1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2021, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31/*$FreeBSD$*/
32
33#include "ice_common.h"
34#include "ice_flex_pipe.h"
35#include "ice_protocol_type.h"
36#include "ice_flow.h"
37
38/* To support tunneling entries by PF, the package will append the PF number to
39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
40 */
41static const struct ice_tunnel_type_scan tnls[] = {
42	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
43	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
44	{ TNL_LAST,		"" }
45};
46
47static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
48	/* SWITCH */
49	{
50		ICE_SID_XLT0_SW,
51		ICE_SID_XLT_KEY_BUILDER_SW,
52		ICE_SID_XLT1_SW,
53		ICE_SID_XLT2_SW,
54		ICE_SID_PROFID_TCAM_SW,
55		ICE_SID_PROFID_REDIR_SW,
56		ICE_SID_FLD_VEC_SW,
57		ICE_SID_CDID_KEY_BUILDER_SW,
58		ICE_SID_CDID_REDIR_SW
59	},
60
61	/* ACL */
62	{
63		ICE_SID_XLT0_ACL,
64		ICE_SID_XLT_KEY_BUILDER_ACL,
65		ICE_SID_XLT1_ACL,
66		ICE_SID_XLT2_ACL,
67		ICE_SID_PROFID_TCAM_ACL,
68		ICE_SID_PROFID_REDIR_ACL,
69		ICE_SID_FLD_VEC_ACL,
70		ICE_SID_CDID_KEY_BUILDER_ACL,
71		ICE_SID_CDID_REDIR_ACL
72	},
73
74	/* FD */
75	{
76		ICE_SID_XLT0_FD,
77		ICE_SID_XLT_KEY_BUILDER_FD,
78		ICE_SID_XLT1_FD,
79		ICE_SID_XLT2_FD,
80		ICE_SID_PROFID_TCAM_FD,
81		ICE_SID_PROFID_REDIR_FD,
82		ICE_SID_FLD_VEC_FD,
83		ICE_SID_CDID_KEY_BUILDER_FD,
84		ICE_SID_CDID_REDIR_FD
85	},
86
87	/* RSS */
88	{
89		ICE_SID_XLT0_RSS,
90		ICE_SID_XLT_KEY_BUILDER_RSS,
91		ICE_SID_XLT1_RSS,
92		ICE_SID_XLT2_RSS,
93		ICE_SID_PROFID_TCAM_RSS,
94		ICE_SID_PROFID_REDIR_RSS,
95		ICE_SID_FLD_VEC_RSS,
96		ICE_SID_CDID_KEY_BUILDER_RSS,
97		ICE_SID_CDID_REDIR_RSS
98	},
99
100	/* PE */
101	{
102		ICE_SID_XLT0_PE,
103		ICE_SID_XLT_KEY_BUILDER_PE,
104		ICE_SID_XLT1_PE,
105		ICE_SID_XLT2_PE,
106		ICE_SID_PROFID_TCAM_PE,
107		ICE_SID_PROFID_REDIR_PE,
108		ICE_SID_FLD_VEC_PE,
109		ICE_SID_CDID_KEY_BUILDER_PE,
110		ICE_SID_CDID_REDIR_PE
111	}
112};
113
114/**
115 * ice_sect_id - returns section ID
116 * @blk: block type
117 * @sect: section type
118 *
119 * This helper function returns the proper section ID given a block type and a
120 * section type.
121 */
122static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
123{
124	return ice_sect_lkup[blk][sect];
125}
126
127/**
128 * ice_pkg_val_buf
129 * @buf: pointer to the ice buffer
130 *
131 * This helper function validates a buffer's header.
132 */
133static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
134{
135	struct ice_buf_hdr *hdr;
136	u16 section_count;
137	u16 data_end;
138
139	hdr = (struct ice_buf_hdr *)buf->buf;
140	/* verify data */
141	section_count = LE16_TO_CPU(hdr->section_count);
142	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
143		return NULL;
144
145	data_end = LE16_TO_CPU(hdr->data_end);
146	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
147		return NULL;
148
149	return hdr;
150}
151
152/**
153 * ice_find_buf_table
154 * @ice_seg: pointer to the ice segment
155 *
156 * Returns the address of the buffer table within the ice segment.
157 */
158static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
159{
160	struct ice_nvm_table *nvms;
161
162	nvms = (struct ice_nvm_table *)
163		(ice_seg->device_table +
164		 LE32_TO_CPU(ice_seg->device_table_count));
165
166	return (_FORCE_ struct ice_buf_table *)
167		(nvms->vers + LE32_TO_CPU(nvms->table_count));
168}
169
170/**
171 * ice_pkg_enum_buf
172 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
173 * @state: pointer to the enum state
174 *
175 * This function will enumerate all the buffers in the ice segment. The first
176 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
177 * ice_seg is set to NULL which continues the enumeration. When the function
178 * returns a NULL pointer, then the end of the buffers has been reached, or an
179 * unexpected value has been detected (for example an invalid section count or
180 * an invalid buffer end value).
181 */
182static struct ice_buf_hdr *
183ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
184{
185	if (ice_seg) {
186		state->buf_table = ice_find_buf_table(ice_seg);
187		if (!state->buf_table)
188			return NULL;
189
190		state->buf_idx = 0;
191		return ice_pkg_val_buf(state->buf_table->buf_array);
192	}
193
194	if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
195		return ice_pkg_val_buf(state->buf_table->buf_array +
196				       state->buf_idx);
197	else
198		return NULL;
199}
200
201/**
202 * ice_pkg_advance_sect
203 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
204 * @state: pointer to the enum state
205 *
206 * This helper function will advance the section within the ice segment,
207 * also advancing the buffer if needed.
208 */
209static bool
210ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
211{
212	if (!ice_seg && !state->buf)
213		return false;
214
215	if (!ice_seg && state->buf)
216		if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
217			return true;
218
219	state->buf = ice_pkg_enum_buf(ice_seg, state);
220	if (!state->buf)
221		return false;
222
223	/* start of new buffer, reset section index */
224	state->sect_idx = 0;
225	return true;
226}
227
228/**
229 * ice_pkg_enum_section
230 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
231 * @state: pointer to the enum state
232 * @sect_type: section type to enumerate
233 *
234 * This function will enumerate all the sections of a particular type in the
235 * ice segment. The first call is made with the ice_seg parameter non-NULL;
236 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
237 * When the function returns a NULL pointer, then the end of the matching
238 * sections has been reached.
239 */
240static void *
241ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
242		     u32 sect_type)
243{
244	u16 offset, size;
245
246	if (ice_seg)
247		state->type = sect_type;
248
249	if (!ice_pkg_advance_sect(ice_seg, state))
250		return NULL;
251
252	/* scan for next matching section */
253	while (state->buf->section_entry[state->sect_idx].type !=
254	       CPU_TO_LE32(state->type))
255		if (!ice_pkg_advance_sect(NULL, state))
256			return NULL;
257
258	/* validate section */
259	offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
260	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
261		return NULL;
262
263	size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
264	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
265		return NULL;
266
267	/* make sure the section fits in the buffer */
268	if (offset + size > ICE_PKG_BUF_SIZE)
269		return NULL;
270
271	state->sect_type =
272		LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
273
274	/* calc pointer to this section */
275	state->sect = ((u8 *)state->buf) +
276		LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
277
278	return state->sect;
279}
280
281/**
282 * ice_pkg_enum_entry
283 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
284 * @state: pointer to the enum state
285 * @sect_type: section type to enumerate
286 * @offset: pointer to variable that receives the offset in the table (optional)
287 * @handler: function that handles access to the entries into the section type
288 *
289 * This function will enumerate all the entries in particular section type in
290 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
291 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
292 * When the function returns a NULL pointer, then the end of the entries has
293 * been reached.
294 *
295 * Since each section may have a different header and entry size, the handler
296 * function is needed to determine the number and location entries in each
297 * section.
298 *
299 * The offset parameter is optional, but should be used for sections that
300 * contain an offset for each section table. For such cases, the section handler
301 * function must return the appropriate offset + index to give the absolution
302 * offset for each entry. For example, if the base for a section's header
303 * indicates a base offset of 10, and the index for the entry is 2, then
304 * section handler function should set the offset to 10 + 2 = 12.
305 */
306static void *
307ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
308		   u32 sect_type, u32 *offset,
309		   void *(*handler)(u32 sect_type, void *section,
310				    u32 index, u32 *offset))
311{
312	void *entry;
313
314	if (ice_seg) {
315		if (!handler)
316			return NULL;
317
318		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
319			return NULL;
320
321		state->entry_idx = 0;
322		state->handler = handler;
323	} else {
324		state->entry_idx++;
325	}
326
327	if (!state->handler)
328		return NULL;
329
330	/* get entry */
331	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
332			       offset);
333	if (!entry) {
334		/* end of a section, look for another section of this type */
335		if (!ice_pkg_enum_section(NULL, state, 0))
336			return NULL;
337
338		state->entry_idx = 0;
339		entry = state->handler(state->sect_type, state->sect,
340				       state->entry_idx, offset);
341	}
342
343	return entry;
344}
345
346/**
347 * ice_boost_tcam_handler
348 * @sect_type: section type
349 * @section: pointer to section
350 * @index: index of the boost TCAM entry to be returned
351 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
352 *
353 * This is a callback function that can be passed to ice_pkg_enum_entry.
354 * Handles enumeration of individual boost TCAM entries.
355 */
356static void *
357ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
358{
359	struct ice_boost_tcam_section *boost;
360
361	if (!section)
362		return NULL;
363
364	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
365		return NULL;
366
367	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
368		return NULL;
369
370	if (offset)
371		*offset = 0;
372
373	boost = (struct ice_boost_tcam_section *)section;
374	if (index >= LE16_TO_CPU(boost->count))
375		return NULL;
376
377	return boost->tcam + index;
378}
379
380/**
381 * ice_find_boost_entry
382 * @ice_seg: pointer to the ice segment (non-NULL)
383 * @addr: Boost TCAM address of entry to search for
384 * @entry: returns pointer to the entry
385 *
386 * Finds a particular Boost TCAM entry and returns a pointer to that entry
387 * if it is found. The ice_seg parameter must not be NULL since the first call
388 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
389 */
390static enum ice_status
391ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
392		     struct ice_boost_tcam_entry **entry)
393{
394	struct ice_boost_tcam_entry *tcam;
395	struct ice_pkg_enum state;
396
397	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
398
399	if (!ice_seg)
400		return ICE_ERR_PARAM;
401
402	do {
403		tcam = (struct ice_boost_tcam_entry *)
404		       ice_pkg_enum_entry(ice_seg, &state,
405					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
406					  ice_boost_tcam_handler);
407		if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
408			*entry = tcam;
409			return ICE_SUCCESS;
410		}
411
412		ice_seg = NULL;
413	} while (tcam);
414
415	*entry = NULL;
416	return ICE_ERR_CFG;
417}
418
419/**
420 * ice_label_enum_handler
421 * @sect_type: section type
422 * @section: pointer to section
423 * @index: index of the label entry to be returned
424 * @offset: pointer to receive absolute offset, always zero for label sections
425 *
426 * This is a callback function that can be passed to ice_pkg_enum_entry.
427 * Handles enumeration of individual label entries.
428 */
429static void *
430ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
431		       u32 *offset)
432{
433	struct ice_label_section *labels;
434
435	if (!section)
436		return NULL;
437
438	if (index > ICE_MAX_LABELS_IN_BUF)
439		return NULL;
440
441	if (offset)
442		*offset = 0;
443
444	labels = (struct ice_label_section *)section;
445	if (index >= LE16_TO_CPU(labels->count))
446		return NULL;
447
448	return labels->label + index;
449}
450
451/**
452 * ice_enum_labels
453 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
454 * @type: the section type that will contain the label (0 on subsequent calls)
455 * @state: ice_pkg_enum structure that will hold the state of the enumeration
456 * @value: pointer to a value that will return the label's value if found
457 *
458 * Enumerates a list of labels in the package. The caller will call
459 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
460 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
461 * the end of the list has been reached.
462 */
463static char *
464ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
465		u16 *value)
466{
467	struct ice_label *label;
468
469	/* Check for valid label section on first call */
470	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
471		return NULL;
472
473	label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
474						       NULL,
475						       ice_label_enum_handler);
476	if (!label)
477		return NULL;
478
479	*value = LE16_TO_CPU(label->value);
480	return label->name;
481}
482
483/**
484 * ice_init_pkg_hints
485 * @hw: pointer to the HW structure
486 * @ice_seg: pointer to the segment of the package scan (non-NULL)
487 *
488 * This function will scan the package and save off relevant information
489 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
490 * since the first call to ice_enum_labels requires a pointer to an actual
491 * ice_seg structure.
492 */
493static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
494{
495	struct ice_pkg_enum state;
496	char *label_name;
497	u16 val;
498	int i;
499
500	ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
501	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
502
503	if (!ice_seg)
504		return;
505
506	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
507				     &val);
508
509	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
510		for (i = 0; tnls[i].type != TNL_LAST; i++) {
511			size_t len = strlen(tnls[i].label_prefix);
512
513			/* Look for matching label start, before continuing */
514			if (strncmp(label_name, tnls[i].label_prefix, len))
515				continue;
516
517			/* Make sure this label matches our PF. Note that the PF
518			 * character ('0' - '7') will be located where our
519			 * prefix string's null terminator is located.
520			 */
521			if ((label_name[len] - '0') == hw->pf_id) {
522				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
523				hw->tnl.tbl[hw->tnl.count].valid = false;
524				hw->tnl.tbl[hw->tnl.count].in_use = false;
525				hw->tnl.tbl[hw->tnl.count].marked = false;
526				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
527				hw->tnl.tbl[hw->tnl.count].port = 0;
528				hw->tnl.count++;
529				break;
530			}
531		}
532
533		label_name = ice_enum_labels(NULL, 0, &state, &val);
534	}
535
536	/* Cache the appropriate boost TCAM entry pointers */
537	for (i = 0; i < hw->tnl.count; i++) {
538		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
539				     &hw->tnl.tbl[i].boost_entry);
540		if (hw->tnl.tbl[i].boost_entry)
541			hw->tnl.tbl[i].valid = true;
542	}
543}
544
545/* Key creation */
546
547#define ICE_DC_KEY	0x1	/* don't care */
548#define ICE_DC_KEYINV	0x1
549#define ICE_NM_KEY	0x0	/* never match */
550#define ICE_NM_KEYINV	0x0
551#define ICE_0_KEY	0x1	/* match 0 */
552#define ICE_0_KEYINV	0x0
553#define ICE_1_KEY	0x0	/* match 1 */
554#define ICE_1_KEYINV	0x1
555
556/**
557 * ice_gen_key_word - generate 16-bits of a key/mask word
558 * @val: the value
559 * @valid: valid bits mask (change only the valid bits)
560 * @dont_care: don't care mask
561 * @nvr_mtch: never match mask
562 * @key: pointer to an array of where the resulting key portion
563 * @key_inv: pointer to an array of where the resulting key invert portion
564 *
565 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
566 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
567 * of key and 8 bits of key invert.
568 *
569 *     '0' =    b01, always match a 0 bit
570 *     '1' =    b10, always match a 1 bit
571 *     '?' =    b11, don't care bit (always matches)
572 *     '~' =    b00, never match bit
573 *
574 * Input:
575 *          val:         b0  1  0  1  0  1
576 *          dont_care:   b0  0  1  1  0  0
577 *          never_mtch:  b0  0  0  0  1  1
578 *          ------------------------------
579 * Result:  key:        b01 10 11 11 00 00
580 */
581static enum ice_status
582ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
583		 u8 *key_inv)
584{
585	u8 in_key = *key, in_key_inv = *key_inv;
586	u8 i;
587
588	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
589	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
590		return ICE_ERR_CFG;
591
592	*key = 0;
593	*key_inv = 0;
594
595	/* encode the 8 bits into 8-bit key and 8-bit key invert */
596	for (i = 0; i < 8; i++) {
597		*key >>= 1;
598		*key_inv >>= 1;
599
600		if (!(valid & 0x1)) { /* change only valid bits */
601			*key |= (in_key & 0x1) << 7;
602			*key_inv |= (in_key_inv & 0x1) << 7;
603		} else if (dont_care & 0x1) { /* don't care bit */
604			*key |= ICE_DC_KEY << 7;
605			*key_inv |= ICE_DC_KEYINV << 7;
606		} else if (nvr_mtch & 0x1) { /* never match bit */
607			*key |= ICE_NM_KEY << 7;
608			*key_inv |= ICE_NM_KEYINV << 7;
609		} else if (val & 0x01) { /* exact 1 match */
610			*key |= ICE_1_KEY << 7;
611			*key_inv |= ICE_1_KEYINV << 7;
612		} else { /* exact 0 match */
613			*key |= ICE_0_KEY << 7;
614			*key_inv |= ICE_0_KEYINV << 7;
615		}
616
617		dont_care >>= 1;
618		nvr_mtch >>= 1;
619		valid >>= 1;
620		val >>= 1;
621		in_key >>= 1;
622		in_key_inv >>= 1;
623	}
624
625	return ICE_SUCCESS;
626}
627
628/**
629 * ice_bits_max_set - determine if the number of bits set is within a maximum
630 * @mask: pointer to the byte array which is the mask
631 * @size: the number of bytes in the mask
632 * @max: the max number of set bits
633 *
634 * This function determines if there are at most 'max' number of bits set in an
635 * array. Returns true if the number for bits set is <= max or will return false
636 * otherwise.
637 */
638static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
639{
640	u16 count = 0;
641	u16 i;
642
643	/* check each byte */
644	for (i = 0; i < size; i++) {
645		/* if 0, go to next byte */
646		if (!mask[i])
647			continue;
648
649		/* We know there is at least one set bit in this byte because of
650		 * the above check; if we already have found 'max' number of
651		 * bits set, then we can return failure now.
652		 */
653		if (count == max)
654			return false;
655
656		/* count the bits in this byte, checking threshold */
657		count += ice_hweight8(mask[i]);
658		if (count > max)
659			return false;
660	}
661
662	return true;
663}
664
665/**
666 * ice_set_key - generate a variable sized key with multiples of 16-bits
667 * @key: pointer to where the key will be stored
668 * @size: the size of the complete key in bytes (must be even)
669 * @val: array of 8-bit values that makes up the value portion of the key
670 * @upd: array of 8-bit masks that determine what key portion to update
671 * @dc: array of 8-bit masks that make up the don't care mask
672 * @nm: array of 8-bit masks that make up the never match mask
673 * @off: the offset of the first byte in the key to update
674 * @len: the number of bytes in the key update
675 *
676 * This function generates a key from a value, a don't care mask and a never
677 * match mask.
678 * upd, dc, and nm are optional parameters, and can be NULL:
679 *	upd == NULL --> upd mask is all 1's (update all bits)
680 *	dc == NULL --> dc mask is all 0's (no don't care bits)
681 *	nm == NULL --> nm mask is all 0's (no never match bits)
682 */
683static enum ice_status
684ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
685	    u16 len)
686{
687	u16 half_size;
688	u16 i;
689
690	/* size must be a multiple of 2 bytes. */
691	if (size % 2)
692		return ICE_ERR_CFG;
693	half_size = size / 2;
694
695	if (off + len > half_size)
696		return ICE_ERR_CFG;
697
698	/* Make sure at most one bit is set in the never match mask. Having more
699	 * than one never match mask bit set will cause HW to consume excessive
700	 * power otherwise; this is a power management efficiency check.
701	 */
702#define ICE_NVR_MTCH_BITS_MAX	1
703	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
704		return ICE_ERR_CFG;
705
706	for (i = 0; i < len; i++)
707		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
708				     dc ? dc[i] : 0, nm ? nm[i] : 0,
709				     key + off + i, key + half_size + off + i))
710			return ICE_ERR_CFG;
711
712	return ICE_SUCCESS;
713}
714
715/**
716 * ice_acquire_global_cfg_lock
717 * @hw: pointer to the HW structure
718 * @access: access type (read or write)
719 *
720 * This function will request ownership of the global config lock for reading
721 * or writing of the package. When attempting to obtain write access, the
722 * caller must check for the following two return values:
723 *
724 * ICE_SUCCESS        - Means the caller has acquired the global config lock
725 *                      and can perform writing of the package.
