1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2012-2014 Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/domainset.h>
36#include <sys/proc.h>
37
38#include <dev/pci/pcivar.h>
39
40#include "nvme_private.h"
41
42typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43#define DO_NOT_RETRY	1
44
45static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
46					   struct nvme_request *req);
47static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
48
49struct nvme_opcode_string {
50	uint16_t	opc;
51	const char *	str;
52};
53
54static struct nvme_opcode_string admin_opcode[] = {
55	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
61	{ NVME_OPC_ABORT, "ABORT" },
62	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
63	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
64	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79	{ NVME_OPC_SANITIZE, "SANITIZE" },
80	{ NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
81	{ 0xFFFF, "ADMIN COMMAND" }
82};
83
84static struct nvme_opcode_string io_opcode[] = {
85	{ NVME_OPC_FLUSH, "FLUSH" },
86	{ NVME_OPC_WRITE, "WRITE" },
87	{ NVME_OPC_READ, "READ" },
88	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
89	{ NVME_OPC_COMPARE, "COMPARE" },
90	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
91	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
92	{ NVME_OPC_VERIFY, "VERIFY" },
93	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
94	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
95	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
96	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
97	{ 0xFFFF, "IO COMMAND" }
98};
99
100static const char *
101get_admin_opcode_string(uint16_t opc)
102{
103	struct nvme_opcode_string *entry;
104
105	entry = admin_opcode;
106
107	while (entry->opc != 0xFFFF) {
108		if (entry->opc == opc)
109			return (entry->str);
110		entry++;
111	}
112	return (entry->str);
113}
114
115static const char *
116get_io_opcode_string(uint16_t opc)
117{
118	struct nvme_opcode_string *entry;
119
120	entry = io_opcode;
121
122	while (entry->opc != 0xFFFF) {
123		if (entry->opc == opc)
124			return (entry->str);
125		entry++;
126	}
127	return (entry->str);
128}
129
130static void
131nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
132    struct nvme_command *cmd)
133{
134
135	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
136	    "cdw10:%08x cdw11:%08x\n",
137	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
138	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
139}
140
141static void
142nvme_io_qpair_print_command(struct nvme_qpair *qpair,
143    struct nvme_command *cmd)
144{
145
146	switch (cmd->opc) {
147	case NVME_OPC_WRITE:
148	case NVME_OPC_READ:
149	case NVME_OPC_WRITE_UNCORRECTABLE:
150	case NVME_OPC_COMPARE:
151	case NVME_OPC_WRITE_ZEROES:
152	case NVME_OPC_VERIFY:
153		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
154		    "lba:%llu len:%d\n",
155		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
156		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
157		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
158		break;
159	case NVME_OPC_FLUSH:
160	case NVME_OPC_DATASET_MANAGEMENT:
161	case NVME_OPC_RESERVATION_REGISTER:
162	case NVME_OPC_RESERVATION_REPORT:
163	case NVME_OPC_RESERVATION_ACQUIRE:
164	case NVME_OPC_RESERVATION_RELEASE:
165		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
166		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
167		break;
168	default:
169		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
170		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
171		    cmd->cid, le32toh(cmd->nsid));
172		break;
173	}
174}
175
176static void
177nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
178{
179	if (qpair->id == 0)
180		nvme_admin_qpair_print_command(qpair, cmd);
181	else
182		nvme_io_qpair_print_command(qpair, cmd);
183	if (nvme_verbose_cmd_dump) {
184		nvme_printf(qpair->ctrlr,
185		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
186		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
187		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
188		nvme_printf(qpair->ctrlr,
189		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
190		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
191		    cmd->cdw15);
192	}
193}
194
195struct nvme_status_string {
196	uint16_t	sc;
197	const char *	str;
198};
199
200static struct nvme_status_string generic_status[] = {
201	{ NVME_SC_SUCCESS, "SUCCESS" },
202	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
203	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
204	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
205	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
206	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
207	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
208	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
209	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
210	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
211	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
212	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
213	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
214	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
215	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
216	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
217	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
218	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
219	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
220	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
221	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
222	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
223	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
224	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
