_type = SYS_RES_MEMORY;
578	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
579	    &sc->sge_res_id, RF_ACTIVE);
580	if (sc->sge_res == NULL) {
581		device_printf(dev, "couldn't allocate resource\n");
582		error = ENXIO;
583		goto fail;
584	}
585
586	rid = 0;
587	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
588	    RF_SHAREABLE | RF_ACTIVE);
589	if (sc->sge_irq == NULL) {
590		device_printf(dev, "couldn't allocate IRQ resources\n");
591		error = ENXIO;
592		goto fail;
593	}
594	sc->sge_rev = pci_get_revid(dev);
595	if (pci_get_device(dev) == SIS_DEVICEID_190)
596		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
597	/* Reset the adapter. */
598	sge_reset(sc);
599
600	/* Get MAC address from the EEPROM. */
601	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
602		sge_get_mac_addr_apc(sc, eaddr);
603	else
604		sge_get_mac_addr_eeprom(sc, eaddr);
605
606	if ((error = sge_dma_alloc(sc)) != 0)
607		goto fail;
608
609	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
610	if (ifp == NULL) {
611		device_printf(dev, "cannot allocate ifnet structure.\n");
612		error = ENOSPC;
613		goto fail;
614	}
615	ifp->if_softc = sc;
616	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
617	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618	ifp->if_ioctl = sge_ioctl;
619	ifp->if_start = sge_start;
620	ifp->if_init = sge_init;
621	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
622	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
623	IFQ_SET_READY(&ifp->if_snd);
624	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
625	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
626	ifp->if_capenable = ifp->if_capabilities;
627	/*
628	 * Do MII setup.
629	 */
630	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
631	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
632	if (error != 0) {
633		device_printf(dev, "attaching PHYs failed\n");
634		goto fail;
635	}
636
637	/*
638	 * Call MI attach routine.
639	 */
640	ether_ifattach(ifp, eaddr);
641
642	/* VLAN setup. */
643	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
644	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
645	ifp->if_capenable = ifp->if_capabilities;
646	/* Tell the upper layer(s) we support long frames. */
647	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
648
649	/* Hook interrupt last to avoid having to lock softc */
650	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
651	    NULL, sge_intr, sc, &sc->sge_intrhand);
652	if (error) {
653		device_printf(dev, "couldn't set up irq\n");
654		ether_ifdetach(ifp);
655		goto fail;
656	}
657
658fail:
659	if (error)
660		sge_detach(dev);
661
662	return (error);
663}
664
665/*
666 * Shutdown hardware and free up resources.  This can be called any
667 * time after the mutex has been initialized.  It is called in both
668 * the error case in attach and the normal detach case so it needs
669 * to be careful about only freeing resources that have actually been
670 * allocated.
671 */
672static int
673sge_detach(device_t dev)
674{
675	struct sge_softc *sc;
676	struct ifnet *ifp;
677
678	sc = device_get_softc(dev);
679	ifp = sc->sge_ifp;
680	/* These should only be active if attach succeeded. */
681	if (device_is_attached(dev)) {
682		ether_ifdetach(ifp);
683		SGE_LOCK(sc);
684		sge_stop(sc);
685		SGE_UNLOCK(sc);
686		callout_drain(&sc->sge_stat_ch);
687	}
688	if (sc->sge_miibus)
689		device_delete_child(dev, sc->sge_miibus);
690	bus_generic_detach(dev);
691
692	if (sc->sge_intrhand)
693		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
694	if (sc->sge_irq)
695		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
696	if (sc->sge_res)
697		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
698		    sc->sge_res);
699	if (ifp)
700		if_free(ifp);
701	sge_dma_free(sc);
702	mtx_destroy(&sc->sge_mtx);
703
704	return (0);
705}
706
707/*
708 * Stop all chip I/O so that the kernel's probe routines don't
709 * get confused by errant DMAs when rebooting.