726 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
727 *                      package or has found that no update was necessary; in
728 *                      this case, the caller can just skip performing any
729 *                      update of the package.
730 */
731static enum ice_status
732ice_acquire_global_cfg_lock(struct ice_hw *hw,
733			    enum ice_aq_res_access_type access)
734{
735	enum ice_status status;
736
737	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
738
739	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
740				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
741
742	if (status == ICE_ERR_AQ_NO_WORK)
743		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
744
745	return status;
746}
747
748/**
749 * ice_release_global_cfg_lock
750 * @hw: pointer to the HW structure
751 *
752 * This function will release the global config lock.
753 */
754static void ice_release_global_cfg_lock(struct ice_hw *hw)
755{
756	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
757}
758
759/**
760 * ice_acquire_change_lock
761 * @hw: pointer to the HW structure
762 * @access: access type (read or write)
763 *
764 * This function will request ownership of the change lock.
765 */
766static enum ice_status
767ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
768{
769	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
770
771	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
772			       ICE_CHANGE_LOCK_TIMEOUT);
773}
774
775/**
776 * ice_release_change_lock
777 * @hw: pointer to the HW structure
778 *
779 * This function will release the change lock using the proper Admin Command.
780 */
781static void ice_release_change_lock(struct ice_hw *hw)
782{
783	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
784
785	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
786}
787
788/**
789 * ice_aq_download_pkg
790 * @hw: pointer to the hardware structure
791 * @pkg_buf: the package buffer to transfer
792 * @buf_size: the size of the package buffer
793 * @last_buf: last buffer indicator
794 * @error_offset: returns error offset
795 * @error_info: returns error information
796 * @cd: pointer to command details structure or NULL
797 *
798 * Download Package (0x0C40)
799 */
800static enum ice_status
801ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
802		    u16 buf_size, bool last_buf, u32 *error_offset,
803		    u32 *error_info, struct ice_sq_cd *cd)
804{
805	struct ice_aqc_download_pkg *cmd;
806	struct ice_aq_desc desc;
807	enum ice_status status;
808
809	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
810
811	if (error_offset)
812		*error_offset = 0;
813	if (error_info)
814		*error_info = 0;
815
816	cmd = &desc.params.download_pkg;
817	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
818	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
819
820	if (last_buf)
821		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
822
823	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
824	if (status == ICE_ERR_AQ_ERROR) {
825		/* Read error from buffer only when the FW returned an error */
826		struct ice_aqc_download_pkg_resp *resp;
827
828		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
829		if (error_offset)
830			*error_offset = LE32_TO_CPU(resp->error_offset);
831		if (error_info)
832			*error_info = LE32_TO_CPU(resp->error_info);
833	}
834
835	return status;
836}
837
838/**
839 * ice_aq_upload_section
840 * @hw: pointer to the hardware structure
841 * @pkg_buf: the package buffer which will receive the section
842 * @buf_size: the size of the package buffer
843 * @cd: pointer to command details structure or NULL
844 *
845 * Upload Section (0x0C41)
846 */
847enum ice_status
848ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
849		      u16 buf_size, struct ice_sq_cd *cd)
850{
851	struct ice_aq_desc desc;
852
853	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
854	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
855	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
856
857	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
858}
859
860/**
861 * ice_aq_update_pkg
862 * @hw: pointer to the hardware structure
863 * @pkg_buf: the package cmd buffer
864 * @buf_size: the size of the package cmd buffer
865 * @last_buf: last buffer indicator
866 * @error_offset: returns error offset
867 * @error_info: returns error information
868 * @cd: pointer to command details structure or NULL
869 *
870 * Update Package (0x0C42)
871 */
872static enum ice_status
873ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
874		  bool last_buf, u32 *error_offset, u32 *error_info,
875		  struct ice_sq_cd *cd)
876{
877	struct ice_aqc_download_pkg *cmd;
878	struct ice_aq_desc desc;
879	enum ice_status status;
880
881	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
882
883	if (error_offset)
884		*error_offset = 0;
885	if (error_info)
886		*error_info = 0;
887
888	cmd = &desc.params.download_pkg;
889	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
890	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891
892	if (last_buf)
893		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
894
895	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
896	if (status == ICE_ERR_AQ_ERROR) {
897		/* Read error from buffer only when the FW returned an error */
898		struct ice_aqc_download_pkg_resp *resp;
899
900		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
901		if (error_offset)
902			*error_offset = LE32_TO_CPU(resp->error_offset);
903		if (error_info)
904			*error_info = LE32_TO_CPU(resp->error_info);
905	}
906
907	return status;
908}
909
910/**
911 * ice_find_seg_in_pkg
912 * @hw: pointer to the hardware structure
913 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
914 * @pkg_hdr: pointer to the package header to be searched
915 *
916 * This function searches a package file for a particular segment type. On
917 * success it returns a pointer to the segment header, otherwise it will
918 * return NULL.
919 */
920static struct ice_generic_seg_hdr *
921ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
922		    struct ice_pkg_hdr *pkg_hdr)
923{
924	u32 i;
925
926	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
927	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
928		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
929		  pkg_hdr->pkg_format_ver.update,
930		  pkg_hdr->pkg_format_ver.draft);
931
932	/* Search all package segments for the requested segment type */
933	for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
934		struct ice_generic_seg_hdr *seg;
935
936		seg = (struct ice_generic_seg_hdr *)
937			((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
938
939		if (LE32_TO_CPU(seg->seg_type) == seg_type)
940			return seg;
941	}
942
943	return NULL;
944}
945
946/**
947 * ice_update_pkg
948 * @hw: pointer to the hardware structure
949 * @bufs: pointer to an array of buffers
950 * @count: the number of buffers in the array
951 *
952 * Obtains change lock and updates package.
953 */
954enum ice_status
955ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
956{
957	enum ice_status status;
958	u32 offset, info, i;
959
960	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
961	if (status)
962		return status;
963
964	for (i = 0; i < count; i++) {
965		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
966		bool last = ((i + 1) == count);
967
968		status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
969					   last, &offset, &info, NULL);
970
971		if (status) {
972			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
973				  status, offset, info);
974			break;
975		}
976	}
977
978	ice_release_change_lock(hw);
979
980	return status;
981}
982
983/**
984 * ice_dwnld_cfg_bufs
985 * @hw: pointer to the hardware structure
986 * @bufs: pointer to an array of buffers
987 * @count: the number of buffers in the array
988 *
989 * Obtains global config lock and downloads the package configuration buffers
990 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
991 * found indicates that the rest of the buffers are all metadata buffers.
992 */
993static enum ice_status
994ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
995{
996	enum ice_status status;
997	struct ice_buf_hdr *bh;
998	u32 offset, info, i;
999
1000	if (!bufs || !count)
1001		return ICE_ERR_PARAM;
1002
1003	/* If the first buffer's first section has its metadata bit set
1004	 * then there are no buffers to be downloaded, and the operation is
1005	 * considered a success.
1006	 */
1007	bh = (struct ice_buf_hdr *)bufs;
1008	if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
1009		return ICE_SUCCESS;
1010
1011	/* reset pkg_dwnld_status in case this function is called in the
1012	 * reset/rebuild flow
1013	 */
1014	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
1015
1016	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1017	if (status) {
1018		if (status == ICE_ERR_AQ_NO_WORK)
1019			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
1020		else
1021			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1022		return status;
1023	}
1024
1025	for (i = 0; i < count; i++) {
1026		bool last = ((i + 1) == count);
1027
1028		if (!last) {
1029			/* check next buffer for metadata flag */
1030			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1031
1032			/* A set metadata flag in the next buffer will signal
1033			 * that the current buffer will be the last buffer
1034			 * downloaded
1035			 */
1036			if (LE16_TO_CPU(bh->section_count))
1037				if (LE32_TO_CPU(bh->section_entry[0].type) &
1038				    ICE_METADATA_BUF)
1039					last = true;
1040		}
1041
1042		bh = (struct ice_buf_hdr *)(bufs + i);
1043
1044		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1045					     &offset, &info, NULL);
1046
1047		/* Save AQ status from download package */
1048		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1049		if (status) {
1050			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1051				  status, offset, info);
1052
1053			break;
1054		}
1055
1056		if (last)
1057			break;
1058	}
1059
1060	if (!status) {
1061		status = ice_set_vlan_mode(hw);
1062		if (status)
1063			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1064				  status);
1065	}
1066
1067	ice_release_global_cfg_lock(hw);
1068
1069	return status;
1070}
1071
1072/**
1073 * ice_aq_get_pkg_info_list
1074 * @hw: pointer to the hardware structure
1075 * @pkg_info: the buffer which will receive the information list
1076 * @buf_size: the size of the pkg_info information buffer
1077 * @cd: pointer to command details structure or NULL
1078 *
1079 * Get Package Info List (0x0C43)
1080 */
1081static enum ice_status
1082ice_aq_get_pkg_info_list(struct ice_hw *hw,
1083			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1084			 u16 buf_size, struct ice_sq_cd *cd)
1085{
1086	struct ice_aq_desc desc;
1087
1088	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1089	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1090
1091	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1092}
1093
1094/**
1095 * ice_download_pkg
1096 * @hw: pointer to the hardware structure
1097 * @ice_seg: pointer to the segment of the package to be downloaded
1098 *
1099 * Handles the download of a complete package.
1100 */
1101static enum ice_status
1102ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1103{
1104	struct ice_buf_table *ice_buf_tbl;
1105
1106	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1107	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1108		  ice_seg->hdr.seg_format_ver.major,
1109		  ice_seg->hdr.seg_format_ver.minor,
1110		  ice_seg->hdr.seg_format_ver.update,
1111		  ice_seg->hdr.seg_format_ver.draft);
1112
1113	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1114		  LE32_TO_CPU(ice_seg->hdr.seg_type),
1115		  LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1116
1117	ice_buf_tbl = ice_find_buf_table(ice_seg);
1118
1119	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1120		  LE32_TO_CPU(ice_buf_tbl->buf_count));
1121
1122	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1123				  LE32_TO_CPU(ice_buf_tbl->buf_count));
1124}
1125
1126/**
1127 * ice_init_pkg_info
1128 * @hw: pointer to the hardware structure
1129 * @pkg_hdr: pointer to the driver's package hdr
1130 *
1131 * Saves off the package details into the HW structure.
1132 */
1133static enum ice_status
1134ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1135{
1136	struct ice_generic_seg_hdr *seg_hdr;
1137
1138	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1139	if (!pkg_hdr)
1140		return ICE_ERR_PARAM;
1141
1142	seg_hdr = (struct ice_generic_seg_hdr *)
1143		ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1144	if (seg_hdr) {
1145		struct ice_meta_sect *meta;
1146		struct ice_pkg_enum state;
1147
1148		ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1149
1150		/* Get package information from the Metadata Section */
1151		meta = (struct ice_meta_sect *)
1152			ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1153					     ICE_SID_METADATA);
1154		if (!meta) {
1155			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1156			return ICE_ERR_CFG;
1157		}
1158
1159		hw->pkg_ver = meta->ver;
1160		ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name),
1161			   ICE_NONDMA_TO_NONDMA);
1162
1163		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1164			  meta->ver.major, meta->ver.minor, meta->ver.update,
1165			  meta->ver.draft, meta->name);
1166
1167		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1168		ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1169			   sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA);
1170
1171		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1172			  seg_hdr->seg_format_ver.major,
1173			  seg_hdr->seg_format_ver.minor,
1174			  seg_hdr->seg_format_ver.update,
1175			  seg_hdr->seg_format_ver.draft,
1176			  seg_hdr->seg_id);
1177	} else {
1178		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1179		return ICE_ERR_CFG;
1180	}
1181
1182	return ICE_SUCCESS;
1183}
1184
1185/**
1186 * ice_get_pkg_info
1187 * @hw: pointer to the hardware structure
1188 *
1189 * Store details of the package currently loaded in HW into the HW structure.
1190 */
1191static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1192{
1193	struct ice_aqc_get_pkg_info_resp *pkg_info;
1194	enum ice_status status;
1195	u16 size;
1196	u32 i;
1197
1198	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1199
1200	size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1201	pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1202	if (!pkg_info)
1203		return ICE_ERR_NO_MEMORY;
1204
1205	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1206	if (status)
1207		goto init_pkg_free_alloc;
1208
1209	for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1210#define ICE_PKG_FLAG_COUNT	4
1211		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1212		u8 place = 0;
1213
1214		if (pkg_info->pkg_info[i].is_active) {
1215			flags[place++] = 'A';
1216			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1217			hw->active_track_id =
1218				LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1219			ice_memcpy(hw->active_pkg_name,
1220				   pkg_info->pkg_info[i].name,
1221				   sizeof(pkg_info->pkg_info[i].name),
1222				   ICE_NONDMA_TO_NONDMA);
1223			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1224		}
1225		if (pkg_info->pkg_info[i].is_active_at_boot)
1226			flags[place++] = 'B';
1227		if (pkg_info->pkg_info[i].is_modified)
1228			flags[place++] = 'M';
1229		if (pkg_info->pkg_info[i].is_in_nvm)
1230			flags[place++] = 'N';
1231
1232		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1233			  i, pkg_info->pkg_info[i].ver.major,
1234			  pkg_info->pkg_info[i].ver.minor,
1235			  pkg_info->pkg_info[i].ver.update,
1236			  pkg_info->pkg_info[i].ver.draft,
1237			  pkg_info->pkg_info[i].name, flags);
1238	}
1239
1240init_pkg_free_alloc:
1241	ice_free(hw, pkg_info);
1242
1243	return status;
1244}
1245
1246/**
1247 * ice_find_label_value
1248 * @ice_seg: pointer to the ice segment (non-NULL)
1249 * @name: name of the label to search for
1250 * @type: the section type that will contain the label
1251 * @value: pointer to a value that will return the label's value if found
1252 *
1253 * Finds a label's value given the label name and the section type to search.
1254 * The ice_seg parameter must not be NULL since the first call to
1255 * ice_enum_labels requires a pointer to an actual ice_seg structure.
1256 */
1257enum ice_status
1258ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
1259		     u16 *value)
1260{
1261	struct ice_pkg_enum state;
1262	char *label_name;
1263	u16 val;
1264
1265	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1266
1267	if (!ice_seg)
1268		return ICE_ERR_PARAM;
1269
1270	do {
1271		label_name = ice_enum_labels(ice_seg, type, &state, &val);
1272		if (label_name && !strcmp(label_name, name)) {
1273			*value = val;
1274			return ICE_SUCCESS;
1275		}
1276
1277		ice_seg = NULL;
1278	} while (label_name);
1279
1280	return ICE_ERR_CFG;
1281}
1282
1283/**
1284 * ice_verify_pkg - verify package
1285 * @pkg: pointer to the package buffer
1286 * @len: size of the package buffer
1287 *
1288 * Verifies various attributes of the package file, including length, format
1289 * version, and the requirement of at least one segment.
1290 */
1291static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1292{
1293	u32 seg_count;
1294	u32 i;
1295
1296	if (len < ice_struct_size(pkg, seg_offset, 1))
1297		return ICE_ERR_BUF_TOO_SHORT;
1298
1299	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1300	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1301	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1302	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1303		return ICE_ERR_CFG;
1304
1305	/* pkg must have at least one segment */
1306	seg_count = LE32_TO_CPU(pkg->seg_count);
1307	if (seg_count < 1)
1308		return ICE_ERR_CFG;
1309
1310	/* make sure segment array fits in package length */
1311	if (len < ice_struct_size(pkg, seg_offset, seg_count))
1312		return ICE_ERR_BUF_TOO_SHORT;
1313
1314	/* all segments must fit within length */
1315	for (i = 0; i < seg_count; i++) {
1316		u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1317		struct ice_generic_seg_hdr *seg;
1318
1319		/* segment header must fit */
1320		if (len < off + sizeof(*seg))
1321			return ICE_ERR_BUF_TOO_SHORT;
1322
1323		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1324
1325		/* segment body must fit */
1326		if (len < off + LE32_TO_CPU(seg->seg_size))
1327			return ICE_ERR_BUF_TOO_SHORT;
1328	}
1329
1330	return ICE_SUCCESS;
1331}
1332
1333/**
1334 * ice_free_seg - free package segment pointer
1335 * @hw: pointer to the hardware structure
1336 *
1337 * Frees the package segment pointer in the proper manner, depending on if the
1338 * segment was allocated or just the passed in pointer was stored.
1339 */
1340void ice_free_seg(struct ice_hw *hw)
1341{
1342	if (hw->pkg_copy) {
1343		ice_free(hw, hw->pkg_copy);
1344		hw->pkg_copy = NULL;
1345		hw->pkg_size = 0;
1346	}
1347	hw->seg = NULL;
1348}
1349
1350/**
1351 * ice_init_pkg_regs - initialize additional package registers
1352 * @hw: pointer to the hardware structure
1353 */
1354static void ice_init_pkg_regs(struct ice_hw *hw)
1355{
1356#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1357#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1358#define ICE_SW_BLK_IDX	0
1359
1360	/* setup Switch block input mask, which is 48-bits in two parts */
1361	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1362	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1363}
1364
1365/**
1366 * ice_chk_pkg_version - check package version for compatibility with driver
1367 * @pkg_ver: pointer to a version structure to check
1368 *
1369 * Check to make sure that the package about to be downloaded is compatible with
1370 * the driver. To be compatible, the major and minor components of the package
1371 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1372 * definitions.
1373 */
1374static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1375{
1376	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1377	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1378		return ICE_ERR_NOT_SUPPORTED;
1379
1380	return ICE_SUCCESS;
1381}
1382
1383/**
1384 * ice_chk_pkg_compat
1385 * @hw: pointer to the hardware structure
1386 * @ospkg: pointer to the package hdr
1387 * @seg: pointer to the package segment hdr
1388 *
1389 * This function checks the package version compatibility with driver and NVM
1390 */
1391static enum ice_status
1392ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1393		   struct ice_seg **seg)
1394{
1395	struct ice_aqc_get_pkg_info_resp *pkg;
1396	enum ice_status status;
1397	u16 size;
1398	u32 i;
1399
1400	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1401
1402	/* Check package version compatibility */
1403	status = ice_chk_pkg_version(&hw->pkg_ver);
1404	if (status) {
1405		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1406		return status;
1407	}
1408
1409	/* find ICE segment in given package */
1410	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1411						     ospkg);
1412	if (!*seg) {
1413		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1414		return ICE_ERR_CFG;
1415	}
1416
1417	/* Check if FW is compatible with the OS package */
1418	size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1419	pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1420	if (!pkg)
1421		return ICE_ERR_NO_MEMORY;
1422
1423	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1424	if (status)
1425		goto fw_ddp_compat_free_alloc;
1426
1427	for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1428		/* loop till we find the NVM package */
1429		if (!pkg->pkg_info[i].is_in_nvm)
1430			continue;
1431		if ((*seg)->hdr.seg_format_ver.major !=
1432			pkg->pkg_info[i].ver.major ||
1433		    (*seg)->hdr.seg_format_ver.minor >
1434			pkg->pkg_info[i].ver.minor) {
1435			status = ICE_ERR_FW_DDP_MISMATCH;
1436			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1437		}
1438		/* done processing NVM package so break */
1439		break;
1440	}
1441fw_ddp_compat_free_alloc:
1442	ice_free(hw, pkg);
1443	return status;
1444}
1445
1446/**
1447 * ice_sw_fv_handler
1448 * @sect_type: section type
1449 * @section: pointer to section
1450 * @index: index of the field vector entry to be returned
1451 * @offset: ptr to variable that receives the offset in the field vector table
1452 *
1453 * This is a callback function that can be passed to ice_pkg_enum_entry.
1454 * This function treats the given section as of type ice_sw_fv_section and
1455 * enumerates offset field. "offset" is an index into the field vector table.
1456 */
1457static void *
1458ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1459{
1460	struct ice_sw_fv_section *fv_section =
1461		(struct ice_sw_fv_section *)section;
1462
1463	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1464		return NULL;
1465	if (index >= LE16_TO_CPU(fv_section->count))
1466		return NULL;
1467	if (offset)
1468		/* "index" passed in to this function is relative to a given
1469		 * 4k block. To get to the true index into the field vector
1470		 * table need to add the relative index to the base_offset
1471		 * field of this section
1472		 */
1473		*offset = LE16_TO_CPU(fv_section->base_offset) + index;
1474	return fv_section->fv + index;
1475}
1476
1477/**
1478 * ice_get_prof_index_max - get the max profile index for used profile
1479 * @hw: pointer to the HW struct
1480 *
1481 * Calling this function will get the max profile index for used profile
1482 * and store the index number in struct ice_switch_info *switch_info
1483 * in hw for following use.
