1/*
2 * Copyright (c) 2017 Stormshield.
3 * Copyright (c) 2017 Semihalf.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include "opt_platform.h"
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/endian.h>
35#include <sys/mbuf.h>
36#include <sys/lock.h>
37#include <sys/mutex.h>
38#include <sys/kernel.h>
39#include <sys/module.h>
40#include <sys/socket.h>
41#include <sys/sysctl.h>
42#include <sys/smp.h>
43#include <sys/taskqueue.h>
44#ifdef MVNETA_KTR
45#include <sys/ktr.h>
46#endif
47
48#include <net/ethernet.h>
49#include <net/bpf.h>
50#include <net/if.h>
51#include <net/if_arp.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in_systm.h>
58#include <netinet/in.h>
59#include <netinet/ip.h>
60#include <netinet/tcp_lro.h>
61
62#include <sys/sockio.h>
63#include <sys/bus.h>
64#include <machine/bus.h>
65#include <sys/rman.h>
66#include <machine/resource.h>
67
68#include <dev/mii/mii.h>
69#include <dev/mii/miivar.h>
70
71#include <dev/ofw/openfirm.h>
72#include <dev/ofw/ofw_bus.h>
73#include <dev/ofw/ofw_bus_subr.h>
74
75#include <dev/mdio/mdio.h>
76
77#include <arm/mv/mvvar.h>
78
79#if !defined(__aarch64__)
80#include <arm/mv/mvreg.h>
81#include <arm/mv/mvwin.h>
82#endif
83
84#include "if_mvnetareg.h"
85#include "if_mvnetavar.h"
86
87#include "miibus_if.h"
88#include "mdio_if.h"
89
90#ifdef MVNETA_DEBUG
91#define	STATIC /* nothing */
92#else
93#define	STATIC static
94#endif
95
96#define	DASSERT(x) KASSERT((x), (#x))
97
98#define	A3700_TCLK_250MHZ		250000000
99
100/* Device Register Initialization */
101STATIC int mvneta_initreg(struct ifnet *);
102
103/* Descriptor Ring Control for each of queues */
104STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113STATIC int mvneta_dma_create(struct mvneta_softc *);
114
115/* Rx/Tx Queue Control */
116STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124
125/* Interrupt Handlers */
126STATIC void mvneta_disable_intr(struct mvneta_softc *);
127STATIC void mvneta_enable_intr(struct mvneta_softc *);
128STATIC void mvneta_rxtxth_intr(void *);
129STATIC int mvneta_misc_intr(struct mvneta_softc *);
130STATIC void mvneta_tick(void *);
131/* struct ifnet and mii callbacks*/
132STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134#ifdef MVNETA_MULTIQUEUE
135STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136#else /* !MVNETA_MULTIQUEUE */
137STATIC void mvneta_start(struct ifnet *);
138#endif
139STATIC void mvneta_qflush(struct ifnet *);
140STATIC void mvneta_tx_task(void *, int);
141STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142STATIC void mvneta_init(void *);
143STATIC void mvneta_init_locked(void *);
144STATIC void mvneta_stop(struct mvneta_softc *);
145STATIC void mvneta_stop_locked(struct mvneta_softc *);
146STATIC int mvneta_mediachange(struct ifnet *);
147STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148STATIC void mvneta_portup(struct mvneta_softc *);
149STATIC void mvneta_portdown(struct mvneta_softc *);
150
151/* Link State Notify */
152STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153STATIC int mvneta_update_media(struct mvneta_softc *, int);
154STATIC void mvneta_adjust_link(struct mvneta_softc *);
155STATIC void mvneta_update_eee(struct mvneta_softc *);
156STATIC void mvneta_update_fc(struct mvneta_softc *);
157STATIC void mvneta_link_isr(struct mvneta_softc *);
158STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159STATIC void mvneta_linkup(struct mvneta_softc *);
160STATIC void mvneta_linkdown(struct mvneta_softc *);
161STATIC void mvneta_linkreset(struct mvneta_softc *);
162
163/* Tx Subroutines */
164STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166    struct mvneta_tx_desc *, struct mbuf *);
167STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168STATIC void mvneta_tx_drain(struct mvneta_softc *);
169
170/* Rx Subroutines */
171STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175    struct mvneta_rx_desc *, struct mbuf *);
176STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177
178/* MAC address filter */
179STATIC void mvneta_filter_setup(struct mvneta_softc *);
180
181/* sysctl(9) */
182STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186
187/* MIB */
188STATIC void mvneta_clear_mib(struct mvneta_softc *);
189STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
190STATIC void mvneta_update_mib(struct mvneta_softc *);
191
192/* Switch */
193STATIC boolean_t mvneta_find_ethernet_prop_switch(phandle_t, phandle_t);
194STATIC boolean_t mvneta_has_switch(device_t);
195
196#define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
197#define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
198
199STATIC struct mtx mii_mutex;
200STATIC int mii_init = 0;
201
202/* Device */
203STATIC int mvneta_detach(device_t);
204/* MII */
205STATIC int mvneta_miibus_readreg(device_t, int, int);
206STATIC int mvneta_miibus_writereg(device_t, int, int, int);
207
208/* Clock */
209STATIC uint32_t mvneta_get_clk(void);
210
211static device_method_t mvneta_methods[] = {
212	/* Device interface */
213	DEVMETHOD(device_detach,	mvneta_detach),
214	/* MII interface */
215	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
216	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
217	/* MDIO interface */
218	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
219	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
220
221	/* End */
222	DEVMETHOD_END
223};
224
225DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
226
227DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
228DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
229MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
230MODULE_DEPEND(mvneta, ether, 1, 1, 1);
231MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
232MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
233
234/*
235 * List of MIB register and names
236 */
237enum mvneta_mib_idx
238{
239	MVNETA_MIB_RX_GOOD_OCT_IDX,
240	MVNETA_MIB_RX_BAD_OCT_IDX,
241	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
242	MVNETA_MIB_RX_GOOD_FRAME_IDX,
243	MVNETA_MIB_RX_BAD_FRAME_IDX,
244	MVNETA_MIB_RX_BCAST_FRAME_IDX,
245	MVNETA_MIB_RX_MCAST_FRAME_IDX,
246	MVNETA_MIB_RX_FRAME64_OCT_IDX,
247	MVNETA_MIB_RX_FRAME127_OCT_IDX,
248	MVNETA_MIB_RX_FRAME255_OCT_IDX,
249	MVNETA_MIB_RX_FRAME511_OCT_IDX,
250	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
251	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
252	MVNETA_MIB_TX_GOOD_OCT_IDX,
253	MVNETA_MIB_TX_GOOD_FRAME_IDX,
254	MVNETA_MIB_TX_EXCES_COL_IDX,
255	MVNETA_MIB_TX_MCAST_FRAME_IDX,
256	MVNETA_MIB_TX_BCAST_FRAME_IDX,
257	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
258	MVNETA_MIB_FC_SENT_IDX,
259	MVNETA_MIB_FC_GOOD_IDX,
260	MVNETA_MIB_FC_BAD_IDX,
261	MVNETA_MIB_PKT_UNDERSIZE_IDX,
262	MVNETA_MIB_PKT_FRAGMENT_IDX,
263	MVNETA_MIB_PKT_OVERSIZE_IDX,
264	MVNETA_MIB_PKT_JABBER_IDX,
265	MVNETA_MIB_MAC_RX_ERR_IDX,
266	MVNETA_MIB_MAC_CRC_ERR_IDX,
267	MVNETA_MIB_MAC_COL_IDX,
268	MVNETA_MIB_MAC_LATE_COL_IDX,
269};
270
271STATIC struct mvneta_mib_def {
272	uint32_t regnum;
273	int reg64;
274	const char *sysctl_name;
275	const char *desc;
276} mvneta_mib_list[] = {
277	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
278	    "rx_good_oct", "Good Octets Rx"},
279	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
280	    "rx_bad_oct", "Bad  Octets Rx"},
281	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
282	    "tx_mac_err", "MAC Transmit Error"},
283	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
284	    "rx_good_frame", "Good Frames Rx"},
285	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
286	    "rx_bad_frame", "Bad Frames Rx"},
287	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
288	    "rx_bcast_frame", "Broadcast Frames Rx"},
289	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
290	    "rx_mcast_frame", "Multicast Frames Rx"},
291	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
292	    "rx_frame_1_64", "Frame Size    1 -   64"},
293	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
294	    "rx_frame_65_127", "Frame Size   65 -  127"},
295	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
296	    "rx_frame_128_255", "Frame Size  128 -  255"},
297	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
298	    "rx_frame_256_511", "Frame Size  256 -  511"},
299	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
300	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
301	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
302	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
303	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
304	    "tx_good_oct", "Good Octets Tx"},
305	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
306	    "tx_good_frame", "Good Frames Tx"},
307	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
308	    "tx_exces_collision", "Excessive Collision"},
309	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
310	    "tx_mcast_frame", "Multicast Frames Tx"},
311	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
312	    "tx_bcast_frame", "Broadcast Frames Tx"},
313	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
314	    "tx_mac_ctl_err", "Unknown MAC Control"},
315	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
316	    "fc_tx", "Flow Control Tx"},
317	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
318	    "fc_rx_good", "Good Flow Control Rx"},
319	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
320	    "fc_rx_bad", "Bad Flow Control Rx"},
321	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
322	    "pkt_undersize", "Undersized Packets Rx"},
323	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
324	    "pkt_fragment", "Fragmented Packets Rx"},
325	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
326	    "pkt_oversize", "Oversized Packets Rx"},
327	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
328	    "pkt_jabber", "Jabber Packets Rx"},
329	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
330	    "mac_rx_err", "MAC Rx Errors"},
331	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
332	    "mac_crc_err", "MAC CRC Errors"},
333	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
334	    "mac_collision", "MAC Collision"},
335	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
336	    "mac_late_collision", "MAC Late Collision"},
337};
338
339static struct resource_spec res_spec[] = {
340	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
341	{ SYS_RES_IRQ, 0, RF_ACTIVE },
342	{ -1, 0}
343};
344
345static struct {
346	driver_intr_t *handler;
347	char * description;
348} mvneta_intrs[] = {
349	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
350};
351
352STATIC uint32_t
353mvneta_get_clk()
354{
355#if defined(__aarch64__)
356	return (A3700_TCLK_250MHZ);
357#else
358	return (get_tclk());
359#endif
360}
361
362static int
363mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
364{
365	unsigned int mac_h;
366	unsigned int mac_l;
367
368	mac_l = (addr[4] << 8) | (addr[5]);
369	mac_h = (addr[0] << 24) | (addr[1] << 16) |
370	    (addr[2] << 8) | (addr[3] << 0);
371
372	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
373	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
374	return (0);
375}
376
377static int
378mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
379{
380	uint32_t mac_l, mac_h;
381
382#ifdef FDT
383	if (mvneta_fdt_mac_address(sc, addr) == 0)
384		return (0);
385#endif
386	/*
387	 * Fall back -- use the currently programmed address.
388	 */
389	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
390	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
391	if (mac_l == 0 && mac_h == 0) {
392		/*
393		 * Generate pseudo-random MAC.
394		 * Set lower part to random number | unit number.