225	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
226	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
227	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
228	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
229	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
230	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
231	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
232	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
233	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
234	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
235
236	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
237	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
238	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
239	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
240	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
241	{ 0xFFFF, "GENERIC" }
242};
243
244static struct nvme_status_string command_specific_status[] = {
245	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
246	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
247	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
248	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
249	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
250	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
251	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
252	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
253	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
254	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
255	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
256	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
257	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
258	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
259	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
260	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
261	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
262	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
263	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
264	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
265	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
266	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
267	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
268	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
269	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
270	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
271	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
272	{ NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
273	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
274	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
275	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
276	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
277	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
278	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
279	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
280	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
281
282	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
283	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
284	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
285	{ 0xFFFF, "COMMAND SPECIFIC" }
286};
287
288static struct nvme_status_string media_error_status[] = {
289	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
290	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
291	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
292	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
293	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
294	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
295	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
296	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
297	{ 0xFFFF, "MEDIA ERROR" }
298};
299
300static struct nvme_status_string path_related_status[] = {
301	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
302	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
303	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
304	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
305	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
306	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
307	{ NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
308	{ 0xFFFF, "PATH RELATED" },
309};
310
311static const char *
312get_status_string(uint16_t sct, uint16_t sc)
313{
314	struct nvme_status_string *entry;
315
316	switch (sct) {
317	case NVME_SCT_GENERIC:
318		entry = generic_status;
319		break;
320	case NVME_SCT_COMMAND_SPECIFIC:
321		entry = command_specific_status;
322		break;
323	case NVME_SCT_MEDIA_ERROR:
324		entry = media_error_status;
325		break;
326	case NVME_SCT_PATH_RELATED:
327		entry = path_related_status;
328		break;
329	case NVME_SCT_VENDOR_SPECIFIC:
330		return ("VENDOR SPECIFIC");
331	default:
332		return ("RESERVED");
333	}
334
335	while (entry->sc != 0xFFFF) {
336		if (entry->sc == sc)
337			return (entry->str);
338		entry++;
339	}
340	return (entry->str);
341}
342
343static void
344nvme_qpair_print_completion(struct nvme_qpair *qpair,
345    struct nvme_completion *cpl)
346{
347	uint16_t sct, sc;
348
349	sct = NVME_STATUS_GET_SCT(cpl->status);
350	sc = NVME_STATUS_GET_SC(cpl->status);
351
352	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
353	    get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
354	    cpl->cdw0);
355}
356
357static bool
358nvme_completion_is_retry(const struct nvme_completion *cpl)
359{
360	uint8_t sct, sc, dnr;
361
362	sct = NVME_STATUS_GET_SCT(cpl->status);
363	sc = NVME_STATUS_GET_SC(cpl->status);
364	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
365
366	/*
367	 * TODO: spec is not clear how commands that are aborted due
368	 *  to TLER will be marked.  So for now, it seems