1484 */
1485static int ice_get_prof_index_max(struct ice_hw *hw)
1486{
1487	u16 prof_index = 0, j, max_prof_index = 0;
1488	struct ice_pkg_enum state;
1489	struct ice_seg *ice_seg;
1490	bool flag = false;
1491	struct ice_fv *fv;
1492	u32 offset;
1493
1494	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1495
1496	if (!hw->seg)
1497		return ICE_ERR_PARAM;
1498
1499	ice_seg = hw->seg;
1500
1501	do {
1502		fv = (struct ice_fv *)
1503			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1504					   &offset, ice_sw_fv_handler);
1505		if (!fv)
1506			break;
1507		ice_seg = NULL;
1508
1509		/* in the profile that not be used, the prot_id is set to 0xff
1510		 * and the off is set to 0x1ff for all the field vectors.
1511		 */
1512		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1513			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1514			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1515				flag = true;
1516		if (flag && prof_index > max_prof_index)
1517			max_prof_index = prof_index;
1518
1519		prof_index++;
1520		flag = false;
1521	} while (fv);
1522
1523	hw->switch_info->max_used_prof_index = max_prof_index;
1524
1525	return ICE_SUCCESS;
1526}
1527
1528/**
1529 * ice_init_pkg - initialize/download package
1530 * @hw: pointer to the hardware structure
1531 * @buf: pointer to the package buffer
1532 * @len: size of the package buffer
1533 *
1534 * This function initializes a package. The package contains HW tables
1535 * required to do packet processing. First, the function extracts package
1536 * information such as version. Then it finds the ice configuration segment
1537 * within the package; this function then saves a copy of the segment pointer
1538 * within the supplied package buffer. Next, the function will cache any hints
1539 * from the package, followed by downloading the package itself. Note, that if
1540 * a previous PF driver has already downloaded the package successfully, then
1541 * the current driver will not have to download the package again.
1542 *
1543 * The local package contents will be used to query default behavior and to
1544 * update specific sections of the HW's version of the package (e.g. to update
1545 * the parse graph to understand new protocols).
1546 *
1547 * This function stores a pointer to the package buffer memory, and it is
1548 * expected that the supplied buffer will not be freed immediately. If the
1549 * package buffer needs to be freed, such as when read from a file, use
1550 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1551 * case.
1552 */
1553enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1554{
1555	struct ice_pkg_hdr *pkg;
1556	enum ice_status status;
1557	struct ice_seg *seg;
1558
1559	if (!buf || !len)
1560		return ICE_ERR_PARAM;
1561
1562	pkg = (struct ice_pkg_hdr *)buf;
1563	status = ice_verify_pkg(pkg, len);
1564	if (status) {
1565		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1566			  status);
1567		return status;
1568	}
1569
1570	/* initialize package info */
1571	status = ice_init_pkg_info(hw, pkg);
1572	if (status)
1573		return status;
1574
1575	/* before downloading the package, check package version for
1576	 * compatibility with driver
1577	 */
1578	status = ice_chk_pkg_compat(hw, pkg, &seg);
1579	if (status)
1580		return status;
1581
1582	/* initialize package hints and then download package */
1583	ice_init_pkg_hints(hw, seg);
1584	status = ice_download_pkg(hw, seg);
1585	if (status == ICE_ERR_AQ_NO_WORK) {
1586		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1587		status = ICE_SUCCESS;
1588	}
1589
1590	/* Get information on the package currently loaded in HW, then make sure
1591	 * the driver is compatible with this version.
1592	 */
1593	if (!status) {
1594		status = ice_get_pkg_info(hw);
1595		if (!status)
1596			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1597	}
1598
1599	if (!status) {
1600		hw->seg = seg;
1601		/* on successful package download update other required
1602		 * registers to support the package and fill HW tables
1603		 * with package content.
1604		 */
1605		ice_init_pkg_regs(hw);
1606		ice_fill_blk_tbls(hw);
1607		ice_get_prof_index_max(hw);
1608	} else {
1609		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1610			  status);
1611	}
1612
1613	return status;
1614}
1615
1616/**
1617 * ice_copy_and_init_pkg - initialize/download a copy of the package
1618 * @hw: pointer to the hardware structure
1619 * @buf: pointer to the package buffer
1620 * @len: size of the package buffer
1621 *
1622 * This function copies the package buffer, and then calls ice_init_pkg() to
1623 * initialize the copied package contents.
1624 *
1625 * The copying is necessary if the package buffer supplied is constant, or if
1626 * the memory may disappear shortly after calling this function.
1627 *
1628 * If the package buffer resides in the data segment and can be modified, the
1629 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1630 *
1631 * However, if the package buffer needs to be copied first, such as when being
1632 * read from a file, the caller should use ice_copy_and_init_pkg().
1633 *
1634 * This function will first copy the package buffer, before calling
1635 * ice_init_pkg(). The caller is free to immediately destroy the original
1636 * package buffer, as the new copy will be managed by this function and
1637 * related routines.
1638 */
1639enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1640{
1641	enum ice_status status;
1642	u8 *buf_copy;
1643
1644	if (!buf || !len)
1645		return ICE_ERR_PARAM;
1646
1647	buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1648
1649	status = ice_init_pkg(hw, buf_copy, len);
1650	if (status) {
1651		/* Free the copy, since we failed to initialize the package */
1652		ice_free(hw, buf_copy);
1653	} else {
1654		/* Track the copied pkg so we can free it later */
1655		hw->pkg_copy = buf_copy;
1656		hw->pkg_size = len;
1657	}
1658
1659	return status;
1660}
1661
1662/**
1663 * ice_pkg_buf_alloc
1664 * @hw: pointer to the HW structure
1665 *
1666 * Allocates a package buffer and returns a pointer to the buffer header.
1667 * Note: all package contents must be in Little Endian form.
1668 */
1669static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1670{
1671	struct ice_buf_build *bld;
1672	struct ice_buf_hdr *buf;
1673
1674	bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1675	if (!bld)
1676		return NULL;
1677
1678	buf = (struct ice_buf_hdr *)bld;
1679	buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1680					     section_entry));
1681	return bld;
1682}
1683
1684/**
1685 * ice_get_sw_prof_type - determine switch profile type
1686 * @hw: pointer to the HW structure
1687 * @fv: pointer to the switch field vector
1688 */
1689static enum ice_prof_type
1690ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1691{
1692	u16 i;
1693
1694	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1695		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1696		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1697		    fv->ew[i].off == ICE_VNI_OFFSET)
1698			return ICE_PROF_TUN_UDP;
1699
1700		/* GRE tunnel will have GRE protocol */
1701		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1702			return ICE_PROF_TUN_GRE;
1703	}
1704
1705	return ICE_PROF_NON_TUN;
1706}
1707
1708/**
1709 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1710 * @hw: pointer to hardware structure
1711 * @req_profs: type of profiles requested
1712 * @bm: pointer to memory for returning the bitmap of field vectors
1713 */
1714void
1715ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1716		     ice_bitmap_t *bm)
1717{
1718	struct ice_pkg_enum state;
1719	struct ice_seg *ice_seg;
1720	struct ice_fv *fv;
1721
1722	if (req_profs == ICE_PROF_ALL) {
1723		ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1724		return;
1725	}
1726
1727	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1728	ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1729	ice_seg = hw->seg;
1730	do {
1731		enum ice_prof_type prof_type;
1732		u32 offset;
1733
1734		fv = (struct ice_fv *)
1735			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1736					   &offset, ice_sw_fv_handler);
1737		ice_seg = NULL;
1738
1739		if (fv) {
1740			/* Determine field vector type */
1741			prof_type = ice_get_sw_prof_type(hw, fv);
1742
1743			if (req_profs & prof_type)
1744				ice_set_bit((u16)offset, bm);
1745		}
1746	} while (fv);
1747}
1748
1749/**
1750 * ice_get_sw_fv_list
1751 * @hw: pointer to the HW structure
1752 * @prot_ids: field vector to search for with a given protocol ID
1753 * @ids_cnt: lookup/protocol count
1754 * @bm: bitmap of field vectors to consider
1755 * @fv_list: Head of a list
1756 *
1757 * Finds all the field vector entries from switch block that contain
1758 * a given protocol ID and returns a list of structures of type
1759 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1760 * definition and profile ID information
1761 * NOTE: The caller of the function is responsible for freeing the memory
1762 * allocated for every list entry.
1763 */
1764enum ice_status
1765ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1766		   ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1767{
1768	struct ice_sw_fv_list_entry *fvl;
1769	struct ice_sw_fv_list_entry *tmp;
1770	struct ice_pkg_enum state;
1771	struct ice_seg *ice_seg;
1772	struct ice_fv *fv;
1773	u32 offset;
1774
1775	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1776
1777	if (!ids_cnt || !hw->seg)
1778		return ICE_ERR_PARAM;
1779
1780	ice_seg = hw->seg;
1781	do {
1782		u16 i;
1783
1784		fv = (struct ice_fv *)
1785			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1786					   &offset, ice_sw_fv_handler);
1787		if (!fv)
1788			break;
1789		ice_seg = NULL;
1790
1791		/* If field vector is not in the bitmap list, then skip this
1792		 * profile.
1793		 */
1794		if (!ice_is_bit_set(bm, (u16)offset))
1795			continue;
1796
1797		for (i = 0; i < ids_cnt; i++) {
1798			int j;
1799
1800			/* This code assumes that if a switch field vector line
1801			 * has a matching protocol, then this line will contain
1802			 * the entries necessary to represent every field in
1803			 * that protocol header.
1804			 */
1805			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1806				if (fv->ew[j].prot_id == prot_ids[i])
1807					break;
1808			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1809				break;
1810			if (i + 1 == ids_cnt) {
1811				fvl = (struct ice_sw_fv_list_entry *)
1812					ice_malloc(hw, sizeof(*fvl));
1813				if (!fvl)
1814					goto err;
1815				fvl->fv_ptr = fv;
1816				fvl->profile_id = offset;
1817				LIST_ADD(&fvl->list_entry, fv_list);
1818				break;
1819			}
1820		}
1821	} while (fv);
1822	if (LIST_EMPTY(fv_list))
1823		return ICE_ERR_CFG;
1824	return ICE_SUCCESS;
1825
1826err:
1827	LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1828				 list_entry) {
1829		LIST_DEL(&fvl->list_entry);
1830		ice_free(hw, fvl);
1831	}
1832
1833	return ICE_ERR_NO_MEMORY;
1834}
1835
1836/**
1837 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1838 * @hw: pointer to hardware structure
1839 */
1840void ice_init_prof_result_bm(struct ice_hw *hw)
1841{
1842	struct ice_pkg_enum state;
1843	struct ice_seg *ice_seg;
1844	struct ice_fv *fv;
1845
1846	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1847
1848	if (!hw->seg)
1849		return;
1850
1851	ice_seg = hw->seg;
1852	do {
1853		u32 off;
1854		u16 i;
1855
1856		fv = (struct ice_fv *)
1857			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1858					   &off, ice_sw_fv_handler);
1859		ice_seg = NULL;
1860		if (!fv)
1861			break;
1862
1863		ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1864				ICE_MAX_FV_WORDS);
1865
1866		/* Determine empty field vector indices, these can be
1867		 * used for recipe results. Skip index 0, since it is
1868		 * always used for Switch ID.
1869		 */
1870		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1871			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1872			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1873				ice_set_bit(i,
1874					    hw->switch_info->prof_res_bm[off]);
1875	} while (fv);
1876}
1877
1878/**
1879 * ice_pkg_buf_free
1880 * @hw: pointer to the HW structure
1881 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1882 *
1883 * Frees a package buffer
1884 */
1885static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1886{
1887	ice_free(hw, bld);
1888}
1889
1890/**
1891 * ice_pkg_buf_reserve_section
1892 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1893 * @count: the number of sections to reserve
1894 *
1895 * Reserves one or more section table entries in a package buffer. This routine
1896 * can be called multiple times as long as they are made before calling
1897 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1898 * is called once, the number of sections that can be allocated will not be able
1899 * to be increased; not using all reserved sections is fine, but this will
1900 * result in some wasted space in the buffer.
1901 * Note: all package contents must be in Little Endian form.
1902 */
1903static enum ice_status
1904ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1905{
1906	struct ice_buf_hdr *buf;
1907	u16 section_count;
1908	u16 data_end;
1909
1910	if (!bld)
1911		return ICE_ERR_PARAM;
1912
1913	buf = (struct ice_buf_hdr *)&bld->buf;
1914
1915	/* already an active section, can't increase table size */
1916	section_count = LE16_TO_CPU(buf->section_count);
1917	if (section_count > 0)
1918		return ICE_ERR_CFG;
1919
1920	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1921		return ICE_ERR_CFG;
1922	bld->reserved_section_table_entries += count;
1923
1924	data_end = LE16_TO_CPU(buf->data_end) +
1925		FLEX_ARRAY_SIZE(buf, section_entry, count);
1926	buf->data_end = CPU_TO_LE16(data_end);
1927
1928	return ICE_SUCCESS;
1929}
1930
1931/**
1932 * ice_pkg_buf_alloc_section
1933 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1934 * @type: the section type value
1935 * @size: the size of the section to reserve (in bytes)
1936 *
1937 * Reserves memory in the buffer for a section's content and updates the
1938 * buffers' status accordingly. This routine returns a pointer to the first
1939 * byte of the section start within the buffer, which is used to fill in the
1940 * section contents.
1941 * Note: all package contents must be in Little Endian form.
1942 */
1943static void *
1944ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1945{
1946	struct ice_buf_hdr *buf;
1947	u16 sect_count;
1948	u16 data_end;
1949
1950	if (!bld || !type || !size)
1951		return NULL;
1952
1953	buf = (struct ice_buf_hdr *)&bld->buf;
1954
1955	/* check for enough space left in buffer */
1956	data_end = LE16_TO_CPU(buf->data_end);
1957
1958	/* section start must align on 4 byte boundary */
1959	data_end = ICE_ALIGN(data_end, 4);
1960
1961	if ((data_end + size) > ICE_MAX_S_DATA_END)
1962		return NULL;
1963
1964	/* check for more available section table entries */
1965	sect_count = LE16_TO_CPU(buf->section_count);
1966	if (sect_count < bld->reserved_section_table_entries) {
1967		void *section_ptr = ((u8 *)buf) + data_end;
1968
1969		buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
1970		buf->section_entry[sect_count].size = CPU_TO_LE16(size);
1971		buf->section_entry[sect_count].type = CPU_TO_LE32(type);
1972
1973		data_end += size;
1974		buf->data_end = CPU_TO_LE16(data_end);
1975
1976		buf->section_count = CPU_TO_LE16(sect_count + 1);
1977		return section_ptr;
1978	}
1979
1980	/* no free section table entries */
1981	return NULL;
1982}
1983
1984/**
1985 * ice_pkg_buf_alloc_single_section
1986 * @hw: pointer to the HW structure
1987 * @type: the section type value
1988 * @size: the size of the section to reserve (in bytes)
1989 * @section: returns pointer to the section
1990 *
1991 * Allocates a package buffer with a single section.
1992 * Note: all package contents must be in Little Endian form.
1993 */
1994static struct ice_buf_build *
1995ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
1996				 void **section)
1997{
1998	struct ice_buf_build *buf;
1999
2000	if (!section)
2001		return NULL;
2002
2003	buf = ice_pkg_buf_alloc(hw);
2004	if (!buf)
2005		return NULL;
2006
2007	if (ice_pkg_buf_reserve_section(buf, 1))
2008		goto ice_pkg_buf_alloc_single_section_err;
2009
2010	*section = ice_pkg_buf_alloc_section(buf, type, size);
2011	if (!*section)
2012		goto ice_pkg_buf_alloc_single_section_err;
2013
2014	return buf;
2015
2016ice_pkg_buf_alloc_single_section_err:
2017	ice_pkg_buf_free(hw, buf);
2018	return NULL;
2019}
2020
2021/**
2022 * ice_pkg_buf_unreserve_section
2023 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2024 * @count: the number of sections to unreserve
2025 *
2026 * Unreserves one or more section table entries in a package buffer, releasing
2027 * space that can be used for section data. This routine can be called
2028 * multiple times as long as they are made before calling
2029 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2030 * is called once, the number of sections that can be allocated will not be able
2031 * to be increased; not using all reserved sections is fine, but this will
2032 * result in some wasted space in the buffer.
2033 * Note: all package contents must be in Little Endian form.
2034 */
2035enum ice_status
2036ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
2037{
2038	struct ice_buf_hdr *buf;
2039	u16 section_count;
2040	u16 data_end;
2041
2042	if (!bld)
2043		return ICE_ERR_PARAM;
2044
2045	buf = (struct ice_buf_hdr *)&bld->buf;
2046
2047	/* already an active section, can't decrease table size */
2048	section_count = LE16_TO_CPU(buf->section_count);
2049	if (section_count > 0)
2050		return ICE_ERR_CFG;
2051
2052	if (count > bld->reserved_section_table_entries)
2053		return ICE_ERR_CFG;
2054	bld->reserved_section_table_entries -= count;
2055
2056	data_end = LE16_TO_CPU(buf->data_end) -
2057		FLEX_ARRAY_SIZE(buf, section_entry, count);
2058	buf->data_end = CPU_TO_LE16(data_end);
2059
2060	return ICE_SUCCESS;
2061}
2062
2063/**
2064 * ice_pkg_buf_get_free_space
2065 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2066 *
2067 * Returns the number of free bytes remaining in the buffer.
2068 * Note: all package contents must be in Little Endian form.
2069 */
2070u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
2071{
2072	struct ice_buf_hdr *buf;
2073
2074	if (!bld)
2075		return 0;
2076
2077	buf = (struct ice_buf_hdr *)&bld->buf;
2078	return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
2079}
2080
2081/**
2082 * ice_pkg_buf_get_active_sections
2083 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2084 *
2085 * Returns the number of active sections. Before using the package buffer
2086 * in an update package command, the caller should make sure that there is at
2087 * least one active section - otherwise, the buffer is not legal and should
2088 * not be used.
2089 * Note: all package contents must be in Little Endian form.
2090 */
2091static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2092{
2093	struct ice_buf_hdr *buf;
2094
2095	if (!bld)
2096		return 0;
2097
2098	buf = (struct ice_buf_hdr *)&bld->buf;
2099	return LE16_TO_CPU(buf->section_count);
2100}
2101
2102/**
2103 * ice_pkg_buf
2104 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2105 *
2106 * Return a pointer to the buffer's header
2107 */
2108static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2109{
2110	if (!bld)
2111		return NULL;
2112
2113	return &bld->buf;
2114}
2115
2116/**
2117 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
2118 * @hw: pointer to the HW structure
2119 * @port: port to search for
2120 * @index: optionally returns index
2121 *
2122 * Returns whether a port is already in use as a tunnel, and optionally its
2123 * index
2124 */
2125static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
2126{
2127	u16 i;
2128
2129	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2130		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2131			if (index)
2132				*index = i;
2133			return true;
2134		}
2135
2136	return false;
2137}
2138
2139/**
2140 * ice_tunnel_port_in_use
2141 * @hw: pointer to the HW structure
2142 * @port: port to search for
2143 * @index: optionally returns index
2144 *
2145 * Returns whether a port is already in use as a tunnel, and optionally its
2146 * index
2147 */
2148bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
2149{
2150	bool res;
2151
2152	ice_acquire_lock(&hw->tnl_lock);
2153	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
2154	ice_release_lock(&hw->tnl_lock);
2155
2156	return res;
2157}
2158
2159/**
2160 * ice_tunnel_get_type
2161 * @hw: pointer to the HW structure
2162 * @port: port to search for
2163 * @type: returns tunnel index
2164 *
2165 * For a given port number, will return the type of tunnel.