395		 */
396		mac_l = arc4random() & ~0xff;
397		mac_l |= device_get_unit(sc->dev) & 0xff;
398		mac_h = arc4random();
399		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
400		if (bootverbose) {
401			device_printf(sc->dev,
402			    "Could not acquire MAC address. "
403			    "Using randomized one.\n");
404		}
405	}
406
407	addr[0] = (mac_h & 0xff000000) >> 24;
408	addr[1] = (mac_h & 0x00ff0000) >> 16;
409	addr[2] = (mac_h & 0x0000ff00) >> 8;
410	addr[3] = (mac_h & 0x000000ff);
411	addr[4] = (mac_l & 0x0000ff00) >> 8;
412	addr[5] = (mac_l & 0x000000ff);
413	return (0);
414}
415
416STATIC boolean_t
417mvneta_find_ethernet_prop_switch(phandle_t ethernet, phandle_t node)
418{
419	boolean_t ret;
420	phandle_t child, switch_eth_handle, switch_eth;
421
422	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
423		if (OF_getencprop(child, "ethernet", (void*)&switch_eth_handle,
424		    sizeof(switch_eth_handle)) > 0) {
425			if (switch_eth_handle > 0) {
426				switch_eth = OF_node_from_xref(
427				    switch_eth_handle);
428
429				if (switch_eth == ethernet)
430					return (true);
431			}
432		}
433
434		ret = mvneta_find_ethernet_prop_switch(ethernet, child);
435		if (ret != 0)
436			return (ret);
437	}
438
439	return (false);
440}
441
442STATIC boolean_t
443mvneta_has_switch(device_t self)
444{
445	phandle_t node;
446
447	node = ofw_bus_get_node(self);
448
449	return mvneta_find_ethernet_prop_switch(node, OF_finddevice("/"));
450}
451
452STATIC int
453mvneta_dma_create(struct mvneta_softc *sc)
454{
455	size_t maxsize, maxsegsz;
456	size_t q;
457	int error;
458
459	/*
460	 * Create Tx DMA
461	 */
462	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
463
464	error = bus_dma_tag_create(
465	    bus_get_dma_tag(sc->dev),		/* parent */
466	    16, 0,                              /* alignment, boundary */
467	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
468	    BUS_SPACE_MAXADDR,                  /* highaddr */
469	    NULL, NULL,                         /* filtfunc, filtfuncarg */
470	    maxsize,				/* maxsize */
471	    1,					/* nsegments */
472	    maxsegsz,				/* maxsegsz */
473	    0,					/* flags */
474	    NULL, NULL,				/* lockfunc, lockfuncarg */
475	    &sc->tx_dtag);			/* dmat */
476	if (error != 0) {
477		device_printf(sc->dev,
478		    "Failed to create DMA tag for Tx descriptors.\n");
479		goto fail;
480	}
481	error = bus_dma_tag_create(
482	    bus_get_dma_tag(sc->dev),		/* parent */
483	    1, 0,				/* alignment, boundary */
484	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
485	    BUS_SPACE_MAXADDR,			/* highaddr */
486	    NULL, NULL,				/* filtfunc, filtfuncarg */
487	    MVNETA_MAX_FRAME,			/* maxsize */
488	    MVNETA_TX_SEGLIMIT,			/* nsegments */
489	    MVNETA_MAX_FRAME,			/* maxsegsz */
490	    BUS_DMA_ALLOCNOW,			/* flags */
491	    NULL, NULL,				/* lockfunc, lockfuncarg */
492	    &sc->txmbuf_dtag);
493	if (error != 0) {
494		device_printf(sc->dev,
495		    "Failed to create DMA tag for Tx mbufs.\n");
496		goto fail;
497	}
498
499	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
500		error = mvneta_ring_alloc_tx_queue(sc, q);
501		if (error != 0) {
502			device_printf(sc->dev,
503			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
504			goto fail;
505		}
506	}
507
508	/*
509	 * Create Rx DMA.
510	 */
511	/* Create tag for Rx descripors */
512	error = bus_dma_tag_create(
513	    bus_get_dma_tag(sc->dev),		/* parent */
514	    32, 0,                              /* alignment, boundary */
515	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
516	    BUS_SPACE_MAXADDR,                  /* highaddr */
517	    NULL, NULL,                         /* filtfunc, filtfuncarg */
518	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
519	    1,					/* nsegments */
520	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
521	    0,					/* flags */
522	    NULL, NULL,				/* lockfunc, lockfuncarg */
523	    &sc->rx_dtag);			/* dmat */
524	if (error != 0) {
525		device_printf(sc->dev,
526		    "Failed to create DMA tag for Rx descriptors.\n");
527		goto fail;
528	}
529
530	/* Create tag for Rx buffers */
531	error = bus_dma_tag_create(
532	    bus_get_dma_tag(sc->dev),		/* parent */
533	    32, 0,				/* alignment, boundary */
534	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
535	    BUS_SPACE_MAXADDR,			/* highaddr */
536	    NULL, NULL,				/* filtfunc, filtfuncarg */
537	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
538	    MVNETA_MAX_FRAME,			/* maxsegsz */
539	    0,					/* flags */
540	    NULL, NULL,				/* lockfunc, lockfuncarg */
541	    &sc->rxbuf_dtag);			/* dmat */
542	if (error != 0) {
543		device_printf(sc->dev,
544		    "Failed to create DMA tag for Rx buffers.\n");
545		goto fail;
546	}
547
548	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
549		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
550			device_printf(sc->dev,
551			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
552			goto fail;
553		}
554	}
555
556	return (0);
557fail:
558	mvneta_detach(sc->dev);
559
560	return (error);
561}
562
563/* ARGSUSED */
564int
565mvneta_attach(device_t self)
566{
567	struct mvneta_softc *sc;
568	struct ifnet *ifp;
569	device_t child;
570	int ifm_target;
571	int q, error;
572#if !defined(__aarch64__)
573	uint32_t reg;
574#endif
575
576	sc = device_get_softc(self);
577	sc->dev = self;
578
579	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
580
581	error = bus_alloc_resources(self, res_spec, sc->res);
582	if (error) {
583		device_printf(self, "could not allocate resources\n");
584		return (ENXIO);
585	}
586
587	sc->version = MVNETA_READ(sc, MVNETA_PV);
588	device_printf(self, "version is %x\n", sc->version);
589	callout_init(&sc->tick_ch, 0);
590
591	/*
592	 * make sure DMA engines are in reset state
593	 */
594	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
595	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
596
597#if !defined(__aarch64__)
598	/*
599	 * Disable port snoop for buffers and descriptors
600	 * to avoid L2 caching of both without DRAM copy.
601	 * Obtain coherency settings from the first MBUS
602	 * window attribute.
603	 */
604	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
605		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
606		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
607		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
608		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
609	}
610#endif
611
612	/*
613	 * MAC address
614	 */
615	if (mvneta_get_mac_address(sc, sc->enaddr)) {
616		device_printf(self, "no mac address.\n");
617		return (ENXIO);
618	}
619	mvneta_set_mac_address(sc, sc->enaddr);
620
621	mvneta_disable_intr(sc);
622
623	/* Allocate network interface */
624	ifp = sc->ifp = if_alloc(IFT_ETHER);
625	if (ifp == NULL) {
626		device_printf(self, "if_alloc() failed\n");
627		mvneta_detach(self);
628		return (ENOMEM);
629	}
630	if_initname(ifp, device_get_name(self), device_get_unit(self));
631
632	/*
633	 * We can support 802.1Q VLAN-sized frames and jumbo
634	 * Ethernet frames.
635	 */
636	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
637
638	ifp->if_softc = sc;
639	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
640#ifdef MVNETA_MULTIQUEUE
641	ifp->if_transmit = mvneta_transmit;
642	ifp->if_qflush = mvneta_qflush;
643#else /* !MVNETA_MULTIQUEUE */
644	ifp->if_start = mvneta_start;
645	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
646	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
647	IFQ_SET_READY(&ifp->if_snd);
648#endif
649	ifp->if_init = mvneta_init;
650	ifp->if_ioctl = mvneta_ioctl;
651
652	/*
653	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
654	 */
655	ifp->if_capabilities |= IFCAP_HWCSUM;
656
657	/*
658	 * As VLAN hardware tagging is not supported
659	 * but is necessary to perform VLAN hardware checksums,
660	 * it is done in the driver
661	 */
662	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
663
664	/*
665	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
666	 */
667	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
668	ifp->if_capenable = ifp->if_capabilities;
669
670	/*
671	 * Disabled option(s):
672	 * - Support for Large Receive Offload
673	 */
674	ifp->if_capabilities |= IFCAP_LRO;
675
676	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
677
678	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
679
680	/*
681	 * Device DMA Buffer allocation.
682	 * Handles resource deallocation in case of failure.
683	 */
684	error = mvneta_dma_create(sc);
685	if (error != 0) {
686		mvneta_detach(self);
687		return (error);
688	}
689
690	/* Initialize queues */
691	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
692		error = mvneta_ring_init_tx_queue(sc, q);
693		if (error != 0) {
694			mvneta_detach(self);
695			return (error);
696		}
697	}
698
699	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
700		error = mvneta_ring_init_rx_queue(sc, q);
701		if (error != 0) {
702			mvneta_detach(self);
703			return (error);
704		}
705	}
706
707	ether_ifattach(ifp, sc->enaddr);
708
709	/*
710	 * Enable DMA engines and Initialize Device Registers.
711	 */
712	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
713	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
714	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
715	mvneta_sc_lock(sc);
716	mvneta_filter_setup(sc);
717	mvneta_sc_unlock(sc);
718	mvneta_initreg(ifp);
719
720	/*
721	 * Now MAC is working, setup MII.
722	 */
723	if (mii_init == 0) {
724		/*
725		 * MII bus is shared by all MACs and all PHYs in SoC.
726		 * serializing the bus access should be safe.
727		 */
728		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
729		mii_init = 1;
730	}
731
732	/* Attach PHY(s) */
733	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
734		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
735		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
736		    MII_OFFSET_ANY, 0);
737		if (error != 0) {
738			if (bootverbose) {
739				device_printf(self,
740				    "MII attach failed, error: %d\n", error);
741			}
742			ether_ifdetach(sc->ifp);
743			mvneta_detach(self);
744			return (error);
745		}
746		sc->mii = device_get_softc(sc->miibus);
747		sc->phy_attached = 1;
748
749		/* Disable auto-negotiation in MAC - rely on PHY layer */
750		mvneta_update_autoneg(sc, FALSE);
751	} else if (sc->use_inband_status == TRUE) {
752		/* In-band link status */
753		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
754		    mvneta_mediastatus);
755
756		/* Configure media */
757		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
758		    0, NULL);
759		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
760		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
761		    0, NULL);
762		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
763		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
764		    0, NULL);
765		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
766		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
767
768		/* Enable auto-negotiation */
769		mvneta_update_autoneg(sc, TRUE);
770
771		mvneta_sc_lock(sc);
772		if (MVNETA_IS_LINKUP(sc))
773			mvneta_linkup(sc);
774		else
775			mvneta_linkdown(sc);
776		mvneta_sc_unlock(sc);
777
778	} else {
779		/* Fixed-link, use predefined values */
780		mvneta_update_autoneg(sc, FALSE);
781		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
782		    mvneta_mediastatus);
783
784		ifm_target = IFM_ETHER;
785		switch (sc->phy_speed) {
786		case 2500:
787			if (sc->phy_mode != MVNETA_PHY_SGMII &&
788			    sc->phy_mode != MVNETA_PHY_QSGMII) {
789				device_printf(self,
790				    "2.5G speed can work only in (Q)SGMII mode\n");
791				ether_ifdetach(sc->ifp);
792				mvneta_detach(self);
793				return (ENXIO);
794			}
795			ifm_target |= IFM_2500_T;
796			break;
797		case 1000:
798			ifm_target |= IFM_1000_T;
799			break;
800		case 100:
801			ifm_target |= IFM_100_TX;
802			break;
803		case 10:
804			ifm_target |= IFM_10_T;
805			break;
806		default:
807			ether_ifdetach(sc->ifp);
808			mvneta_detach(self);
809			return (ENXIO);
810		}
811
812		if (sc->phy_fdx)
813			ifm_target |= IFM_FDX;
814		else
815			ifm_target |= IFM_HDX;
816
817		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
818		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
819		if_link_state_change(sc->ifp, LINK_STATE_UP);
820
821		if (mvneta_has_switch(self)) {
822			if (bootverbose)
823				device_printf(self, "This device is attached to a switch\n");
824			child = device_add_child(sc->dev, "mdio", -1);
825			if (child == NULL) {
826				ether_ifdetach(sc->ifp);
827				mvneta_detach(self);
828				return (ENXIO);
829			}
830			bus_generic_attach(sc->dev);
831			bus_generic_attach(child);
832		}
833
834		/* Configure MAC media */
835		mvneta_update_media(sc, ifm_target);
836	}
837
838	sysctl_mvneta_init(sc);
839
840	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
841
842	error = bus_setup_intr(self, sc->res[1],
843	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
844	    &sc->ih_cookie[0]);
845	if (error) {
846		device_printf(self, "could not setup %s\n",
847		    mvneta_intrs[0].description);
848		ether_ifdetach(sc->ifp);
849		mvneta_detach(self);
850		return (error);
851	}
852
853	return (0);
854}
855
856STATIC int
857mvneta_detach(device_t dev)
858{
859	struct mvneta_softc *sc;
860	int q;
861
862	sc = device_get_softc(dev);