369	 *  NAMESPACE_NOT_READY is the only case where we should
370	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
371	 *  set the DNR bit correctly since the driver controls that.
372	 */
373	switch (sct) {
374	case NVME_SCT_GENERIC:
375		switch (sc) {
376		case NVME_SC_ABORTED_BY_REQUEST:
377		case NVME_SC_NAMESPACE_NOT_READY:
378			if (dnr)
379				return (0);
380			else
381				return (1);
382		case NVME_SC_INVALID_OPCODE:
383		case NVME_SC_INVALID_FIELD:
384		case NVME_SC_COMMAND_ID_CONFLICT:
385		case NVME_SC_DATA_TRANSFER_ERROR:
386		case NVME_SC_ABORTED_POWER_LOSS:
387		case NVME_SC_INTERNAL_DEVICE_ERROR:
388		case NVME_SC_ABORTED_SQ_DELETION:
389		case NVME_SC_ABORTED_FAILED_FUSED:
390		case NVME_SC_ABORTED_MISSING_FUSED:
391		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
392		case NVME_SC_COMMAND_SEQUENCE_ERROR:
393		case NVME_SC_LBA_OUT_OF_RANGE:
394		case NVME_SC_CAPACITY_EXCEEDED:
395		default:
396			return (0);
397		}
398	case NVME_SCT_COMMAND_SPECIFIC:
399	case NVME_SCT_MEDIA_ERROR:
400		return (0);
401	case NVME_SCT_PATH_RELATED:
402		switch (sc) {
403		case NVME_SC_INTERNAL_PATH_ERROR:
404			if (dnr)
405				return (0);
406			else
407				return (1);
408		default:
409			return (0);
410		}
411	case NVME_SCT_VENDOR_SPECIFIC:
412	default:
413		return (0);
414	}
415}
416
417static void
418nvme_qpair_complete_tracker(struct nvme_tracker *tr,
419    struct nvme_completion *cpl, error_print_t print_on_error)
420{
421	struct nvme_qpair * qpair = tr->qpair;
422	struct nvme_request	*req;
423	bool			retry, error, retriable;
424
425	req = tr->req;
426	error = nvme_completion_is_error(cpl);
427	retriable = nvme_completion_is_retry(cpl);
428	retry = error && retriable && req->retries < nvme_retry_count;
429	if (retry)
430		qpair->num_retries++;
431	if (error && req->retries >= nvme_retry_count && retriable)
432		qpair->num_failures++;
433
434	if (error && (print_on_error == ERROR_PRINT_ALL ||
435		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
436		nvme_qpair_print_command(qpair, &req->cmd);
437		nvme_qpair_print_completion(qpair, cpl);
438	}
439
440	qpair->act_tr[cpl->cid] = NULL;
441
442	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
443
444	if (!retry) {
445		if (req->type != NVME_REQUEST_NULL) {
446			bus_dmamap_sync(qpair->dma_tag_payload,
447			    tr->payload_dma_map,
448			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
449		}
450		if (req->cb_fn)
451			req->cb_fn(req->cb_arg, cpl);
452	}
453
454	mtx_lock(&qpair->lock);
455	callout_stop(&tr->timer);
456
457	if (retry) {
458		req->retries++;
459		nvme_qpair_submit_tracker(qpair, tr);
460	} else {
461		if (req->type != NVME_REQUEST_NULL) {
462			bus_dmamap_unload(qpair->dma_tag_payload,
463			    tr->payload_dma_map);
464		}
465
466		nvme_free_request(req);
467		tr->req = NULL;
468
469		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
470		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
471
472		/*
473		 * If the controller is in the middle of resetting, don't
474		 *  try to submit queued requests here - let the reset logic
475		 *  handle that instead.
476		 */
477		if (!STAILQ_EMPTY(&qpair->queued_req) &&
478		    !qpair->ctrlr->is_resetting) {
479			req = STAILQ_FIRST(&qpair->queued_req);
480			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
481			_nvme_qpair_submit_request(qpair, req);
482		}
483	}
484
485	mtx_unlock(&qpair->lock);
486}
487
488static void
489nvme_qpair_manual_complete_tracker(
490    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
491    error_print_t print_on_error)
492{
493	struct nvme_completion	cpl;
494
495	memset(&cpl, 0, sizeof(cpl));
496
497	struct nvme_qpair * qpair = tr->qpair;
498
499	cpl.sqid = qpair->id;
500	cpl.cid = tr->cid;
501	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
502	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
503	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
504	nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
505}
506
507void
508nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
509    struct nvme_request *req, uint32_t sct, uint32_t sc)
510{
511	struct nvme_completion	cpl;
512	bool			error;
513
514	memset(&cpl, 0, sizeof(cpl));
515	cpl.sqid = qpair->id;
516	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
517	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
518
519	error = nvme_completion_is_error(&cpl);
520
521	if (error) {
522		nvme_qpair_print_command(qpair, &req->cmd);
523		nvme_qpair_print_completion(qpair, &cpl);
524	}
525
526	if (req->cb_fn)
527		req->cb_fn(req->cb_arg, &cpl);
528
529	nvme_free_request(req);
530}
531
532bool
533nvme_qpair_process_completions(struct nvme_qpair *qpair)
534{
535	struct nvme_tracker	*tr;
536	struct nvme_completion	cpl;
537	int done = 0;
538	bool in_panic = dumping || SCHEDULER_STOPPED();
539
540	qpair->num_intr_handler_calls++;
541
542	/*
543	 * qpair is not enabled, likely because a controller reset is is in
544	 * progress.  Ignore the interrupt - any I/O that was associated with
545	 * this interrupt will get retried when the reset is complete.
546	 */
547	if (!qpair->is_enabled)
548		return (false);
549
550	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
551	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
552	/*
553	 * A panic can stop the CPU this routine is running on at any point.  If
554	 * we're called during a panic, complete the sq_head wrap protocol for
555	 * the case where we are interrupted just after the increment at 1
556	 * below, but before we can reset cq_head to zero at 2. Also cope with
557	 * the case where we do the zero at 2, but may or may not have done the
558	 * phase adjustment at step 3. The panic machinery flushes all pending
559	 * memory writes, so we can make these strong ordering assumptions
560	 * that would otherwise be unwise if we were racing in real time.