710 */
711static int
712sge_shutdown(device_t dev)
713{
714	struct sge_softc *sc;
715
716	sc = device_get_softc(dev);
717	SGE_LOCK(sc);
718	sge_stop(sc);
719	SGE_UNLOCK(sc);
720	return (0);
721}
722
723static int
724sge_suspend(device_t dev)
725{
726	struct sge_softc *sc;
727	struct ifnet *ifp;
728
729	sc = device_get_softc(dev);
730	SGE_LOCK(sc);
731	ifp = sc->sge_ifp;
732	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
733		sge_stop(sc);
734	SGE_UNLOCK(sc);
735	return (0);
736}
737
738static int
739sge_resume(device_t dev)
740{
741	struct sge_softc *sc;
742	struct ifnet *ifp;
743
744	sc = device_get_softc(dev);
745	SGE_LOCK(sc);
746	ifp = sc->sge_ifp;
747	if ((ifp->if_flags & IFF_UP) != 0)
748		sge_init_locked(sc);
749	SGE_UNLOCK(sc);
750	return (0);
751}
752
753static int
754sge_dma_alloc(struct sge_softc *sc)
755{
756	struct sge_chain_data *cd;
757	struct sge_list_data *ld;
758	struct sge_rxdesc *rxd;
759	struct sge_txdesc *txd;
760	int error, i;
761
762	cd = &sc->sge_cdata;
763	ld = &sc->sge_ldata;
764	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
765	    1, 0,			/* alignment, boundary */
766	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
767	    BUS_SPACE_MAXADDR,		/* highaddr */
768	    NULL, NULL,			/* filter, filterarg */
769	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
770	    1,				/* nsegments */
771	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
772	    0,				/* flags */
773	    NULL,			/* lockfunc */
774	    NULL,			/* lockarg */
775	    &cd->sge_tag);
776	if (error != 0) {
777		device_printf(sc->sge_dev,
778		    "could not create parent DMA tag.\n");
779		goto fail;
780	}
781
782	/* RX descriptor ring */
783	error = bus_dma_tag_create(cd->sge_tag,
784	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
785	    BUS_SPACE_MAXADDR,		/* lowaddr */
786	    BUS_SPACE_MAXADDR,		/* highaddr */
787	    NULL, NULL,			/* filter, filterarg */
788	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
789	    SGE_RX_RING_SZ,		/* maxsegsize */
790	    0,				/* flags */
791	    NULL,			/* lockfunc */
792	    NULL,			/* lockarg */
793	    &cd->sge_rx_tag);
794	if (error != 0) {
795		device_printf(sc->sge_dev,
796		    "could not create Rx ring DMA tag.\n");
797		goto fail;
798	}
799	/* Allocate DMA'able memory and load DMA map for RX ring. */
800	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
801	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
802	    &cd->sge_rx_dmamap);
803	if (error != 0) {
804		device_printf(sc->sge_dev,
805		    "could not allocate DMA'able memory for Rx ring.\n");
806		goto fail;
807	}
808	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
809	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
810	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
811	if (error != 0) {
812		device_printf(sc->sge_dev,
813		    "could not load DMA'able memory for Rx ring.\n");
814	}
815
816	/* TX descriptor ring */
817	error = bus_dma_tag_create(cd->sge_tag,
818	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
819	    BUS_SPACE_MAXADDR,		/* lowaddr */
820	    BUS_SPACE_MAXADDR,		/* highaddr */
821	    NULL, NULL,			/* filter, filterarg */
822	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
823	    SGE_TX_RING_SZ,		/* maxsegsize */
824	    0,				/* flags */
825	    NULL,			/* lockfunc */
826	    NULL,			/* lockarg */
827	    &cd->sge_tx_tag);
828	if (error != 0) {
829		device_printf(sc->sge_dev,
830		    "could not create Rx ring DMA tag.\n");
831		goto fail;
832	}
833	/* Allocate DMA'able memory and load DMA map for TX ring. */
834	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
835	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
836	    &cd->sge_tx_dmamap);
837	if (error != 0) {
838		device_printf(sc->sge_dev,
839		    "could not allocate DMA'able memory for Tx ring.\n");
840		goto fail;
841	}
842	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
843	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
844	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
845	if (error != 0) {
846		device_printf(sc->sge_dev,
847		    "could not load DMA'able memory for Rx ring.\n");
848		goto fail;
849	}
850
851	/* Create DMA tag for Tx buffers. */
852	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
853	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
854	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
855	if (error != 0) {
856		device_printf(sc->sge_dev,
857		    "could not create Tx mbuf DMA tag.\n");
858		goto fail;
859	}
860
861	/* Create DMA tag for Rx buffers. */
862	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
863	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
864	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
865	if (error != 0) {
866		device_printf(sc->sge_dev,
867		    "could not create Rx mbuf DMA tag.\n");
868		goto fail;
869	}
870
871	/* Create DMA maps for Tx buffers. */
872	for (i = 0; i < SGE_TX_RING_CNT; i++) {
873		txd = &cd->sge_txdesc[i];
874		txd->tx_m = NULL;
875		txd->tx_dmamap = NULL;
876		txd->tx_ndesc = 0;
877		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
878		    &txd->tx_dmamap);
879		if (error != 0) {
880			device_printf(sc->sge_dev,
881			    "could not create Tx DMA map.\n");
882			goto fail;
883		}
884	}
885	/* Create spare DMA map for Rx buffer. */