2166 */
2167bool
2168ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
2169{
2170	bool res = false;
2171	u16 i;
2172
2173	ice_acquire_lock(&hw->tnl_lock);
2174
2175	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2176		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2177			*type = hw->tnl.tbl[i].type;
2178			res = true;
2179			break;
2180		}
2181
2182	ice_release_lock(&hw->tnl_lock);
2183
2184	return res;
2185}
2186
2187/**
2188 * ice_find_free_tunnel_entry
2189 * @hw: pointer to the HW structure
2190 * @type: tunnel type
2191 * @index: optionally returns index
2192 *
2193 * Returns whether there is a free tunnel entry, and optionally its index
2194 */
2195static bool
2196ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2197			   u16 *index)
2198{
2199	u16 i;
2200
2201	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2202		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
2203		    hw->tnl.tbl[i].type == type) {
2204			if (index)
2205				*index = i;
2206			return true;
2207		}
2208
2209	return false;
2210}
2211
2212/**
2213 * ice_get_open_tunnel_port - retrieve an open tunnel port
2214 * @hw: pointer to the HW structure
2215 * @type: tunnel type (TNL_ALL will return any open port)
2216 * @port: returns open port
2217 */
2218bool
2219ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
2220			 u16 *port)
2221{
2222	bool res = false;
2223	u16 i;
2224
2225	ice_acquire_lock(&hw->tnl_lock);
2226
2227	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2228		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2229		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
2230			*port = hw->tnl.tbl[i].port;
2231			res = true;
2232			break;
2233		}
2234
2235	ice_release_lock(&hw->tnl_lock);
2236
2237	return res;
2238}
2239
2240/**
2241 * ice_create_tunnel
2242 * @hw: pointer to the HW structure
2243 * @type: type of tunnel
2244 * @port: port of tunnel to create
2245 *
2246 * Create a tunnel by updating the parse graph in the parser. We do that by
2247 * creating a package buffer with the tunnel info and issuing an update package
2248 * command.
2249 */
2250enum ice_status
2251ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2252{
2253	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2254	enum ice_status status = ICE_ERR_MAX_LIMIT;
2255	struct ice_buf_build *bld;
2256	u16 index;
2257
2258	ice_acquire_lock(&hw->tnl_lock);
2259
2260	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2261		hw->tnl.tbl[index].ref++;
2262		status = ICE_SUCCESS;
2263		goto ice_create_tunnel_end;
2264	}
2265
2266	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2267		status = ICE_ERR_OUT_OF_RANGE;
2268		goto ice_create_tunnel_end;
2269	}
2270
2271	bld = ice_pkg_buf_alloc(hw);
2272	if (!bld) {
2273		status = ICE_ERR_NO_MEMORY;
2274		goto ice_create_tunnel_end;
2275	}
2276
2277	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2278	if (ice_pkg_buf_reserve_section(bld, 2))
2279		goto ice_create_tunnel_err;
2280
2281	sect_rx = (struct ice_boost_tcam_section *)
2282		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2283					  ice_struct_size(sect_rx, tcam, 1));
2284	if (!sect_rx)
2285		goto ice_create_tunnel_err;
2286	sect_rx->count = CPU_TO_LE16(1);
2287
2288	sect_tx = (struct ice_boost_tcam_section *)
2289		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2290					  ice_struct_size(sect_tx, tcam, 1));
2291	if (!sect_tx)
2292		goto ice_create_tunnel_err;
2293	sect_tx->count = CPU_TO_LE16(1);
2294
2295	/* copy original boost entry to update package buffer */
2296	ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2297		   sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2298
2299	/* over-write the never-match dest port key bits with the encoded port
2300	 * bits
2301	 */
2302	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2303		    (u8 *)&port, NULL, NULL, NULL,
2304		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2305		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2306
2307	/* exact copy of entry to Tx section entry */
2308	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2309		   ICE_NONDMA_TO_NONDMA);
2310
2311	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2312	if (!status) {
2313		hw->tnl.tbl[index].port = port;
2314		hw->tnl.tbl[index].in_use = true;
2315		hw->tnl.tbl[index].ref = 1;
2316	}
2317
2318ice_create_tunnel_err:
2319	ice_pkg_buf_free(hw, bld);
2320
2321ice_create_tunnel_end:
2322	ice_release_lock(&hw->tnl_lock);
2323
2324	return status;
2325}
2326
2327/**
2328 * ice_destroy_tunnel
2329 * @hw: pointer to the HW structure
2330 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2331 * @all: flag that states to destroy all tunnels
2332 *
2333 * Destroys a tunnel or all tunnels by creating an update package buffer
2334 * targeting the specific updates requested and then performing an update
2335 * package.
2336 */
2337enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2338{
2339	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2340	enum ice_status status = ICE_ERR_MAX_LIMIT;
2341	struct ice_buf_build *bld;
2342	u16 count = 0;
2343	u16 index;
2344	u16 size;
2345	u16 i;
2346
2347	ice_acquire_lock(&hw->tnl_lock);
2348
2349	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2350		if (hw->tnl.tbl[index].ref > 1) {
2351			hw->tnl.tbl[index].ref--;
2352			status = ICE_SUCCESS;
2353			goto ice_destroy_tunnel_end;
2354		}
2355
2356	/* determine count */
2357	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2358		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2359		    (all || hw->tnl.tbl[i].port == port))
2360			count++;
2361
2362	if (!count) {
2363		status = ICE_ERR_PARAM;
2364		goto ice_destroy_tunnel_end;
2365	}
2366
2367	/* size of section - there is at least one entry */
2368	size = ice_struct_size(sect_rx, tcam, count);
2369
2370	bld = ice_pkg_buf_alloc(hw);
2371	if (!bld) {
2372		status = ICE_ERR_NO_MEMORY;
2373		goto ice_destroy_tunnel_end;
2374	}
2375
2376	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2377	if (ice_pkg_buf_reserve_section(bld, 2))
2378		goto ice_destroy_tunnel_err;
2379
2380	sect_rx = (struct ice_boost_tcam_section *)
2381		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2382					  size);
2383	if (!sect_rx)
2384		goto ice_destroy_tunnel_err;
2385	sect_rx->count = CPU_TO_LE16(1);
2386
2387	sect_tx = (struct ice_boost_tcam_section *)
2388		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2389					  size);
2390	if (!sect_tx)
2391		goto ice_destroy_tunnel_err;
2392	sect_tx->count = CPU_TO_LE16(1);
2393
2394	/* copy original boost entry to update package buffer, one copy to Rx
2395	 * section, another copy to the Tx section
2396	 */
2397	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2398		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2399		    (all || hw->tnl.tbl[i].port == port)) {
2400			ice_memcpy(sect_rx->tcam + i,
2401				   hw->tnl.tbl[i].boost_entry,
2402				   sizeof(*sect_rx->tcam),
2403				   ICE_NONDMA_TO_NONDMA);
2404			ice_memcpy(sect_tx->tcam + i,
2405				   hw->tnl.tbl[i].boost_entry,
2406				   sizeof(*sect_tx->tcam),
2407				   ICE_NONDMA_TO_NONDMA);
2408			hw->tnl.tbl[i].marked = true;
2409		}
2410
2411	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2412	if (!status)
2413		for (i = 0; i < hw->tnl.count &&
2414		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
2415			if (hw->tnl.tbl[i].marked) {
2416				hw->tnl.tbl[i].ref = 0;
2417				hw->tnl.tbl[i].port = 0;
2418				hw->tnl.tbl[i].in_use = false;
2419				hw->tnl.tbl[i].marked = false;
2420			}
2421
2422ice_destroy_tunnel_err:
2423	ice_pkg_buf_free(hw, bld);
2424
2425ice_destroy_tunnel_end:
2426	ice_release_lock(&hw->tnl_lock);
2427
2428	return status;
2429}
2430
2431/**
2432 * ice_replay_tunnels
2433 * @hw: pointer to the HW structure
2434 *
2435 * Replays all tunnels
2436 */
2437enum ice_status ice_replay_tunnels(struct ice_hw *hw)
2438{
2439	enum ice_status status = ICE_SUCCESS;
2440	u16 i;
2441
2442	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2443
2444	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) {
2445		enum ice_tunnel_type type = hw->tnl.tbl[i].type;
2446		u16 refs = hw->tnl.tbl[i].ref;
2447		u16 port = hw->tnl.tbl[i].port;
2448
2449		if (!hw->tnl.tbl[i].in_use)
2450			continue;
2451
2452		/* Replay tunnels one at a time by destroying them, then
2453		 * recreating them
2454		 */
2455		hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */
2456		status = ice_destroy_tunnel(hw, port, false);
2457		if (status) {
2458			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n",
2459				  status, port);
2460			break;
2461		}
2462
2463		status = ice_create_tunnel(hw, type, port);
2464		if (status) {
2465			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n",
2466				  status, port);
2467			break;
2468		}
2469
2470		/* reset to original ref count */
2471		hw->tnl.tbl[i].ref = refs;
2472	}
2473
2474	return status;
2475}
2476
2477/**
2478 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2479 * @hw: pointer to the hardware structure
2480 * @blk: hardware block
2481 * @prof: profile ID
2482 * @fv_idx: field vector word index
2483 * @prot: variable to receive the protocol ID
2484 * @off: variable to receive the protocol offset
2485 */
2486enum ice_status
2487ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2488		  u8 *prot, u16 *off)
2489{
2490	struct ice_fv_word *fv_ext;
2491
2492	if (prof >= hw->blk[blk].es.count)
2493		return ICE_ERR_PARAM;
2494
2495	if (fv_idx >= hw->blk[blk].es.fvw)
2496		return ICE_ERR_PARAM;
2497
2498	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2499
2500	*prot = fv_ext[fv_idx].prot_id;
2501	*off = fv_ext[fv_idx].off;
2502
2503	return ICE_SUCCESS;
2504}
2505
2506/* PTG Management */
2507
2508/**
2509 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
2510 * @hw: pointer to the hardware structure
2511 * @blk: HW block
2512 *
2513 * This function will update the XLT1 hardware table to reflect the new
2514 * packet type group configuration.
2515 */
2516enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
2517{
2518	struct ice_xlt1_section *sect;
2519	struct ice_buf_build *bld;
2520	enum ice_status status;
2521	u16 index;
2522
2523	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
2524					       ice_struct_size(sect, value,
2525							       ICE_XLT1_CNT),
2526					       (void **)&sect);
2527	if (!bld)
2528		return ICE_ERR_NO_MEMORY;
2529
2530	sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
2531	sect->offset = CPU_TO_LE16(0);
2532	for (index = 0; index < ICE_XLT1_CNT; index++)
2533		sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
2534
2535	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2536
2537	ice_pkg_buf_free(hw, bld);
2538
2539	return status;
2540}
2541
2542/**
2543 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2544 * @hw: pointer to the hardware structure
2545 * @blk: HW block
2546 * @ptype: the ptype to search for
2547 * @ptg: pointer to variable that receives the PTG
2548 *
2549 * This function will search the PTGs for a particular ptype, returning the
2550 * PTG ID that contains it through the PTG parameter, with the value of
2551 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2552 */
2553static enum ice_status
2554ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2555{
2556	if (ptype >= ICE_XLT1_CNT || !ptg)
2557		return ICE_ERR_PARAM;
2558
2559	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2560	return ICE_SUCCESS;
2561}
2562
2563/**
2564 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2565 * @hw: pointer to the hardware structure
2566 * @blk: HW block
2567 * @ptg: the PTG to allocate
2568 *
2569 * This function allocates a given packet type group ID specified by the PTG
2570 * parameter.
2571 */
2572static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2573{
2574	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2575}
2576
2577/**
2578 * ice_ptg_free - Frees a packet type group
2579 * @hw: pointer to the hardware structure
2580 * @blk: HW block
2581 * @ptg: the PTG ID to free
2582 *
2583 * This function frees a packet type group, and returns all the current ptypes
2584 * within it to the default PTG.
2585 */
2586void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587{
2588	struct ice_ptg_ptype *p, *temp;
2589
2590	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
2591	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2592	while (p) {
2593		p->ptg = ICE_DEFAULT_PTG;
2594		temp = p->next_ptype;
2595		p->next_ptype = NULL;
2596		p = temp;
2597	}
2598
2599	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
2600}
2601
2602/**
2603 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2604 * @hw: pointer to the hardware structure
2605 * @blk: HW block
2606 * @ptype: the ptype to remove
2607 * @ptg: the PTG to remove the ptype from
2608 *
2609 * This function will remove the ptype from the specific PTG, and move it to
2610 * the default PTG (ICE_DEFAULT_PTG).
2611 */
2612static enum ice_status
2613ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2614{
2615	struct ice_ptg_ptype **ch;
2616	struct ice_ptg_ptype *p;
2617
2618	if (ptype > ICE_XLT1_CNT - 1)
2619		return ICE_ERR_PARAM;
2620
2621	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2622		return ICE_ERR_DOES_NOT_EXIST;
2623
2624	/* Should not happen if .in_use is set, bad config */
2625	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2626		return ICE_ERR_CFG;
2627
2628	/* find the ptype within this PTG, and bypass the link over it */
2629	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2630	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2631	while (p) {
2632		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2633			*ch = p->next_ptype;
2634			break;
2635		}
2636
2637		ch = &p->next_ptype;
2638		p = p->next_ptype;
2639	}
2640
2641	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2642	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2643
2644	return ICE_SUCCESS;
2645}
2646
2647/**
2648 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2649 * @hw: pointer to the hardware structure
2650 * @blk: HW block
2651 * @ptype: the ptype to add or move
2652 * @ptg: the PTG to add or move the ptype to
2653 *
2654 * This function will either add or move a ptype to a particular PTG depending
2655 * on if the ptype is already part of another group. Note that using a
2656 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2657 * default PTG.
2658 */
2659static enum ice_status
2660ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2661{
2662	enum ice_status status;
2663	u8 original_ptg;
2664
2665	if (ptype > ICE_XLT1_CNT - 1)
2666		return ICE_ERR_PARAM;
2667
2668	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2669		return ICE_ERR_DOES_NOT_EXIST;
2670
2671	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2672	if (status)
2673		return status;
2674
2675	/* Is ptype already in the correct PTG? */
2676	if (original_ptg == ptg)
2677		return ICE_SUCCESS;
2678
2679	/* Remove from original PTG and move back to the default PTG */
2680	if (original_ptg != ICE_DEFAULT_PTG)
2681		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2682
2683	/* Moving to default PTG? Then we're done with this request */
2684	if (ptg == ICE_DEFAULT_PTG)
2685		return ICE_SUCCESS;
2686
2687	/* Add ptype to PTG at beginning of list */
2688	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2689		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2690	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2691		&hw->blk[blk].xlt1.ptypes[ptype];
2692
2693	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2694	hw->blk[blk].xlt1.t[ptype] = ptg;
2695
2696	return ICE_SUCCESS;
2697}
2698
2699/* Block / table size info */
2700struct ice_blk_size_details {
2701	u16 xlt1;			/* # XLT1 entries */
2702	u16 xlt2;			/* # XLT2 entries */
2703	u16 prof_tcam;			/* # profile ID TCAM entries */
2704	u16 prof_id;			/* # profile IDs */
2705	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2706	u16 prof_redir;			/* # profile redirection entries */
2707	u16 es;				/* # extraction sequence entries */
2708	u16 fvw;			/* # field vector words */
2709	u8 overwrite;			/* overwrite existing entries allowed */
2710	u8 reverse;			/* reverse FV order */
2711};
2712
2713static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2714	/**
2715	 * Table Definitions
2716	 * XLT1 - Number of entries in XLT1 table
2717	 * XLT2 - Number of entries in XLT2 table
2718	 * TCAM - Number of entries Profile ID TCAM table
2719	 * CDID - Control Domain ID of the hardware block
2720	 * PRED - Number of entries in the Profile Redirection Table
2721	 * FV   - Number of entries in the Field Vector
2722	 * FVW  - Width (in WORDs) of the Field Vector
2723	 * OVR  - Overwrite existing table entries
2724	 * REV  - Reverse FV
2725	 */
2726	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2727	/*          Overwrite   , Reverse FV */
2728	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2729		    false, false },
2730	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2731		    false, false },
2732	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2733		    false, true  },
2734	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2735		    true,  true  },
2736	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2737		    false, false },
2738};
2739
2740enum ice_sid_all {
2741	ICE_SID_XLT1_OFF = 0,
2742	ICE_SID_XLT2_OFF,
2743	ICE_SID_PR_OFF,
2744	ICE_SID_PR_REDIR_OFF,
2745	ICE_SID_ES_OFF,
2746	ICE_SID_OFF_COUNT,
2747};
2748
2749/* Characteristic handling */
2750
2751/**
2752 * ice_match_prop_lst - determine if properties of two lists match
2753 * @list1: first properties list
2754 * @list2: second properties list
2755 *
2756 * Count, cookies and the order must match in order to be considered equivalent.
2757 */
2758static bool
2759ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2760{
2761	struct ice_vsig_prof *tmp1;
2762	struct ice_vsig_prof *tmp2;
2763	u16 chk_count = 0;
2764	u16 count = 0;
2765
2766	/* compare counts */
2767	LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2768		count++;
2769	LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2770		chk_count++;
2771	if (!count || count != chk_count)
2772		return false;
2773
2774	tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2775	tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2776
2777	/* profile cookies must compare, and in the exact same order to take
2778	 * into account priority
2779	 */
2780	while (count--) {
2781		if (tmp2->profile_cookie != tmp1->profile_cookie)
2782			return false;
2783
2784		tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2785		tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2786	}
2787
2788	return true;
2789}
2790
2791/* VSIG Management */
2792
2793/**
2794 * ice_vsig_update_xlt2_sect - update one section of XLT2 table
2795 * @hw: pointer to the hardware structure
2796 * @blk: HW block
2797 * @vsi: HW VSI number to program
2798 * @vsig: VSIG for the VSI
2799 *
2800 * This function will update the XLT2 hardware table with the input VSI
2801 * group configuration.
2802 */
2803static enum ice_status
2804ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
2805			  u16 vsig)
2806{
2807	struct ice_xlt2_section *sect;
2808	struct ice_buf_build *bld;
2809	enum ice_status status;
2810
2811	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
2812					       ice_struct_size(sect, value, 1),
2813					       (void **)&sect);
2814	if (!bld)
2815		return ICE_ERR_NO_MEMORY;
2816
2817	sect->count = CPU_TO_LE16(1);
2818	sect->offset = CPU_TO_LE16(vsi);
2819	sect->value[0] = CPU_TO_LE16(vsig);
2820
2821	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2822
2823	ice_pkg_buf_free(hw, bld);
2824
2825	return status;
2826}
2827
2828/**
2829 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
2830 * @hw: pointer to the hardware structure
2831 * @blk: HW block
2832 *
2833 * This function will update the XLT2 hardware table with the input VSI
2834 * group configuration of used vsis.
2835 */
2836enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
2837{
2838	u16 vsi;
2839
2840	for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
2841		/* update only vsis that have been changed */
2842		if (hw->blk[blk].xlt2.vsis[vsi].changed) {
2843			enum ice_status status;
2844			u16 vsig;
2845
2846			vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2847			status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
2848			if (status)
2849				return status;
2850
2851			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2852		}
2853	}
2854
2855	return ICE_SUCCESS;
2856}
2857
2858/**
2859 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2860 * @hw: pointer to the hardware structure
2861 * @blk: HW block
2862 * @vsi: VSI of interest
2863 * @vsig: pointer to receive the VSI group
2864 *
2865 * This function will lookup the VSI entry in the XLT2 list and return
2866 * the VSI group its associated with.
2867 */
2868enum ice_status
2869ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2870{
2871	if (!vsig || vsi >= ICE_MAX_VSI)
2872		return ICE_ERR_PARAM;
2873
2874	/* As long as there's a default or valid VSIG associated with the input
2875	 * VSI, the functions returns a success. Any handling of VSIG will be
2876	 * done by the following add, update or remove functions.
2877	 */
2878	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2879
2880	return ICE_SUCCESS;
2881}
2882
2883/**
2884 * ice_vsig_alloc_val - allocate a new VSIG by value
2885 * @hw: pointer to the hardware structure
2886 * @blk: HW block
2887 * @vsig: the VSIG to allocate
2888 *
2889 * This function will allocate a given VSIG specified by the VSIG parameter.
2890 */
2891static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2892{
2893	u16 idx = vsig & ICE_VSIG_IDX_M;
2894
2895	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2896		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2897		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2898	}
2899
2900	return ICE_VSIG_VALUE(idx, hw->pf_id);
2901}
2902
2903/**
2904 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2905 * @hw: pointer to the hardware structure
2906 * @blk: HW block
2907 *
2908 * This function will iterate through the VSIG list and mark the first
2909 * unused entry for the new VSIG entry as used and return that value.