561	 */
562	if (__predict_false(in_panic)) {
563		if (qpair->cq_head == qpair->num_entries) {
564			/*
565			 * Here we know that we need to zero cq_head and then negate
566			 * the phase, which hasn't been assigned if cq_head isn't
567			 * zero due to the atomic_store_rel.
568			 */
569			qpair->cq_head = 0;
570			qpair->phase = !qpair->phase;
571		} else if (qpair->cq_head == 0) {
572			/*
573			 * In this case, we know that the assignment at 2
574			 * happened below, but we don't know if it 3 happened or
575			 * not. To do this, we look at the last completion
576			 * entry and set the phase to the opposite phase
577			 * that it has. This gets us back in sync
578			 */
579			cpl = qpair->cpl[qpair->num_entries - 1];
580			nvme_completion_swapbytes(&cpl);
581			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
582		}
583	}
584
585	while (1) {
586		cpl = qpair->cpl[qpair->cq_head];
587
588		/* Convert to host endian */
589		nvme_completion_swapbytes(&cpl);
590
591		if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
592			break;
593
594		tr = qpair->act_tr[cpl.cid];
595
596		if (tr != NULL) {
597			nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
598			qpair->sq_head = cpl.sqhd;
599			done++;
600		} else if (!in_panic) {
601			/*
602			 * A missing tracker is normally an error.  However, a
603			 * panic can stop the CPU this routine is running on
604			 * after completing an I/O but before updating
605			 * qpair->cq_head at 1 below.  Later, we re-enter this
606			 * routine to poll I/O associated with the kernel
607			 * dump. We find that the tr has been set to null before
608			 * calling the completion routine.  If it hasn't
609			 * completed (or it triggers a panic), then '1' below
610			 * won't have updated cq_head. Rather than panic again,
611			 * ignore this condition because it's not unexpected.
612			 */
613			nvme_printf(qpair->ctrlr,
614			    "cpl does not map to outstanding cmd\n");
615			/* nvme_dump_completion expects device endianess */
616			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
617			KASSERT(0, ("received completion for unknown cmd"));
618		}
619
620		/*
621		 * There's a number of races with the following (see above) when
622		 * the system panics. We compensate for each one of them by
623		 * using the atomic store to force strong ordering (at least when
624		 * viewed in the aftermath of a panic).
625		 */
626		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
627			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
628			qpair->phase = !qpair->phase;			/* 3 */
629		}
630
631		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
632		    qpair->cq_hdbl_off, qpair->cq_head);
633	}
634	return (done != 0);
635}
636
637static void
638nvme_qpair_msix_handler(void *arg)
639{
640	struct nvme_qpair *qpair = arg;
641
642	nvme_qpair_process_completions(qpair);
643}
644
645int
646nvme_qpair_construct(struct nvme_qpair *qpair,
647    uint32_t num_entries, uint32_t num_trackers,
648    struct nvme_controller *ctrlr)
649{
650	struct nvme_tracker	*tr;
651	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
652	uint64_t		queuemem_phys, prpmem_phys, list_phys;
653	uint8_t			*queuemem, *prpmem, *prp_list;
654	int			i, err;
655
656	qpair->vector = ctrlr->msix_enabled ? qpair->id : 0;
657	qpair->num_entries = num_entries;
658	qpair->num_trackers = num_trackers;
659	qpair->ctrlr = ctrlr;
660
661	if (ctrlr->msix_enabled) {
662		/*
663		 * MSI-X vector resource IDs start at 1, so we add one to
664		 *  the queue's vector to get the corresponding rid to use.
665		 */
666		qpair->rid = qpair->vector + 1;
667
668		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
669		    &qpair->rid, RF_ACTIVE);
670		if (bus_setup_intr(ctrlr->dev, qpair->res,
671		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
672		    nvme_qpair_msix_handler, qpair, &qpair->tag) != 0) {
673			nvme_printf(ctrlr, "unable to setup intx handler\n");
674			goto out;
675		}
676		if (qpair->id == 0) {
677			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
678			    "admin");
679		} else {
680			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
681			    "io%d", qpair->id - 1);
682		}
683	}
684
685	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
686
687	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
688	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
689	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
690	    BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
691	    btoc(ctrlr->max_xfer_size) + 1, PAGE_SIZE, 0,
692	    NULL, NULL, &qpair->dma_tag_payload);
693	if (err != 0) {
694		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
695		goto out;
696	}
697
698	/*
699	 * Each component must be page aligned, and individual PRP lists
700	 * cannot cross a page boundary.