886	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
887	if (error != 0) {
888		device_printf(sc->sge_dev,
889		    "could not create spare Rx DMA map.\n");
890		goto fail;
891	}
892	/* Create DMA maps for Rx buffers. */
893	for (i = 0; i < SGE_RX_RING_CNT; i++) {
894		rxd = &cd->sge_rxdesc[i];
895		rxd->rx_m = NULL;
896		rxd->rx_dmamap = NULL;
897		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
898		    &rxd->rx_dmamap);
899		if (error) {
900			device_printf(sc->sge_dev,
901			    "could not create Rx DMA map.\n");
902			goto fail;
903		}
904	}
905fail:
906	return (error);
907}
908
909static void
910sge_dma_free(struct sge_softc *sc)
911{
912	struct sge_chain_data *cd;
913	struct sge_list_data *ld;
914	struct sge_rxdesc *rxd;
915	struct sge_txdesc *txd;
916	int i;
917
918	cd = &sc->sge_cdata;
919	ld = &sc->sge_ldata;
920	/* Rx ring. */
921	if (cd->sge_rx_tag != NULL) {
922		if (ld->sge_rx_paddr != 0)
923			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
924		if (ld->sge_rx_ring != NULL)
925			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
926			    cd->sge_rx_dmamap);
927		ld->sge_rx_ring = NULL;
928		ld->sge_rx_paddr = 0;
929		bus_dma_tag_destroy(cd->sge_rx_tag);
930		cd->sge_rx_tag = NULL;
931	}
932	/* Tx ring. */
933	if (cd->sge_tx_tag != NULL) {
934		if (ld->sge_tx_paddr != 0)
935			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
936		if (ld->sge_tx_ring != NULL)
937			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
938			    cd->sge_tx_dmamap);
939		ld->sge_tx_ring = NULL;
940		ld->sge_tx_paddr = 0;
941		bus_dma_tag_destroy(cd->sge_tx_tag);
942		cd->sge_tx_tag = NULL;
943	}
944	/* Rx buffers. */
945	if (cd->sge_rxmbuf_tag != NULL) {
946		for (i = 0; i < SGE_RX_RING_CNT; i++) {
947			rxd = &cd->sge_rxdesc[i];
948			if (rxd->rx_dmamap != NULL) {
949				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
950				    rxd->rx_dmamap);
951				rxd->rx_dmamap = NULL;
952			}
953		}
954		if (cd->sge_rx_spare_map != NULL) {
955			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
956			    cd->sge_rx_spare_map);
957			cd->sge_rx_spare_map = NULL;
958		}
959		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
960		cd->sge_rxmbuf_tag = NULL;
961	}
962	/* Tx buffers. */
963	if (cd->sge_txmbuf_tag != NULL) {
964		for (i = 0; i < SGE_TX_RING_CNT; i++) {
965			txd = &cd->sge_txdesc[i];
966			if (txd->tx_dmamap != NULL) {
967				bus_dmamap_destroy(cd->sge_txmbuf_tag,
968				    txd->tx_dmamap);
969				txd->tx_dmamap = NULL;
970			}
971		}
972		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
973		cd->sge_txmbuf_tag = NULL;
974	}
975	if (cd->sge_tag != NULL)
976		bus_dma_tag_destroy(cd->sge_tag);
977	cd->sge_tag = NULL;
978}
979
980/*
981 * Initialize the TX descriptors.
982 */
983static int
984sge_list_tx_init(struct sge_softc *sc)
985{
986	struct sge_list_data *ld;
987	struct sge_chain_data *cd;
988
989	SGE_LOCK_ASSERT(sc);
990	ld = &sc->sge_ldata;
991	cd = &sc->sge_cdata;
992	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
993	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
994	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
995	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
996	cd->sge_tx_prod = 0;
997	cd->sge_tx_cons = 0;
998	cd->sge_tx_cnt = 0;
999	return (0);
1000}
1001
1002static int
1003sge_list_tx_free(struct sge_softc *sc)
1004{
1005	struct sge_chain_data *cd;
1006	struct sge_txdesc *txd;
1007	int i;
1008
1009	SGE_LOCK_ASSERT(sc);
1010	cd = &sc->sge_cdata;
1011	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1012		txd = &cd->sge_txdesc[i];
1013		if (txd->tx_m != NULL) {
1014			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1015			    BUS_DMASYNC_POSTWRITE);
1016			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1017			m_freem(txd->tx_m);
1018			txd->tx_m = NULL;
1019			txd->tx_ndesc = 0;
1020		}
1021	}
1022
1023	return (0);
1024}
1025
1026/*
1027 * Initialize the RX descriptors and allocate mbufs for them.  Note that
1028 * we arrange the descriptors in a closed ring, so that the last descriptor
1029 * has RING_END flag set.
1030 */
1031static int
1032sge_list_rx_init(struct sge_softc *sc)
1033{
1034	struct sge_chain_data *cd;
1035	int i;
1036
1037	SGE_LOCK_ASSERT(sc);
1038	cd = &sc->sge_cdata;
1039	cd->sge_rx_cons = 0;
1040	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1041	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1042		if (sge_newbuf(sc, i) != 0)
1043			return (ENOBUFS);
1044	}
1045	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1046	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1047	return (0);
1048}
1049
1050static int
1051sge_list_rx_free(struct sge_softc *sc)
1052{
1053	struct sge_chain_data *cd;
1054	struct sge_rxdesc *rxd;
1055	int i;
1056
1057	SGE_LOCK_ASSERT(sc);
1058	cd = &sc->sge_cdata;
1059	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1060		rxd = &cd->sge_rxdesc[i];
1061		if (rxd->rx_m != NULL) {
1062			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1063			    BUS_DMASYNC_POSTREAD);
1064			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1065			    rxd->rx_dmamap);
1066			m_freem(rxd->rx_m);
1067			rxd->rx_m = NULL;
1068		}
1069	}
1070	return (0);
1071}
1072
1073/*
1074 * Initialize an RX descriptor and attach an MBUF cluster.
