1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2000, 2001 Michael Smith
5 * Copyright (c) 2000 BSDi
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD$
30 */
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/malloc.h>
35#include <sys/kernel.h>
36#include <sys/bus.h>
37#include <sys/conf.h>
38#include <sys/ctype.h>
39#include <sys/ioccom.h>
40#include <sys/stat.h>
41
42#include <machine/bus.h>
43#include <machine/resource.h>
44#include <sys/rman.h>
45
46#include <cam/cam.h>
47#include <cam/cam_ccb.h>
48#include <cam/cam_periph.h>
49#include <cam/cam_sim.h>
50#include <cam/cam_xpt_sim.h>
51#include <cam/scsi/scsi_all.h>
52#include <cam/scsi/scsi_message.h>
53
54#include <dev/pci/pcireg.h>
55#include <dev/pci/pcivar.h>
56
57#include <dev/mly/mlyreg.h>
58#include <dev/mly/mlyio.h>
59#include <dev/mly/mlyvar.h>
60#include <dev/mly/mly_tables.h>
61
62static int	mly_probe(device_t dev);
63static int	mly_attach(device_t dev);
64static int	mly_pci_attach(struct mly_softc *sc);
65static int	mly_detach(device_t dev);
66static int	mly_shutdown(device_t dev);
67static void	mly_intr(void *arg);
68
69static int	mly_sg_map(struct mly_softc *sc);
70static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71static int	mly_mmbox_map(struct mly_softc *sc);
72static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
73static void	mly_free(struct mly_softc *sc);
74
75static int	mly_get_controllerinfo(struct mly_softc *sc);
76static void	mly_scan_devices(struct mly_softc *sc);
77static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
78static void	mly_complete_rescan(struct mly_command *mc);
79static int	mly_get_eventstatus(struct mly_softc *sc);
80static int	mly_enable_mmbox(struct mly_softc *sc);
81static int	mly_flush(struct mly_softc *sc);
82static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
83			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
84static void	mly_check_event(struct mly_softc *sc);
85static void	mly_fetch_event(struct mly_softc *sc);
86static void	mly_complete_event(struct mly_command *mc);
87static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
88static void	mly_periodic(void *data);
89
90static int	mly_immediate_command(struct mly_command *mc);
91static int	mly_start(struct mly_command *mc);
92static void	mly_done(struct mly_softc *sc);
93static void	mly_complete(struct mly_softc *sc);
94static void	mly_complete_handler(void *context, int pending);
95
96static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
97static void	mly_release_command(struct mly_command *mc);
98static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
99static int	mly_alloc_commands(struct mly_softc *sc);
100static void	mly_release_commands(struct mly_softc *sc);
101static void	mly_map_command(struct mly_command *mc);
102static void	mly_unmap_command(struct mly_command *mc);
103
104static int	mly_cam_attach(struct mly_softc *sc);
105static void	mly_cam_detach(struct mly_softc *sc);
106static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
107static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
108static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
109static void	mly_cam_poll(struct cam_sim *sim);
110static void	mly_cam_complete(struct mly_command *mc);
111static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
112static int	mly_name_device(struct mly_softc *sc, int bus, int target);
113
114static int	mly_fwhandshake(struct mly_softc *sc);
115
116static void	mly_describe_controller(struct mly_softc *sc);
117#ifdef MLY_DEBUG
118static void	mly_printstate(struct mly_softc *sc);
119static void	mly_print_command(struct mly_command *mc);
120static void	mly_print_packet(struct mly_command *mc);
121static void	mly_panic(struct mly_softc *sc, char *reason);
122static void	mly_timeout(void *arg);
123#endif
124void		mly_print_controller(int controller);
125
126static d_open_t		mly_user_open;
127static d_close_t	mly_user_close;
128static d_ioctl_t	mly_user_ioctl;
129static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
130static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
131
132#define MLY_CMD_TIMEOUT		20
133
134static device_method_t mly_methods[] = {
135    /* Device interface */
136    DEVMETHOD(device_probe,	mly_probe),
137    DEVMETHOD(device_attach,	mly_attach),
138    DEVMETHOD(device_detach,	mly_detach),
139    DEVMETHOD(device_shutdown,	mly_shutdown),
140    { 0, 0 }
141};
142
143static driver_t mly_pci_driver = {
144	"mly",
145	mly_methods,
146	sizeof(struct mly_softc)
147};
148
149static devclass_t	mly_devclass;
150DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
151MODULE_DEPEND(mly, pci, 1, 1, 1);
152MODULE_DEPEND(mly, cam, 1, 1, 1);
153
154static struct cdevsw mly_cdevsw = {
155	.d_version =	D_VERSION,
156	.d_open =	mly_user_open,
157	.d_close =	mly_user_close,
158	.d_ioctl =	mly_user_ioctl,
159	.d_name =	"mly",
160};
161
162/********************************************************************************
163 ********************************************************************************
164                                                                 Device Interface
165 ********************************************************************************
166 ********************************************************************************/
167
168static struct mly_ident
169{
170    u_int16_t		vendor;
171    u_int16_t		device;
172    u_int16_t		subvendor;
173    u_int16_t		subdevice;
174    int			hwif;
175    char		*desc;
176} mly_identifiers[] = {
177    {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
178    {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
179    {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
180    {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
181    {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
182    {0, 0, 0, 0, 0, 0}
183};
184
185/********************************************************************************
186 * Compare the provided PCI device with the list we support.
187 */
188static int
189mly_probe(device_t dev)
190{
191    struct mly_ident	*m;
192
193    debug_called(1);
194
195    for (m = mly_identifiers; m->vendor != 0; m++) {
196	if ((m->vendor == pci_get_vendor(dev)) &&
197	    (m->device == pci_get_device(dev)) &&
198	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
199				     (m->subdevice == pci_get_subdevice(dev))))) {
200
201	    device_set_desc(dev, m->desc);
202	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
203	}
204    }
205    return(ENXIO);
206}
207
208/********************************************************************************
209 * Initialise the controller and softc
210 */
211static int
212mly_attach(device_t dev)
213{
214    struct mly_softc	*sc = device_get_softc(dev);
215    int			error;
216
217    debug_called(1);
218
219    sc->mly_dev = dev;
220    mtx_init(&sc->mly_lock, "mly", NULL, MTX_DEF);
221    callout_init_mtx(&sc->mly_periodic, &sc->mly_lock, 0);
222
223#ifdef MLY_DEBUG
224    callout_init_mtx(&sc->mly_timeout, &sc->mly_lock, 0);
225    if (device_get_unit(sc->mly_dev) == 0)
226	mly_softc0 = sc;
227#endif
228
229    /*
230     * Do PCI-specific initialisation.
231     */
232    if ((error = mly_pci_attach(sc)) != 0)
233	goto out;
234
235    /*
236     * Initialise per-controller queues.
237     */
238    mly_initq_free(sc);
239    mly_initq_busy(sc);
240    mly_initq_complete(sc);
241
242    /*
243     * Initialise command-completion task.
244     */
245    TASK_INIT(&sc->mly_task_complete, 0, mly_complete_handler, sc);
246
247    /* disable interrupts before we start talking to the controller */
248    MLY_MASK_INTERRUPTS(sc);
249
250    /*
251     * Wait for the controller to come ready, handshake with the firmware if required.
252     * This is typically only necessary on platforms where the controller BIOS does not
253     * run.
254     */
255    if ((error = mly_fwhandshake(sc)))
256	goto out;
257
258    /*
259     * Allocate initial command buffers.
260     */
261    if ((error = mly_alloc_commands(sc)))
262	goto out;
263
264    /*
265     * Obtain controller feature information
266     */
267    MLY_LOCK(sc);
268    error = mly_get_controllerinfo(sc);
269    MLY_UNLOCK(sc);
270    if (error)
271	goto out;
272
273    /*
274     * Reallocate command buffers now we know how many we want.
275     */
276    mly_release_commands(sc);
277    if ((error = mly_alloc_commands(sc)))
278	goto out;
279
280    /*
281     * Get the current event counter for health purposes, populate the initial
282     * health status buffer.
283     */
284    MLY_LOCK(sc);
285    error = mly_get_eventstatus(sc);
286
287    /*
288     * Enable memory-mailbox mode.
289     */
290    if (error == 0)
291	error = mly_enable_mmbox(sc);
292    MLY_UNLOCK(sc);
293    if (error)
294	goto out;
295
296    /*
297     * Attach to CAM.
298     */
299    if ((error = mly_cam_attach(sc)))
300	goto out;
301
302    /*
303     * Print a little information about the controller
304     */
305    mly_describe_controller(sc);
306
307    /*
308     * Mark all attached devices for rescan.
309     */
310    MLY_LOCK(sc);
311    mly_scan_devices(sc);
312
313    /*
314     * Instigate the first status poll immediately.  Rescan completions won't
315     * happen until interrupts are enabled, which should still be before
316     * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
317     */
318    mly_periodic((void *)sc);
319    MLY_UNLOCK(sc);
320
321    /*
322     * Create the control device.
323     */
324    sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
325			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
326    sc->mly_dev_t->si_drv1 = sc;
327
328    /* enable interrupts now */
329    MLY_UNMASK_INTERRUPTS(sc);
330
331#ifdef MLY_DEBUG
332    callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
333#endif
334
335 out:
336    if (error != 0)
337	mly_free(sc);
338    else
339	gone_in_dev(dev, 13, "mly(4) removed");
340    return(error);
341}
342
343/********************************************************************************
344 * Perform PCI-specific initialisation.
345 */
346static int
347mly_pci_attach(struct mly_softc *sc)
348{
349    int			i, error;
350
351    debug_called(1);
352
353    /* assume failure is 'not configured' */
354    error = ENXIO;
355
356    /*
357     * Verify that the adapter is correctly set up in PCI space.
358     */
359    pci_enable_busmaster(sc->mly_dev);
360
361    /*
362     * Allocate the PCI register window.
363     */
364    sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
365    if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
366	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
367	mly_printf(sc, "can't allocate register window\n");
368	goto fail;
369    }
370
371    /*
372     * Allocate and connect our interrupt.
373     */
374    sc->mly_irq_rid = 0;
375    if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
376		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
377	mly_printf(sc, "can't allocate interrupt\n");
378	goto fail;
379    }
380    if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, mly_intr, sc, &sc->mly_intr)) {
381	mly_printf(sc, "can't set up interrupt\n");
382	goto fail;
383    }
384
385    /* assume failure is 'out of memory' */
386    error = ENOMEM;
387
388    /*
389     * Allocate the parent bus DMA tag appropriate for our PCI interface.
390     *
391     * Note that all of these controllers are 64-bit capable.