863
864	mvneta_stop(sc);
865	/* Detach network interface */
866	if (sc->ifp)
867		if_free(sc->ifp);
868
869	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
870		mvneta_ring_dealloc_rx_queue(sc, q);
871	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
872		mvneta_ring_dealloc_tx_queue(sc, q);
873
874	if (sc->tx_dtag != NULL)
875		bus_dma_tag_destroy(sc->tx_dtag);
876	if (sc->rx_dtag != NULL)
877		bus_dma_tag_destroy(sc->rx_dtag);
878	if (sc->txmbuf_dtag != NULL)
879		bus_dma_tag_destroy(sc->txmbuf_dtag);
880	if (sc->rxbuf_dtag != NULL)
881		bus_dma_tag_destroy(sc->rxbuf_dtag);
882
883	bus_release_resources(dev, res_spec, sc->res);
884	return (0);
885}
886
887/*
888 * MII
889 */
890STATIC int
891mvneta_miibus_readreg(device_t dev, int phy, int reg)
892{
893	struct mvneta_softc *sc;
894	struct ifnet *ifp;
895	uint32_t smi, val;
896	int i;
897
898	sc = device_get_softc(dev);
899	ifp = sc->ifp;
900
901	mtx_lock(&mii_mutex);
902
903	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
904		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
905			break;
906		DELAY(1);
907	}
908	if (i == MVNETA_PHY_TIMEOUT) {
909		if_printf(ifp, "SMI busy timeout\n");
910		mtx_unlock(&mii_mutex);
911		return (-1);
912	}
913
914	smi = MVNETA_SMI_PHYAD(phy) |
915	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
916	MVNETA_WRITE(sc, MVNETA_SMI, smi);
917
918	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
919		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
920			break;
921		DELAY(1);
922	}
923
924	if (i == MVNETA_PHY_TIMEOUT) {
925		if_printf(ifp, "SMI busy timeout\n");
926		mtx_unlock(&mii_mutex);
927		return (-1);
928	}
929	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
930		smi = MVNETA_READ(sc, MVNETA_SMI);
931		if (smi & MVNETA_SMI_READVALID)
932			break;
933		DELAY(1);
934	}
935
936	if (i == MVNETA_PHY_TIMEOUT) {
937		if_printf(ifp, "SMI busy timeout\n");
938		mtx_unlock(&mii_mutex);
939		return (-1);
940	}
941
942	mtx_unlock(&mii_mutex);
943
944#ifdef MVNETA_KTR
945	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
946	    MVNETA_PHY_TIMEOUT);
947#endif
948
949	val = smi & MVNETA_SMI_DATA_MASK;
950
951#ifdef MVNETA_KTR
952	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
953	    reg, val);
954#endif
955	return (val);
956}
957
958STATIC int
959mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
960{
961	struct mvneta_softc *sc;
962	struct ifnet *ifp;
963	uint32_t smi;
964	int i;
965
966	sc = device_get_softc(dev);
967	ifp = sc->ifp;
968#ifdef MVNETA_KTR
969	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
970	    phy, reg, val);
971#endif
972
973	mtx_lock(&mii_mutex);
974
975	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
976		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
977			break;
978		DELAY(1);
979	}
980	if (i == MVNETA_PHY_TIMEOUT) {
981		if_printf(ifp, "SMI busy timeout\n");
982		mtx_unlock(&mii_mutex);
983		return (0);
984	}
985
986	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
987	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
988	MVNETA_WRITE(sc, MVNETA_SMI, smi);
989
990	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
991		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
992			break;
993		DELAY(1);
994	}
995
996	mtx_unlock(&mii_mutex);
997
998	if (i == MVNETA_PHY_TIMEOUT)
999		if_printf(ifp, "phy write timed out\n");
1000
1001	return (0);
1002}
1003
1004STATIC void
1005mvneta_portup(struct mvneta_softc *sc)
1006{
1007	int q;
1008
1009	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1010		mvneta_rx_lockq(sc, q);
1011		mvneta_rx_queue_enable(sc->ifp, q);
1012		mvneta_rx_unlockq(sc, q);
1013	}
1014
1015	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1016		mvneta_tx_lockq(sc, q);
1017		mvneta_tx_queue_enable(sc->ifp, q);
1018		mvneta_tx_unlockq(sc, q);
1019	}
1020
1021}
1022
1023STATIC void
1024mvneta_portdown(struct mvneta_softc *sc)
1025{
1026	struct mvneta_rx_ring *rx;
1027	struct mvneta_tx_ring *tx;
1028	int q, cnt;
1029	uint32_t reg;
1030
1031	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1032		rx = MVNETA_RX_RING(sc, q);
1033		mvneta_rx_lockq(sc, q);
1034		rx->queue_status = MVNETA_QUEUE_DISABLED;
1035		mvneta_rx_unlockq(sc, q);
1036	}
1037
1038	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1039		tx = MVNETA_TX_RING(sc, q);
1040		mvneta_tx_lockq(sc, q);
1041		tx->queue_status = MVNETA_QUEUE_DISABLED;
1042		mvneta_tx_unlockq(sc, q);
1043	}
1044
1045	/* Wait for all Rx activity to terminate. */
1046	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1047	reg = MVNETA_RQC_DIS(reg);
1048	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1049	cnt = 0;
1050	do {
1051		if (cnt >= RX_DISABLE_TIMEOUT) {
1052			if_printf(sc->ifp,
1053			    "timeout for RX stopped. rqc 0x%x\n", reg);
1054			break;
1055		}
1056		cnt++;
1057		reg = MVNETA_READ(sc, MVNETA_RQC);
1058	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1059
1060	/* Wait for all Tx activity to terminate. */
1061	reg  = MVNETA_READ(sc, MVNETA_PIE);
1062	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1063	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1064
1065	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1066	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1067	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1068
1069	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1070	reg = MVNETA_TQC_DIS(reg);
1071	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1072	cnt = 0;
1073	do {
1074		if (cnt >= TX_DISABLE_TIMEOUT) {
1075			if_printf(sc->ifp,
1076			    "timeout for TX stopped. tqc 0x%x\n", reg);
1077			break;
1078		}
1079		cnt++;
1080		reg = MVNETA_READ(sc, MVNETA_TQC);
1081	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1082
1083	/* Wait for all Tx FIFO is empty */
1084	cnt = 0;
1085	do {
1086		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1087			if_printf(sc->ifp,
1088			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1089			break;
1090		}
1091		cnt++;
1092		reg = MVNETA_READ(sc, MVNETA_PS0);
1093	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1094	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1095}
1096
1097/*
1098 * Device Register Initialization
1099 *  reset device registers to device driver default value.
1100 *  the device is not enabled here.
1101 */
1102STATIC int
1103mvneta_initreg(struct ifnet *ifp)
1104{
1105	struct mvneta_softc *sc;
1106	int q;
1107	uint32_t reg;
1108
1109	sc = ifp->if_softc;
1110#ifdef MVNETA_KTR
1111	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1112#endif
1113
1114	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1115	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1116	/* Enable mbus retry. */
1117	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1118
1119	/* Init TX/RX Queue Registers */
1120	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1121		mvneta_rx_lockq(sc, q);
1122		if (mvneta_rx_queue_init(ifp, q) != 0) {
1123			device_printf(sc->dev,
1124			    "initialization failed: cannot initialize queue\n");
1125			mvneta_rx_unlockq(sc, q);
1126			return (ENOBUFS);
1127		}
1128		mvneta_rx_unlockq(sc, q);
1129	}
1130	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1131		mvneta_tx_lockq(sc, q);
1132		if (mvneta_tx_queue_init(ifp, q) != 0) {
1133			device_printf(sc->dev,
1134			    "initialization failed: cannot initialize queue\n");
1135			mvneta_tx_unlockq(sc, q);
1136			return (ENOBUFS);
1137		}
1138		mvneta_tx_unlockq(sc, q);
1139	}
1140
1141	/*
1142	 * Ethernet Unit Control - disable automatic PHY management by HW.
1143	 * In case the port uses SMI-controlled PHY, poll its status with
1144	 * mii_tick() and update MAC settings accordingly.
1145	 */
1146	reg = MVNETA_READ(sc, MVNETA_EUC);
1147	reg &= ~MVNETA_EUC_POLLING;
1148	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1149
1150	/* EEE: Low Power Idle */
1151	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1152	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1153	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1154
1155	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1156	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1157
1158	reg = MVNETA_LPIC2_MUSTSET;
1159	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1160
1161	/* Port MAC Control set 0 */
1162	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1163	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1164	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
1165	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1166
1167	/* Port MAC Control set 2 */
1168	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1169	switch (sc->phy_mode) {
1170	case MVNETA_PHY_QSGMII:
1171		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1172		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1173		break;
1174	case MVNETA_PHY_SGMII:
1175		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1176		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1177		break;
1178	case MVNETA_PHY_RGMII:
1179	case MVNETA_PHY_RGMII_ID:
1180		reg |= MVNETA_PMACC2_RGMIIEN;
1181		break;
1182	}
1183	reg |= MVNETA_PMACC2_MUSTSET;
1184	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1185	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1186
1187	/* Port Configuration Extended: enable Tx CRC generation */
1188	reg = MVNETA_READ(sc, MVNETA_PXCX);
1189	reg &= ~MVNETA_PXCX_TXCRCDIS;
1190	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1191
1192	/* clear MIB counter registers(clear by read) */
1193	mvneta_sc_lock(sc);
1194	mvneta_clear_mib(sc);
1195	mvneta_sc_unlock(sc);
1196
1197	/* Set SDC register except IPGINT bits */
1198	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1199	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1200	reg |= MVNETA_SDC_BLMR;
1201	reg |= MVNETA_SDC_BLMT;
1202	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1203
1204	return (0);
1205}
1206
1207STATIC void
1208mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1209{
1210
1211	if (error != 0)
1212		return;
1213	*(bus_addr_t *)arg = segs->ds_addr;
1214}
1215
1216STATIC int
1217mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1218{
1219	struct mvneta_rx_ring *rx;
1220	struct mvneta_buf *rxbuf;
1221	bus_dmamap_t dmap;
1222	int i, error;
1223
1224	if (q >= MVNETA_RX_QNUM_MAX)
1225		return (EINVAL);
1226
1227	rx = MVNETA_RX_RING(sc, q);
1228	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1229	/* Allocate DMA memory for Rx descriptors */
1230	error = bus_dmamem_alloc(sc->rx_dtag,
1231	    (void**)&(rx->desc),
1232	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1233	    &rx->desc_map);
1234	if (error != 0 || rx->desc == NULL)
1235		goto fail;
1236	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1237	    rx->desc,
1238	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1239	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1240	if (error != 0)
1241		goto fail;
1242
1243	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1244		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1245		if (error != 0) {
1246			device_printf(sc->dev,
1247			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1248			goto fail;
1249		}
1250		rxbuf = &rx->rxbuf[i];
1251		rxbuf->dmap = dmap;
1252		rxbuf->m = NULL;
1253	}
1254
1255	return (0);
1256fail:
1257	mvneta_ring_dealloc_rx_queue(sc, q);
1258	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1259	return (error);
1260}
1261
1262STATIC int
1263mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1264{
1265	struct mvneta_tx_ring *tx;
1266	int error;
1267
1268	if (q >= MVNETA_TX_QNUM_MAX)
1269		return (EINVAL);
1270	tx = MVNETA_TX_RING(sc, q);
1271	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1272	error = bus_dmamem_alloc(sc->tx_dtag,
1273	    (void**)&(tx->desc),
1274	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1275	    &tx->desc_map);
1276	if (error != 0 || tx->desc == NULL)
1277		goto fail;
1278	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1279	    tx->desc,
1280	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1281	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1282	if (error != 0)
1283		goto fail;
1284
1285#ifdef MVNETA_MULTIQUEUE
1286	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1287	    &tx->ring_mtx);
1288	if (tx->br == NULL) {
1289		device_printf(sc->dev,
1290		    "Could not setup buffer ring for TxQ(%d)\n", q);
1291		error = ENOMEM;
1292		goto fail;
1293	}
1294#endif
1295
1296	return (0);
1297fail:
1298	mvneta_ring_dealloc_tx_queue(sc, q);
1299	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1300	return (error);
1301}
1302
1303STATIC void
1304mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1305{
1306	struct mvneta_tx_ring *tx;
1307	struct mvneta_buf *txbuf;
1308	void *kva;
1309	int error;
1310	int i;
1311
1312	if (q >= MVNETA_TX_QNUM_MAX)
1313		return;
1314	tx = MVNETA_TX_RING(sc, q);
1315
1316	if (tx->taskq != NULL) {
1317		/* Remove task */
1318		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1319			taskqueue_drain(tx->taskq, &tx->task);
1320	}
1321#ifdef MVNETA_MULTIQUEUE
1322	if (tx->br != NULL)
1323		drbr_free(tx->br, M_DEVBUF);
1324#endif
1325
1326	if (sc->txmbuf_dtag != NULL) {
1327		if (mtx_name(&tx->ring_mtx) != NULL) {
1328			/*
1329			 * It is assumed that maps are being loaded after mutex
1330			 * is initialized. Therefore we can skip unloading maps
1331			 * when mutex is empty.