1075 */
1076static int
1077sge_newbuf(struct sge_softc *sc, int prod)
1078{
1079	struct mbuf *m;
1080	struct sge_desc *desc;
1081	struct sge_chain_data *cd;
1082	struct sge_rxdesc *rxd;
1083	bus_dma_segment_t segs[1];
1084	bus_dmamap_t map;
1085	int error, nsegs;
1086
1087	SGE_LOCK_ASSERT(sc);
1088
1089	cd = &sc->sge_cdata;
1090	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1091	if (m == NULL)
1092		return (ENOBUFS);
1093	m->m_len = m->m_pkthdr.len = MCLBYTES;
1094	m_adj(m, SGE_RX_BUF_ALIGN);
1095	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1096	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1097	if (error != 0) {
1098		m_freem(m);
1099		return (error);
1100	}
1101	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1102	rxd = &cd->sge_rxdesc[prod];
1103	if (rxd->rx_m != NULL) {
1104		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1105		    BUS_DMASYNC_POSTREAD);
1106		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1107	}
1108	map = rxd->rx_dmamap;
1109	rxd->rx_dmamap = cd->sge_rx_spare_map;
1110	cd->sge_rx_spare_map = map;
1111	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1112	    BUS_DMASYNC_PREREAD);
1113	rxd->rx_m = m;
1114
1115	desc = &sc->sge_ldata.sge_rx_ring[prod];
1116	desc->sge_sts_size = 0;
1117	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1118	desc->sge_flags = htole32(segs[0].ds_len);
1119	if (prod == SGE_RX_RING_CNT - 1)
1120		desc->sge_flags |= htole32(RING_END);
1121	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1122	return (0);
1123}
1124
1125static __inline void
1126sge_discard_rxbuf(struct sge_softc *sc, int index)
1127{
1128	struct sge_desc *desc;
1129
1130	desc = &sc->sge_ldata.sge_rx_ring[index];
1131	desc->sge_sts_size = 0;
1132	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1133	if (index == SGE_RX_RING_CNT - 1)
1134		desc->sge_flags |= htole32(RING_END);
1135	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1136}
1137
1138/*
1139 * A frame has been uploaded: pass the resulting mbuf chain up to
1140 * the higher level protocols.
1141 */
1142static void
1143sge_rxeof(struct sge_softc *sc)
1144{
1145        struct ifnet *ifp;
1146        struct mbuf *m;
1147	struct sge_chain_data *cd;
1148	struct sge_desc	*cur_rx;
1149	uint32_t rxinfo, rxstat;
1150	int cons, prog;
1151
1152	SGE_LOCK_ASSERT(sc);
1153
1154	ifp = sc->sge_ifp;
1155	cd = &sc->sge_cdata;
1156
1157	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1158	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1159	cons = cd->sge_rx_cons;
1160	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1161	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1162		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1163			break;
1164		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1165		rxinfo = le32toh(cur_rx->sge_cmdsts);
1166		if ((rxinfo & RDC_OWN) != 0)
1167			break;
1168		rxstat = le32toh(cur_rx->sge_sts_size);
1169		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1170		    SGE_RX_NSEGS(rxstat) != 1) {
1171			/* XXX We don't support multi-segment frames yet. */
1172#ifdef SGE_SHOW_ERRORS
1173			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1174			    RX_ERR_BITS);
1175#endif
1176			sge_discard_rxbuf(sc, cons);
1177			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1178			continue;
1179		}
1180		m = cd->sge_rxdesc[cons].rx_m;
1181		if (sge_newbuf(sc, cons) != 0) {
1182			sge_discard_rxbuf(sc, cons);
1183			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1184			continue;
1185		}
1186		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1187			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1188			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1189				m->m_pkthdr.csum_flags |=
1190				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1191			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1192			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1193			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1194			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1195				m->m_pkthdr.csum_flags |=
1196				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1197				m->m_pkthdr.csum_data = 0xffff;
1198			}
1199		}
1200		/* Check for VLAN tagged frame. */
1201		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1202		    (rxstat & RDS_VLAN) != 0) {
1203			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1204			m->m_flags |= M_VLANTAG;
1205		}
1206		/*
1207		 * Account for 10bytes auto padding which is used
1208		 * to align IP header on 32bit boundary.  Also note,
1209		 * CRC bytes is automatically removed by the
1210		 * hardware.
1211		 */
1212		m->m_data += SGE_RX_PAD_BYTES;
1213		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1214		    SGE_RX_PAD_BYTES;
1215		m->m_pkthdr.rcvif = ifp;
1216		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1217		SGE_UNLOCK(sc);
1218		(*ifp->if_input)(ifp, m);
1219		SGE_LOCK(sc);
1220	}
1221
1222	if (prog > 0) {
1223		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1224		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1225		cd->sge_rx_cons = cons;
1226	}
1227}
1228
1229/*
1230 * A frame was downloaded to the chip.  It's safe for us to clean up
1231 * the list buffers.