701	 */
702	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
703	cmdsz = roundup2(cmdsz, PAGE_SIZE);
704	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
705	cplsz = roundup2(cplsz, PAGE_SIZE);
706	/*
707	 * For commands requiring more than 2 PRP entries, one PRP will be
708	 * embedded in the command (prp1), and the rest of the PRP entries
709	 * will be in a list pointed to by the command (prp2).
710	 */
711	prpsz = sizeof(uint64_t) * btoc(ctrlr->max_xfer_size);
712	prpmemsz = qpair->num_trackers * prpsz;
713	allocsz = cmdsz + cplsz + prpmemsz;
714
715	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
716	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
717	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
718	if (err != 0) {
719		nvme_printf(ctrlr, "tag create failed %d\n", err);
720		goto out;
721	}
722	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
723
724	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
725	     BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
726		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
727		goto out;
728	}
729
730	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
731	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
732		nvme_printf(ctrlr, "failed to load qpair memory\n");
733		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
734		    qpair->queuemem_map);
735		goto out;
736	}
737
738	qpair->num_cmds = 0;
739	qpair->num_intr_handler_calls = 0;
740	qpair->num_retries = 0;
741	qpair->num_failures = 0;
742	qpair->cmd = (struct nvme_command *)queuemem;
743	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
744	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
745	qpair->cmd_bus_addr = queuemem_phys;
746	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
747	prpmem_phys = queuemem_phys + cmdsz + cplsz;
748
749	/*
750	 * Calcuate the stride of the doorbell register. Many emulators set this
751	 * value to correspond to a cache line. However, some hardware has set
752	 * it to various small values.
753	 */
754	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
755	    (qpair->id << (ctrlr->dstrd + 1));
756	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
757	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
758
759	TAILQ_INIT(&qpair->free_tr);
760	TAILQ_INIT(&qpair->outstanding_tr);
761	STAILQ_INIT(&qpair->queued_req);
762
763	list_phys = prpmem_phys;
764	prp_list = prpmem;
765	for (i = 0; i < qpair->num_trackers; i++) {
766		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
767			qpair->num_trackers = i;
768			break;
769		}
770
771		/*
772		 * Make sure that the PRP list for this tracker doesn't
773		 * overflow to another page.
774		 */
775		if (trunc_page(list_phys) !=
776		    trunc_page(list_phys + prpsz - 1)) {
777			list_phys = roundup2(list_phys, PAGE_SIZE);
778			prp_list =
779			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
780		}
781
782		tr = malloc_domainset(sizeof(*tr), M_NVME,
783		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
784		bus_dmamap_create(qpair->dma_tag_payload, 0,
785		    &tr->payload_dma_map);
786		callout_init(&tr->timer, 1);
787		tr->cid = i;
788		tr->qpair = qpair;
789		tr->prp = (uint64_t *)prp_list;
790		tr->prp_bus_addr = list_phys;
791		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
792		list_phys += prpsz;
793		prp_list += prpsz;
794	}
795
796	if (qpair->num_trackers == 0) {
797		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
798		goto out;
799	}
800
801	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
802	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
803	    M_ZERO | M_WAITOK);
804	return (0);
805
806out:
807	nvme_qpair_destroy(qpair);
808	return (ENOMEM);
809}
810
811static void
812nvme_qpair_destroy(struct nvme_qpair *qpair)
813{
814	struct nvme_tracker	*tr;
815
816	if (qpair->tag) {
817		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
818		qpair->tag = NULL;
819	}
820
821	if (qpair->act_tr) {
822		free(qpair->act_tr, M_NVME);
823		qpair->act_tr = NULL;
824	}
825
826	while (!TAILQ_EMPTY(&qpair->free_tr)) {
827		tr = TAILQ_FIRST(&qpair->free_tr);
828		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
829		bus_dmamap_destroy(qpair->dma_tag_payload,
830		    tr->payload_dma_map);
831		free(tr, M_NVME);
832	}
833
834	if (qpair->cmd != NULL) {
835		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
836		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
837		    qpair->queuemem_map);
838		qpair->cmd = NULL;
839	}
840
841	if (qpair->dma_tag) {
842		bus_dma_tag_destroy(qpair->dma_tag);
843		qpair->dma_tag = NULL;
844	}
845