392     */
393    if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
394			   1, 0, 			/* alignment, boundary */
395			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
396			   BUS_SPACE_MAXADDR, 		/* highaddr */
397			   NULL, NULL, 			/* filter, filterarg */
398			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
399			   BUS_SPACE_UNRESTRICTED,	/* nsegments */
400			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
401			   BUS_DMA_ALLOCNOW,		/* flags */
402			   NULL,			/* lockfunc */
403			   NULL,			/* lockarg */
404			   &sc->mly_parent_dmat)) {
405	mly_printf(sc, "can't allocate parent DMA tag\n");
406	goto fail;
407    }
408
409    /*
410     * Create DMA tag for mapping buffers into controller-addressable space.
411     */
412    if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
413			   1, 0, 			/* alignment, boundary */
414			   BUS_SPACE_MAXADDR,		/* lowaddr */
415			   BUS_SPACE_MAXADDR, 		/* highaddr */
416			   NULL, NULL, 			/* filter, filterarg */
417			   DFLTPHYS,			/* maxsize */
418			   MLY_MAX_SGENTRIES,		/* nsegments */
419			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
420			   0,				/* flags */
421			   busdma_lock_mutex,		/* lockfunc */
422			   &sc->mly_lock,		/* lockarg */
423			   &sc->mly_buffer_dmat)) {
424	mly_printf(sc, "can't allocate buffer DMA tag\n");
425	goto fail;
426    }
427
428    /*
429     * Initialise the DMA tag for command packets.
430     */
431    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
432			   1, 0, 			/* alignment, boundary */
433			   BUS_SPACE_MAXADDR,		/* lowaddr */
434			   BUS_SPACE_MAXADDR, 		/* highaddr */
435			   NULL, NULL, 			/* filter, filterarg */
436			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
437			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
438			   BUS_DMA_ALLOCNOW,		/* flags */
439			   NULL, NULL,			/* lockfunc, lockarg */
440			   &sc->mly_packet_dmat)) {
441	mly_printf(sc, "can't allocate command packet DMA tag\n");
442	goto fail;
443    }
444
445    /*
446     * Detect the hardware interface version
447     */
448    for (i = 0; mly_identifiers[i].vendor != 0; i++) {
449	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
450	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
451	    sc->mly_hwif = mly_identifiers[i].hwif;
452	    switch(sc->mly_hwif) {
453	    case MLY_HWIF_I960RX:
454		debug(1, "set hardware up for i960RX");
455		sc->mly_doorbell_true = 0x00;
456		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
457		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
458		sc->mly_idbr =             MLY_I960RX_IDBR;
459		sc->mly_odbr =             MLY_I960RX_ODBR;
460		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
461		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
462		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
463		break;
464	    case MLY_HWIF_STRONGARM:
465		debug(1, "set hardware up for StrongARM");
466		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
467		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
468		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
469		sc->mly_idbr =             MLY_STRONGARM_IDBR;
470		sc->mly_odbr =             MLY_STRONGARM_ODBR;
471		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
472		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
473		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
474		break;
475	    }
476	    break;
477	}
478    }
479
480    /*
481     * Create the scatter/gather mappings.
482     */
483    if ((error = mly_sg_map(sc)))
484	goto fail;
485
486    /*
487     * Allocate and map the memory mailbox
488     */
489    if ((error = mly_mmbox_map(sc)))
490	goto fail;
491
492    error = 0;
493
494fail:
495    return(error);
496}
497
498/********************************************************************************
499 * Shut the controller down and detach all our resources.
500 */
501static int
502mly_detach(device_t dev)
503{
504    int			error;
505
506    if ((error = mly_shutdown(dev)) != 0)
507	return(error);
508
509    mly_free(device_get_softc(dev));
510    return(0);
511}
512
513/********************************************************************************
514 * Bring the controller to a state where it can be safely left alone.
515 *
516 * Note that it should not be necessary to wait for any outstanding commands,
517 * as they should be completed prior to calling here.
518 *
519 * XXX this applies for I/O, but not status polls; we should beware of
520 *     the case where a status command is running while we detach.
521 */
522static int
523mly_shutdown(device_t dev)
524{
525    struct mly_softc	*sc = device_get_softc(dev);
526
527    debug_called(1);
528
529    MLY_LOCK(sc);
530    if (sc->mly_state & MLY_STATE_OPEN) {
531	MLY_UNLOCK(sc);
532	return(EBUSY);
533    }
534
535    /* kill the periodic event */
536    callout_stop(&sc->mly_periodic);
537#ifdef MLY_DEBUG
538    callout_stop(&sc->mly_timeout);
539#endif
540
541    /* flush controller */
542    mly_printf(sc, "flushing cache...");
543    printf("%s\n", mly_flush(sc) ? "failed" : "done");
544
545    MLY_MASK_INTERRUPTS(sc);
546    MLY_UNLOCK(sc);
547
548    return(0);
549}
550
551/*******************************************************************************
552 * Take an interrupt, or be poked by other code to look for interrupt-worthy
553 * status.
554 */
555static void
556mly_intr(void *arg)
557{
558    struct mly_softc	*sc = (struct mly_softc *)arg;
559
560    debug_called(2);
561
562    MLY_LOCK(sc);
563    mly_done(sc);
564    MLY_UNLOCK(sc);
565};
566
567/********************************************************************************
568 ********************************************************************************
569                                                Bus-dependant Resource Management
570 ********************************************************************************
571 ********************************************************************************/
572
573/********************************************************************************
574 * Allocate memory for the scatter/gather tables
575 */
576static int
577mly_sg_map(struct mly_softc *sc)
578{
579    size_t	segsize;
580
581    debug_called(1);
582
583    /*
584     * Create a single tag describing a region large enough to hold all of
585     * the s/g lists we will need.
586     */
587    segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
588    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
589			   1, 0, 			/* alignment,boundary */
590			   BUS_SPACE_MAXADDR,		/* lowaddr */
591			   BUS_SPACE_MAXADDR, 		/* highaddr */
592			   NULL, NULL, 			/* filter, filterarg */
593			   segsize, 1,			/* maxsize, nsegments */
594			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
595			   BUS_DMA_ALLOCNOW,		/* flags */
596			   NULL, NULL,			/* lockfunc, lockarg */
597			   &sc->mly_sg_dmat)) {
598	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
599	return(ENOMEM);
600    }
601
602    /*
603     * Allocate enough s/g maps for all commands and permanently map them into
604     * controller-visible space.
605     *
606     * XXX this assumes we can get enough space for all the s/g maps in one
607     * contiguous slab.
608     */
609    if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
610			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
611	mly_printf(sc, "can't allocate s/g table\n");
612	return(ENOMEM);
613    }
614    if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
615			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
616	return (ENOMEM);
617    return(0);
618}
619
620/********************************************************************************
621 * Save the physical address of the base of the s/g table.
622 */
623static void
624mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
625{
626    struct mly_softc	*sc = (struct mly_softc *)arg;
627
628    debug_called(1);
629
630    /* save base of s/g table's address in bus space */
631    sc->mly_sg_busaddr = segs->ds_addr;
632}
633
634/********************************************************************************
635 * Allocate memory for the memory-mailbox interface
636 */
637static int
638mly_mmbox_map(struct mly_softc *sc)
639{
640
641    /*
642     * Create a DMA tag for a single contiguous region large enough for the
643     * memory mailbox structure.
644     */
645    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
646			   1, 0, 			/* alignment,boundary */
647			   BUS_SPACE_MAXADDR,		/* lowaddr */
648			   BUS_SPACE_MAXADDR, 		/* highaddr */
649			   NULL, NULL, 			/* filter, filterarg */
650			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
651			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
652			   BUS_DMA_ALLOCNOW,		/* flags */
653			   NULL, NULL,			/* lockfunc, lockarg */
654			   &sc->mly_mmbox_dmat)) {
655	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
656	return(ENOMEM);
657    }
658
659    /*
660     * Allocate the buffer
661     */
662    if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
663	mly_printf(sc, "can't allocate memory mailbox\n");
664	return(ENOMEM);
665    }
666    if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
667			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
668			BUS_DMA_NOWAIT) != 0)
669	return (ENOMEM);
670    bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
671    return(0);
672
673}
674
675/********************************************************************************
676 * Save the physical address of the memory mailbox
677 */
678static void
679mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
680{
681    struct mly_softc	*sc = (struct mly_softc *)arg;
682
683    debug_called(1);
684
685    sc->mly_mmbox_busaddr = segs->ds_addr;
686}
687
688/********************************************************************************
689 * Free all of the resources associated with (sc)
690 *
691 * Should not be called if the controller is active.
692 */
693static void
694mly_free(struct mly_softc *sc)
695{
696
697    debug_called(1);
698
699    /* Remove the management device */
700    destroy_dev(sc->mly_dev_t);
701
702    if (sc->mly_intr)
703	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
704    callout_drain(&sc->mly_periodic);
705#ifdef MLY_DEBUG
706    callout_drain(&sc->mly_timeout);
707#endif
708
709    /* detach from CAM */
710    mly_cam_detach(sc);
711
712    /* release command memory */
713    mly_release_commands(sc);
714
715    /* throw away the controllerinfo structure */
716    if (sc->mly_controllerinfo != NULL)
717	free(sc->mly_controllerinfo, M_DEVBUF);
718
719    /* throw away the controllerparam structure */
720    if (sc->mly_controllerparam != NULL)
721	free(sc->mly_controllerparam, M_DEVBUF);
722
723    /* destroy data-transfer DMA tag */
724    if (sc->mly_buffer_dmat)
725	bus_dma_tag_destroy(sc->mly_buffer_dmat);
726
727    /* free and destroy DMA memory and tag for s/g lists */
728    if (sc->mly_sg_table) {
729	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
730	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
731    }
732    if (sc->mly_sg_dmat)
733	bus_dma_tag_destroy(sc->mly_sg_dmat);
734
735    /* free and destroy DMA memory and tag for memory mailbox */
736    if (sc->mly_mmbox) {
737	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
738	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
739    }
740    if (sc->mly_mmbox_dmat)
741	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
742
743    /* disconnect the interrupt handler */
744    if (sc->mly_irq != NULL)
745	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
746
747    /* destroy the parent DMA tag */
748    if (sc->mly_parent_dmat)
749	bus_dma_tag_destroy(sc->mly_parent_dmat);
750
751    /* release the register window mapping */
752    if (sc->mly_regs_resource != NULL)
753	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
754
755    mtx_destroy(&sc->mly_lock);
756}
757
758/********************************************************************************
759 ********************************************************************************
760                                                                 Command Wrappers
761 ********************************************************************************
762 ********************************************************************************/
763
764/********************************************************************************
765 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
766 */
767static int
768mly_get_controllerinfo(struct mly_softc *sc)
769{
770    struct mly_command_ioctl	mci;
771    u_int8_t			status;
772    int				error;
773
774    debug_called(1);
775
776    if (sc->mly_controllerinfo != NULL)
777	free(sc->mly_controllerinfo, M_DEVBUF);
778
779    /* build the getcontrollerinfo ioctl and send it */
780    bzero(&mci, sizeof(mci));
781    sc->mly_controllerinfo = NULL;
782    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
783    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
784			   &status, NULL, NULL)))
785	return(error);
786    if (status != 0)
787	return(EIO);
788
789    if (sc->mly_controllerparam != NULL)
790	free(sc->mly_controllerparam, M_DEVBUF);
791
792    /* build the getcontrollerparameter ioctl and send it */
793    bzero(&mci, sizeof(mci));
794    sc->mly_controllerparam = NULL;
795    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
796    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
797			   &status, NULL, NULL)))
798	return(error);
799    if (status != 0)
800	return(EIO);
801
802    return(0);
803}
804
805/********************************************************************************
806 * Schedule all possible devices for a rescan.