1232 */
1233static void
1234sge_txeof(struct sge_softc *sc)
1235{
1236	struct ifnet *ifp;
1237	struct sge_list_data *ld;
1238	struct sge_chain_data *cd;
1239	struct sge_txdesc *txd;
1240	uint32_t txstat;
1241	int cons, nsegs, prod;
1242
1243	SGE_LOCK_ASSERT(sc);
1244
1245	ifp = sc->sge_ifp;
1246	ld = &sc->sge_ldata;
1247	cd = &sc->sge_cdata;
1248
1249	if (cd->sge_tx_cnt == 0)
1250		return;
1251	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1252	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1253	cons = cd->sge_tx_cons;
1254	prod = cd->sge_tx_prod;
1255	for (; cons != prod;) {
1256		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1257		if ((txstat & TDC_OWN) != 0)
1258			break;
1259		/*
1260		 * Only the first descriptor of multi-descriptor transmission
1261		 * is updated by controller.  Driver should skip entire
1262		 * chained buffers for the transmitted frame. In other words
1263		 * TDC_OWN bit is valid only at the first descriptor of a
1264		 * multi-descriptor transmission.
1265		 */
1266		if (SGE_TX_ERROR(txstat) != 0) {
1267#ifdef SGE_SHOW_ERRORS
1268			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1269			    txstat, TX_ERR_BITS);
1270#endif
1271			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1272		} else {
1273#ifdef notyet
1274			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1275#endif
1276			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1277		}
1278		txd = &cd->sge_txdesc[cons];
1279		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1280			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1281			SGE_INC(cons, SGE_TX_RING_CNT);
1282		}
1283		/* Reclaim transmitted mbuf. */
1284		KASSERT(txd->tx_m != NULL,
1285		    ("%s: freeing NULL mbuf\n", __func__));
1286		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1287		    BUS_DMASYNC_POSTWRITE);
1288		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1289		m_freem(txd->tx_m);
1290		txd->tx_m = NULL;
1291		cd->sge_tx_cnt -= txd->tx_ndesc;
1292		KASSERT(cd->sge_tx_cnt >= 0,
1293		    ("%s: Active Tx desc counter was garbled\n", __func__));
1294		txd->tx_ndesc = 0;
1295		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1296	}
1297	cd->sge_tx_cons = cons;
1298	if (cd->sge_tx_cnt == 0)
1299		sc->sge_timer = 0;
1300}
1301
1302static void
1303sge_tick(void *arg)
1304{
1305	struct sge_softc *sc;
1306	struct mii_data *mii;
1307	struct ifnet *ifp;
1308
1309	sc = arg;
1310	SGE_LOCK_ASSERT(sc);
1311
1312	ifp = sc->sge_ifp;
1313	mii = device_get_softc(sc->sge_miibus);
1314	mii_tick(mii);
1315	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1316		sge_miibus_statchg(sc->sge_dev);
1317		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1318		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1319			sge_start_locked(ifp);
1320	}
1321	/*
1322	 * Reclaim transmitted frames here as we do not request
1323	 * Tx completion interrupt for every queued frames to
1324	 * reduce excessive interrupts.
1325	 */
1326	sge_txeof(sc);
1327	sge_watchdog(sc);
1328	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1329}
1330
1331static void
1332sge_intr(void *arg)
1333{
1334	struct sge_softc *sc;
1335	struct ifnet *ifp;
1336	uint32_t status;
1337
1338	sc = arg;
1339	SGE_LOCK(sc);
1340	ifp = sc->sge_ifp;
1341
1342	status = CSR_READ_4(sc, IntrStatus);
1343	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1344		/* Not ours. */
1345		SGE_UNLOCK(sc);
1346		return;
1347	}
1348	/* Acknowledge interrupts. */
1349	CSR_WRITE_4(sc, IntrStatus, status);
1350	/* Disable further interrupts. */
1351	CSR_WRITE_4(sc, IntrMask, 0);
1352	/*
1353	 * It seems the controller supports some kind of interrupt
1354	 * moderation mechanism but we still don't know how to
1355	 * enable that.  To reduce number of generated interrupts
1356	 * under load we check pending interrupts in a loop.  This
1357	 * will increase number of register access and is not correct
1358	 * way to handle interrupt moderation but there seems to be
1359	 * no other way at this time.
1360	 */
1361	for (;;) {
1362		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1363			break;
1364		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1365			sge_rxeof(sc);
1366			/* Wakeup Rx MAC. */
1367			if ((status & INTR_RX_IDLE) != 0)
1368				CSR_WRITE_4(sc, RX_CTL,
1369				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1370		}
1371		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1372			sge_txeof(sc);
1373		status = CSR_READ_4(sc, IntrStatus);
1374		if ((status & SGE_INTRS) == 0)
1375			break;
1376		/* Acknowledge interrupts. */
1377		CSR_WRITE_4(sc, IntrStatus, status);
1378	}
1379	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1380		/* Re-enable interrupts */
1381		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1382		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1383			sge_start_locked(ifp);
1384	}
1385	SGE_UNLOCK(sc);
1386}
1387
1388/*
1389 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1390 * pointers to the fragment pointers.