846	if (qpair->dma_tag_payload) {
847		bus_dma_tag_destroy(qpair->dma_tag_payload);
848		qpair->dma_tag_payload = NULL;
849	}
850
851	if (mtx_initialized(&qpair->lock))
852		mtx_destroy(&qpair->lock);
853
854	if (qpair->res) {
855		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
856		    rman_get_rid(qpair->res), qpair->res);
857		qpair->res = NULL;
858	}
859}
860
861static void
862nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
863{
864	struct nvme_tracker	*tr;
865
866	tr = TAILQ_FIRST(&qpair->outstanding_tr);
867	while (tr != NULL) {
868		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
869			nvme_qpair_manual_complete_tracker(tr,
870			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
871			    ERROR_PRINT_NONE);
872			tr = TAILQ_FIRST(&qpair->outstanding_tr);
873		} else {
874			tr = TAILQ_NEXT(tr, tailq);
875		}
876	}
877}
878
879void
880nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
881{
882
883	nvme_admin_qpair_abort_aers(qpair);
884	nvme_qpair_destroy(qpair);
885}
886
887void
888nvme_io_qpair_destroy(struct nvme_qpair *qpair)
889{
890
891	nvme_qpair_destroy(qpair);
892}
893
894static void
895nvme_abort_complete(void *arg, const struct nvme_completion *status)
896{
897	struct nvme_tracker	*tr = arg;
898
899	/*
900	 * If cdw0 == 1, the controller was not able to abort the command
901	 *  we requested.  We still need to check the active tracker array,
902	 *  to cover race where I/O timed out at same time controller was
903	 *  completing the I/O.
904	 */
905	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
906		/*
907		 * An I/O has timed out, and the controller was unable to
908		 *  abort it for some reason.  Construct a fake completion
909		 *  status, and then complete the I/O's tracker manually.
910		 */
911		nvme_printf(tr->qpair->ctrlr,
912		    "abort command failed, aborting command manually\n");
913		nvme_qpair_manual_complete_tracker(tr,
914		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
915	}
916}
917
918static void
919nvme_timeout(void *arg)
920{
921	struct nvme_tracker	*tr = arg;
922	struct nvme_qpair	*qpair = tr->qpair;
923	struct nvme_controller	*ctrlr = qpair->ctrlr;
924	uint32_t		csts;
925	uint8_t			cfs;
926
927	/*
928	 * Read csts to get value of cfs - controller fatal status.
929	 * If no fatal status, try to call the completion routine, and
930	 * if completes transactions, report a missed interrupt and
931	 * return (this may need to be rate limited). Otherwise, if
932	 * aborts are enabled and the controller is not reporting
933	 * fatal status, abort the command. Otherwise, just reset the
934	 * controller and hope for the best.
935	 */
936	csts = nvme_mmio_read_4(ctrlr, csts);
937	cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
938	if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
939		nvme_printf(ctrlr, "Missing interrupt\n");
940		return;
941	}
942	if (ctrlr->enable_aborts && cfs == 0) {
943		nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
944		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
945		    nvme_abort_complete, tr);
946	} else {
947		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
948		    (csts == NVME_GONE) ? " and possible hot unplug" :
949		    (cfs ? " and fatal error status" : ""));
950		nvme_ctrlr_reset(ctrlr);
951	}
952}
953
954void
955nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
956{
957	struct nvme_request	*req;
958	struct nvme_controller	*ctrlr;
959	int timeout;
960
961	mtx_assert(&qpair->lock, MA_OWNED);
962
963	req = tr->req;
964	req->cmd.cid = tr->cid;
965	qpair->act_tr[tr->cid] = tr;
966	ctrlr = qpair->ctrlr;
967
968	if (req->timeout) {
969		if (req->cb_fn == nvme_completion_poll_cb)
970			timeout = hz;
971		else
972			timeout = ctrlr->timeout_period * hz;
973		callout_reset_on(&tr->timer, timeout, nvme_timeout, tr,
974		    qpair->cpu);
975	}
976
977	/* Copy the command from the tracker to the submission queue. */
978	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
979
980	if (++qpair->sq_tail == qpair->num_entries)
981		qpair->sq_tail = 0;
982
983	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
984	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
985	bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
986	    qpair->sq_tdbl_off, qpair->sq_tail);
987	qpair->num_cmds++;
988}
989
990static void
991nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
992{
993	struct nvme_tracker 	*tr = arg;
994	uint32_t		cur_nseg;
995
996	/*
997	 * If the mapping operation failed, return immediately.  The caller
998	 *  is responsible for detecting the error status and failing the
999	 *  tracker manually.