2910 */
2911static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2912{
2913	u16 i;
2914
2915	for (i = 1; i < ICE_MAX_VSIGS; i++)
2916		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2917			return ice_vsig_alloc_val(hw, blk, i);
2918
2919	return ICE_DEFAULT_VSIG;
2920}
2921
2922/**
2923 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2924 * @hw: pointer to the hardware structure
2925 * @blk: HW block
2926 * @chs: characteristic list
2927 * @vsig: returns the VSIG with the matching profiles, if found
2928 *
2929 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2930 * a group have the same characteristic set. To check if there exists a VSIG
2931 * which has the same characteristics as the input characteristics; this
2932 * function will iterate through the XLT2 list and return the VSIG that has a
2933 * matching configuration. In order to make sure that priorities are accounted
2934 * for, the list must match exactly, including the order in which the
2935 * characteristics are listed.
2936 */
2937static enum ice_status
2938ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2939			struct LIST_HEAD_TYPE *chs, u16 *vsig)
2940{
2941	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2942	u16 i;
2943
2944	for (i = 0; i < xlt2->count; i++)
2945		if (xlt2->vsig_tbl[i].in_use &&
2946		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2947			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2948			return ICE_SUCCESS;
2949		}
2950
2951	return ICE_ERR_DOES_NOT_EXIST;
2952}
2953
2954/**
2955 * ice_vsig_free - free VSI group
2956 * @hw: pointer to the hardware structure
2957 * @blk: HW block
2958 * @vsig: VSIG to remove
2959 *
2960 * The function will remove all VSIs associated with the input VSIG and move
2961 * them to the DEFAULT_VSIG and mark the VSIG available.
2962 */
2963static enum ice_status
2964ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2965{
2966	struct ice_vsig_prof *dtmp, *del;
2967	struct ice_vsig_vsi *vsi_cur;
2968	u16 idx;
2969
2970	idx = vsig & ICE_VSIG_IDX_M;
2971	if (idx >= ICE_MAX_VSIGS)
2972		return ICE_ERR_PARAM;
2973
2974	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2975		return ICE_ERR_DOES_NOT_EXIST;
2976
2977	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2978
2979	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2980	/* If the VSIG has at least 1 VSI then iterate through the
2981	 * list and remove the VSIs before deleting the group.
2982	 */
2983	if (vsi_cur) {
2984		/* remove all vsis associated with this VSIG XLT2 entry */
2985		do {
2986			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2987
2988			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2989			vsi_cur->changed = 1;
2990			vsi_cur->next_vsi = NULL;
2991			vsi_cur = tmp;
2992		} while (vsi_cur);
2993
2994		/* NULL terminate head of VSI list */
2995		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2996	}
2997
2998	/* free characteristic list */
2999	LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
3000				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3001				 ice_vsig_prof, list) {
3002		LIST_DEL(&del->list);
3003		ice_free(hw, del);
3004	}
3005
3006	/* if VSIG characteristic list was cleared for reset
3007	 * re-initialize the list head
3008	 */
3009	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
3010
3011	return ICE_SUCCESS;
3012}
3013
3014/**
3015 * ice_vsig_remove_vsi - remove VSI from VSIG
3016 * @hw: pointer to the hardware structure
3017 * @blk: HW block
3018 * @vsi: VSI to remove
3019 * @vsig: VSI group to remove from
3020 *
3021 * The function will remove the input VSI from its VSI group and move it
3022 * to the DEFAULT_VSIG.
3023 */
3024static enum ice_status
3025ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3026{
3027	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
3028	u16 idx;
3029
3030	idx = vsig & ICE_VSIG_IDX_M;
3031
3032	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3033		return ICE_ERR_PARAM;
3034
3035	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3036		return ICE_ERR_DOES_NOT_EXIST;
3037
3038	/* entry already in default VSIG, don't have to remove */
3039	if (idx == ICE_DEFAULT_VSIG)
3040		return ICE_SUCCESS;
3041
3042	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3043	if (!(*vsi_head))
3044		return ICE_ERR_CFG;
3045
3046	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
3047	vsi_cur = (*vsi_head);
3048
3049	/* iterate the VSI list, skip over the entry to be removed */
3050	while (vsi_cur) {
3051		if (vsi_tgt == vsi_cur) {
3052			(*vsi_head) = vsi_cur->next_vsi;
3053			break;
3054		}
3055		vsi_head = &vsi_cur->next_vsi;
3056		vsi_cur = vsi_cur->next_vsi;
3057	}
3058
3059	/* verify if VSI was removed from group list */
3060	if (!vsi_cur)
3061		return ICE_ERR_DOES_NOT_EXIST;
3062
3063	vsi_cur->vsig = ICE_DEFAULT_VSIG;
3064	vsi_cur->changed = 1;
3065	vsi_cur->next_vsi = NULL;
3066
3067	return ICE_SUCCESS;
3068}
3069
3070/**
3071 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
3072 * @hw: pointer to the hardware structure
3073 * @blk: HW block
3074 * @vsi: VSI to move
3075 * @vsig: destination VSI group
3076 *
3077 * This function will move or add the input VSI to the target VSIG.
3078 * The function will find the original VSIG the VSI belongs to and
3079 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3080 * then move entry to the new VSIG.
3081 */
3082static enum ice_status
3083ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3084{
3085	struct ice_vsig_vsi *tmp;
3086	enum ice_status status;
3087	u16 orig_vsig, idx;
3088
3089	idx = vsig & ICE_VSIG_IDX_M;
3090
3091	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3092		return ICE_ERR_PARAM;
3093
3094	/* if VSIG not in use and VSIG is not default type this VSIG
3095	 * doesn't exist.
3096	 */
3097	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3098	    vsig != ICE_DEFAULT_VSIG)
3099		return ICE_ERR_DOES_NOT_EXIST;
3100
3101	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3102	if (status)
3103		return status;
3104
3105	/* no update required if vsigs match */
3106	if (orig_vsig == vsig)
3107		return ICE_SUCCESS;
3108
3109	if (orig_vsig != ICE_DEFAULT_VSIG) {
3110		/* remove entry from orig_vsig and add to default VSIG */
3111		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3112		if (status)
3113			return status;
3114	}
3115
3116	if (idx == ICE_DEFAULT_VSIG)
3117		return ICE_SUCCESS;
3118
3119	/* Create VSI entry and add VSIG and prop_mask values */
3120	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3121	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3122
3123	/* Add new entry to the head of the VSIG list */
3124	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3125	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3126		&hw->blk[blk].xlt2.vsis[vsi];
3127	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3128	hw->blk[blk].xlt2.t[vsi] = vsig;
3129
3130	return ICE_SUCCESS;
3131}
3132
3133/**
3134 * ice_find_prof_id - find profile ID for a given field vector
3135 * @hw: pointer to the hardware structure
3136 * @blk: HW block
3137 * @fv: field vector to search for
3138 * @prof_id: receives the profile ID
3139 */
3140static enum ice_status
3141ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
3142		 struct ice_fv_word *fv, u8 *prof_id)
3143{
3144	struct ice_es *es = &hw->blk[blk].es;
3145	u16 off;
3146	u8 i;
3147
3148	for (i = 0; i < (u8)es->count; i++) {
3149		off = i * es->fvw;
3150
3151		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3152			continue;
3153
3154		*prof_id = i;
3155		return ICE_SUCCESS;
3156	}
3157
3158	return ICE_ERR_DOES_NOT_EXIST;
3159}
3160
3161/**
3162 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3163 * @blk: the block type
3164 * @rsrc_type: pointer to variable to receive the resource type
3165 */
3166static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3167{
3168	switch (blk) {
3169	case ICE_BLK_RSS:
3170		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3171		break;
3172	case ICE_BLK_PE:
3173		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
3174		break;
3175	default:
3176		return false;
3177	}
3178	return true;
3179}
3180
3181/**
3182 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3183 * @blk: the block type
3184 * @rsrc_type: pointer to variable to receive the resource type
3185 */
3186static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3187{
3188	switch (blk) {
3189	case ICE_BLK_RSS:
3190		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3191		break;
3192	case ICE_BLK_PE:
3193		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
3194		break;
3195	default:
3196		return false;
3197	}
3198	return true;
3199}
3200
3201/**
3202 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3203 * @hw: pointer to the HW struct
3204 * @blk: the block to allocate the TCAM for
3205 * @btm: true to allocate from bottom of table, false to allocate from top
3206 * @tcam_idx: pointer to variable to receive the TCAM entry
3207 *
3208 * This function allocates a new entry in a Profile ID TCAM for a specific
3209 * block.
3210 */
3211static enum ice_status
3212ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3213		   u16 *tcam_idx)
3214{
3215	u16 res_type;
3216
3217	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3218		return ICE_ERR_PARAM;
3219
3220	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3221}
3222
3223/**
3224 * ice_free_tcam_ent - free hardware TCAM entry
3225 * @hw: pointer to the HW struct
3226 * @blk: the block from which to free the TCAM entry
3227 * @tcam_idx: the TCAM entry to free
3228 *
3229 * This function frees an entry in a Profile ID TCAM for a specific block.
3230 */
3231static enum ice_status
3232ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3233{
3234	u16 res_type;
3235
3236	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3237		return ICE_ERR_PARAM;
3238
3239	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3240}
3241
3242/**
3243 * ice_alloc_prof_id - allocate profile ID
3244 * @hw: pointer to the HW struct
3245 * @blk: the block to allocate the profile ID for
3246 * @prof_id: pointer to variable to receive the profile ID
3247 *
3248 * This function allocates a new profile ID, which also corresponds to a Field
3249 * Vector (Extraction Sequence) entry.
3250 */
3251static enum ice_status
3252ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3253{
3254	enum ice_status status;
3255	u16 res_type;
3256	u16 get_prof;
3257
3258	if (!ice_prof_id_rsrc_type(blk, &res_type))
3259		return ICE_ERR_PARAM;
3260
3261	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3262	if (!status)
3263		*prof_id = (u8)get_prof;
3264
3265	return status;
3266}
3267
3268/**
3269 * ice_free_prof_id - free profile ID
3270 * @hw: pointer to the HW struct
3271 * @blk: the block from which to free the profile ID
3272 * @prof_id: the profile ID to free
3273 *
3274 * This function frees a profile ID, which also corresponds to a Field Vector.
3275 */
3276static enum ice_status
3277ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3278{
3279	u16 tmp_prof_id = (u16)prof_id;
3280	u16 res_type;
3281
3282	if (!ice_prof_id_rsrc_type(blk, &res_type))
3283		return ICE_ERR_PARAM;
3284
3285	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3286}
3287
3288/**
3289 * ice_prof_inc_ref - increment reference count for profile
3290 * @hw: pointer to the HW struct
3291 * @blk: the block from which to free the profile ID
3292 * @prof_id: the profile ID for which to increment the reference count
3293 */
3294static enum ice_status
3295ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3296{
3297	if (prof_id > hw->blk[blk].es.count)
3298		return ICE_ERR_PARAM;
3299
3300	hw->blk[blk].es.ref_count[prof_id]++;
3301
3302	return ICE_SUCCESS;
3303}
3304
3305/**
3306 * ice_write_es - write an extraction sequence to hardware
3307 * @hw: pointer to the HW struct
3308 * @blk: the block in which to write the extraction sequence
3309 * @prof_id: the profile ID to write
3310 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3311 */
3312static void
3313ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3314	     struct ice_fv_word *fv)
3315{
3316	u16 off;
3317
3318	off = prof_id * hw->blk[blk].es.fvw;
3319	if (!fv) {
3320		ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3321			   sizeof(*fv), ICE_NONDMA_MEM);
3322		hw->blk[blk].es.written[prof_id] = false;
3323	} else {
3324		ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3325			   sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3326	}
3327}
3328
3329/**
3330 * ice_prof_dec_ref - decrement reference count for profile
3331 * @hw: pointer to the HW struct
3332 * @blk: the block from which to free the profile ID
3333 * @prof_id: the profile ID for which to decrement the reference count
3334 */
3335static enum ice_status
3336ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3337{
3338	if (prof_id > hw->blk[blk].es.count)
3339		return ICE_ERR_PARAM;
3340
3341	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3342		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3343			ice_write_es(hw, blk, prof_id, NULL);
3344			return ice_free_prof_id(hw, blk, prof_id);
3345		}
3346	}
3347
3348	return ICE_SUCCESS;
3349}
3350
3351/* Block / table section IDs */
3352static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3353	/* SWITCH */
3354	{	ICE_SID_XLT1_SW,
3355		ICE_SID_XLT2_SW,
3356		ICE_SID_PROFID_TCAM_SW,
3357		ICE_SID_PROFID_REDIR_SW,
3358		ICE_SID_FLD_VEC_SW
3359	},
3360
3361	/* ACL */
3362	{	ICE_SID_XLT1_ACL,
3363		ICE_SID_XLT2_ACL,
3364		ICE_SID_PROFID_TCAM_ACL,
3365		ICE_SID_PROFID_REDIR_ACL,
3366		ICE_SID_FLD_VEC_ACL
3367	},
3368
3369	/* FD */
3370	{	ICE_SID_XLT1_FD,
3371		ICE_SID_XLT2_FD,
3372		ICE_SID_PROFID_TCAM_FD,
3373		ICE_SID_PROFID_REDIR_FD,
3374		ICE_SID_FLD_VEC_FD
3375	},
3376
3377	/* RSS */
3378	{	ICE_SID_XLT1_RSS,
3379		ICE_SID_XLT2_RSS,
3380		ICE_SID_PROFID_TCAM_RSS,
3381		ICE_SID_PROFID_REDIR_RSS,
3382		ICE_SID_FLD_VEC_RSS
3383	},
3384
3385	/* PE */
3386	{	ICE_SID_XLT1_PE,
3387		ICE_SID_XLT2_PE,
3388		ICE_SID_PROFID_TCAM_PE,
3389		ICE_SID_PROFID_REDIR_PE,
3390		ICE_SID_FLD_VEC_PE
3391	}
3392};
3393
3394/**
3395 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3396 * @hw: pointer to the hardware structure
3397 * @blk: the HW block to initialize
3398 */
3399static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3400{
3401	u16 pt;
3402
3403	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3404		u8 ptg;
3405
3406		ptg = hw->blk[blk].xlt1.t[pt];
3407		if (ptg != ICE_DEFAULT_PTG) {
3408			ice_ptg_alloc_val(hw, blk, ptg);
3409			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3410		}
3411	}
3412}
3413
3414/**
3415 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3416 * @hw: pointer to the hardware structure
3417 * @blk: the HW block to initialize
3418 */
3419static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3420{
3421	u16 vsi;
3422
3423	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3424		u16 vsig;
3425
3426		vsig = hw->blk[blk].xlt2.t[vsi];
3427		if (vsig) {
3428			ice_vsig_alloc_val(hw, blk, vsig);
3429			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3430			/* no changes at this time, since this has been
3431			 * initialized from the original package
3432			 */
3433			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3434		}
3435	}
3436}
3437
3438/**
3439 * ice_init_sw_db - init software database from HW tables
3440 * @hw: pointer to the hardware structure
3441 */
3442static void ice_init_sw_db(struct ice_hw *hw)
3443{
3444	u16 i;
3445
3446	for (i = 0; i < ICE_BLK_COUNT; i++) {
3447		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3448		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3449	}
3450}
3451
3452/**
3453 * ice_fill_tbl - Reads content of a single table type into database
3454 * @hw: pointer to the hardware structure
3455 * @block_id: Block ID of the table to copy
3456 * @sid: Section ID of the table to copy
3457 *
3458 * Will attempt to read the entire content of a given table of a single block
3459 * into the driver database. We assume that the buffer will always
3460 * be as large or larger than the data contained in the package. If
3461 * this condition is not met, there is most likely an error in the package
3462 * contents.
3463 */
3464static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3465{
3466	u32 dst_len, sect_len, offset = 0;
3467	struct ice_prof_redir_section *pr;
3468	struct ice_prof_id_section *pid;
3469	struct ice_xlt1_section *xlt1;
3470	struct ice_xlt2_section *xlt2;
3471	struct ice_sw_fv_section *es;
3472	struct ice_pkg_enum state;
3473	u8 *src, *dst;
3474	void *sect;
3475
3476	/* if the HW segment pointer is null then the first iteration of
3477	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3478	 * not be filled and return success.
3479	 */
3480	if (!hw->seg) {
3481		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3482		return;
3483	}
3484
3485	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3486
3487	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3488
3489	while (sect) {
3490		switch (sid) {
3491		case ICE_SID_XLT1_SW:
3492		case ICE_SID_XLT1_FD:
3493		case ICE_SID_XLT1_RSS:
3494		case ICE_SID_XLT1_ACL:
3495		case ICE_SID_XLT1_PE:
3496			xlt1 = (struct ice_xlt1_section *)sect;
3497			src = xlt1->value;
3498			sect_len = LE16_TO_CPU(xlt1->count) *
3499				sizeof(*hw->blk[block_id].xlt1.t);
3500			dst = hw->blk[block_id].xlt1.t;
3501			dst_len = hw->blk[block_id].xlt1.count *
3502				sizeof(*hw->blk[block_id].xlt1.t);
3503			break;
3504		case ICE_SID_XLT2_SW:
3505		case ICE_SID_XLT2_FD:
3506		case ICE_SID_XLT2_RSS:
3507		case ICE_SID_XLT2_ACL:
3508		case ICE_SID_XLT2_PE:
3509			xlt2 = (struct ice_xlt2_section *)sect;
3510			src = (_FORCE_ u8 *)xlt2->value;
3511			sect_len = LE16_TO_CPU(xlt2->count) *
3512				sizeof(*hw->blk[block_id].xlt2.t);
3513			dst = (u8 *)hw->blk[block_id].xlt2.t;
3514			dst_len = hw->blk[block_id].xlt2.count *
3515				sizeof(*hw->blk[block_id].xlt2.t);
3516			break;
3517		case ICE_SID_PROFID_TCAM_SW:
3518		case ICE_SID_PROFID_TCAM_FD:
3519		case ICE_SID_PROFID_TCAM_RSS:
3520		case ICE_SID_PROFID_TCAM_ACL:
3521		case ICE_SID_PROFID_TCAM_PE:
3522			pid = (struct ice_prof_id_section *)sect;
3523			src = (u8 *)pid->entry;
3524			sect_len = LE16_TO_CPU(pid->count) *
3525				sizeof(*hw->blk[block_id].prof.t);
3526			dst = (u8 *)hw->blk[block_id].prof.t;
3527			dst_len = hw->blk[block_id].prof.count *
3528				sizeof(*hw->blk[block_id].prof.t);
3529			break;
3530		case ICE_SID_PROFID_REDIR_SW:
3531		case ICE_SID_PROFID_REDIR_FD:
3532		case ICE_SID_PROFID_REDIR_RSS:
3533		case ICE_SID_PROFID_REDIR_ACL:
3534		case ICE_SID_PROFID_REDIR_PE:
3535			pr = (struct ice_prof_redir_section *)sect;
3536			src = pr->redir_value;
3537			sect_len = LE16_TO_CPU(pr->count) *
3538				sizeof(*hw->blk[block_id].prof_redir.t);
3539			dst = hw->blk[block_id].prof_redir.t;
3540			dst_len = hw->blk[block_id].prof_redir.count *
3541				sizeof(*hw->blk[block_id].prof_redir.t);
3542			break;
3543		case ICE_SID_FLD_VEC_SW:
3544		case ICE_SID_FLD_VEC_FD:
3545		case ICE_SID_FLD_VEC_RSS:
3546		case ICE_SID_FLD_VEC_ACL:
3547		case ICE_SID_FLD_VEC_PE:
3548			es = (struct ice_sw_fv_section *)sect;
3549			src = (u8 *)es->fv;
3550			sect_len = (u32)(LE16_TO_CPU(es->count) *
3551					 hw->blk[block_id].es.fvw) *
3552				sizeof(*hw->blk[block_id].es.t);
3553			dst = (u8 *)hw->blk[block_id].es.t;
3554			dst_len = (u32)(hw->blk[block_id].es.count *
3555					hw->blk[block_id].es.fvw) *
3556				sizeof(*hw->blk[block_id].es.t);
3557			break;
3558		default:
3559			return;
3560		}
3561
3562		/* if the section offset exceeds destination length, terminate
3563		 * table fill.