1391 */
1392static int
1393sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1394{
1395	struct mbuf *m;
1396	struct sge_desc *desc;
1397	struct sge_txdesc *txd;
1398	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1399	uint32_t cflags, mss;
1400	int error, i, nsegs, prod, si;
1401
1402	SGE_LOCK_ASSERT(sc);
1403
1404	si = prod = sc->sge_cdata.sge_tx_prod;
1405	txd = &sc->sge_cdata.sge_txdesc[prod];
1406	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1407		struct ether_header *eh;
1408		struct ip *ip;
1409		struct tcphdr *tcp;
1410		uint32_t ip_off, poff;
1411
1412		if (M_WRITABLE(*m_head) == 0) {
1413			/* Get a writable copy. */
1414			m = m_dup(*m_head, M_NOWAIT);
1415			m_freem(*m_head);
1416			if (m == NULL) {
1417				*m_head = NULL;
1418				return (ENOBUFS);
1419			}
1420			*m_head = m;
1421		}
1422		ip_off = sizeof(struct ether_header);
1423		m = m_pullup(*m_head, ip_off);
1424		if (m == NULL) {
1425			*m_head = NULL;
1426			return (ENOBUFS);
1427		}
1428		eh = mtod(m, struct ether_header *);
1429		/* Check the existence of VLAN tag. */
1430		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1431			ip_off = sizeof(struct ether_vlan_header);
1432			m = m_pullup(m, ip_off);
1433			if (m == NULL) {
1434				*m_head = NULL;
1435				return (ENOBUFS);
1436			}
1437		}
1438		m = m_pullup(m, ip_off + sizeof(struct ip));
1439		if (m == NULL) {
1440			*m_head = NULL;
1441			return (ENOBUFS);
1442		}
1443		ip = (struct ip *)(mtod(m, char *) + ip_off);
1444		poff = ip_off + (ip->ip_hl << 2);
1445		m = m_pullup(m, poff + sizeof(struct tcphdr));
1446		if (m == NULL) {
1447			*m_head = NULL;
1448			return (ENOBUFS);
1449		}
1450		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1451		m = m_pullup(m, poff + (tcp->th_off << 2));
1452		if (m == NULL) {
1453			*m_head = NULL;
1454			return (ENOBUFS);
1455		}
1456		/*
1457		 * Reset IP checksum and recompute TCP pseudo
1458		 * checksum that NDIS specification requires.
1459		 */
1460		ip = (struct ip *)(mtod(m, char *) + ip_off);
1461		ip->ip_sum = 0;
1462		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1463		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1464		    htons(IPPROTO_TCP));
1465		*m_head = m;
1466	}
1467
1468	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1469	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1470	if (error == EFBIG) {
1471		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1472		if (m == NULL) {
1473			m_freem(*m_head);
1474			*m_head = NULL;
1475			return (ENOBUFS);
1476		}
1477		*m_head = m;
1478		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1479		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1480		if (error != 0) {
1481			m_freem(*m_head);
1482			*m_head = NULL;
1483			return (error);
1484		}
1485	} else if (error != 0)
1486		return (error);
1487
1488	KASSERT(nsegs != 0, ("zero segment returned"));
1489	/* Check descriptor overrun. */
1490	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1491		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1492		return (ENOBUFS);
1493	}
1494	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1495	    BUS_DMASYNC_PREWRITE);
1496
1497	m = *m_head;
1498	cflags = 0;
1499	mss = 0;
1500	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1501		cflags |= TDC_LS;
1502		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1503		mss <<= 16;
1504	} else {
1505		if (m->m_pkthdr.csum_flags & CSUM_IP)
1506			cflags |= TDC_IP_CSUM;
1507		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1508			cflags |= TDC_TCP_CSUM;
1509		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1510			cflags |= TDC_UDP_CSUM;
1511	}
1512	for (i = 0; i < nsegs; i++) {
1513		desc = &sc->sge_ldata.sge_tx_ring[prod];
1514		if (i == 0) {
1515			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1516			desc->sge_cmdsts = 0;
1517		} else {
1518			desc->sge_sts_size = 0;
1519			desc->sge_cmdsts = htole32(TDC_OWN);
1520		}
1521		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1522		desc->sge_flags = htole32(txsegs[i].ds_len);
1523		if (prod == SGE_TX_RING_CNT - 1)
1524			desc->sge_flags |= htole32(RING_END);
1525		sc->sge_cdata.sge_tx_cnt++;
1526		SGE_INC(prod, SGE_TX_RING_CNT);
1527	}
1528	/* Update producer index. */
1529	sc->sge_cdata.sge_tx_prod = prod;
1530
1531	desc = &sc->sge_ldata.sge_tx_ring[si];
1532	/* Configure VLAN. */
1533	if((m->m_flags & M_VLANTAG) != 0) {
1534		cflags |= m->m_pkthdr.ether_vtag;
1535		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1536	}
1537	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1538#if 1
1539	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1540		desc->sge_cmdsts |= htole32(TDC_BST);
1541#else
1542	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1543		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1544		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1545			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1546	}
1547#endif
1548	/* Request interrupt and give ownership to controller. */
1549	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1550	txd->tx_m = m;