1332			 */
1333			mvneta_tx_lockq(sc, q);
1334			mvneta_ring_flush_tx_queue(sc, q);
1335			mvneta_tx_unlockq(sc, q);
1336		}
1337		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1338			txbuf = &tx->txbuf[i];
1339			if (txbuf->dmap != NULL) {
1340				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1341				    txbuf->dmap);
1342				if (error != 0) {
1343					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1344					    __func__, q, i);
1345				}
1346			}
1347		}
1348	}
1349
1350	if (tx->desc_pa != 0)
1351		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1352
1353	kva = (void *)tx->desc;
1354	if (kva != NULL)
1355		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1356
1357	if (mtx_name(&tx->ring_mtx) != NULL)
1358		mtx_destroy(&tx->ring_mtx);
1359
1360	memset(tx, 0, sizeof(*tx));
1361}
1362
1363STATIC void
1364mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1365{
1366	struct mvneta_rx_ring *rx;
1367	struct lro_ctrl	*lro;
1368	void *kva;
1369
1370	if (q >= MVNETA_RX_QNUM_MAX)
1371		return;
1372
1373	rx = MVNETA_RX_RING(sc, q);
1374
1375	mvneta_ring_flush_rx_queue(sc, q);
1376
1377	if (rx->desc_pa != 0)
1378		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1379
1380	kva = (void *)rx->desc;
1381	if (kva != NULL)
1382		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1383
1384	lro = &rx->lro;
1385	tcp_lro_free(lro);
1386
1387	if (mtx_name(&rx->ring_mtx) != NULL)
1388		mtx_destroy(&rx->ring_mtx);
1389
1390	memset(rx, 0, sizeof(*rx));
1391}
1392
1393STATIC int
1394mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1395{
1396	struct mvneta_rx_ring *rx;
1397	struct lro_ctrl	*lro;
1398	int error;
1399
1400	if (q >= MVNETA_RX_QNUM_MAX)
1401		return (0);
1402
1403	rx = MVNETA_RX_RING(sc, q);
1404	rx->dma = rx->cpu = 0;
1405	rx->queue_th_received = MVNETA_RXTH_COUNT;
1406	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1407
1408	/* Initialize LRO */
1409	rx->lro_enabled = FALSE;
1410	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1411		lro = &rx->lro;
1412		error = tcp_lro_init(lro);
1413		if (error != 0)
1414			device_printf(sc->dev, "LRO Initialization failed!\n");
1415		else {
1416			rx->lro_enabled = TRUE;
1417			lro->ifp = sc->ifp;
1418		}
1419	}
1420
1421	return (0);
1422}
1423
1424STATIC int
1425mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1426{
1427	struct mvneta_tx_ring *tx;
1428	struct mvneta_buf *txbuf;
1429	int i, error;
1430
1431	if (q >= MVNETA_TX_QNUM_MAX)
1432		return (0);
1433
1434	tx = MVNETA_TX_RING(sc, q);
1435
1436	/* Tx handle */
1437	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1438		txbuf = &tx->txbuf[i];
1439		txbuf->m = NULL;
1440		/* Tx handle needs DMA map for busdma_load_mbuf() */
1441		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1442		    &txbuf->dmap);
1443		if (error != 0) {
1444			device_printf(sc->dev,
1445			    "can't create dma map (tx ring %d)\n", i);
1446			return (error);
1447		}
1448	}
1449	tx->dma = tx->cpu = 0;
1450	tx->used = 0;
1451	tx->drv_error = 0;
1452	tx->queue_status = MVNETA_QUEUE_DISABLED;
1453	tx->queue_hung = FALSE;
1454
1455	tx->ifp = sc->ifp;
1456	tx->qidx = q;
1457	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1458	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1459	    taskqueue_thread_enqueue, &tx->taskq);
1460	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1461	    device_get_nameunit(sc->dev), q);
1462
1463	return (0);
1464}
1465
1466STATIC void
1467mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1468{
1469	struct mvneta_tx_ring *tx;
1470	struct mvneta_buf *txbuf;
1471	int i;
1472
1473	tx = MVNETA_TX_RING(sc, q);
1474	KASSERT_TX_MTX(sc, q);
1475
1476	/* Tx handle */
1477	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1478		txbuf = &tx->txbuf[i];
1479		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1480		if (txbuf->m != NULL) {
1481			m_freem(txbuf->m);
1482			txbuf->m = NULL;
1483		}
1484	}
1485	tx->dma = tx->cpu = 0;
1486	tx->used = 0;
1487}
1488
1489STATIC void
1490mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1491{
1492	struct mvneta_rx_ring *rx;
1493	struct mvneta_buf *rxbuf;
1494	int i;
1495
1496	rx = MVNETA_RX_RING(sc, q);
1497	KASSERT_RX_MTX(sc, q);
1498
1499	/* Rx handle */
1500	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1501		rxbuf = &rx->rxbuf[i];
1502		mvneta_rx_buf_free(sc, rxbuf);
1503	}
1504	rx->dma = rx->cpu = 0;
1505}
1506
1507/*
1508 * Rx/Tx Queue Control
1509 */
1510STATIC int
1511mvneta_rx_queue_init(struct ifnet *ifp, int q)
1512{
1513	struct mvneta_softc *sc;
1514	struct mvneta_rx_ring *rx;
1515	uint32_t reg;
1516
1517	sc = ifp->if_softc;
1518	KASSERT_RX_MTX(sc, q);
1519	rx =  MVNETA_RX_RING(sc, q);
1520	DASSERT(rx->desc_pa != 0);
1521
1522	/* descriptor address */
1523	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1524
1525	/* Rx buffer size and descriptor ring size */
1526	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1527	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1528	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1529#ifdef MVNETA_KTR
1530	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1531	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1532#endif
1533	/* Rx packet offset address */
1534	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1535	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1536#ifdef MVNETA_KTR
1537	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1538	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1539#endif
1540
1541	/* if DMA is not working, register is not updated */
1542	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1543	return (0);
1544}
1545
1546STATIC int
1547mvneta_tx_queue_init(struct ifnet *ifp, int q)
1548{
1549	struct mvneta_softc *sc;
1550	struct mvneta_tx_ring *tx;
1551	uint32_t reg;
1552
1553	sc = ifp->if_softc;
1554	KASSERT_TX_MTX(sc, q);
1555	tx = MVNETA_TX_RING(sc, q);
1556	DASSERT(tx->desc_pa != 0);
1557
1558	/* descriptor address */
1559	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1560
1561	/* descriptor ring size */
1562	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1563	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1564
1565	/* if DMA is not working, register is not updated */
1566	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1567	return (0);
1568}
1569
1570STATIC int
1571mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1572{
1573	struct mvneta_softc *sc;
1574	struct mvneta_rx_ring *rx;
1575	uint32_t reg;
1576
1577	sc = ifp->if_softc;
1578	rx = MVNETA_RX_RING(sc, q);
1579	KASSERT_RX_MTX(sc, q);
1580
1581	/* Set Rx interrupt threshold */
1582	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1583	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1584
1585	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1586	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1587
1588	/* Unmask RXTX_TH Intr. */
1589	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1590	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1591	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1592
1593	/* Enable Rx queue */
1594	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1595	reg |= MVNETA_RQC_ENQ(q);
1596	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1597
1598	rx->queue_status = MVNETA_QUEUE_WORKING;
1599	return (0);
1600}
1601
1602STATIC int
1603mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1604{
1605	struct mvneta_softc *sc;
1606	struct mvneta_tx_ring *tx;
1607
1608	sc = ifp->if_softc;
1609	tx = MVNETA_TX_RING(sc, q);
1610	KASSERT_TX_MTX(sc, q);
1611
1612	/* Enable Tx queue */
1613	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1614
1615	tx->queue_status = MVNETA_QUEUE_IDLE;
1616	tx->queue_hung = FALSE;
1617	return (0);
1618}
1619
1620STATIC __inline void
1621mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1622{
1623
1624	DASSERT(q >= 0);
1625	DASSERT(q < MVNETA_RX_QNUM_MAX);
1626	mtx_lock(&sc->rx_ring[q].ring_mtx);
1627}
1628
1629STATIC __inline void
1630mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1631{
1632
1633	DASSERT(q >= 0);
1634	DASSERT(q < MVNETA_RX_QNUM_MAX);
1635	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1636}
1637
1638STATIC __inline int __unused
1639mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1640{
1641
1642	DASSERT(q >= 0);
1643	DASSERT(q < MVNETA_TX_QNUM_MAX);
1644	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1645}
1646
1647STATIC __inline void
1648mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1649{
1650
1651	DASSERT(q >= 0);
1652	DASSERT(q < MVNETA_TX_QNUM_MAX);
1653	mtx_lock(&sc->tx_ring[q].ring_mtx);
1654}
1655
1656STATIC __inline void
1657mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1658{
1659
1660	DASSERT(q >= 0);
1661	DASSERT(q < MVNETA_TX_QNUM_MAX);
1662	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1663}
1664
1665/*
1666 * Interrupt Handlers
1667 */
1668STATIC void
1669mvneta_disable_intr(struct mvneta_softc *sc)
1670{
1671
1672	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1673	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1674	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1675	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1676	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1677	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1678	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1679	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1680	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1681}
1682
1683STATIC void
1684mvneta_enable_intr(struct mvneta_softc *sc)
1685{
1686	uint32_t reg;
1687
1688	/* Enable Summary Bit to check all interrupt cause. */
1689	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1690	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1691	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1692
1693	if (sc->use_inband_status) {
1694		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1695		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1696		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1697	}
1698
1699	/* Enable All Queue Interrupt */
1700	reg  = MVNETA_READ(sc, MVNETA_PIE);
1701	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1702	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1703	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1704}
1705
1706STATIC void
1707mvneta_rxtxth_intr(void *arg)
1708{
1709	struct mvneta_softc *sc;
1710	struct ifnet *ifp;
1711	uint32_t ic, queues;
1712
1713	sc = arg;
1714	ifp = sc->ifp;
1715#ifdef MVNETA_KTR
1716	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1717#endif
1718	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1719	if (ic == 0)
1720		return;
1721	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1722
1723	/* Ack maintance interrupt first */
1724	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1725	    sc->use_inband_status)) {
1726		mvneta_sc_lock(sc);
1727		mvneta_misc_intr(sc);
1728		mvneta_sc_unlock(sc);
1729	}
1730	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1731		return;
1732	/* RxTxTH interrupt */
1733	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1734	if (__predict_true(queues)) {
1735#ifdef MVNETA_KTR
1736		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1737#endif
1738		/* At the moment the driver support only one RX queue. */
1739		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1740		mvneta_rx(sc, 0, 0);
1741	}
1742}
1743
1744STATIC int
1745mvneta_misc_intr(struct mvneta_softc *sc)
1746{
1747	uint32_t ic;
1748	int claimed = 0;
1749
1750#ifdef MVNETA_KTR
1751	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1752#endif
1753	KASSERT_SC_MTX(sc);
1754
1755	for (;;) {
1756		ic = MVNETA_READ(sc, MVNETA_PMIC);
1757		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1758		if (ic == 0)
1759			break;
1760		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1761		claimed = 1;
1762
1763		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1764		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1765			mvneta_link_isr(sc);
1766	}
1767	return (claimed);
1768}
1769
1770STATIC void
1771mvneta_tick(void *arg)
1772{
1773	struct mvneta_softc *sc;
1774	struct mvneta_tx_ring *tx;
1775	struct mvneta_rx_ring *rx;
1776	int q;
1777	uint32_t fc_prev, fc_curr;
1778
1779	sc = arg;
1780
1781	/*
1782	 * This is done before mib update to get the right stats
1783	 * for this tick.
1784	 */
1785	mvneta_tx_drain(sc);
1786
1787	/* Extract previous flow-control frame received counter. */
1788	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1789	/* Read mib registers (clear by read). */
1790	mvneta_update_mib(sc);
1791	/* Extract current flow-control frame received counter. */
1792	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1793
1794
1795	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1796		mvneta_sc_lock(sc);
1797		mii_tick(sc->mii);
1798
1799		/* Adjust MAC settings */
1800		mvneta_adjust_link(sc);
1801		mvneta_sc_unlock(sc);
1802	}
1803
1804	/*
1805	 * We were unable to refill the rx queue and left the rx func, leaving
1806	 * the ring without mbuf and no way to call the refill func.
1807	 */
1808	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1809		rx = MVNETA_RX_RING(sc, q);
1810		if (rx->needs_refill == TRUE) {
1811			mvneta_rx_lockq(sc, q);
1812			mvneta_rx_queue_refill(sc, q);
1813			mvneta_rx_unlockq(sc, q);
1814		}
1815	}
1816
1817	/*
1818	 * Watchdog:
1819	 * - check if queue is mark as hung.
1820	 * - ignore hung status if we received some pause frame
1821	 *   as hardware may have paused packet transmit.
1822	 */
1823	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1824		/*
1825		 * We should take queue lock, but as we only read
1826		 * queue status we can do it without lock, we may
1827		 * only missdetect queue status for one tick.