3564		 */
3565		if (offset > dst_len)
3566			return;
3567
3568		/* if the sum of section size and offset exceed destination size
3569		 * then we are out of bounds of the HW table size for that PF.
3570		 * Changing section length to fill the remaining table space
3571		 * of that PF.
3572		 */
3573		if ((offset + sect_len) > dst_len)
3574			sect_len = dst_len - offset;
3575
3576		ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3577		offset += sect_len;
3578		sect = ice_pkg_enum_section(NULL, &state, sid);
3579	}
3580}
3581
3582/**
3583 * ice_fill_blk_tbls - Read package context for tables
3584 * @hw: pointer to the hardware structure
3585 *
3586 * Reads the current package contents and populates the driver
3587 * database with the data iteratively for all advanced feature
3588 * blocks. Assume that the HW tables have been allocated.
3589 */
3590void ice_fill_blk_tbls(struct ice_hw *hw)
3591{
3592	u8 i;
3593
3594	for (i = 0; i < ICE_BLK_COUNT; i++) {
3595		enum ice_block blk_id = (enum ice_block)i;
3596
3597		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3598		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3599		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3600		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3601		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3602	}
3603
3604	ice_init_sw_db(hw);
3605}
3606
3607/**
3608 * ice_free_prof_map - free profile map
3609 * @hw: pointer to the hardware structure
3610 * @blk_idx: HW block index
3611 */
3612static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3613{
3614	struct ice_es *es = &hw->blk[blk_idx].es;
3615	struct ice_prof_map *del, *tmp;
3616
3617	ice_acquire_lock(&es->prof_map_lock);
3618	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3619				 ice_prof_map, list) {
3620		LIST_DEL(&del->list);
3621		ice_free(hw, del);
3622	}
3623	INIT_LIST_HEAD(&es->prof_map);
3624	ice_release_lock(&es->prof_map_lock);
3625}
3626
3627/**
3628 * ice_free_flow_profs - free flow profile entries
3629 * @hw: pointer to the hardware structure
3630 * @blk_idx: HW block index
3631 */
3632static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3633{
3634	struct ice_flow_prof *p, *tmp;
3635
3636	ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
3637	LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
3638				 ice_flow_prof, l_entry) {
3639		LIST_DEL(&p->l_entry);
3640
3641		ice_free(hw, p);
3642	}
3643	ice_release_lock(&hw->fl_profs_locks[blk_idx]);
3644
3645	/* if driver is in reset and tables are being cleared
3646	 * re-initialize the flow profile list heads
3647	 */
3648	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3649}
3650
3651/**
3652 * ice_free_vsig_tbl - free complete VSIG table entries
3653 * @hw: pointer to the hardware structure
3654 * @blk: the HW block on which to free the VSIG table entries
3655 */
3656static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3657{
3658	u16 i;
3659
3660	if (!hw->blk[blk].xlt2.vsig_tbl)
3661		return;
3662
3663	for (i = 1; i < ICE_MAX_VSIGS; i++)
3664		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3665			ice_vsig_free(hw, blk, i);
3666}
3667
3668/**
3669 * ice_free_hw_tbls - free hardware table memory
3670 * @hw: pointer to the hardware structure
3671 */
3672void ice_free_hw_tbls(struct ice_hw *hw)
3673{
3674	struct ice_rss_cfg *r, *rt;
3675	u8 i;
3676
3677	for (i = 0; i < ICE_BLK_COUNT; i++) {
3678		if (hw->blk[i].is_list_init) {
3679			struct ice_es *es = &hw->blk[i].es;
3680
3681			ice_free_prof_map(hw, i);
3682			ice_destroy_lock(&es->prof_map_lock);
3683
3684			ice_free_flow_profs(hw, i);
3685			ice_destroy_lock(&hw->fl_profs_locks[i]);
3686
3687			hw->blk[i].is_list_init = false;
3688		}
3689		ice_free_vsig_tbl(hw, (enum ice_block)i);
3690		ice_free(hw, hw->blk[i].xlt1.ptypes);
3691		ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
3692		ice_free(hw, hw->blk[i].xlt1.t);
3693		ice_free(hw, hw->blk[i].xlt2.t);
3694		ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
3695		ice_free(hw, hw->blk[i].xlt2.vsis);
3696		ice_free(hw, hw->blk[i].prof.t);
3697		ice_free(hw, hw->blk[i].prof_redir.t);
3698		ice_free(hw, hw->blk[i].es.t);
3699		ice_free(hw, hw->blk[i].es.ref_count);
3700		ice_free(hw, hw->blk[i].es.written);
3701	}
3702
3703	LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
3704				 ice_rss_cfg, l_entry) {
3705		LIST_DEL(&r->l_entry);
3706		ice_free(hw, r);
3707	}
3708	ice_destroy_lock(&hw->rss_locks);
3709	ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
3710}
3711
3712/**
3713 * ice_init_flow_profs - init flow profile locks and list heads
3714 * @hw: pointer to the hardware structure
3715 * @blk_idx: HW block index
3716 */
3717static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3718{
3719	ice_init_lock(&hw->fl_profs_locks[blk_idx]);
3720	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3721}
3722
3723/**
3724 * ice_clear_hw_tbls - clear HW tables and flow profiles
3725 * @hw: pointer to the hardware structure
3726 */
3727void ice_clear_hw_tbls(struct ice_hw *hw)
3728{
3729	u8 i;
3730
3731	for (i = 0; i < ICE_BLK_COUNT; i++) {
3732		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3733		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3734		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3735		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3736		struct ice_es *es = &hw->blk[i].es;
3737
3738		if (hw->blk[i].is_list_init) {
3739			ice_free_prof_map(hw, i);
3740			ice_free_flow_profs(hw, i);
3741		}
3742
3743		ice_free_vsig_tbl(hw, (enum ice_block)i);
3744
3745		ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
3746			   ICE_NONDMA_MEM);
3747		ice_memset(xlt1->ptg_tbl, 0,
3748			   ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
3749			   ICE_NONDMA_MEM);
3750		ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
3751			   ICE_NONDMA_MEM);
3752
3753		ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
3754			   ICE_NONDMA_MEM);
3755		ice_memset(xlt2->vsig_tbl, 0,
3756			   xlt2->count * sizeof(*xlt2->vsig_tbl),
3757			   ICE_NONDMA_MEM);
3758		ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
3759			   ICE_NONDMA_MEM);
3760
3761		ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
3762			   ICE_NONDMA_MEM);
3763		ice_memset(prof_redir->t, 0,
3764			   prof_redir->count * sizeof(*prof_redir->t),
3765			   ICE_NONDMA_MEM);
3766
3767		ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
3768			   ICE_NONDMA_MEM);
3769		ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
3770			   ICE_NONDMA_MEM);
3771		ice_memset(es->written, 0, es->count * sizeof(*es->written),
3772			   ICE_NONDMA_MEM);
3773	}
3774}
3775
3776/**
3777 * ice_init_hw_tbls - init hardware table memory
3778 * @hw: pointer to the hardware structure
3779 */
3780enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3781{
3782	u8 i;
3783
3784	ice_init_lock(&hw->rss_locks);
3785	INIT_LIST_HEAD(&hw->rss_list_head);
3786	for (i = 0; i < ICE_BLK_COUNT; i++) {
3787		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3788		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3789		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3790		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3791		struct ice_es *es = &hw->blk[i].es;
3792		u16 j;
3793
3794		if (hw->blk[i].is_list_init)
3795			continue;
3796
3797		ice_init_flow_profs(hw, i);
3798		ice_init_lock(&es->prof_map_lock);
3799		INIT_LIST_HEAD(&es->prof_map);
3800		hw->blk[i].is_list_init = true;
3801
3802		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3803		es->reverse = blk_sizes[i].reverse;
3804
3805		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3806		xlt1->count = blk_sizes[i].xlt1;
3807
3808		xlt1->ptypes = (struct ice_ptg_ptype *)
3809			ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3810
3811		if (!xlt1->ptypes)
3812			goto err;
3813
3814		xlt1->ptg_tbl = (struct ice_ptg_entry *)
3815			ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3816
3817		if (!xlt1->ptg_tbl)
3818			goto err;
3819
3820		xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3821		if (!xlt1->t)
3822			goto err;
3823
3824		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3825		xlt2->count = blk_sizes[i].xlt2;
3826
3827		xlt2->vsis = (struct ice_vsig_vsi *)
3828			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3829
3830		if (!xlt2->vsis)
3831			goto err;
3832
3833		xlt2->vsig_tbl = (struct ice_vsig_entry *)
3834			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3835		if (!xlt2->vsig_tbl)
3836			goto err;
3837
3838		for (j = 0; j < xlt2->count; j++)
3839			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3840
3841		xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3842		if (!xlt2->t)
3843			goto err;
3844
3845		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3846		prof->count = blk_sizes[i].prof_tcam;
3847		prof->max_prof_id = blk_sizes[i].prof_id;
3848		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3849		prof->t = (struct ice_prof_tcam_entry *)
3850			ice_calloc(hw, prof->count, sizeof(*prof->t));
3851
3852		if (!prof->t)
3853			goto err;
3854
3855		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3856		prof_redir->count = blk_sizes[i].prof_redir;
3857		prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3858						 sizeof(*prof_redir->t));
3859
3860		if (!prof_redir->t)
3861			goto err;
3862
3863		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3864		es->count = blk_sizes[i].es;
3865		es->fvw = blk_sizes[i].fvw;
3866		es->t = (struct ice_fv_word *)
3867			ice_calloc(hw, (u32)(es->count * es->fvw),
3868				   sizeof(*es->t));
3869		if (!es->t)
3870			goto err;
3871
3872		es->ref_count = (u16 *)
3873			ice_calloc(hw, es->count, sizeof(*es->ref_count));
3874
3875		if (!es->ref_count)
3876			goto err;
3877
3878		es->written = (u8 *)
3879			ice_calloc(hw, es->count, sizeof(*es->written));
3880
3881		if (!es->written)
3882			goto err;
3883
3884	}
3885	return ICE_SUCCESS;
3886
3887err:
3888	ice_free_hw_tbls(hw);
3889	return ICE_ERR_NO_MEMORY;
3890}
3891
3892/**
3893 * ice_prof_gen_key - generate profile ID key
3894 * @hw: pointer to the HW struct
3895 * @blk: the block in which to write profile ID to
3896 * @ptg: packet type group (PTG) portion of key
3897 * @vsig: VSIG portion of key
3898 * @cdid: CDID portion of key
3899 * @flags: flag portion of key
3900 * @vl_msk: valid mask
3901 * @dc_msk: don't care mask
3902 * @nm_msk: never match mask
3903 * @key: output of profile ID key
3904 */
3905static enum ice_status
3906ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3907		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3908		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3909		 u8 key[ICE_TCAM_KEY_SZ])
3910{
3911	struct ice_prof_id_key inkey;
3912
3913	inkey.xlt1 = ptg;
3914	inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3915	inkey.flags = CPU_TO_LE16(flags);
3916
3917	switch (hw->blk[blk].prof.cdid_bits) {
3918	case 0:
3919		break;
3920	case 2:
3921#define ICE_CD_2_M 0xC000U
3922#define ICE_CD_2_S 14
3923		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3924		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3925		break;
3926	case 4:
3927#define ICE_CD_4_M 0xF000U
3928#define ICE_CD_4_S 12
3929		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3930		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3931		break;
3932	case 8:
3933#define ICE_CD_8_M 0xFF00U
3934#define ICE_CD_8_S 16
3935		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3936		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3937		break;
3938	default:
3939		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3940		break;
3941	}
3942
3943	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3944			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3945}
3946
3947/**
3948 * ice_tcam_write_entry - write TCAM entry
3949 * @hw: pointer to the HW struct
3950 * @blk: the block in which to write profile ID to
3951 * @idx: the entry index to write to
3952 * @prof_id: profile ID
3953 * @ptg: packet type group (PTG) portion of key
3954 * @vsig: VSIG portion of key
3955 * @cdid: CDID portion of key
3956 * @flags: flag portion of key
3957 * @vl_msk: valid mask
3958 * @dc_msk: don't care mask
3959 * @nm_msk: never match mask
3960 */
3961static enum ice_status
3962ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3963		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3964		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3965		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3966		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3967{
3968	struct ice_prof_tcam_entry;
3969	enum ice_status status;
3970
3971	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3972				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3973	if (!status) {
3974		hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
3975		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3976	}
3977
3978	return status;
3979}
3980
3981/**
3982 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3983 * @hw: pointer to the hardware structure
3984 * @blk: HW block
3985 * @vsig: VSIG to query
3986 * @refs: pointer to variable to receive the reference count
3987 */
3988static enum ice_status
3989ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3990{
3991	u16 idx = vsig & ICE_VSIG_IDX_M;
3992	struct ice_vsig_vsi *ptr;
3993
3994	*refs = 0;
3995
3996	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3997		return ICE_ERR_DOES_NOT_EXIST;
3998
3999	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4000	while (ptr) {
4001		(*refs)++;
4002		ptr = ptr->next_vsi;
4003	}
4004
4005	return ICE_SUCCESS;
4006}
4007
4008/**
4009 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4010 * @hw: pointer to the hardware structure
4011 * @blk: HW block
4012 * @vsig: VSIG to check against
4013 * @hdl: profile handle
4014 */
4015static bool
4016ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4017{
4018	u16 idx = vsig & ICE_VSIG_IDX_M;
4019	struct ice_vsig_prof *ent;
4020
4021	LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4022			    ice_vsig_prof, list)
4023		if (ent->profile_cookie == hdl)
4024			return true;
4025
4026	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4027		  vsig);
4028	return false;
4029}
4030
4031/**
4032 * ice_prof_bld_es - build profile ID extraction sequence changes
4033 * @hw: pointer to the HW struct
4034 * @blk: hardware block
4035 * @bld: the update package buffer build to add to
4036 * @chgs: the list of changes to make in hardware
4037 */
4038static enum ice_status
4039ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4040		struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4041{
4042	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4043	struct ice_chs_chg *tmp;
4044
4045	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4046		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4047			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4048			struct ice_pkg_es *p;
4049			u32 id;
4050
4051			id = ice_sect_id(blk, ICE_VEC_TBL);
4052			p = (struct ice_pkg_es *)
4053				ice_pkg_buf_alloc_section(bld, id,
4054							  ice_struct_size(p, es,
4055									  1) +
4056							  vec_size -
4057							  sizeof(p->es[0]));
4058
4059			if (!p)
4060				return ICE_ERR_MAX_LIMIT;
4061
4062			p->count = CPU_TO_LE16(1);
4063			p->offset = CPU_TO_LE16(tmp->prof_id);
4064
4065			ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4066				   ICE_NONDMA_TO_NONDMA);
4067		}
4068
4069	return ICE_SUCCESS;
4070}
4071
4072/**
4073 * ice_prof_bld_tcam - build profile ID TCAM changes
4074 * @hw: pointer to the HW struct
4075 * @blk: hardware block
4076 * @bld: the update package buffer build to add to
4077 * @chgs: the list of changes to make in hardware
4078 */
4079static enum ice_status
4080ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4081		  struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4082{
4083	struct ice_chs_chg *tmp;
4084
4085	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4086		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4087			struct ice_prof_id_section *p;
4088			u32 id;
4089
4090			id = ice_sect_id(blk, ICE_PROF_TCAM);
4091			p = (struct ice_prof_id_section *)
4092				ice_pkg_buf_alloc_section(bld, id,
4093							  ice_struct_size(p,
4094									  entry,
4095									  1));
4096
4097			if (!p)
4098				return ICE_ERR_MAX_LIMIT;
4099
4100			p->count = CPU_TO_LE16(1);
4101			p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4102			p->entry[0].prof_id = tmp->prof_id;
4103
4104			ice_memcpy(p->entry[0].key,
4105				   &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4106				   sizeof(hw->blk[blk].prof.t->key),
4107				   ICE_NONDMA_TO_NONDMA);
4108		}
4109
4110	return ICE_SUCCESS;
4111}
4112
4113/**
4114 * ice_prof_bld_xlt1 - build XLT1 changes
4115 * @blk: hardware block
4116 * @bld: the update package buffer build to add to
4117 * @chgs: the list of changes to make in hardware
4118 */
4119static enum ice_status
4120ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4121		  struct LIST_HEAD_TYPE *chgs)
4122{
4123	struct ice_chs_chg *tmp;
4124
4125	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4126		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4127			struct ice_xlt1_section *p;
4128			u32 id;
4129
4130			id = ice_sect_id(blk, ICE_XLT1);
4131			p = (struct ice_xlt1_section *)
4132				ice_pkg_buf_alloc_section(bld, id,
4133							  ice_struct_size(p,
4134									  value,
4135									  1));
4136
4137			if (!p)
4138				return ICE_ERR_MAX_LIMIT;
4139
4140			p->count = CPU_TO_LE16(1);
4141			p->offset = CPU_TO_LE16(tmp->ptype);
4142			p->value[0] = tmp->ptg;
4143		}
4144
4145	return ICE_SUCCESS;
4146}
4147
4148/**
4149 * ice_prof_bld_xlt2 - build XLT2 changes
4150 * @blk: hardware block
4151 * @bld: the update package buffer build to add to
4152 * @chgs: the list of changes to make in hardware
4153 */
4154static enum ice_status
4155ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4156		  struct LIST_HEAD_TYPE *chgs)
4157{
4158	struct ice_chs_chg *tmp;
4159
4160	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4161		struct ice_xlt2_section *p;
4162		u32 id;
4163
4164		switch (tmp->type) {
4165		case ICE_VSIG_ADD:
4166		case ICE_VSI_MOVE:
4167		case ICE_VSIG_REM:
4168			id = ice_sect_id(blk, ICE_XLT2);
4169			p = (struct ice_xlt2_section *)
4170				ice_pkg_buf_alloc_section(bld, id,
4171							  ice_struct_size(p,
4172									  value,
4173									  1));
4174
4175			if (!p)
4176				return ICE_ERR_MAX_LIMIT;
4177
4178			p->count = CPU_TO_LE16(1);
4179			p->offset = CPU_TO_LE16(tmp->vsi);
4180			p->value[0] = CPU_TO_LE16(tmp->vsig);
4181			break;
4182		default:
4183			break;
4184		}
4185	}
4186
4187	return ICE_SUCCESS;
4188}
4189
4190/**
4191 * ice_upd_prof_hw - update hardware using the change list
4192 * @hw: pointer to the HW struct
4193 * @blk: hardware block
4194 * @chgs: the list of changes to make in hardware
4195 */
4196static enum ice_status
4197ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4198		struct LIST_HEAD_TYPE *chgs)
4199{
4200	struct ice_buf_build *b;
4201	struct ice_chs_chg *tmp;
4202	enum ice_status status;
4203	u16 pkg_sects;
4204	u16 xlt1 = 0;
4205	u16 xlt2 = 0;
4206	u16 tcam = 0;
4207	u16 es = 0;
4208	u16 sects;
4209
4210	/* count number of sections we need */
4211	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4212		switch (tmp->type) {
4213		case ICE_PTG_ES_ADD:
4214			if (tmp->add_ptg)
4215				xlt1++;
4216			if (tmp->add_prof)
4217				es++;
4218			break;
4219		case ICE_TCAM_ADD:
4220			tcam++;
4221			break;
4222		case ICE_VSIG_ADD:
4223		case ICE_VSI_MOVE:
4224		case ICE_VSIG_REM:
4225			xlt2++;
4226			break;
4227		default:
4228			break;
4229		}
4230	}
4231	sects = xlt1 + xlt2 + tcam + es;
4232
4233	if (!sects)
4234		return ICE_SUCCESS;
4235
4236	/* Build update package buffer */
4237	b = ice_pkg_buf_alloc(hw);
4238	if (!b)
4239		return ICE_ERR_NO_MEMORY;
4240
4241	status = ice_pkg_buf_reserve_section(b, sects);
4242	if (status)
4243		goto error_tmp;
4244
4245	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4246	if (es) {
4247		status = ice_prof_bld_es(hw, blk, b, chgs);
4248		if (status)
4249			goto error_tmp;
4250	}
4251
4252	if (tcam) {
4253		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4254		if (status)
4255			goto error_tmp;
4256	}
4257
4258	if (xlt1) {
4259		status = ice_prof_bld_xlt1(blk, b, chgs);
4260		if (status)
4261			goto error_tmp;
4262	}
4263
4264	if (xlt2) {
4265		status = ice_prof_bld_xlt2(blk, b, chgs);
4266		if (status)
4267			goto error_tmp;
4268	}
4269
4270	/* After package buffer build check if the section count in buffer is
4271	 * non-zero and matches the number of sections detected for package
4272	 * update.