807 *
808 */
809static void
810mly_scan_devices(struct mly_softc *sc)
811{
812    int		bus, target;
813
814    debug_called(1);
815
816    /*
817     * Clear any previous BTL information.
818     */
819    bzero(&sc->mly_btl, sizeof(sc->mly_btl));
820
821    /*
822     * Mark all devices as requiring a rescan, and let the next
823     * periodic scan collect them.
824     */
825    for (bus = 0; bus < sc->mly_cam_channels; bus++)
826	if (MLY_BUS_IS_VALID(sc, bus))
827	    for (target = 0; target < MLY_MAX_TARGETS; target++)
828		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
829
830}
831
832/********************************************************************************
833 * Rescan a device, possibly as a consequence of getting an event which suggests
834 * that it may have changed.
835 *
836 * If we suffer resource starvation, we can abandon the rescan as we'll be
837 * retried.
838 */
839static void
840mly_rescan_btl(struct mly_softc *sc, int bus, int target)
841{
842    struct mly_command		*mc;
843    struct mly_command_ioctl	*mci;
844
845    debug_called(1);
846
847    /* check that this bus is valid */
848    if (!MLY_BUS_IS_VALID(sc, bus))
849	return;
850
851    /* get a command */
852    if (mly_alloc_command(sc, &mc))
853	return;
854
855    /* set up the data buffer */
856    if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
857	mly_release_command(mc);
858	return;
859    }
860    mc->mc_flags |= MLY_CMD_DATAIN;
861    mc->mc_complete = mly_complete_rescan;
862
863    /*
864     * Build the ioctl.
865     */
866    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
867    mci->opcode = MDACMD_IOCTL;
868    mci->addr.phys.controller = 0;
869    mci->timeout.value = 30;
870    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
871    if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
872	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
873	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
874	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
875	debug(1, "logical device %d", mci->addr.log.logdev);
876    } else {
877	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
878	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
879	mci->addr.phys.lun = 0;
880	mci->addr.phys.target = target;
881	mci->addr.phys.channel = bus;
882	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
883    }
884
885    /*
886     * Dispatch the command.  If we successfully send the command, clear the rescan
887     * bit.
888     */
889    if (mly_start(mc) != 0) {
890	mly_release_command(mc);
891    } else {
892	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
893    }
894}
895
896/********************************************************************************
897 * Handle the completion of a rescan operation
898 */
899static void
900mly_complete_rescan(struct mly_command *mc)
901{
902    struct mly_softc				*sc = mc->mc_sc;
903    struct mly_ioctl_getlogdevinfovalid		*ldi;
904    struct mly_ioctl_getphysdevinfovalid	*pdi;
905    struct mly_command_ioctl			*mci;
906    struct mly_btl				btl, *btlp;
907    int						bus, target, rescan;
908
909    debug_called(1);
910
911    /*
912     * Recover the bus and target from the command.  We need these even in
913     * the case where we don't have a useful response.
914     */
915    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
916    if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
917	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
918	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
919    } else {
920	bus = mci->addr.phys.channel;
921	target = mci->addr.phys.target;
922    }
923    /* XXX validate bus/target? */
924
925    /* the default result is 'no device' */
926    bzero(&btl, sizeof(btl));
927
928    /* if the rescan completed OK, we have possibly-new BTL data */
929    if (mc->mc_status == 0) {
930	if (mc->mc_length == sizeof(*ldi)) {
931	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
932	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
933		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
934		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
935			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
936			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
937		/* XXX what can we do about this? */
938	    }
939	    btl.mb_flags = MLY_BTL_LOGICAL;
940	    btl.mb_type = ldi->raid_level;
941	    btl.mb_state = ldi->state;
942	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
943		  mly_describe_code(mly_table_device_type, ldi->raid_level),
944		  mly_describe_code(mly_table_device_state, ldi->state));
945	} else if (mc->mc_length == sizeof(*pdi)) {
946	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
947	    if ((pdi->channel != bus) || (pdi->target != target)) {
948		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
949			   bus, target, pdi->channel, pdi->target);
950		/* XXX what can we do about this? */
951	    }
952	    btl.mb_flags = MLY_BTL_PHYSICAL;
953	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
954	    btl.mb_state = pdi->state;
955	    btl.mb_speed = pdi->speed;
956	    btl.mb_width = pdi->width;
957	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
958		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
959	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
960		  mly_describe_code(mly_table_device_state, pdi->state));
961	} else {
962	    mly_printf(sc, "BTL rescan result invalid\n");
963	}
964    }
965
966    free(mc->mc_data, M_DEVBUF);
967    mly_release_command(mc);
968
969    /*
970     * Decide whether we need to rescan the device.
971     */
972    rescan = 0;
973
974    /* device type changes (usually between 'nothing' and 'something') */
975    btlp = &sc->mly_btl[bus][target];
976    if (btl.mb_flags != btlp->mb_flags) {
977	debug(1, "flags changed, rescanning");
978	rescan = 1;
979    }
980
981    /* XXX other reasons? */
982
983    /*
984     * Update BTL information.
985     */
986    *btlp = btl;
987
988    /*
989     * Perform CAM rescan if required.
990     */
991    if (rescan)
992	mly_cam_rescan_btl(sc, bus, target);
993}
994
995/********************************************************************************
996 * Get the current health status and set the 'next event' counter to suit.
997 */
998static int
999mly_get_eventstatus(struct mly_softc *sc)
1000{
1001    struct mly_command_ioctl	mci;
1002    struct mly_health_status	*mh;
1003    u_int8_t			status;
1004    int				error;
1005
1006    /* build the gethealthstatus ioctl and send it */
1007    bzero(&mci, sizeof(mci));
1008    mh = NULL;
1009    mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
1010
1011    if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
1012	return(error);
1013    if (status != 0)
1014	return(EIO);
1015
1016    /* get the event counter */
1017    sc->mly_event_change = mh->change_counter;
1018    sc->mly_event_waiting = mh->next_event;
1019    sc->mly_event_counter = mh->next_event;
1020
1021    /* save the health status into the memory mailbox */
1022    bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1023
1024    debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1025
1026    free(mh, M_DEVBUF);
1027    return(0);
1028}
1029
1030/********************************************************************************
1031 * Enable the memory mailbox mode.
1032 */
1033static int
1034mly_enable_mmbox(struct mly_softc *sc)
1035{
1036    struct mly_command_ioctl	mci;
1037    u_int8_t			*sp, status;
1038    int				error;
1039
1040    debug_called(1);
1041
1042    /* build the ioctl and send it */
1043    bzero(&mci, sizeof(mci));
1044    mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1045    /* set buffer addresses */
1046    mci.param.setmemorymailbox.command_mailbox_physaddr =
1047	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1048    mci.param.setmemorymailbox.status_mailbox_physaddr =
1049	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1050    mci.param.setmemorymailbox.health_buffer_physaddr =
1051	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1052
1053    /* set buffer sizes - abuse of data_size field is revolting */
1054    sp = (u_int8_t *)&mci.data_size;
1055    sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1056    sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1057    mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1058
1059    debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1060	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1061	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1062	  mci.param.setmemorymailbox.health_buffer_physaddr,
1063	  mci.param.setmemorymailbox.health_buffer_size);
1064
1065    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1066	return(error);
1067    if (status != 0)
1068	return(EIO);
1069    sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1070    debug(1, "memory mailbox active");
1071    return(0);
1072}
1073
1074/********************************************************************************
1075 * Flush all pending I/O from the controller.
1076 */
1077static int
1078mly_flush(struct mly_softc *sc)
1079{
1080    struct mly_command_ioctl	mci;
1081    u_int8_t			status;
1082    int				error;
1083
1084    debug_called(1);
1085
1086    /* build the ioctl */
1087    bzero(&mci, sizeof(mci));
1088    mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1089    mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1090
1091    /* pass it off to the controller */
1092    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1093	return(error);
1094
1095    return((status == 0) ? 0 : EIO);
1096}
1097
1098/********************************************************************************
1099 * Perform an ioctl command.
1100 *
1101 * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1102 * the command requires data transfer from the controller, and we will allocate
1103 * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1104 * to the controller.
1105 *
1106 * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1107 *
1108 * XXX we don't even try to handle the case where datasize > 4k.  We should.
1109 */
1110static int
1111mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1112	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1113{
1114    struct mly_command		*mc;
1115    struct mly_command_ioctl	*mci;
1116    int				error;
1117
1118    debug_called(1);
1119    MLY_ASSERT_LOCKED(sc);
1120
1121    mc = NULL;
1122    if (mly_alloc_command(sc, &mc)) {
1123	error = ENOMEM;
1124	goto out;
1125    }
1126
1127    /* copy the ioctl structure, but save some important fields and then fixup */
1128    mci = &mc->mc_packet->ioctl;
1129    ioctl->sense_buffer_address = mci->sense_buffer_address;
1130    ioctl->maximum_sense_size = mci->maximum_sense_size;
1131    *mci = *ioctl;
1132    mci->opcode = MDACMD_IOCTL;
1133    mci->timeout.value = 30;
1134    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1135
1136    /* handle the data buffer */
1137    if (data != NULL) {
1138	if (*data == NULL) {
1139	    /* allocate data buffer */
1140	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1141		error = ENOMEM;
1142		goto out;
1143	    }
1144	    mc->mc_flags |= MLY_CMD_DATAIN;
1145	} else {
1146	    mc->mc_data = *data;
1147	    mc->mc_flags |= MLY_CMD_DATAOUT;
1148	}
1149	mc->mc_length = datasize;
1150	mc->mc_packet->generic.data_size = datasize;
1151    }
1152
1153    /* run the command */
1154    if ((error = mly_immediate_command(mc)))
1155	goto out;
1156
1157    /* clean up and return any data */
1158    *status = mc->mc_status;
1159    if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1160	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1161	*sense_length = mc->mc_sense;
1162	goto out;
1163    }
1164
1165    /* should we return a data pointer? */
1166    if ((data != NULL) && (*data == NULL))
1167	*data = mc->mc_data;
1168
1169    /* command completed OK */
1170    error = 0;
1171
1172out:
1173    if (mc != NULL) {
1174	/* do we need to free a data buffer we allocated? */
1175	if (error && (mc->mc_data != NULL) && (*data == NULL))
1176	    free(mc->mc_data, M_DEVBUF);
1177	mly_release_command(mc);
1178    }
1179    return(error);
1180}
1181
1182/********************************************************************************
1183 * Check for event(s) outstanding in the controller.