1000	 */
1001	if (error != 0) {
1002		nvme_printf(tr->qpair->ctrlr,
1003		    "nvme_payload_map err %d\n", error);
1004		return;
1005	}
1006
1007	/*
1008	 * Note that we specified PAGE_SIZE for alignment and max
1009	 *  segment size when creating the bus dma tags.  So here
1010	 *  we can safely just transfer each segment to its
1011	 *  associated PRP entry.
1012	 */
1013	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1014
1015	if (nseg == 2) {
1016		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1017	} else if (nseg > 2) {
1018		cur_nseg = 1;
1019		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1020		while (cur_nseg < nseg) {
1021			tr->prp[cur_nseg-1] =
1022			    htole64((uint64_t)seg[cur_nseg].ds_addr);
1023			cur_nseg++;
1024		}
1025	} else {
1026		/*
1027		 * prp2 should not be used by the controller
1028		 *  since there is only one segment, but set
1029		 *  to 0 just to be safe.
1030		 */
1031		tr->req->cmd.prp2 = 0;
1032	}
1033
1034	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1035	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1036	nvme_qpair_submit_tracker(tr->qpair, tr);
1037}
1038
1039static void
1040_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1041{
1042	struct nvme_tracker	*tr;
1043	int			err = 0;
1044
1045	mtx_assert(&qpair->lock, MA_OWNED);
1046
1047	tr = TAILQ_FIRST(&qpair->free_tr);
1048	req->qpair = qpair;
1049
1050	if (tr == NULL || !qpair->is_enabled) {
1051		/*
1052		 * No tracker is available, or the qpair is disabled due to
1053		 *  an in-progress controller-level reset or controller
1054		 *  failure.
1055		 */
1056
1057		if (qpair->ctrlr->is_failed) {
1058			/*
1059			 * The controller has failed.  Post the request to a
1060			 *  task where it will be aborted, so that we do not
1061			 *  invoke the request's callback in the context
1062			 *  of the submission.
1063			 */
1064			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1065		} else {
1066			/*
1067			 * Put the request on the qpair's request queue to be
1068			 *  processed when a tracker frees up via a command
1069			 *  completion or when the controller reset is
1070			 *  completed.
1071			 */
1072			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1073		}
1074		return;
1075	}
1076
1077	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1078	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1079	tr->req = req;
1080
1081	switch (req->type) {
1082	case NVME_REQUEST_VADDR:
1083		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1084		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1085		    req->payload_size, qpair->ctrlr->max_xfer_size));
1086		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1087		    tr->payload_dma_map, req->u.payload, req->payload_size,
1088		    nvme_payload_map, tr, 0);
1089		if (err != 0)
1090			nvme_printf(qpair->ctrlr,
1091			    "bus_dmamap_load returned 0x%x!\n", err);
1092		break;
1093	case NVME_REQUEST_NULL:
1094		nvme_qpair_submit_tracker(tr->qpair, tr);
1095		break;
1096	case NVME_REQUEST_BIO:
1097		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1098		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1099		    (intmax_t)req->u.bio->bio_bcount,
1100		    qpair->ctrlr->max_xfer_size));
1101		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1102		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1103		if (err != 0)
1104			nvme_printf(qpair->ctrlr,
1105			    "bus_dmamap_load_bio returned 0x%x!\n", err);
1106		break;
1107	case NVME_REQUEST_CCB:
1108		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1109		    tr->payload_dma_map, req->u.payload,
1110		    nvme_payload_map, tr, 0);
1111		if (err != 0)
1112			nvme_printf(qpair->ctrlr,
1113			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
1114		break;
1115	default:
1116		panic("unknown nvme request type 0x%x\n", req->type);
1117		break;
1118	}
1119
1120	if (err != 0) {
1121		/*
1122		 * The dmamap operation failed, so we manually fail the
1123		 *  tracker here with DATA_TRANSFER_ERROR status.
1124		 *
1125		 * nvme_qpair_manual_complete_tracker must not be called
1126		 *  with the qpair lock held.