4273	 */
4274	pkg_sects = ice_pkg_buf_get_active_sections(b);
4275	if (!pkg_sects || pkg_sects != sects) {
4276		status = ICE_ERR_INVAL_SIZE;
4277		goto error_tmp;
4278	}
4279
4280	/* update package */
4281	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4282	if (status == ICE_ERR_AQ_ERROR)
4283		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4284
4285error_tmp:
4286	ice_pkg_buf_free(hw, b);
4287	return status;
4288}
4289
4290/**
4291 * ice_add_prof - add profile
4292 * @hw: pointer to the HW struct
4293 * @blk: hardware block
4294 * @id: profile tracking ID
4295 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4296 * @es: extraction sequence (length of array is determined by the block)
4297 *
4298 * This function registers a profile, which matches a set of PTGs with a
4299 * particular extraction sequence. While the hardware profile is allocated
4300 * it will not be written until the first call to ice_add_flow that specifies
4301 * the ID value used here.
4302 */
4303enum ice_status
4304ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4305	     struct ice_fv_word *es)
4306{
4307	u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4308	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4309	struct ice_prof_map *prof;
4310	enum ice_status status;
4311	u8 byte = 0;
4312	u8 prof_id;
4313
4314	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4315
4316	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4317
4318	/* search for existing profile */
4319	status = ice_find_prof_id(hw, blk, es, &prof_id);
4320	if (status) {
4321		/* allocate profile ID */
4322		status = ice_alloc_prof_id(hw, blk, &prof_id);
4323		if (status)
4324			goto err_ice_add_prof;
4325
4326		/* and write new es */
4327		ice_write_es(hw, blk, prof_id, es);
4328	}
4329
4330	ice_prof_inc_ref(hw, blk, prof_id);
4331
4332	/* add profile info */
4333
4334	prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
4335	if (!prof)
4336		goto err_ice_add_prof;
4337
4338	prof->profile_cookie = id;
4339	prof->prof_id = prof_id;
4340	prof->ptg_cnt = 0;
4341	prof->context = 0;
4342
4343	/* build list of ptgs */
4344	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4345		u8 bit;
4346
4347		if (!ptypes[byte]) {
4348			bytes--;
4349			byte++;
4350			continue;
4351		}
4352
4353		/* Examine 8 bits per byte */
4354		ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
4355				     BITS_PER_BYTE) {
4356			u16 ptype;
4357			u8 ptg;
4358
4359			ptype = byte * BITS_PER_BYTE + bit;
4360
4361			/* The package should place all ptypes in a non-zero
4362			 * PTG, so the following call should never fail.
4363			 */
4364			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4365				continue;
4366
4367			/* If PTG is already added, skip and continue */
4368			if (ice_is_bit_set(ptgs_used, ptg))
4369				continue;
4370
4371			ice_set_bit(ptg, ptgs_used);
4372			prof->ptg[prof->ptg_cnt] = ptg;
4373
4374			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4375				break;
4376		}
4377
4378		bytes--;
4379		byte++;
4380	}
4381
4382	LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
4383	status = ICE_SUCCESS;
4384
4385err_ice_add_prof:
4386	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4387	return status;
4388}
4389
4390/**
4391 * ice_search_prof_id - Search for a profile tracking ID
4392 * @hw: pointer to the HW struct
4393 * @blk: hardware block
4394 * @id: profile tracking ID
4395 *
4396 * This will search for a profile tracking ID which was previously added.
4397 * The profile map lock should be held before calling this function.
4398 */
4399struct ice_prof_map *
4400ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4401{
4402	struct ice_prof_map *entry = NULL;
4403	struct ice_prof_map *map;
4404
4405	LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
4406		if (map->profile_cookie == id) {
4407			entry = map;
4408			break;
4409		}
4410
4411	return entry;
4412}
4413
4414/**
4415 * ice_set_prof_context - Set context for a given profile
4416 * @hw: pointer to the HW struct
4417 * @blk: hardware block
4418 * @id: profile tracking ID
4419 * @cntxt: context
4420 */
4421enum ice_status
4422ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
4423{
4424	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4425	struct ice_prof_map *entry;
4426
4427	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4428	entry = ice_search_prof_id(hw, blk, id);
4429	if (entry) {
4430		entry->context = cntxt;
4431		status = ICE_SUCCESS;
4432	}
4433	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4434	return status;
4435}
4436
4437/**
4438 * ice_get_prof_context - Get context for a given profile
4439 * @hw: pointer to the HW struct
4440 * @blk: hardware block
4441 * @id: profile tracking ID
4442 * @cntxt: pointer to variable to receive the context
4443 */
4444enum ice_status
4445ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
4446{
4447	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4448	struct ice_prof_map *entry;
4449
4450	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4451	entry = ice_search_prof_id(hw, blk, id);
4452	if (entry) {
4453		*cntxt = entry->context;
4454		status = ICE_SUCCESS;
4455	}
4456	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4457	return status;
4458}
4459
4460/**
4461 * ice_vsig_prof_id_count - count profiles in a VSIG
4462 * @hw: pointer to the HW struct
4463 * @blk: hardware block
4464 * @vsig: VSIG to remove the profile from
4465 */
4466static u16
4467ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4468{
4469	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4470	struct ice_vsig_prof *p;
4471
4472	LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4473			    ice_vsig_prof, list)
4474		count++;
4475
4476	return count;
4477}
4478
4479/**
4480 * ice_rel_tcam_idx - release a TCAM index
4481 * @hw: pointer to the HW struct
4482 * @blk: hardware block
4483 * @idx: the index to release
4484 */
4485static enum ice_status
4486ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4487{
4488	/* Masks to invoke a never match entry */
4489	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4490	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4491	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4492	enum ice_status status;
4493
4494	/* write the TCAM entry */
4495	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4496				      dc_msk, nm_msk);
4497	if (status)
4498		return status;
4499
4500	/* release the TCAM entry */
4501	status = ice_free_tcam_ent(hw, blk, idx);
4502
4503	return status;
4504}
4505
4506/**
4507 * ice_rem_prof_id - remove one profile from a VSIG
4508 * @hw: pointer to the HW struct
4509 * @blk: hardware block
4510 * @prof: pointer to profile structure to remove
4511 */
4512static enum ice_status
4513ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4514		struct ice_vsig_prof *prof)
4515{
4516	enum ice_status status;
4517	u16 i;
4518
4519	for (i = 0; i < prof->tcam_count; i++)
4520		if (prof->tcam[i].in_use) {
4521			prof->tcam[i].in_use = false;
4522			status = ice_rel_tcam_idx(hw, blk,
4523						  prof->tcam[i].tcam_idx);
4524			if (status)
4525				return ICE_ERR_HW_TABLE;
4526		}
4527
4528	return ICE_SUCCESS;
4529}
4530
4531/**
4532 * ice_rem_vsig - remove VSIG
4533 * @hw: pointer to the HW struct
4534 * @blk: hardware block
4535 * @vsig: the VSIG to remove
4536 * @chg: the change list
4537 */
4538static enum ice_status
4539ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4540	     struct LIST_HEAD_TYPE *chg)
4541{
4542	u16 idx = vsig & ICE_VSIG_IDX_M;
4543	struct ice_vsig_vsi *vsi_cur;
4544	struct ice_vsig_prof *d, *t;
4545	enum ice_status status;
4546
4547	/* remove TCAM entries */
4548	LIST_FOR_EACH_ENTRY_SAFE(d, t,
4549				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4550				 ice_vsig_prof, list) {
4551		status = ice_rem_prof_id(hw, blk, d);
4552		if (status)
4553			return status;
4554
4555		LIST_DEL(&d->list);
4556		ice_free(hw, d);
4557	}
4558
4559	/* Move all VSIS associated with this VSIG to the default VSIG */
4560	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4561	/* If the VSIG has at least 1 VSI then iterate through the list
4562	 * and remove the VSIs before deleting the group.
4563	 */
4564	if (vsi_cur)
4565		do {
4566			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4567			struct ice_chs_chg *p;
4568
4569			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4570			if (!p)
4571				return ICE_ERR_NO_MEMORY;
4572
4573			p->type = ICE_VSIG_REM;
4574			p->orig_vsig = vsig;
4575			p->vsig = ICE_DEFAULT_VSIG;
4576			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4577
4578			LIST_ADD(&p->list_entry, chg);
4579
4580			vsi_cur = tmp;
4581		} while (vsi_cur);
4582
4583	return ice_vsig_free(hw, blk, vsig);
4584}
4585
4586/**
4587 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4588 * @hw: pointer to the HW struct
4589 * @blk: hardware block
4590 * @vsig: VSIG to remove the profile from
4591 * @hdl: profile handle indicating which profile to remove
4592 * @chg: list to receive a record of changes
4593 */
4594static enum ice_status
4595ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4596		     struct LIST_HEAD_TYPE *chg)
4597{
4598	u16 idx = vsig & ICE_VSIG_IDX_M;
4599	struct ice_vsig_prof *p, *t;
4600	enum ice_status status;
4601
4602	LIST_FOR_EACH_ENTRY_SAFE(p, t,
4603				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4604				 ice_vsig_prof, list)
4605		if (p->profile_cookie == hdl) {
4606			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4607				/* this is the last profile, remove the VSIG */
4608				return ice_rem_vsig(hw, blk, vsig, chg);
4609
4610			status = ice_rem_prof_id(hw, blk, p);
4611			if (!status) {
4612				LIST_DEL(&p->list);
4613				ice_free(hw, p);
4614			}
4615			return status;
4616		}
4617
4618	return ICE_ERR_DOES_NOT_EXIST;
4619}
4620
4621/**
4622 * ice_rem_flow_all - remove all flows with a particular profile
4623 * @hw: pointer to the HW struct
4624 * @blk: hardware block
4625 * @id: profile tracking ID
4626 */
4627static enum ice_status
4628ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4629{
4630	struct ice_chs_chg *del, *tmp;
4631	enum ice_status status;
4632	struct LIST_HEAD_TYPE chg;
4633	u16 i;
4634
4635	INIT_LIST_HEAD(&chg);
4636
4637	for (i = 1; i < ICE_MAX_VSIGS; i++)
4638		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4639			if (ice_has_prof_vsig(hw, blk, i, id)) {
4640				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4641							      &chg);
4642				if (status)
4643					goto err_ice_rem_flow_all;
4644			}
4645		}
4646
4647	status = ice_upd_prof_hw(hw, blk, &chg);
4648
4649err_ice_rem_flow_all:
4650	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4651		LIST_DEL(&del->list_entry);
4652		ice_free(hw, del);
4653	}
4654
4655	return status;
4656}
4657
4658/**
4659 * ice_rem_prof - remove profile
4660 * @hw: pointer to the HW struct
4661 * @blk: hardware block
4662 * @id: profile tracking ID
4663 *
4664 * This will remove the profile specified by the ID parameter, which was
4665 * previously created through ice_add_prof. If any existing entries
4666 * are associated with this profile, they will be removed as well.
4667 */
4668enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4669{
4670	struct ice_prof_map *pmap;
4671	enum ice_status status;
4672
4673	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4674
4675	pmap = ice_search_prof_id(hw, blk, id);
4676	if (!pmap) {
4677		status = ICE_ERR_DOES_NOT_EXIST;
4678		goto err_ice_rem_prof;
4679	}
4680
4681	/* remove all flows with this profile */
4682	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4683	if (status)
4684		goto err_ice_rem_prof;
4685
4686	/* dereference profile, and possibly remove */
4687	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4688
4689	LIST_DEL(&pmap->list);
4690	ice_free(hw, pmap);
4691
4692err_ice_rem_prof:
4693	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4694	return status;
4695}
4696
4697/**
4698 * ice_get_prof - get profile
4699 * @hw: pointer to the HW struct
4700 * @blk: hardware block
4701 * @hdl: profile handle
4702 * @chg: change list
4703 */
4704static enum ice_status
4705ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4706	     struct LIST_HEAD_TYPE *chg)
4707{
4708	enum ice_status status = ICE_SUCCESS;
4709	struct ice_prof_map *map;
4710	struct ice_chs_chg *p;
4711	u16 i;
4712
4713	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4714	/* Get the details on the profile specified by the handle ID */
4715	map = ice_search_prof_id(hw, blk, hdl);
4716	if (!map) {
4717		status = ICE_ERR_DOES_NOT_EXIST;
4718		goto err_ice_get_prof;
4719	}
4720
4721	for (i = 0; i < map->ptg_cnt; i++)
4722		if (!hw->blk[blk].es.written[map->prof_id]) {
4723			/* add ES to change list */
4724			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4725			if (!p) {
4726				status = ICE_ERR_NO_MEMORY;
4727				goto err_ice_get_prof;
4728			}
4729
4730			p->type = ICE_PTG_ES_ADD;
4731			p->ptype = 0;
4732			p->ptg = map->ptg[i];
4733			p->add_ptg = 0;
4734
4735			p->add_prof = 1;
4736			p->prof_id = map->prof_id;
4737
4738			hw->blk[blk].es.written[map->prof_id] = true;
4739
4740			LIST_ADD(&p->list_entry, chg);
4741		}
4742
4743err_ice_get_prof:
4744	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4745	/* let caller clean up the change list */
4746	return status;
4747}
4748
4749/**
4750 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4751 * @hw: pointer to the HW struct
4752 * @blk: hardware block
4753 * @vsig: VSIG from which to copy the list
4754 * @lst: output list
4755 *
4756 * This routine makes a copy of the list of profiles in the specified VSIG.
4757 */
4758static enum ice_status
4759ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4760		   struct LIST_HEAD_TYPE *lst)
4761{
4762	struct ice_vsig_prof *ent1, *ent2;
4763	u16 idx = vsig & ICE_VSIG_IDX_M;
4764
4765	LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4766			    ice_vsig_prof, list) {
4767		struct ice_vsig_prof *p;
4768
4769		/* copy to the input list */
4770		p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
4771						       ICE_NONDMA_TO_NONDMA);
4772		if (!p)
4773			goto err_ice_get_profs_vsig;
4774
4775		LIST_ADD_TAIL(&p->list, lst);
4776	}
4777
4778	return ICE_SUCCESS;
4779
4780err_ice_get_profs_vsig:
4781	LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
4782		LIST_DEL(&ent1->list);
4783		ice_free(hw, ent1);
4784	}
4785
4786	return ICE_ERR_NO_MEMORY;
4787}
4788
4789/**
4790 * ice_add_prof_to_lst - add profile entry to a list
4791 * @hw: pointer to the HW struct
4792 * @blk: hardware block
4793 * @lst: the list to be added to
4794 * @hdl: profile handle of entry to add
4795 */
4796static enum ice_status
4797ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4798		    struct LIST_HEAD_TYPE *lst, u64 hdl)
4799{
4800	enum ice_status status = ICE_SUCCESS;
4801	struct ice_prof_map *map;
4802	struct ice_vsig_prof *p;
4803	u16 i;
4804
4805	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4806	map = ice_search_prof_id(hw, blk, hdl);
4807	if (!map) {
4808		status = ICE_ERR_DOES_NOT_EXIST;
4809		goto err_ice_add_prof_to_lst;
4810	}
4811
4812	p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4813	if (!p) {
4814		status = ICE_ERR_NO_MEMORY;
4815		goto err_ice_add_prof_to_lst;
4816	}
4817
4818	p->profile_cookie = map->profile_cookie;
4819	p->prof_id = map->prof_id;
4820	p->tcam_count = map->ptg_cnt;
4821
4822	for (i = 0; i < map->ptg_cnt; i++) {
4823		p->tcam[i].prof_id = map->prof_id;
4824		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4825		p->tcam[i].ptg = map->ptg[i];
4826	}
4827
4828	LIST_ADD(&p->list, lst);
4829
4830err_ice_add_prof_to_lst:
4831	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4832	return status;
4833}
4834
4835/**
4836 * ice_move_vsi - move VSI to another VSIG
4837 * @hw: pointer to the HW struct
4838 * @blk: hardware block
4839 * @vsi: the VSI to move
4840 * @vsig: the VSIG to move the VSI to
4841 * @chg: the change list
4842 */
4843static enum ice_status
4844ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4845	     struct LIST_HEAD_TYPE *chg)
4846{
4847	enum ice_status status;
4848	struct ice_chs_chg *p;
4849	u16 orig_vsig;
4850
4851	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4852	if (!p)
4853		return ICE_ERR_NO_MEMORY;
4854
4855	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4856	if (!status)
4857		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4858
4859	if (status) {
4860		ice_free(hw, p);
4861		return status;
4862	}
4863
4864	p->type = ICE_VSI_MOVE;
4865	p->vsi = vsi;
4866	p->orig_vsig = orig_vsig;
4867	p->vsig = vsig;
4868
4869	LIST_ADD(&p->list_entry, chg);
4870
4871	return ICE_SUCCESS;
4872}
4873
4874/**
4875 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4876 * @hw: pointer to the HW struct
4877 * @idx: the index of the TCAM entry to remove
4878 * @chg: the list of change structures to search
4879 */
4880static void
4881ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
4882{
4883	struct ice_chs_chg *pos, *tmp;
4884
4885	LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
4886		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4887			LIST_DEL(&tmp->list_entry);
4888			ice_free(hw, tmp);
4889		}
4890}
4891
4892/**
4893 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4894 * @hw: pointer to the HW struct
4895 * @blk: hardware block
4896 * @enable: true to enable, false to disable
4897 * @vsig: the VSIG of the TCAM entry
4898 * @tcam: pointer the TCAM info structure of the TCAM to disable
4899 * @chg: the change list
4900 *
4901 * This function appends an enable or disable TCAM entry in the change log
4902 */
4903static enum ice_status
4904ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4905		      u16 vsig, struct ice_tcam_inf *tcam,
4906		      struct LIST_HEAD_TYPE *chg)
4907{
4908	enum ice_status status;
4909	struct ice_chs_chg *p;
4910
4911	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4912	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4913	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4914
4915	/* if disabling, free the TCAM */
4916	if (!enable) {
4917		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4918
4919		/* if we have already created a change for this TCAM entry, then
4920		 * we need to remove that entry, in order to prevent writing to
4921		 * a TCAM entry we no longer will have ownership of.
4922		 */
4923		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4924		tcam->tcam_idx = 0;
4925		tcam->in_use = 0;
4926		return status;
4927	}
4928
4929	/* for re-enabling, reallocate a TCAM */
4930	status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
4931	if (status)
4932		return status;
4933
4934	/* add TCAM to change list */
4935	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4936	if (!p)
4937		return ICE_ERR_NO_MEMORY;
4938
4939	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4940				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4941				      nm_msk);
4942	if (status)
4943		goto err_ice_prof_tcam_ena_dis;
4944
4945	tcam->in_use = 1;
4946
4947	p->type = ICE_TCAM_ADD;
4948	p->add_tcam_idx = true;
4949	p->prof_id = tcam->prof_id;
4950	p->ptg = tcam->ptg;
4951	p->vsig = 0;
4952	p->tcam_idx = tcam->tcam_idx;
4953
4954	/* log change */
4955	LIST_ADD(&p->list_entry, chg);
4956
4957	return ICE_SUCCESS;
4958
4959err_ice_prof_tcam_ena_dis:
4960	ice_free(hw, p);
4961	return status;
4962}
4963
4964/**
4965 * ice_adj_prof_priorities - adjust profile based on priorities
4966 * @hw: pointer to the HW struct
4967 * @blk: hardware block
4968 * @vsig: the VSIG for which to adjust profile priorities
4969 * @chg: the change list
4970 */
4971static enum ice_status
4972ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4973			struct LIST_HEAD_TYPE *chg)
4974{
4975	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4976	enum ice_status status = ICE_SUCCESS;
4977	struct ice_vsig_prof *t;
4978	u16 idx;
4979
4980	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4981	idx = vsig & ICE_VSIG_IDX_M;
4982
4983	/* Priority is based on the order in which the profiles are added. The
4984	 * newest added profile has highest priority and the oldest added
4985	 * profile has the lowest priority. Since the profile property list for
4986	 * a VSIG is sorted from newest to oldest, this code traverses the list
4987	 * in order and enables the first of each PTG that it finds (that is not
4988	 * already enabled); it also disables any duplicate PTGs that it finds
4989	 * in the older profiles (that are currently enabled).