1184 */
1185static void
1186mly_check_event(struct mly_softc *sc)
1187{
1188
1189    /*
1190     * The controller may have updated the health status information,
1191     * so check for it here.  Note that the counters are all in host memory,
1192     * so this check is very cheap.  Also note that we depend on checking on
1193     * completion
1194     */
1195    if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1196	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1197	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1198	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1199	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1200
1201	/* wake up anyone that might be interested in this */
1202	wakeup(&sc->mly_event_change);
1203    }
1204    if (sc->mly_event_counter != sc->mly_event_waiting)
1205    mly_fetch_event(sc);
1206}
1207
1208/********************************************************************************
1209 * Fetch one event from the controller.
1210 *
1211 * If we fail due to resource starvation, we'll be retried the next time a
1212 * command completes.
1213 */
1214static void
1215mly_fetch_event(struct mly_softc *sc)
1216{
1217    struct mly_command		*mc;
1218    struct mly_command_ioctl	*mci;
1219    u_int32_t			event;
1220
1221    debug_called(1);
1222
1223    /* get a command */
1224    if (mly_alloc_command(sc, &mc))
1225	return;
1226
1227    /* set up the data buffer */
1228    if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1229	mly_release_command(mc);
1230	return;
1231    }
1232    mc->mc_length = sizeof(struct mly_event);
1233    mc->mc_flags |= MLY_CMD_DATAIN;
1234    mc->mc_complete = mly_complete_event;
1235
1236    /*
1237     * Get an event number to fetch.  It's possible that we've raced with another
1238     * context for the last event, in which case there will be no more events.
1239     */
1240    if (sc->mly_event_counter == sc->mly_event_waiting) {
1241	mly_release_command(mc);
1242	return;
1243    }
1244    event = sc->mly_event_counter++;
1245
1246    /*
1247     * Build the ioctl.
1248     *
1249     * At this point we are committed to sending this request, as it
1250     * will be the only one constructed for this particular event number.
1251     */
1252    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1253    mci->opcode = MDACMD_IOCTL;
1254    mci->data_size = sizeof(struct mly_event);
1255    mci->addr.phys.lun = (event >> 16) & 0xff;
1256    mci->addr.phys.target = (event >> 24) & 0xff;
1257    mci->addr.phys.channel = 0;
1258    mci->addr.phys.controller = 0;
1259    mci->timeout.value = 30;
1260    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1261    mci->sub_ioctl = MDACIOCTL_GETEVENT;
1262    mci->param.getevent.sequence_number_low = event & 0xffff;
1263
1264    debug(1, "fetch event %u", event);
1265
1266    /*
1267     * Submit the command.
1268     *
1269     * Note that failure of mly_start() will result in this event never being
1270     * fetched.
1271     */
1272    if (mly_start(mc) != 0) {
1273	mly_printf(sc, "couldn't fetch event %u\n", event);
1274	mly_release_command(mc);
1275    }
1276}
1277
1278/********************************************************************************
1279 * Handle the completion of an event poll.
1280 */
1281static void
1282mly_complete_event(struct mly_command *mc)
1283{
1284    struct mly_softc	*sc = mc->mc_sc;
1285    struct mly_event	*me = (struct mly_event *)mc->mc_data;
1286
1287    debug_called(1);
1288
1289    /*
1290     * If the event was successfully fetched, process it.
1291     */
1292    if (mc->mc_status == SCSI_STATUS_OK) {
1293	mly_process_event(sc, me);
1294	free(me, M_DEVBUF);
1295    }
1296    mly_release_command(mc);
1297
1298    /*
1299     * Check for another event.
1300     */
1301    mly_check_event(sc);
1302}
1303
1304/********************************************************************************
1305 * Process a controller event.
1306 */
1307static void
1308mly_process_event(struct mly_softc *sc, struct mly_event *me)
1309{
1310    struct scsi_sense_data_fixed *ssd;
1311    char			 *fp, *tp;
1312    int				 bus, target, event, class, action;
1313
1314    ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1315
1316    /*
1317     * Errors can be reported using vendor-unique sense data.  In this case, the
1318     * event code will be 0x1c (Request sense data present), the sense key will
1319     * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1320     * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1321     * and low seven bits of the ASC (low seven bits of the high byte).
1322     */
1323    if ((me->code == 0x1c) &&
1324	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1325	(ssd->add_sense_code & 0x80)) {
1326	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1327    } else {
1328	event = me->code;
1329    }
1330
1331    /* look up event, get codes */
1332    fp = mly_describe_code(mly_table_event, event);
1333
1334    debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1335
1336    /* quiet event? */
1337    class = fp[0];
1338    if (isupper(class) && bootverbose)
1339	class = tolower(class);
1340
1341    /* get action code, text string */
1342    action = fp[1];
1343    tp = &fp[2];
1344
1345    /*
1346     * Print some information about the event.
1347     *
1348     * This code uses a table derived from the corresponding portion of the Linux
1349     * driver, and thus the parser is very similar.
1350     */
1351    switch(class) {
1352    case 'p':		/* error on physical device */
1353	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1354	if (action == 'r')
1355	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1356	break;
1357    case 'l':		/* error on logical unit */
1358    case 'm':		/* message about logical unit */
1359	bus = MLY_LOGDEV_BUS(sc, me->lun);
1360	target = MLY_LOGDEV_TARGET(sc, me->lun);
1361	mly_name_device(sc, bus, target);
1362	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1363	if (action == 'r')
1364	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1365	break;
1366    case 's':		/* report of sense data */
1367	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1368	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1369	     (ssd->add_sense_code == 0x04) &&
1370	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1371	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1372
1373	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1374	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1375		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1376	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1377	if (action == 'r')
1378	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1379	break;
1380    case 'e':
1381	mly_printf(sc, tp, me->target, me->lun);
1382	printf("\n");
1383	break;
1384    case 'c':
1385	mly_printf(sc, "controller %s\n", tp);
1386	break;
1387    case '?':
1388	mly_printf(sc, "%s - %d\n", tp, me->code);
1389	break;
1390    default:	/* probably a 'noisy' event being ignored */
1391	break;
1392    }
1393}
1394
1395/********************************************************************************
1396 * Perform periodic activities.
1397 */
1398static void
1399mly_periodic(void *data)
1400{
1401    struct mly_softc	*sc = (struct mly_softc *)data;
1402    int			bus, target;
1403
1404    debug_called(2);
1405    MLY_ASSERT_LOCKED(sc);
1406
1407    /*
1408     * Scan devices.
1409     */
1410    for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1411	if (MLY_BUS_IS_VALID(sc, bus)) {
1412	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1413		/* ignore the controller in this scan */
1414		if (target == sc->mly_controllerparam->initiator_id)
1415		    continue;
1416
1417		/* perform device rescan? */
1418		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1419		    mly_rescan_btl(sc, bus, target);
1420	    }
1421	}
1422    }
1423
1424    /* check for controller events */
1425    mly_check_event(sc);
1426
1427    /* reschedule ourselves */
1428    callout_schedule(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz);
1429}
1430
1431/********************************************************************************
1432 ********************************************************************************
1433                                                               Command Processing
1434 ********************************************************************************
1435 ********************************************************************************/
1436
1437/********************************************************************************
1438 * Run a command and wait for it to complete.
1439 *
1440 */
1441static int
1442mly_immediate_command(struct mly_command *mc)
1443{
1444    struct mly_softc	*sc = mc->mc_sc;
1445    int			error;
1446
1447    debug_called(1);
1448
1449    MLY_ASSERT_LOCKED(sc);
1450    if ((error = mly_start(mc))) {
1451	return(error);
1452    }
1453
1454    if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1455	/* sleep on the command */
1456	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1457	    mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlywait", 0);
1458	}
1459    } else {
1460	/* spin and collect status while we do */
1461	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1462	    mly_done(mc->mc_sc);
1463	}
1464    }
1465    return(0);
1466}
1467
1468/********************************************************************************
1469 * Deliver a command to the controller.
1470 *
1471 * XXX it would be good to just queue commands that we can't submit immediately
1472 *     and send them later, but we probably want a wrapper for that so that
1473 *     we don't hang on a failed submission for an immediate command.
1474 */
1475static int
1476mly_start(struct mly_command *mc)
1477{
1478    struct mly_softc		*sc = mc->mc_sc;
1479    union mly_command_packet	*pkt;
1480
1481    debug_called(2);
1482    MLY_ASSERT_LOCKED(sc);
1483
1484    /*
1485     * Set the command up for delivery to the controller.
1486     */
1487    mly_map_command(mc);
1488    mc->mc_packet->generic.command_id = mc->mc_slot;
1489
1490#ifdef MLY_DEBUG
1491    mc->mc_timestamp = time_second;
1492#endif
1493
1494    /*
1495     * Do we have to use the hardware mailbox?
1496     */
1497    if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1498	/*
1499	 * Check to see if the controller is ready for us.
1500	 */
1501	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1502	    return(EBUSY);
1503	}
1504	mc->mc_flags |= MLY_CMD_BUSY;
1505
1506	/*
1507	 * It's ready, send the command.