1551	txd->tx_ndesc = nsegs;
1552	return (0);
1553}
1554
1555static void
1556sge_start(struct ifnet *ifp)
1557{
1558	struct sge_softc *sc;
1559
1560	sc = ifp->if_softc;
1561	SGE_LOCK(sc);
1562	sge_start_locked(ifp);
1563	SGE_UNLOCK(sc);
1564}
1565
1566static void
1567sge_start_locked(struct ifnet *ifp)
1568{
1569	struct sge_softc *sc;
1570	struct mbuf *m_head;
1571	int queued = 0;
1572
1573	sc = ifp->if_softc;
1574	SGE_LOCK_ASSERT(sc);
1575
1576	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1577	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1578	    IFF_DRV_RUNNING)
1579		return;
1580
1581	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1582		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1583		    SGE_MAXTXSEGS)) {
1584			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1585			break;
1586		}
1587		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1588		if (m_head == NULL)
1589			break;
1590		if (sge_encap(sc, &m_head)) {
1591			if (m_head == NULL)
1592				break;
1593			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1594			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1595			break;
1596		}
1597		queued++;
1598		/*
1599		 * If there's a BPF listener, bounce a copy of this frame
1600		 * to him.
1601		 */
1602		BPF_MTAP(ifp, m_head);
1603	}
1604
1605	if (queued > 0) {
1606		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1607		    sc->sge_cdata.sge_tx_dmamap,
1608		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1609		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1610		sc->sge_timer = 5;
1611	}
1612}
1613
1614static void
1615sge_init(void *arg)
1616{
1617	struct sge_softc *sc;
1618
1619	sc = arg;
1620	SGE_LOCK(sc);
1621	sge_init_locked(sc);
1622	SGE_UNLOCK(sc);
1623}
1624
1625static void
1626sge_init_locked(struct sge_softc *sc)
1627{
1628	struct ifnet *ifp;
1629	struct mii_data *mii;
1630	uint16_t rxfilt;
1631	int i;
1632
1633	SGE_LOCK_ASSERT(sc);
1634	ifp = sc->sge_ifp;
1635	mii = device_get_softc(sc->sge_miibus);
1636	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1637		return;
1638	/*
1639	 * Cancel pending I/O and free all RX/TX buffers.
1640	 */
1641	sge_stop(sc);
1642	sge_reset(sc);
1643
1644	/* Init circular RX list. */
1645	if (sge_list_rx_init(sc) == ENOBUFS) {
1646		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1647		sge_stop(sc);
1648		return;
1649	}
1650	/* Init TX descriptors. */
1651	sge_list_tx_init(sc);
1652	/*
1653	 * Load the address of the RX and TX lists.
1654	 */
1655	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1656	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1657
1658	CSR_WRITE_4(sc, TxMacControl, 0x60);
1659	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1660	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1661	/* Allow receiving VLAN frames. */
1662	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1663	    SGE_RX_PAD_BYTES);
1664
1665	for (i = 0; i < ETHER_ADDR_LEN; i++)
1666		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1667	/* Configure RX MAC. */
1668	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1669	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1670	sge_rxfilter(sc);
1671	sge_setvlan(sc);
1672
1673	/* Initialize default speed/duplex information. */
1674	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1675		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1676	sc->sge_flags |= SGE_FLAG_FDX;
1677	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1678		CSR_WRITE_4(sc, StationControl, 0x04008001);
1679	else
1680		CSR_WRITE_4(sc, StationControl, 0x04000001);
1681	/*
1682	 * XXX Try to mitigate interrupts.
1683	 */
1684	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1685#ifdef notyet
1686	if (sc->sge_intrcontrol != 0)
1687		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1688	if (sc->sge_intrtimer != 0)
1689		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1690#endif
1691
1692	/*
1693	 * Clear and enable interrupts.
1694	 */
1695	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1696	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1697
1698	/* Enable receiver and transmitter. */
1699	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1700	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1701
1702	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1703	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1704
1705	sc->sge_flags &= ~SGE_FLAG_LINK;
1706	mii_mediachg(mii);
1707	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1708}
1709
1710/*
1711 * Set media options.
1712 */
1713static int
1714sge_ifmedia_upd(struct ifnet *ifp)
1715{
1716	struct sge_softc *sc;
1717	struct mii_data *mii;
1718		struct mii_softc *miisc;
1719	int error;
1720
1721	sc = ifp->if_softc;
1722	SGE_LOCK(sc);
1723	mii = device_get_softc(sc->sge_miibus);
1724	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1725		PHY_RESET(miisc);
1726	error = mii_mediachg(mii);
1727	SGE_UNLOCK(sc);
1728
1729	return (error);
1730}
1731
1732/*
1733 * Report current media status.