1828		 */
1829		tx = MVNETA_TX_RING(sc, q);
1830
1831		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1832			goto timeout;
1833	}
1834
1835	callout_schedule(&sc->tick_ch, hz);
1836	return;
1837
1838timeout:
1839	if_printf(sc->ifp, "watchdog timeout\n");
1840
1841	mvneta_sc_lock(sc);
1842	sc->counter_watchdog++;
1843	sc->counter_watchdog_mib++;
1844	/* Trigger reinitialize sequence. */
1845	mvneta_stop_locked(sc);
1846	mvneta_init_locked(sc);
1847	mvneta_sc_unlock(sc);
1848}
1849
1850STATIC void
1851mvneta_qflush(struct ifnet *ifp)
1852{
1853#ifdef MVNETA_MULTIQUEUE
1854	struct mvneta_softc *sc;
1855	struct mvneta_tx_ring *tx;
1856	struct mbuf *m;
1857	size_t q;
1858
1859	sc = ifp->if_softc;
1860
1861	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1862		tx = MVNETA_TX_RING(sc, q);
1863		mvneta_tx_lockq(sc, q);
1864		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1865			m_freem(m);
1866		mvneta_tx_unlockq(sc, q);
1867	}
1868#endif
1869	if_qflush(ifp);
1870}
1871
1872STATIC void
1873mvneta_tx_task(void *arg, int pending)
1874{
1875	struct mvneta_softc *sc;
1876	struct mvneta_tx_ring *tx;
1877	struct ifnet *ifp;
1878	int error;
1879
1880	tx = arg;
1881	ifp = tx->ifp;
1882	sc = ifp->if_softc;
1883
1884	mvneta_tx_lockq(sc, tx->qidx);
1885	error = mvneta_xmit_locked(sc, tx->qidx);
1886	mvneta_tx_unlockq(sc, tx->qidx);
1887
1888	/* Try again */
1889	if (__predict_false(error != 0 && error != ENETDOWN)) {
1890		pause("mvneta_tx_task_sleep", 1);
1891		taskqueue_enqueue(tx->taskq, &tx->task);
1892	}
1893}
1894
1895STATIC int
1896mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1897{
1898	struct mvneta_tx_ring *tx;
1899	struct ifnet *ifp;
1900	int error;
1901
1902	KASSERT_TX_MTX(sc, q);
1903	tx = MVNETA_TX_RING(sc, q);
1904	error = 0;
1905
1906	ifp = sc->ifp;
1907
1908	/* Dont enqueue packet if the queue is disabled. */
1909	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1910		m_freem(*m);
1911		*m = NULL;
1912		return (ENETDOWN);
1913	}
1914
1915	/* Reclaim mbuf if above threshold. */
1916	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1917		mvneta_tx_queue_complete(sc, q);
1918
1919	/* Do not call transmit path if queue is already too full. */
1920	if (__predict_false(tx->used >
1921	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1922		return (ENOBUFS);
1923
1924	error = mvneta_tx_queue(sc, m, q);
1925	if (__predict_false(error != 0))
1926		return (error);
1927
1928	/* Send a copy of the frame to the BPF listener */
1929	ETHER_BPF_MTAP(ifp, *m);
1930
1931	/* Set watchdog on */
1932	tx->watchdog_time = ticks;
1933	tx->queue_status = MVNETA_QUEUE_WORKING;
1934
1935	return (error);
1936}
1937
1938#ifdef MVNETA_MULTIQUEUE
1939STATIC int
1940mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1941{
1942	struct mvneta_softc *sc;
1943	struct mvneta_tx_ring *tx;
1944	int error;
1945	int q;
1946
1947	sc = ifp->if_softc;
1948
1949	/* Use default queue if there is no flow id as thread can migrate. */
1950	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1951		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1952	else
1953		q = 0;
1954
1955	tx = MVNETA_TX_RING(sc, q);
1956
1957	/* If buf_ring is full start transmit immediatly. */
1958	if (buf_ring_full(tx->br)) {
1959		mvneta_tx_lockq(sc, q);
1960		mvneta_xmit_locked(sc, q);
1961		mvneta_tx_unlockq(sc, q);
1962	}
1963
1964	/*
1965	 * If the buf_ring is empty we will not reorder packets.
1966	 * If the lock is available transmit without using buf_ring.
1967	 */
1968	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1969		error = mvneta_xmitfast_locked(sc, q, &m);
1970		mvneta_tx_unlockq(sc, q);
1971		if (__predict_true(error == 0))
1972			return (0);
1973
1974		/* Transmit can fail in fastpath. */
1975		if (__predict_false(m == NULL))
1976			return (error);
1977	}
1978
1979	/* Enqueue then schedule taskqueue. */
1980	error = drbr_enqueue(ifp, tx->br, m);
1981	if (__predict_false(error != 0))
1982		return (error);
1983
1984	taskqueue_enqueue(tx->taskq, &tx->task);
1985	return (0);
1986}
1987
1988STATIC int
1989mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1990{
1991	struct ifnet *ifp;
1992	struct mvneta_tx_ring *tx;
1993	struct mbuf *m;
1994	int error;
1995
1996	KASSERT_TX_MTX(sc, q);
1997	ifp = sc->ifp;
1998	tx = MVNETA_TX_RING(sc, q);
1999	error = 0;
2000
2001	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
2002		error = mvneta_xmitfast_locked(sc, q, &m);
2003		if (__predict_false(error != 0)) {
2004			if (m != NULL)
2005				drbr_putback(ifp, tx->br, m);
2006			else
2007				drbr_advance(ifp, tx->br);
2008			break;
2009		}
2010		drbr_advance(ifp, tx->br);
2011	}
2012
2013	return (error);
2014}
2015#else /* !MVNETA_MULTIQUEUE */
2016STATIC void
2017mvneta_start(struct ifnet *ifp)
2018{
2019	struct mvneta_softc *sc;
2020	struct mvneta_tx_ring *tx;
2021	int error;
2022
2023	sc = ifp->if_softc;
2024	tx = MVNETA_TX_RING(sc, 0);
2025
2026	mvneta_tx_lockq(sc, 0);
2027	error = mvneta_xmit_locked(sc, 0);
2028	mvneta_tx_unlockq(sc, 0);
2029	/* Handle retransmit in the background taskq. */
2030	if (__predict_false(error != 0 && error != ENETDOWN))
2031		taskqueue_enqueue(tx->taskq, &tx->task);
2032}
2033
2034STATIC int
2035mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2036{
2037	struct ifnet *ifp;
2038	struct mvneta_tx_ring *tx;
2039	struct mbuf *m;
2040	int error;
2041
2042	KASSERT_TX_MTX(sc, q);
2043	ifp = sc->ifp;
2044	tx = MVNETA_TX_RING(sc, 0);
2045	error = 0;
2046
2047	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2048		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2049		if (m == NULL)
2050			break;
2051
2052		error = mvneta_xmitfast_locked(sc, q, &m);
2053		if (__predict_false(error != 0)) {
2054			if (m != NULL)
2055				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2056			break;
2057		}
2058	}
2059
2060	return (error);
2061}
2062#endif
2063
2064STATIC int
2065mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2066{
2067	struct mvneta_softc *sc;
2068	struct mvneta_rx_ring *rx;
2069	struct ifreq *ifr;
2070	int error, mask;
2071	uint32_t flags;
2072	int q;
2073
2074	error = 0;
2075	sc = ifp->if_softc;
2076	ifr = (struct ifreq *)data;
2077	switch (cmd) {
2078	case SIOCSIFFLAGS:
2079		mvneta_sc_lock(sc);
2080		if (ifp->if_flags & IFF_UP) {
2081			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2082				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2083
2084				if (flags != 0)
2085					sc->mvneta_if_flags = ifp->if_flags;
2086
2087				if ((flags & IFF_PROMISC) != 0)
2088					mvneta_filter_setup(sc);
2089			} else {
2090				mvneta_init_locked(sc);
2091				sc->mvneta_if_flags = ifp->if_flags;
2092				if (sc->phy_attached)
2093					mii_mediachg(sc->mii);
2094				mvneta_sc_unlock(sc);
2095				break;
2096			}
2097		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2098			mvneta_stop_locked(sc);
2099
2100		sc->mvneta_if_flags = ifp->if_flags;
2101		mvneta_sc_unlock(sc);
2102		break;
2103	case SIOCSIFCAP:
2104		if (ifp->if_mtu > sc->tx_csum_limit &&
2105		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2106			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2107		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2108		if (mask & IFCAP_HWCSUM) {
2109			ifp->if_capenable &= ~IFCAP_HWCSUM;
2110			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2111			if (ifp->if_capenable & IFCAP_TXCSUM)
2112				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2113				    CSUM_UDP;
2114			else
2115				ifp->if_hwassist = 0;
2116		}
2117		if (mask & IFCAP_LRO) {
2118			mvneta_sc_lock(sc);
2119			ifp->if_capenable ^= IFCAP_LRO;
2120			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2121				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2122					rx = MVNETA_RX_RING(sc, q);
2123					rx->lro_enabled = !rx->lro_enabled;
2124				}
2125			}
2126			mvneta_sc_unlock(sc);
2127		}
2128		VLAN_CAPABILITIES(ifp);
2129		break;
2130	case SIOCSIFMEDIA:
2131		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2132		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2133		    (ifr->ifr_media & IFM_FDX) == 0) {
2134			device_printf(sc->dev,
2135			    "%s half-duplex unsupported\n",
2136			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2137			    "1000Base-T" :
2138			    "2500Base-T");
2139			error = EINVAL;
2140			break;
2141		}
2142	case SIOCGIFMEDIA: /* FALLTHROUGH */
2143	case SIOCGIFXMEDIA:
2144		if (!sc->phy_attached)
2145			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2146			    cmd);
2147		else
2148			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2149			    cmd);
2150		break;
2151	case SIOCSIFMTU:
2152		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2153		    MVNETA_ETHER_SIZE) {
2154			error = EINVAL;
2155		} else {
2156			ifp->if_mtu = ifr->ifr_mtu;
2157			mvneta_sc_lock(sc);
2158			if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
2159				sc->rx_frame_size = MCLBYTES;
2160			} else {
2161				sc->rx_frame_size = MJUM9BYTES;
2162			}
2163			if (ifp->if_mtu > sc->tx_csum_limit) {
2164				ifp->if_capenable &= ~IFCAP_TXCSUM;
2165				ifp->if_hwassist = 0;
2166			} else {
2167				ifp->if_capenable |= IFCAP_TXCSUM;
2168				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2169					CSUM_UDP;
2170			}
2171
2172			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2173				/* Stop hardware */
2174				mvneta_stop_locked(sc);
2175				/*
2176				 * Reinitialize RX queues.
2177				 * We need to update RX descriptor size.