1508	 */
1509	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1510	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1511
1512    } else {	/* use memory-mailbox mode */
1513
1514	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1515
1516	/* check to see if the next index is free yet */
1517	if (pkt->mmbox.flag != 0) {
1518	    return(EBUSY);
1519	}
1520	mc->mc_flags |= MLY_CMD_BUSY;
1521
1522	/* copy in new command */
1523	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1524	/* barrier to ensure completion of previous write before we write the flag */
1525	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1526	/* copy flag last */
1527	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1528	/* barrier to ensure completion of previous write before we notify the controller */
1529	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1530
1531	/* signal controller, update index */
1532	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1533	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1534    }
1535
1536    mly_enqueue_busy(mc);
1537    return(0);
1538}
1539
1540/********************************************************************************
1541 * Pick up command status from the controller, schedule a completion event
1542 */
1543static void
1544mly_done(struct mly_softc *sc)
1545{
1546    struct mly_command		*mc;
1547    union mly_status_packet	*sp;
1548    u_int16_t			slot;
1549    int				worked;
1550
1551    MLY_ASSERT_LOCKED(sc);
1552    worked = 0;
1553
1554    /* pick up hardware-mailbox commands */
1555    if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1556	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1557	if (slot < MLY_SLOT_MAX) {
1558	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1559	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1560	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1561	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1562	    mly_remove_busy(mc);
1563	    mc->mc_flags &= ~MLY_CMD_BUSY;
1564	    mly_enqueue_complete(mc);
1565	    worked = 1;
1566	} else {
1567	    /* slot 0xffff may mean "extremely bogus command" */
1568	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1569	}
1570	/* unconditionally acknowledge status */
1571	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1572	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1573    }
1574
1575    /* pick up memory-mailbox commands */
1576    if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1577	for (;;) {
1578	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1579
1580	    /* check for more status */
1581	    if (sp->mmbox.flag == 0)
1582		break;
1583
1584	    /* get slot number */
1585	    slot = sp->status.command_id;
1586	    if (slot < MLY_SLOT_MAX) {
1587		mc = &sc->mly_command[slot - MLY_SLOT_START];
1588		mc->mc_status = sp->status.status;
1589		mc->mc_sense = sp->status.sense_length;
1590		mc->mc_resid = sp->status.residue;
1591		mly_remove_busy(mc);
1592		mc->mc_flags &= ~MLY_CMD_BUSY;
1593		mly_enqueue_complete(mc);
1594		worked = 1;
1595	    } else {
1596		/* slot 0xffff may mean "extremely bogus command" */
1597		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1598			   slot, sc->mly_mmbox_status_index);
1599	    }
1600
1601	    /* clear and move to next index */
1602	    sp->mmbox.flag = 0;
1603	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1604	}
1605	/* acknowledge that we have collected status value(s) */
1606	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1607    }
1608
1609    if (worked) {
1610	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1611	    taskqueue_enqueue(taskqueue_thread, &sc->mly_task_complete);
1612	else
1613	    mly_complete(sc);
1614    }
1615}
1616
1617/********************************************************************************
1618 * Process completed commands
1619 */
1620static void
1621mly_complete_handler(void *context, int pending)
1622{
1623    struct mly_softc	*sc = (struct mly_softc *)context;
1624
1625    MLY_LOCK(sc);
1626    mly_complete(sc);
1627    MLY_UNLOCK(sc);
1628}
1629
1630static void
1631mly_complete(struct mly_softc *sc)
1632{
1633    struct mly_command	*mc;
1634    void	        (* mc_complete)(struct mly_command *mc);
1635
1636    debug_called(2);
1637
1638    /*
1639     * Spin pulling commands off the completed queue and processing them.
1640     */
1641    while ((mc = mly_dequeue_complete(sc)) != NULL) {
1642	/*
1643	 * Free controller resources, mark command complete.
1644	 *
1645	 * Note that as soon as we mark the command complete, it may be freed
1646	 * out from under us, so we need to save the mc_complete field in
1647	 * order to later avoid dereferencing mc.  (We would not expect to
1648	 * have a polling/sleeping consumer with mc_complete != NULL).
1649	 */
1650	mly_unmap_command(mc);
1651	mc_complete = mc->mc_complete;
1652	mc->mc_flags |= MLY_CMD_COMPLETE;
1653
1654	/*
1655	 * Call completion handler or wake up sleeping consumer.
1656	 */
1657	if (mc_complete != NULL) {
1658	    mc_complete(mc);
1659	} else {
1660	    wakeup(mc);
1661	}
1662    }
1663
1664    /*
1665     * XXX if we are deferring commands due to controller-busy status, we should
1666     *     retry submitting them here.
1667     */
1668}
1669
1670/********************************************************************************
1671 ********************************************************************************
1672                                                        Command Buffer Management
1673 ********************************************************************************
1674 ********************************************************************************/
1675
1676/********************************************************************************
1677 * Allocate a command.
1678 */
1679static int
1680mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1681{
1682    struct mly_command	*mc;
1683
1684    debug_called(3);
1685
1686    if ((mc = mly_dequeue_free(sc)) == NULL)
1687	return(ENOMEM);
1688
1689    *mcp = mc;
1690    return(0);
1691}
1692
1693/********************************************************************************
1694 * Release a command back to the freelist.
1695 */
1696static void
1697mly_release_command(struct mly_command *mc)
1698{
1699    debug_called(3);
1700
1701    /*
1702     * Fill in parts of the command that may cause confusion if
1703     * a consumer doesn't when we are later allocated.
1704     */
1705    mc->mc_data = NULL;
1706    mc->mc_flags = 0;
1707    mc->mc_complete = NULL;
1708    mc->mc_private = NULL;
1709
1710    /*
1711     * By default, we set up to overwrite the command packet with
1712     * sense information.
1713     */
1714    mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1715    mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1716
1717    mly_enqueue_free(mc);
1718}
1719
1720/********************************************************************************
1721 * Map helper for command allocation.
1722 */
1723static void
1724mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1725{
1726    struct mly_softc	*sc = (struct mly_softc *)arg;
1727
1728    debug_called(1);
1729
1730    sc->mly_packetphys = segs[0].ds_addr;
1731}
1732
1733/********************************************************************************
1734 * Allocate and initialise command and packet structures.
1735 *
1736 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1737 * allocation to that number.  If we don't yet know how many commands the
1738 * controller supports, allocate a very small set (suitable for initialisation
1739 * purposes only).
1740 */
1741static int
1742mly_alloc_commands(struct mly_softc *sc)
1743{
1744    struct mly_command		*mc;
1745    int				i, ncmd;
1746
1747    if (sc->mly_controllerinfo == NULL) {
1748	ncmd = 4;
1749    } else {
1750	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1751    }
1752
1753    /*
1754     * Allocate enough space for all the command packets in one chunk and
1755     * map them permanently into controller-visible space.
1756     */
1757    if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1758			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1759	return(ENOMEM);
1760    }
1761    if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1762			ncmd * sizeof(union mly_command_packet),
1763			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1764	return (ENOMEM);
1765
1766    for (i = 0; i < ncmd; i++) {
1767	mc = &sc->mly_command[i];
1768	bzero(mc, sizeof(*mc));
1769	mc->mc_sc = sc;
1770	mc->mc_slot = MLY_SLOT_START + i;
1771	mc->mc_packet = sc->mly_packet + i;
1772	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1773	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1774	    mly_release_command(mc);
1775    }
1776    return(0);
1777}
1778
1779/********************************************************************************
1780 * Free all the storage held by commands.
1781 *
1782 * Must be called with all commands on the free list.
1783 */
1784static void
1785mly_release_commands(struct mly_softc *sc)
1786{
1787    struct mly_command	*mc;
1788
1789    /* throw away command buffer DMA maps */
1790    while (mly_alloc_command(sc, &mc) == 0)
1791	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1792
1793    /* release the packet storage */
1794    if (sc->mly_packet != NULL) {
1795	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1796	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1797	sc->mly_packet = NULL;
1798    }
1799}
1800
1801/********************************************************************************
1802 * Command-mapping helper function - populate this command's s/g table
1803 * with the s/g entries for its data.
1804 */
1805static void
1806mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1807{
1808    struct mly_command		*mc = (struct mly_command *)arg;
1809    struct mly_softc		*sc = mc->mc_sc;
1810    struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1811    struct mly_sg_entry		*sg;
1812    int				i, tabofs;
1813
1814    debug_called(2);
1815
1816    /* can we use the transfer structure directly? */
1817    if (nseg <= 2) {
1818	sg = &gen->transfer.direct.sg[0];
1819	gen->command_control.extended_sg_table = 0;
1820    } else {
1821	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1822	sg = sc->mly_sg_table + tabofs;
1823	gen->transfer.indirect.entries[0] = nseg;
1824	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1825	gen->command_control.extended_sg_table = 1;
1826    }
1827
1828    /* copy the s/g table */
1829    for (i = 0; i < nseg; i++) {
1830	sg[i].physaddr = segs[i].ds_addr;
1831	sg[i].length = segs[i].ds_len;
1832    }
1833
1834}
1835
1836#if 0
1837/********************************************************************************
1838 * Command-mapping helper function - save the cdb's physical address.
1839 *
1840 * We don't support 'large' SCSI commands at this time, so this is unused.
1841 */
1842static void
1843mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1844{
1845    struct mly_command			*mc = (struct mly_command *)arg;
1846
1847    debug_called(2);
1848
1849    /* XXX can we safely assume that a CDB will never cross a page boundary? */
1850    if ((segs[0].ds_addr % PAGE_SIZE) >
1851	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1852	panic("cdb crosses page boundary");
1853
1854    /* fix up fields in the command packet */
1855    mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1856}
1857#endif
1858
1859/********************************************************************************
1860 * Map a command into controller-visible space
1861 */
1862static void
1863mly_map_command(struct mly_command *mc)
1864{
1865    struct mly_softc	*sc = mc->mc_sc;
1866
1867    debug_called(2);
1868
1869    /* don't map more than once */
1870    if (mc->mc_flags & MLY_CMD_MAPPED)
1871	return;
1872
1873    /* does the command have a data buffer? */
1874    if (mc->mc_data != NULL) {
1875	if (mc->mc_flags & MLY_CMD_CCB)
1876		bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1877				mc->mc_data, mly_map_command_sg, mc, 0);
1878	else
1879		bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1880				mc->mc_data, mc->mc_length,
1881				mly_map_command_sg, mc, 0);
1882	if (mc->mc_flags & MLY_CMD_DATAIN)
1883	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1884	if (mc->mc_flags & MLY_CMD_DATAOUT)
1885	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1886    }
1887    mc->mc_flags |= MLY_CMD_MAPPED;
1888}
1889
1890/********************************************************************************
1891 * Unmap a command from controller-visible space
1892 */
1893static void
1894mly_unmap_command(struct mly_command *mc)
1895{
1896    struct mly_softc	*sc = mc->mc_sc;
1897
1898    debug_called(2);
1899
1900    if (!(mc->mc_flags & MLY_CMD_MAPPED))
1901	return;
1902
1903    /* does the command have a data buffer? */
1904    if (mc->mc_data != NULL) {
1905	if (mc->mc_flags & MLY_CMD_DATAIN)
1906	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1907	if (mc->mc_flags & MLY_CMD_DATAOUT)
1908	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1909
1910	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1911    }
1912    mc->mc_flags &= ~MLY_CMD_MAPPED;
1913}
1914
1915/********************************************************************************
1916 ********************************************************************************
1917                                                                    CAM interface
1918 ********************************************************************************
1919 ********************************************************************************/
1920
1921/********************************************************************************
1922 * Attach the physical and virtual SCSI busses to CAM.