1127		 */
1128		mtx_unlock(&qpair->lock);
1129		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1130		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1131		mtx_lock(&qpair->lock);
1132	}
1133}
1134
1135void
1136nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1137{
1138
1139	mtx_lock(&qpair->lock);
1140	_nvme_qpair_submit_request(qpair, req);
1141	mtx_unlock(&qpair->lock);
1142}
1143
1144static void
1145nvme_qpair_enable(struct nvme_qpair *qpair)
1146{
1147
1148	qpair->is_enabled = true;
1149}
1150
1151void
1152nvme_qpair_reset(struct nvme_qpair *qpair)
1153{
1154
1155	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1156
1157	/*
1158	 * First time through the completion queue, HW will set phase
1159	 *  bit on completions to 1.  So set this to 1 here, indicating
1160	 *  we're looking for a 1 to know which entries have completed.
1161	 *  we'll toggle the bit each time when the completion queue
1162	 *  rolls over.
1163	 */
1164	qpair->phase = 1;
1165
1166	memset(qpair->cmd, 0,
1167	    qpair->num_entries * sizeof(struct nvme_command));
1168	memset(qpair->cpl, 0,
1169	    qpair->num_entries * sizeof(struct nvme_completion));
1170}
1171
1172void
1173nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1174{
1175	struct nvme_tracker		*tr;
1176	struct nvme_tracker		*tr_temp;
1177
1178	/*
1179	 * Manually abort each outstanding admin command.  Do not retry
1180	 *  admin commands found here, since they will be left over from
1181	 *  a controller reset and its likely the context in which the
1182	 *  command was issued no longer applies.
1183	 */
1184	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1185		nvme_printf(qpair->ctrlr,
1186		    "aborting outstanding admin command\n");
1187		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1188		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1189	}
1190
1191	nvme_qpair_enable(qpair);
1192}
1193
1194void
1195nvme_io_qpair_enable(struct nvme_qpair *qpair)
1196{
1197	STAILQ_HEAD(, nvme_request)	temp;
1198	struct nvme_tracker		*tr;
1199	struct nvme_tracker		*tr_temp;
1200	struct nvme_request		*req;
1201
1202	/*
1203	 * Manually abort each outstanding I/O.  This normally results in a
1204	 *  retry, unless the retry count on the associated request has
1205	 *  reached its limit.
1206	 */
1207	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1208		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1209		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1210		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1211	}
1212
1213	mtx_lock(&qpair->lock);
1214
1215	nvme_qpair_enable(qpair);
1216
1217	STAILQ_INIT(&temp);
1218	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1219
1220	while (!STAILQ_EMPTY(&temp)) {
1221		req = STAILQ_FIRST(&temp);
1222		STAILQ_REMOVE_HEAD(&temp, stailq);
1223		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1224		nvme_qpair_print_command(qpair, &req->cmd);
1225		_nvme_qpair_submit_request(qpair, req);
1226	}
1227
1228	mtx_unlock(&qpair->lock);
1229}
1230
1231static void
1232nvme_qpair_disable(struct nvme_qpair *qpair)
1233{
1234	struct nvme_tracker *tr;
1235
1236	qpair->is_enabled = false;
1237	mtx_lock(&qpair->lock);
1238	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1239		callout_stop(&tr->timer);
1240	mtx_unlock(&qpair->lock);
1241}
1242
1243void
1244nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1245{
1246
1247	nvme_qpair_disable(qpair);
1248	nvme_admin_qpair_abort_aers(qpair);
1249}
1250
1251void
1252nvme_io_qpair_disable(struct nvme_qpair *qpair)
1253{
1254
1255	nvme_qpair_disable(qpair);
1256}
1257
1258void
1259nvme_qpair_fail(struct nvme_qpair *qpair)
1260{
1261	struct nvme_tracker		*tr;
1262	struct nvme_request		*req;
1263
1264	if (!mtx_initialized(&qpair->lock))
1265		return;
1266
1267	mtx_lock(&qpair->lock);
1268
1269	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1270		req = STAILQ_FIRST(&qpair->queued_req);
1271		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1272		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1273		mtx_unlock(&qpair->lock);
1274		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1275		    NVME_SC_ABORTED_BY_REQUEST);
1276		mtx_lock(&qpair->lock);
1277	}
1278
1279	/* Manually abort each outstanding I/O. */
1280	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1281		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1282		/*
1283		 * Do not remove the tracker.  The abort_tracker path will
1284		 *  do that for us.
1285		 */
1286		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1287		mtx_unlock(&qpair->lock);
1288		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1289		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1290		mtx_lock(&qpair->lock);
1291	}
1292
1293	mtx_unlock(&qpair->lock);
1294}
1295