4990	 */
4991
4992	LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4993			    ice_vsig_prof, list) {
4994		u16 i;
4995
4996		for (i = 0; i < t->tcam_count; i++) {
4997			bool used;
4998
4999			/* Scan the priorities from newest to oldest.
5000			 * Make sure that the newest profiles take priority.
5001			 */
5002			used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
5003
5004			if (used && t->tcam[i].in_use) {
5005				/* need to mark this PTG as never match, as it
5006				 * was already in use and therefore duplicate
5007				 * (and lower priority)
5008				 */
5009				status = ice_prof_tcam_ena_dis(hw, blk, false,
5010							       vsig,
5011							       &t->tcam[i],
5012							       chg);
5013				if (status)
5014					return status;
5015			} else if (!used && !t->tcam[i].in_use) {
5016				/* need to enable this PTG, as it in not in use
5017				 * and not enabled (highest priority)
5018				 */
5019				status = ice_prof_tcam_ena_dis(hw, blk, true,
5020							       vsig,
5021							       &t->tcam[i],
5022							       chg);
5023				if (status)
5024					return status;
5025			}
5026
5027			/* keep track of used ptgs */
5028			ice_set_bit(t->tcam[i].ptg, ptgs_used);
5029		}
5030	}
5031
5032	return status;
5033}
5034
5035/**
5036 * ice_add_prof_id_vsig - add profile to VSIG
5037 * @hw: pointer to the HW struct
5038 * @blk: hardware block
5039 * @vsig: the VSIG to which this profile is to be added
5040 * @hdl: the profile handle indicating the profile to add
5041 * @rev: true to add entries to the end of the list
5042 * @chg: the change list
5043 */
5044static enum ice_status
5045ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5046		     bool rev, struct LIST_HEAD_TYPE *chg)
5047{
5048	/* Masks that ignore flags */
5049	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5051	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5052	enum ice_status status = ICE_SUCCESS;
5053	struct ice_prof_map *map;
5054	struct ice_vsig_prof *t;
5055	struct ice_chs_chg *p;
5056	u16 vsig_idx, i;
5057
5058	/* Error, if this VSIG already has this profile */
5059	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5060		return ICE_ERR_ALREADY_EXISTS;
5061
5062	/* new VSIG profile structure */
5063	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5064	if (!t)
5065		return ICE_ERR_NO_MEMORY;
5066
5067	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5068	/* Get the details on the profile specified by the handle ID */
5069	map = ice_search_prof_id(hw, blk, hdl);
5070	if (!map) {
5071		status = ICE_ERR_DOES_NOT_EXIST;
5072		goto err_ice_add_prof_id_vsig;
5073	}
5074
5075	t->profile_cookie = map->profile_cookie;
5076	t->prof_id = map->prof_id;
5077	t->tcam_count = map->ptg_cnt;
5078
5079	/* create TCAM entries */
5080	for (i = 0; i < map->ptg_cnt; i++) {
5081		u16 tcam_idx;
5082
5083		/* add TCAM to change list */
5084		p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5085		if (!p) {
5086			status = ICE_ERR_NO_MEMORY;
5087			goto err_ice_add_prof_id_vsig;
5088		}
5089
5090		/* allocate the TCAM entry index */
5091		status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
5092		if (status) {
5093			ice_free(hw, p);
5094			goto err_ice_add_prof_id_vsig;
5095		}
5096
5097		t->tcam[i].ptg = map->ptg[i];
5098		t->tcam[i].prof_id = map->prof_id;
5099		t->tcam[i].tcam_idx = tcam_idx;
5100		t->tcam[i].in_use = true;
5101
5102		p->type = ICE_TCAM_ADD;
5103		p->add_tcam_idx = true;
5104		p->prof_id = t->tcam[i].prof_id;
5105		p->ptg = t->tcam[i].ptg;
5106		p->vsig = vsig;
5107		p->tcam_idx = t->tcam[i].tcam_idx;
5108
5109		/* write the TCAM entry */
5110		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5111					      t->tcam[i].prof_id,
5112					      t->tcam[i].ptg, vsig, 0, 0,
5113					      vl_msk, dc_msk, nm_msk);
5114		if (status) {
5115			ice_free(hw, p);
5116			goto err_ice_add_prof_id_vsig;
5117		}
5118
5119		/* log change */
5120		LIST_ADD(&p->list_entry, chg);
5121	}
5122
5123	/* add profile to VSIG */
5124	vsig_idx = vsig & ICE_VSIG_IDX_M;
5125	if (rev)
5126		LIST_ADD_TAIL(&t->list,
5127			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5128	else
5129		LIST_ADD(&t->list,
5130			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5131
5132	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5133	return status;
5134
5135err_ice_add_prof_id_vsig:
5136	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5137	/* let caller clean up the change list */
5138	ice_free(hw, t);
5139	return status;
5140}
5141
5142/**
5143 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5144 * @hw: pointer to the HW struct
5145 * @blk: hardware block
5146 * @vsi: the initial VSI that will be in VSIG
5147 * @hdl: the profile handle of the profile that will be added to the VSIG
5148 * @chg: the change list
5149 */
5150static enum ice_status
5151ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5152			struct LIST_HEAD_TYPE *chg)
5153{
5154	enum ice_status status;
5155	struct ice_chs_chg *p;
5156	u16 new_vsig;
5157
5158	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5159	if (!p)
5160		return ICE_ERR_NO_MEMORY;
5161
5162	new_vsig = ice_vsig_alloc(hw, blk);
5163	if (!new_vsig) {
5164		status = ICE_ERR_HW_TABLE;
5165		goto err_ice_create_prof_id_vsig;
5166	}
5167
5168	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5169	if (status)
5170		goto err_ice_create_prof_id_vsig;
5171
5172	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5173	if (status)
5174		goto err_ice_create_prof_id_vsig;
5175
5176	p->type = ICE_VSIG_ADD;
5177	p->vsi = vsi;
5178	p->orig_vsig = ICE_DEFAULT_VSIG;
5179	p->vsig = new_vsig;
5180
5181	LIST_ADD(&p->list_entry, chg);
5182
5183	return ICE_SUCCESS;
5184
5185err_ice_create_prof_id_vsig:
5186	/* let caller clean up the change list */
5187	ice_free(hw, p);
5188	return status;
5189}
5190
5191/**
5192 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5193 * @hw: pointer to the HW struct
5194 * @blk: hardware block
5195 * @vsi: the initial VSI that will be in VSIG
5196 * @lst: the list of profile that will be added to the VSIG
5197 * @new_vsig: return of new VSIG
5198 * @chg: the change list
5199 */
5200static enum ice_status
5201ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5202			 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5203			 struct LIST_HEAD_TYPE *chg)
5204{
5205	struct ice_vsig_prof *t;
5206	enum ice_status status;
5207	u16 vsig;
5208
5209	vsig = ice_vsig_alloc(hw, blk);
5210	if (!vsig)
5211		return ICE_ERR_HW_TABLE;
5212
5213	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5214	if (status)
5215		return status;
5216
5217	LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5218		/* Reverse the order here since we are copying the list */
5219		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5220					      true, chg);
5221		if (status)
5222			return status;
5223	}
5224
5225	*new_vsig = vsig;
5226
5227	return ICE_SUCCESS;
5228}
5229
5230/**
5231 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5232 * @hw: pointer to the HW struct
5233 * @blk: hardware block
5234 * @hdl: the profile handle of the profile to search for
5235 * @vsig: returns the VSIG with the matching profile
5236 */
5237static bool
5238ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5239{
5240	struct ice_vsig_prof *t;
5241	enum ice_status status;
5242	struct LIST_HEAD_TYPE lst;
5243
5244	INIT_LIST_HEAD(&lst);
5245
5246	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5247	if (!t)
5248		return false;
5249
5250	t->profile_cookie = hdl;
5251	LIST_ADD(&t->list, &lst);
5252
5253	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5254
5255	LIST_DEL(&t->list);
5256	ice_free(hw, t);
5257
5258	return status == ICE_SUCCESS;
5259}
5260
5261/**
5262 * ice_add_vsi_flow - add VSI flow
5263 * @hw: pointer to the HW struct
5264 * @blk: hardware block
5265 * @vsi: input VSI
5266 * @vsig: target VSIG to include the input VSI
5267 *
5268 * Calling this function will add the VSI to a given VSIG and
5269 * update the HW tables accordingly. This call can be used to
5270 * add multiple VSIs to a VSIG if we know beforehand that those
5271 * VSIs have the same characteristics of the VSIG. This will
5272 * save time in generating a new VSIG and TCAMs till a match is
5273 * found and subsequent rollback when a matching VSIG is found.
5274 */
5275enum ice_status
5276ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
5277{
5278	struct ice_chs_chg *tmp, *del;
5279	struct LIST_HEAD_TYPE chg;
5280	enum ice_status status;
5281
5282	/* if target VSIG is default the move is invalid */
5283	if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
5284		return ICE_ERR_PARAM;
5285
5286	INIT_LIST_HEAD(&chg);
5287
5288	/* move VSI to the VSIG that matches */
5289	status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5290	/* update hardware if success */
5291	if (!status)
5292		status = ice_upd_prof_hw(hw, blk, &chg);
5293
5294	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5295		LIST_DEL(&del->list_entry);
5296		ice_free(hw, del);
5297	}
5298
5299	return status;
5300}
5301
5302/**
5303 * ice_add_prof_id_flow - add profile flow
5304 * @hw: pointer to the HW struct
5305 * @blk: hardware block
5306 * @vsi: the VSI to enable with the profile specified by ID
5307 * @hdl: profile handle
5308 *
5309 * Calling this function will update the hardware tables to enable the
5310 * profile indicated by the ID parameter for the VSIs specified in the VSI
5311 * array. Once successfully called, the flow will be enabled.
5312 */
5313enum ice_status
5314ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5315{
5316	struct ice_vsig_prof *tmp1, *del1;
5317	struct ice_chs_chg *tmp, *del;
5318	struct LIST_HEAD_TYPE union_lst;
5319	enum ice_status status;
5320	struct LIST_HEAD_TYPE chg;
5321	u16 vsig;
5322
5323	INIT_LIST_HEAD(&union_lst);
5324	INIT_LIST_HEAD(&chg);
5325
5326	/* Get profile */
5327	status = ice_get_prof(hw, blk, hdl, &chg);
5328	if (status)
5329		return status;
5330
5331	/* determine if VSI is already part of a VSIG */
5332	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5333	if (!status && vsig) {
5334		bool only_vsi;
5335		u16 or_vsig;
5336		u16 ref;
5337
5338		/* found in VSIG */
5339		or_vsig = vsig;
5340
5341		/* make sure that there is no overlap/conflict between the new
5342		 * characteristics and the existing ones; we don't support that
5343		 * scenario
5344		 */
5345		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5346			status = ICE_ERR_ALREADY_EXISTS;
5347			goto err_ice_add_prof_id_flow;
5348		}
5349
5350		/* last VSI in the VSIG? */
5351		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5352		if (status)
5353			goto err_ice_add_prof_id_flow;
5354		only_vsi = (ref == 1);
5355
5356		/* create a union of the current profiles and the one being
5357		 * added
5358		 */
5359		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5360		if (status)
5361			goto err_ice_add_prof_id_flow;
5362
5363		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5364		if (status)
5365			goto err_ice_add_prof_id_flow;
5366
5367		/* search for an existing VSIG with an exact charc match */
5368		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5369		if (!status) {
5370			/* move VSI to the VSIG that matches */
5371			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5372			if (status)
5373				goto err_ice_add_prof_id_flow;
5374
5375			/* VSI has been moved out of or_vsig. If the or_vsig had
5376			 * only that VSI it is now empty and can be removed.
5377			 */
5378			if (only_vsi) {
5379				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5380				if (status)
5381					goto err_ice_add_prof_id_flow;
5382			}
5383		} else if (only_vsi) {
5384			/* If the original VSIG only contains one VSI, then it
5385			 * will be the requesting VSI. In this case the VSI is
5386			 * not sharing entries and we can simply add the new
5387			 * profile to the VSIG.
5388			 */
5389			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5390						      &chg);
5391			if (status)
5392				goto err_ice_add_prof_id_flow;
5393
5394			/* Adjust priorities */
5395			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5396			if (status)
5397				goto err_ice_add_prof_id_flow;
5398		} else {
5399			/* No match, so we need a new VSIG */
5400			status = ice_create_vsig_from_lst(hw, blk, vsi,
5401							  &union_lst, &vsig,
5402							  &chg);
5403			if (status)
5404				goto err_ice_add_prof_id_flow;
5405
5406			/* Adjust priorities */
5407			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5408			if (status)
5409				goto err_ice_add_prof_id_flow;
5410		}
5411	} else {
5412		/* need to find or add a VSIG */
5413		/* search for an existing VSIG with an exact charc match */
5414		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5415			/* found an exact match */
5416			/* add or move VSI to the VSIG that matches */
5417			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5418			if (status)
5419				goto err_ice_add_prof_id_flow;
5420		} else {
5421			/* we did not find an exact match */
5422			/* we need to add a VSIG */
5423			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5424							 &chg);
5425			if (status)
5426				goto err_ice_add_prof_id_flow;
5427		}
5428	}
5429
5430	/* update hardware */
5431	if (!status)
5432		status = ice_upd_prof_hw(hw, blk, &chg);
5433
5434err_ice_add_prof_id_flow:
5435	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5436		LIST_DEL(&del->list_entry);
5437		ice_free(hw, del);
5438	}
5439
5440	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
5441		LIST_DEL(&del1->list);
5442		ice_free(hw, del1);
5443	}
5444
5445	return status;
5446}
5447
5448/**
5449 * ice_add_flow - add flow
5450 * @hw: pointer to the HW struct
5451 * @blk: hardware block
5452 * @vsi: array of VSIs to enable with the profile specified by ID
5453 * @count: number of elements in the VSI array
5454 * @id: profile tracking ID
5455 *
5456 * Calling this function will update the hardware tables to enable the
5457 * profile indicated by the ID parameter for the VSIs specified in the VSI
5458 * array. Once successfully called, the flow will be enabled.
5459 */
5460enum ice_status
5461ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5462	     u64 id)
5463{
5464	enum ice_status status;
5465	u16 i;
5466
5467	for (i = 0; i < count; i++) {
5468		status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
5469		if (status)
5470			return status;
5471	}
5472
5473	return ICE_SUCCESS;
5474}
5475
5476/**
5477 * ice_rem_prof_from_list - remove a profile from list
5478 * @hw: pointer to the HW struct
5479 * @lst: list to remove the profile from
5480 * @hdl: the profile handle indicating the profile to remove
5481 */
5482static enum ice_status
5483ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
5484{
5485	struct ice_vsig_prof *ent, *tmp;
5486
5487	LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
5488		if (ent->profile_cookie == hdl) {
5489			LIST_DEL(&ent->list);
5490			ice_free(hw, ent);
5491			return ICE_SUCCESS;
5492		}
5493
5494	return ICE_ERR_DOES_NOT_EXIST;
5495}
5496
5497/**
5498 * ice_rem_prof_id_flow - remove flow
5499 * @hw: pointer to the HW struct
5500 * @blk: hardware block
5501 * @vsi: the VSI from which to remove the profile specified by ID
5502 * @hdl: profile tracking handle
5503 *
5504 * Calling this function will update the hardware tables to remove the
5505 * profile indicated by the ID parameter for the VSIs specified in the VSI
5506 * array. Once successfully called, the flow will be disabled.
5507 */
5508enum ice_status
5509ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5510{
5511	struct ice_vsig_prof *tmp1, *del1;
5512	struct ice_chs_chg *tmp, *del;
5513	struct LIST_HEAD_TYPE chg, copy;
5514	enum ice_status status;
5515	u16 vsig;
5516
5517	INIT_LIST_HEAD(&copy);
5518	INIT_LIST_HEAD(&chg);
5519
5520	/* determine if VSI is already part of a VSIG */
5521	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5522	if (!status && vsig) {
5523		bool last_profile;
5524		bool only_vsi;
5525		u16 ref;
5526
5527		/* found in VSIG */
5528		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5529		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5530		if (status)
5531			goto err_ice_rem_prof_id_flow;
5532		only_vsi = (ref == 1);
5533
5534		if (only_vsi) {
5535			/* If the original VSIG only contains one reference,
5536			 * which will be the requesting VSI, then the VSI is not
5537			 * sharing entries and we can simply remove the specific
5538			 * characteristics from the VSIG.
5539			 */
5540
5541			if (last_profile) {
5542				/* If there are no profiles left for this VSIG,
5543				 * then simply remove the VSIG.
5544				 */
5545				status = ice_rem_vsig(hw, blk, vsig, &chg);
5546				if (status)
5547					goto err_ice_rem_prof_id_flow;
5548			} else {
5549				status = ice_rem_prof_id_vsig(hw, blk, vsig,
5550							      hdl, &chg);
5551				if (status)
5552					goto err_ice_rem_prof_id_flow;
5553
5554				/* Adjust priorities */
5555				status = ice_adj_prof_priorities(hw, blk, vsig,
5556								 &chg);
5557				if (status)
5558					goto err_ice_rem_prof_id_flow;
5559			}
5560
5561		} else {
5562			/* Make a copy of the VSIG's list of Profiles */
5563			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
5564			if (status)
5565				goto err_ice_rem_prof_id_flow;
5566
5567			/* Remove specified profile entry from the list */
5568			status = ice_rem_prof_from_list(hw, &copy, hdl);
5569			if (status)
5570				goto err_ice_rem_prof_id_flow;
5571
5572			if (LIST_EMPTY(&copy)) {
5573				status = ice_move_vsi(hw, blk, vsi,
5574						      ICE_DEFAULT_VSIG, &chg);
5575				if (status)
5576					goto err_ice_rem_prof_id_flow;
5577
5578			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
5579							    &vsig)) {
5580				/* found an exact match */
5581				/* add or move VSI to the VSIG that matches */
5582				/* Search for a VSIG with a matching profile
5583				 * list
5584				 */
5585
5586				/* Found match, move VSI to the matching VSIG */
5587				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5588				if (status)
5589					goto err_ice_rem_prof_id_flow;
5590			} else {
5591				/* since no existing VSIG supports this
5592				 * characteristic pattern, we need to create a
5593				 * new VSIG and TCAM entries
5594				 */
5595				status = ice_create_vsig_from_lst(hw, blk, vsi,
5596								  &copy, &vsig,
5597								  &chg);
5598				if (status)
5599					goto err_ice_rem_prof_id_flow;
5600
5601				/* Adjust priorities */
5602				status = ice_adj_prof_priorities(hw, blk, vsig,
5603								 &chg);
5604				if (status)
5605					goto err_ice_rem_prof_id_flow;
5606			}
5607		}
5608	} else {
5609		status = ICE_ERR_DOES_NOT_EXIST;
5610	}
5611
5612	/* update hardware tables */
5613	if (!status)
5614		status = ice_upd_prof_hw(hw, blk, &chg);
5615
5616err_ice_rem_prof_id_flow:
5617	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5618		LIST_DEL(&del->list_entry);
5619		ice_free(hw, del);
5620	}
5621
5622	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
5623		LIST_DEL(&del1->list);
5624		ice_free(hw, del1);
5625	}
5626
5627	return status;
5628}
5629
5630/**
5631 * ice_rem_flow - remove flow
5632 * @hw: pointer to the HW struct
5633 * @blk: hardware block
5634 * @vsi: array of VSIs from which to remove the profile specified by ID
5635 * @count: number of elements in the VSI array
5636 * @id: profile tracking ID
5637 *
5638 * The function will remove flows from the specified VSIs that were enabled
5639 * using ice_add_flow. The ID value will indicated which profile will be
5640 * removed. Once successfully called, the flow will be disabled.
5641 */
5642enum ice_status
5643ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5644	     u64 id)
5645{
5646	enum ice_status status;
5647	u16 i;
5648
5649	for (i = 0; i < count; i++) {
5650		status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
5651		if (status)
5652			return status;
5653	}
5654
5655	return ICE_SUCCESS;
5656}
5657