1923 *
1924 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1925 * than the highest physical bus.  Physical busses are only registered if
1926 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1927 *
1928 * When we refer to a "bus", we are referring to the bus number registered with
1929 * the SIM, whereas a "channel" is a channel number given to the adapter.  In order
1930 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1931 * interchangeably.
1932 */
1933static int
1934mly_cam_attach(struct mly_softc *sc)
1935{
1936    struct cam_devq	*devq;
1937    int			chn, i;
1938
1939    debug_called(1);
1940
1941    /*
1942     * Allocate a devq for all our channels combined.
1943     */
1944    if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1945	mly_printf(sc, "can't allocate CAM SIM queue\n");
1946	return(ENOMEM);
1947    }
1948
1949    /*
1950     * If physical channel registration has been requested, register these first.
1951     * Note that we enable tagged command queueing for physical channels.
1952     */
1953    if (testenv("hw.mly.register_physical_channels")) {
1954	chn = 0;
1955	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1956	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1957						      device_get_unit(sc->mly_dev),
1958						      &sc->mly_lock,
1959						      sc->mly_controllerinfo->maximum_parallel_commands,
1960						      1, devq)) == NULL) {
1961		return(ENOMEM);
1962	    }
1963	    MLY_LOCK(sc);
1964	    if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1965		MLY_UNLOCK(sc);
1966		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1967		return(ENXIO);
1968	    }
1969	    MLY_UNLOCK(sc);
1970	    debug(1, "registered physical channel %d", chn);
1971	}
1972    }
1973
1974    /*
1975     * Register our virtual channels, with bus numbers matching channel numbers.
1976     */
1977    chn = sc->mly_controllerinfo->physical_channels_present;
1978    for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1979	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1980						  device_get_unit(sc->mly_dev),
1981						  &sc->mly_lock,
1982						  sc->mly_controllerinfo->maximum_parallel_commands,
1983						  0, devq)) == NULL) {
1984	    return(ENOMEM);
1985	}
1986	MLY_LOCK(sc);
1987	if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1988	    MLY_UNLOCK(sc);
1989	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1990	    return(ENXIO);
1991	}
1992	MLY_UNLOCK(sc);
1993	debug(1, "registered virtual channel %d", chn);
1994    }
1995
1996    /*
1997     * This is the total number of channels that (might have been) registered with
1998     * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1999     */
2000    sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
2001	sc->mly_controllerinfo->virtual_channels_present;
2002
2003    return(0);
2004}
2005
2006/********************************************************************************
2007 * Detach from CAM
2008 */
2009static void
2010mly_cam_detach(struct mly_softc *sc)
2011{
2012    int		i;
2013
2014    debug_called(1);
2015
2016    MLY_LOCK(sc);
2017    for (i = 0; i < sc->mly_cam_channels; i++) {
2018	if (sc->mly_cam_sim[i] != NULL) {
2019	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
2020	    cam_sim_free(sc->mly_cam_sim[i], 0);
2021	}
2022    }
2023    MLY_UNLOCK(sc);
2024    if (sc->mly_cam_devq != NULL)
2025	cam_simq_free(sc->mly_cam_devq);
2026}
2027
2028/************************************************************************
2029 * Rescan a device.
2030 */
2031static void
2032mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2033{
2034    union ccb	*ccb;
2035
2036    debug_called(1);
2037
2038    if ((ccb = xpt_alloc_ccb()) == NULL) {
2039	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2040	return;
2041    }
2042    if (xpt_create_path(&ccb->ccb_h.path, NULL,
2043	    cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2044	mly_printf(sc, "rescan failed (can't create path)\n");
2045	xpt_free_ccb(ccb);
2046	return;
2047    }
2048    debug(1, "rescan target %d:%d", bus, target);
2049    xpt_rescan(ccb);
2050}
2051
2052/********************************************************************************
2053 * Handle an action requested by CAM
2054 */
2055static void
2056mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2057{
2058    struct mly_softc	*sc = cam_sim_softc(sim);
2059
2060    debug_called(2);
2061    MLY_ASSERT_LOCKED(sc);
2062
2063    switch (ccb->ccb_h.func_code) {
2064	/* perform SCSI I/O */
2065    case XPT_SCSI_IO:
2066	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2067	    return;
2068	break;
2069
2070	/* perform geometry calculations */
2071    case XPT_CALC_GEOMETRY:
2072    {
2073	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2074        u_int32_t			secs_per_cylinder;
2075
2076	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2077
2078	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2079	    ccg->heads = 255;
2080            ccg->secs_per_track = 63;
2081	} else {				/* MLY_BIOSGEOM_2G */
2082	    ccg->heads = 128;
2083            ccg->secs_per_track = 32;
2084	}
2085	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2086        ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2087        ccb->ccb_h.status = CAM_REQ_CMP;
2088        break;
2089    }
2090
2091	/* handle path attribute inquiry */
2092    case XPT_PATH_INQ:
2093    {
2094	struct ccb_pathinq	*cpi = &ccb->cpi;
2095
2096	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2097
2098	cpi->version_num = 1;
2099	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2100	cpi->target_sprt = 0;
2101	cpi->hba_misc = 0;
2102	cpi->max_target = MLY_MAX_TARGETS - 1;
2103	cpi->max_lun = MLY_MAX_LUNS - 1;
2104	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2105	strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2106	strlcpy(cpi->hba_vid, "Mylex", HBA_IDLEN);
2107	strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2108	cpi->unit_number = cam_sim_unit(sim);
2109	cpi->bus_id = cam_sim_bus(sim);
2110	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2111	cpi->transport = XPORT_SPI;
2112	cpi->transport_version = 2;
2113	cpi->protocol = PROTO_SCSI;
2114	cpi->protocol_version = SCSI_REV_2;
2115	ccb->ccb_h.status = CAM_REQ_CMP;
2116	break;
2117    }
2118
2119    case XPT_GET_TRAN_SETTINGS:
2120    {
2121	struct ccb_trans_settings	*cts = &ccb->cts;
2122	int				bus, target;
2123	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2124	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2125
2126	cts->protocol = PROTO_SCSI;
2127	cts->protocol_version = SCSI_REV_2;
2128	cts->transport = XPORT_SPI;
2129	cts->transport_version = 2;
2130
2131	scsi->flags = 0;
2132	scsi->valid = 0;
2133	spi->flags = 0;
2134	spi->valid = 0;
2135
2136	bus = cam_sim_bus(sim);
2137	target = cts->ccb_h.target_id;
2138	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2139	/* logical device? */
2140	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2141	    /* nothing special for these */
2142	/* physical device? */
2143	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2144	    /* allow CAM to try tagged transactions */
2145	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2146	    scsi->valid |= CTS_SCSI_VALID_TQ;
2147
2148	    /* convert speed (MHz) to usec */
2149	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2150		spi->sync_period = 1000000 / 5;
2151	    } else {
2152		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2153	    }
2154
2155	    /* convert bus width to CAM internal encoding */
2156	    switch (sc->mly_btl[bus][target].mb_width) {
2157	    case 32:
2158		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2159		break;
2160	    case 16:
2161		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2162		break;
2163	    case 8:
2164	    default:
2165		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2166		break;
2167	    }
2168	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2169
2170	    /* not a device, bail out */
2171	} else {
2172	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2173	    break;
2174	}
2175
2176	/* disconnect always OK */
2177	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2178	spi->valid |= CTS_SPI_VALID_DISC;
2179
2180	cts->ccb_h.status = CAM_REQ_CMP;
2181	break;
2182    }
2183
2184    default:		/* we can't do this */
2185	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2186	ccb->ccb_h.status = CAM_REQ_INVALID;
2187	break;
2188    }
2189
2190    xpt_done(ccb);
2191}
2192
2193/********************************************************************************
2194 * Handle an I/O operation requested by CAM
2195 */
2196static int
2197mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2198{
2199    struct mly_softc			*sc = cam_sim_softc(sim);
2200    struct mly_command			*mc;
2201    struct mly_command_scsi_small	*ss;
2202    int					bus, target;
2203    int					error;
2204
2205    bus = cam_sim_bus(sim);
2206    target = csio->ccb_h.target_id;
2207
2208    debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2209
2210    /* validate bus number */
2211    if (!MLY_BUS_IS_VALID(sc, bus)) {
2212	debug(0, " invalid bus %d", bus);
2213	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2214    }
2215
2216    /*  check for I/O attempt to a protected device */
2217    if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2218	debug(2, "  device protected");
2219	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2220    }
2221
2222    /* check for I/O attempt to nonexistent device */
2223    if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2224	debug(2, "  device %d:%d does not exist", bus, target);
2225	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2226    }
2227
2228    /* XXX increase if/when we support large SCSI commands */
2229    if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2230	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2231	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2232    }
2233
2234    /* check that the CDB pointer is not to a physical address */
2235    if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2236	debug(0, "  CDB pointer is to physical address");
2237	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2238    }
2239
2240    /* abandon aborted ccbs or those that have failed validation */
2241    if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2242	debug(2, "abandoning CCB due to abort/validation failure");
2243	return(EINVAL);
2244    }
2245
2246    /*
2247     * Get a command, or push the ccb back to CAM and freeze the queue.
2248     */
2249    if ((error = mly_alloc_command(sc, &mc))) {
2250	xpt_freeze_simq(sim, 1);
2251	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2252	sc->mly_qfrzn_cnt++;
2253	return(error);
2254    }
2255
2256    /* build the command */
2257    mc->mc_data = csio;
2258    mc->mc_length = csio->dxfer_len;
2259    mc->mc_complete = mly_cam_complete;
2260    mc->mc_private = csio;
2261    mc->mc_flags |= MLY_CMD_CCB;
2262    /* XXX This code doesn't set the data direction in mc_flags. */
2263
2264    /* save the bus number in the ccb for later recovery XXX should be a better way */
2265     csio->ccb_h.sim_priv.entries[0].field = bus;
2266
2267    /* build the packet for the controller */
2268    ss = &mc->mc_packet->scsi_small;
2269    ss->opcode = MDACMD_SCSI;
2270    if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2271	ss->command_control.disable_disconnect = 1;
2272    if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2273	ss->command_control.data_direction = MLY_CCB_WRITE;
2274    ss->data_size = csio->dxfer_len;
2275    ss->addr.phys.lun = csio->ccb_h.target_lun;
2276    ss->addr.phys.target = csio->ccb_h.target_id;
2277    ss->addr.phys.channel = bus;
2278    if (csio->ccb_h.timeout < (60 * 1000)) {
2279	ss->timeout.value = csio->ccb_h.timeout / 1000;
2280	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2281    } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2282	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2283	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2284    } else {
2285	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2286	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2287    }
2288    ss->maximum_sense_size = csio->sense_len;
2289    ss->cdb_length = csio->cdb_len;
2290    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2291	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2292    } else {
2293	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2294    }
2295
2296    /* give the command to the controller */
2297    if ((error = mly_start(mc))) {
2298	xpt_freeze_simq(sim, 1);
2299	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2300	sc->mly_qfrzn_cnt++;
2301	return(error);
2302    }
2303
2304    return(0);
2305}
2306
2307/********************************************************************************
2308 * Check for possibly-completed commands.