1734 */
1735static void
1736sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1737{
1738	struct sge_softc *sc;
1739	struct mii_data *mii;
1740
1741	sc = ifp->if_softc;
1742	SGE_LOCK(sc);
1743	mii = device_get_softc(sc->sge_miibus);
1744	if ((ifp->if_flags & IFF_UP) == 0) {
1745		SGE_UNLOCK(sc);
1746		return;
1747	}
1748	mii_pollstat(mii);
1749	ifmr->ifm_active = mii->mii_media_active;
1750	ifmr->ifm_status = mii->mii_media_status;
1751	SGE_UNLOCK(sc);
1752}
1753
1754static int
1755sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1756{
1757	struct sge_softc *sc;
1758	struct ifreq *ifr;
1759	struct mii_data *mii;
1760	int error = 0, mask, reinit;
1761
1762	sc = ifp->if_softc;
1763	ifr = (struct ifreq *)data;
1764
1765	switch(command) {
1766	case SIOCSIFFLAGS:
1767		SGE_LOCK(sc);
1768		if ((ifp->if_flags & IFF_UP) != 0) {
1769			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1770			    ((ifp->if_flags ^ sc->sge_if_flags) &
1771			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1772				sge_rxfilter(sc);
1773			else
1774				sge_init_locked(sc);
1775		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1776			sge_stop(sc);
1777		sc->sge_if_flags = ifp->if_flags;
1778		SGE_UNLOCK(sc);
1779		break;
1780	case SIOCSIFCAP:
1781		SGE_LOCK(sc);
1782		reinit = 0;
1783		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1784		if ((mask & IFCAP_TXCSUM) != 0 &&
1785		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1786			ifp->if_capenable ^= IFCAP_TXCSUM;
1787			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1788				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1789			else
1790				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1791		}
1792		if ((mask & IFCAP_RXCSUM) != 0 &&
1793		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1794			ifp->if_capenable ^= IFCAP_RXCSUM;
1795		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1796		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1797			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1798		if ((mask & IFCAP_TSO4) != 0 &&
1799		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1800			ifp->if_capenable ^= IFCAP_TSO4;
1801			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1802				ifp->if_hwassist |= CSUM_TSO;
1803			else
1804				ifp->if_hwassist &= ~CSUM_TSO;
1805		}
1806		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1807		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1808			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1809		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1810		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1811			/*
1812			 * Due to unknown reason, toggling VLAN hardware
1813			 * tagging require interface reinitialization.
1814			 */
1815			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1816			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1817				ifp->if_capenable &=
1818				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1819			reinit = 1;
1820		}
1821		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1822			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1823			sge_init_locked(sc);
1824		}
1825		SGE_UNLOCK(sc);
1826		VLAN_CAPABILITIES(ifp);
1827		break;
1828	case SIOCADDMULTI:
1829	case SIOCDELMULTI:
1830		SGE_LOCK(sc);
1831		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1832			sge_rxfilter(sc);
1833		SGE_UNLOCK(sc);
1834		break;
1835	case SIOCGIFMEDIA:
1836	case SIOCSIFMEDIA:
1837		mii = device_get_softc(sc->sge_miibus);
1838		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1839		break;
1840	default:
1841		error = ether_ioctl(ifp, command, data);
1842		break;
1843	}
1844
1845	return (error);
1846}
1847
1848static void
1849sge_watchdog(struct sge_softc *sc)
1850{
1851	struct ifnet *ifp;
1852
1853	SGE_LOCK_ASSERT(sc);
1854	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1855		return;
1856
1857	ifp = sc->sge_ifp;
1858	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1859		if (1 || bootverbose)
1860			device_printf(sc->sge_dev,
1861			    "watchdog timeout (lost link)\n");
1862		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1863		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1864		sge_init_locked(sc);
1865		return;
1866	}
1867	device_printf(sc->sge_dev, "watchdog timeout\n");
1868	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1869
1870	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1871	sge_init_locked(sc);
1872	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1873		sge_start_locked(ifp);
1874}
1875
1876/*
1877 * Stop the adapter and free any mbufs allocated to the
1878 * RX and TX lists.
1879 */
1880static void
1881sge_stop(struct sge_softc *sc)
1882{
1883	struct ifnet *ifp;
1884
1885	ifp = sc->sge_ifp;
1886
1887	SGE_LOCK_ASSERT(sc);
1888
1889	sc->sge_timer = 0;
1890	callout_stop(&sc->sge_stat_ch);
1891	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1892
1893	CSR_WRITE_4(sc, IntrMask, 0);
1894	CSR_READ_4(sc, IntrMask);
1895	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1896	/* Stop TX/RX MAC. */
1897	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1898	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1899	/* XXX Can we assume active DMA cycles gone? */
1900	DELAY(2000);
1901	CSR_WRITE_4(sc, IntrMask, 0);
1902	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1903
1904	sc->sge_flags &= ~SGE_FLAG_LINK;
1905	sge_list_rx_free(sc);
1906	sge_list_tx_free(sc);
1907}
1908