2178				 */
2179				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2180					mvneta_rx_lockq(sc, q);
2181					if (mvneta_rx_queue_init(ifp, q) != 0) {
2182						device_printf(sc->dev,
2183						    "initialization failed:"
2184						    " cannot initialize queue\n");
2185						mvneta_rx_unlockq(sc, q);
2186						error = ENOBUFS;
2187						break;
2188					}
2189					mvneta_rx_unlockq(sc, q);
2190				}
2191				/* Trigger reinitialization */
2192				mvneta_init_locked(sc);
2193			}
2194			mvneta_sc_unlock(sc);
2195                }
2196                break;
2197
2198	default:
2199		error = ether_ioctl(ifp, cmd, data);
2200		break;
2201	}
2202
2203	return (error);
2204}
2205
2206STATIC void
2207mvneta_init_locked(void *arg)
2208{
2209	struct mvneta_softc *sc;
2210	struct ifnet *ifp;
2211	uint32_t reg;
2212	int q, cpu;
2213
2214	sc = arg;
2215	ifp = sc->ifp;
2216
2217	if (!device_is_attached(sc->dev) ||
2218	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2219		return;
2220
2221	mvneta_disable_intr(sc);
2222	callout_stop(&sc->tick_ch);
2223
2224	/* Get the latest mac address */
2225	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2226	mvneta_set_mac_address(sc, sc->enaddr);
2227	mvneta_filter_setup(sc);
2228
2229	/* Start DMA Engine */
2230	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2231	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2232	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2233
2234	/* Enable port */
2235	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2236	reg |= MVNETA_PMACC0_PORTEN;
2237	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2238	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
2239	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2240
2241	/* Allow access to each TXQ/RXQ from both CPU's */
2242	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2243		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2244		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2245
2246	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2247		mvneta_rx_lockq(sc, q);
2248		mvneta_rx_queue_refill(sc, q);
2249		mvneta_rx_unlockq(sc, q);
2250	}
2251
2252	if (!sc->phy_attached)
2253		mvneta_linkup(sc);
2254
2255	/* Enable interrupt */
2256	mvneta_enable_intr(sc);
2257
2258	/* Set Counter */
2259	callout_schedule(&sc->tick_ch, hz);
2260
2261	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2262}
2263
2264STATIC void
2265mvneta_init(void *arg)
2266{
2267	struct mvneta_softc *sc;
2268
2269	sc = arg;
2270	mvneta_sc_lock(sc);
2271	mvneta_init_locked(sc);
2272	if (sc->phy_attached)
2273		mii_mediachg(sc->mii);
2274	mvneta_sc_unlock(sc);
2275}
2276
2277/* ARGSUSED */
2278STATIC void
2279mvneta_stop_locked(struct mvneta_softc *sc)
2280{
2281	struct ifnet *ifp;
2282	struct mvneta_rx_ring *rx;
2283	struct mvneta_tx_ring *tx;
2284	uint32_t reg;
2285	int q;
2286
2287	ifp = sc->ifp;
2288	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2289		return;
2290
2291	mvneta_disable_intr(sc);
2292
2293	callout_stop(&sc->tick_ch);
2294
2295	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2296
2297	/* Link down */
2298	if (sc->linkup == TRUE)
2299		mvneta_linkdown(sc);
2300
2301	/* Reset the MAC Port Enable bit */
2302	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2303	reg &= ~MVNETA_PMACC0_PORTEN;
2304	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2305
2306	/* Disable each of queue */
2307	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2308		rx = MVNETA_RX_RING(sc, q);
2309
2310		mvneta_rx_lockq(sc, q);
2311		mvneta_ring_flush_rx_queue(sc, q);
2312		mvneta_rx_unlockq(sc, q);
2313	}
2314
2315	/*
2316	 * Hold Reset state of DMA Engine
2317	 * (must write 0x0 to restart it)
2318	 */
2319	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2320	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2321
2322	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2323		tx = MVNETA_TX_RING(sc, q);
2324
2325		mvneta_tx_lockq(sc, q);
2326		mvneta_ring_flush_tx_queue(sc, q);
2327		mvneta_tx_unlockq(sc, q);
2328	}
2329}
2330
2331STATIC void
2332mvneta_stop(struct mvneta_softc *sc)
2333{
2334
2335	mvneta_sc_lock(sc);
2336	mvneta_stop_locked(sc);
2337	mvneta_sc_unlock(sc);
2338}
2339
2340STATIC int
2341mvneta_mediachange(struct ifnet *ifp)
2342{
2343	struct mvneta_softc *sc;
2344
2345	sc = ifp->if_softc;
2346
2347	if (!sc->phy_attached && !sc->use_inband_status) {
2348		/* We shouldn't be here */
2349		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2350		return (0);
2351	}
2352
2353	if (sc->use_inband_status) {
2354		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2355		return (0);
2356	}
2357
2358	mvneta_sc_lock(sc);
2359
2360	/* Update PHY */
2361	mii_mediachg(sc->mii);
2362
2363	mvneta_sc_unlock(sc);
2364
2365	return (0);
2366}
2367
2368STATIC void
2369mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2370{
2371	uint32_t psr;
2372
2373	psr = MVNETA_READ(sc, MVNETA_PSR);
2374
2375	/* Speed */
2376	if (psr & MVNETA_PSR_GMIISPEED)
2377		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2378	else if (psr & MVNETA_PSR_MIISPEED)
2379		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2380	else if (psr & MVNETA_PSR_LINKUP)
2381		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2382
2383	/* Duplex */
2384	if (psr & MVNETA_PSR_FULLDX)
2385		ifmr->ifm_active |= IFM_FDX;
2386
2387	/* Link */
2388	ifmr->ifm_status = IFM_AVALID;
2389	if (psr & MVNETA_PSR_LINKUP)
2390		ifmr->ifm_status |= IFM_ACTIVE;
2391}
2392
2393STATIC void
2394mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2395{
2396	struct mvneta_softc *sc;
2397	struct mii_data *mii;
2398
2399	sc = ifp->if_softc;
2400
2401	if (!sc->phy_attached && !sc->use_inband_status) {
2402		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2403		return;
2404	}
2405
2406	mvneta_sc_lock(sc);
2407
2408	if (sc->use_inband_status) {
2409		mvneta_get_media(sc, ifmr);
2410		mvneta_sc_unlock(sc);
2411		return;
2412	}
2413
2414	mii = sc->mii;
2415	mii_pollstat(mii);
2416
2417	ifmr->ifm_active = mii->mii_media_active;
2418	ifmr->ifm_status = mii->mii_media_status;
2419
2420	mvneta_sc_unlock(sc);
2421}
2422
2423/*
2424 * Link State Notify
2425 */
2426STATIC void
2427mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2428{
2429	int reg;
2430
2431	if (enable) {
2432		reg = MVNETA_READ(sc, MVNETA_PANC);
2433		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2434		    MVNETA_PANC_ANFCEN);
2435		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2436		    MVNETA_PANC_INBANDANEN;
2437		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2438
2439		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2440		reg |= MVNETA_PMACC2_INBANDANMODE;
2441		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2442
2443		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2444		reg |= MVNETA_PSOMSCD_ENABLE;
2445		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2446	} else {
2447		reg = MVNETA_READ(sc, MVNETA_PANC);
2448		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2449		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2450		    MVNETA_PANC_INBANDANEN);
2451		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2452
2453		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2454		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2455		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2456
2457		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2458		reg &= ~MVNETA_PSOMSCD_ENABLE;
2459		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2460	}
2461}
2462
2463STATIC int
2464mvneta_update_media(struct mvneta_softc *sc, int media)
2465{
2466	int reg, err;
2467	boolean_t running;
2468
2469	err = 0;
2470
2471	mvneta_sc_lock(sc);
2472
2473	mvneta_linkreset(sc);
2474
2475	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2476	if (running)
2477		mvneta_stop_locked(sc);
2478
2479	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2480
2481	if (sc->use_inband_status)
2482		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2483
2484	mvneta_update_eee(sc);
2485	mvneta_update_fc(sc);
2486
2487	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2488		reg = MVNETA_READ(sc, MVNETA_PANC);
2489		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2490		    MVNETA_PANC_SETMIISPEED |
2491		    MVNETA_PANC_SETFULLDX);
2492		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2493		    IFM_SUBTYPE(media) == IFM_2500_T) {
2494			if ((media & IFM_FDX) == 0) {
2495				device_printf(sc->dev,
2496				    "%s half-duplex unsupported\n",
2497				    IFM_SUBTYPE(media) == IFM_1000_T ?
2498				    "1000Base-T" :
2499				    "2500Base-T");
2500				err = EINVAL;
2501				goto out;
2502			}
2503			reg |= MVNETA_PANC_SETGMIISPEED;
2504		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2505			reg |= MVNETA_PANC_SETMIISPEED;
2506
2507		if (media & IFM_FDX)
2508			reg |= MVNETA_PANC_SETFULLDX;
2509
2510		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2511	}
2512out:
2513	if (running)
2514		mvneta_init_locked(sc);
2515	mvneta_sc_unlock(sc);
2516	return (err);
2517}
2518
2519STATIC void
2520mvneta_adjust_link(struct mvneta_softc *sc)
2521{
2522	boolean_t phy_linkup;
2523	int reg;
2524
2525	/* Update eee/fc */
2526	mvneta_update_eee(sc);
2527	mvneta_update_fc(sc);
2528
2529	/* Check for link change */
2530	phy_linkup = (sc->mii->mii_media_status &
2531	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2532
2533	if (sc->linkup != phy_linkup)
2534		mvneta_linkupdate(sc, phy_linkup);
2535
2536	/* Don't update media on disabled link */
2537	if (!phy_linkup)
2538		return;
2539
2540	/* Check for media type change */
2541	if (sc->mvneta_media != sc->mii->mii_media_active) {
2542		sc->mvneta_media = sc->mii->mii_media_active;
2543
2544		reg = MVNETA_READ(sc, MVNETA_PANC);
2545		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2546		    MVNETA_PANC_SETMIISPEED |
2547		    MVNETA_PANC_SETFULLDX);
2548		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2549		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2550			reg |= MVNETA_PANC_SETGMIISPEED;
2551		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2552			reg |= MVNETA_PANC_SETMIISPEED;
2553
2554		if (sc->mvneta_media & IFM_FDX)
2555			reg |= MVNETA_PANC_SETFULLDX;
2556
2557		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2558	}
2559}
2560
2561STATIC void
2562mvneta_link_isr(struct mvneta_softc *sc)
2563{
2564	int linkup;
2565
2566	KASSERT_SC_MTX(sc);
2567
2568	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2569	if (sc->linkup == linkup)
2570		return;
2571
2572	if (linkup == TRUE)
2573		mvneta_linkup(sc);
2574	else
2575		mvneta_linkdown(sc);
2576
2577#ifdef DEBUG
2578	log(LOG_DEBUG,
2579	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2580#endif
2581}
2582
2583STATIC void
2584mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2585{
2586
2587	KASSERT_SC_MTX(sc);
2588
2589	if (linkup == TRUE)
2590		mvneta_linkup(sc);
2591	else
2592		mvneta_linkdown(sc);
2593
2594#ifdef DEBUG
2595	log(LOG_DEBUG,
2596	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2597#endif
2598}
2599
2600STATIC void
2601mvneta_update_eee(struct mvneta_softc *sc)
2602{
2603	uint32_t reg;
2604
2605	KASSERT_SC_MTX(sc);
2606
2607	/* set EEE parameters */
2608	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2609	if (sc->cf_lpi)
2610		reg |= MVNETA_LPIC1_LPIRE;
2611	else
2612		reg &= ~MVNETA_LPIC1_LPIRE;
2613	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2614}
2615
2616STATIC void
2617mvneta_update_fc(struct mvneta_softc *sc)
2618{
2619	uint32_t reg;
2620
2621	KASSERT_SC_MTX(sc);
2622
2623	reg  = MVNETA_READ(sc, MVNETA_PANC);
2624	if (sc->cf_fc) {
2625		/* Flow control negotiation */
2626		reg |= MVNETA_PANC_PAUSEADV;
2627		reg |= MVNETA_PANC_ANFCEN;
2628	} else {
2629		/* Disable flow control negotiation */
2630		reg &= ~MVNETA_PANC_PAUSEADV;
2631		reg &= ~MVNETA_PANC_ANFCEN;
2632	}
2633
2634	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2635}
2636
2637STATIC void
2638mvneta_linkup(struct mvneta_softc *sc)
2639{
2640	uint32_t reg;
2641
2642	KASSERT_SC_MTX(sc);
2643
2644	if (!sc->use_inband_status) {
2645		reg  = MVNETA_READ(sc, MVNETA_PANC);
2646		reg |= MVNETA_PANC_FORCELINKPASS;
2647		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2648		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2649	}
2650
2651	mvneta_qflush(sc->ifp);
2652	mvneta_portup(sc);
2653	sc->linkup = TRUE;
2654	if_link_state_change(sc->ifp, LINK_STATE_UP);
2655}
2656
2657STATIC void
2658mvneta_linkdown(struct mvneta_softc *sc)
2659{
2660	uint32_t reg;
2661
2662	KASSERT_SC_MTX(sc);
2663
2664	if (!sc->use_inband_status) {
2665		reg  = MVNETA_READ(sc, MVNETA_PANC);
2666		reg &= ~MVNETA_PANC_FORCELINKPASS;