2309 */
2310static void
2311mly_cam_poll(struct cam_sim *sim)
2312{
2313    struct mly_softc	*sc = cam_sim_softc(sim);
2314
2315    debug_called(2);
2316
2317    mly_done(sc);
2318}
2319
2320/********************************************************************************
2321 * Handle completion of a command - pass results back through the CCB
2322 */
2323static void
2324mly_cam_complete(struct mly_command *mc)
2325{
2326    struct mly_softc		*sc = mc->mc_sc;
2327    struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2328    struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2329    struct mly_btl		*btl;
2330    u_int8_t			cmd;
2331    int				bus, target;
2332
2333    debug_called(2);
2334
2335    csio->scsi_status = mc->mc_status;
2336    switch(mc->mc_status) {
2337    case SCSI_STATUS_OK:
2338	/*
2339	 * In order to report logical device type and status, we overwrite
2340	 * the result of the INQUIRY command to logical devices.
2341	 */
2342	bus = csio->ccb_h.sim_priv.entries[0].field;
2343	target = csio->ccb_h.target_id;
2344	/* XXX validate bus/target? */
2345	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2346	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2347		cmd = *csio->cdb_io.cdb_ptr;
2348	    } else {
2349		cmd = csio->cdb_io.cdb_bytes[0];
2350	    }
2351	    if (cmd == INQUIRY) {
2352		btl = &sc->mly_btl[bus][target];
2353		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2354		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2355		padstr(inq->revision, "", 4);
2356	    }
2357	}
2358
2359	debug(2, "SCSI_STATUS_OK");
2360	csio->ccb_h.status = CAM_REQ_CMP;
2361	break;
2362
2363    case SCSI_STATUS_CHECK_COND:
2364	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2365	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2366	bzero(&csio->sense_data, SSD_FULL_SIZE);
2367	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2368	csio->sense_len = mc->mc_sense;
2369	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2370	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2371	break;
2372
2373    case SCSI_STATUS_BUSY:
2374	debug(1, "SCSI_STATUS_BUSY");
2375	csio->ccb_h.status = CAM_SCSI_BUSY;
2376	break;
2377
2378    default:
2379	debug(1, "unknown status 0x%x", csio->scsi_status);
2380	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2381	break;
2382    }
2383
2384    if (sc->mly_qfrzn_cnt) {
2385	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2386	sc->mly_qfrzn_cnt--;
2387    }
2388
2389    xpt_done((union ccb *)csio);
2390    mly_release_command(mc);
2391}
2392
2393/********************************************************************************
2394 * Find a peripheral attahed at (bus),(target)
2395 */
2396static struct cam_periph *
2397mly_find_periph(struct mly_softc *sc, int bus, int target)
2398{
2399    struct cam_periph	*periph;
2400    struct cam_path	*path;
2401    int			status;
2402
2403    status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2404    if (status == CAM_REQ_CMP) {
2405	periph = cam_periph_find(path, NULL);
2406	xpt_free_path(path);
2407    } else {
2408	periph = NULL;
2409    }
2410    return(periph);
2411}
2412
2413/********************************************************************************
2414 * Name the device at (bus)(target)
2415 */
2416static int
2417mly_name_device(struct mly_softc *sc, int bus, int target)
2418{
2419    struct cam_periph	*periph;
2420
2421    if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2422	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2423	return(0);
2424    }
2425    sc->mly_btl[bus][target].mb_name[0] = 0;
2426    return(ENOENT);
2427}
2428
2429/********************************************************************************
2430 ********************************************************************************
2431                                                                 Hardware Control
2432 ********************************************************************************
2433 ********************************************************************************/
2434
2435/********************************************************************************
2436 * Handshake with the firmware while the card is being initialised.
2437 */
2438static int
2439mly_fwhandshake(struct mly_softc *sc)
2440{
2441    u_int8_t	error, param0, param1;
2442    int		spinup = 0;
2443
2444    debug_called(1);
2445
2446    /* set HM_STSACK and let the firmware initialise */
2447    MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2448    DELAY(1000);	/* too short? */
2449
2450    /* if HM_STSACK is still true, the controller is initialising */
2451    if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2452	return(0);
2453    mly_printf(sc, "controller initialisation started\n");
2454
2455    /* spin waiting for initialisation to finish, or for a message to be delivered */
2456    while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2457	/* check for a message */
2458	if (MLY_ERROR_VALID(sc)) {
2459	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2460	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2461	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2462
2463	    switch(error) {
2464	    case MLY_MSG_SPINUP:
2465		if (!spinup) {
2466		    mly_printf(sc, "drive spinup in progress\n");
2467		    spinup = 1;			/* only print this once (should print drive being spun?) */
2468		}
2469		break;
2470	    case MLY_MSG_RACE_RECOVERY_FAIL:
2471		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2472		break;
2473	    case MLY_MSG_RACE_IN_PROGRESS:
2474		mly_printf(sc, "mirror race recovery in progress\n");
2475		break;
2476	    case MLY_MSG_RACE_ON_CRITICAL:
2477		mly_printf(sc, "mirror race recovery on a critical drive\n");
2478		break;
2479	    case MLY_MSG_PARITY_ERROR:
2480		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2481		return(ENXIO);
2482	    default:
2483		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2484	    }
2485	}
2486    }
2487    return(0);
2488}
2489
2490/********************************************************************************
2491 ********************************************************************************
2492                                                        Debugging and Diagnostics
2493 ********************************************************************************
2494 ********************************************************************************/
2495
2496/********************************************************************************
2497 * Print some information about the controller.
2498 */
2499static void
2500mly_describe_controller(struct mly_softc *sc)
2501{
2502    struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2503
2504    mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2505	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2506	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2507	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2508	       mi->memory_size);
2509
2510    if (bootverbose) {
2511	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2512		   mly_describe_code(mly_table_oemname, mi->oem_information),
2513		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2514		   mi->interface_speed, mi->interface_width, mi->interface_name);
2515	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2516		   mi->memory_size, mi->memory_speed, mi->memory_width,
2517		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2518		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2519		   mi->cache_size);
2520	mly_printf(sc, "CPU: %s @ %dMHz\n",
2521		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2522	if (mi->l2cache_size != 0)
2523	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2524	if (mi->exmemory_size != 0)
2525	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2526		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2527		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2528		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2529	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2530	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2531		   mi->maximum_block_count, mi->maximum_sg_entries);
2532	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2533		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2534	mly_printf(sc, "physical devices present %d\n",
2535		   mi->physical_devices_present);
2536	mly_printf(sc, "physical disks present/offline %d/%d\n",
2537		   mi->physical_disks_present, mi->physical_disks_offline);
2538	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2539		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2540		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2541		   mi->virtual_channels_possible);
2542	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2543	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2544		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2545    }
2546}
2547
2548#ifdef MLY_DEBUG
2549/********************************************************************************
2550 * Print some controller state
2551 */
2552static void
2553mly_printstate(struct mly_softc *sc)
2554{
2555    mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2556		  MLY_GET_REG(sc, sc->mly_idbr),
2557		  MLY_GET_REG(sc, sc->mly_odbr),
2558		  MLY_GET_REG(sc, sc->mly_error_status),
2559		  sc->mly_idbr,
2560		  sc->mly_odbr,
2561		  sc->mly_error_status);
2562    mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2563		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2564		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2565    mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2566		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2567		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2568		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2569		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2570		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2571		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2572		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2573		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2574    mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2575		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2576		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2577		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2578		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2579		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2580		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2581		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2582		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2583    mly_printf(sc, "        %04x        %08x\n",
2584		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2585		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2586}
2587
2588struct mly_softc	*mly_softc0 = NULL;
2589void
2590mly_printstate0(void)
2591{
2592    if (mly_softc0 != NULL)
2593	mly_printstate(mly_softc0);
2594}
2595
2596/********************************************************************************
2597 * Print a command
2598 */
2599static void
2600mly_print_command(struct mly_command *mc)
2601{
2602    struct mly_softc	*sc = mc->mc_sc;
2603
2604    mly_printf(sc, "COMMAND @ %p\n", mc);
2605    mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2606    mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2607    mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2608    mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2609    mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2610    if (mc->mc_packet != NULL)
2611	mly_print_packet(mc);
2612    mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2613    mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2614    mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2615    mly_printf(sc, "  private   %p\n", mc->mc_private);
2616}
2617
2618/********************************************************************************
2619 * Print a command packet
2620 */
2621static void
2622mly_print_packet(struct mly_command *mc)
2623{
2624    struct mly_softc			*sc = mc->mc_sc;
2625    struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2626    struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2627    struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2628    struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2629    int					transfer;
2630
2631    mly_printf(sc, "   command_id           %d\n", ge->command_id);
2632    mly_printf(sc, "   opcode               %d\n", ge->opcode);
2633    mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2634		  ge->command_control.force_unit_access,
2635		  ge->command_control.disable_page_out,
2636		  ge->command_control.extended_sg_table,
2637		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2638		  ge->command_control.no_auto_sense,
2639		  ge->command_control.disable_disconnect);