2667		reg |= MVNETA_PANC_FORCELINKFAIL;
2668		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2669	}
2670
2671	mvneta_portdown(sc);
2672	mvneta_qflush(sc->ifp);
2673	sc->linkup = FALSE;
2674	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2675}
2676
2677STATIC void
2678mvneta_linkreset(struct mvneta_softc *sc)
2679{
2680	struct mii_softc *mii;
2681
2682	if (sc->phy_attached) {
2683		/* Force reset PHY */
2684		mii = LIST_FIRST(&sc->mii->mii_phys);
2685		if (mii)
2686			mii_phy_reset(mii);
2687	}
2688}
2689
2690/*
2691 * Tx Subroutines
2692 */
2693STATIC int
2694mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2695{
2696	struct ifnet *ifp;
2697	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2698	struct mbuf *mtmp, *mbuf;
2699	struct mvneta_tx_ring *tx;
2700	struct mvneta_buf *txbuf;
2701	struct mvneta_tx_desc *t;
2702	uint32_t ptxsu;
2703	int start, used, error, i, txnsegs;
2704
2705	mbuf = *mbufp;
2706	tx = MVNETA_TX_RING(sc, q);
2707	DASSERT(tx->used >= 0);
2708	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2709	t = NULL;
2710	ifp = sc->ifp;
2711
2712	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2713		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2714		if (mbuf == NULL) {
2715			tx->drv_error++;
2716			*mbufp = NULL;
2717			return (ENOBUFS);
2718		}
2719		mbuf->m_flags &= ~M_VLANTAG;
2720		*mbufp = mbuf;
2721	}
2722
2723	if (__predict_false(mbuf->m_next != NULL &&
2724	    (mbuf->m_pkthdr.csum_flags &
2725	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2726		if (M_WRITABLE(mbuf) == 0) {
2727			mtmp = m_dup(mbuf, M_NOWAIT);
2728			m_freem(mbuf);
2729			if (mtmp == NULL) {
2730				tx->drv_error++;
2731				*mbufp = NULL;
2732				return (ENOBUFS);
2733			}
2734			*mbufp = mbuf = mtmp;
2735		}
2736	}
2737
2738	/* load mbuf using dmamap of 1st descriptor */
2739	txbuf = &tx->txbuf[tx->cpu];
2740	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2741	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2742	    BUS_DMA_NOWAIT);
2743	if (__predict_false(error != 0)) {
2744#ifdef MVNETA_KTR
2745		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2746#endif
2747		/* This is the only recoverable error (except EFBIG). */
2748		if (error != ENOMEM) {
2749			tx->drv_error++;
2750			m_freem(mbuf);
2751			*mbufp = NULL;
2752			return (ENOBUFS);
2753		}
2754		return (error);
2755	}
2756
2757	if (__predict_false(txnsegs <= 0
2758	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2759		/* we have no enough descriptors or mbuf is broken */
2760#ifdef MVNETA_KTR
2761		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2762		    ifp->if_xname, q, txnsegs);
2763#endif
2764		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2765		return (ENOBUFS);
2766	}
2767	DASSERT(txbuf->m == NULL);
2768
2769	/* remember mbuf using 1st descriptor */
2770	txbuf->m = mbuf;
2771	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2772	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2773
2774	/* load to tx descriptors */
2775	start = tx->cpu;
2776	used = 0;
2777	for (i = 0; i < txnsegs; i++) {
2778		t = &tx->desc[tx->cpu];
2779		t->command = 0;
2780		t->l4ichk = 0;
2781		t->flags = 0;
2782		if (__predict_true(i == 0)) {
2783			/* 1st descriptor */
2784			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2785			t->command |= MVNETA_TX_CMD_F;
2786			mvneta_tx_set_csumflag(ifp, t, mbuf);
2787		}
2788		t->bufptr_pa = txsegs[i].ds_addr;
2789		t->bytecnt = txsegs[i].ds_len;
2790		tx->cpu = tx_counter_adv(tx->cpu, 1);
2791
2792		tx->used++;
2793		used++;
2794	}
2795	/* t is last descriptor here */
2796	DASSERT(t != NULL);
2797	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2798
2799	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2800	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2801
2802	while (__predict_false(used > 255)) {
2803		ptxsu = MVNETA_PTXSU_NOWD(255);
2804		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2805		used -= 255;
2806	}
2807	if (__predict_true(used > 0)) {
2808		ptxsu = MVNETA_PTXSU_NOWD(used);
2809		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2810	}
2811	return (0);
2812}
2813
2814STATIC void
2815mvneta_tx_set_csumflag(struct ifnet *ifp,
2816    struct mvneta_tx_desc *t, struct mbuf *m)
2817{
2818	struct ether_header *eh;
2819	int csum_flags;
2820	uint32_t iphl, ipoff;
2821	struct ip *ip;
2822
2823	iphl = ipoff = 0;
2824	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2825	eh = mtod(m, struct ether_header *);
2826
2827	switch (ntohs(eh->ether_type)) {
2828	case ETHERTYPE_IP:
2829		ipoff = ETHER_HDR_LEN;
2830		break;
2831	case ETHERTYPE_VLAN:
2832		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2833		break;
2834	default:
2835		csum_flags = 0;
2836	}
2837
2838	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2839		ip = (struct ip *)(m->m_data + ipoff);
2840		iphl = ip->ip_hl<<2;
2841		t->command |= MVNETA_TX_CMD_L3_IP4;
2842	} else {
2843		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2844		return;
2845	}
2846
2847
2848	/* L3 */
2849	if (csum_flags & CSUM_IP) {
2850		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2851	}
2852
2853	/* L4 */
2854	if (csum_flags & CSUM_IP_TCP) {
2855		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2856		t->command |= MVNETA_TX_CMD_L4_TCP;
2857	} else if (csum_flags & CSUM_IP_UDP) {
2858		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2859		t->command |= MVNETA_TX_CMD_L4_UDP;
2860	} else
2861		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2862
2863	t->l4ichk = 0;
2864	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2865	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2866}
2867
2868STATIC void
2869mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2870{
2871	struct mvneta_tx_ring *tx;
2872	struct mvneta_buf *txbuf;
2873	struct mvneta_tx_desc *t;
2874	uint32_t ptxs, ptxsu, ndesc;
2875	int i;
2876
2877	KASSERT_TX_MTX(sc, q);
2878
2879	tx = MVNETA_TX_RING(sc, q);
2880	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2881		return;
2882
2883	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2884	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2885
2886	if (__predict_false(ndesc == 0)) {
2887		if (tx->used == 0)
2888			tx->queue_status = MVNETA_QUEUE_IDLE;
2889		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2890		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2891			tx->queue_hung = TRUE;
2892		return;
2893	}
2894
2895#ifdef MVNETA_KTR
2896	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2897	    sc->ifp->if_xname, q, ndesc);
2898#endif
2899
2900	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2901	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2902
2903	for (i = 0; i < ndesc; i++) {
2904		t = &tx->desc[tx->dma];
2905#ifdef MVNETA_KTR
2906		if (t->flags & MVNETA_TX_F_ES)
2907			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2908			    sc->ifp->if_xname, q, tx->dma);
2909#endif
2910		txbuf = &tx->txbuf[tx->dma];
2911		if (__predict_true(txbuf->m != NULL)) {
2912			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2913			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2914			m_freem(txbuf->m);
2915			txbuf->m = NULL;
2916		}
2917		else
2918			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2919		tx->dma = tx_counter_adv(tx->dma, 1);
2920		tx->used--;
2921	}
2922	DASSERT(tx->used >= 0);
2923	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2924	while (__predict_false(ndesc > 255)) {
2925		ptxsu = MVNETA_PTXSU_NORB(255);
2926		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2927		ndesc -= 255;
2928	}
2929	if (__predict_true(ndesc > 0)) {
2930		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2931		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2932	}
2933#ifdef MVNETA_KTR
2934	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2935	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2936#endif
2937
2938	tx->watchdog_time = ticks;
2939
2940	if (tx->used == 0)
2941		tx->queue_status = MVNETA_QUEUE_IDLE;
2942}
2943
2944/*
2945 * Do a final TX complete when TX is idle.
2946 */
2947STATIC void
2948mvneta_tx_drain(struct mvneta_softc *sc)
2949{
2950	struct mvneta_tx_ring *tx;
2951	int q;
2952
2953	/*
2954	 * Handle trailing mbuf on TX queue.
2955	 * Check is done lockess to avoid TX path contention.
2956	 */
2957	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2958		tx = MVNETA_TX_RING(sc, q);
2959		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2960		    tx->used > 0) {
2961			mvneta_tx_lockq(sc, q);
2962			mvneta_tx_queue_complete(sc, q);
2963			mvneta_tx_unlockq(sc, q);
2964		}
2965	}
2966}
2967
2968/*
2969 * Rx Subroutines
2970 */
2971STATIC int
2972mvneta_rx(struct mvneta_softc *sc, int q, int count)
2973{
2974	uint32_t prxs, npkt;
2975	int more;
2976
2977	more = 0;
2978	mvneta_rx_lockq(sc, q);
2979	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2980	npkt = MVNETA_PRXS_GET_ODC(prxs);
2981	if (__predict_false(npkt == 0))
2982		goto out;
2983
2984	if (count > 0 && npkt > count) {
2985		more = 1;
2986		npkt = count;
2987	}
2988	mvneta_rx_queue(sc, q, npkt);
2989out:
2990	mvneta_rx_unlockq(sc, q);
2991	return more;
2992}
2993
2994/*
2995 * Helper routine for updating PRXSU register of a given queue.
2996 * Handles number of processed descriptors bigger than maximum acceptable value.
2997 */
2998STATIC __inline void
2999mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
3000{
3001	uint32_t prxsu;
3002
3003	while (__predict_false(processed > 255)) {
3004		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
3005		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3006		processed -= 255;
3007	}
3008	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
3009	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3010}
3011
3012static __inline void
3013mvneta_prefetch(void *p)
3014{
3015
3016	__builtin_prefetch(p);
3017}
3018
3019STATIC void
3020mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3021{
3022	struct ifnet *ifp;
3023	struct mvneta_rx_ring *rx;
3024	struct mvneta_rx_desc *r;
3025	struct mvneta_buf *rxbuf;
3026	struct mbuf *m;
3027	struct lro_ctrl *lro;
3028	struct lro_entry *queued;
3029	void *pktbuf;
3030	int i, pktlen, processed, ndma;
3031
3032	KASSERT_RX_MTX(sc, q);
3033
3034	ifp = sc->ifp;
3035	rx = MVNETA_RX_RING(sc, q);
3036	processed = 0;
3037
3038	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3039		return;
3040
3041	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3042	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3043
3044	for (i = 0; i < npkt; i++) {
3045		/* Prefetch next desc, rxbuf. */
3046		ndma = rx_counter_adv(rx->dma, 1);
3047		mvneta_prefetch(&rx->desc[ndma]);
3048		mvneta_prefetch(&rx->rxbuf[ndma]);
3049
3050		/* get descriptor and packet */
3051		r = &rx->desc[rx->dma];
3052		rxbuf = &rx->rxbuf[rx->dma];
3053		m = rxbuf->m;
3054		rxbuf->m = NULL;
3055		DASSERT(m != NULL);
3056		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3057		    BUS_DMASYNC_POSTREAD);
3058		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3059		/* Prefetch mbuf header. */
3060		mvneta_prefetch(m);
3061
3062		processed++;
3063		/* Drop desc with error status or not in a single buffer. */
3064		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3065		    (MVNETA_RX_F|MVNETA_RX_L));
3066		if (__predict_false((r->status & MVNETA_RX_ES) ||
3067		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3068		    (MVNETA_RX_F|MVNETA_RX_L)))
3069			goto rx_error;
3070
3071		/*
3072		 * [ OFF | MH | PKT | CRC ]
3073		 * bytecnt cover MH, PKT, CRC
3074		 */
3075		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3076		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3077                    MVNETA_HWHEADER_SIZE;
3078
3079		/* Prefetch mbuf data. */
3080		mvneta_prefetch(pktbuf);
3081
3082		/* Write value to mbuf (avoid read). */
3083		m->m_data = pktbuf;
3084		m->m_len = m->m_pkthdr.len = pktlen;
3085		m->m_pkthdr.rcvif = ifp;
3086		mvneta_rx_set_csumflag(ifp, r, m);
3087
3088		/* Increase rx_dma before releasing the lock. */
3089		rx->dma = ndma;
3090
3091		if (__predict_false(rx->lro_enabled &&
3092		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3093		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3094		    (m->m_pkthdr.csum_flags &
3095		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3096		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3097			if (rx->lro.lro_cnt != 0) {
3098				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3099					goto rx_done;
3100			}
3101		}
3102
3103		mvneta_rx_unlockq(sc, q);
3104		(*ifp->if_input)(ifp, m);
3105		mvneta_rx_lockq(sc, q);
3106		/*
3107		 * Check whether this queue has been disabled in the
3108		 * meantime. If yes, then clear LRO and exit.
3109		 */
3110		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3111			goto rx_lro;
3112rx_done:
3113		/* Refresh receive ring to avoid stall and minimize jitter. */
3114		if (processed >= MVNETA_RX_REFILL_COUNT) {
3115			mvneta_prxsu_update(sc, q, processed);
3116			mvneta_rx_queue_refill(sc, q);
3117			processed = 0;
3118		}
3119		continue;
3120rx_error:
3121		m_freem(m);
3122		rx->dma = ndma;
3123		/* Refresh receive ring to avoid stall and minimize jitter. */
3124		if (processed >= MVNETA_RX_REFILL_COUNT) {
3125			mvneta_prxsu_update(sc, q, processed);
3126			mvneta_rx_queue_refill(sc, q);
3127			processed = 0;
3128		}
3129	}
3130#ifdef MVNETA_KTR
3131	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3132#endif
3133	/* DMA status update */
3134	mvneta_prxsu_update(sc, q, processed);
3135	/* Refill the rest of buffers if there are any to refill */
3136	mvneta_rx_queue_refill(sc, q);
3137
3138rx_lro:
3139	/*
3140	 * Flush any outstanding LRO work
3141	 */
3142	lro = &rx->lro;
3143	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3144		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3145		tcp_lro_flush(lro, queued);
3146	}
3147}
3148
3149STATIC void
3150mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3151{
3152
3153	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3154	/* This will remove all data at once */
3155	m_freem(rxbuf->m);
3156}
3157
3158STATIC void
3159mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3160{
3161	struct mvneta_rx_ring *rx;
3162	struct mvneta_rx_desc *r;
3163	struct mvneta_buf *rxbuf;
3164	bus_dma_segment_t segs;
3165	struct mbuf *m;
3166	uint32_t prxs, prxsu, ndesc;
3167	int npkt, refill, nsegs, error;
3168
3169	KASSERT_RX_MTX(sc, q);
3170
3171	rx = MVNETA_RX_RING(sc, q);
3172	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3173	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3174	refill = MVNETA_RX_RING_CNT - ndesc;
3175#ifdef MVNETA_KTR
3176	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3177	    refill);
3178#endif
3179	if (__predict_false(refill <= 0))
3180		return;
3181
3182	for (npkt = 0; npkt < refill; npkt++) {
3183		rxbuf = &rx->rxbuf[rx->cpu];
3184		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3185		if (__predict_false(m == NULL)) {
3186			error = ENOBUFS;
3187			break;
3188		}
3189		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3190
3191		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3192		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3193		if (__predict_false(error != 0 || nsegs != 1)) {
3194			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3195			m_freem(m);
3196			break;
3197		}
3198
3199		/* Add the packet to the ring */
3200		rxbuf->m = m;
3201		r = &rx->desc[rx->cpu];
3202		r->bufptr_pa = segs.ds_addr;
3203		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3204
3205		rx->cpu = rx_counter_adv(rx->cpu, 1);
3206	}
3207	if (npkt == 0) {
3208		if (refill == MVNETA_RX_RING_CNT)
3209			rx->needs_refill = TRUE;
3210		return;
3211	}
3212
3213	rx->needs_refill = FALSE;
3214	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3215
3216	while (__predict_false(npkt > 255)) {
3217		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3218		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3219		npkt -= 255;
3220	}
3221	if (__predict_true(npkt > 0)) {
3222		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3223		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3224	}
3225}
3226
3227STATIC __inline void
3228mvneta_rx_set_csumflag(struct ifnet *ifp,
3229    struct mvneta_rx_desc *r, struct mbuf *m)
3230{
3231	uint32_t csum_flags;
3232
3233	csum_flags = 0;
3234	if (__predict_false((r->status &
3235	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3236		return; /* not a IP packet */
3237
3238	/* L3 */
3239	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3240	    MVNETA_RX_IP_HEADER_OK))
3241		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3242
3243	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3244	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3245		/* L4 */
3246		switch (r->status & MVNETA_RX_L4_MASK) {
3247		case MVNETA_RX_L4_TCP:
3248		case MVNETA_RX_L4_UDP:
3249			csum_flags |= CSUM_L4_CALC;
3250			if (__predict_true((r->status &
3251			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3252				csum_flags |= CSUM_L4_VALID;
3253				m->m_pkthdr.csum_data = htons(0xffff);
3254			}
3255			break;
3256		case MVNETA_RX_L4_OTH:
3257		default:
3258			break;
3259		}
3260	}
3261	m->m_pkthdr.csum_flags = csum_flags;
3262}
3263
3264/*
3265 * MAC address filter
3266 */
3267STATIC void
3268mvneta_filter_setup(struct mvneta_softc *sc)
3269{
3270	struct ifnet *ifp;
3271	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3272	uint32_t pxc;
3273	int i;
3274
3275	KASSERT_SC_MTX(sc);
3276
3277	memset(dfut, 0, sizeof(dfut));
3278	memset(dfsmt, 0, sizeof(dfsmt));
3279	memset(dfomt, 0, sizeof(dfomt));
3280
3281	ifp = sc->ifp;
3282	ifp->if_flags |= IFF_ALLMULTI;
3283	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3284		for (i = 0; i < MVNETA_NDFSMT; i++) {
3285			dfsmt[i] = dfomt[i] =
3286			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3287			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3288			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3289			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3290		}
3291	}
3292
3293	pxc = MVNETA_READ(sc, MVNETA_PXC);
3294	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3295	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3296	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3297	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3298	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3299	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3300	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3301	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3302	if (ifp->if_flags & IFF_BROADCAST) {
3303		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3304	}
3305	if (ifp->if_flags & IFF_PROMISC) {
3306		pxc |= MVNETA_PXC_UPM;
3307	}
3308	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3309
3310	/* Set Destination Address Filter Unicast Table */
3311	if (ifp->if_flags & IFF_PROMISC) {
3312		/* pass all unicast addresses */
3313		for (i = 0; i < MVNETA_NDFUT; i++) {
3314			dfut[i] =
3315			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3316			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3317			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3318			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3319		}
3320	} else {
3321		i = sc->enaddr[5] & 0xf;		/* last nibble */
3322		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3323	}
3324	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3325
3326	/* Set Destination Address Filter Multicast Tables */
3327	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3328	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3329}
3330
3331/*
3332 * sysctl(9)
3333 */
3334STATIC int
3335sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3336{
3337	struct mvneta_sysctl_mib *arg;
3338	struct mvneta_softc *sc;
3339	uint64_t val;
3340
3341	arg = (struct mvneta_sysctl_mib *)arg1;
3342	if (arg == NULL)
3343		return (EINVAL);
3344
3345	sc = arg->sc;
3346	if (sc == NULL)
3347		return (EINVAL);
3348	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3349		return (EINVAL);
3350
3351	mvneta_sc_lock(sc);
3352	val = arg->counter;
3353	mvneta_sc_unlock(sc);
3354	return sysctl_handle_64(oidp, &val, 0, req);
3355}
3356
3357
3358STATIC int
3359sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3360{
3361	struct mvneta_softc *sc;
3362	int err, val;
3363
3364	val = 0;
3365	sc = (struct mvneta_softc *)arg1;
3366	if (sc == NULL)
3367		return (EINVAL);
3368
3369	err = sysctl_handle_int(oidp, &val, 0, req);
3370	if (err != 0)
3371		return (err);
3372
3373	if (val < 0 || val > 1)
3374		return (EINVAL);
3375
3376	if (val == 1) {
3377		mvneta_sc_lock(sc);
3378		mvneta_clear_mib(sc);
3379		mvneta_sc_unlock(sc);
3380	}
3381
3382	return (0);
3383}
3384
3385STATIC int
3386sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3387{
3388	struct mvneta_sysctl_queue *arg;
3389	struct mvneta_rx_ring *rx;
3390	struct mvneta_softc *sc;
3391	uint32_t reg, time_mvtclk;
3392	int err, time_us;
3393
3394	rx = NULL;
3395	arg = (struct mvneta_sysctl_queue *)arg1;
3396	if (arg == NULL)
3397		return (EINVAL);
3398	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3399		return (EINVAL);
3400	if (arg->rxtx != MVNETA_SYSCTL_RX)
3401		return (EINVAL);
3402
3403	sc = arg->sc;
3404	if (sc == NULL)
3405		return (EINVAL);
3406
3407	/* read queue length */
3408	mvneta_sc_lock(sc);
3409	mvneta_rx_lockq(sc, arg->queue);
3410	rx = MVNETA_RX_RING(sc, arg->queue);
3411	time_mvtclk = rx->queue_th_time;
3412	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3413	mvneta_rx_unlockq(sc, arg->queue);
3414	mvneta_sc_unlock(sc);
3415
3416	err = sysctl_handle_int(oidp, &time_us, 0, req);
3417	if (err != 0)
3418		return (err);
3419
3420	mvneta_sc_lock(sc);
3421	mvneta_rx_lockq(sc, arg->queue);
3422
3423	/* update queue length (0[sec] - 1[sec]) */
3424	if (time_us < 0 || time_us > (1000 * 1000)) {
3425		mvneta_rx_unlockq(sc, arg->queue);
3426		mvneta_sc_unlock(sc);
3427		return (EINVAL);
3428	}
3429	time_mvtclk =
3430	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3431	rx->queue_th_time = time_mvtclk;
3432	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3433	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3434	mvneta_rx_unlockq(sc, arg->queue);
3435	mvneta_sc_unlock(sc);
3436
3437	return (0);
3438}
3439
3440STATIC void
3441sysctl_mvneta_init(struct mvneta_softc *sc)
3442{
3443	struct sysctl_ctx_list *ctx;
3444	struct sysctl_oid_list *children;
3445	struct sysctl_oid_list *rxchildren;
3446	struct sysctl_oid_list *qchildren, *mchildren;
3447	struct sysctl_oid *tree;
3448	int i, q;
3449	struct mvneta_sysctl_queue *rxarg;
3450#define	MVNETA_SYSCTL_NAME(num) "queue" # num
3451	static const char *sysctl_queue_names[] = {
3452		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3453		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3454		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3455		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3456	};
3457#undef MVNETA_SYSCTL_NAME
3458
3459#ifndef NO_SYSCTL_DESCR
3460#define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3461	static const char *sysctl_queue_descrs[] = {
3462		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3463		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3464		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3465		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3466	};
3467#undef MVNETA_SYSCTL_DESCR
3468#endif
3469
3470
3471	ctx = device_get_sysctl_ctx(sc->dev);
3472	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3473
3474	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3475	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3476	rxchildren = SYSCTL_CHILDREN(tree);
3477	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3478	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3479	mchildren = SYSCTL_CHILDREN(tree);
3480
3481
3482	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3483	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3484	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3485	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3486
3487	/*
3488	 * MIB access
3489	 */
3490	/* dev.mvneta.[unit].mib.<mibs> */
3491	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3492		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3493
3494		mib_arg->sc = sc;
3495		mib_arg->index = i;
3496		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3497		    mvneta_mib_list[i].sysctl_name,
3498		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3499		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3500		    mvneta_mib_list[i].desc);
3501	}
3502	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3503	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3504	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3505	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3506	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3507	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3508
3509	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3510	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3511	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3512
3513	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3514		rxarg = &sc->sysctl_rx_queue[q];
3515
3516		rxarg->sc = sc;
3517		rxarg->queue = q;
3518		rxarg->rxtx = MVNETA_SYSCTL_RX;
3519
3520		/* hw.mvneta.mvneta[unit].rx.[queue] */
3521		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3522		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3523		    sysctl_queue_descrs[q]);
3524		qchildren = SYSCTL_CHILDREN(tree);
3525
3526		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3527		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3528		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3529		    sysctl_set_queue_rxthtime, "I",
3530		    "interrupt coalescing threshold timer [us]");
3531	}
3532}
3533
3534/*
3535 * MIB
3536 */
3537STATIC uint64_t
3538mvneta_read_mib(struct mvneta_softc *sc, int index)
3539{
3540	struct mvneta_mib_def *mib;
3541	uint64_t val;
3542
3543	mib = &mvneta_mib_list[index];
3544	val = MVNETA_READ_MIB(sc, mib->regnum);
3545	if (mib->reg64)
3546		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3547	return (val);
3548}
3549
3550STATIC void
3551mvneta_clear_mib(struct mvneta_softc *sc)
3552{
3553	int i;
3554
3555	KASSERT_SC_MTX(sc);
3556
3557	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3558		(void)mvneta_read_mib(sc, i);
3559		sc->sysctl_mib[i].counter = 0;
3560	}
3561	MVNETA_READ(sc, MVNETA_PDFC);
3562	sc->counter_pdfc = 0;
3563	MVNETA_READ(sc, MVNETA_POFC);
3564	sc->counter_pofc = 0;
3565	sc->counter_watchdog = 0;
3566}
3567
3568STATIC void
3569mvneta_update_mib(struct mvneta_softc *sc)
3570{
3571	struct mvneta_tx_ring *tx;
3572	int i;
3573	uint64_t val;
3574	uint32_t reg;
3575
3576	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3577
3578		val = mvneta_read_mib(sc, i);
3579		if (val == 0)
3580			continue;
3581
3582		sc->sysctl_mib[i].counter += val;
3583		switch (mvneta_mib_list[i].regnum) {
3584			case MVNETA_MIB_RX_GOOD_OCT:
3585				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3586				break;
3587			case MVNETA_MIB_RX_BAD_FRAME:
3588				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3589				break;
3590			case MVNETA_MIB_RX_GOOD_FRAME:
3591				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3592				break;
3593			case MVNETA_MIB_RX_MCAST_FRAME:
3594				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3595				break;
3596			case MVNETA_MIB_TX_GOOD_OCT:
3597				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3598				break;
3599			case MVNETA_MIB_TX_GOOD_FRAME:
3600				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3601				break;
3602			case MVNETA_MIB_TX_MCAST_FRAME:
3603				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3604				break;
3605			case MVNETA_MIB_MAC_COL:
3606				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3607				break;
3608			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3609			case MVNETA_MIB_TX_EXCES_COL:
3610			case MVNETA_MIB_MAC_LATE_COL:
3611				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3612				break;
3613		}
3614	}
3615
3616	reg = MVNETA_READ(sc, MVNETA_PDFC);
3617	sc->counter_pdfc += reg;
3618	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3619	reg = MVNETA_READ(sc, MVNETA_POFC);
3620	sc->counter_pofc += reg;
3621	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3622
3623	/* TX watchdog. */
3624	if (sc->counter_watchdog_mib > 0) {
3625		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3626		sc->counter_watchdog_mib = 0;
3627	}
3628	/*
3629	 * TX driver errors:
3630	 * We do not take queue locks to not disrupt TX path.
3631	 * We may only miss one drv error which will be fixed at
3632	 * next mib update. We may also clear counter when TX path
3633	 * is incrementing it but we only do it if counter was not zero
3634	 * thus we may only loose one error.
3635	 */
3636	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3637		tx = MVNETA_TX_RING(sc, i);
3638
3639		if (tx->drv_error > 0) {
3640			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3641			tx->drv_error = 0;
3642		}
3643	}
3644}
3645