2640    mly_printf(sc, "   data_size            %d\n", ge->data_size);
2641    mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2642    mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2643    mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2644    mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2645    mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2646    mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2647    mly_printf(sc, "   timeout              %d %s\n",
2648		  ge->timeout.value,
2649		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2650		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2651    mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2652    switch(ge->opcode) {
2653    case MDACMD_SCSIPT:
2654    case MDACMD_SCSI:
2655	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2656	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2657	transfer = 1;
2658	break;
2659    case MDACMD_SCSILC:
2660    case MDACMD_SCSILCPT:
2661	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2662	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2663	transfer = 1;
2664	break;
2665    case MDACMD_IOCTL:
2666	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2667	switch(io->sub_ioctl) {
2668	case MDACIOCTL_SETMEMORYMAILBOX:
2669	    mly_printf(sc, "   health_buffer_size   %d\n",
2670			  io->param.setmemorymailbox.health_buffer_size);
2671	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2672			  io->param.setmemorymailbox.health_buffer_physaddr);
2673	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2674			  io->param.setmemorymailbox.command_mailbox_physaddr);
2675	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2676			  io->param.setmemorymailbox.status_mailbox_physaddr);
2677	    transfer = 0;
2678	    break;
2679
2680	case MDACIOCTL_SETREALTIMECLOCK:
2681	case MDACIOCTL_GETHEALTHSTATUS:
2682	case MDACIOCTL_GETCONTROLLERINFO:
2683	case MDACIOCTL_GETLOGDEVINFOVALID:
2684	case MDACIOCTL_GETPHYSDEVINFOVALID:
2685	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2686	case MDACIOCTL_GETLOGDEVSTATISTICS:
2687	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2688	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2689	case MDACIOCTL_CREATENEWCONF:
2690	case MDACIOCTL_ADDNEWCONF:
2691	case MDACIOCTL_GETDEVCONFINFO:
2692	case MDACIOCTL_GETFREESPACELIST:
2693	case MDACIOCTL_MORE:
2694	case MDACIOCTL_SETPHYSDEVPARAMETER:
2695	case MDACIOCTL_GETPHYSDEVPARAMETER:
2696	case MDACIOCTL_GETLOGDEVPARAMETER:
2697	case MDACIOCTL_SETLOGDEVPARAMETER:
2698	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2699	    transfer = 1;
2700	    break;
2701
2702	case MDACIOCTL_GETEVENT:
2703	    mly_printf(sc, "   event                %d\n",
2704		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2705	    transfer = 1;
2706	    break;
2707
2708	case MDACIOCTL_SETRAIDDEVSTATE:
2709	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2710	    transfer = 0;
2711	    break;
2712
2713	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2714	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2715	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2716	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2717	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2718	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2719	    transfer = 0;
2720	    break;
2721
2722	case MDACIOCTL_GETGROUPCONFINFO:
2723	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2724	    transfer = 1;
2725	    break;
2726
2727	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2728	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2729	case MDACIOCTL_STARTDISOCVERY:
2730	case MDACIOCTL_INITPHYSDEVSTART:
2731	case MDACIOCTL_INITPHYSDEVSTOP:
2732	case MDACIOCTL_INITRAIDDEVSTART:
2733	case MDACIOCTL_INITRAIDDEVSTOP:
2734	case MDACIOCTL_REBUILDRAIDDEVSTART:
2735	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2736	case MDACIOCTL_MAKECONSISTENTDATASTART:
2737	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2738	case MDACIOCTL_CONSISTENCYCHECKSTART:
2739	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2740	case MDACIOCTL_RESETDEVICE:
2741	case MDACIOCTL_FLUSHDEVICEDATA:
2742	case MDACIOCTL_PAUSEDEVICE:
2743	case MDACIOCTL_UNPAUSEDEVICE:
2744	case MDACIOCTL_LOCATEDEVICE:
2745	case MDACIOCTL_SETMASTERSLAVEMODE:
2746	case MDACIOCTL_DELETERAIDDEV:
2747	case MDACIOCTL_REPLACEINTERNALDEV:
2748	case MDACIOCTL_CLEARCONF:
2749	case MDACIOCTL_GETCONTROLLERPARAMETER:
2750	case MDACIOCTL_SETCONTRLLERPARAMETER:
2751	case MDACIOCTL_CLEARCONFSUSPMODE:
2752	case MDACIOCTL_STOREIMAGE:
2753	case MDACIOCTL_READIMAGE:
2754	case MDACIOCTL_FLASHIMAGES:
2755	case MDACIOCTL_RENAMERAIDDEV:
2756	default:			/* no idea what to print */
2757	    transfer = 0;
2758	    break;
2759	}
2760	break;
2761
2762    case MDACMD_IOCTLCHECK:
2763    case MDACMD_MEMCOPY:
2764    default:
2765	transfer = 0;
2766	break;	/* print nothing */
2767    }
2768    if (transfer) {
2769	if (ge->command_control.extended_sg_table) {
2770	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2771			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2772	} else {
2773	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2774			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2775	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2776			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2777	}
2778    }
2779}
2780
2781/********************************************************************************
2782 * Panic in a slightly informative fashion
2783 */
2784static void
2785mly_panic(struct mly_softc *sc, char *reason)
2786{
2787    mly_printstate(sc);
2788    panic(reason);
2789}
2790
2791/********************************************************************************
2792 * Print queue statistics, callable from DDB.
2793 */
2794void
2795mly_print_controller(int controller)
2796{
2797    struct mly_softc	*sc;
2798
2799    if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2800	printf("mly: controller %d invalid\n", controller);
2801    } else {
2802	device_printf(sc->mly_dev, "queue    curr max\n");
2803	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2804		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2805	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2806		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2807	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2808		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2809    }
2810}
2811#endif
2812
2813/********************************************************************************
2814 ********************************************************************************
2815                                                         Control device interface
2816 ********************************************************************************
2817 ********************************************************************************/
2818
2819/********************************************************************************
2820 * Accept an open operation on the control device.
2821 */
2822static int
2823mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2824{
2825    struct mly_softc	*sc = dev->si_drv1;
2826
2827    MLY_LOCK(sc);
2828    sc->mly_state |= MLY_STATE_OPEN;
2829    MLY_UNLOCK(sc);
2830    return(0);
2831}
2832
2833/********************************************************************************
2834 * Accept the last close on the control device.
2835 */
2836static int
2837mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2838{
2839    struct mly_softc	*sc = dev->si_drv1;
2840
2841    MLY_LOCK(sc);
2842    sc->mly_state &= ~MLY_STATE_OPEN;
2843    MLY_UNLOCK(sc);
2844    return (0);
2845}
2846
2847/********************************************************************************
2848 * Handle controller-specific control operations.
2849 */
2850static int
2851mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2852				int32_t flag, struct thread *td)
2853{
2854    struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2855    struct mly_user_command	*uc = (struct mly_user_command *)addr;
2856    struct mly_user_health	*uh = (struct mly_user_health *)addr;
2857
2858    switch(cmd) {
2859    case MLYIO_COMMAND:
2860	return(mly_user_command(sc, uc));
2861    case MLYIO_HEALTH:
2862	return(mly_user_health(sc, uh));
2863    default:
2864	return(ENOIOCTL);
2865    }
2866}
2867
2868/********************************************************************************
2869 * Execute a command passed in from userspace.
2870 *
2871 * The control structure contains the actual command for the controller, as well
2872 * as the user-space data pointer and data size, and an optional sense buffer
2873 * size/pointer.  On completion, the data size is adjusted to the command
2874 * residual, and the sense buffer size to the size of the returned sense data.
2875 *
2876 */
2877static int
2878mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2879{
2880    struct mly_command	*mc;
2881    int			error;
2882
2883    /* allocate a command */
2884    MLY_LOCK(sc);
2885    if (mly_alloc_command(sc, &mc)) {
2886	MLY_UNLOCK(sc);
2887	return (ENOMEM);	/* XXX Linux version will wait for a command */
2888    }
2889    MLY_UNLOCK(sc);
2890
2891    /* handle data size/direction */
2892    mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2893    if (mc->mc_length > 0) {
2894	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2895	    error = ENOMEM;
2896	    goto out;
2897	}
2898    }
2899    if (uc->DataTransferLength > 0) {
2900	mc->mc_flags |= MLY_CMD_DATAIN;
2901	bzero(mc->mc_data, mc->mc_length);
2902    }
2903    if (uc->DataTransferLength < 0) {
2904	mc->mc_flags |= MLY_CMD_DATAOUT;
2905	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2906	    goto out;
2907    }
2908
2909    /* copy the controller command */
2910    bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2911
2912    /* clear command completion handler so that we get woken up */
2913    mc->mc_complete = NULL;
2914
2915    /* execute the command */
2916    MLY_LOCK(sc);
2917    if ((error = mly_start(mc)) != 0) {
2918	MLY_UNLOCK(sc);
2919	goto out;
2920    }
2921    while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2922	mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlyioctl", 0);
2923    MLY_UNLOCK(sc);
2924
2925    /* return the data to userspace */
2926    if (uc->DataTransferLength > 0)
2927	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2928	    goto out;
2929
2930    /* return the sense buffer to userspace */
2931    if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2932	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2933			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2934	    goto out;
2935    }
2936
2937    /* return command results to userspace (caller will copy out) */
2938    uc->DataTransferLength = mc->mc_resid;
2939    uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2940    uc->CommandStatus = mc->mc_status;
2941    error = 0;
2942
2943 out:
2944    if (mc->mc_data != NULL)
2945	free(mc->mc_data, M_DEVBUF);
2946    MLY_LOCK(sc);
2947    mly_release_command(mc);
2948    MLY_UNLOCK(sc);
2949    return(error);
2950}
2951
2952/********************************************************************************
2953 * Return health status to userspace.  If the health change index in the user
2954 * structure does not match that currently exported by the controller, we
2955 * return the current status immediately.  Otherwise, we block until either
2956 * interrupted or new status is delivered.
2957 */
2958static int
2959mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2960{
2961    struct mly_health_status		mh;
2962    int					error;
2963
2964    /* fetch the current health status from userspace */
2965    if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2966	return(error);
2967
2968    /* spin waiting for a status update */
2969    MLY_LOCK(sc);
2970    error = EWOULDBLOCK;
2971    while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2972	error = mtx_sleep(&sc->mly_event_change, &sc->mly_lock, PRIBIO | PCATCH,
2973	    "mlyhealth", 0);
2974    mh = sc->mly_mmbox->mmm_health.status;
2975    MLY_UNLOCK(sc);
2976
2977    /* copy the controller's health status buffer out */
2978    error = copyout(&mh, uh->HealthStatusBuffer, sizeof(mh));
2979    return(error);
2980}
2981
2982#ifdef MLY_DEBUG
2983static void
2984mly_timeout(void *arg)
2985{
2986	struct mly_softc *sc;
2987	struct mly_command *mc;
2988	int deadline;
2989
2990	sc = arg;
2991	MLY_ASSERT_LOCKED(sc);
2992	deadline = time_second - MLY_CMD_TIMEOUT;
2993	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2994		if ((mc->mc_timestamp < deadline)) {
2995			device_printf(sc->mly_dev,
2996			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2997			    (int)(time_second - mc->mc_timestamp));
2998		}
2999	}
3000
3001	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
3002}
3003#endif
3004